
Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal Introduction

October 1, 1999: Book is on Delphi 5 Companion CD.
Source Code available. Examples list added.

Book Cover. Apollo, the god worshipped at Delphi,
in an Italian 17th century fresco.

The first few editions of Mastering Delphi, the best selling Delphi book I've written, provided an introduction to the Pascal language in
Delphi. Due to space constraints and because many Delphi programmers look for more advanced information, in the latest edition
this material was completely omitted. To overcome the absence of this information, I've started putting together this online book,
titled Essential Pascal.

This is a detailed book on Pascal, which for the moment will be available for free on my web site (I really don't know what will
happen next, I might even find a publisher). This is a work in progress, and any feedback is welcome. The first complete version of
this book, dated July '99, has been published on the Delphi 5 Companion CD.

Copyright

The text and the source code of this book is copyrighted by Marco Cantù. Of course you can use the programs and adapt them to

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

your own needs, only you are not allowed to use them in books, training material, and other copyrighted formats. Feel free to link
your site with this one, but please do not duplicate the material as it is very subject to frequent changes and updates.

The Book Structure

The following is the current structure of the book:

● Chapter 1: Pascal History
● Chapter 2: Coding in Pascal
● Chapter 3: Types, Variables, and Constants
● Chapter 4: User-Defined Data Types
● Chapter 5: Statements
● Chapter 6: Procedures and Functions
● Chapter 7: Handling Strings
● Chapter 8: Memory (and Dynamic Arrays)
● Chapter 9: Windows Programming
● Chapter 10: Variants
● Chapter 11: Programs and Units
● Appendix A: Glossary of terms
● Appendix B: Examples

Source Code

The source code of all the examples mentioned in the book is available. The code has the same Copyright as the book: Feel free to
use it at will but don't publish it on other documents or site. Links back to this site are welcome.

Download the source code in a single zip file, EPasCode.zip (only 26 KB in size) and check out the list of the examples.

Feedback

Please let me know of any errors you find, but also of topics not clear enough for a beginner. I'll be able to devote time to the project
depending also on the feedback I receive. Let me know also which other topics (not covered in Mastering Delphi 4) you'd like to see
here. Again, hook onto the newsgroup, listed on my web site, and look for the books section, or mail to marco@marcocantu.com
(putting Essential Pascal in the subject (and your request or comment in the text).

Acknowledgements

If I'm publishing a book on the web for free, I think this is mainly due to Bruce Eckel's experience with Thinking in Java. I'm a friend
of Bruce and think he really did a great job with that book and few others.

As I mentioned the project to people at Borland I got a lot of positive feedback as well. And of course I must thank the company for
making first the Turbo Pascal series of compilers and now the Delphi series of visual IDEs.

I'm starting to get some precious feedback. The first readers who helped improving this material quite a lot are Charles Wood and
Wyatt Wong. Mark Greenhaw helped with some editing the text. Rafael Barranco-Droege offered a lot of technical corrections and
language editing. Thanks.

file:///D|/Mastering%20Delphi%206/Essential%20Pascal/epascal_v1_Book/EPasCode.zip
mailto:marco@marcocantu.com

Essential Pascal

Author

Marco Cantù lives in Piacenza, Italy. After writing C++ and Object Windows Library books and articles, he delved into Delphi
programming. He is the author of the Mastering Delphi book series, published by Sybex, as well as the advanced Delphi Developers
Handbook. He writes articles for many magazines, including The Delphi Magazine, speaks at Delphi and Borland conferences around
the world, and teaches Delphi classes at basic and advanced levels.

You can find more details about Marco and his work on his web site, www.marcocantu.com.

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

http://www.marcocantu.com/

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Appendix B:
Examples

This is a list of the examples which are part of Essential Pascal and available for download:

Chapter 3

ResStr: resource strings
Range: ordinal types ranges
TimeNow: time manipulation

Chapter 4

GPF: general protection faults with null pointers

Chapter 5

IfTest: if statements
Loops: for and while statements

Chapter 6

OpenArr: open array parameters
DoubleH: simple procedures
ProcType: procedural types
OverDef: overloading and default parameters

Chapter 7

StrRef: strings reference counting
LongStr: using long strings
FmtTest: formatting examples

Chapter 8

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

DynArr: dynamic arrays
WHandle: Windows handles
Callback: Windows callback functions
StrParam: command line parameters

Chapter 10

VariTest: simple variant operations
VariSpeed: the speed of variants

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 1
Pascal History

The Object Pascal programming language we use in Delphi wasn't invented in 1995 along with the Borland visual development
environment. It was simply extended from the Object Pascal language already in use in the Borland Pascal products. But Borland
didn't invent Pascal, it only helped make it very popular and extended it a little...

This chapter will contain some historical background on the Pascal language and its evolution. For the moment it contains only
very short summaries.

Wirth's Pascal

The Pascal language was originally designed in 1971 by Niklaus Wirth, professor at the Polytechnic of Zurich, Switzerland. Pascal was
designed as a simplified version for educational purposes of the language Algol, which dates from 1960.

When Pascal was designed, many programming languages existed, but few were in widespread use: FORTRAN, C, Assembler,
COBOL. The key idea of the new language was order, managed through a strong concept of data type, and requiring declarations
and structured program controls. The language was also designed to be a teaching tool for students of programming classes.

Turbo Pascal

Borland's world-famous Pascal compiler, called Turbo Pascal, was introduced in 1983, implementing "Pascal User Manual and Report"
by Jensen and Wirth. The Turbo Pascal compiler has been one of the best-selling series of compilers of all time, and made the
language particularly popular on the PC platform, thanks to its balance of simplicity and power.

Turbo Pascal introduced an Integrated Development Environment (IDE) where you could edit the code (in a WordStar compatible
editor), run the compiler, see the errors, and jump back to the lines containing those errors. It sounds trivial now, but previously you
had to quit the editor, return to DOS; run the command-line compiler, write down the error lines, open the editor and jump there.

Moreover Borland sold Turbo Pascal for 49 dollars, where Microsoft's Pascal compiler was sold for a few hundred. Turbo Pascal's
many years of success contributed to Microsoft's eventual cancellation of its Pascal compiler product.

Delphi's Pascal

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

After 9 versions of Turbo and Borland Pascal compilers, which gradually extended the language, Borland released Delphi in 1995,
turning Pascal into a visual programming language.

Delphi extends the Pascal language in a number of ways, including many object-oriented extensions which are different from other
flavors of Object Pascal, including those in the Borland Pascal with Objects compiler.

Next Chapter: Coding in Pascal

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 2
Coding in Pascal

Before we move on to the subject of writing Pascal language statements, it is important to highlight a couple of elements of Pascal
coding style. The question I'm addressing here is this: Besides the syntax rules, how should you write code? There isn't a single
answer to this question, since personal taste can dictate different styles. However, there are some principles you need to know
regarding comments, uppercase, spaces, and the so-called pretty-printing. In general, the goal of any coding style is clarity. The style
and formatting decisions you make are a form of shorthand, indicating the purpose of a given piece of code. An essential tool for
clarity is consistency-whatever style you choose, be sure to follow it throughout a project.

Comments

In Pascal, comments are enclosed in either braces or parentheses followed by a star. Delphi also accepts the C++ style comments,
which can span to the end of the line:

{this is a comment}
(* this is another comment *)
// this is a comment up to the end of the line

The first form is shorter and more commonly used. The second form was often preferred in Europe because many European
keyboards lack the brace symbol. The third form of comments has been borrowed from C++ and is available only in the 32-bit
versions of Delphi. Comments up to the end of the line are very helpful for short comments and for commenting out a line of code.

In the listings of the book I'll try to mark comments as italic (and keywords in bold), to be consistent with the default Delphi
syntax highlighting.

Having three different forms of comments can be helpful for making nested comments. If you want to comment out several lines of
source code to disable them, and these lines contain some real comments, you cannot use the same comment identifier:

{ ... code
{comment, creating problems}
... code }

With a second comment identifier, you can write the following code, which is correct:

{ ... code

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

//this comment is OK
... code }

Note that if the open brace or parenthesis-star is followed by the dollar sign ($), it becomes a compiler directive, as in {$X+}.

Actually, compiler directives are still comments. For example, {$X+ This is a comment} is legal. It's both a valid directive and a
comment, although sane programmers will probably tend to separate directives and comments.

Use of Uppercase

The Pascal compiler (unlike those in other languages) ignores the case (capitalization) of characters. Therefore, the identifiers
Myname, MyName, myname, myName, and MYNAME are all exactly equivalent. On the whole, this is definitely a positive, since in
case-sensitive languages, many syntax errors are caused by incorrect capitalization.

Note: There is only one exception to the case-insensitive rule of Pascal: the Register procedure of a components' package must
start with the uppercase R, because of a C++Builder compatibility issue.

There are a couple of subtle drawbacks, however. First, you must be aware that these identifiers really are the same, so you must
avoid using them as different elements. Second, you should try to be consistent in the use of uppercase letters, to improve the
readability of the code.

A consistent use of case isn't enforced by the compiler, but it is a good habit to get into. A common approach is to capitalize only the
first letter of each identifier. When an identifier is made up of several consecutive words (you cannot insert a space in an identifier),
every first letter of a word should be capitalized:

MyLongIdentifier
MyVeryLongAndAlmostStupidIdentifier

Other elements completely ignored by the compiler are the spaces, new lines, and tabs you add to the source code. All these
elements are collectively known as white space. White space is used only to improve code readability; it does not affect the
compilation.

Unlike BASIC, Pascal allows you to write a statement on several lines of code, splitting a long instruction on two or more lines. The
drawback (at least for many BASIC programmers) of allowing statements on more than one line is that you have to remember to add
a semicolon to indicate the end of a statement, or more precisely, to separate a statement from the next one. Notice that the only
restriction in splitting programming statements on different lines is that a string literal may not span several lines.

Again, there are no fixed rules on the use of spaces and multiple-line statements, just some rules of thumb:

● The Delphi editor has a vertical line you can place after 60 or 70 characters. If you use this line and try to avoid surpassing
this limit, your source code will look better when you print it on paper. Otherwise long lines may get broken at any position,
even in the middle of a word, when you print them.

● When a function or procedure has several parameters, it is common practice to place the parameters on different lines.
● You can leave a line completely white (blank) before a comment or to divide a long piece of code in smaller portions. Even

this simple idea can improve the readability of the code, both on screen and when you print it.
● Use spaces to separate the parameters of a function call, and maybe even a space before the initial open parenthesis. Also

keep operands of an expression separated. I know that some programmers will disagree with these ideas, but I insist:
Spaces are free; you don't pay for them. (OK, I know that they use up disk space and modem connection time when you
upload or download a file, but this is less and less relevant, nowadays.)

Essential Pascal

Pretty-Printing

The last suggestion on the use of white spaces relates to the typical Pascal language-formatting style, known as pretty-printing. This
rule is simple: Each time you need to write a compound statement, indent it two spaces to the right of the rest of the current
statement. A compound statement inside another compound statement is indented four spaces, and so on:

if ... then
 statement;

if ... then
begin
 statement1;
 statement2;
end;

if ... then
begin
 if ... then
 statement1;
 statement2;
end;

The above formatting is based on pretty-printing, but programmers have different interpretations of this general rule. Some
programmers indent the begin and end statements to the level of the inner code, some of them indent begin and end and then
indent the internal code once more, other programmers put the begin in the line of the if condition. This is mostly a matter of
personal taste.

A similar indented format is often used for lists of variables or data types, and to continue a statement from the previous line:

type
 Letters = set of Char;
var
 Name: string;
begin
 { long comment and long statement, going on in the
 following line and indented two spaces }
 MessageDlg ('This is a message',
 mtInformation, [mbOk], 0);

Of course, any such convention is just a suggestion to make the code more readable to other programmers, and it is completely
ignored by the compiler. I've tried to use this rule consistently in all of the samples and code fragments in this book. Delphi source
code, manuals, and Help examples use a similar formatting style.

Syntax Highlighting

To make it easier to read and write Pascal code, the Delphi editor has a feature called color syntax highlighting. Depending on the
meaning in Pascal of the words you type in the editor, they are displayed using different colors. By default, keywords are in bold,
strings and comments are in color (and often in italic), and so on.

Reserved words, comments, and strings are probably the three elements that benefit most from this feature. You can see at a glance
a misspelled keyword, a string not properly terminated, and the length of a multiple-line comment.

Essential Pascal

You can easily customize the syntax highlight settings using the Editor Colors page of the Environment Options dialog box (see Figure
2.1). If you work by yourself, choose the colors you like. If you work closely with other programmers, you should all agree on a
standard color scheme. I find that working on a computer with a different syntax coloring than the one I am used to is really difficult.

FIGURE 2.1: The dialog box used to set the color syntax highlighting.

Note: In this book I've tried to apply a sort of syntax highlighting to the source code listings. I hope this actually makes them more
readable.

Using Code Templates

Delphi 3 introduced a new feature related to source code editing. Because when writing Pascal language statements you often repeat
the same sequence of keywords, Borland has provided a new feature called Code Templates. A code template is simply a piece of
code related with a shorthand. You type the shorthand, then press Ctrl+J, and the full piece of code appears. For example, if you
type arrayd, and then press Ctrl+J, the Delphi editor will expand your text into:

array [0..] of ;

Since the predefined code templates usually include several versions of the same construct, the shortcut generally terminates with a

Essential Pascal

letter indicating which of the versions you are interested in. However, you can also type only the initial part of the shortcut. For
example, if you type ar and then press Ctrl+J, the editor will display a local menu with a list of the available choices with a short
description, as you can see in Figure 2.2.

Figure 2.2: Code Templates selection

You can fully customize the code templates by modifying the existing ones or adding your own common code pieces. If you do this,
keep in mind that the text of a code template generally includes the '|' character to indicate where the cursor should jump to after
the operation, that is, where you start typing to complete the template with custom code.

Language Statements

Once you have defined some identifiers, you can use them in statements and in the expressions that are part of some statements.
Pascal offers several statements and expressions. Let's look at keywords, expressions, and operators first.

Keywords

Keywords are all the Object Pascal reserved identifiers, which have a role in the language. Delphi's help distinguishes between
reserved words and directives: Reserved words cannot be used as identifiers, while directives should not be used as such, even if the
compiler will accept them. In practice, you should not use any keywords as an identifier.

In Table 2.1 you can see a complete list of the identifiers having a specific role in the Object Pascal language (in Delphi 4), including
keywords and other reserved words.

Table 2.1: Keywords and other reserved words in the Object Pascal language

Keyword Role

absolute directive (variables)

abstract directive (method)

Essential Pascal

and operator (boolean)

array type

as operator (RTTI)

asm statement

assembler backward compatibility (asm)

at statement (exceptions)

automated access specifier (class)

begin block marker

case statement

cdecl function calling convention

class type

const declaration or directive (parameters)

constructor special method

contains operator (set)

default directive (property)

destructor special method

dispid dispinterface specifier

dispinterface type

div operator

do statement

downto statement (for)

dynamic directive (method)

else statement (if or case)

end block marker

except statement (exceptions)

export backward compatibility (class)

exports declaration

external directive (functions)

far backward compatibility (class)

file type

finalization unit structure

finally statement (exceptions)

for statement

forward function directive

function declaration

goto statement

if statement

implementation unit structure

implements directive (property)

in operator (set) - project structure

index directive (dipinterface)

inherited statement

initialization unit structure

inline backward compatibility (see asm)

interface type

Essential Pascal

is operator (RTTI)

label declaration

library program structure

message directive (method)

mod operator (math)

name directive (function)

near backward compatibility (class)

nil value

nodefault directive (property)

not operator (boolean)

object backward compatibility (class)

of statement (case)

on statement (exceptions)

or operator (boolean)

out directive (parameters)

overload function directive

override function directive

package program structure (package)

packed directive (record)

pascal function calling convention

private access specifier (class)

procedure declaration

program program structure

property declaration

protected access specifier (class)

public access specifier (class)

published access specifier (class)

raise statement (exceptions)

read property specifier

readonly dispatch interface specifier

record type

register function calling convention

reintroduce function directive

repeat statement

requires program structure (package)

resident directive (functions)

resourcestring type

safecall function calling convention

set type

shl operator (math)

shr operator (math)

stdcall function calling convention

stored directive (property)

string type

then statement (if)

Essential Pascal

threadvar declaration

to statement (for)

try statement (exceptions)

type declaration

unit unit structure

until statement

uses unit structure

var declaration

virtual directive (method)

while statement

with statement

write property specifier

writeonly dispatch interface specifier

xor operator (boolean)

Expressions and Operators

There isn't a general rule for building expressions, since they mainly depend on the operators being used, and Pascal has a number
of operators. There are logical, arithmetic, Boolean, relational, and set operators, plus some others. Expressions can be used to
determine the value to assign to a variable, to compute the parameter of a function or procedure, or to test for a condition.
Expressions can include function calls, too. Every time you are performing an operation on the value of an identifier, rather than
using an identifier by itself, that is an expression.

Expressions are common to most programming languages. An expression is any valid combination of constants, variables, literal
values, operators, and function results. Expressions can also be passed to value parameters of procedures and functions, but not
always to reference parameters (which require a value you can assign to).

Operators and Precedence

If you have ever written a program in your life, you already know what an expression is. Here, I'll highlight specific elements of
Pascal operators. You can see a list of the operators of the language, grouped by precedence, in Table 2.1.

Contrary to most other programming languages, the and and or operators have precedence compared to the relational one. So if
you write a < b and c < d, the compiler will try to do the and operation first, resulting in a compiler error. For this reason you
should enclose each of the < expression in parentheses: (a < b) and (c < d).

Some of the common operators have different meanings with different data types. For example, the + operator can be used to add
two numbers, concatenate two strings, make the union of two sets, and even add an offset to a PChar pointer. However, you cannot
add two characters, as is possible in C.

Another strange operator is div. In Pascal, you can divide any two numbers (real or integers) with the / operator, and you'll invariably
get a real-number result. If you need to divide two integers and want an integer result, use the div operator instead.

Table 2.2: Pascal Language Operators, Grouped by Precedence

Unary Operators (Highest Precedence)

Essential Pascal

@ Address of the variable or function (returns a pointer)

not Boolean or bitwise not

Multiplicative and Bitwise Operators

* Arithmetic multiplication or set intersection

/ Floating-point division

div Integer division

mod Modulus (the remainder of integer division)

as Allows a type-checked type conversion among at runtime (part of the RTTI support)

and Boolean or bitwise and

shl Bitwise left shift

shr Bitwise right shift

Additive Operators

+ Arithmetic addition, set union, string concatenation, pointer offset addition

- Arithmetic subtraction, set difference, pointer offset subtraction

or Boolean or bitwise or

xor Boolean or bitwise exclusive or

Relational and Comparison Operators (Lowest Precedence)

= Test whether equal

<> Test whether not equal

< Test whether less than

> Test whether greater than

<= Test whether less than or equal to, or a subset of a set

>= Test whether greater than or equal to, or a superset of a set

in Test whether the item is a member of the set

is Test whether object is type-compatible (another RTTI operator)

Set Operators

The set operators include union (+), difference (-), intersection (*),membership test (in), plus some relational operators. To add an
element to a set, you can make the union of the set with another one that has only the element you need. Here's a Delphi example
related to font styles:

Style := Style + [fsBold];
Style := Style + [fsBold, fsItalic] - [fsUnderline];

As an alternative, you can use the standard Include and Exclude procedures, which are much more efficient (but cannot be used with
component properties of the set type, because they require an l-value parameter):

Include (Style, fsBold);

Essential Pascal

Conclusion

Now that we know the basic layout of a Pascal program we are ready to start understanding its meaning in detail. We'll start by
exploring the definition of predefined and user defined data types, then we'll move along to the use of the keywords to form
programming statements.

Next Chapter: Types, Variables, and Constants

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 3
Types, Variables, and
Constants

The original Pascal language was based on some simple notions, which have now become quite common in programming languages.
The first is the notion of data type. The type determines the values a variable can have, and the operations that can be performed on
it. The concept of type is stronger in Pascal than in C, where the arithmetic data types are almost interchangeable, and much
stronger than in the original versions of BASIC, which had no similar concept.

Variables

Pascal requires all variables to be declared before they are used. Every time you declare a variable, you must specify a data type.
Here are some sample variable declarations:

var
 Value: Integer;
 IsCorrect: Boolean;
 A, B: Char;

The var keyword can be used in several places in the code, such as at the beginning of the code of a function or procedure, to
declare variables local to the routine, or inside a unit to declare global variables. After the var keyword comes a list of variable names,
followed by a colon and the name of the data type. You can write more than one variable name on a single line, as in the last
statement above.

Once you have defined a variable of a given type, you can perform on it only the operations supported by its data type. For example,
you can use the Boolean value in a test and the integer value in a numerical expression. You cannot mix Booleans and integers (as
you can with the C language).

Using simple assignments, we can write the following code:

Value := 10;
IsCorrect := True;

But the next statement is not correct, because the two variables have different data types:

Value := IsCorrect; // error

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

If you try to compile this code, Delphi issues a compiler error with this description: Incompatible types: 'Integer' and 'Boolean'.
Usually, errors like this are programming errors, because it does not make sense to assign a True or False value to a variable of the
Integer data type. You should not blame Delphi for these errors. It only warns you that there is something wrong in the code.

Of course, it is often possible to convert the value of a variable from one type into a different type. In some cases, this conversion is
automatic, but usually you need to call a specific system function that changes the internal representation of the data.

In Delphi you can assign an initial value to a global variable while you declare it. For example, you can write:

var
 Value: Integer = 10;
 Correct: Boolean = True;

This initialization technique works only for global variables, not for variables declared inside the scope of a procedure or method.

Constants

Pascal also allows the declaration of constants to name values that do not change during program execution. To declare a constant
you don't need to specify a data type, but only assign an initial value. The compiler will look at the value and automatically use its
proper data type. Here are some sample declarations:

const
 Thousand = 1000;
 Pi = 3.14;
 AuthorName = 'Marco Cantù';

Delphi determines the constant's data type based on its value. In the example above, the Thousand constant is assumed to be of
type SmallInt, the smallest integral type which can hold it. If you want to tell Delphi to use a specific type you can simply add the
type name in the declaration, as in:

const
 Thousand: Integer = 1000;

When you declare a constant, the compiler can choose whether to assign a memory location to the constant, and save its value there,
or to duplicate the actual value each time the constant is used. This second approach makes sense particularly for simple constants.

Note: The 16-bit version of Delphi allows you to change the value of a typed constant at run-time, as if it was a variable. The 32-
bit version still permits this behavior for backward compatibility when you enable the $J compiler directive, or use the
corresponding Assignable typed constants check box of the Compiler page of the Project Options dialog box. Although this is the
default, you are strongly advised not to use this trick as a general programming technique. Assigning a new value to a constant
disables all the compiler optimizations on constants. In such a case, simply declare a variable, instead.

Resource String Constants

When you define a string constant, instead of writing:

const
 AuthorName = 'Marco Cantù';

Essential Pascal

starting with Delphi 3 you can write the following:

resourcestring
 AuthorName = 'Marco Cantù';

In both cases you are defining a constant; that is, a value you don't change during program execution. The difference is only in the
implementation. A string constant defined with the resourcestring directive is stored in the resources of the program, in a string table.

To see this capability in action, you can look at the ResStr example, which has a button with the following code:

resourcestring
 AuthorName = 'Marco Cantù';
 BookName = 'Essential Pascal';

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage (BookName + #13 + AuthorName);
end;

The output of the two strings appears on separate lines because the strings are separated by the newline character (indicated by its
numerical value in the #13 character-type constant).

The interesting aspect of this program is that if you examine it with a resource explorer (there is one available among the examples
that ship with Delphi) you'll see the new strings in the resources. This means that the strings are not part of the compiled code but
stored in a separate area of the executable file (the EXE file).

Note: In short, the advantage of resources is in an efficient memory handling performed by Windows and in the possibility of
localizing a program (translating the strings to a different language) without having to modify its source code.

Data Types

In Pascal there are several predefined data types, which can be divided into three groups: ordinal types, real types, and strings. We'll
discuss ordinal and real types in the following sections, while strings are covered later in this chapter. In this section I'll also introduce
some types defined by the Delphi libraries (not predefined by the compiler), which can be considered predefined types.

Delphi also includes a non-typed data type, called variant, and discussed in Chapter 10 of this book. Strangely enough a variant is a
type without proper type-checking. It was introduced in Delphi 2 to handle OLE Automation.

Ordinal Types

Ordinal types are based on the concept of order or sequence. Not only can you compare two values to see which is higher, but you
can also ask for the value following or preceding a given value or compute the lowest or highest possible value.

The three most important predefined ordinal types are Integer, Boolean, and Char (character). However, there are a number of other
related types that have the same meaning but a different internal representation and range of values. The following Table 3.1 lists
the ordinal data types used for representing numbers.

Table 3.1: Ordinal data types for numbers

Essential Pascal

Size Signed
Range

Unsigned
Range

8 bits ShortInt
-128 to 127

Byte
0 to 255

16 bits SmallInt
-32768 to 32767

Word
0 to 65,535

32 bits LongInt
-2,147,483,648 to 2,147,483,647

LongWord (since Delphi 4)
0 to 4,294,967,295

64 bits Int64

16/32 bits Integer Cardinal

As you can see, these types correspond to different representations of numbers, depending on the number of bits used to express the
value, and the presence or absence of a sign bit. Signed values can be positive or negative, but have a smaller range of values,
because one less bit is available for the value itself. You can refer to the Range example, discussed in the next section, for the actual
range of values of each type.

The last group (marked as 16/32) indicates values having a different representation in the 16-bit and 32-bit versions of Delphi.
Integer and Cardinal are frequently used, because they correspond to the native representation of numbers in the CPU.

Integral Types in Delphi 4

In Delphi 3, the 32-bit unsigned numbers indicated by the Cardinal type were actually 31-bit values, with a range up to 2 gigabytes.
Delphi 4 introduced a new unsigned numeric type, LongWord, which uses a truly 32-bit value up to 4 gigabytes. The Cardinal type is
now an alias of the new LongWord type. LongWord permits 2GB more data to be addressed by an unsigned number, as mentioned
above. Moreover, it corresponds to the native representation of numbers in the CPU.

Another new type introduced in Delphi 4 is the Int64 type, which represents integer numbers with up to 18 digits. This new type is
fully supported by some of the ordinal type routines (such as High and Low), numeric routines (such as Inc and Dec), and string-
conversion routines (such as IntToStr). For the opposite conversion, from a string to a number, there are two new specific functions:
StrToInt64 and StrToInt64Def.

Boolean

Boolean values other than the Boolean type are seldom used. Some Boolean values with specific representations are required by
Windows API functions. The types are ByteBool, WordBool, and LongBool.

In Delphi 3 for compatibility with Visual Basic and OLE automation, the data types ByteBool, WordBool, and LongBool were modified
to represent the value True with -1, while the value False is still 0. The Boolean data type remains unchanged (True is 1, False is 0).
If you've used explicit typecasts in your Delphi 2 code, porting the code to later versions of Delphi might result in errors.

Characters

Finally there are two different representation for characters: ANSIChar and WideChar. The first type represents 8-bit characters,
corresponding to the ANSI character set traditionally used by Windows; the second represents 16-bit characters, corresponding to the
new Unicode characters supported by Windows NT, and only partially by Windows 95 and 98. Most of the time you'll simply use the
Char type, which in Delphi 3 corresponds to ANSIChar. Keep in mind, anyway, that the first 256 Unicode characters correspond
exactly to the ANSI characters.

Essential Pascal

Constant characters can be represented with their symbolic notation, as in 'k', or with a numeric notation, as in #78. The latter can
also be expressed using the Chr function, as in Chr (78). The opposite conversion can be done with the Ord function.

It is generally better to use the symbolic notation when indicating letters, digits, or symbols. When referring to special characters,
instead, you'll generally use the numeric notation. The following list includes some of the most commonly used special characters:

● #9 tabulator
● #10 newline
● #13 carriage return (enter key)

The Range Example

To give you an idea of the different ranges of some of the ordinal types, I've written a simple Delphi program named Range. Some
results are shown in Figure 3.1.

FIGURE 3.1: The Range example displays some information about ordinal data types (Integers in this case).

The Range program is based on a simple form, which has six buttons (each named after an ordinal data type) and some labels for
categories of information, as you can see in Figure 3.1. Some of the labels are used to hold static text, others to show the information
about the type each time one of the buttons is pressed.

Every time you press one of the buttons on the right, the program updates the labels with the output. Different labels show the data
type, number of bytes used, and the maximum and minimum values the data type can store. Each button has its own OnClick event-
response method because the code used to compute the three values is slightly different from button to button. For example, here is
the source code of the OnClick event for the Integer button (BtnInteger):

procedure TFormRange.BtnIntegerClick(Sender: TObject);
begin
 LabelType.Caption := 'Integer';
 LabelSize.Caption := IntToStr (SizeOf (Integer));
 LabelMax.Caption := IntToStr (High (Integer));
 LabelMin.Caption := IntToStr (Low (Integer));
end;

If you have some experience with Delphi programming, you can examine the source code of the program to understand how it works.

Essential Pascal

For beginners, it's enough to note the use of three functions: SizeOf, High, and Low. The results of the last two functions are ordinals
of the same kind (in this case, integers), and the result of the SizeOf function is always an integer. The return value of each of these
functions is first translated into strings using the IntToStr function, then copied to the captions of the three labels.

The methods associated with the other buttons are very similar to the one above. The only real difference is in the data type passed
as a parameter to the various functions. Figure 3.2 shows the result of executing this same program under Windows 95 after it has
been recompiled with the 16-bit version of Delphi. Comparing Figure 3.1 with Figure 3.2, you can see the difference between the 16-
bit and 32-bit Integer data types.

FIGURE 3.2: The output of the 16-bit version of the Range example, again showing information about integers.

The size of the Integer type varies depending on the CPU and operating system you are using. In 16-bit Windows, an Integer variable
is two bytes wide. In 32-bit Windows, an Integer is four bytes wide. For this reason, when you recompile the Range example, you get
a different output.

The two different representations of the Integer type are not a problem, as long as your program doesn't make any assumptions
about the size of integers. If you happen to save an Integer to a file using one version and retrieve it with another, though, you're
going to have some trouble. In this situation, you should choose a platform-independent data type (such as LongInt or SmallInt). For
mathematical computation or generic code, your best bet is to stick with the standard integral representation for the specific platform--
that is, use the Integer type--because this is what the CPU likes best. The Integer type should be your first choice when handling
integer numbers. Use a different representation only when there is a compelling reason to do so.

Ordinal Types Routines

There are some system routines (routines defined in the Pascal language and in the Delphi system unit) that work on ordinal types.
They are shown in Table 3.2. C++ programmers should notice that the two versions of the Inc procedure, with one or two
parameters, correspond to the ++ and += operators (the same holds for the Dec procedure).

Table 3.2: System Routines for Ordinal Types

Routine Purpose

Dec Decrements the variable passed as parameter, by one or by the value of the optional second parameter.

Inc Increments the variable passed as parameter, by one or by the specified value.

Essential Pascal

Odd Returns True if the argument is an odd number.

Pred Returns the value before the argument in the order determined by the data type, the predecessor.

Succ Returns the value after the argument, the successor.

Ord Returns a number indicating the order of the argument within the set of values of the data type.

Low Returns the lowest value in the range of the ordinal type passed as its parameter.

High Returns the highest value in the range of the ordinal data type.

Notice that some of these routines, when applied to constants, are automatically evaluated by the compiler and replaced by their
value. For example if you call High(X) where X is defined as an Integer, the compiler can simply replace the expression with the
highest possible value of the Integer data type.

Real Types

Real types represent floating-point numbers in various formats. The smallest storage size is given by Single numbers, which are
implemented with a 4-byte value. Then there are Double floating-point numbers, implemented with 8 bytes, and Extended numbers,
implemented with 10 bytes. These are all floating-point data types with different precision, which correspond to the IEEE standard
floating-point representations, and are directly supported by the CPU numeric coprocessor, for maximum speed.

In Delphi 2 and Delphi 3 the Real type had the same definition as in the 16-bit version; it was a 48-bit type. But its usage was
deprecated by Borland, which suggested that you use the Single, Double, and Extended types instead. The reason for their
suggestion is that the old 6-byte format is neither supported by the Intel CPU nor listed among the official IEEE real types. To
completely overcome the problem, Delphi 4 modifies the definition of the Real type to represent a standard 8-byte (64-bit) floating-
point number.

In addition to the advantage of using a standard definition, this change allows components to publish properties based on the Real
type, something Delphi 3 did not allow. Among the disadvantages there might be compatibility problems. If necessary, you can
overcome the possibility of incompatibility by sticking to the Delphi 2 and 3 definition of the type; do this by using the following
compiler option:

{$REALCOMPATIBILITY ON}

There are also two strange data types: Comp describes very big integers using 8 bytes (which can hold numbers with 18 decimal
digits); and Currency (not available in 16-bit Delphi) indicates a fixed-point decimal value with four decimal digits, and the same 64-
bit representation as the Comp type. As the name implies, the Currency data type has been added to handle very precise monetary
values, with four decimal places.

We cannot build a program similar to the Range example with real data types, because we cannot use the High and Low functions or
the Ord function on real-type variables. Real types represent (in theory) an infinite set of numbers; ordinal types represent a fixed set
of values.

Note: Let me explain this better. when you have the integer 23 you can determine which is the following value. Integers are finite
(they have a determined range and they have an order). Floating point numbers are infinite even within a small range, and have
no order: in fact, how many values are there between 23 and 24? And which number follows 23.46? It is 23.47, 23.461, or
23.4601? That's really hard to know!

For this reason, it makes sense to ask for the ordinal position of the character w in the range of the Char data type, but it makes no
sense at all to ask the same question about 7143.1562 in the range of a floating-point data type. Although you can indeed know
whether one real number has a higher value than another, it makes no sense to ask how many real numbers exist before a given
number (this is the meaning of the Ord function).

Essential Pascal

Real types have a limited role in the user interface portion of the code (the Windows side), but they are fully supported by Delphi,
including the database side. The support of IEEE standard floating-point types makes the Object Pascal language completely
appropriate for the wide range of programs that require numerical computations. If you are interested in this aspect, you can look at
the arithmetic functions provided by Delphi in the system unit (see the Delphi Help for more details).

Note: Delphi also has a Math unit that defines advanced mathematical routines, covering trigonometric functions (such as the
ArcCosh function), finance (such as the InterestPayment function), and statistics (such as the MeanAndStdDev procedure). There
are a number of these routines, some of which sound quite strange to me, such as the MomentSkewKurtosis procedure (I'll let you
find out what this is).

Date and Time

Delphi uses real types also to handle date and time information. To be more precise Delphi defines a specific TDateTime data type.
This is a floating-point type, because the type must be wide enough to store years, months, days, hours, minutes, and seconds, down
to millisecond resolution in a single variable. Dates are stored as the number of days since 1899-12-30 (with negative values
indicating dates before 1899) in the integer part of the TDateTime value. Times are stored as fractions of a day in the decimal part of
the value.

TDateTime is not a predefined type the compiler understands, but it is defined in the system unit as:

type
 TDateTime = type Double;

Using the TDateTime type is quite easy, because Delphi includes a number of functions that operate on this type. You can find a list
of these functions in Table 3.3.

Table 3.3: System Routines for the TDateTime Type

Routine Description

Now Returns the current date and time into a single TDateTime value.

Date Returns only the current date.

Time Returns only the current time.

DateTimeToStr Converts a date and time value into a string, using default formatting; to have more control on the conversion
use the FormatDateTime function instead.

DateTimeToString Copies the date and time values into a string buffer, with default formatting.

DateToStr Converts the date portion of a TDateTime value into a string.

TimeToStr Converts the time portion of a TDateTime value into a string.

FormatDateTime Formats a date and time using the specified format; you can specify which values you want to see and which
format to use, providing a complex format string.

StrToDateTime Converts a string with date and time information to a TDateTime value, raising an exception in case of an error
in the format of the string.

StrToDate Converts a string with a date value into the TDateTime format.

StrToTime Converts a string with a time value into the TDateTime format.

DayOfWeek Returns the number corresponding to the day of the week of the TDateTime value passed as parameter.

Essential Pascal

DecodeDate Retrieves the year, month, and day values from a date value.

DecodeTime Retrieves out of a time value.

EncodeDate Turns year, month, and day values into a TDateTime value.

EncodeTime Turns hour, minute, second, and millisecond values into a TDateTime value.

To show you how to use this data type and some of its related routines, I've built a simple example, named TimeNow. The main form
of this example has a Button and a ListBox component. When the program starts it automatically computes and displays the current
time and date. Every time the button is pressed, the program shows the time elapsed since the program started.

Here is the code related to the OnCreate event of the form:

procedure TFormTimeNow.FormCreate(Sender: TObject);
begin
 StartTime := Now;
 ListBox1.Items.Add (TimeToStr (StartTime));
 ListBox1.Items.Add (DateToStr (StartTime));
 ListBox1.Items.Add ('Press button for elapsed time');
end;

The first statement is a call to the Now function, which returns the current date and time. This value is stored in the StartTime
variable, declared as a global variable as follows:

var
 FormTimeNow: TFormTimeNow;
 StartTime: TDateTime;

I've added only the second declaration, since the first is provided by Delphi. By default, it is the following:

var
 Form1: TForm1;

Changing the name of the form, this declaration is automatically updated. Using global variables is actually not the best approach: It
should be better to use a private field of the form class, a topic related to object-oriented programming and discussed in Mastering
Delphi 4.

The next three statements add three items to the ListBox component on the left of the form, with the result you can see in Figure
3.3. The first line contains the time portion of the TDateTime value converted into a string, the second the date portion of the same
value. At the end the code adds a simple reminder.

FIGURE 3.3: The output of the TimeNow example at startup.

Essential Pascal

This third string is replaced by the program when the user clicks on the Elapsed button:

procedure TFormTimeNow.ButtonElapsedClick(Sender: TObject);
var
 StopTime: TDateTime;
begin
 StopTime := Now;
 ListBox1.Items [2] := FormatDateTime ('hh:nn:ss',
 StopTime - StartTime);
end;

This code retrieves the new time and computes the difference from the time value stored when the program started. Because we
need to use a value that we computed in a different event handler, we had to store it in a global variable. There are actually better
alternatives, based on classes.

Note: The code that replaces the current value of the third string uses the index 2. The reason is that the items of a list box are
zero-based: the first item is number 0, the second number 1, and the third number 2. More on this as we cover arrays.

Besides calling TimeToStr and DateToStr you can use the more powerful FormatDateTime function, as I've done in the last method
above (see the Delphi Help file for details on the formatting parameters). Notice also that time and date values are transformed into
strings depending on Windows international settings. Delphi reads these values from the system, and copies them to a number of
global constants declared in the SysUtils unit. Some of them are:

DateSeparator: Char;
ShortDateFormat: string;
LongDateFormat: string;
TimeSeparator: Char;
TimeAMString: string;
TimePMString: string;
ShortTimeFormat: string;
LongTimeFormat: string;
ShortMonthNames: array [1..12] of string;
LongMonthNames: array [1..12] of string;
ShortDayNames: array [1..7] of string;
LongDayNames: array [1..7] of string;

More global constants relate to currency and floating-point number formatting. You can find the complete list in the Delphi Help file
under the topic Currency and date/time formatting variables.

Note: Delphi includes a DateTimePicker component, which provides a sophisticated way to input a date, selecting it from a

Essential Pascal

calendar.

Specific Windows Types

The predefined data types we have seen so far are part of the Pascal language. Delphi also includes other data types defined by
Windows. These data types are not an integral part of the language, but they are part of the Windows libraries. Windows types
include new default types (such as DWORD or UINT), many records (or structures), several pointer types, and so on.

Among Windows data types, the most important type is represented by handles, discussed in Chapter 9.

Typecasting and Type Conversions

As we have seen, you cannot assign a variable to another one of a different type. In case you need to do this, there are two choices.
The first choice is typecasting, which uses a simple functional notation, with the name of the destination data type:

var
 N: Integer;
 C: Char;
 B: Boolean;
begin
 N := Integer ('X');
 C := Char (N);
 B := Boolean (0);

You can typecast between data types having the same size. It is usually safe to typecast between ordinal types, or between real
types, but you can also typecast between pointer types (and also objects) as long as you know what you are doing.

Casting, however, is generally a dangerous programming practice, because it allows you to access a value as if it represented
something else. Since the internal representations of data types generally do not match, you risk hard-to-track errors. For this reason,
you should generally avoid typecasting.

The second choice is to use a type-conversion routine. The routines for the various types of conversions are summarized in Table 3.4.
Some of these routines work on the data types that we'll discuss in the following sections. Notice that the table doesn't include
routines for special types (such as TDateTime or variant) or routines specifically intended for formatting, like the powerful Format and
FormatFloat routines.

Table 3.4: System Routines for Type Conversion

Routine Description

Chr Converts an ordinal number into an ANSI character.

Ord Converts an ordinal-type value into the number indicating its order.

Round Converts a real-type value into an Integer-type value, rounding its value.

Trunc Converts a real-type value into an Integer-type value, truncating its value.

Int Returns the Integer part of the floating-point value argument.

IntToStr Converts a number into a string.

IntToHex Converts a number into a string with its hexadecimal representation.

Essential Pascal

StrToInt Converts a string into a number, raising an exception if the string does not represent a valid integer.

StrToIntDef Converts a string into a number, using a default value if the string is not correct.

Val Converts a string into a number (traditional Turbo Pascal routine, available for compatibility).

Str Converts a number into a string, using formatting parameters (traditional Turbo Pascal routine, available for
compatibility).

StrPas Converts a null-terminated string into a Pascal-style string. This conversion is automatically done for AnsiStrings in
32-bit Delphi. (See the section on strings later in this chapter.)

StrPCopy Copies a Pascal-style string into a null-terminated string. This conversion is done with a simple PChar cast in 32-
bit Delphi. (See the section on strings later in this chapter.)

StrPLCopy Copies a portion of a Pascal-style string into a null-terminated string.

FloatToDecimal Converts a floating-point value to record including its decimal representation (exponent, digits, sign).

FloatToStr Converts the floating-point value to its string representation using default formatting.

FloatToStrF Converts the floating-point value to its string representation using the specified formatting.

FloatToText Copies the floating-point value to a string buffer, using the specified formatting.

FloatToTextFmt As the previous routine, copies the floating-point value to a string buffer, using the specified formatting.

StrToFloat Converts the given Pascal string to a floating-point value.

TextToFloat Converts the given null-terminated string to a floating-point value.

Note: In recent versions of Delphi's Pascal compiler, the Round function is based on the FPU processor of the CPU. This
processor adopts the so-called "Banker's Rounding", which rounds middle values (as 5.5 or 6.5) up and down depending whether
they follow an odd or an even number.

Conclusion

In this chapter we've explored the basic notion of type in Pascal. But the language has another very important feature: It allows
programmers to define new custom data types, called user-defined data types. This is the topic of the next chapter.

Next Chapter: User-Defined Data Types

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 4
User-Defined Data
Types

Along with the notion of type, one of the great ideas introduced by the Pascal language is the ability to define new data types in a
program. Programmers can define their own data types by means of type constructors, such as subrange types, array types, record
types, enumerated types, pointer types, and set types. The most important user-defined data type is the class, which is part of the
object-oriented extensions of Object Pascal, not covered in this book.

If you think that type constructors are common in many programming languages, you are right, but Pascal was the first language to
introduce the idea in a formal and very precise way. There are still few languages with so many mechanisms to define new types.

Named and Unnamed Types

These types can be given a name for later use or applied to a variable directly. When you give a name to a type, you must provide a
specific section in the code, such as the following:

type
 // subrange definition
 Uppercase = 'A'..'Z';

 // array definition
 Temperatures = array [1..24] of Integer;

 // record definition
 Date = record
 Month: Byte;
 Day: Byte;
 Year: Integer;
 end;

 // enumerated type definition
 Colors = (Red, Yellow, Green, Cyan, Blue, Violet);

 // set definition
 Letters = set of Char;

Similar type-definition constructs can be used directly to define a variable without an explicit type name, as in the following code:

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

var
 DecemberTemperature: array [1..31] of Byte;
 ColorCode: array [Red..Violet] of Word;
 Palette: set of Colors;

Note: In general, you should avoid using unnamed types as in the code above, because you cannot pass them as parameters to
routines or declare other variables of the same type. The type compatibility rules of Pascal, in fact, are based on type names, not
on the actual definition of the types. Two variables of two identical types are still not compatible, unless their types have exactly
the same name, and unnamed types are given internal names by the compiler. Get used to defining a data type each time you
need a variable with a complicated structure, and you won’t regret the time you’ve spent in it.

But what do these type definitions mean? I’ll provide some descriptions for those who are not familiar with Pascal type constructs. I’ll
also try to underline the differences from the same constructs in other programming languages, so you might be interested in reading
the following sections even if you are familiar with kind of type definitions exemplified above. Finally, I’ll show some Delphi examples
and introduce some tools that will allow you to access type information dynamically.

Subrange Types

A subrange type defines a range of values within the range of another type (hence the name subrange). You can define a subrange
of the Integer type, from 1 to 10 or from 100 to 1000, or you can define a subrange of the Char type, as in:

type
 Ten = 1..10;
 OverHundred = 100..1000;
 Uppercase = 'A'..'Z';

In the definition of a subrange, you don’t need to specify the name of the base type. You just need to supply two constants of that
type. The original type must be an ordinal type, and the resulting type will be another ordinal type.

When you have defined a subrange, you can legally assign it a value within that range. This code is valid:

var
 UppLetter: UpperCase;
begin
 UppLetter := 'F';

But this one is not:

var
 UppLetter: UpperCase;
begin
 UppLetter := 'e'; // compile-time error

Writing the code above results in a compile-time error, "Constant expression violates subrange bounds." If you write the following
code instead:

var
 UppLetter: Uppercase;
 Letter: Char;
begin
 Letter :='e';

Essential Pascal

 UppLetter := Letter;

Delphi will compile it. At run-time, if you have enabled the Range Checking compiler option (in the Compiler page of the Project
Options dialog box), you’ll get a Range check error message.

Note: I suggest that you turn on this compiler option while you are developing a program, so it'll be more robust and easier to
debug, as in case of errors you'll get an explicit message and not an undetermined behavior. You can eventually disable the option
for the final build of the program, to make it a little faster. However, the difference is really small, and for this reason I suggest
you to leave all these run-time checks turned on, even in a shipping program. The same holds true for other run-time checking
options, such as overflow and stack checking.

Enumerated Types

Enumerated types constitute another user-defined ordinal type. Instead of indicating a range of an existing type, in an enumeration
you list all of the possible values for the type. In other words, an enumeration is a list of values. Here are some examples:

type
 Colors = (Red, Yellow, Green, Cyan, Blue, Violet);
 Suit = (Club, Diamond, Heart, Spade);

Each value in the list has an associated ordinality, starting with zero. When you apply the Ord function to a value of an enumerated
type, you get this zero-based value. For example, Ord (Diamond) returns 1.

Note: Enumerated types can have different internal representations. By default, Delphi uses an 8-bit representation, unless there
are more than 256 different values, in which case it uses the 16-bit representation. There is also a 32-bit representation, which
might be useful for compatibility with C or C++ libraries. You can actually change the default behavior, asking for a larger
representation, by using the $Z compiler directive.

The Delphi VCL (Visual Component Library) uses enumerated types in many places. For example, the style of the border of a form is
defined as follows:

type
 TFormBorderStyle = (bsNone, bsSingle, bsSizeable,
 bsDialog, bsSizeToolWin, bsToolWindow);

When the value of a property is an enumeration, you usually can choose from the list of values displayed in the Object Inspector, as
shown in Figure 4.1.

Figure 4.1: An enumerated type property in the Object Inspector

Essential Pascal

The Delphi Help file generally lists the possible values of an enumeration. As an alternative you can use the OrdType program,
available on www.marcocantu.com, to see the list of the values of each Delphi enumeration, set, subrange, and any other ordinal
type. You can see an example of the output of this program in Figure 4.2.

Figure 4.2: Detailed information about an enumerated type, as displayed by the OrdType program (available on my
web site).

Set Types

Set types indicate a group of values, where the list of available values is indicated by the ordinal type the set is based onto. These
ordinal types are usually limited, and quite often represented by an enumeration or a subrange. If we take the subrange 1..3, the
possible values of the set based on it include only 1, only 2, only 3, both 1 and 2, both 1 and 3, both 2 and 3, all the three values, or
none of them.

A variable usually holds one of the possible values of the range of its type. A set-type variable, instead, can contain none, one, two,
three, or more values of the range. It can even include all of the values. Here is an example of a set:

type

Essential Pascal

 Letters = set of Uppercase;

Now I can define a variable of this type and assign to it some values of the original type. To indicate some values in a set, you write
a comma-separated list, enclosed within square brackets. The following code shows the assignment to a variable of several values, a
single value, and an empty value:

var
 Letters1, Letters2, Letters3: Letters;
begin
 Letters1 := ['A', 'B', 'C'];
 Letters2 := ['K'];
 Letters3 := [];

In Delphi, a set is generally used to indicate nonexclusive flags. For example, the following two lines of code (which are part of the
Delphi library) declare an enumeration of possible icons for the border of a window and the corresponding set type:

type
 TBorderIcon = (biSystemMenu, biMinimize, biMaximize, biHelp);
 TBorderIcons = set of TBorderIcon;

In fact, a given window might have none of these icons, one of them, or more than one. When working with the Object Inspector
(see Figure 4.3), you can provide the values of a set by expanding the selection (double-click on the property name or click on the
plus sign on its left) and toggling on and off the presence of each value.

Figure 4.3: A set-type property in the Object Inspector

Another property based on a set type is the style of a font. Possible values indicate a bold, italic, underline, and strikethrough font. Of
course the same font can be both italic and bold, have no attributes, or have them all. For this reason it is declared as a set. You can
assign values to this set in the code of a program as follows:

Font.Style := []; // no style
Font.Style := [fsBold]; // bold style only
Font.Style := [fsBold, fsItalic]; // two styles

You can also operate on a set in many different ways, including adding two variables of the same set type (or, to be more precise,
computing the union of the two set variables):

Font.Style := OldStyle + [fsUnderline]; // two sets

Essential Pascal

Again, you can use the OrdType examples included in the TOOLS directory of the book source code to see the list of possible values
of many sets defined by the Delphi component library.

Array Types

Array types define lists of a fixed number of elements of a specific type. You generally use an index within square brackets to access
to one of the elements of the array. The square brackets are used also to specify the possible values of the index when the array is
defined. For example, you can define a group of 24 integers with this code:

type
 DayTemperatures = array [1..24] of Integer;

In the array definition, you need to pass a subrange type within square brackets, or define a new specific subrange type using two
constants of an ordinal type. This subrange specifies the valid indexes of the array. Since you specify both the upper and the lower
index of the array, the indexes don’t need to be zero-based, as is necessary in C, C++, Java, and other programming languages.

Since the array indexes are based on subranges, Delphi can check for their range as we’ve already seen. An invalid constant
subrange results in a compile-time error; and an out-of-range index used at run-time results in a run-time error if the corresponding
compiler option is enabled.

Using the array definition above, you can set the value of a DayTemp1 variable of the DayTemperatures type as follows:

type
 DayTemperatures = array [1..24] of Integer;

var
 DayTemp1: DayTemperatures;

procedure AssignTemp;
begin
 DayTemp1 [1] := 54;
 DayTemp1 [2] := 52;
 ...
 DayTemp1 [24] := 66;
 DayTemp1 [25] := 67; // compile-time error

An array can have more than one dimension, as in the following examples:

type
 MonthTemps = array [1..24, 1..31] of Integer;
 YearTemps = array [1..24, 1..31, Jan..Dec] of Integer;

These two array types are built on the same core types. So you can declare them using the preceding data types, as in the following
code:

type
 MonthTemps = array [1..31] of DayTemperatures;
 YearTemps = array [Jan..Dec] of MonthTemps;

This declaration inverts the order of the indexes as presented above, but it also allows assignment of whole blocks between variables.
For example, the following statement copies January’s temperatures to February:

Essential Pascal

var
 ThisYear: YearTemps;
begin
 ...
 ThisYear[Feb] := ThisYear[Jan];

You can also define a zero-based array, an array type with the lower bound set to zero. Generally, the use of more logical bounds is
an advantage, since you don’t need to use the index 2 to access the third item, and so on. Windows, however, uses invariably zero-
based arrays (because it is based on the C language), and the Delphi component library tends to do the same.

If you need to work on an array, you can always test its bounds by using the standard Low and High functions, which return the
lower and upper bounds. Using Low and High when operating on an array is highly recommended, especially in loops, since it makes
the code independent of the range of the array. Later, you can change the declared range of the array indices, and the code that
uses Low and High will still work. If you write a loop hard-coding the range of an array you’ll have to update the code of the loop
when the array size changes. Low and High make your code easier to maintain and more reliable.

Note: Incidentally, there is no run-time overhead for using Low and High with arrays. They are resolved at compile-time into
constant expressions, not actual function calls. This compile-time resolution of expressions and function calls happens also for
many other simple system functions.

Delphi uses arrays mainly in the form of array properties. We have already seen an example of such a property in the TimeNow
example, to access the Items property of a ListBox component. I’ll show you some more examples of array properties in the next
chapter, when discussing Delphi loops.

Note: Delphi 4 introduced dynamic arrays into Object Pascal , that is arrays that can be resized at runtime allocating the proper
amount of memory. Using dynamic arrays is easy, but in this discussion of Pascal I felt they were not an proper topic to cover. You
can find a description of Delphi's dynamic arrays in Chapter 8.

Record Types

Record types define fixed collections of items of different types. Each element, or field, has its own type. The definition of a record
type lists all these fields, giving each a name you’ll use later to access it.

Here is a small listing with the definition of a record type, the declaration of a variable of that type, and few statements using this
variable:

type
 Date = record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

var
 BirthDay: Date;

begin
 BirthDay.Year := 1997;
 BirthDay.Month := 2;
 BirthDay.Day := 14;

Classes and objects can be considered an extension of the record type. Delphi libraries tend to use class types instead of record

Essential Pascal

types, but there are many record types defined by the Windows API.

Record types can also have a variant part; that is, multiple fields can be mapped to the same memory area, even if they have a
different data type. (This corresponds to a union in the C language.) Alternatively, you can use these variant fields or groups of fields
to access the same memory location within a record, but considering those values from different perspectives. The main uses of this
type were to store similar but different data and to obtain an effect similar to that of typecasting (something less useful now that
typecasting has been introduced also in Pascal). The use of variant record types has been largely replaced by object-oriented and
other modern techniques, although Delphi uses them in some peculiar cases.

The use of a variant record type is not type-safe and is not a recommended programming practice, particularly for beginners. Expert
programmers can indeed use variant record types, and the core of the Delphi libraries makes use of them. You won’t need to tackle
them until you are really a Delphi expert, anyway.

Pointers

A pointer type defines a variable that holds the memory address of another variable of a given data type (or an undefined type). So a
pointer variable indirectly refers to a value. The definition of a pointer type is not based on a specific keyword, but uses a special
character instead. This special symbol is the caret (^):

type
 PointerToInt = ^Integer;

Once you have defined a pointer variable, you can assign to it the address of another variable of the same type, using the @
operator:

var
 P: ^Integer;
 X: Integer;
begin
 P := @X;
 // change the value in two different ways
 X := 10;
 P^ := 20;

When you have a pointer P, with the expression P you refer to the address of the memory location the pointer is referring to, and
with the expression P^ you refer to the actual content of that memory location. For this reason in the code fragment above ^P
corresponds to X.

Instead of referring to an existing memory location, a pointer can refer to a new memory block dynamically allocated (on the heap
memory area) with the New procedure. In this case, when you don't need the pointer any more, you’ll also have to to get rid of the
memory you’ve dynamically allocated, by calling the Dispose procedure.

var
 P: ^Integer;
begin
 // initialization
 New (P);
 // operations
 P^ := 20;
 ShowMessage (IntToStr (P^));
 // termination
 Dispose (P);
end;

Essential Pascal

If a pointer has no value, you can assign the nil value to it. Then you can test whether a pointer is nil to see if it currently refers to a
value. This is often used, because dereferencing an invalid pointer causes an access violation (also known as a general protection
fault, GPF):

procedure TFormGPF.BtnGpfClick(Sender: TObject);
var
 P: ^Integer;
begin
 P := nil;
 ShowMessage (IntToStr (P^));
end;

You can see an example of the effect of this code by running the GPF example (or looking at the
corresponding Figure 4.4). The example contains also the code fragments shown above.

Figure 4.4: The system error resulting from the access to a nil pointer, from the GPF example.

In the same program you can find an example of safe data access. In this second case the pointer is assigned to an existing local
variable, and can be safely used, but I’ve added a safe-check anyway:

procedure TFormGPF.BtnSafeClick(Sender: TObject);
var
 P: ^Integer;
 X: Integer;
begin
 P := @X;
 X := 100;
 if P <> nil then
 ShowMessage (IntToStr (P^));
end;

Delphi also defines a Pointer data type, which indicates untyped pointers (such as void* in the C language). If you use an untyped
pointer you should use GetMem instead of New. The GetMem procedure is required each time the size of the memory variable to
allocate is not defined.

Essential Pascal

The fact that pointers are seldom necessary in Delphi is an interesting advantage of this environment. Nonetheless, understanding
pointers is important for advanced programming and for a full understanding of the Delphi object model, which uses pointers "behind
the scenes."

Note: Although you don’t use pointers often in Delphi, you do frequently use a very similar construct—namely, references. Every
object instance is really an implicit pointer or reference to its actual data. However, this is completely transparent to the
programmer, who uses object variables just like any other data type.

File Types

Another Pascal-specific type constructor is the file type. File types represent physical disk files, certainly a peculiarity of the Pascal
language. You can define a new file data type as follows:

type
 IntFile = file of Integer;

Then you can open a physical file associated with this structure and write integer values to it or read the current values from the file.

Author's Note: Files-based examples were part of older editions of Mastering Delphi and I plan adding them here as well)

The use of files in Pascal is quite straightforward, but in Delphi there are also some components that are capable of storing or loading
their contents to or from a file. There is some serialization support, in the form of streams, and there is also database support.

Conclusion

This chapter discussing user-defined data types complete our coverage of Pascal type system. Now we are ready to look into the
statements the language provides to operate on the variables we've defined.

Next Chapter: Statements

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 5
Statements

If the data types are one of the foundations of Pascal programming the other are statements. Statements of the programming
language are based on keywords and other elements which allow you to indicate to a program a sequence of operations to perform.
Statements are often enclosed in procedures or functions, as we'll see in the next chapter. Now we'll just focus on the basic types of
commands you can use to create a program.

Simple and Compound Statements

A Pascal statement is simple when it doesn't contain any other statements. Examples of simple statements are assignment
statements and procedure calls. Simple statements are separated by a semicolon:

X := Y + Z; // assignment
Randomize; // procedure call

Usually, statements are part of a compound statement, marked by begin and end brackets. A compound
statement can appear in place of a generic Pascal statement. Here is an example:

begin
 A := B;
 C := A * 2;
end;

The semicolon after the last statement before the end isn't required, as in the following:

begin
 A := B;
 C := A * 2
end;

Both versions are correct. The first version has a useless (but harmless) semicolon. This semicolon is, in
fact, a null statement; that is, a statement with no code. Notice that, at times, null statements can be used
inside loops or in other particular cases.

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

Note: Although these final semicolons serve no purpose, I tend to use them and suggest you do the same. Sometimes after you've
written a couple of lines you might want to add one more statement. If the last semicolon is missing you should remember to add
it, so it might be better to add it in the first place.

Assignment Statements

Assignments in Pascal use the colon-equal operator, an odd notation for programmers who are used to other languages. The =
operator, which is used for assignments in some other languages, in Pascal is used to test for equality.

Note: By using different symbols for an assignment and an equality test, the Pascal compiler (like the C compiler) can translate
source code faster, because it doesn't need to examine the context in which the operator is used to determine its meaning. The
use of different operators also makes the code easier for people to read.

Conditional Statements

A conditional statement is used to execute either one of the statements it contains or none of them, depending on some test. There
are two basic flavors of conditional statements: if statements and case statements.

If Statements

The if statement can be used to execute a statement only if a certain condition is met (if-then), or to choose between two different
alternatives (if-then-else). The condition is described with a Boolean expression. A simple Delphi example will demonstrate how to
write conditional statements. First create a new application, and put two check boxes and four buttons in the form. Do not change
the names of buttons or check boxes, but double-click on each button to add a handler for its OnClick event. Here is a simple if
statement for the first button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 // simple if statement
 if CheckBox1.Checked then
 ShowMessage ('CheckBox1 is checked')
end;

When you click on the button, if the first check box has a check mark in it, the program will show a simple message (see Figure 5.1).
I've used the ShowMessage function because it is the simplest Delphi function you can use to display a short message to the user.

Figure 5.1: The message displayed by the IfTest example when you press the first button and the first check box is
checked.

Essential Pascal

If you click the button and nothing happens, it means the check box was not checked. In a case like this, it would probably be better
to make this more explicit, as with the code for the second button, which uses an if-then-else statement:

procedure TForm1.Button2Click(Sender: TObject);
begin
 // if-then-else statement
 if CheckBox2.Checked then
 ShowMessage ('CheckBox2 is checked')
 else
 ShowMessage ('CheckBox2 is NOT checked');
end;

Notice that you cannot have a semicolon after the first statement and before the else keyword, or the compiler will issue a syntax
error. The if-then-else statement, in fact, is a single statement, so you cannot place a semicolon in the middle of it.

An if statement can be quite complex. The condition can be turned into a series of conditions (using the and, or and not Boolean
operators), or the if statement can nest a second if statement. The last two buttons of the IfTest example demonstrate these cases:

procedure TForm1.Button3Click(Sender: TObject);
begin
 // statement with a double condition
 if CheckBox1.Checked and CheckBox2.Checked then
 ShowMessage ('Both check boxes are checked')
end;

procedure TForm1.Button4Click(Sender: TObject);
begin
 // compound if statement
 if CheckBox1.Checked then
 if CheckBox2.Checked then
 ShowMessage ('CheckBox1 and 2 are checked')

Essential Pascal

 else
 ShowMessage ('Only CheckBox1 is checked')
 else
 ShowMessage (
 'Checkbox1 is not checked, who cares for Checkbox2?')
end;

Look at the code carefully and run the program to see if you understand everything. When you have doubts about a programming
construct, writing a very simple program such as this can help you learn a lot. You can add more check boxes and increase the
complexity of this small example, making any test you like.

Case Statements

If your if statements become very complex, at times you can replace them with case statements. A case statement consists in an
expression used to select a value, a list of possible values, or a range of values. These values are constants, and they must be unique
and of an ordinal type. Eventually, there can be an else statement that is executed if none of the labels correspond to the value of
the selector. Here are two simple examples:

case Number of
 1: Text := 'One';
 2: Text := 'Two';
 3: Text := 'Three';
end;

case MyChar of
 '+' : Text := 'Plus sign';
 '-' : Text := 'Minus sign';
 '*', '/': Text := 'Multiplication or division';
 '0'..'9': Text := 'Number';
 'a'..'z': Text := 'Lowercase character';
 'A'..'Z': Text := 'Uppercase character';
else
 Text := 'Unknown character';
end;

Loops in Pascal

The Pascal language has the typical repetitive statements of most programming languages, including for, while, and repeat
statements. Most of what these loops do will be familiar if you've used other programming languages, so I'll cover them only briefly.

The For Loop

The for loop in Pascal is strictly based on a counter, which can be either increased or decreased each time the loop is executed. Here
is a simple example of a for loop used to add the first ten numbers.

var
 K, I: Integer;
begin
 K := 0;
 for I := 1 to 10 do
 K := K + I;

This same for statement could have been written using a reverse counter:

Essential Pascal

var
 K, I: Integer;
begin
 K := 0;
 for I := 10 downto 1 do
 K := K + I;

The for loop in Pascal is less flexible than in other languages (it is not possible to specify an increment different than one), but it is
simple and easy to understand. If you want to test for a more complex condition, or to provide a customized counter, you need to
use a while or repeat statement, instead of a for loop.

Note: The counter of a for loop doesn't need to be a number. It can be a value of any ordinal type, such as a character or an
enumerated type.

While and Repeat Statements

The difference between the while-do loop and the repeat-until loop is that the code of the repeat statement is always executed at
least once. You can easily understand why by looking at a simple example:

while (I <= 100) and (J <= 100) do
begin
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
end;

repeat
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
until (I > 100) or (J > 100);

If the initial value of I or J is greater than 100, the statements inside the repeat-until loop are executed once anyway.

The other key difference between these two loops is that the repeat-until loop has a reversed condition. The loop is executed as
long as the condition is not met. When the condition is met, the loop terminates. This is the opposite from a while-do loop, which
is executed while the condition is true. For this reason I had to reverse the condition in the code above to obtain a similar
statement.

An Example of Loops

To explore the details of loops, let's look at a small Delphi example. The Loops program highlights the difference between a loop with
a fixed counter and a loop with an almost random counter. Start with a new blank project, place a list box and two buttons on the
main form, and give the buttons a proper name (BtnFor and BtnWhile) by setting their Name property in the Object Inspector. You
can also remove the word Btn from the Caption property (and eventually even add the & character to it to activate the following
letter as a shortcut key). Here is a summary of the textual description of this form:

object Form1: TForm1
 Caption = 'Loops'
 object ListBox1: TListBox ...
 object BtnFor: TButton

Essential Pascal

 Caption = '&For'
 OnClick = BtnForClick
 end
 object BtnWhile: TButton
 Caption = '&While'
 OnClick = BtnWhileClick
 end
end

Figure 5.2: Each time you press the For button of the Loops example, the list box is filled with consecutive numbers.

Now we can add some code to the OnClick events of the two buttons. The first button has a simple for loop to display a list of
numbers, as you can see in Figure 5.2. Before executing this loop, which adds a number of strings to the Items property of the list
box, you need to clear the contents of the list box itself:

procedure TForm1.BtnForClick(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Items.Clear;
 for I := 1 to 20 do
 Listbox1.Items.Add ('String ' + IntToStr (I));
end;

The code associated with the second button is slightly more complex. In this case, there is a while loop based on a counter, which is
increased randomly. To accomplish this, I've called the Randomize procedure, which resets the random number generator, and the
Random function with a range value of 100. The result of this function is a number between 0 and 99, chosen randomly. The series
of random numbers control how many times the while loop is executed.

procedure TForm1.BtnWhileClick(Sender: TObject);
var

Essential Pascal

 I: Integer;
begin
 ListBox1.Items.Clear;
 Randomize;
 I := 0;
 while I < 1000 do
 begin
 I := I + Random (100);
 Listbox1.Items.Add ('Random Number: ' + IntToStr (I));
 end;
end;

Each time you click the While button, the numbers are different, because they depend on the random-number generator. Figure 5.3
shows the results from two separate button-clicks. Notice that not only are the generated numbers different each time, but so is the
number of items. That is, this while loop is executed a random numbers of times. If you press the While button several times in a
row, you'll see that the list box has a different number of lines.

Figure 5.3: The contents of the list box of the Loops example change each time you press the While button. Because
the loop counter is incremented by a random value, every time you press the button the loop may execute a different
number of times.

Essential Pascal

Note: You can alter the standard flow of a loop's execution using the Break and Continue system procedures. The first interrupts
the loop; the second is used to jump directly to the loop test or counter increment, continuing with the next iteration of the loop
(unless the condition is zero or the counter has reached its highest value). Two more system procedures, Exit and Halt, let you
immediately return from the current function or procedure or terminate the program.

The With Statement

The last kind of Pascal statement I'll focus on is the with statement, which used to be peculiar to this programming language
(although it has been recentrly introduced also in JavaScript and Visual Basic) and can be very useful in Delphi programming.

The with statement is nothing but shorthand. When you need to refer to a record type variable (or an object), instead of repeating its
name every time, you can use a with statement. For example, while presenting the record type, I wrote this code:

type
 Date = record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

var
 BirthDay: Date;

begin
 BirthDay.Year := 1997;
 BirthDay.Month := 2;
 BirthDay.Day := 14;

Using a with statement, I can improve the final part of this code, as follows:

begin
 with BirthDay do
 begin
 Year := 1995;
 Month := 2;
 Day := 14;
 end;

This approach can be used in Delphi programs to refer to components and other class types. For example, we can rewrite the final
part of the last example, Loops, using a with statement to access the items of the list box:

procedure TForm1.WhileButtonClick(Sender: TObject);
var
 I: Integer;
begin
 with ListBox1.Items do
 begin
 Clear; // shortcut
 Randomize;
 I := 0;
 while I < 1000 do
 begin
 I := I + Random (100);
 // shortcut:

Essential Pascal

 Add ('Random Number: ' + IntToStr (I));
 end;
 end;
end;

When you work with components or classes in general, the with statement allows you to skip writing some code, particularly for
nested fields. For example, suppose that you need to change the Width and the Color of the drawing pen for a form. You can write
the following code:

Form1.Canvas.Pen.Width := 2;
Form1.Canvas.Pen.Color := clRed;

But it is certainly easier to write this code:

with Form1.Canvas.Pen do
begin
 Width := 2;
 Color := clRed;
end;

When you are writing complex code, the with statement can be effective and spares you the declaration of some temporary
variables, but it has a drawback. It can make the code less readable, particularly when you are working with different objects that
have similar or corresponding properties.

A further drawback is that using the with statement can allow subtle logical errors in the code that the compiler will not detect. For
example:

with Button1 do
begin
 Width := 200;
 Caption := 'New Caption';
 Color := clRed;
end;

This code changes the Caption and the Width of the button, but it affects the Color property of the form, not that of the button! The
reason is that the TButton components don't have the Color property, and since the code is executed for a form object (we are
writing a method of the form) this object is accessed by default. If we had instead written:

Button1.Width := 200;
Button1.Caption := 'New Caption';
Button1.Color := clRed; // error!

the compiler would have issued an error. In general, we can say that since the with statement introduces new identifiers in the
current scope, we might hide existing identifiers, or wrongfully access another identifier in the same scope (as in the first version of
this code fragment). Even considering this kind of drawback, I suggest you get used to with statements, because they can be really
very handy, and at times even make the code more readable.

You should, however, avoid using multiple with statements, such as:

with ListBox1, Button1 do...

The code following this would probably be highly unreadable, because for each property defined in this block you would need to think
about which component it refers to, depending on the respective properties and the order of the components in the with statement.

Essential Pascal

Note: Speaking of readability, Pascal has no endif or endcase statement. If an if statement has a begin-end block, then the end of
the block marks the end of the statement. The case statement, instead, is always terminated by an end. All these end statements,
often found one after the other, can make the code difficult to follow. Only by tracing the indentations can you see which
statement a particular end refers to. A common way to solve this problem and make the code more readable is to add a comment
after the end statement indicating its role, as in:

if ... then
 ...
end; // if

Conclusion

This chapter has described how to code conditional statements and loops. Instead of writing long lists of such statements, programs
are usually split in routines, procedures or functions. This is the topic of the next chapter, which introduces also some advanced
elements of Pascal.

Next Chapter: Procedures

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 6
Procedures and Functions

Another important idea emphasized by Pascal is the concept of the routine, basically a series of statements with a unique name, which can be
activated many times by using their name. This way you avoid repeating the same statements over and over, and having a single version of the
code you can easily modify it all over the program. From this point of view, you can think of routines as the basic code encapsulation mechanism.
I'll get back to this topic with an example after I introduce the Pascal routines syntax.

Pascal Procedures and Functions

In Pascal, a routine can assume two forms: a procedure and a function. In theory, a procedure is an operation you ask the computer to perform, a
function is a computation returning a value. This difference is emphasized by the fact that a function has a result, a return value, while a
procedure doesn't. Both types of routines can have multiple parameters, of given data types.

In practice, however, the difference between functions and procedures is very limited: you can call a function to perform some work and then skip
the result (which might be an optional error code or something like that) or you can call a procedure which passes a result within its parameters
(more on reference parameters later in this chapter).

Here are the definitions of a procedure and two versions of the same function, using a slightly different syntax:

procedure Hello;
begin
 ShowMessage ('Hello world!');
end;

function Double (Value: Integer) : Integer;
begin
 Double := Value * 2;
end;

// or, as an alternative
function Double2 (Value: Integer) : Integer;
begin
 Result := Value * 2;
end;

The use of Result instead of the function name to assign the return value of a function is becoming quite popular, and tends to make the code
more readable, in my opinion.

Once these routines have been defined, you can call them one or more times. You call the procedure to make it perform its task, and call a
function to compute the value:

procedure TForm1.Button1Click (Sender: TObject);
begin

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

 Hello;
end;

procedure TForm1.Button2Click (Sender: TObject);
var
 X, Y: Integer;
begin
 X := Double (StrToInt (Edit1.Text));
 Y := Double (X);
 ShowMessage (IntToStr (Y));
end;

Note: For the moment don't care about the syntax of the two procedures above, which are actually methods. Simply place two buttons on a
Delphi form, click on them at design time, and the Delphi IDE will generate the proper support code: Now you simply have to fill in the lines
between begin and end. To compile the code above you need to add also an Edit control to the form.

Now we can get back to the encapsulation code concept I've introduced before. When you call the Double function, you don't need to know the
algorithm used to implement it. If you later find out a better way to double numbers, you can easily change the code of the function, but the
calling code will remain unchanged (although executing it will be faster!). The same principle can be applied to the Hello procedure: We can
modify the program output by changing the code of this procedure, and the Button2Click method will automatically change its effect. Here is how
we can change the code:

procedure Hello;
begin
 MessageDlg ('Hello world!', mtInformation, [mbOK]);
end;

Tip: When you call an existing Delphi function or procedure, or any VCL method, you should remember the number and type of the
parameters. Delphi editor helps you by suggesting the parameters list of a function or procedure with a fly-by hint as soon as you type its name
and the open parenthesis. This feature is called Code Parameters and is part of the Code Insight technology.

Reference Parameters

Pascal routines allow parameter passing by value and by reference. Passing parameters by value is the default: the value is copied on the stack
and the routine uses and manipulates the copy, not the original value.

Passing a parameter by reference means that its value is not copied onto the stack in the formal parameter of the routine (avoiding a copy often
means that the program executes faster). Instead, the program refers to the original value, also in the code of the routine. This allows the
procedure or function to change the value of the parameter. Parameter passing by reference is expressed by the var keyword.

This technique is available in most programming languages. It isn't present in C, but has been introduced in C++, where you use the & (pass
by reference) symbol. In Visual Basic every parameter not specified as ByVal is passed by reference.

Here is an example of passing a parameter by reference using the var keyword:

procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

In this case, the parameter is used both to pass a value to the procedure and to return a new value to the calling code. When you write:

var
 X: Integer;
begin
 X := 10;

Essential Pascal

 DoubleTheValue (X);

the value of the X variable becomes 20, because the function uses a reference to the original memory location of X, affecting its initial value.

Passing parameters by reference makes sense for ordinal types, for old-fashioned strings, and for large records. Delphi objects, in fact, are
invariably passed by value, because they are references themselves. For this reason passing an object by reference makes little sense (apart from
very special cases), because it corresponds to passing a "reference to a reference."

Delphi long strings have a slightly different behavior: they behave as references, but if you change one of the string variables referring to the
same string in memory, this is copied before updating it. A long string passed as a value parameter behaves as a reference only in terms of
memory usage and speed of the operation. But if you modify the value of the string, the original value is not affected. On the contrary, if you pass
the long string by reference, you can alter the original value.

Delphi 3 introduced a new kind of parameter, out. An out parameter has no initial value and is used only to return a value. These parameters
should be used only for COM procedures and functions; in general, it is better to stick with the more efficient var parameters. Except for not
having an initial value, out parameters behave like var parameters.

Constant Parameters

As an alternative to reference parameters, you can use a const parameter. Since you cannot assign a new value to a constant parameter inside
the routine, the compiler can optimize parameter passing. The compiler can choose an approach similar to reference parameters (or a const
reference in C++ terms), but the behavior will remain similar to value parameters, because the original value won't be affected by the routine.

In fact, if you try to compile the following (silly) code, Delphi will issue an error:

function DoubleTheValue (const Value: Integer): Integer;
begin
 Value := Value * 2; // compiler error
 Result := Value;
end;

Open Array Parameters

Unlike C, a Pascal function or procedure always has a fixed number of parameters. However, there is a way to pass a varying number of
parameters to a routine using an open array.

The basic definition of an open array parameter is that of a typed open array. This means you indicate the type of the parameter but do not know
how many elements of that type the array is going to have. Here is an example of such a definition:

function Sum (const A: array of Integer): Integer;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(A) to High(A) do
 Result := Result + A[I];
end;

Using High(A) we can get the size of the array. Notice also the use of the return value of the function, Result, to store temporary values. You can
call this function by passing to it an array of Integer expressions:

X := Sum ([10, Y, 27*I]);

Given an array of Integers, of any size, you can pass it directly to a routine requiring an open array parameter or, instead, you can call the Slice
function to pass only a portion of the array (as indicated by its second parameter). Here is an example, where the complete array is passed as

Essential Pascal

parameter:

var
 List: array [1..10] of Integer;
 X, I: Integer;
begin
 // initialize the array
 for I := Low (List) to High (List) do
 List [I] := I * 2;
 // call
 X := Sum (List);

If you want to pass only a portion of the array to the Slice function, simply call it this way:

X := Sum (Slice (List, 5));

You can find all the code fragments presented in this section in the OpenArr example (see Figure 6.1, later on, for
the form).

Figure 6.1: The OpenArr example when the Partial Slice button is pressed

Typed open arrays in Delphi 4 are fully compatible with dynamic arrays (introduced in Delphi 4 and covered in Chapter 8). Dynamic arrays use
the same syntax as open arrays, with the difference that you can use a notation such as array of Integer to declare a variable, not just to pass
a parameter.

Type-Variant Open Array Parameters

Besides these typed open arrays, Delphi allows you to define type-variant or untyped open arrays. This special kind of array has an undefined
number of values, which can be handy for passing parameters.

Technically, the construct array of const allows you to pass an array with an undefined number of elements of different types to a routine at once.
For example, here is the definition of the Format function (we'll see how to use this function in Chapter 7, covering strings):

function Format (const Format: string;
 const Args: array of const): string;

Essential Pascal

The second parameter is an open array, which gets an undefined number of values. In fact, you can call this function in the following ways:

N := 20;
S := 'Total:';
Label1.Caption := Format ('Total: %d', [N]);
Label2.Caption := Format ('Int: %d, Float: %f', [N, 12.4]);
Label3.Caption := Format ('%s %d', [S, N * 2]);

Notice that you can pass a parameter as either a constant value, the value of a variable, or an expression. Declaring a function of this kind is
simple, but how do you code it? How do you know the types of the parameters? The values of a type-variant open array parameter are compatible
with the TVarRec type elements.

Note: Do not confuse the TVarRec record with the TVarData record used by the Variant type itself. These two structures have a different aim
and are not compatible. Even the list of possible types is different, because TVarRec can hold Delphi data types, while TVarData can hold OLE
data types.

The TVarRec record has the following structure:

type
 TVarRec = record
 case Byte of
 vtInteger: (VInteger: Integer; VType: Byte);
 vtBoolean: (VBoolean: Boolean);
 vtChar: (VChar: Char);
 vtExtended: (VExtended: PExtended);
 vtString: (VString: PShortString);
 vtPointer: (VPointer: Pointer);
 vtPChar: (VPChar: PChar);
 vtObject: (VObject: TObject);
 vtClass: (VClass: TClass);
 vtWideChar: (VWideChar: WideChar);
 vtPWideChar: (VPWideChar: PWideChar);
 vtAnsiString: (VAnsiString: Pointer);
 vtCurrency: (VCurrency: PCurrency);
 vtVariant: (VVariant: PVariant);
 vtInterface: (VInterface: Pointer);
 end;

Each possible record has the VType field, although this is not easy to see at first because it is declared only once, along with the actual Integer-
size data (generally a reference or a pointer).

Using this information we can actually write a function capable of operating on different data types. In the SumAll function example, I want to be
able to sum values of different types, transforming strings to integers, characters to the corresponding order value, and adding 1 for True Boolean
values. The code is based on a case statement, and is quite simple, although we have to dereference pointers quite often:

function SumAll (const Args: array of const): Extended;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(Args) to High (Args) do
 case Args [I].VType of
 vtInteger: Result :=
 Result + Args [I].VInteger;
 vtBoolean:
 if Args [I].VBoolean then
 Result := Result + 1;
 vtChar:
 Result := Result + Ord (Args [I].VChar);

Essential Pascal

 vtExtended:
 Result := Result + Args [I].VExtended^;
 vtString, vtAnsiString:
 Result := Result + StrToIntDef ((Args [I].VString^), 0);
 vtWideChar:
 Result := Result + Ord (Args [I].VWideChar);
 vtCurrency:
 Result := Result + Args [I].VCurrency^;
 end; // case
end;

I've added this code to the OpenArr example, which calls the SumAll function when a given button is pressed:

procedure TForm1.Button4Click(Sender: TObject);
var
 X: Extended;
 Y: Integer;
begin
 Y := 10;
 X := SumAll ([Y * Y, 'k', True, 10.34, '99999']);
 ShowMessage (Format (
 'SumAll ([Y*Y, ''k'', True, 10.34, ''99999'']) => %n', [X]));
end;

You can see the output of this call, and the form of the OpenArr example, in Figure 6.2.

Figure 6.2: The form of the OpenArr example, with the message box displayed when the Untyped button is pressed.

Delphi Calling Conventions

The 32-bit version of Delphi has introduced a new approach to passing parameters, known as fastcall: Whenever possible, up to three parameters
can be passed in CPU registers, making the function call much faster. The fast calling convention (used by default in Delphi 3) is indicated by the
register keyword.

The problem is that this is the default convention, and functions using it are not compatible with Windows: the functions of the Win32 API must be
declared using the stdcall calling convention, a mixture of the original Pascal calling convention of the Win16 API and the cdecl calling convention
of the C language.

Essential Pascal

There is generally no reason not to use the new fast calling convention, unless you are making external Windows calls or defining Windows
callback functions. We'll see an example using the stdcall convention before the end of this chapter. You can find a summary of Delphi calling
conventions in the Calling conventions topic under Delphi help.

What Is a Method?

If you have already worked with Delphi or read the manuals, you have probably heard about the term "method". A method is a special kind of
function or procedure that is related to a data type, a class. In Delphi, every time we handle an event, we need to define a method, generally a
procedure. In general, however, the term method is used to indicate both functions and procedures related to a class.

We have already seen a number of methods in the examples in this and the previous chapters. Here is an empty method automatically added by
Delphi to the source code of a form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 {here goes your code}
end;

Forward Declarations

When you need to use an identifier (of any kind), the compiler must have already seen some sort of declaration to know what the identifier refers
to. For this reason, you usually provide a full declaration before using any routine. However, there are cases in which this is not possible. If
procedure A calls procedure B, and procedure B calls procedure A, when you start writing the code, you will need to call a routine for which the
compiler still hasn't seen a declaration.

If you want to declare the existence of a procedure or function with a certain name and given parameters, without providing its actual code, you
can write the procedure or function followed by the forward keyword:

procedure Hello; forward;

Later on, the code should provide a full definition of the procedure, but this can be called even before it is fully defined. Here is a silly example,
just to give you the idea:

procedure DoubleHello; forward;

procedure Hello;
begin
 if MessageDlg ('Do you want a double message?',
 mtConfirmation, [mbYes, mbNo], 0) = mrYes then
 DoubleHello
 else
 ShowMessage ('Hello');
end;

procedure DoubleHello;
begin
 Hello;
 Hello;
end;

This approach allows you to write mutual recursion: DoubleHello calls Hello, but Hello might call DoubleHello, too. Of course there must be a
condition to terminate the recursion, to avoid a stack overflow. You can find this code, with some slight changes, in the DoubleH example.

Although a forward procedure declaration is not very common in Delphi, there is a similar case that is much more frequent. When you declare a
procedure or function in the interface portion of a unit (more on units in the next chapter), it is considered a forward declaration, even if the
forward keyword is not present. Actually you cannot write the body of a routine in the interface portion of a unit. At the same time, you must
provide in the same unit the actual implementation of each routine you have declared.

Essential Pascal

The same holds for the declaration of a method inside a class type that was automatically generated by Delphi (as you added an event to a form
or its components). The event handlers declared inside a TForm class are forward declarations: the code will be provided in the implementation
portion of the unit. Here is an excerpt of the source code of an earlier example, with the declaration of the Button1Click method:

type
 TForm1 = class(TForm)
 ListBox1: TListBox;
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 end;

Procedural Types

Another unique feature of Object Pascal is the presence of procedural types. These are really an advanced language topic, which only a few Delphi
programmers will use regularly. However, since we will discuss related topics in later chapters (specifically, method pointers, a technique heavily
used by Delphi), it's worth a quick look at them here. If you are a novice programmer, you can skip this section for now, and come back to it
when you feel ready.

In Pascal, there is the concept of procedural type (which is similar to the C language concept of function pointer). The declaration of a procedural
type indicates the list of parameters and, in the case of a function, the return type. For example, you can declare a new procedural type, with an
Integer parameter passed by reference, with this code:

type
 IntProc = procedure (var Num: Integer);

This procedural type is compatible with any routine having exactly the same parameters (or the same function signature, to use C jargon). Here is
an example of a compatible routine:

procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

Note: In the 16-bit version of Delphi, routines must be declared using the far directive in order to be used as actual values of a procedural type.

Procedural types can be used for two different purposes: you can declare variables of a procedural type or pass a procedural type (that is, a
function pointer) as parameter to another routine. Given the preceding type and procedure declarations, you can write this code:

var
 IP: IntProc;
 X: Integer;
begin
 IP := DoubleTheValue;
 X := 5;
 IP (X);
end;

This code has the same effect as the following shorter version:

var
 X: Integer;
begin
 X := 5;
 DoubleTheValue (X);
end;

Essential Pascal

The first version is clearly more complex, so why should we use it? In some cases, being able to decide which function to call and actually calling it
later on can be useful. It is possible to build a complex example showing this approach. However, I prefer to let you explore a fairly simple one,
named ProcType. This example is more complex than those we have seen so far, to make the situation a little more realistic.

Simply create a blank project and place two radio buttons and a push button, as shown in Figure 6.3. This example is based on two procedures.
One procedure is used to double the value of the parameter. This procedure is similar to the version I've already shown in this section. A second
procedure is used to triple the value of the parameter, and therefore is named TripleTheValue:

Figure 6.3: The form of the ProcType example.

procedure TripleTheValue (var Value: Integer);
begin
 Value := Value * 3;
 ShowMessage ('Value tripled: ' + IntToStr (Value));
end;

Both procedures display what is going on, to let us know that they have been called. This is a simple debugging feature you can use to test
whether or when a certain portion of code is executed, instead of adding a breakpoint in it.

Each time a user presses the Apply button, one of the two procedures is executed, depending on the status of the radio buttons. In fact, when
you have two radio buttons in a form, only one of them can be selected at a time. This code could have been implemented by testing the value of
the radio buttons inside the code for the OnClick event of the Apply button. To demonstrate the use of procedural types, I've instead used a
longer but interesting approach. Each time a user clicks on one of the two radio buttons, one of the procedures is stored in a variable:

procedure TForm1.DoubleRadioButtonClick(Sender: TObject);
begin
 IP := DoubleTheValue;
end;

When the user clicks on the push button, the procedure we have stored is executed:

procedure TForm1.ApplyButtonClick(Sender: TObject);
begin
 IP (X);
end;

To allow three different functions to access the IP and X variables, we need to make them visible to the whole form; they cannot be declared
locally (inside one of the methods). A solution to this problem is to place these variables inside the form declaration:

type
 TForm1 = class(TForm)
 ...
 private
 { Private declarations }

Essential Pascal

 IP: IntProc;
 X: Integer;
 end;

We will see exactly what this means in the next chapter, but for the moment, you need to modify the code generated by Delphi for the class type
as indicated above, and add the definition of the procedural type I've shown before. To initialize these two variables with suitable values, we can
handle the OnCreate event of the form (select this event in the Object Inspector after you have activated the form, or simply double-click on the
form). I suggest you refer to the listing to study the details of the source code of this example.

You can see a practical example of the use of procedural types in Chapter 9, in the section A Windows Callback Function.

Function Overloading

The idea of overloading is simple: The compiler allows you to define two functions or procedures using the same name, provided that the
parameters are different. By checking the parameters, in fact, the compiler can determine which of the versions of the routine you want to call.

Consider this series of functions extracted from the Math unit of the VCL:

function Min (A,B: Integer): Integer; overload;
function Min (A,B: Int64): Int64; overload;
function Min (A,B: Single): Single; overload;
function Min (A,B: Double): Double; overload;
function Min (A,B: Extended): Extended; overload;

When you call Min (10, 20), the compiler easily determines that you're calling the first function of the group, so the return value will be an Integer.

The basic rules are two:

● Each version of the routine must be followed by the overload keyword.
● The differences must be in the number or type of the parameters, or both. The return type, instead, cannot be used to distinguish among

two routines.

Here are three overloaded versions of a ShowMsg procedure I've added to the OverDef example (an application demonstrating overloading and
default parameters):

procedure ShowMsg (str: string); overload;
begin
 MessageDlg (str, mtInformation, [mbOK], 0);
end;

procedure ShowMsg (FormatStr: string;
 Params: array of const); overload;
begin
 MessageDlg (Format (FormatStr, Params),
 mtInformation, [mbOK], 0);
end;

procedure ShowMsg (I: Integer; Str: string); overload;
begin
 ShowMsg (IntToStr (I) + ' ' + Str);
end;

The three functions show a message box with a string, after optionally formatting the string in different ways. Here are the three calls of the
program:

ShowMsg ('Hello');
ShowMsg ('Total = %d.', [100]);

Essential Pascal

ShowMsg (10, 'MBytes');

What surprised me in a positive way is that Delphi's Code Parameters technology works very nicely with overloaded procedures and functions. As
you type the open parenthesis after the routine name, all the available alternatives are listed. As you enter the parameters, Delphi uses their type
to determine which of the alternatives are still available. In Figure 6.4 you can see that after starting to type a constant string Delphi shows only
the compatible versions (omitting the version of the ShowMsg procedure that has an integer as first parameter).

Figure 6.4: The multiple alternatives offered by Code Parameters for overloaded routines are filtered according to the
parameters already available.

The fact that each version of an overloaded routine must be properly marked implies that you cannot overload an existing routine of the same unit
that is not marked with the overload keyword. (The error message you get when you try is: "Previous declaration of '<name>' was not marked
with the 'overload' directive.") However, you can overload a routine that was originally declared in a different unit. This is for compatibility with
previous versions of Delphi, which allowed different units to reuse the same routine name. Notice, anyway, that this special case is not an extra
feature of overloading, but an indication of the problems you can face.

For example, you can add to a unit the following code:

procedure MessageDlg (str: string); overload;
begin
 Dialogs.MessageDlg (str, mtInformation, [mbOK], 0);
end;

This code doesn't really overload the original MessageDlg routine. In fact if you write:

MessageDlg ('Hello');

you'll get a nice error message indicating that some of the parameters are missing. The only way to call the local version instead of the one of the
VCL is to refer explicitly to the local unit, something that defeats the idea of overloading:

Essential Pascal

OverDefF.MessageDlg ('Hello');

Default Parameters

A related new feature of Delphi 4 is that you can give a default value for the parameter of a function, and you can call the function with or without
the parameter. Let me show an example. We can define the following encapsulation of the MessageBox method of the Application global object,
which uses PChar instead of strings, providing two default parameters:

procedure MessBox (Msg: string;
 Caption: string = 'Warning';
 Flags: LongInt = mb_OK or mb_IconHand);
begin
 Application.MessageBox (PChar (Msg),
 PChar (Caption), Flags);
end;

With this definition, we can call the procedure in each of the following ways:

MessBox ('Something wrong here!');
MessBox ('Something wrong here!', 'Attention');
MessBox ('Hello', 'Message', mb_OK);

In Figure 6.5 you can see that Delphi's Code Parameters properly use a different style to indicate the parameters that have a default value, so you
can easily determine which parameters can be omitted.

Figure 6.5: Delphi's Code Parameters mark out with square brackets the parameters that have default values; you can omit these
in the call.

Essential Pascal

Notice that Delphi doesn't generate any special code to support default parameters; nor does it create multiple copies of the routines. The missing
parameters are simply added by the compiler to the calling code.

There is one important restriction affecting the use of default parameters: You cannot "skip" parameters. For example, you can't pass the third
parameter to the function after omitting the second one:

MessBox ('Hello', mb_OK); // error

This is the main rule for default parameters: In a call, you can only omit parameters starting from the last one. In other words, if you omit a
parameter you must omit also the following ones.

There are a few other rules for default parameters as well:

● Parameters with default values must be at the end of the parameters list.
● Default values must be constants. Obviously, this limits the types you can use with default parameters. For example, a dynamic array or

an interface type cannot have a default parameter other than nil; records cannot be used at all.
● Default parameters must be passed by value or as const. A reference (var) parameter cannot have a default value.

Using default parameters and overloading at the same time can cause quite a few problems, as the two features might conflict. For example, if I
add to the previous example the following new version of the ShowMsg procedure:

procedure ShowMsg (Str: string; I: Integer = 0); overload;
begin
 MessageDlg (Str + ': ' + IntToStr (I),
 mtInformation, [mbOK], 0);
end;

then the compiler won't complain-this is a legal definition. However, the call:

ShowMsg ('Hello');

is flagged by the compiler as Ambiguous overloaded call to 'ShowMsg'. Notice that this error shows up in a line of code that compiled correctly
before the new overloaded definition. In practice, we have no way to call the ShowMsg procedure with one string parameter, as the compiler
doesn't know whether we want to call the version with only the string parameter or the one with the string parameter and the integer parameter
with a default value. When it has a similar doubt, the compiler stops and asks the programmer to state his or her intentions more clearly.

Conclusion

Writing procedure and functions is a key element of programming, although in Delphi you'll tend to write methods -- procedures and functions
connected with classes and objects.

Instead of moving on to object-oriented features, however, the next few chapters give you some details on other Pascal programming elements,
starting with strings.

Next Chapter: Handling Strings

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 7
Handling Strings

String handling in Delphi is quite simple, but behind the scenes the situation is quite complex. Pascal has a traditional way of
handling strings, Windows has its own way, borrowed from the C language, and 32-bit versions of Delphi include a powerful long
string data type, which is the default string type in Delphi.

Types of Strings

In Borland's Turbo Pascal and in 16-bit Delphi, the typical string type is a sequence of characters with a length byte at the beginning,
indicating the current size of the string. Because the length is expressed by a single byte, it cannot exceed 255 characters, a very low
value that creates many problems for string manipulation. Each string is defined with a fixed size (which by default is the maximum,
255), although you can declare shorter strings to save memory space.

A string type is similar to an array type. In fact, a string is almost an array of characters. This is demonstrated by the fact that you
can access a specific string character using the [] notation.

To overcome the limits of traditional Pascal strings, the 32-bit versions of Delphi support long strings. There are actually three string
types:

● The ShortString type corresponds to the typical Pascal strings, as described before. These strings have a limit of 255
characters and correspond to the strings in the 16-bit version of Delphi. Each element of a short string is of type ANSIChar
(the standard character type).

● The ANSIString type corresponds to the new variable-length long strings. These strings are allocated dynamically, are
reference counted, and use a copy-on-write technique. The size of these strings is almost unlimited (they can store up to
two billion characters!). They are also based on the ANSIChar type.

● The WideString type is similar to the ANSIString type but is based on the WideChar type-it stores Unicode characters.

Using Long Strings

If you simply use the string data type, you get either short strings or ANSI strings, depending on the value of the $H compiler
directive. $H+ (the default) stands for long strings (the ANSIString type), which is what is used by the components of the Delphi
library.

Delphi long strings are based on a reference-counting mechanism, which keeps track of how many string variables are referring to
the same string in memory. This reference-counting is used also to free the memory when a string isn't used anymore-that is, when
the reference count reaches zero.

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

If you want to increase the size of a string in memory but there is something else in the adjacent memory, then the string cannot
grow in the same memory location, and a full copy of the string must therefore be made in another location. When this situation
occurs, Delphi's run-time support reallocates the string for you in a completely transparent way. You simply set the maximum size of
the string with the SetLength procedure, effectively allocating the required amount of memory:

SetLength (String1, 200);

The SetLength procedure performs a memory request, not an actual memory allocation. It reserves the required memory space for
future use, without actually using the memory. This technique is based on a feature of the Windows operating systems and is used
by Delphi for all dynamic memory allocations. For example, when you request a very large array, its memory is reserved but not
allocated.

Setting the length of a string is seldom necessary. The only case in which you must allocate memory for the long string using
SetLength is when you have to pass the string as a parameter to an API function (after the proper typecast), as I'll show you shortly.

Looking at Strings in Memory

To help you better understand the details of memory management for strings, I've written the simple StrRef example. In this
program I declare two global strings: Str1 and Str2. When the first of the two buttons is pressed, the program assigns a constant
string to the first of the two variables and then assigns the second variable to the first:

Str1 := 'Hello';
Str2 := Str1;

Besides working on the strings, the program shows their internal status in a list box, using the following StringStatus function:

function StringStatus (const Str: string): string;
begin
 Result := 'Address: ' + IntToStr (Integer (Str)) +
 ', Length: ' + IntToStr (Length (Str)) +
 ', References: ' + IntToStr (PInteger (Integer (Str) - 8)^) +
 ', Value: ' + Str;
end;

It is vital in the StringStatus function to pass the string parameter as a const parameter. Passing this parameter by copying will cause
the side effect of having one extra reference to the string while the function is being executed. By contrast, passing the parameter
via a reference (var) or constant (const) parameter doesn't imply a further reference to the string. In this case I've used a const
parameter, as the function is not supposed to modify the string.

To obtain the memory address of the string (useful to determine its actual identity and to see when two different strings refer to the
same memory area), I've simply made a hard-coded typecast from the string type to the Integer type. Strings are references-in
practice, they're pointers: Their value holds the actual memory location of the string.

To extract the reference count, I've based the code on the little-known fact that the length and reference count are actually stored in
the string, before the actual text and before the position the string variable points to. The (negative) offset is -4 for the length of the
string (a value you can extract more easily using the Length function) and -8 for the reference count.

Keep in mind that this internal information about offsets might change in future versions of Delphi; there is also no guarantee that
similar undocumented features will be maintained in the future.

By running this example, you should get two strings with the same content, the same memory location, and a reference count of 2,

Essential Pascal

as shown in the upper part of the list box of Figure 2.1. Now if you change the value of one of the two strings (it doesn't matter
which one), the memory location of the updated string will change. This is the effect of the copy-on-write technique.

Figure 7.1: The StrRef example shows the internal status of two strings, including the current reference count.

We can actually produce this effect, shown in the second part of the list box of Figure 7.1, by writing the following code for the
OnClick event handler of the second button:

procedure TFormStrRef.BtnChangeClick(Sender: TObject);
begin
 Str1 [2] := 'a';
 ListBox1.Items.Add ('Str1 [2] := ''a''');
 ListBox1.Items.Add ('Str1 - ' + StringStatus (Str1));
 ListBox1.Items.Add ('Str2 - ' + StringStatus (Str2));
end;

Notice that the code of the BtnChangeClick method can be executed only after the BtnAssignClick method. To enforce this, the
program starts with the second button disabled (its Enabled property is set to False); it enables the button at the end of the first
method. You can freely extend this example and use the StringStatus function to explore the behavior of long strings in many other
circumstances.

Delphi Strings and Windows PChars

Another important point in favor of using long strings is that they are null-terminated. This means that they are fully compatible with
the C language null-terminated strings used by Windows. A null-terminated string is a sequence of characters followed by a byte that
is set to zero (or null). This can be expressed in Delphi using a zero-based array of characters, the data type typically used to
implement strings in the C language. This is the reason null-terminated character arrays are so common in the Windows API
functions (which are based on the C language). Since Pascal's long strings are fully compatible with C null-terminated strings, you can
simply use long strings and cast them to PChar when you need to pass a string to a Windows API function.

For example, to copy the caption of a form into a PChar string (using the API function GetWindowText) and then copy it into the
Caption of the button, you can write the following code:

Essential Pascal

procedure TForm1.Button1Click (Sender: TObject);
var
 S1: String;
begin
 SetLength (S1, 100);
 GetWindowText (Handle, PChar (S1), Length (S1));
 Button1.Caption := S1;
end;

You can find this code in the LongStr example. Note that if you write this code but fail to allocate the memory for the string with
SetLength, the program will probably crash. If you are using a PChar to pass a value (and not to receive one as in the code above),
the code is even simpler, because there is no need to define a temporary string and initialize it. The following line of code passes the
Caption property of a label as a parameter to an API function, simply by typecasting it to PChar:

SetWindowText (Handle, PChar (Label1.Caption));

When you need to cast a WideString to a Windows-compatible type, you have to use PWideChar instead of PChar for the conversion.
Wide strings are often used for OLE and COM programs.

Having presented the nice picture, now I want to focus on the pitfalls. There are some problems that might arise when you convert a
long string into a PChar. Essentially, the underlying problem is that after this conversion, you become responsible for the string and
its contents, and Delphi won't help you anymore. Consider the following limited change to the first program code fragment above,
Button1Click:

procedure TForm1.Button2Click(Sender: TObject);
var
 S1: String;
begin
 SetLength (S1, 100);
 GetWindowText (Handle, PChar (S1), Length (S1));
 S1 := S1 + ' is the title'; // this won't work
 Button1.Caption := S1;
end;

This program compiles, but when you run it, you are in for a surprise: The Caption of the button will have the original text of the
window title, without the text of the constant string you have added to it. The problem is that when Windows writes to the string
(within the GetWindowText API call), it doesn't set the length of the long Pascal string properly. Delphi still can use this string for
output and can figure out when it ends by looking for the null terminator, but if you append further characters after the null
terminator, they will be skipped altogether.

How can we fix this problem? The solution is to tell the system to convert the string returned by the GetWindowText API call back to
a Pascal string. However, if you write the following code:

S1 := String (S1);

the system will ignore it, because converting a data type back into itself is a useless operation. To obtain the proper long Pascal
string, you need to recast the string to a PChar and let Delphi convert it back again properly to a string:

S1 := String (PChar (S1));

Actually, you can skip the string conversion, because PChar-to-string conversions are automatic in Delphi. Here is the final code:

procedure TForm1.Button3Click(Sender: TObject);

Essential Pascal

var
 S1: String;
begin
 SetLength (S1, 100);
 GetWindowText (Handle, PChar (S1), Length (S1));
 S1 := String (PChar (S1));
 S1 := S1 + ' is the title';
 Button3.Caption := S1;
end;

An alternative is to reset the length of the Delphi string, using the length of the PChar string, by writing:

SetLength (S1, StrLen (PChar (S1)));

You can find three versions of this code in the LongStr example, which has three buttons to execute them. However, if you just need
to access the title of a form, you can simply use the Caption property of the form object itself. There is no need to write all this
confusing code, which was intended only to demonstrate the string conversion problems. There are practical cases when you need to
call Windows API functions, and then you have to consider this complex situation.

Formatting Strings

Using the plus (+) operator and some of the conversion functions (such as IntToStr) you can indeed build complex strings out of
existing values. However, there is a different approach to formatting numbers, currency values, and other strings into a final string.
You can use the powerful Format function or one of its companion functions.

The Format function requires as parameters a string with the basic text and some placeholders (usually marked by the % symbol)
and an array of values, one for each placeholder. For example, to format two numbers into a string you can write:

Format ('First %d, Second %d', [n1, n2]);

where n1 and n2 are two Integer values. The first placeholder is replaced by the first value, the second matches the second, and so
on. If the output type of the placeholder (indicated by the letter after the % symbol) doesn't match the type of the corresponding
parameter, a runtime error occurs. Having no compile-time type checking is actually the biggest drawback of using the Format
function.

The Format function uses an open-array parameter (a parameter that can have an arbitrary number of values), something I'll discuss
toward the end of this chapter. For the moment, though, notice only the array-like syntax of the list of values passed as the second
parameter.

Besides using %d, you can use one of many other placeholders defined by this function and briefly listed in Table 7.1. These
placeholders provide a default output for the given data type. However, you can use further format specifiers to alter the default
output. A width specifier, for example, determines a fixed number of characters in the output, while a precision specifier indicates the
number of decimal digits. For example,

Format ('%8d', [n1]);

converts the number n1 into an eight-character string, right-aligning the text (use the minus (-) symbol to specify left-justification)
filling it with white spaces.

Table 7.1: Type Specifiers for the Format Function

Essential Pascal

TYPE SPECIFIER DESCRIPTION

d (decimal) The corresponding integer value is converted to a string of decimal digits.

x (hexadecimal) The corresponding integer value is converted to a string of hexadecimal digits.

p (pointer) The corresponding pointer value is converted to a string expressed with hexadecimal digits.

s (string) The corresponding string, character, or PChar value is copied to the output string.

e (exponential) The corresponding floating-point value is converted to a string based on exponential notation.

f (floating point) The corresponding floating-point value is converted to a string based on floating point notation.

g (general) The corresponding floating-point value is converted to the shortest possible decimal string using either floating-
point or exponential notation.

n (number) The corresponding floating-point value is converted to a floating-point string but also uses thousands
separators.

m (money)
The corresponding floating-point value is converted to a string representing a currency amount. The
conversion is based on regional settings-see the Delphi Help file under Currency and date/time formatting
variables.

The best way to see examples of these conversions is to experiment with format strings yourself. To make this easier I've written the
FmtTest program, which allows a user to provide formatting strings for integer and floating-point numbers. As you can see in Figure
7.2, this program displays a form divided into two parts. The left part is for Integer numbers, the right part for floating-point
numbers.

Each part has a first edit box with the numeric value you want to format to a string. Below the first edit box there is a button to
perform the formatting operation and show the result in a message box. Then comes another edit box, where you can type a format
string. As an alternative you can simply click on one of the lines of the ListBox component, below, to select a predefined formatting
string. Every time you type a new formatting string, it is added to the corresponding list box (note that by closing the program you
lose these new items).

Figure 7.2: The output of a floating-point value from the FmtTest program

Essential Pascal

The code of this example simply uses the text of the various controls to produce its output. This is one of the three methods
connected with the Show buttons:

procedure TFormFmtTest.BtnIntClick(Sender: TObject);
begin
 ShowMessage (Format (EditFmtInt.Text,
 [StrToInt (EditInt.Text)]));
 // if the item is not there, add it
 if ListBoxInt.Items.IndexOf (EditFmtInt.Text) < 0 then
 ListBoxInt.Items.Add (EditFmtInt.Text);
end;

The code basically does the formatting operation using the text of the EditFmtInt edit box and the value of the EditInt control. If the
format string is not already in the list box, it is then added to it. If the user instead clicks on an item in the list box, the code moves
that value to the edit box:

procedure TFormFmtTest.ListBoxIntClick(Sender: TObject);
begin
 EditFmtInt.Text := ListBoxInt.Items [
 ListBoxInt.ItemIndex];
end;

Conclusion

Essential Pascal

Strings a certainly a very common data type. Although you can safely use them in most cases without understanding how they work,
this chapter should have made clear the exact behavior of strings, making it possible for you to use all the power of this data type.

Strings are handled in memory in a special dynamic way, as happens with dynamic arrays. This is the topic of the next chapter.

Next Chapter: Memory

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 8
Memory

Author's Note: This chapter will cover memory handling, discuss the various memory areas, and introduce dynamic arrays.
Temporarily only this last part is available.

Delphi 4 Dynamic Arrays

Traditionally, the Pascal language has always had fixed-size arrays. When you declare a data type using the array construct, you
have to specify the number of elements of the array. As expert programmers probably know, there were a few techniques you could
use to implement dynamic arrays, typically using pointers and manually allocating and freeing the required memory.

Delphi 4 introduces a very simple implementation of dynamic arrays, modeling them after the dynamic long string type I've just
covered. As long strings, dynamic arrays are dynamically allocated and reference counted, but they do not offer a copy-on-write
technique. That's not a big problem, as you can deallocate an array by setting its variable to nil.

You can now simply declare an array without specifying the number of elements and then allocate it with a given size using the
SetLength procedure. The same procedure can also be used to resize an array without losing its content. There are also other string-
oriented procedures, such as the Copy function, that you can use on arrays.

Here is a small code excerpt, underscoring the fact that you must both declare and allocate memory for the array before you can
start using it:

procedure TForm1.Button1Click(Sender: TObject);
var
 Array1: array of Integer;
begin
 Array1 [1] := 100; // error
 SetLength (Array1, 100);
 Array1 [99] := 100; // OK
 ...
end;

As you indicate only the number of elements of the array, the index invariably starts from 0. Generic arrays in Pascal account for a
non-zero low bound and for non-integer indexes, two features that dynamic arrays don't support. To learn the status of a dynamic
array, you can use the Length, High, and Low functions, as with any other array. For dynamic arrays, however, Low always returns 0,
and High always returns the length minus one. This implies that for an empty array High returns -1 (which, when you think about it,

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

is a strange value, as it is lower than that returned by Low).

Figure 8.1: The form of the DynArr example

After this short introduction I can show you a simple example, called DynArr and shown in Figure 8.1. It is indeed simple because
there is nothing very complex about dynamic arrays. I'll also use it to show a few possible errors programmers might make. The
program declares two global arrays and initializes the first in the OnCreate handler:

var
 Array1, Array2: array of Integer;

procedure TForm1.FormCreate(Sender: TObject);
begin
 // allocate
 SetLength (Array1, 100);
end;

This sets all the values to zero. This initialization code makes it possible to start reading and writing values of the array right away,
without any fear of memory errors. (Assuming, of course, that you don't try to access items beyond the upper bound of the array.)
For an even better initialization, the program has a button that writes into each cell of the array:

procedure TForm1.btnFillClick(Sender: TObject);
var
 I: Integer;
begin
 for I := Low (Array1) to High (Array1) do
 Array1 [I] := I;
end;

The Grow button allows you to modify the size of the array without losing its contents. You can test this by using the Get value
button after pressing the Grow button:

procedure TForm1.btnGrowClick(Sender: TObject);
begin
 // grow keeping existing values
 SetLength (Array1, 200);
end;

procedure TForm1.btnGetClick(Sender: TObject);
begin
 // extract

Essential Pascal

 Caption := IntToStr (Array1 [99]);
end;

The only slightly complex code is in the OnClick event of the Alias button. The program copies one array to the other one with the :=
operator, effectively creating an alias (a new variable referring to the same array in memory). At this point, however, if you modify
one of the arrays, the other is affected as well, as they both refer to the same memory area:

procedure TForm1.btnAliasClick(Sender: TObject);
begin
 // alias
 Array2 := Array1;
 // change one (both change)
 Array2 [99] := 1000;
 // show the other
 Caption := IntToStr (Array1 [99]);

The btnAliasClick method does two more operations. The first is an equality test on the arrays. This tests not the actual elements of
the structures but rather the memory areas the arrays refer to, checking whether the variables are two aliases of the same array in
memory:

procedure TForm1.btnAliasClick(Sender: TObject);
begin
 ...
 if Array1 = Array2 then
 Beep;
 // truncate first array
 Array1 := Copy (Array2, 0, 10);
end;

The second is a call to the Copy function, which not only moves data from one array to the other, but also replaces the first array
with a new one created by the function. The effect is that the Array1 variable now refers to an array of 11 elements, so that pressing
the Get value or Set value buttons produces a memory error and raises an exception (unless you have range-checking turned off, in
which case the error remains but the exception is not displayed). The code of the Fill button continues to work fine even after this
change, as the items of the array to modify are determined using its current bounds.

Conclusion

This chapter temporarily covers only dynamic arrays, certainly an important element for memory management, but only a portion of
the entire picture. More material will follow.

The memory structure described in this chapter is typical of Windows programming, a topic I'll introduce in the next chapter (without
going to the full extent of using the VCL, though).

Next Chapter: Windows Programming

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 9:
Windows Programming

Delphi provides a complete encapsulation of the low-level Windows API using Object Pascal and the Visual Component Library (VCL),
so it is rarely necessary to build Windows applications using plain Pascal and calling Windows API functions directly. Nonetheless,
programmers who want to use some special techniques not supported by the VCL still have that option in Delphi. You would only
want to take this approach for very special cases, such as the development of new Delphi components based on unusual API calls,
and I don't want to cover the details. Instead, we'll look at a few elements of Delphi's interaction with the operating system and a
couple of techniques that Delphi programmers can benefit from.

Windows Handles

Among the data types introduced by Windows in Delphi, handles represent the most important group.
The name of this data type is THandle, and the type is defined in the Windows unit as:

type
 THandle = LongWord;

Handle data types are implemented as numbers, but they are not used as such. In Windows, a handle is a reference to an internal
data structure of the system. For example, when you work with a window (or a Delphi form), the system gives you a handle to the
window. The system informs you that the window you are working with is window number 142, for example. From that point on,
your application can ask the system to operate on window number 142—moving it, resizing it, reducing it to an icon, and so on. Many
Windows API functions, in fact, have a handle as the first parameter. This doesn't apply only to functions operating on windows;
other Windows API functions have as their first parameter a GDI handle, a menu handle, an instance handle, a bitmap handle, or one
of the many other handle types.

In other words, a handle is an internal code you can use to refer to a specific element handled by the system, including a window, a
bitmap, an icon, a memory block, a cursor, a font, a menu, and so on. In Delphi, you seldom need to use handles directly, since they
are hidden inside forms, bitmaps, and other Delphi objects. They become useful when you want to call a Windows API function that
is not supported by Delphi.

To complete this description, here is a simple example demonstrating Windows handles. The WHandle program has a simple form,
containing just a button. In the code, I respond to the OnCreate event of the form and the OnClick event of the button, as indicated
by the following textual definition of the main form:

object FormWHandle: TFormWHandle
 Caption = 'Window Handle'
 OnCreate = FormCreate

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

 object BtnCallAPI: TButton
 Caption = 'Call API'
 OnClick = BtnCallAPIClick
 end
end

As soon as the form is created, the program retrieves the handle of the window corresponding to the form, by accessing the Handle
property of the form itself. We call IntToStr to convert the numeric value of the handle into a string, and we append that to the
caption of the form, as you can see in Figure 9.1:

procedure TFormWHandle.FormCreate(Sender: TObject);
begin
 Caption := Caption + ' ' + IntToStr (Handle);
end;

Because FormCreate is a method of the form's class, it can access other properties and methods of the same class directly.
Therefore, in this procedure we can simply refer to the Caption of the form and its Handle property directly.

Figure 9.1: The WHandle example shows the handle of the form window. Every time you run this program you'll get a
different value.

If you run this program several times you'll generally get different values for the handle. This value, in fact, is determined by
Windows and is sent back to the application. (Handles are never determined by the program, and they have no predefined values;
they are determined by the system, which generates new values each time you run a program.)

When the user presses the button, the program simply calls a Windows API function, SetWindowText, which changes the text or
caption of the window passed as the first parameter. To be more precise, the first parameter of this API function is the handle of the
window we want to modify:

procedure TFormWHandle.BtnCallAPIClick(Sender: TObject);
begin
 SetWindowText (Handle, 'Hi');
end;

This code has the same effect as the previous event handler, which changed the text of the window by giving a new value to the
Caption property of the form. In this case calling an API function makes no sense, because there is a simpler Delphi technique. Some
API functions, however, have no correspondence in Delphi, as we'll see in more advanced examples later in the book.

External Declarations

Another important element for Windows programming is represented by external declarations. Originally used to link the Pascal code
to external functions that were written in assembly language, the external declaration is used in Windows programming to call a
function from a DLL (a dynamic link library). In Delphi, there are a number of such declarations in the Windows unit:

Essential Pascal

// forward declaration
function LineTo (DC: HDC; X, Y: Integer): BOOL; stdcall;

// external declaration (instead of actual code)
function LineTo; external 'gdi32.dll' name 'LineTo';

This declaration means that the code of the function LineTo is stored in the GDI32.DLL dynamic library (one of the most important
Windows system libraries) with the same name we are using in our code. Inside an external declaration, in fact, we can specify that
our function refer to a function of a DLL that originally had a different name.

You seldom need to write declarations like the one just illustrated, since they are already listed in the Windows unit and many other
Delphi system units. The only reason you might need to write this external declaration code is to call functions from a custom DLL, or
to call undocumented Windows functions.

Note: In the 16-bit version of Delphi, the external declaration used the name of the library without the extension, and was
followed by the name directive (as in the code above) or by an alternative index directive, followed by the ordinal number of the
function inside the DLL. The change reflects a system change in the way libraries are accessed: Although Win32 still allows access
to DLL functions by number, Microsoft has stated this won't be supported in the future. Notice also that the Windows unit replaces
the WinProcs and WinTypes units of the 16-bit version of Delphi.

A Windows Callback Function

We've seen in Chapter 6 that Objet Pascal supports procedural types. A common use of procedural types is to provide callback
functions to a Windows API function.

First of all, what is a callback function? The idea is that some API function performs a given action over a number of internal
elements of the system, such as all of the windows of a certain kind. Such a function, also called an enumerated function, requires as
a parameter the action to be performed on each of the elements, which is passed as a function or procedure compatible with a given
procedural type. Windows uses callback functions in other circumstances, but we'll limit our study to this simple case.

Now consider the EnumWindows API function, which has the following prototype (copied from the Win32 Help file):

BOOL EnumWindows(
 WNDENUMPROC lpEnumFunc, // address of callback function
 LPARAM lParam // application-defined value
);

Of course, this is the C language definition. We can look inside the Windows unit to retrieve the corresponding Pascal language
definition:

function EnumWindows (
 lpEnumFunc: TFNWndEnumProc;
 lParam: LPARAM): BOOL; stdcall;

Consulting the help file, we find that the function passed as a parameter should be of the following type (again in C):

BOOL CALLBACK EnumWindowsProc (
 HWND hwnd, // handle of parent window
 LPARAM lParam // application-defined value
);

Essential Pascal

This corresponds to the following Delphi procedural type definition:

type
 EnumWindowsProc = function (Hwnd: THandle;
 Param: Pointer): Boolean; stdcall;

The first parameter is the handle of each main window in turn, while the second is the value we've passed when calling the
EnumWindows function. Actually in Pascal the TFNWndEnumProc type is not properly defined; it is simply a pointer. This means we
need to provide a function with the proper parameters and then use it as a pointer, taking the address of the function instead of
calling it. Unfortunately, this also means that the compiler will provide no help in case of an error in the type of one of the
parameters.

Windows requires programmers to follow the stdcall calling convention every time we call a Windows API function or pass a
callback function to the system. Delphi, by default, uses a different and more efficient calling convention, indicated by the register
keyword.

Here is the definition of a proper compatible function, which reads the title of the window into a string, then adds it to a ListBox of a
given form:

function GetTitle (Hwnd: THandle; Param: Pointer): Boolean; stdcall;
var
 Text: string;
begin
 SetLength (Text, 100);
 GetWindowText (Hwnd, PChar (Text), 100);
 FormCallBack.ListBox1.Items.Add (
 IntToStr (Hwnd) + ': ' + Text);
 Result := True;
end;

The form has a ListBox covering almost its whole area, along with a small panel on the top hosting a button. When the button is
pressed, the EnumWindows API function is called, and the GetTitle function is passed as its parameter:

procedure TFormCallback.BtnTitlesClick(Sender: TObject);
var
 EWProc: EnumWindowsProc;
begin
 ListBox1.Items.Clear;
 EWProc := GetTitle;
 EnumWindows (@EWProc, 0);
end;

I could have called the function without storing the value in a temporary procedural type variable first, but I wanted to make clear
what is going on in this example. The effect of this program is actually quite interesting, as you can see in Figure 9.2. The Callback
example shows a list of all the existing main windows running in the system. Most of them are hidden windows you usually never see
(and many actually have no caption).

Figure 9.2: The output of the Callback example, listing the current main windows (visible and hidden).

Essential Pascal

A Minimal Windows Program

To complete the coverage of Windows programming and the Pascal language, I want to show you a very simple but complete
application built without using the VCL. The program simply takes the command-line parameter (stored by the system in the cmdLine
global variable) and then extracts information from it with the ParamCount and ParamStr Pascal functions. The first of these functions
returns the number of parameters; the second returns the parameter in a given position.

Although users seldom specify command-line parameters in a graphical user interface environment, the Windows command-line
parameters are important to the system. For example, once you have defined an association between a file extension and an
application, you can simply run a program by selecting an associated file. In practice, when you double-click on a file, Windows starts
the associated program and passes the selected file as a command-line parameter.

Here is the complete source code of the project (a DPR file, not a PAS file):

program Strparam;

uses
 Windows;

begin
 // show the full string
 MessageBox (0, cmdLine,
 'StrParam Command Line', MB_OK);

 // show the first parameter
 if ParamCount > 0 then
 MessageBox (0, PChar (ParamStr (1)),

Essential Pascal

 '1st StrParam Parameter', MB_OK)
 else
 MessageBox (0, PChar ('No parameters'),
 '1st StrParam Parameter', MB_OK);
end.

The output code uses the MessageBox API function, simply to avoid getting the entire VCL into the project. A pure Windows program
as the one above, in fact, has the advantage of a very small memory footprint: The executable file of the program is about 16
Kbytes.

To provide a command-line parameter to this program, you can use Delphi's Run > Parameters menu command. Another technique
is to open the Windows Explorer, locate the directory that contains the executable file of the program, and drag the file you want to
run onto the executable file. The Windows Explorer will start the program using the name of the dropped file as a command-line
parameter. Figure 9.3 shows both the Explorer and the corresponding output.

Figure 9.3: You can provide a command-line parameter to the StrParam example by dropping a file over the
executable file in the Windows Explorer.

Conclusion

In this chapter we've seen a low-level introduction to Windows programming, discussing handles and a very simple Windows
program. For normal Windows programming tasks, you'll generally use the visual development support provided by Delphi and based
on the VCL. But this is beyond the scope of this book, which is the Pascal language.

Next chapter covers variants, a very strange addition to Pascal type system, introduced to provide full OLE support.

Next Chapter: Variants

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 10
Variants

To provide full OLE support, the 32-bit version of Delphi includes the Variant data type. Here I want to discuss this data type from a
general perspective. The Variant type, in fact, has a pervasive effect on the whole language, and the Delphi components library also
uses them in ways not related to OLE programming.

Variants Have No Type

In general, you can use variants to store any data type and perform numerous operations and type conversions. Notice that this goes
against the general approach of the Pascal language and against good programming practices. A variant is type-checked and
computed at run time. The compiler won't warn you of possible errors in the code, which can be caught only with extensive testing.
On the whole, you can consider the code portions that use variants to be interpreted code, because, as with interpreted code, many
operations cannot be resolved until run time. This affects in particular the speed of the code.

Now that I've warned you against the use of the Variant type, it is time to look at what it can do. Basically, once you've declared a
variant variable such as the following:

var
 V: Variant;

you can assign to it values of several different types:

V := 10;
V := 'Hello, World';
V := 45.55;

Once you have the variant value, you can copy it to any compatible-or incompatible-data type. If you assign a value to an
incompatible data type, Delphi performs a conversion, if it can. Otherwise it issues a run-time error. In fact, a variant stores type
information along with the data, allowing a number of run-time operations; these operations can be handy but are both slow and
unsafe.

Consider the following example (called VariTest), which is an extension of the code above. I placed three edit boxes on a new form,
added a couple of buttons, and then wrote the following code for the OnClick event of the first button:

procedure TForm1.Button1Click(Sender: TObject);
var

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

 V: Variant;
begin
 V := 10;
 Edit1.Text := V;
 V := 'Hello, World';
 Edit2.Text := V;
 V := 45.55;
 Edit3.Text := V;
end;

Funny, isn't it? Besides assigning a variant holding a string to the Text property of an edit component, you can assign to the Text a
variant holding an integer or a floating-point number. As you can see in Figure 10.1, everything works.

Figure 10.1: The output of the VariTest example after the Assign button has been pressed.

Even worse, you can use the variants to compute values, as you can see in the code related to the second button:

procedure TForm1.Button2Click(Sender: TObject);
var
 V: Variant;
 N: Integer;
begin
 V := Edit1.Text;
 N := Integer(V) * 2;
 V := N;
 Edit1.Text := V;
end;

Writing this kind of code is risky, to say the least. If the first edit box contains a number, everything works. If not, an exception is
raised. Again, you can write similar code, but without a compelling reason to do so, you shouldn't use the Variant type; stick with the
traditional Pascal data types and type-checking approach. In Delphi and in the VCL (Visual Component Library), variants are basically
used for OLE support and for accessing database fields.

Variants in Depth

Delphi includes a variant record type, TVarData, which has the same memory layout as the Variant type. You can use this to access
the actual type of a variant. The TVarData structure includes the type of the Variant, indicated as VType, some reserved fields, and
the actual value.

Essential Pascal

The possible values of the VType field correspond to the data types you can use in OLE automation, which are often called OLE types
or variant types. Here is a complete alphabetical list of the available variant types:

● varArray
● varBoolean
● varByRef
● varCurrency
● varDate
● varDispatch
● varDouble
● varEmpty
● varError
● varInteger
● varNull
● varOleStr
● varSingle
● varSmallint
● varString
● varTypeMask
● varUnknown
● varVariant

You can find descriptions of these types in the Values in variants topic in the Delphi Help system.

There are also many functions for operating on variants that you can use to make specific type conversions or to ask for information
about the type of a variant (see, for example, the VarType function). Most of these type conversion and assignment functions are
actually called automatically when you write expressions using variants. Other variant support routines (look for the topic Variant
support routines in the Help file) actually operate on variant arrays.

Variants Are Slow!

Code that uses the Variant type is slow, not only when you convert data types, but also when you add two variant values holding an
integer each. They are almost as slow as the interpreted code of Visual Basic! To compare the speed of an algorithm based on
variants with that of the same code based on integers, you can look at the VSpeed example.

This program runs a loop, timing its speed and showing the status in a progress bar. Here is the first of the two very similar loops,
based on integers and variants:

procedure TForm1.Button1Click(Sender: TObject);
var
 time1, time2: TDateTime;
 n1, n2: Variant;
begin
 time1 := Now;
 n1 := 0;
 n2 := 0;
 ProgressBar1.Position := 0;
 while n1 < 5000000 do
 begin
 n2 := n2 + n1;
 Inc (n1);
 if (n1 mod 50000) = 0 then
 begin
 ProgressBar1.Position := n1 div 50000;
 Application.ProcessMessages;
 end;

Essential Pascal

 end;
 // we must use the result
 Total := n2;
 time2 := Now;
 Label1.Caption := FormatDateTime (
 'n:ss', Time2-Time1) + ' seconds';
end;

The timing code is worth looking at, because it's something you can easily adapt to any kind of performance test. As you can see, the
program uses the Now function to get the current time and the FormatDateTime function to output the time difference, asking only
for the minutes ("n") and the seconds ("ss") in the format string. As an alternative, you can use the Windows API's GetTickCount
function, which returns a very precise indication of the milliseconds elapsed since the operating system was started.

In this example the speed difference is actually so great that you'll notice it even without a precise timing. Anyway, you can see the
results for my own computer in Figure 10.2. The actual values depend on the computer you use to run this program, but the
proportion won't change much.

Figure 10.2: The different speeds of the same algorithm, based on integers and variants (the actual timing varies
depending on the computer), as shown by the VSpeed example.

Conclusion

Variants are so different from traditional Pascal data types that I've decided to cover them in this short separate chapter. Although
their role is in OLE programming, they can be handy to write quick and dirty programs without having even to think about data types.
As we have seen, this affects performance by far.

Now that we have covered most of the language features, let me discuss the overall structure of a program and the modularization
offered by units.

Next Chapter: Program and Units

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Chapter 11
Program and Units

Delphi applications make intensive use of units, or program modules. Units, in fact, were the basis of the modularity in the language
before classes were introduced. In a Delphi application, every form has a corresponding unit behind it. When you add a new form to
a project (with the corresponding toolbar button or the File > New Form menu command), Delphi actually adds a new unit, which
defines the class for the new form.

Units

Although every form is defined in a unit, the reverse is not true. Units do not need to define forms; they can simply define and make
available a collection of routines. By selecting the File > New menu command and then the Unit icon in the New page of the Object
Repository, you add a new blank unit to the current project. This blank unit contains the following code, delimiting the sections a unit
is divided into:

unit Unit1;

interface

implementation

end.

The concept of a unit is simple. A unit has a unique name corresponding to its filename, an interface section declaring what is visible
to other units, and an implementation section with the real code and other hidden declarations. Finally, the unit can have an optional
initialization section with some startup code, to be executed when the program is loaded into memory; it can also have an optional
finalization section, to be executed on program termination.

The general structure of a unit, with all its possible sections, is the following:

unit unitName;

interface

// other units we need to refer to
uses
 A, B, C;

// exported type definition
type

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

 newType = TypeDefinition;

// exported constants
const
 Zero = 0;

// global variables
var
 Total: Integer;

// list of exported functions and procedures
procedure MyProc;

implementation

uses
 D, E;

// hidden global variable
var
 PartialTotal: Integer;

// all the exported functions must be coded
procedure MyProc;
begin
 // ... code of procedure MyProc
end;

initialization
 // optional initialization part

finalization
 // optional clean-up code

end.

The uses clause at the beginning of the interface section indicates which other units we need to access in the interface portion of the
unit. This includes the units that define the data types we refer to in the definition of other data types, such as the components used
within a form we are defining.

The second uses clause, at the beginning of the implementation section, indicates more units we need to access only in the
implementation code. When you need to refer to other units from the code of the routines and methods, you should add elements in
this second uses clause instead of the first one. All the units you refer to must be present in the project directory or in a directory of
the search path (you can set the search path for a project in the Directories/Conditionals page of the project’s Options dialog box).

C++ programmers should be aware that the uses statement does not correspond to an include directive. The effect of a uses
statement is to import just the precompiled interface portion of the units listed. The implementation portion of the unit is
considered only when that unit is compiled. The units you refer to can be both in source code format (PAS) or compiled format
(DCU), but the compilation must have taken place with the same version of the Delphi.

The interface of a unit can declare a number of different elements, including procedures, functions, global variables, and data types.
In Delphi applications, the data types are probably used the most often. Delphi automatically places a new class data type in a unit
each time you create a form. However, containing form definitions is certainly not the only use for units in Delphi. You can continue
to have traditional units, with functions and procedures, and you can have units with classes that do not refer to forms or other visual
elements.

Units and Scope

Essential Pascal

In Pascal, units are the key to encapsulation and visibility, and they are probably even more important
than the private and public keywords of a class. (In fact, as we’ll see in the next chapter, the effect of the
private keyword is related to the scope of the unit containing the class.) The scope of an identifier (such
as a variable, procedure, function, or a data type) is the portion of the code in which the identifier is
accessible. The basic rule is that an identifier is meaningful only within its scope—that is, only within the
block in which it is declared. You cannot use an identifier outside its scope. Here are some examples.

● Local variables: If you declare a variable within the block defining a routine or a method, you cannot use this variable
outside that procedure. The scope of the identifier spans the whole procedure, including nested routines (unless an identifier
with the same name in the nested routine hides the outer definition). The memory for this variable is allocated on the stack
when the program executes the routine defining it. As soon as the routine terminates, the memory on the stack is
automatically released.

● Global hidden variables: If you declare an identifier in the implementation portion of a unit, you cannot use it outside the
unit, but you can use it in any block and procedure defined within the unit. The memory for this variable is allocated as soon
as the program starts and exists until it terminates. You can use the initialization section of the unit to provide a specific
initial value.

● Global variables: If you declare an identifier in the interface portion of the unit, its scope extends to any other unit that uses
the one declaring it. This variable uses memory and has the same lifetime as the previous group; the only difference is in its
visibility.

Any declarations in the interface portion of a unit are accessible from any part of the program that includes the unit in its uses clause.
Variables of form classes are declared in the same way, so that you can refer to a form (and its public fields, methods, properties,
and components) from the code of any other form. Of course, it’s poor programming practice to declare everything as global. Besides
the obvious memory consumption problems, using global variables makes a program less easy to maintain and update. In short, you
should use the smallest possible number of global variables.

Units as Namespaces

The uses statement is the standard technique to access the scope of another unit. At that point you can access the definitions of the
unit. But it might happen that two units you refer to declare the same identifier; that is, you might have two classes or two routines
with the same name.

In this case you can simply use the unit name to prefix the name of the type or routine defined in the unit. For example, you can
refer to the ComputeTotal procedure defined in the given Totals unit as Totals.ComputeTotal. This should not be required very often,
as you are strongly advised against using the same name for two different things in a program.

However, if you look into the VCL library and the Windows files, you’ll find that some Delphi functions have the same name as (but
generally different parameters than) some Windows API functions available in Delphi itself. An example is the simple Beep procedure.

If you create a new Delphi program, add a button, and write the following code:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Beep;
end;

then as soon as you press the button you’ll hear a short sound. Now, move to the uses statement of the unit and change the code
from this:

uses
 Windows, Messages, SysUtils, Classes, ...

Essential Pascal

to this very similar version (simply moving the SysUtils unit before the Windows unit):

uses
 SysUtils, Windows, Messages, Classes, ...

If you now try to recompile this code, you’ll get a compiler error: "Not enough actual parameters." The problem is that the Windows
unit defines another Beep function with two parameters. Stated more generally, what happens in the definitions of the first units you
include in the uses statement might be hidden by corresponding definitions of later units. The safe solution is actually quite simple:

procedure TForm1.Button1Click(Sender: TObject);
begin
 SysUtils.Beep;
end;

This code will compile regardless of the order of the units in the uses statements. There are few other name clashes in Delphi, simply
because Delphi code is generally hosted by methods of classes. Having two methods with the same name in two different classes
doesn’t create any problem. The problems arise only with global routines.

Units and Programs

A Delphi application consists of two kinds of source code files: one or more units and one program file. The units can be considered
secondary files, which are referred to by the main part of the application, the program. In theory, this is true. In practice, the
program file is usually an automatically generated file with a limited role. It simply needs to start up the program, running the main
form. The code of the program file, or Delphi project file (DPR), can be edited either manually or by using the Project Manager and
some of the Project Options related to the application object and the forms.

The structure of the program file is usually much simpler than the structure of the units. Here is the source code of a sample program
file:

program Project1;

uses
 Forms,
 Unit1 in ‘Unit1.PAS’ {Form1DateForm};

begin
 Application.Initialize;
 Application.CreateForm (TForm1, Form1);
 Application.Run;
end.

As you can see, there is simply a uses section and the main code of the application, enclosed by the begin and end keywords. The
program’s uses statement is particularly important, because it is used to manage the compilation and linking of the application.

Conclusion

At least for the moment, this chapter on the structure of a Pascal application written in Delphi or with one of the latest versions of
Turbo Pascal, is the last of the book. Feel free to email me your comment and requests.

If after this introduction on the Pascal language you want to delve into the object-oriented elements of Object Pascal in Delphi, you
can refer to my published book Mastering Delphi 5 (Sybex, 1999). For more information on this and more advanced books of mine
(and of other authors as well) you can refer to my web site, www.marcocantu.com. The same site hosts updated versions of this

http://www.marcocantu.com/

Essential Pascal

book, and its examples.

Back to the Cover Page

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Essential Pascal

● www.marcocantu.com
● Marco's Delphi Books
● Essential Pascal - Web Site
● Essential Pascal - Local Index

Marco Cantù's
Essential Pascal

Appendix A
Glossary

This is a short glossary of technical terms used throughout the book. They might also be defined elsewhere in the text, but I've
decided to collect them here anyway, to make it easier to find them.

Heap (Memory)

The term Heap indicates a portion of the memory available to a program, also called dynamic memory area. The heap is the area in
which the allocation and deallocation of memory happens in random order. This means that if you allocate three blocks of memory in
sequence, they can be destroyed later on in any order. The heap manager takes care of all the details for you, so you simply ask for
new memory with GetMem or by calling a constructor to create an object, and Delphi will return you a new memory block (optionally
reusing memory blocks already discarded).

The heap is one of the three memory areas available to an application. The other two are the global area (this is where global
variables live) and the stack. Contrary to the heap, global variables are allocated when the program starts and remain there until it
terminates. For the stack see the specific entry in this glossary.

Delphi uses the heap for allocating the memory of each and every object, the text of the strings, for dynamic arrays, and for specific
requests of dynamic memory (GetMem).

Windows allows an application to have up to 2 GigaBytes of address space, most of which can be used by the heap.

Stack (Memory)

The term Stack indicates a portion of the memory available to a program, which is dynamic but is allocated and deallocated following
specific order. The stack allocation is LIFO, Last In First Out. This means that the last memory object you've allocated will be the first
to be deleted. Stack memory is typically used by routines (procedure, function, and method calls). When you call a routine, its
parameters and return type are placed on the stack (unless you optimize the call, as Delphi does by default). Also the variables you
declare within a routine (using a var block before the begin statement) are stored on the stack, so that when the routine terminates
they'll be automatically removed (before getting back to the calling routine, in LIFO order).

The stack is one of the three memory areas available to an application. The other two are called global memory and heap. See the
heap entry in this glossary..

Delphi uses the stack for routine parameters and return values (unless you use the default register calling convention), for local
routine variables, for Windows API function calls, and so on.

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

Windows applications can reserve a large amount of memory for the stack. In Delphi you set this in the linker page of the project
options, however, the default generally does it. If you receive a stack full error message this is probably because you have a function
recursively calling itself forever, not because the stack space is too limited.

New requested terms

● Dynamic
● Static
● Virtual
● memory leak
● painting
● literal
● array
● API
● class reference
● class method
● parent
● owner
● self

© Copyright Marco Cantù, Wintech Italia Srl 1995-2000

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 1

MMARCOARCO C CANTÙANTÙ''SS
EESSENTIALSSENTIAL D DELPHIELPHI

A Friendly Introductory
Guide to Borland Delphi

http://www.marcocantu.com/edelphi

Copyright 1996-2002 Marco Cantù
Revision 1.03 - April 13, 2002

http://www.marcocantu.com/edelphi

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 2

INTRODUCTION

fter the successful publishing of the e-book Essential Pascal (available on my web site at the
address http://www.marcocantu.com/epascal), I decided to follow up with an
introduction to Delphi. Again most of the material you'll find here was in the first editions of my

“printed” book Mastering Delphi, the best selling Delphi book I have written. Due to space constraints and
because many Delphi programmers look for more advanced information, in the latest edition this material was
completely omitted. To overcome the absence of this information, I have started putting together this second on-
line book, titled Essential Delphi.

A

Copyright
The text and the source code of this book are copyrighted by Marco Cantù. Of course, you can use the

programs and adapt them to your own needs with no limitation, only you are not allowed to use them in books,
training material, and other copyrighted formats without my permission (or in case you are using limited portions,
referring to the original). Feel free to link your site with this one, but please do not duplicate the material (on
your web site, on a CD) as it is subject to frequent changes and updates. Passing a copy to a friend, occasionally,
is certainly something you can do if you do not modify it in any way.

You can print out this book both for personal use and for non-profit training (user-groups, schools, and
universities are free to distribute a printed versions as long as they don’t charge more than the printing costs and
make it clear that this material is freely available, referring readers to the Essential Delphi web site
(http://www.marcocantu.com/edelphi) for updates.

Book Structure
The book structure is still under development, as the book evolves. This is the current structure:

Chapter 1: A Form is a Window:
Chapter 2: Highlights of the Delphi Environment:
Chapter 3: The Object Repository and the Delphi Wizards:
Chapter 4: A Tour of the Basic Components
Chapter 5: Creating and Handling Menus [some figures still missing]
Chapter 6: Multimedia Fun [all figures missing]
Planned chapters:

Chapter 7: Exploring Forms
Chapter 8: Delphi Database 101
Chapter 9: Reporting Basics

http://www.marcocantu.com/epascal
http://www.marcocantu.com/edelphi

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 3

Source Code
The source code of all the examples mentioned in the book is available on the book web site. The code

has the same Copyright as the book: Feel free to use it at will but don't publish it on other documents or site.
Links back to this site are welcome.

Feedback
Please let me know of any errors you find (indicating revision number and page number), but also of

topics not clear enough for a beginner. I'll be able to devote time to the project depending also on the feedback I
receive. Let me know also which other topics (not covered in Mastering Delphi) you'd like to see here.

For reporting errors please use the books section of my newsgroup, as described on
www.marcocantu.com or use my mailbox (which gets far too jammed) at marco@marcocantu.com.

Acknowledgments
I have first started thinking about on-line publishing after Bruce Eckel's experience with Thinking in

Java. I'm a friend of Bruce and think he really did a great job with that book and few others. After the
overwhelming response of the "Essential Pascal" book, I started this new one and plan releasing the two as a
printed book introducing Delphi (the only problem being to find a publisher).

About the Author
Marco Cantù lives in Piacenza, Italy. After writing C++ and Object Windows Library books and articles,

he delved into Delphi programming. He is the author of the Mastering Delphi book series, published by Sybex, as
well as the advanced Delphi Developers Handbook. He writes articles for many magazines, including The Delphi
Magazine, speaks at Delphi and Borland conferences around the world, and teaches Delphi classes at basic and
advanced levels. More recently, he's specializing in XML technologies, still making most of his programming in
Delphi. Of course, you can learn more details about Marco and his work by visiting his web site,
www.marcocantu.com.

Donations
I'll probably set up an account on one of those donation/contribution systems, to let people who have

enjoyed the book and learned from it, particularly if programming is their job (and not a hobby) and they do it for
profit, contribute to its development. No extra material is offered to those donating to the book fund, only
because I want to let anyone (particularly students and people leaving in poor countries) benefit from the
availability of this material. Information will be available on the book web site.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 4

Table of Contents

Marco Cantù's
Essential Delphi...1
Introduction...2

Copyright..2
Book Structure..2
Source Code..3
Feedback...3
Acknowledgments...3
About the Author..3
Donations..3

Chapter 1: A Form Is a Window ..8
Creating Your First Form..8

Adding a Title...9
Saving the Form..10

Using Components...10
Changing Properties...11
Responding to Events..13
Compiling and Running a Program...16
Changing Properties at Run-Time...18
Adding Code to the Program...18
A Two-Way Tool...20

Looking at the Source Code...20
The Textual Description of the Form...23
The Project File..25
Using Component Templates...26

What’s Next...26
Chapter 2: Highlights of the Delphi Environment..27

Different Versions of Delphi...27
Asking for Help..27
Delphi Menus and Commands...28

The File Menu...29
The Edit Menu..30
The Search Menu..32
The View Menu..34
The Project Menu...35
The Run Menu..36
The Component Menu..37
The Database Menu..37
The Tools Menu..37
The Help Menu...38
The Delphi Toolbar..39
The Local Menus..39

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 5

Working with the Form Designer..40
The Component Palette...42
The Object Inspector..43
The Alignment Palette..44

Writing Code in the Editor..44
Using Editor Bookmarks..44
Code Insight..45
Code Completion..45
Code Templates..46
Code Parameter...46

Managing Projects...47
The Project Manager..47
Setting Project Options...48
Compiling a Project..48

Exploring a Compiled Program...49
The Integrated Debugger..49
The Object Browser..50

Additional Delphi Tools..50
The Files Produced by the System...50
What’s Next...51

Chapter three: The Object Repository and the Delphi Wizards...53
The Object Repository...53

The New Page...54
The Forms Page..56
The Dialogs Page..57
The Data Modules Page..57
The Projects Page...57

Delphi Wizards..58
The Database Form Wizard..58
The Application Wizard...61
The Dialog Wizard...63

Customizing the Object Repository...63
Adding New Application Templates..63
The Empty Project Template..65
Adding New Form Templates to the Object Repository..65
The Object Repository Options..66
Installing new DLL Wizards..67

What’s Next...67
Chapter 4: A Tour of the Basic Components...69

Windows Own Components..69
Clicking a Button...70

The Buttons Example...70
Clicking the Mouse Button..74
Adding Colored Text to a Form...74

The LabelCo Example..75
Dragging from One Component to Another..78

The Code for the Dragging Example..80

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 6

Accepting Input from the User..81
Handling the Input Focus..81
A Generic OnEnter Event Handler...83
Entering Numbers...84

Sophisticated Input Schemes...87
Creating a Simple Editor..88

The Font Dialog Box..89
Creating a Rich Editor..90

Making Choices...91
Grouping Radio Buttons...92
The Phrases1 Example..93

A List with Many Choices...95
The Form of the Phrases2 Example..96
Working with the List Boxes..98
Removing a Selected String from the Other List Box..98

Allowing Multiple Selections..102
The Third Version of the Phrases Example..102
Using a CheckListBox Component..105

Many Lists, Little Space..106
Choosing a Value in a Range...108

The Scroll Color Example..108
What’s Next...110

Chapter 5: Creating and Handling Menus...111
The Structure of the Main Menu...111

Different Roles of Menu Items...112
Building a Menu with the Menu Designer...112
The Standard Structure of a Menu..113
Shortcut Keys and Hotkeys..113
Using the Predefined Menu Templates..114

Responding to Menu Commands...114
The Code Generated by the Menu Designer..115
The Code of the MenuOne Example..117

Modifying the Menu at Run-Time...118
Changing Menu Items at Run-Time...118
Disabling Menu Items and Hiding Pull-Down Menus...119
Using Radio Menu Items..120
Creating Menu Items Dynamically...122
Creating Menus and Menu Items Dynamically..125
Short and Long Menus..126

Graphical Menu Items..127
Customizing the Menu Check Mark...127
Bitmap Menu Items..129
Owner-Draw Menu Items...132

Customizing the System Menu..135
Building a Complete Menu..137

The File Menu...138
Short-Circuit Evaluation...139

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 7

The Paragraph Menu...142
The Font Menu...143
The Options Menu..145

Pop-Up Menus...146
An Automatic Local Menu...147
Modifying a Pop-Up Menu When It Is Activated..147
Handling Pop-Up Menus Manually..148

What’s Next...150
Chapter 6: Multimedia Fun...151

Windows Default Sounds..151
Every Box Has a Beep..152
From Beeps to Music..154

The Media Player Component...155
Playing Sound Files..156
Running Videos..157
A Video in a Form..157

Working with a CD Drive..159
What's Next..161

Epilogue..162

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 8

CHAPTER 1: A FORM IS A WINDOW
indows applications are usually based on windows. So, how are we going to create our first
window? We’ll do it by using a form. As the first part of the title suggests, a form really is a
window in disguise. There is no real difference between the two concepts, at least from a

general point of view.
W

If you look closely, a form is always a window, but the reverse isn’t always true. Some Delphi
components are windows, too. A push button is a window. A list box is a window. To avoid
confusion, I’ll use the term form to indicate the main window of an application or a similar window
and the term window in the broader sense.

Creating Your First Form
Even though you have probably already created at least some simple applications in Delphi, I’m going to

show you the process again, to highlight some interesting points. Creating a form is one of the easiest operations
in the system: you only need to open Delphi, and it will automatically create a new, empty form for you, as you
can see in the figure below. That’s all there is to it.

If you already have another project open, choose File | New | Application to close the old project (you
may be prompted to save some of the files) and open a new blank project. Believe it or not, you already have a
working application. You can run it, using the Run button on the toolbar or the Run | Run menu command, and it
will result in a standard Windows program. Of course, this application won’t be very useful, since it has a single
empty window with no capabilities, but the default behavior of any Windows window.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 9

Adding a Title
Before we run the application, let’s make a quick change. The title of the form is Form1. For a user, the

title of the main window stands for the name of the application. Let’s change Form1 to something more
meaningful. When you first open Delphi, the Object Inspector window should appear on the left side of the form
(if it doesn’t, open it by choosing View | Object Inspector or pressing the F11 key):

The Object Inspector shows the properties of the selected component. The window contains a tab control
with two pages. The first page is labeled Properties. The other page is labeled Events and shows a list of events
that can take place in the form or in the selected component.

The properties are listed in alphabetical order, so it’s quite easy to find the ones you want to change (it is
also possible to group them by category, as we'll see in the next chapter, but this feature is seldom used by Delphi
developers). We can change the title of the form simply by changing the Caption property, which is selected by
default. While you type a new caption, you can see the title of the form change. If you type Hello, the title of the
form changes immediately. As an alternative, you can modify the internal name of the form by changing its Name
property. If you have not entered a new caption, the new value of the Name property will be used for the
Caption property, too.

Only a few of the properties of a component change while you type the new value. Most
are applied when you finish the editing operation and press the Enter key (or move the
input focus to a new property).

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 10

Although we haven’t done much work, we have built a full-blown application, with a system menu and
the default Minimize, Maximize, and Close buttons. You can resize the form by dragging its borders, move it by
dragging its caption, maximize it to full-screen size, or minimize it. It works, but again, it’s not very useful. If you
look at the icon in the Taskbar, you’ll see that something isn’t right. Instead of showing the caption of the form as
the icon caption, it shows the name of the project, something like Project1. We can fix this by giving a name to
the project, which we’ll do by saving it to disk with a new name.

Saving the Form
Select the Save Project or Save Project As command from the File menu, and Delphi will ask you to give

a name to the source code file associated with the form, and then to name the project file. Since the name of the
project should match the caption of the form (Hello), I’ve named the form source file HELLOF.PAS, which
stands for Hello Form. I’ve given the project file the name HELLO.DPR.

Unfortunately, we cannot use the same name for the project and the unit that defines the form; for each
application, these items must have unique names. You can add the letter F, add Form, call every form unit
MainForm, or choose any other naming convention you like. I tend to use a name similar to the project name, as
simply calling it Mainform means you’ll end up with a number of forms (in different projects) that all have the
same name.

The name you give to the project file is used by default at run-time as the title of the application,
displayed by Windows in the taskbar while the program is running. For this reason, if the name of the project
matches the caption of the main form, it will also correspond to the name on the taskbar. You can also change the
title of the application by using the Application page of the Project Options dialog box (choose Project | Options),
or by writing a line of code to change the Title property of the Application global object.

Using Components
Now it’s time to start placing something useful in our Hello form. Forms can be thought of as component

containers. Each form can host a number of components or controls. You can choose a component from the
Components Palette above the form, in the Delphi window. There are four simple ways to place a component on
a form. If you choose the Button component from the Standard page of the Components Palette, for example, you
can do any of the following:

• Click on the component, move the mouse cursor to the form, press the left mouse button to set
the upper-left corner of the button, and drag the mouse to set the button’s size.

• Select the component as above, and then simply click on the form to place a button of the default
height and width.

• Double-click on the icon in the Components Palette, and a component of that type will be added
in the center of the form.

• Shift-click on the component icon, and place several components of the same kind in the form
using one of the above procedures.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 11

Our form will have only one button, so we’ll center it in the form. You can do this by hand, with a little help from
Delphi. When you choose View | Alignment Palette, a toolbox with alignment icons appears:

This toolbox makes a number of operations easy. It includes buttons to align controls or to center them in the
form. Using the two buttons in the third column, you can place a component in the center of the form. Although
we’ve placed the button in the center, as soon as you run the program, you can resize the form so that the button
won’t be in the center anymore. So the button is only in the center of the form at startup. Later on, we’ll see how
to make the button remain in the center after the form is resized, by adding some code. For now, our first priority
is to change the button’s label.

Changing Properties
Like the form, the button has a Caption property that we can use to change its label (the text displayed inside
it). As a better alternative, we can change the name of the button. The name is a kind of internal property, used
only in the code of the program. However, as I mentioned earlier, if you change the name of a button before
changing its caption, the Caption property will have the same text as the Name property. Changing the Name
property is usually a good choice, and you should generally do this early in the development cycle, before you
write much code.

It is quite common to define a naming convention for each type of component
(usually the full name or a shorter version, such as “btn” for Button). If you use a
different prefix for each type of component (as in “ButtonHello” or “BtnHello”), the
combo box above the Object Inspector will list the components of the same kind in a
group, because they are alphabetically sorted. If you instead use a suffix, naming the
components “HelloButton” or “HelloBtn,” components of the same kind will be in
different positions on the list. In this second case, however, finding a particular
component using the keyboard might be faster. In fact, when the Object Inspector is
selected you can type a letter to jump to the first component whose name starts with
that letter.

Besides setting a proper name for a component, you often need to change its Caption property. There
are at least two reasons to have a caption different from the name. The first is that the name often follows a
naming convention (as described in the note above) that you won’t want to use in a caption. The second reason is
that captions should be descriptive, and therefore they often use two or more words, as in my Say hello button. If
you try to use this text as the Name property, however, Delphi will show an error message:

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 12

The name is an internal property, and it is used as the name of a variable referring to the component.
Therefore, for the Name property, you must follow the rules for naming an identifier in the Pascal language:

• An identifier is a sequence of letters, digits, or underscore characters of any length (although only the
first 63 characters are significant).

• The first character of an identifier cannot be a number; it must be a letter or the underscore character.

• No spaces are allowed in an identifier.

• Identifiers are not case-sensitive, but usually each word in an identifier begins with a capital letter, as
in BtnHello. But btnhello, btnHello, and BTNHello refer to this same identifier.

You can use the IsValidIdent system function to check whether a given string is a
valid identifier. The CheckId example calls this function while you type an identifier in its
edit box, and changes the text color to indicate whether the string is valid (green) or not
(red). The code of the example is quite simple, and you can look at it yourself on the disk.
Try running this program to check any doubts about allowed component names.

Here is a summary of the changes we have made to the properties of the button and form. At times, I’ll
show you the structure of the form of the examples as it appears once it has been converted in a readable format
(I’ll describe how to convert a form into text later in this chapter). I won’t show you the entire textual description
of a form (which is often quite long), but rather only its key elements. I won’t include the lines describing the
position of the components, their sizes, or some less important default values. Here is the code:

object Form1: TForm1
Caption = 'Hello'
OnClick = FormClick
object BtnHello: TButton

Caption = 'Say hello'
OnClick = BtnHelloClick

end

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 13

end
This description shows some attributes of the components and the events they respond to. We will see the

code for these events in the following sections. If you run this program now, you will see that the button works
properly. In fact, if you click on it, it will be pushed, and when you release the mouse button, the on-screen
button will be released. The only problem is that when you press the button, you might expect something to
happen; but nothing does, because we haven’t assigned any action to the mouse-click yet.

Responding to Events
When you press the mouse button on a form or a component, Windows informs your application of the

event by sending it a message. Delphi responds by receiving an event notification and calling the appropriate
event-handler method. As a programmer, you can provide several of these methods, both for the form itself and
for the components you have placed in it. Delphi defines a number of events for each kind of component. The list
of events for a form is different from the list for a button, as you can easily see by clicking on these two
components while the Events page is selected in the Object Inspector. Some events are common to both
components.

There are several techniques you can use to define a handler for the OnClick event of the button:
• Select the button, either in the form or by using the Object Inspector’s combo box (called the Object

Selector), select the Events page, and double-click in the white area on the right side of the OnClick
event. A new method name will appear, BtnHelloClick.

• Select the button, select the Events page, and enter the name of a new method in the white area on the
right side of the OnClick event. Then press the Enter key to accept it.

• Double-click on the button, and Delphi will perform the default action for this component, which is to
add a handler for the OnClick event. Other components have completely different default actions.

With any of these approaches, Delphi creates a procedure named BtnHelloClick (or the name you’ve
provided) in the code of the form and opens the source code file in that position:

The default action for a button is to add a procedure to respond to the click event. Even if you are not sure of the
effect of the default action of a component, you can still double-click on it. If you end up adding a new procedure

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 14

you don’t need, just leave it empty. Empty method bodies generated by Delphi will be removed as soon as you
save the file. In other words, if you don’t put any code in them, they simply go away.

When you want to remove an event-response method you have written from the
source code of a Delphi application, you could delete all of the references to it.
However, a better way is to delete all of the code from the corresponding procedure,
leaving only the declaration and the begin and end keywords. The text should be
the same as what Delphi automatically generated when you first decided to handle
the event. When you save or compile a project, Delphi removes any empty methods
from the source code and from the form description (including the reference to them
in the Events page of the Object Inspector). Conversely, to keep an event-handler
that is still empty, consider adding a comment to it, so that it will not be removed.

Now we can start typing some instructions between the begin and end keywords that delimit the code
of the procedure. Writing code is usually so simple that you don’t need to be an expert in the language to start
working with Delphi. (If you need to brush up your knowledge of Pascal you can refer to my online Essential
Pascal book, while if you need derailede coverage of Object Pascal you can refer to my Mastering Delphi series.)

You should type only the line in the middle, but I’ve included the whole source code of the procedure to
let you know where you need to add the new code in the editor:

procedure TForm1.BtnHelloClick(Sender: TObject);
begin

MessageDlg ('Hello, guys', mtInformation, [mbOK], 0);
end;

The code is simple. There is only a call to a function, MessageDlg, to display a small message dialog
box. The function has four parameters. Notice that as you type the open parenthesis, the Delphi editor will show
you the list of parameters in a hint window, making it simpler to remember them.

If you need more information about the parameters of this function and their meanings, you can click on
its name in the edit window and press F1. This brings up the Help information. Since this is the first code we are
writing, here is a summary of that description (the rest of this book, however, generally does not duplicate the
reference information available in Delphi’s Help system, concentrating instead on examples that demonstrate the
features of the language and environment):

• The first parameter of the MessageDlg function is the string you want to display: the message.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 15

• The second parameter is the type of message box. You can choose mtWarning, mtError,
mtInformation, or mtConfirmation. For each type of message, the corresponding caption is used and a
proper icon is displayed at the side of the text.

• The third parameter is a set of values indicating the buttons you want to use. You can choose mbYes,
mbNo, mbOK, mbCancel, or mbHelp. Since this is a set of values, you can have more than one of
these values. Always use the proper set notation with square brackets ([and]) to denote the set, even if
you have only one value, as in the line of the code above. (Essential Pascal discusses Pascal sets.)

• The fourth parameter is the help context, a number indicating which page of the Help system should be
invoked if the user presses F1. Simply write 0 if the application has no help file, as in this case.

The function also has a return value, which I’ve just ignored, using it as if it were a procedure. In any case, it’s
important to know that the function returns an identifier of the button that the user clicked to close the message
box. This is useful only if the message box has more than one button.

Programmers unfamiliar with the Pascal language, particularly those who use C/C++,
might be confused by the distinction between a function and a procedure. In Pascal, there
are two different keywords to define procedures and functions. The only difference
between the two is that functions have a return value.

After you have written this line of code, you should be able to run the program. When you click on the
button, you’ll see the message box shown below.

Every time the user clicks on the push button in the form, a message is displayed. What if the mouse is
pressed outside that area? Nothing happens. Of course, we can add some new code to handle this event. We only
need to add an OnClick event to the form itself. To do this, move to the Events page of the Object Inspector
and select the form. Then double-click at the right side of the OnClick event, and you’ll end up in the proper
position in the edit window. Now add a new call to the MessageDlg function, as in the following code:

procedure TForm1.FormClick(Sender: TObject);
begin

MessageDlg ('You have clicked outside of the button',
mtWarning, [mbOK], 0);

end;
With this new version of the program, if the user clicks on the button, the hello message is displayed, but

if the user misses the button, a warning message appears. Notice that I’ve written the code on two lines, instead
of one. The Pascal compiler completely ignores new lines, white spaces, tab spaces, and similar formatting
characters. Program statements are separated by semicolons (;), not by new lines.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 16

There is one case in which Delphi doesn’t completely ignore line breaks: Strings cannot
extend across multiple lines. In some cases, you can split a very long string into two
different strings, written on two lines, and merge them by writing one after the other.

Compiling and Running a Program
Before we make any further changes to our Hello program, let’s stop for a moment to consider what

happens when you run the application. When you click on the toolbar Run button or select Run | Run, Delphi
does the following:

1: Compiles the Pascal source code file describing the form.
2: Compiles the project file.
3: Builds the executable (EXE) file, linking the proper libraries.
4: Runs the executable file, usually in debug mode.

In early versions of Delphi, the executable file you obtained was invariably a stand-alone
program. Starting with version 3, Delphi allows you to link all the required libraries into the
executable file, but you can also specify the use of separate run-time packages, making
the executable file much smaller.

The key point is that when you ask Delphi to run your application, it compiles it into an executable file.
You can easily run this file from the Windows Explorer or using the Run command on the Start button.
Compiling this program as usual, linking all the required library code, produces an executable of about a couple
of hundred Kb. By using run-time packages, this can shrink the executable to about 20 Kb. Simply select the
Project | Options menu command, move to the Packages page, and select the check box Build with runtime
packages:

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 17

Packages are dynamic link libraries containing Delphi components (the Visual Components Library). By
using packages you can make an executable file much smaller. However, the program won’t run unless the proper
dynamic link libraries (such as vcl60.bpl) are available on the computer where you want to run the program.
The BPL extensions stands for Borland Package Libraries; it is the extension used by Delphi (and C++Builder)
packages, which are technically DLL files. Using this extension makes it easier to recognize them (and find them
on a hard disk).

If you add the size of this dynamic library to that of the small executable file, the total amount of disk
space required by the program built with run-time packages is much bigger than the space required by the bigger
stand-alone executable file. For this reason the use of packages is not always recommended. The great advantage
of Delphi over competing development tools is that you can easily choose whether to use the stand-alone
executable or the small executable with run-time packages.

In both cases, Delphi executables are extremely fast to compile, and the speed of the
resulting application is comparable with that of a C or C++ program. Delphi compiled code
runs much faster (at least 10 times faster) than the equivalent code in interpreted or semi-
compiled tools.

Some users cannot believe that Delphi generates real executable code, because when you run a small
program, its main window appears almost immediately, as happens in some interpreted environments. To see for
yourself, try this: Open the Environment Options dialog box (using Tools | Options), move to the Preferences

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 18

page, and turn on the Show Compile Progress option. Now select Project | Build All. You’ll see a dialog box with
the compilation status. You’ll find that this takes just a few seconds, or even less on a fast machine.

In the tradition of Borland’s Turbo Pascal compilers, the Object Pascal compiler embedded in Delphi
works very quickly. For a number of technical reasons, it is much faster than any C++ compiler. If you try using
the new Borland C++ Builder development environment (which is very similar to Delphi) the compilation
requires more time, particularly the first time you build an application. One reason for the higher speed of the
Delphi compiler is that the language definition is simpler. Another is that the Pascal compilers and linkers have
less work to do to include libraries or other compiled source files in a program, because of the structure of units.

Changing Properties at Run-Time
Let’s return to the Hello application. We now want to try to change some properties at run-time. For

example, we might change the text of HelloButton from Say hello to Say hello again after the first time a user
clicks on it. You may also need to widen the button, as the caption becomes longer. This is really simple. You
only need to change the code of the HelloButtonClick procedure as follows:

procedure TForm1.HelloButtonClick(Sender: TObject);
begin

MessageDlg ('Hello, guys', mtInformation, [mbOK], 0);
btnHello.Caption := 'Say Hello Again';

end;

The Pascal language uses the := operator to express an assignment and the = operator
to test for equality. At the beginning, this can be confusing for programmers coming from
other languages. For example in C and C++, the assignment operator is =, and the
equality test is ==. After a while, you’ll get used to it. In the meantime, if you happen to use
= instead of :=, you’ll get an error message from the compiler.

A property such as Caption can be changed at run-time very easily, by using an assignment statement.
Most properties can be changed at run-time, and some can be changed only at run-time. You can easily spot this
last group: They are not listed in the Object Inspector, but they appear in the Help file for the component. Some
of these run-time properties are defined as read-only, which means that you can access their value but cannot
change it.

Adding Code to the Program
Our program is almost finished, but we still have a problem to solve, which will require some real

coding. The button starts in the center of the form, but will not remain there when you resize the form. This
problem can be solved in two radically different ways.

One solution is to change the border of the form to a thin frame, so that the form cannot be resized at run-
time. Just move to the BorderStyle property of the form, and choose bsSingle instead of bsSizeable
from the combo box. The other approach is to write some code to move the button to the center of the form each

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 19

time the form is resized, and that’s what we’ll do next. Although it might seem that most of your work in
programming with Delphi is just a matter of selecting options and visual elements, there comes a time when you
need to write code. As you become more expert, the percentage of the time spent writing code will generally
increase.

When you want to add some code to a program, the first question you need to ask yourself is Where? In
an event-driven environment, the code is always executed in response to an event. When a form is resized, an
event takes place: OnResize. Select the form in the Object Inspector and double-click next to OnResize in
the Events page. A new procedure is added to the source file of the form. Now you need to type some code in the
editor, as follows:

procedure TForm1.FormResize(Sender: TObject);
begin

BtnHello.Top := Form1.ClientHeight div 2 -
BtnHello.Height div 2;

BtnHello.Left := Form1.ClientWidth div 2 -
BtnHello.Width div 2;

end;

To set the Top and Left properties of the button — that is, the position of its upper-left corner — the
program computes the center of the frame, dividing the height and the width of the internal area or client area of
the frame by 2, and then subtracts half the height or width of the button. Note also that if you use the Height
and Width properties of the form, instead of the ClientWidth and ClientHeight properties, you will
refer to the center of the whole window, including the caption at the top border. This final version of the example
works quite well as you can see below.

This figure includes two versions of the form, with different sizes. By the way, this figure is a real
snapshot of the screen. Once you have created a Windows application, you can run several copies of it at the
same time by using the Explorer. By contrast, the Delphi environment can run only one copy of a program. When
you run a program within Delphi, you start the integrated debugger, and it cannot debug two programs at the
same time — not even two copies of the same program — unless you are using Windows NT/2000/XP.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 20

A Two-Way Tool
In the Hello example, we have written three small portions of code, to respond to three different events.

Each portion of code was part of a different procedure (actually a method, as you’ll learn reading Chapter 5). But
where does the code we write end up? The source code of a form is written in a single Pascal language source
file, the one we’ve named HELLOF.PAS. This file evolves and grows not only when you code the response of
some events, but also as you add components to the form. The properties of these components are stored together
with the properties of the form in a second file, named HELLOF.DFM.

Delphi can be defined as a two-way tool, since everything you do in the visual environment ends up in
some code. Nothing is hidden away and inaccessible. You have the complete code, and although some of it might
be fairly complex, you can edit everything. Of course, it is easier to use only the visual tools, at least until you are
an expert Delphi programmer.

The term two-way tool also means that you are free to change the code that has been produced, and then
go back to the visual tools. This is true as long as you follow some simple rules.

Looking at the Source Code
Let’s take a look at what Delphi has generated from our operations so far. Every action has an effect —

in the Pascal code, in the code of the form, or in both. When you start a new, blank project, the empty form has
some code associated with it, as in the following listing.

unit Unit1;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics,
Controls, Forms, Dialogs;

type
TForm1 = class(TForm)
private

{ Private declarations }
public

{ Public declarations }
end;

var
Form1: TForm1;

implementation

{$R *.DFM}

end.
The file, named Unit1, uses a number of units and defines a new data type (a class) and a new variable

(an object of that class). The class is named TForm1, and it is derived from TForm. The object is Form1, of the
new type TForm1.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 21

Units are the modules into which a Pascal program is divided. When you start a new
project, Delphi generates a program module and a unit that defines the main form.
Each time you add a form to a Delphi program, you add a new unit. Units are then
compiled separately and linked into the main program. By default, unit files have a
.PAS extension and program files have a .DPR extension.

If you rename the files as suggested in the example, the code changes slightly, since the name of the unit
must reflect the name of the file. If you name the file Hellof.pas, the code begins with

unit Hellof;
As soon as you start adding new components, the form class declaration in the source code changes. For

example, when you add a button to the form, the portion of the source code defining the new data type becomes
the following:

type
TForm1 = class(TForm)

Button1: TButton;
...

Now if you change the button’s Name property (using the Object Inspector) to BtnHello, the code
changes slightly again:

type
TForm1 = class(TForm)

BtnHello: TButton;
...

Setting properties other than the name has no effect in the source code. The properties of the form and its
components are stored in a separate form description file (with a DFM extension).

Adding new event handlers has the biggest impact on the code. Each time you define a new handler for
an event, a line is added to the data type definition of the form, an empty method body is added in the
implementation part, and some information is stored in the form description file, too.

unit HelloForm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForm1 = class(TForm)

btnHello: TButton;
procedure btnHelloClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormResize(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 22

implementation

{$R *.DFM}

procedure TForm1.btnHelloClick(Sender: TObject);
begin

MessageDlg ('Hello, guys', mtInformation, [mbOK], 0);
btnHello.Caption := 'Say Hello Again';

end;

procedure TForm1.FormCreate(Sender: TObject);
begin

MessageDlg ('You have clicked outside of the button',
mtWarning, [mbOK], 0);

end;

procedure TForm1.FormResize(Sender: TObject);
begin

BtnHello.Top := Form1.ClientHeight div 2 -
BtnHello.Height div 2;

BtnHello.Left := Form1.ClientWidth div 2 -
BtnHello.Width div 2;

end;

end.
It is worth noting that there is a single file for the whole code of the form, not just small fragments. Of

course, the code is only a partial description of the form. The source code determines how the form and its
components react to events. The form description (the DFM file) stores the values of the properties of the form
and of its components. In general, source code defines the actions of the system, and form files define the initial
state of the system.

The Textual Description of the Form
As I’ve just mentioned, along with the PAS file containing the source code, there is another file

describing the form, its properties, its components, and the properties of the components. This is the DFM file, a
binary or text file (this latter option has been introduced with Delphi 5). Whatever the format, if you load this file
in the Delphi code editor, it will be converted into a textual description. This might give the false impression that
the DFM file is indeed a text file, but this can be only if you’ve selected the corresponding option (available since
Delphi 5).

You can open the textual description of a form simply by selecting the shortcut menu
of the form designer (that is, right-clicking on the surface of the form at design-time)
and selecting the View as Text command. This closes the form, saving it if
necessary, and opens the DFM file in the editor. You can later go back to the form
using the View as Form command of the local menu of the editor window. The
alternative is to open the DFM file directly in the Delphi editor.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 23

To understand what is stored in the DFM file, you can look at the next listing, which shows the textual
description of the form of the first version of the Hello example. This is exactly the code you’ll see if you give
the View as Text command in the local menu of the form:

object Form1: TForm1
Left = 235
Top = 108
Width = 430
Height = 308
Caption = 'Hello'
Color = clBtnFace
Font.Charset = DEFAULT_CHARSET
Font.Color = clWindowText
Font.Height = -11
Font.Name = 'MS Sans Serif'
Font.Style = []
OldCreateOrder = False
OnCreate = FormCreate
OnResize = FormResize
PixelsPerInch = 96
TextHeight = 13
object btnHello: TButton

Left = 165
Top = 111
Width = 75
Height = 25
Caption = 'Say Hello'
TabOrder = 0
OnClick = btnHelloClick

end
end

You can compare this code with what I used before to indicate the key features and properties of the form
and its components. As you can see in this listing, the textual description of a form contains a number of objects
(in this case, two) at different levels. The Form1 object contains the BtnHello object, as you can immediately
see from the indentation of the text. Each object has a number of properties, and some methods connected to
events (in this case, OnClick).

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 24

Once you’ve opened this file in Delphi, you can edit the textual description of the form, although this
should be done with extreme care. As soon as you save the file, it will be turned back into a binary file. If you’ve
made incorrect changes, this compilation will stop with an error message, and you’ll need to correct the contents
of your DFM file before you can reopen the form in the editor. For this reason, you shouldn’t try to change the
textual description of a form manually until you have a good knowledge of Delphi programming.

An expert programmer might choose to work on the text of a form for a number of reasons. For big
projects, the textual description of the form is a powerful documenting tool, an important form of backup (in case
someone plays with the form, you can understand what has gone wrong by comparing the two textual versions),
and a good target for a version-control tool. For these reasons, Delphi also provides a DOS command-line tool,
CONVERT.EXE, which can translate forms from the compiled version to the textual description and vice versa.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 25

As we will see in the next chapter, the conversion is also applied when you cut or copy components from a form
to the Clipboard.

The Project File
In addition to the two files describing the form (PAS and DFM), a third file is vital for rebuilding the

application. This is the Delphi project file (DPR). This file is built automatically, and you seldom need to change
it, particularly for small programs. If you do need to change the behavior of a project, there are basically two
ways to do so: You can use the Delphi Project Manager and set some project options, or you can manually edit
the project file directly.

This project file is really a Pascal language source file, describing the overall structure of the program
and its startup code:

program Hello;

uses
Forms,
Hellof in 'HelloForm.PAS' {Form1};

{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.
You can see this file with the View | Project Source menu command. As an alternative, you can click on

the Select unit button of the toolbar or issue the equivalent menu command, View | Units. When you use one of
these commands, Delphi shows a dialog box with the list of the source files of the project. You can choose the
project file (named Hello in the example), or any other file you are interested in seeing.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 26

Using Component Templates
Suppose you want to create a brand new application, with a similar button and a similar event handler to

the Hello program. It is possible to copy a component to the Clipboard, and then paste it into another form to
create a perfect clone. However, doing so you copy only the properties of the component, and not the events
associated with it.

Delphi allows you to copy one or more components, and install them as a new component template. This
way, you also copy the code of the methods connected with the events of the component. Simply open the Hello
example, or any other one, select the component you want to move to the template (or a group of components),
and then select the Component | Create Component Template menu command. This opens the Component
Template Information dialog box, shown below. Here you enter the name of the template, the page of the
Component Palette where it should appear, and an icon.

What’s Next
In this chapter, we created a simple program, added a button to it, and handled some basic events, such as

a click with the mouse or a resize operation. We also saw how to name files, projects, forms, and components,
and how this affects the source code of the program. We looked at the source code of the simple programs we’ve
built, although some of you might not be fluent enough in Object Pascal to understand the details.

Before we can look into more complex examples, we need to explore the Delphi development
environment. This is the topics of the next chapter. The examples in this chapter should have shown you that
Delphi is really easy to use. Now we’ll start to look at the complex mechanisms behind the scenes that make this
all possible. You’ll see that Delphi is a very powerful tool, even though you can use it to write programs easily
and quickly.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 27

CHAPTER 2: HIGHLIGHTS OF THE DELPHI
ENVIRONMENT

n a visual programming tool such as Delphi, the role of the environment is certainly important, at
times even more important than the programming language used by its compiler or interpreter. This is
a good reason to spend some time reading this chapter.I

This chapter won’t discuss all of the features of Delphi or list all of its menu commands. Instead, it will
give you the overall picture and help you to explore some of the environment traits that are not obvious, while
suggesting some tips that may help you. You’ll find more information about specific commands and operations
throughout the book.

Different Versions of Delphi
Before delving into the details of the Delphi programming environment, let’s take a side step to underline

two key ideas. First, there isn’t a single version of Delphi; there are three of them:
• The basic version (the “Standard” edition) is aimed at Delphi newcomers and casual programmers. It

has all the features required to write programs in Delphi for Windows but (starting with Delphi 5) it
has no support for any type of database programming.

• The second level (the “Professional” edition) is aimed at professional developers. It includes database
support (with BDE and ODBC connectivity), limited Web support, and many more components.

• The full-blown Delphi (the “Enterprise” edition starting with Delphi 5, or the “Client/Server Suite”
edition in previous versions) is aimed at developers building client/server applications. It includes also
drivers for native Client/Server connection, full ADO support, MIDAS and Internet Express support,
and (in Delphi) all of the new Snap technologies: BizSnap, WebSnap, and DataSnap.

Besides the different editions available, there are a number of ways to customize the Delphi environment.
You can change the buttons of the toolbar, attach new commands to the Tools menu, hide some of the windows
or elements, and resize and move all of them. In the screen illustrations throughout the book, I’ll try to use a
standard user interface (as it comes out of the box); however, I have my preferences, and I generally install many
add-ons (written by third parties or by me), which might be reflected in some of the screen shots.

Asking for Help
Now we can really start our tour. The first element of the environment we’ll explore is the Help system.

There are basically two ways to invoke the Help system: select the proper command in the Help pull-down menu,
or choose an element of the Delphi interface or a token in the source code and press F1.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 28

When you press F1, Delphi doesn’t search for an exact match in the Help Search list. Instead, it tries
to understand what you are asking. For example, if you press F1 when the text cursor is on the name
of the Button1 component in the source code, the Delphi Help system automatically opens the
description of the TButton class, since this is what you are probably looking for. This technique also
works when you give the component a new name. Try naming the button Foo, then move the cursor
to this word, press F1, and you’ll still get the help for the TButton class. This means Delphi looks at
the contextual meaning of the word for which you are asking help.

Note that there isn’t just a single help file in Delphi. Most of the time, you’ll invoke Delphi Help, but this
file is complemented by an Object Pascal Help file, the Windows API Help, the Component Writer’s Help, and
many others (depending on your version of Delphi). These and other Help files have a common outline and a
common search engine you can activate by pressing the Help Topics button while in the Help system. The
Windows help engine dialog box that appears allows you to browse the contents of all of the help files in the
group, search for a keyword in the index, or start the Find engine. The three capabilities are available in separate
pages of the Help Topics dialog box.

You can find almost everything in the Help system, but you need to know what to search for. Usually this
is obvious, but at times it is not. Spending some time just playing with the Help system will probably help you
understand the structure of these files and learn how to find the information you need.

The Help files provide a lot of information, both for beginner and expert programmers, and they are
especially valuable as a reference tool. They list all of the methods and properties for each component, the
parameters of each method or function, and similar details, which are particularly important while you are writing
code. Borland also distributes reference materials in the form of Adobe Acrobat files. These are electronic
versions of the printed manuals that come in the Delphi box, so you can search them for a word, and you can also
print the portions you are interested in (or even the whole file if you’ve got some spare paper).

The first version of Delphi included some Interactive Tutors in addition to the Help system. If you’ve
never used Delphi (and if you have Delphi 1 installed), you might consider running these Tutors.
They will guide you through Delphi’s basic features and help you understand some of the
terminology of the environment. Unluckily they were soon discontinued by Borland.

Besides the Delphi Help files, there are many sources of collections of tips and suggestions for Delphi
programmers. Borland web sites provides some FAQs (Frequently Asked Questions) and a collection of
Technical Information short papers (TI). You can find updates of both at the Borland Community Web site
(http://community.borland.com). Besides these official Borland documents, you’ll find many more tips in Borland
newsgroups (and also on mine). Obviously the Web is a great source of information about Delphi itself and third
party products. You can find a collection of my favorite Delphi Web pages in the Links portion of my web site
(http://www.marcocantu.com/links).

Delphi Menus and Commands
There are basically three ways to issue a command in the Delphi environment:
• Use the menu.

http://community.borland.com
http://www.marcocantu.com/links

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 29

• Use the toolbar.

• Use one of the local menus activated by pressing the right mouse button.

The Delphi menus offer many commands. I won’t bore you with a detailed description of the menu
structure. For this type of information, you can refer to the printed documentation or the Help file. In the
following sections, I’ll present some suggestions on the use of some of the menu commands. Other suggestions
will follow in the rest of the chapter.

The File Menu
Our starting point is the File pull-down menu. The structure of this menu has kept changing from version

to version of Delphi, with menu items for handling projects moving away, and specific commands to create new
designer (for example data modules) coming and going. Still, this menu contains commands that operate on
projects and commands that operate on source code files.

[*** The File menu structure has changed in Delphi 6, with the File | New submenu, and the text here
has not been updated accordingly] Some commands can even be used to operate both on projects and on source
code files. The commands related to projects are New, New Application, Open, Save Project As, Save All, Close
All, Add to Project, and Remove from Project. Besides these, there is also a specific Project pull-down menu.
The commands related to source code files are New, New Form, New Data Module, Open, Reopen, Save, Save
As, Close, and Print. Most of these commands are very intuitive, but some require a little explanation.

Use the Reopen menu command to open projects or source code files you have worked on recently.

The New command actually opens the New Items dialog box, also called the Object Repository. This
dialog box can be used to invoke Delphi Wizards and to create items such as new applications, forms that inherit
from existing forms, threads, DLLs, Delphi components, and ActiveX controls. I’ll cover the Object Repository’s
rich set of features in the next chapter.

Another peculiar command is Print. If you are editing source code and select this command, the printer
will output the text with syntax highlighting as an option. If you are working on a form and select Print from the
File menu, the printer will produce the graphical representation of the form. This is certainly nice, but it can be
confusing, particularly if you are working on other Delphi windows. Fortunately, two different print options
dialog boxes are displayed, so that you can check that the operation is correct.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 30

The Edit Menu
The Edit menu has some typical operations, such as Undo and Redo, and the Cut, Copy, and Paste

commands, plus some specific commands for form or editor windows. The important thing to notice is that the
standard features of the Edit menu (and the standard Ctrl+Z, Ctrl+X, Ctrl+C, and Ctrl+V keyboard shortcuts)
work both with text and with form components. There are also some differences worth noting. For example,
when you work with the editor, the first command of this pull-down menu is Undo; when you work with the
form, it becomes Undelete. Unfortunately, the Form Designer has very limited Undo capabilities.

Of course, you can copy and paste some text in the editor, and you can also copy and paste components
in one form, or from one form to another. You can even paste components to a different parent window of the
same form, such as a panel or group box.

Besides using cut and paste commands, the Delphi editor allows you to move source code by
selecting and dragging words, expressions, or lines. If you drag text while pressing the Ctrl key, it will
be copied instead of moved.

Copying and Pasting Components
What you might not have noticed is that you can also copy components from the form to the editor and

vice versa. Delphi places components in the Clipboard along with their textual description. You can even edit the
text version of a component, copy the text to the Clipboard, and then paste it back into the form as a new
component.

For example, if you place a button on a form, copy it, and then paste it into an editor (which can be
Delphi’s own source code editor or any word processor), you’ll get the following description:

object Button1: TButton
Left = 56
Top = 48

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 31

Width = 161
Height = 57
TabOrder = 0
Caption = 'Button1'

end
Now, if you change the name of the object, caption, or position, or add a new property, these changes can

be copied and pasted back to a form. Here are some sample changes:
object MyButton: TButton

Left = 200
Top = 200
Width = 180
Height = 60
TabOrder = 0
Caption = 'My Button'
Font.Name = 'Arial'

end
Copying the above description and pasting it into the form will create a button in the specified position

with the caption My Button in an Arial font. To make use of this technique, you need to know how to edit the
textual representation of a component, what properties are valid for that particular component, and how to write
the values for string properties, set properties, and other special properties. When Delphi interprets the textual
description of a component or form, it might also change the values of other properties related to those you’ve
changed, and change the position of the component so that it doesn’t overlap a previous copy. You can see how
Delphi modifies the properties of the component by copying it back to the editor. For example, this is what you
get if you paste the text above in the form, and then copy it again into the editor:

object MyButton: TButton
Left = 112
Top = 128
Width = 180
Height = 60
Caption = 'My Button'
Font.Charset = DEFAULT_CHARSET
Font.Color = clWindowText
Font.Height = -11
Font.Name = 'Arial'
Font.Style = []
ParentFont = False
TabOrder = 0

end
As you can see, some lines have been added automatically, to specify other properties of the font. Of

course, if you write something completely wrong, such as this code:
object Button3: TButton

Left = 100
eight = 60

end
which has a spelling error (a missing ‘H’), and try to paste it into a form, Delphi will show an error

indicating what has gone wrong. You can also select several components and copy them all at once, either to
another form or to a text editor. This might be useful when you need to work on a series of similar components.
You can copy one to the editor, replicate it a number of times, make the proper changes, and then paste the whole
group into the form again.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 32

More Edit Commands
Along with the typical commands found on most Edit menus in Windows applications, Delphi includes a

number of commands that are mostly related to forms. The specific operations for forms can also be accessed
through the form shortcut menu (the local menu you can invoke with the right mouse button) and will be covered
later in the chapter.

One command not replicated in a form’s local menu is Lock Controls, which is very useful
for avoiding an accidental change to the position of a component in a form. For example,
you might try to double-click on a component and actually end up moving it. Since there is
no Undo operation on forms, protecting from similar errors by locking the controls after the
form has been designed can be really useful.

The Search Menu
The Search menu has some standard commands, too, such as Search and Replace, and the Find in Files

command (you can see its dialog box here):

The Find in Files command allows you to search for a string in all of the source code files of a project, all
the open files, or all the files in a directory (optionally including its subdirectories), depending on the radio
button you check. The result of the search will be displayed in the message area at the bottom of the editor
window. You can select an entry to open the corresponding file and jump to the line containing the text.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 33

You can use the Find in Files command to search for component, class, and type
definitions in the VCL source code (if your version of Delphi includes it). This is an easy
way to get detailed information on a component, although using Help is generally faster
and simpler.

Other commands are not so simple to understand. The Incremental Search command is one of them.
When you select this command, instead of showing a dialog box where you enter the text you want to find,
Delphi moves to the editor. There, you can type the text you want to search for directly in the editor message
area, as you can see here:

When you type the first letter, the editor will move to the first word starting with that letter. (But if your
search text isn’t found, the letters you typed won’t even be displayed in the editor message area.) If that is not the
word you are looking for, just keep typing; the cursor will continue to jump as you add letters. Although this
command might look strange at first, it is very effective and extremely fast, particularly if you are typing and
invoke it with a shortcut key (Ctrl+E if you are using the standard editor shortcuts).

The Go to Line Number command is quite intuitive. The Find Error command might seem strange at
first. It is used to find a particular run-time error, not to search for a compiler error. When you are running a
stand-alone program and you hit a very bad error, Delphi displays an internal address number (that is, the logical
address of the compiled code). You can enter this value in the Find Error dialog box to have Delphi recompile the
program, looking for the specific address. When it finds the address, Delphi shows the corresponding source code
line. Often, however, the error is not in one of the lines of your code, but in a line of library or system code; in
this (quite frequent) case the Find Error command cannot locate the offending line.

The last command on the Search menu, Browse Symbol, invokes the Object Browser, a tool you can use
to explore all the symbols defined in a compiled program. To understand the output of the Object Browser, you
need a good understanding of the Object Pascal language and of the Visual Component Library (VCL).

The View Menu
The View pull-down menu combines the features you usually find in View and Window menus. There is

no Window menu, because the Delphi environment is not an MDI application. Most of the View commands can

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 34

be used to display one of the windows of the Delphi environment, such as Project Manager, the Breakpoints list,
or the Components command. Some of these windows are used during debugging; others when you are writing
code. Most of these windows will be described later in this chapter.

It is possible to add a new item to the View menu, CPU Window, which can be used during
debugging to view the Assembler code generated by the Delphi compiler, execute it step
by step, and view the status of the CPU registers.

The commands on the second part of the View menu are important, which is why they are also available on
the default toolbar. The Toggle Form/Unit (or F12) command is used to move between the form you are working
on and its source code. If you use a source code window big enough to hold a reasonable amount of text, you’ll
use this command often. As an alternative, you can place the two windows (the editor and the form) so that a
portion of the one below is always visible. With this arrangement, you can click on it with the mouse to move it
to the front.

The New Edit Window command opens a second edit window. It is the only way to view two files side
by side in Delphi, since the editor uses tabs to show the multiple files you can load. Once you have duplicated the
edit window, you can make each one hold a different set of files, or view two portions of the same file.

The last two commands on the View menu can be used to hide the toolbar or the Components palette,
although this is a good way to make Delphi look silly and uncomfortable. Working on forms without the
Components palette is certainly not easy. If you remove both the toolbar and the Components palette, the Delphi
main window is reduced to a bare menu.

The Project Menu
The next pull-down menu, Project, has commands to manage a project and compile it. Add to Project and

Remove from Project are used to add forms or Pascal source code files to a program and to remove them from a
project.

The Enterprise version of Delphi includes two more commands, Web Deploy Options
and Web Deploy, which are not available in the other editions. These features are
related with ActiveX and ActiveForms, some (now obsolete) Microsoft web
technologies.

The Compile command builds or updates the application executable file, checking which source files have
changed and recompiling them when needed. With Build All, you can ask Delphi to compile every source file of
the project, even if it has not been changed since the last compilation. If you just want to know whether the
syntax of the code you’ve written is correct, but you do not want to build the program, you can use the Syntax
Check command.
The next Project command, Information, displays some details about the last compilation you’ve made. The
following figure shows the information related to the compilation of the a short program:

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 35

The Compile command can be used only when you have loaded a project in the editor. If
no project is active and you load a Pascal source file, you cannot compile it. However, if
you load the source file as if it were a project, that will do the trick and you’ll be able to
compile the file. To do this, simply select the Open Project toolbar button and load a PAS
file. Now you can check its syntax or compile it, building a DCU (Delphi Compiled Unit).

At the end of the Project menu comes the Options menu, used to set compiler and linker options,
application object options, and so on. When you change the project options, you can check the Default box to
indicate that the same set of options should be used for new projects. We will discuss project options again in this
chapter and then throughout the book in the context of related topics.

The Run Menu
The Run menu could have been named Debug as well. Most of its commands are related to debugging,

including the Run command itself. When you run a program within the Delphi environment, you execute it under
the integrated debugger (unless you disable the corresponding Environment option). The Run command and the
corresponding toolbar icon are among the most commonly used commands, since Delphi automatically
recompiles a program before running it — at least if the source code has changed. Simply hit F9 as a shortcut to
compile and run a program.

The next command, Parameters, can be used to specify parameters to be passed on the command line to
the program you are going to run, and to provide the name of an executable file when you want to debug a DLL
(DLL debugging is another new Delphi 3 feature). The remaining commands are all used during debugging, to
execute the program step by step, set breakpoints, inspect the values of variables and objects, and so on. Some of
these debugging commands are also available directly in the editor local menu.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 36

Delphi 3 has a couple of new commands related to ActiveX development (and not
found in the “Standard” edition). The Register ActiveX Server and Unregister ActiveX
Server menu commands basically add or remove the Windows Registry information
about the ActiveX control defined by the current project.

The Component Menu
The commands of the Component menu can be used to write components, add them to a package, or to

install packages in Delphi. The New Component command invokes the simple Component Wizard. The three
installation commands, Install Component, Import ActiveX Library, and Install Packages, can be used to add to
the environment new Delphi components, packages, or ActiveX controls. Executing any of these commands adds
the new components to the specified package and to the Components palette.

Component Templates
We briefly used the Create Component Template menu item in the last chapter. When you issue this

command after selecting one or more components in a form, it opens a dialog box where you specify the name of
the new component template, a page on the Palette, and an icon. By default, the template name is the name of the
first component you’ve selected followed by the word template. The default template icon is the icon of the first
component you’ve selected, but you can replace it with an icon file. The name you give to the component
template will be used to describe it in the Components palette (when Delphi displays the fly-by hint).

All the information about component templates is stored in a single file, DELPHI32.DCT, but there is
apparently no way to retrieve this information and edit a template. What you can do, however, is place the
component template in a brand new form, edit it, and install it again as a component template using the same
name. This way you can override the previous definition.

The Database Menu
The Database menu collects the Delphi database-related tools, such as the Database Form Wizard and the

Database Explorer. The Enterprise edition has the SQL Explorer instead of the Database Explorer (although the
menu items is invariably called Database | Explore) and a menu item to start the SQL Monitor.

The Tools Menu
The Tools menu simply lists a number of external programs and tools, just to make it easier to run them.

You can use the Tools command to configure and add new external tools to the pull-down. Besides simply
running a program, you can pass some parameters to it. Simple parameter lists can be passed directly on the
command line, while complex ones can be built by clicking the Macros button in the lower part of the Tool
Properties dialog box.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 37

The Tools menu also includes a command to configure the Repository (discussed in the next chapter) and
the Options command to configure the whole Delphi development environment. The Environment Options dialog
box has many pages related to generic environment settings (the Preferences page), packages and library settings,
many editor options (in the pages Editor, Display, and Colors), a page to configure the Components Palette, one
for the object Browser, and one of the new Code Insight technology. I’ll discuss many of these options when
covering related features. You can see the dialog used to customize the Tools menu below.

The Help Menu
The Help menu can be used to get information about Delphi (Help | Help Topics) and also to display the

Delphi About box. In this window, you can hold down the Alt key and type the letters VERSION to see the
Delphi version and build number. Using other key combinations (as mentioned in the acknowledgments at the
beginning of the book) you can see a list of the people involved in building Delphi. The Help menu was often
populated by third-party Delphi Wizards (before the new ToolsApi made it harder to place wizards in what was
their default location).

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 38

The Delphi Toolbar
After you have used Delphi for a while, you’ll realize that you use only a small subset of the available

commands frequently. Some of these commands are probably already on the toolbar (Borland’s name for a
toolbar); some are not. If the commands you use a lot are not there, it’s time to customize the toolbar so that it
really helps you to use Delphi more efficiently.

An alternative to using the toolbar is to use shortcut keys. Although you must remember
some key combinations to use them, shortcut keys let you invoke commands very quickly,
particularly when you are writing code and your fingers are already on the keyboard.

You can easily resize the toolbar by dragging the thick line between it and the Components Palette. But
the most important operations you can do with the toolbar are adding, removing, or replacing the icons using the
Configure command of the toolbar local menu (simply press the right mouse button over it). This operation
invokes the toolbar Editor (see above), one of the Delphi tools with the best user interface, at least in my opinion.

To add an icon to the toolbar, you simply need to find it under the proper category (corresponding to a
pull-down menu), and drag it to the bar. In the same way, you can drag an icon away from the toolbar or simply
move it to another location. During these operations, you can easily leave some space between groups of icons, to
make them easier to remember and select.

The Local Menus
Although Delphi has a good number of menu items, not all of the commands are available though the

pull-down menus. At times, you need to use local menus for specific window areas. To activate a local menu,
right-click over a window, or press Alt+F10. Even if you have other alternatives, using a local menu is usually

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 39

faster because you don’t need to move the mouse up to the menu bar and select two levels of menus. It’s also
often easier, since all the local menu commands are related to the current window. Almost every window in
Delphi (with the exclusion of dialog boxes) has its own local menu with related commands. I really suggest you
get used to right-clicking on windows, because this is not only important in Delphi, but also has become a
standard for most applications in Windows. Get used to it, and add local menu to the applications you build with
Delphi, too.

Working with the Form Designer
Designing forms is the core of visual development in the Delphi environment. Every component you

place on a form and every property you set is stored in a file describing the form (a DFM file) and has some
effect on the source code associated with the form (the PAS file).

When you start a new, blank project, Delphi creates an empty form, and you can start working with it.
You can also start with an existing form (using the various templates available), or add new forms to a project. A
project (an application) can have any number of forms. Every time you work with a form at design-time, you are
actually using Delphi’s Form Designer. When you are working with a form, you can operate on its properties, on
the properties of one of its components, or on those of several components at a time. To select the form or a
component, you can simply click on it or use the Object Selector (the combo box in the Object Inspector), where
you can always see the name and type of the selected item. You can select more than one component by Shift-
clicking on the components, or by dragging a selection rectangle around the components on the form.

Even when a component covers the whole surface of the form, you can still select the form
with the mouse. Just press and hold Shift while you click on the selected component. This
will deselect the component and select the form by default. Using the keyboard, you can
press Esc to select the parent of the current component.

While you are working on a form, the local menu has a number of useful features (some of which are also
available in the Edit menu). You can use the Bring to Front and Send to Back commands to change the relative
position of components of the same kind (you can never bring a graphical component in front of a component
based on a window). In an inherited form, you can use the command Revert to Inherited to restore the properties
of the selected component to the values of the parent form.

When you have selected more than one component, you can align or size them. Most of the options in the
Alignment dialog box are also available in the Alignment palette (accessible through the View | Alignment
Palette menu command). You can also open the Tab Order and Creation Order dialog boxes to set the tab order of
the visual controls and the creation order of the non-visual controls. You can use the Add to Repository command
to add the form you are working on to a list of forms available for use in other projects. Finally, you can use the
View as Text command to close the form and open its textual description in the editor. A corresponding
command in the editor local menu (View as Form) will reverse the situation.

Along with specific local menu commands, you can set some form options by using the Tools | Options
command and choosing the Preferences page (up to Delphi 5) or the Designer page (from Delphi 6). This latter
page is shown here:

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 40

The options related to forms refer to grid activation and size. The grid makes it easier to place
components exactly where you want them on the form by “snapping” them to fixed positions and sizes. Without a
grid, it is difficult to align two components manually (using the mouse).

There are two alternatives to using the mouse to set the position of a component: you can either set
values for the Left and Top properties, or you can use the arrow keys while holding down Ctrl. Using arrow keys
is particularly useful for fine-tuning an element’s position. (The Snap to Grid option works only for mouse
operations.) Similarly, by pressing the arrow keys while you hold down Shift, you can fine-tune the size of a
component. If you press Shift+Ctrl+an arrow key, instead, the component will be moved only at grid intervals.

Along with the commands described so far, a form’s local menu offers other commands when particular
components are selected. In some cases, these menu commands correspond to component properties; others
contain particularly useful commands. Table 2.1 lists the commands added to the local menu
of a form when some of the components are selected (the TeeChart, Quick Report and Decision Cube components
add too many commands to list here). Notice that in some cases these actions are also the default action of the
component, the one automatically activated when you double-click on it in the Form Designer.

Table 2.1: Local menu commands added when specific components are selected: [*** not updated
for recent versions of Delphi]

Menu Command Components
Menu Designer MainMenu, PopupMenu

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 41

Query Builder Query (if the Visual Query Builder is available)
Fields Editor Table, Query, StoredProc, ClientDataSet
Explore Table, Query, StoredProc, Database
Define Parameters Query, StoredProc
Database Editor Database
Assign Local Data ClientDataSet
UpdateSQL Editor UpdateSQL
Execute BatchMove
Columns Editor DBGrid
Edit Report Report
ImageList Editor ImageList
New Page Page Control
Next/Previous Page Page Control, NoteBook, TabbedNotebbok
Next/Previous Frame Animate
Insert Object OleContainer
New Button

 New Separator
ToolBar

Properties, About All the ActiveX controls
Action Editor WebDispatcher
ResponseEditor QueryTableProducer, DataSetTableProducer

The Component Palette
When you want to add a new component to the form you are working on, you can click on a component

in one of the pages of the Component palette, and then click on the form to place the new component. On the
form, you can press the left mouse button and drag the mouse to set the position and size of the component at
once, or just click to let Delphi use a default size.

Each page of the palette has a number of components; each component has an icon and a name, which
appears as a “fly-by” hint (just move the mouse on the icon and wait for a second). The hints show the official
names of components, which I’ll use in this book. They are drawn from the names of the classes defining the
component, without the initial T (for example, if the class is TButton, the name is Button).

If you need to place a number of components of the same kind into a form, shift-click on
that component in the palette. Then, every time you click on the form, Delphi adds a new
component of that kind. To stop this operation, simply click on the standard selector (the
arrow icon) on the left side of the Component palette.

If you are temporarily using a mouse-less computer, you can add a component by using the View |
Components List command. Select a component in the resulting list or type its name in the edit window, and then
click on the Add to Form button.

Of course, you can completely rearrange the components in the various pages of the palette, adding new
elements or just moving them from page to page: select Tools | Options and move to the Palette page. In this page
of the dialog box, you can simply drag a component from the Components list box to the Pages list box to move
that component to a different page. It’s not a good idea to move components on the palette too often. If you do,
you’ll probably waste time trying to locate them afterward.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 42

When you have too many pages in the Component palette, you’ll need to scroll them to
reach a component. There is a simple trick you can use in this case: rename the pages
with shorter names, so that all the pages will fit on the screen. Obvious...once you’ve
thought about it.

The Object Inspector
When you are designing a form, you use the Object Inspector to set values of component or form

properties. Its window lists the properties (or events) of the selected element and their values in two resizable
columns. An Object Selector at the top of the Object Inspector indicates the current component and its data type;
and you can use it to change the current selection. The Object Inspector doesn’t list all of the properties of a
component. It includes only the properties that can be set at design-time. As mentioned in Chapter 1, other
properties are accessible only at run-time. To know about all the different properties of a component, refer to the
Help files.

The right column of the Object Inspector allows only the editing appropriate for the data type of the
property. Depending on the property, you will be able to insert a string or a number, choose from a list of options
(indicated by an arrow), or invoke a specific editor (indicated by an ellipsis button). When a property allows only
two values, such as True and False, you can toggle the value by double-clicking on it. If there are many values
available, a double-click will select the next one in the list. If you double-click a number of times, all the values of
the list will appear, but it is easier to select a multiple-choice value using the small combo box. For some
properties, such as Color, you can enter a value, select an element from the list, or invoke a specific editor! Other
properties, such as Font, can be customized either by expanding their sub-properties (indicated by a plus or minus
sign next to the name) or by invoking an editor. In other cases, such as with string lists, the special editors are the
only way to change a property.

The sub-property mechanism is available with sets and with classes. When you expand sub-properties,
each of them has its own behavior in the Object Inspector, again depending on its data type.

You will use the Object Inspector often. It should always be visible when you are editing a form, but it
can also be useful to look at the names of components and properties while you are writing code. For this reason,
the Object Inspector’s local menu has a Stay on Top command, which keeps the Object Inspector window in
front of the Form Designer and the editor.

In Delphi 5 and 6 the features of the Object Inspector have been largely extended, with grouping and hiding or
little-used properties, interface references, showing of read-only properties, and many other features too
complex to discuss here.

The Alignment Palette
The last tool related to form design is the Alignment palette. You can open this palette with the View

menu’s Alignment Palette command. As an alternative, you can choose the components you want to align, and
then issue the Align command from the local menu of the form.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 43

The Alignment palette features a number of commands to position the various controls, center them,
space them equally, and so on. To see the effect of each button, simply move the mouse over the window and
look at the fly-by hints. When I’m designing complex forms, I position the Alignment palette on the far side of
the screen and make sure it always stays in sight by using the Stay on Top command of its local menu.

Writing Code in the Editor
Once you have designed a form in Delphi, you usually need to write some code to respond to some of its

events, as we did in Chapter 1. Every time you work on an event, Delphi opens the editor with the source file
related to the form. You can easily jump back and forth between the Form Designer and the source code editor by
clicking the Toggle Form Unit button on the toolbar, by clicking on the corresponding window, or by pressing the
F12 function key.

The Delphi editor allows you to work on several source code files at once, using a “notebook with tabs”
metaphor. Each page of the notebook corresponds to a different file. You can work on units related to forms,
independent units of Pascal code, and project files; open the form description files in textual format; and even
work on plain text files. You can jump from a page of the editor to the next by pressing the Ctrl+Tab keys (or
Shift+Ctrl+Tab to move in the opposite direction).

When you work with the editor, you should probably expand its window so that you can see as many full
lines of code as possible. A good approach is to size the editor so that it and the Object Inspector are the only
windows that appear on the screen when you are writing code. By having the Object Inspector visible you can
immediately see the names of the design-time properties of the components.

There are a number of environment options that affect the editor, mostly located in the Editor Options,
Editor Display, and Editor Colors pages of the Environment Options dialog box. In the Preferences page, you can
set the editor’s Autosave feature. Saving the source code files each time you run the program can save the day
when your program happens to crash the whole system (something not so rare as you might think). The other
three pages of editor options can be used to set the default editor settings like keystroke mappings, syntax
highlighting features, and font. Most of these options are fairly simple to understand.

The local menu of the edit window has some commands for debugging and others related to the editor
itself, such as those to close the current page, open the file or unit under the cursor, view or hide the message
pane below the window, and invoke the editor options discussed before.

Using Editor Bookmarks
The Delphi editor also lets you set line bookmarks. When you are on a line of the editor, you can press

Ctrl+Shift plus a number key from 0 to 9 to set a new bookmark, which then appears in the small gutter margin of
the editor. Then you can use the Ctrl key plus the number key to jump back at that line of the editor. Pressing the
Ctrl+Shift+number toggles the status of the bookmark, so you can use this combination again to remove it.

Bookmarks are quite useful when you have a long file and you are editing multiple methods at the same
time, or to jump from the class definition to the definition of a method of the class.

Bookmarks have limitation that make them hardly usable. If you set again a given bookmark, the editor
moves it. This might seem reasonable, but is actually a problem: If you create a new bookmark and happen to use
the number of an existing one, by error, the older bookmark will be removed. Another odd behavior is that you

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 44

can add multiple bookmarks on the same line, but you’ll only see the glyph of one of them. The real problem,
however, is that bookmarks are not saved along with the file, nor restored when you reopen it. So they can be
used only for a single editing session.

Code Insight
Delphi editor has several features collectively known as Code Insight. The basic idea of this technology

is to make it easier for both newcomers and experienced programmers to write code. There are four capabilities
that Borland calls Code Insight:

• The Code Completion Wizard allows you to choose the property or method of an object simply by
looking it up on a list, or by typing its initial letters. It also allows you to look for a proper value in an
assignment statement.

• The Code Templates Wizard allows you to insert one of the predefined code templates, such as a
complex statement with an inner begin-end block. You can also easily define new templates.

• The Code Parameter Wizard displays, in a hint or ToolTip window, the data type of a function’s or
method’s parameters while you are typing them.

• The ToolTip Expression Evaluation is a debug-time feature. It shows you the value of the identifier,
property, or expression under the mouse cursor.

I’ll cover the ToolTip Expression Evaluation later in this chapter, while introducing debugging features;
in the next three sections I’ll give you some more details on the other three Code Insight capabilities. You can
enable and disable (or configure) each of these wizards in the Code Insight page of the Environment Options
dialog box.

Code Completion
There are two ways to activate this Wizard. You can simply type the name of an object, such as Button1,

then add the dot, and wait:
Button1.

Delphi will display a list of valid properties and methods you can apply to the object. The time you have
to wait before the list is displayed depends on the Code Completion Delay option, which you can configure in the
Code Insight page.

As an alternative you can type the initial portion of the property or method name, as in Button1.Ca, and
then press Ctrl+SpaceBar to get the list immediately, but this time, the Wizard will try to guess which property or
method you were looking for by looking at the characters you typed. You can also use this key combination in an
assignment statement. If you type:

x :=
and then press Ctrl+SpaceBar, Delphi will show you a list of possible objects, variables, or constants you

can use at this point in the program (that is, in the current scope).
Notice that Delphi determines the elements to show in this list dynamically, by constantly parsing the

code you write in the background. So if you add a new variable to a unit, it will show up in the list.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 45

Code Templates
Unlike the Code Completion Wizard, the Code Templates Wizard must be activated manually. You can

do this by typing Ctrl+J to show a list of all of the templates.
More often, you’ll first type a keyword, such as if or array, and then press Ctrl+J, to activate only the

templates starting with those letters. For some keywords Borland has defined multiple templates, all starting with
the keyword name (such as ifA and ifB). So if you press the keyword and then Ctrl+J, you’ll
get all the templates related to the keyword.

You can also use Code Templates Wizard simply to give a name to a common expression. For example,
if you use the MessageDlg function often, you might want to enter a new Code Template called mess, type a
description, and add then the following text:

MessageDlg ('|',
mtInformation, [mbOK], 0);

Now every time you need to create a message dialog box, you simply type mess and then Ctrl+J, and you
get the full text. The vertical line (or pipe) character indicates the position in the source code where Delphi will
move the cursor after pasting the text. You should choose the position where you want to start typing to edit the
code generated by the template.

As this example demonstrates, Code Templates have no direct correspondence to language keywords, but
are a more general mechanism. Code Templates are saved in the DELPHI32.DCI file, so it should be possible to
copy this file to make your templates available on different machines. There seems to be no easy way to merge
two Code Templates files, and there are no third-party tools yet to add more templates to a machine. Those
enhancements will need to wait until Borland documents the internal structure of the .DCI file.

Code Parameter
The third Code Insight technology I’ll discuss here is Code Parameters, the one I was really hoping for

and probably like best. Previously when I had to call an unfamiliar function I used to type the name, and then
press F1 to jump to the Help system and see its parameters. Now I can simply type the function name, type the
open (left) parenthesis, and the parameter names and types appear immediately on a fly-by hint window.

Notice in this figure that the first parameter appear in boldface type. After you type the first parameter
and a comma, the second parameter will be set in bold, the same with the third, and so on. This is very useful for
functions with many parameters, like some functions of the Window API. Try typing CreateWindow(and you’ll
understand what I mean.

Again, the Code Parameters Wizard works by parsing your code in the background. So if you write the
following procedure at the beginning of the implementation section of a unit:

implementation

procedure ShowInt (X: Integer);
begin

MessageDlg (IntToStr (X),
mtInformation, [mbOK], 0);

end;
you’ll have full information about its parameters when you type ShowInt(later.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 46

Managing Projects
In Delphi you also need to know how to manage project files. In Chapter 1, we saw that you can open a

project file in the editor and edit the file. However, there are simpler ways to change some of the features of a
project. For example, you can use the Project Manager window and Project Options.

The Project Manager
When a project is loaded, you can choose the View | Project Manager command to open a project

window. The window lists all of the forms and units that make up the current project. The Project Manager’s
local menu allows you to perform a number of operations on the project, such as adding new or existing files,
removing files, viewing a source code file or a form, and adding the project to the repository. Most of these
commands are also available in the toolbar of this window.

Setting Project Options
From the Project Manager (or from the Project menu), you can invoke the Project Options dialog. The

first page of Project Options, named Forms, lists the forms that should be created automatically at program
startup (the default behavior) and the forms that are created manually by the program. You can easily move a
form from one list to the other. The next page, Application, is used to set the name of the application and the
name of its Help file, and to choose its icon. Other Project Options choices relate to the Delphi compiler and
linker, version information, and the use of run-time packages.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 47

There are two ways to set compiler options. One is to use the Compiler page of the
Project Options, the other is to set or remove individual options in the source code with
the {$X+} or {$X-} commands, where X is the option you want to set. This second
approach is more flexible, since it allows you to change an option only for a specific
source code file, or even for just a few lines of code.

All of the Project Options are saved automatically with the project, but in a separate file with a DOF
extension. This is a text file you can easily edit. You should not delete this file if you have changed any of the
default options.

Compiling a Project
There are several ways to compile a project. If you run it (by pressing F9 or clicking on the toolbar icon),

Delphi will compile it first. When Delphi compiles a project, it compiles only the files that have changed. If you
select Compile | Build All, instead, every file is compiled, even if it has not changed. This second command is
seldom used, since Delphi can usually determine which files have changed and compile them as required. The
only exception is when you change some project options. In this case you have to use the Build All command to
put the new options into effect.

The project lists the source code files that are part of it, and any related forms. This list is visible both in
the project source and in the Project Manager, and is used to compile or rebuild a project. First, each source code
file is turned into a Delphi compiled unit, a file with the same name as the Pascal source file and the DCU
extension. For example, Unit1.pas is compiled into Unit1.dcu.

When the source code of the project itself is compiled, the compiled units that constitute the project are
merged (or linked) into the executable file, together with code from the VCL library. You can better understand
the compilation steps and follow what happens during this operation if you enable the Show Compiler Progress
option. You’ll find this option on the Preferences page of the Environment Options dialog box, under the
Compiling heading. Although this slows down the compilation a little, the Compile window lets you see which source
files are compiled each time (unless your computer is too fast; Delphi might compile several files per second on a
fast PC).

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 48

Exploring a Compiled Program
Delphi provides a number of tools you can use to explore a compiled program, including the debugger

and the Object Browser.

The Integrated Debugger
Delphi has an integrated debugger with a huge number of features. However, Borland also sells a more

powerful stand-alone debugger, called Turbo Debugger. For nearly all of your debugging tasks, the integrated
debugger works well enough, particularly if you activate the CPU view window. The stand-alone Turbo
Debugger might be useful in a few special cases.

You don’t need to do much to use the integrated debugger. In fact, each time you run a program from
Delphi, it is executed by default in the debugger. This means that you can set a breakpoint to stop the program
when it reaches a specific line of code. For example, open the Hello2 example we created in Chapter 1 and
double-click on the button in the form to jump to the related code. Now set a breakpoint by clicking in the editor
gutter margin, by choosing the Toggle Breakpoint command of the editor local menu, or by pressing F5.

The editor will highlight the line where you’ve placed the breakpoint, showing it in a different color.
Now you can run the program as usual, but each time you press the button, the debugger will halt the program,
showing you the corresponding line of code. You can execute this and the following lines one at a time (that is,
step-by-step), look at the code of the functions called by the code, or continue running the program.

When a program is stopped, you can inspect its status in detail. Although there are many ways to inspect
a value, the simplest approach is the ToolTip Expressions Evaluation. Simply move the mouse over the name of
any variable, and you’ll see its current value in a small hint window.

At times the ToolTip Expressions Evaluation seems not to work. This may happen if the
optimizing compiler has removed some sections of generated code and placed
variables in CPU registers. If you disable the compiler optimizations, you’ll get more
ToolTips.

The Object Browser
Once you have compiled a program, you can run the Object Browser (available with the View | Browser

menu command) to explore it, even if you are not running or debugging it. This tool allows you to see all of the
classes defined by the program (or by the units used directly and indirectly by the program), all the global names
and variables, and so on. For every class, the Object Browser shows the list of properties, methods, and variables
— both local and inherited, private and public. The information displayed in the Object Browser may not mean
much if you’re still not familiar with the Object Pascal language used by Delphi.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 49

Additional Delphi Tools
Delphi provides many other programming tools. For example, the Menu Designer is a visual tool used to

create the structure of a menu. There are also the various Wizards, used to generate the structure of an application
or a new form. Other tools are stand-alone applications related to the development of a Windows application,
such as the Image Editor and WinSight, a “spy” program that lets you see the Windows message flow.

There are several external database tools, such as the Database Desktop and the Database Explorer (some
of which are not available in the lower-level editions of Delphi). A programmer can use other third-party tools to
cover weak areas of Delphi. For example, you can use a full-blown resource editor (such as Borland’s Resource
Workshop), or a tool to generate Help files more easily.

You can also install and use many additional Delphi add-on tools from third-party vendors. You’ll find
demo versions of some of these tools on the companion CD, but there are many others available. Some of the
add-on tools really complement Delphi nicely, and make you more productive.

The Files Produced by the System
As you have seen, Delphi produces a number of files for each project, and you should know what they

are and how they are named. There are basically two elements that have an impact on how files are named: the
names you give to a project and its forms, and the predefined file extensions used by Delphi for the files you
write and those generated by the system.

The great advantage of Delphi over other visual programming environments is that most of the source
code files are plain ASCII text files. We explored Pascal source code, project code, and form description files at
the end of Chapter 1. Now let’s take a minute to look at the structure of options and desktop files. Both types of
files use a structure similar to Windows INI files, in which each section is indicated by a name enclosed in square
brackets. For example, this is a fragment of the HELLO.DOF file of the Hello2 example:
[Compiler]
A=1
B=0
...
[Linker]
MapFile=0
MinStackSize=16384
MaxStackSize=1048576
...
[Directories]
OutputDir=
SearchPath=

In Delphi the option files use the DOF extension, in Kylix the KOF extension (in Delphi 1
they used the OPT extension. These files have different contents and are not fully
compatible.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 50

The initial part of this file, which I’ve omitted, is a long list of compiler options. The same structure is
used by the desktop files, which are usually much longer. It is worth looking at what is stored in these files to
understand their role. In short, a desktop file (.DSK) lists Delphi windows, indicating their position and status.
For example, this is the description of the main window:

[MainWindow]
Create=1
Visible=1
State=0
Left=2
Top=0
Width=800
Height=97

These are some of the sections related to other windows:
[ProjectManager]
[AlignmentPalette]
[PropertyInspector]
[Modules]
[formxxx]
[EditWindowxxx]
[Viewxxx]

Besides environment options and window positions, the desktop file contains a number of history lists
(lists of files of a certain kind), and an indication of the current breakpoints, watches, active modules, closed
modules, and forms.

What’s Next
This chapter presented an overview of the Delphi programming environment, including a number of tips

and suggestions. Getting used to a new programming environment takes some time, particularly if it is a complex
one. I could have devoted this entire book to detailing the Delphi programming environment, but I hope you’ll
agree that describing how to actually write programs is more useful and interesting.

A good way to learn about the Delphi environment is to use the Help system, where you can look up
information about the environment elements, windows, and commands. Spend some time just browsing through
the Help files. Of course, the best way to learn how the Delphi environment works is to use it to write programs.
That’s what Delphi is about. Now we can move on to an important feature of the Delphi environment we have
only mentioned: the Object Repository and the Wizards.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 51

CHAPTER THREE: THE OBJECT REPOSITORY AND
THE DELPHI WIZARDS

• Delphi’s Object Repository
• Reusing existing applications and forms
• The Database Form Wizard
• Other Delphi Wizards
• Configuring the Object Repository

hen you start working on a new application (or simply a new form), you have two choices.
You can start from scratch with a blank application or form, or you can choose a predefined
model from the Object Repository. If you decide to pick an existing model from the Object

Repository, you have even more alternatives. You can make a copy of an existing item (called a template in
Delphi 1), you can inherit from an existing item, or you can use one of the available Wizards.

W
A Wizard is a code generator. (Borland used to call them Experts, but in Delphi 3 the official name has

been changed to Wizards, following Microsoft tradition.) Wizards ask you a number of questions, and use your
answers to create some basic code, following predefined rules. You then start working on a project or a form that
already has some code and components. Usually, the code generated by these tools can be compiled immediately,
and it makes up the basic structure on which you build your program or form.

The purpose of this short chapter is simply to introduce you to the Object Repository and the Delphi
Wizards, and to show you how easy they are to use. We won’t study the code they generate, since that will be the
topic of many examples in the book. From a programming standpoint, the Wizards are really useful. The pitfall is
that you might be tempted to use them without trying to understand what they do. For this reason, in some
examples I’ll build the code manually instead of using the corresponding Wizard.

The Object Repository
Delphi has several menu commands you can use to create a new form, a new application, a new data

module, a new component, and so on. These commands are located in the File menu, and also in other pull-down
menus. What happens if you simply select File | New | Other (from Delphi 6, or File | New in earlier versions)?
Delphi opens the Object Repository (also called the New dialog box). The Object Repository is used to create
new elements of any kind: forms, applications, data modules, libraries, thread objects, components, automation
objects, and more. The Object Repository dialog box has a number of pages:

• The New and ActiveX pages allow you to create many different types of new items. At times
when you create a new item, Delphi asks you the name of a new class and few other things,
in a sort of mini-Wizard.

• The “current project” page (actually you’ll see the name of the project) allows you to inherit
from a form or data module included in your current project. In this page you can create new

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 52

forms or data modules that inherit from those of the current project. The content of this page
depends exclusively on the units included in the current project. Simply create a couple of
forms and then return to this page, and you’ll see that its contents have already changed.

• The Forms, Dialogs, and Data Modules pages allow you to create a new element of these
kinds starting from an existing one or using a Wizard.

• The Projects page allows you to copy the files from an existing project stored in the
Repository, or use the Application Wizard.

• The Multitier, Business, WebSnap, and WebServices pages provide a starting point for using
some of the advanced features found only in the Enterprise edition (and mostly only starting
with Delphi 6)

Use the radio buttons at the bottom of the Object Repository dialog box to indicate that you want to copy
an existing item, inherit from it, or use it directly without making a copy.

The concept of inheritance in object-oriented programming is discussed in Mastering
Delphi. In short, it is a way to add new capabilities to an existing form (or class in general)
without making a full copy. This way, if you make a change in the original form (or class),
the inherited form (or class) will be affected, too.

When you select a Wizard instead of a template, the only available radio button is Copy, meaning you’ll
end up with a new copy, the generated code. Keep in mind that I am discussing the pages of the Object
Repository as they appear in Delphi 6 Enterprise, but different editions and versions of Delphi have fewer or
different pages and items; and you can further customize the Repository, as we will see later on in this chapter.

The Object Repository has a local menu that allows you to sort items in different ways (by
name, by author, by date, or by description) and to show different views (large icons, small
icons, lists, details). This last view is the only one that gives you the description, the author,
and the date of the tool. This information is particularly important when looking at Wizards,
projects, or forms you’ve added to the Repository.

The New Page
The New page of the Object Repository (shown below) allows you to create several new items of the

more commonly used kinds and is often an alternative to a direct menu command. Here is a list of the elements
you can create from this page:

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 53

• Application creates a new blank project (the same as the command File | New | Application).

• Batch File opens a batch file you can include in a project group for automatic processing (to fully
automate a complex build and deploy process).

• CLX Application creates a new blank project based on the CLX library (and on Qt), so that it will
be fully portable to Kylix on the Linux platform (the same as the command File | New | CLX
Application).

• Component creates a new Delphi component after you’ve completed the information requested
by the simple Component Wizard. The same wizard can be activated with the Component | New
Component menu command.

• Console Application

• Control Panel Application

• Control Panel Module

• Data Module creates a new blank data module (the same as the command File | New Data
Module).

• DLL Wizard creates a simple DLL skeleton.

• Form creates a new blank form (the same as the command File | New Form).

• Frame

• Package creates a new Delphi component package. (You can also create a new package when
creating a component.)

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 54

• Project Group

• Resource DLL Wizard

• Service

• Service Application

• Text opens a new ASCII text file in the Delphi editor.

• Thread Object creates a new thread object after asking you to fill in the New Thread Object
dialog box. Multithreading in Windows is introduced in Chapter 25.

• Unit creates a new blank unit, a Pascal source file not connected with a form.

• Web Server Application allows you to create an ISAPI/NSAPI add-in DLL, a CGI stand-alone
executable, a Win-CGI stand-alone executable, an Apache module, or a server application based
on Delphi's Web Debugger. In each case Delphi creates a simple project based on a Web module
(a special type of data module) instead of a form.

• XML Data Binding

[***Many of the descriptions for newer entries are still missing]
As some of the features made available by the Object Repository are quite advanced, it doesn't make

The Forms Page
This page lists predefined forms. Here is a short list of the predefined forms available in Delphi:

• About box is a simple About box.

• Dual list box is a form with two different list boxes, allowing a user to select a number of
elements from one list and move them to the other list by pressing a button. Along with the
components, this form contains a good amount of nontrivial Pascal code.

• QuickReport Labels creates a report form based on the QuickReport component.

• QuickReport List creates another form based on QuickReport, with a different layout.

• QuickReport Master/Detail is a third predefined report form with a more complex structure.

• Tabbed pages is a form based on the Windows PageControl.

Wizards can only be executed. The other forms, by contrast, can be used in multiple ways. You can add
them into a project, inherit from them (in this case the original form will be automatically added to your project),
or use them directly. When you use a form or inherit from one, take care not to make any change on the original
forms in the Repository.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 55

The Dialogs Page
This page is similar to the previous one, but includes forms that are typically used as dialog boxes. Here is the list
of its items:

• Dialog with help is available in two versions. One has the buttons on the right side of the form
(Vertical), and the other has them in the lower portion (Horizontal), as you can see from the
corresponding icons.

• Dialog Wizard is a simple Wizard capable of generating different kinds of dialog boxes with one
or more pages, as we will see later in this chapter.

• Password dialog is a dialog box with a simple edit box for entering a password.

• Reconcile Error Dialog is used in MIDAS or DataSnap applications.

• QuickReport Wizard creates a Print Options dialog box for a report.

• Standard dialog is also available in two versions, again Horizontal and Vertical, with buttons in
different positions.

The Data Modules Page
You already know what a project and a form are, but what is a data module? It is a sort of form that never

appears on screen at run-time and can be used to hold nonvisual components. It is mostly used to implement code
related to database access. This page has only a data module at start-up, Customer Data. If you have several
forms or applications accessing the same data tables and database queries, you can easily define new data
modules and add them to the repository.

The Projects Page
The last page we will look at in this introduction contains project schemes you can use as the starting point for
your own application. These projects often include one or more forms. Here is the list of them:

• Application Wizard is another simple Wizard that allows you some limited choices for the file
structure and other elements of an application.

• MDI Application defines the main elements of a Multiple Document Interface (MDI) program. It
defines a main form for the MDI frame window, with a menu, a status bar, and a toolbar. It also
defines a second form that can be used at run-time to create a number of child windows.

• SDI Application defines a main form with the standard attributes of a modern user interface,
including a toolbar and a status bar, and also a typical About box.

• Win2000 Logo Application defines a sample application with most of the elements required by
Microsoft for an application to get the Windows 2000 compatibility logo. This command
basically creates an SDI application with a RichEdit component in it, and adds the code needed
to make the application mail-enabled.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 56

• Win95 Logo Application defines a sample application with most of the elements required by
Microsoft for an application to get the Windows 95/98 compatibility logo. The application is
similar to the one above.

When you select one of these projects, Delphi asks you to enter the name of an existing or a new
directory. If you indicate a new directory, Delphi will automatically create it.

For example, we can create an SDI project based on the corresponding template. Then we can customize
it, giving it a proper title, removing or adding new components, and writing some code. Some interesting
components are already there, however, and there is even some ready-to-use code to make those components
work properly. The menu and toolbar of the application, can be used to open some dialog boxes. File Open and
File Save dialog boxes are wrapped up in components that are added to the form by the template; the About box
is defined by the template as a second form.
In the simple SdiTemp example, I’ve decided to make just a few limited changes: I’ve entered a new title for the
main form and some text for the labels for the About box (the property to use is Caption in both cases). The result
is the application shown in [***missing figure] and available in the source code.

Delphi Wizards
Besides copying or using existing code, Delphi allows you to create a new form, application, or other

code files, using a Wizard. Wizards (or Experts) allow you to enter a number of options and produce the code
corresponding to your choices.

One of the most important predefined wizards is the Database Form Wizard, which you can activate
using the Database | Form Wizard menu item or the icon in the Forms page of the Object Repository. There are
also some other simple Wizards in Delphi, such as the Application Wizard and the Dialog Wizard. I’ve listed
various other Wizards in the description of the pages of the Object Repository, in the last section.
You can also buy add-on Wizards from third-party tool providers, download one from my web site, or even write
your own Wizard. Add-on Wizards often show up in the Help menu, but it is possible to add new menu items in
other Delphi pull-down menus or install Wizards in various pages of the Object Repository.

The Database Form Wizard
In this section, I’ll show you a quick example of the use of the Database Form Wizard, but I won’t

describe the application we build in detail. In this example, we’ll build a database program using some of the data
already available in Delphi. Note that you have to create a project first, and then start the Database Form Wizard.
So you usually end up with two forms, unless you remove the original form from the project. Fortunately, one of the
Wizard’s options, displayed at the end, lets you select the new form generated by the Wizard as the main form.

1. As soon as you start the Database Form Wizard, you will be presented with a number of choices,
which depend on the options you choose at each step. The first page lets you choose between a simple or a master
detail form, and between the use of tables or queries. Leave the selections as they are by default, and move on by
clicking on the Next button.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 57

• 2. In the next page you can choose an existing database table to work on. In the Drive or Alias Name
combo box, there should be a DBDEMOS alias. After you select this option, a number of Delphi demo
database tables appear in the list. Choose the first, animals.dbf.

• 3. In the third page, you can choose the fields of the selected database table that you want to consider.
To build this first example, choose all of the fields by clicking on the >> button.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 58

•
4. On the next page, you can choose from various layouts. If you choose Vertical, the next page will
ask you the position of the labels. The default option, Horizontal, might do.

• 5. The next page is the last. Leave the Generate a Main Form check box and the Form Only radio
button selected, and click on the Finish button.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 59

You can immediately compile and run the application. The result is a working database application,
which allows you to navigate among many records using the buttons. This specific application (the
DataExp example) even has a graphical field, displaying a bitmap with the current animal.

The output of the generated form is usually far from adequate. In this case, the image area is too small; at
other times the positioning of the controls may not be satisfactory. Of course, you can easily move and resize the
various components placed on the form at design-time.

To make this task easier, you can select the Table component (the one in the upper-left corner of the
form) and toggle its Active property to True. Then the data of the table’s first record will be displayed at design-
time. This is helpful because it allows you to see an example of the length of the field’s text and the size of the
image. Note that the Database Form Wizard generates almost no Pascal code, besides a line used to open the
table when the program starts. The capabilities of the resulting programs stem from the power of the database-
related components available in Delphi.

The Application Wizard
Another interesting (although less powerful) tool is the Application Wizard. You can activate it from the

Projects page of the Object Repository. The Application Wizard allows you to create the skeleton of a number of
different kinds of applications, depending on the options you select.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 60

The first page of this Wizard allows you to add some standard pull-down menus to the program: File,
Edit, Window, and Help. If you select the File menu, the second page will ask you to enter the file extensions the
program should consider. You should enter both a description of the file, such as Text file (*.txt), and the
extension, txt. (You can input several extensions, each with its own description.) These values will be used by the
default File Open and File Save dialog boxes that the Application Wizard will add to the program if you select
the file support option.

Then, if you have selected any of the pull-down menus, the Application Wizard displays a nice visual
tool you can use to build a toolbar. Unfortunately, this tool is not available as a separate editor inside Delphi.
You simply select one of the pull-down menus, and a number of standard buttons corresponding to the typical
menu items of this pull-down menu appear (but only if the menu has been selected on the first page of the
Application Wizard).

To add a new button, select one of them in the graphical list box on the right and press the Insert button.
The new toolbar button will be added at the position of the small triangular cursor. You can move this cursor by
clicking on one of the elements already added to the toolbar. This cursor is also used to indicate a button you
want to remove from the toolbar.

When the toolbar is finished, you can move to the last page. Here you can set several other options, such
as choosing MDI support, adding a status bar, and enabling hints. You can also give a name to the new application
and specify a directory for the source files. The name of the application can be long, but it cannot contain white spaces
(it should be a valid Pascal identifier), and the directory for the application should be an existing directory. To place the
project files in a new directory, choose the Browse button, enter the new path, and the dialog box will prompt you to
create the new directory.

Although it is somewhat bare and it has room for improvement, the Delphi Application Wizard is much more
useful than the predefined application templates for building the first version of an application. One of its biggest
advantages is that you can define your own toolbar. Another advantage is that the Application Wizard generates more
code (and more comments) than the corresponding templates do. The disadvantage of this Wizard is that it generates an
application with a single form. Its MDI support is limited, because no child form is defined, and the generated
application has no About box.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 61

The Dialog Wizard
Delphi’s Dialog Wizard is a simple Wizard provided mostly as a demo, with its own source code. From

the code of this Wizard, in theory you should be able to learn how to build other Wizards of your own. However,
you can still use the Dialog Wizard as a tool to build two kinds of dialog boxes: simple dialog boxes and
multiple-page dialog boxes based on the Windows PageControl component.

If you choose the simple dialog box, the Wizard will jump to the third page, where you can choose the
button layout. If you choose the multiple-page dialog box, an intermediate page will appear to let you input the
text of the various tabs. This Wizard is an alternative to the corresponding form templates of the Object
Repository. Its advantage is that it allows you to input the names of the PageControl tabs directly.

Customizing the Object Repository
Since writing a new wizard is far from simple, the typical way to customize the Object Repository is to

add new projects, forms, and data modules as templates. You can also add new pages and arrange the items on
some of them (not including the New and “current project” pages).

Adding New Application Templates
Adding a new template to Delphi’s Object Repository is as simple as using an existing template to build an
application. When you have a working application you want to use as a starting point for further development of
two or more similar programs, you can save the current status to a template, ready to use later on.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 62

Although Borland calls everything you can put in the Object Repository an object, from an
object-oriented perspective this is far from true. For this reason I call the schemes you can
save to disk for later use templates. Application templates, in particular, do not relate to
objects or classes in any way, but are copied to the directory of your new project. Object
Repository sounds much better than Browse Gallery (the name used in Delphi 1), but
besides the capability to activate form inheritance, there is not much object-oriented in this
tool.

You can add a project to the Repository by using the Project | Add to Repository command, or by using
the corresponding item of the local menu of the Project Manager window. As a very simple example, just to
demonstrate the process, the following steps describe how you can save the slightly modified version of the
default SDI template (shown earlier) as a template:

1. Open the modified SdiTemp example (or any other project you are working on).
2. Select the Project | Add to Repository menu command (or the Add Project to Repository command in

the local menu of the Project Manager window).
3. In the Add to Repository dialog box, enter a title, a description for the new project template, and the

name of the author. You can also choose an icon to indicate the new template or accept the default image.
Finally, choose the page of the Repository where you wish to add the project.

4.: Click on OK, and the new template is added to the Delphi Object Repository.

Now, each time you open the Object Repository, it will include your custom template. If you later
discover that the template is not useful any more, you can remove it. You can also use a project template to make
a copy of an existing project so that you can continue to work on it after saving the original version.

However, there is a simpler way to accomplish this: copy the source files to a new directory and open the
new project. If you do copy the source files, do not copy the DSK file, which indicates the position of the
Windows on the screen. The DSK file holds a list of files open in the editor, using an absolute path. This means
that as soon as you open the new project and start working on it, you may well end up editing the source code
files of the original project and compiling the files of the new version (the project manager stores relative paths).

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 63

This will certainly surprise you when the changes you make in code or in forms seem to have no effect. Simply
deleting the DSK file, or not copying it in the first place, avoids this problem.

The Empty Project Template
When you start a new project, it automatically opens a blank form, too. If you want to base a new project

on one of the form objects or wizards, this is not what you want. To solve this problem, you can add an Empty
Project template to the Gallery.

The steps required to accomplish this are simple:
1: Create a new project as usual.
2: Remove its only form from the project.
3: Add this project to the templates, naming it Empty Project.
When you select this project from the Object Repository, you gain two advantages. You have your

project without a form, and you can pick a directory where the project template’s files will be copied. There is
also a disadvantage—you need to use the File | Save Project As command to give a new name to the project,
since saving the project automatically uses the default name in the template.

Adding New Form Templates to the Object Repository
Just as you can add new project templates to the Object Repository, you can also add new form

templates. Simply move to the form you want to add, right-click on it, and select Add to Repository from the
local menu. In the dialog box that appears (see below), you can choose which form of the current project should
be added to the Repository, and set the title, description, author, page, and icon, as usual. Once you have set these
elements and clicked on OK, the form is added to the proper page of the Object Repository.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 64

This approach is suggested if you have a complex form to make available to other applications and other
programmers. They will be able to use your form as is, make a copy of it, and inherit from it. For this reason,
adding forms to the Repository is far more flexible than adding projects, which can only be copied as the starting
point of a new application.

The Object Repository Options
To further customize the Repository, you can use the Tools | Repository command to open the Object

Repository dialog box. This dialog box is quite easy to use; on the left is the list of current Repository pages and
on the right the list of items in each page, including both templates and Wizards. You can use this dialog to move
repository items to different pages, to add new elements, or to delete existing ones.

You can use the three page-related buttons and the two buttons with arrows below the list of pages to
arrange the structure of the Object Repository, adding new pages, renaming or deleting them, and changing their
order. All these operations affect some of the tabs of the Object Repository itself (other tabs are fixed).

An important element of the Object Repository setup is the use of defaults:
• Use the New Form check box below the list of objects to designate the current form or Wizard as

the default, to be used when a new form is created (File | New | Form). Only one object in the
Object Repository can be used as a default; it is marked with a special symbol placed over its
icon.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 65

• The Main Form check box, instead, is used to indicate the form or Wizard used to create the
main form of a new application (File | New | Application) when no special New Project is
selected (see next bullet). The current Main form is indicated by a second special symbol.

• The New Project check box, available when you select a project object, can be used to mark the
default project that Delphi uses when you issue the File | New | Application command. Also, the
New Project is indicated by its own special symbol.

If no project is selected as New Project, Delphi creates a default project based on the form marked as
Main Form. If no form is marked as the main form, Delphi creates a default project with an empty form.

When you work on the Object Repository, you work with forms and modules saved in the OBJREPOS
subdirectory of the Delphi main directory. At the same time, if you directly use a form or any other object
without copying it, then you end up having some files of your project in this directory. It is important to realize
how the repository works, because if you want to modify a project or an object saved in the repository, the best
approach is to operate on the original files, without copying data back and forth to the Repository.

Installing new DLL Wizards
Technically, new Wizards come in two different forms. Wizards may be part of components or packages,

and in this case are installed the same way you install a component or a package. Other Wizards are distributed as
stand-alone DLLs. In this case you should add the name of the DLL in the Windows Registry under the key:
Software\Borland\Delphi x.0\Experts.

Simply add a new string key under this, choose a name you like (it doesn’t really matter) and use as text
the path and filename of the Wizard DLL. You can look at the entries already present under the Experts key to
see how the path should be entered.

What’s Next
In this short chapter, we have seen how you can start the development of an application by using Delphi

templates and Wizards. You can use one of the predefined application templates or form objects, start the
Database Form Wizard, or use the other Wizards for a fast start with applications, forms, and other objects.
However, I’ll rarely use these templates and Wizards in the rest of the book. With the exception of the Database
Form Wizard, these tools let you build only very simple applications, which you can often put together yourself
in seconds when you are an experienced Delphi programmer. For beginners, Wizards and templates provide a
quick start in code development. But you are not going to remain a beginner, are you?

So with the next chapter we'll start focusing on the use of the actual components and controls available in
Delphi, to build actual applications, even if simple ones. Differently form other books of mine, which focus more
on the foundations, this text proceeds mainly though practical examples.

Notice that the only reason there is no introduction to the use of the language and the core structure of the
VCL, is that because you can find these topics covered in Essential Pascal (for the core language) and
Mastering Delphi (for the OOP features and the VCL architecture).

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 66

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 67

CHAPTER 4: A TOUR OF THE BASIC
COMPONENTS

• Clicking a button or another component
• Adding colored text to a form
• Dragging from one component to another
• Accepting input from the user
• Creating a simple editor
• Making a choice with radio buttons and list boxes
• Allowing multiple selections
• Choosing a value in a range

ow that you’ve been introduced to the Delphi environment and have seen an overview of the
Object Pascal language and the Visual Component Library, we are ready to delve into the central
part of the book: the use of components. This is really what Delphi is about. Visual programming

using components is the key feature of this development environment.
N
The system comes with a number of ready-to-use components. I will not describe every component in

detail, examining each of its properties and methods. If you need this information, you can find it easily in the
Help system. The aim of Part II of this book is to show you how to use some of the features offered by the Delphi
predefined components to build applications. In fact, this chapter and those following will be based heavily on
sample programs. These examples tend to be quite simple — although I’ve tried to make them meaningful — in
order to focus on only a couple of features at a time.

I’ll start by focusing on a number of basic components, such as buttons, labels, list boxes, edit fields, and
other related controls. Some of the components discussed in this chapter are present in the Standard page of the
Delphi Components palette; others are in different pages. I’m not going to describe all the components of the
Standard page, either. My approach will be to discuss, in each chapter, logically related components, ignoring the
order suggested by the pages of the Components palette.

Windows Own Components
You might have asked yourself where the idea of using components for Windows programming came

from. The answer is simple: Windows itself has some components, usually called controls. A control is
technically a predefined window with a specific behavior, some properties, and some methods (although
traditional C language code used to access the predefined components in Windows by sending and receiving
messages). These controls were the first step in the direction of component development. The second step was
probably Visual Basic controls, and the third step is Delphi components.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 68

Actually Microsoft’s third step is its ActiveX controls (an extension of the older OCX
technology), the natural successor of VBX controls. In Delphi you can use both ActiveX
and native components, but if you look at the technology, Delphi components are really
ahead of the ActiveX controls. It is enough to say that Delphi components use OOP to its
full extent, while ActiveX controls do not fully implement the concept of inheritance. With
the recent introduction of the .NET framework, Microsoft has finally followed Borland and
Sun (with Java) with the adoption of a technology that treats components as classes and
vice verse.

Windows 3 had six kinds of predefined controls, generally used inside dialog boxes. They were buttons
(push buttons, check boxes, and radio buttons), static labels, edit fields, list boxes, combo boxes, and scroll bars.
Windows 95 added a number of new predefined components, such as the list view, the status bar, the spin button,
the progress bar, the tab control, and many others. These controls were already used by programmers, who had to
re-implement them each time. Windows 95 developers could for the first time use the standard common controls
provided by the system, and starting with Delphi 3 developers had the advantage of having corresponding easy-
to-use components.

The standard system controls are the basic components of each Windows application, regardless of the
programming language used to write it, and are very well known by every Windows user. Delphi literally wraps
these Windows predefined controls in some of its basic components — including those discussed in this chapter.

Notice that CLX provides components similar to Windows common controls that are portable to Kylix. This is
important as Linux, of course, hasn't got Microsoft's common controls!

Clicking a Button
In the first chapter of this book, we built small applications based on a button. Clicking on that button

caused a “Hello” message to appear on the screen. The only other operation that program performed was moving
the button so that it always appeared in the middle of the form. Since then we’ve seen other examples that used
buttons as a way to perform a given action (using their OnClick event).

Now we are going to build another form with several buttons and change some of their properties at run-
time; in this example, clicking a button will usually change a property of another button. To build the Buttons
program, I suggest you follow the instructions closely at first and then make any changes you want. Of course,
you can read the description in the book and then work on the source files, if you prefer.

The Buttons Example
First, open a new project and give it a name by saving it to disk. I’ve given the name ButtonF.pas to

the unit describing the form and the name Buttons.dpr to the project. Now you can create a number of
buttons, let’s say six.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 69

Instead of selecting the component, dragging it to the form, and then selecting it again to
repeat the operation, you can take a shortcut. Simply select the component by clicking on
the Components palette while holding down Shift. The component will remain selected, as
indicated by a little border around it. Now you can create a number of instances of that
component.

Even if you use the grid behind the form, you might need to use the Edit | Align command to arrange the
buttons properly. Remember that to select all six buttons at a time, you can either drag a rectangle around them or
select them in turn, holding down the Shift key. In this case, it’s probably better to select a column of three
buttons at a time and arrange them.

Now that we have a form with six buttons, we can start to set their properties. First of all, we can give the
form a name (ButtonsForm) and a caption (Buttons). The next step is to set the text, or Caption property, of
each button. Usually, a button’s Caption describes the action performed when a user clicks on it. We want to
follow this rule, adding the number of the button at the beginning of each caption. So if the first button disables
button number four (which is the one on the same row), we can name it 1: Disable 4. Following the same rule,
we can create captions for the other buttons.

For a summary of the properties of the components of this form, you can refer to its textual description:
object ButtonsForm: TButtonsForm

Caption = 'Buttons'
object Button1: TButton

Caption = '&1: Disable 4'
OnClick = Button1Click

end
object Button2: TButton

Caption = '&2: Copy Font to 1'
Font.Color = clBlack
Font.Height = -15
Font.Name = 'Arial'
Font.Style = [fsBold]
ParentFont = False
OnClick = Button2Click

end
object Button3: TButton

Caption = '&3: Enlarge 6'

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 70

OnClick = Button3Click
end
object Button4: TButton

Caption = '&4: Restore Font of 1'
OnClick = Button4Click

end
object Button5: TButton

Caption = '&5: Hide 2'
OnClick = Button5Click

end
object Button6: TButton

Caption = '&6: Shrink'
OnClick = Button6Click

end
end

Notice that every button has an underlined shortcut key, in this case the number of the
button. Simply by placing an ampersand (&) character in front of each caption, as in ‘&1:
Disable 4’, we can create buttons that can be used with the keyboard. Just press a number
below 7, and one of the buttons will be selected, although you won’t see it pressed and
released.

The final step, of course, is to write the code to provide the desired behavior. We want to handle the
OnClick event of each button. The easiest code is that of Button2 and Button4. When you press
Button2, the program copies the font of this button (which is different from the standard font of the other
buttons) to Button1, and then disables itself:

procedure TButtonsForm.Button2Click(Sender: TObject);
begin

Button1.Font := Button2.Font;
Button2.Enabled := False;

end;
Pressing Button4 restores the original font of the button. Instead of copying the font directly, we can

restore the font of the form, using the ParentFont property of the button. The event also enables Button2,
so that it can be used again to change the font of Button1:

procedure TButtonsForm.Button4Click(Sender: TObject);
begin

Button1.ParentFont := True;
Button2.Enabled := True;

end;
To implement the Disable and Hide operations of Button1 and Button5, we might use a Boolean

variable to store the current status. As an alternative, we can decide which operation to perform while checking
the current status of the button — the status of the Enabled property. The two methods use two different
approaches, as you can see in the following code:

procedure TButtonsForm.Button1Click(Sender: TObject);
begin

if not Button4.Enabled then
begin

Button4.Enabled := True;
Button1.Caption := '&1: Disable 4';

end

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 71

else
begin

Button4.Enabled := False;
Button1.Caption := '&1: Enable 4';

end;
end;

procedure TButtonsForm.Button5Click(Sender: TObject);
begin

Button2.Visible := not Button2.Visible;
if Button2.Visible then

Button5.Caption := '&5: Hide 2'
else

Button5.Caption := '&5: Show 2';
end;

You can see the results of this code in the figure above. The last two buttons have unconstrained code.
This means that you can shrink Button6 so much that it will eventually disappear completely:

procedure TButtonsForm.Button3Click(Sender: TObject);
begin

Button6.Height := Button6.Height + 3;
Button6.Width := Button6.Width + 3;

end;

procedure TButtonsForm.Button6Click(Sender: TObject);
begin

Button6.Height := Button6.Height - 3;
Button6.Width := Button6.Width - 3;

end;
It would have been quite easy, in any case, to check the current size of the button and prevent its

reduction or enlargement by more than a certain value.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 72

Clicking the Mouse Button
Up to now we have based the examples on the OnClick event of buttons. Almost every component has

a similar click event. But what exactly is a click? And how is it related to other events, such as OnMouseDown
and OnMouseUp?

First, consider the click. At first sight you might think that to generate a click, a user has to press and
release the left mouse button on the control. This is certainly true, but the situation is more complex. When the
user clicks the left mouse button on a button component, the component is graphically pressed, too. However, if
the user moves the cursor (holding down the left mouse button) outside the button surface, this button will be
released. If the user now releases the left mouse button outside the button area, no effect — no click — takes
place. On the other hand, if the user places the cursor back on the button, it will be pressed again, and when the
mouse button is released, the click will occur. If this is not clear, experiment with a button; any button in any
Windows application will do.

Now to the second question. In Windows, the behavior just described is typical of buttons, although
Delphi has extended it to most components, as well as to forms. In any case, the system generates more basic
events — one each time a mouse button is pressed, and another each time a button is released. In Delphi, these
events are called OnMouseDown and OnMouseUp. Since the mouse has more than one button, these same
events are generated when the user presses any mouse button.

You might want different actions to occur, depending on the mouse button. For this reason, these event
handlers include a parameter indicating which button was pressed. These methods also include another
parameter, indicating whether some special key (such as Shift or Ctrl) has been pressed and, finally, two more
values indicating the x and y positions where the action took place. This is the method corresponding to this event
for a form:

procedure TForm1.FormMouseDown(
Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

Most of the time, we do not need such a detailed view, and handling the mouse-click event is probably
more appropriate.

Adding Colored Text to a Form
Now that you have played with buttons for a while, it’s time to move to a new component, labels. Labels

are just text, or comments, written in a form. Usually, the user doesn’t interact with a label at all — or at least not
directly. It doesn’t make much sense to click on a label (although in Delphi this is technically possible). Keep in
mind, however, that not all of the text you see in a form corresponds to a label. A form (and any other
component) can simply output text on its surface, for example using the TextOut method.

We use labels to provide descriptions of other components, particularly edit fields and list or combo
boxes, because they have no title. If you open a dialog box in any Windows application, you’ll probably see some
text. These are static controls (in Windows terms) or labels (in Delphi terms).

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 73

Windows implements labels as windows of the static class. Delphi, instead,
implements labels as non-windowed, graphical components. This is very important
since it allows you to speed up form creation and save some Windows resources.
However, Delphi also includes a new component that corresponds to the Windows
label, the StaticText component. This component has similar properties and the same
events, and Borland seems to have added it mainly for ActiveX support. We will use
this component in the next example.

Besides using labels for descriptions, we can use instances of this component to improve and add some
color to the user interface of our application. This is what we are going to do in the next example, LabelCo. The
basic idea of this application is to test a couple of properties of the label component at run-time. Specifically, we
want to alter the background color of the label, the color of its font, and the alignment of the text.

The LabelCo Example
The first thing to do is to place a big label in the form and enter some text. Write something long. I

suggest you set the WordWrap property to True, to have several lines of text, and the AutoSize property to
False, to allow the label to be resized freely. It might also be a good idea to select a large font, to choose a color
for the font, and to select a color for the label itself.

To change the font color, background color, and alignment properties of the label at run-time, we can use
buttons. Instead of placing these buttons directly on the form, we can place a Panel component in the form, and
then place the five buttons over (or actually inside) the panel. We need two to change the colors and three more
to select the alignment — left, center, or right. Placing the buttons inside the panel, this last control will become
the Parent component of the buttons: the coordinates of the buttons will be relative to the panel, so that moving
the panel will move the buttons, hiding the Panel will hide the buttons, and so on.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 74

The difference between the Parent and the Owner properties of a component is very
important. The first indicates visual containment (like a button being inside a panel) while
the latter indicates construction and destruction ownership (like a button being owned and
destroyed by a form).

Making the label and the panel child components of the form allows us to align them (something you
cannot do with buttons). Simply set the Align property of the Panel to alTop, and the Align property of the
Label to alClient, and the two components will take up the full client area of the form. What’s interesting is
that when we resize the form, the two components will adjust their size and position correspondingly. Notice, by
the way, that the StaticText component has no Align property.

The last component we have to place on the form is a ColorDialog component (you can find it in the
Dialogs page of the Components palette). This component invokes the standard Windows Color dialog box. The
resulting form is detailed in the following listing:

object ColorTextForm: TColorTextForm
Caption = 'Change Color and Alignment'
object Label1: TLabel

Align = alClient
Alignment = taCenter
Caption = 'Push the buttons...' // omitted
Color = clYellow
Font.Color = clNavy
Font.Height = -40
Font.Name = 'Arial'
WordWrap = True

end
object Panel1: TPanel

Align = alTop
object BtnFontColor: TButton...
object BtnBackColor: TButton...
object BtnLeft: TButton...
object BtnCenter: TButton...
object BtnRight: TButton...

end
object ColorDialog1: TColorDialog...

end

The two buttons used to change the color will display a dialog box, instead of performing
an action directly. For this reason at the end of their Caption there is an ellipsis (...),
which is the standard Windows convention for button and menu items to indicate the
presence of a dialog box.

Now it’s time to write some code. The click methods for the three alignment buttons are very simple. The
program has to change the alignment of the label, as in:

procedure TColorTextForm.BtnLeftClick(Sender: TObject);
begin

Label1.Alignment := taLeftJustify;
end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 75

The other two methods should use the values taCenter and taRightJustify instead of
taLeftJustify. You can find the names of these three choices in the Alignment property of the label, in
the Object Inspector.

Writing code to change the color is a little more complex. In fact, we can provide a new value for the
color, maybe choosing it from a list with a series of possible values. We might solve this problem, for example,
by declaring an array of colors, entering a number of values, and then selecting a different element of the array
each time. However, a more professional solution needs even less code: using the Windows standard dialog box
to select a color.

The Standard Color Dialog Box
To use the standard Color dialog box, move to the Dialogs page of the Delphi Components palette, select

the ColorDialog component, and place it anywhere on the form. The position has no effect, since at run-time this
component is not visible inside the form. Now we can use the component, writing the following code:

procedure TColorTextForm.BtnFontColorClick(Sender: TObject);
begin

ColorDialog1.Color := Label1.Font.Color;
if ColorDialog1.Execute then

Label1.Font.Color := ColorDialog1.Color;
end;

The three lines in the body of the procedure have the following meanings: with the first, we select the
background color of the label as the initial color displayed by the dialog box; with the second, we run the dialog
box; with the third, the color selected by the user in the dialog box is copied back to the label. We do this last
operation only if the user closes the dialog box by pressing the OK button (in which case the Execute method
returns True). If the user presses the Cancel button (and Execute returns False), we skip this last statement.
To change the color of the label’s text, we write similar code, referring this time to the Label1.Font.Color
property. (The complete source code for the form LabelCo example is on the CD in the file LABELF.PAS.) You
can see the Color dialog box in action in the figure below. This dialog box can also be expanded by clicking on
the Define Custom Colors button.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 76

Dragging from One Component to Another
Before we try out other Delphi components, it’s helpful to examine a particular technique: dragging. The

dragging operation is quite simple and is increasingly common in Windows. In Windows you can drag files and
programs from a folder to another, drop them on the desktop, or perform similar dragging operations on files and
folders with the Windows Explorer. You usually perform this operation by pressing the mouse button on one
component (or window) and releasing it on another component (or window). When this operation occurs, you can
provide some code, usually for copying a property, a value, or something else to the destination component.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 77

As an example, consider the form in the figure above. There are four color labels, with the name of each
color as text, and a destination label, with some descriptive text. Actually the destination label is implemented
with a StaticText component. This component has a special value for the Border property, sbsSunken, with a
lowered effect. A similar capability is not available for plain labels. The aim of this example, named Dragging, is
to be able to drag the color from one of the labels on the left to the static text, changing its color accordingly. The
components have very simple properties, as the following textual description of the form summarizes:

object DraggingForm: TDraggingForm
Caption = 'Dragging'
Font.Color = clBlack
Font.Height = -16
Font.Name = 'Arial'
Font.Style = [fsBold]
object LabelRed: TLabel

Alignment = taCenter
AutoSize = False
Caption = 'Red'
Color = clRed
DragMode = dmAutomatic

end
object LabelAqua: TLabel...
object LabelGreen: TLabel...
object LabelYellow: TLabel...
object StaticTarget: TStaticText

Alignment = taCenter
AutoSize = False
BorderStyle = sbsSunken
Caption = 'Drag colors here to change the color'
Font.Height = -32
OnDragDrop = StaticTargetDragDrop
OnDragOver = StaticTargetDragOver

end
end

After preparing the labels by supplying the proper values for the names and caption, as well as a
corresponding color, you have to enable dragging. You can do this by selecting the value dmAutomatic for the
DragMode property of the four labels on the left and responding to a couple of events in the destination label.

As an alternative to the automatic dragging mode, you might choose the manual dragging
mode. This is based on the use of the BeginDrag and EndDrag methods. An alternative
approach is to handle dragging manually, simply by providing a handler for events related
to moving the mouse and pressing and releasing mouse buttons.

The Code for the Dragging Example
The first event I want to consider is OnDragOver, which is called each time you are dragging and move

the cursor over a component. This event indicates that the component accepts dragging. Usually, the event takes

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 78

place after a determination of whether the Source component (the one that originated the dragging operation) is
of a specific type:

procedure TDraggingForm.StaticTargetDragOver(
Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);

begin
Accept := Source is TLabel;

end;
This code accepts the dragging operation, activating the corresponding cursor, only if the Source object

is really a Label component. Notice the use of the is dynamic type checking operator. The second method we
have to write corresponds to the OnDragDrop event:

procedure TDraggingForm.StaticTargetDragDrop(
Sender, Source: TObject; X, Y: Integer);

begin
StaticTarget.Color := (Source as TLabel).Color;

end;
To read the value of the Color property from the Source object, we need to cast this object to the

proper data type, in this case TLabel. We have to perform a type conversion — technically speaking, a type
downcast (a typecast from a base class to a derived class, down through the hierarchy). A type downcast is not
always safe. In fact, the idea behind this cast is that we receive the parameter Source of type TObject, which
is really a label, and want to use it as a TLabel object, where TLabel is a class derived fromTObject.
However, in general, we face the risk of down-casting to TLabel an object that wasn’t originally a label but,
say, a button. When we start using the button as a label, we might have run-time errors.

In any case, when we use the as typecast, a type check is performed. Had the type of the Source object
not been TLabel, an exception would have been raised. In this particular case, however, we haven’t much to
worry about. In fact, the OnDragDrop event is received only when the Accept parameter of the
OnDragOver method is set to True, and we make this only if the Source object really is a TLabel.

Accepting Input from the User
We have seen a number of ways a user can interact with the application we write using a mouse: mouse

clicks, mouse dragging, and so on. What about the keyboard? We know that the user can use the keyboard instead
of the mouse to select a button by pressing the key corresponding to the underlined letter of the caption (if any).

Aside from some particular cases, Windows can handle keyboard input directly. Defining handlers for
keyboard-related events isn’t a common operation, anyway. In fact, the system provides ready-to-use controls to
build edit fields and a simple text editor. Delphi has several slightly different components in this area: Edit, MaskEdit,
Memo, RichText, and the related data-aware controls. The two basic components are Edit and Memo.

An Edit component allows a single line of text and has some specific properties, such as one that allows
only a limited number of characters or one that shows a special password character instead of the actual text. A
Memo component, as we will see in a while, can host several lines of text.

Our first example of the Edit component, named Focus, will demonstrate a feature common to many
controls, the input focus. In Windows, it’s fairly simple to determine which is the active main window: it is in
front of the other windows, and the title bar is a different color. It is not as easy to determine which window (or
component) has the input focus. If the user presses a key, which component is going to receive the corresponding

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 79

keyboard input message? It can be the active window, but it can also be one of its controls. Consider a form with
several edit fields. Only one has the input focus at a given time. A user can move the input focus by using Tab or
by clicking with the mouse on another component.

Handling the Input Focus
What’s important for our example is that each time a component receives or loses the input focus, it

receives a corresponding event indicating that the user either has reached (OnEnter) or has left (OnExit) the
component. So we can add some methods to the form to take control over the input focus and display this
information in a label or a status bar.

Besides three edit boxes, the form has also some labels indicating the meaning of the three edit fields
(First name, Last name, and Password). For the output of the status information I’ve used a specific Windows
common control, the StatusBar, but using a label or a panel would have had a similar effect. In fact, you can use
the StatusBar component as a single-line output tool, by setting its SimplePanel property to True. Here is a
summary of the properties for this example:

object FocusForm: TFocusForm
Caption = 'Focus'
object Label1: TLabel

Caption = '&First name:'
FocusControl = EditFirstName

end
object Label2: TLabel

Caption = '&Last name:'
FocusControl = EditLastName

end
object Label3: TLabel

Caption = '&Password:'
FocusControl = EditPassword

end
object EditFirstName: TEdit

TabOrder = 0
OnEnter = EditFirstNameEnter

end
object EditLastName: TEdit

TabOrder = 1

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 80

OnEnter = EditLastNameEnter
end
object EditPassword: TEdit

PasswordChar = '*'
TabOrder = 2
OnEnter = EditPasswordEnter

end
object ButtonCopy: TButton

Caption = '&Copy Last Name to Title'
TabOrder = 3
OnClick = ButtonCopyClick
OnEnter = ButtonCopyEnter

end
object StatusBar1: TStatusBar

SimplePanel = True
end

end
As you can see, the form also contains a button we can use to copy the text of the LastNameEdit to

the form’s caption. This is just an example of how to work with text entered in an edit box. As you can see in the
following code, before using the Text property of an edit box, it’s a good idea to test whether the user has
actually typed something or if the edit field is still empty:

procedure TFocusForm.ButtonCopyClick(Sender: TObject);
begin

if EditLastName.Text <> '' then
FocusForm.Caption := EditLastName.Text;

end;
Now we can move to the most interesting part of the program. We can write a comment in the status bar

each time the focus is moved to a different control.

Displaying text in the status bar as the focus moves from control to control is a good way
to guide the user through the steps of an application.

To accomplish this, we need four methods, one for each of the Edit components and one for the button,
referring to the OnEnter event. Here is the code of one of the methods (the other three event handlers are very
similar):

procedure TFocusForm.EditFirstNameEnter(Sender: TObject);
begin

StatusBar1.SimpleText := 'Entering the first name...';
end;

You can test this program with the mouse or use the keyboard. If you press the Tab key, the input focus
cycles among the Edit components and the button, without involving the labels. To have a proper sequence, you
can change the TabOrder property of the windowed component. You can change this order either by entering a
proper value for this property in the Object Inspector or (much better and easier) by using the Edit Tab Order
dialog box, which can be called using the Tab Order command on the form’s local menu. If you open this dialog
box for the Focus example. Notice that the status bar is listed but you cannot actually move onto it using the Tab
key.

A second way to select a component is to use a shortcut key. It is easy to place a shortcut key on the
button, but how can you jump directly to an edit box? It isn’t possible directly (the Text of the edit box changes

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 81

as a user types), but there is an indirect way. You can add the shortcut key — the ampersand (&) — to a label,
then set the FocusControl property of the label to the corresponding Edit component.

Since Windows 95, the edit controls automatically have a local menu displayed when
the user presses the right mouse button over them. Although you can easily customize
such a menu in Delphi (as we will see in the next chapter), it is important to realize that
this is standard behavior in the system.

A Generic OnEnter Event Handler
The problem with this code is that we have to write four different OnEnter event handlers, copying four

strings to the text of the StatusBar component. To add more edit boxes to the example, you would need to add
more event handlers, copying the code over and over. And if you wanted to provide a slightly different output
(for example, by changing the output of the StatusBar allowing for multiple panels), you would need to change
the code many times.

The alternative solution is to write a single event handler for the OnEnter event of each edit box (and
the button, too). We simply need to store the message for the status bar in a property, then refer to this property
for the Sender object. A good technique is to use the Hint property, which is actually designed for providing
descriptions to the user.

Simply store the proper messages in the Hint property of the edit boxes and of the button, then remove
the current OnEnter event handler, and install this method for each of them:

procedure TFocusForm.GlobalEnter(Sender: TObject);
begin

StatusBar1.SimpleText := (Sender as TControl).Hint;
end;

Notice you cannot write Sender as TEdit because the control might be a button as well. The
solution is to typecast to a common ancestor class of TButton and TEdit, which defines the Hint property, as
you can see in the code above.

Entering Numbers
We saw in the previous example that it is very easy to use an Edit component to ask the user to input

some text, although it must be limited to a single line. In general, it’s quite common to ask users for numeric
input, too. To accomplish this, you can use the MaskEdit component (in the Additional page of the Components
palette) or simply use an Edit component and then convert the input string into an integer, using the standard
Pascal Val procedure or the Delphi IntToStr function.

This sounds good, but what if the user types a letter when a number is expected? Of course, these
conversion functions return an error code, so we can use it to test whether the user has really entered a number.
The second question is, when can we perform this test? Maybe when the value of the edit box changes, when the
component loses focus, or when the user clicks on a particular button, such as the OK button in a dialog box. As
you’ll see, not all of these techniques work well.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 82

There is another, radically different, solution to the problem of allowing only numerical input in an edit
box. You can look at the input stream to the edit box and stop any non-numerical input. This technique is not
foolproof (a user can always paste some text into an edit box), but it works quite well and is easy to implement.
Of course, you can improve it by combining it with one of the other techniques.

The next example, Numbers (see the form in the following figure), shows some of the techniques you can
use to handle numerical input with an Edit component, so you can compare them easily. This example is meant as
an exercise to discuss keyboard input and the input focus. To handle numerical input in an application you’ll
generally use specific components, as the SpinEdit or the UpDown controls available in Delphi. We will see an
example of the use of another even more sophisticated control for keyboard input, the MaskEdit component.

In this example we’re going to compare the effect of testing the input at different stages. First of all, build
a form with five edit fields and five corresponding labels, describing in which occasion the corresponding Edit
component checks the input. The form also has a button to check the contents of the first edit field. The contents
of the first edit box are checked when the Check button is pressed. In the handler of the OnClick event of this
button, the text is first converted into a number, using the Val procedure, which eventually returns an error code.
Depending on the value of the code, a message is shown to the user:

procedure TNumbersForm.CheckButtonClick(Sender: TObject);
var

Number, Code: Integer;
begin

if Edit1.Text <> '' then
begin

Val (Edit1.Text, Number, Code);
if Code <> 0 then
begin

Edit1.SetFocus;
MessageDlg ('Not a number in the first edit',

mtError, [mbOK], 0);
end
else

MessageDlg ('OK, the number in the first edit box is' +
IntToStr (Number), mtInformation, [mbOK], 0);

end;
end;

If an error occurs, the application moves the focus back to the edit field before showing the error message
to the user, thus inviting the user to correct the value. Of course, in this sample application a user can ignore this
suggestion and move to another edit field.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 83

The same kind of check is made on the second edit field when it loses the focus. In this case, the message
is displayed automatically, but only if an error occurs. Why bother the user if everything is fine? The code here
differs from that of the first edit field; it makes no reference to the Edit2 component but always refers to the
generic Sender control, making a safe typecast. To indicate the number of each button, I’ve used the Tag
property, entering the number of the edit control.

As you can see in the following listing, instead of casting the Sender parameter to the
TEdit class several times in the same method, it is better to do this operation once,
saving the value in a local variable of the TEdit type. The type checking involved with
these casts, in fact, is quite slow.

This method is a little more complex to write, but we will be able to use it again for a different
component. Here is its code:

procedure TNumbersForm.Edit2Exit(Sender: TObject);
var

Number, Code: Integer;
CurrEdit: TEdit;

begin
CurrEdit := Sender as TEdit;
if CurrEdit.Text <> '' then
begin

Val (CurrEdit.Text, Number, Code);
if Code <> 0 then
begin

CurrEdit.SetFocus;
MessageDlg ('The edit field number ' +

IntToStr (CurrEdit.Tag) + ' does not have a valid number',
mtError, [mbOK], 0);

end;
end;

end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 84

Since Delphi 2, this code produces a warning message (a hint) when compiled, because
the Number variable is not used after a value has been assigned to it. To avoid these
hints, you can ask the compiler to disable its generation inside a specific method using the
$HINTS compiler directive. Simply write {$HINTS OFF} before the method and {$HINTS
ON} after it, as I’ve done in the source code of this example.

The third Edit component makes a similar test each time its content changes (using the OnChange
event). Although we have checked the input on different occasions — using different events — the three
functions are very similar to each other. The idea is to check the string once the user has entered it.

For the fourth Edit component, I want to show you a completely different technique. We are going to
make a check before the Edit even knows that a key has been pressed. The Edit component has an event,
OnKeyPress, that corresponds to the action of the user. We can provide a method for this event and test
whether the character is a number or the Backspace key (which has a numerical value of 8, so we can refer to it
as the character #8). If not, we change the value of the key to the null character (#0), so that it won’t be
processed by the edit control, and produce a little warning sound:

procedure TNumbersForm.Edit4KeyPress(
Sender: TObject; var Key: Char);

begin
// check if the key is a number or backspace
if not (Key in ['0'..'9', #8]) then
begin

Key := #0;
Beep;

end;
end;

The fourth Edit component accepts only numbers for input, but it is not foolproof. A user can copy some
text to the Clipboard and paste it into this Edit control with the Shift+Ins key combination (but not using Ctrl+V),
avoiding any check. To solve this problem, we might think of adding a check for a change to the contents, as in
the third edit field, or a check on the contents when the user leaves the edit field, as in the second component.
This is the reason for the fifth, Foolproof edit field: it uses the OnKeyPress event of the fourth edit field, the
OnChange method of the third, and the OnExit event of the second, thus requiring no new code.

To reuse an existing method for a new event, just select the Events page of the Object Inspector, move to
the component, and instead of double-clicking to the left of the event name, select the button in the combo box at
the right. A list of names of old methods compatible with the current event — having the same number of
parameters — will be displayed.

If you select the proper methods, the fifth component will combine the features of the third and the
fourth. This is possible because in writing these methods, I took care to avoid any reference to the control to
which they were related. The technique I used was to refer to the generic Sender parameter and cast it to the
proper data type, which in this case was TEdit. As long as you connect a method of this kind to a component of
the same kind, no problem should arise. Otherwise, you should make a number of type checks (using the is
operator), which will probably make the code more complex to read. My suggestion is to share code only
between controls of the same kind.

Notice also that to tell the user which edit box has incorrect text, I’ve added to each Edit component a
value for the Tag property, as I mentioned before. Every edit box has a tag with its number, from 1 to 5.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 85

Sophisticated Input Schemes
In the last example, we saw how an Edit component can be customized for special input purposes. The

components could really accept only numbers, but handling complex input schemes with a similar approach is
not straightforward. For this reason, Borland has supplied a ready-to-use masked edit component, an edit
component with an input mask stored in a string.

For example, to handle numbers of no more than five digits, we can set the EditMask property to
99999. (The character 9 stands for non-compulsory digit; refer to the Delphi documentation for the meaning of
the various characters and symbols in the edit mask.) I suggest that you don’t enter a string directly in this
property, but instead always open the associated editor by clicking on the small ellipses button. The Input Mask
editor has a test window and includes sample masks for commonly used input values.

Notice that the Input Mask editor allows you to enter a mask, but it also asks you to indicate a character
to be used as a placeholder for the input and to decide whether to save the literals present in the mask, together
with the final string. For example, you can choose to have the parentheses around the area code of a phone
number only as an input hint or to save them with the string holding the resulting number. These two entries in
the Input Mask editor correspond to the last two fields of the mask (separated, by default, with semicolons).

To see more default input masks, you can press the Masks button, which allows you to open a mask file.
The predefined files hold standard codes grouped by country. For example, if you open the Italian group, you can
find the taxpayer number (or fiscal code, which is used like social security numbers in the U.S.). This code is a
complex mix of letters and numbers (including the consonants representing name, birth date, area code, and
more), as its mask demonstrates:

LLLLLL00L00L000L
In this kind of code, L stands for a letter and 0 for a number. While you can look these up in the Help

file, there is a summary of these codes in the following Mask1 example.
The form of this example includes a MaskEdit and an Edit component. The Edit is used to change the

EditMask property of the first one at run-time. To accomplish this, I’ve just written a couple of lines of code to
copy the text of the property into the edit box at the beginning (the OnCreate event) and reverse the action each
time the plain edit box changes (Edit1Change):

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 86

procedure TForm1.FormCreate(Sender: TObject);
begin

Edit1.Text := MaskEdit1.EditMask;
end;

procedure TForm1.Edit1Change(Sender: TObject);
begin

MaskEdit1.EditMask := Edit1.Text;
end;

The form also has a list box with the description of the most important codes used to build the mask.

Creating a Simple Editor
Edit components can handle a limited amount of text, and only on a single line. If you need to accept

longer text input, you should use the Memo component. A Memo component is like an Edit component, but it can
span several lines, contain scroll bars to move through the text, and contain more text.

The easiest way to use a Memo is as a text editor, as you’ll see in the next example, Notes. The idea is to
implement an editor covering all of the window (or form) which contains it, to resemble Windows Notepad. The
only other feature we will implement is to give the user the option of choosing the font for the editor.

Both parts are very easy to implement. Create a new project and place a Memo component on the form.
Delete its text, remove the border, and set the Alignment property to alClient, so that it will always cover
the whole client area — the internal surface — of the form. Also add both scroll bars, horizontal and vertical,
selecting the value ssBoth for the memo’s ScrollBars property. Here is the summary (and the design time
image of the form):

object NotesForm: TNotesForm
Caption = 'Notes'
object Memo1: TMemo

Align = alClient
BorderStyle = bsNone
Font.Height = -19
Font.Name = 'Times New Roman'
ScrollBars = ssBoth
OnDblClick = Memo1DblClick

end
object FontDialog1: TFontDialog...

end

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 87

The Font Dialog Box
The second portion of the program involves the font. In the same way we used the standard Color dialog

box in a previous example, we can use the standard Font selection dialog box provided by Windows. Just move
to the Dialogs page of the Components palette and select the FontDialog component. Place it anywhere on the
form, and add the following code when the user double-clicks inside the Memo:

procedure TNotesForm.Memo1DblClick(Sender: TObject);
begin

FontDialog1.Font := Memo1.Font;
if FontDialog1.Execute then

Memo1.Font := FontDialog1.Font;
end;

This code copies the current font to the corresponding property of the dialog component so it will be
selected by default. Then it executes the dialog box. At the end, the Font property will contain the font the user
selected. If the user presses the OK button, the third line of the above code copies the font back to the Memo.

This program is more powerful than it appears at first glance. For example, it allows copy and paste
operations using the keyboard — this means you can copy text from your favorite word processor — and can
handle the color of the font. Why not use it to place a big and colorful message on your screen?

Creating a Rich Editor
Although you can choose a font in the Notes program, all of the text you have written will have the same

font. Windows has a control that can handle the Rich Text Format (RTF). A Delphi component, RichEdit,
encapsulates the behavior of this standard control.

You can find an example of a complete editor based on the RichEdit component among the examples that
ship with Delphi. (The example is named RichEdit, too). Here, we’ll only change the previous program slightly
by replacing the Memo component with a RichEdit, and allow a user to change the font of the selected portion of
the text, not the whole text.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 88

The RichNote example has a RichEdit component filling its client area. However, the component has no
double-click event, so I added a button to select the font and placed it in a panel aligned to the top of the form,
making a very simple toolbar. Here is the textual description of some of the properties of the three components:

object RichEdit1: TRichEdit
Align = alClient
HideScrollBars = False
ScrollBars = ssBoth

end
object Panel1: TPanel

Align = alTop
object Button1: TButton

Caption = '&Font...'
end

end
Notice the caption of the button, which has an ampersand for the shortcut key, and an ellipsis at the end

to indicate that pressing it will open a dialog box. When the user clicks on the button, if some text is selected, the
program shows the standard Font dialog box using the default font of the RichEdit component as the initial value.
At the end, the selected font is copied to the attributes of the current selection. The DefAttributes and
SelAttributes properties of the RichEdit component are not of the TFont type, but they are compatible, so
we can use the Assign method to copy the value:

procedure TForm1.Button1Click(Sender: TObject);
begin

if RichEdit1.SelLength > 0 then
begin

FontDialog1.Font.Assign(RichEdit1.DefAttributes);
if FontDialog1.Execute then

RichEdit1.SelAttributes.Assign(FontDialog1.Font);
end
else

ShowMessage ('No text selected');
end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 89

The RichEdit component has other attributes related to fonts and paragraph formatting. We will use this
component in further examples of the book; however, the simple code above is enough to let users produce much
more complex output than the Memo component allows.

Making Choices
There are two standard Windows controls that allow the user to choose different options. The first is the

check box, which corresponds to an option that can be selected freely (unless it has been disabled). The second
control is the radio button, which corresponds to an exclusive selection. For example, if you see two radio
buttons with the labels A and B, you can select A or select B, but not both of them at the same time. The other
characteristic of a multiple choice is that you must check one of the radio buttons.

If the difference between check boxes and radio buttons is still not clear, an example might help you. The
example has three check boxes to select the style Bold, Italic, or Underlined, and three radio buttons to choose a

font (Times New Roman, Arial, or Courier). There is also a memo field with some text to show the effect of the
user selections immediately.

The difference between the use of the check boxes and the radio buttons should be obvious. The text
might be bold and italic at the same time, but it cannot be Arial and Courier at once. A user must choose only one
font (and cannot choose none) but can select each of the styles independently from the other two (including no
style at all).

This program requires some simple code. Each time the user clicks on a check box or radio button, we
have to create a corresponding action. For the text styles, we have to look at the Check property of the control
and add or remove the corresponding element from the memo’s Font property Style set:

procedure TForm1.CheckBoldClick(Sender: TObject);
begin

if CheckBold.Checked then
Memo1.Font.Style := Memo1.Font.Style + [fsBold]

else

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 90

Memo1.Font.Style := Memo1.Font.Style - [fsBold];
end;

The other two check boxes have similar code for their OnClick events. The basic code for the radio
buttons is even simpler since you cannot deselect a radio button by clicking on it:

procedure TForm1.RadioTimesClick(Sender: TObject);
begin

Memo1.Font.Name := 'Times New Roman';
end;

Grouping Radio Buttons
Radio buttons represent exclusive choices. However, a form might contain several groups of radio

buttons. Windows cannot determine by itself how the various radio buttons relate to each other. The solution,
both in Windows and in Delphi, is to place the related radio buttons inside a container component. The standard
Windows user interface uses a group box control to hold the radio buttons together, both functionally and
visually. In Delphi, this control is implemented in the GroupBox component. However, Delphi has a second,
similar component that can be used specifically for radio buttons: the RadioGroup component. A RadioGroup is a
group box with some radio button inside it.

Using the radio group is probably easier than using the group box, but I’ll use the more traditional
approach to show you the code you can write to work with controls that have been placed inside another
control. The RadioGroup component can automatically align its own internal radio buttons, and you can easily
add new choices at run-time. You can see the differences between the two approaches in the next example.

The rules for building a group box with radio buttons are very simple. Place the GroupBox component in
the form, then place the radio buttons in the group box. The GroupBox component contains other controls and is
one of the container components used most often, together with the Panel component. If you disable or hide the
group box, all the controls inside it will be disabled or hidden.

You can continue handling the individual radio buttons, but you might as well navigate through the array
of controls owned by the group box. As discussed in the last chapter, the name of this property referring to this
array of controls is Controls. Another property, ControlCount, holds the number of elements. These two
properties can be accessed only at run-time.

The Phrases1 Example
If you’ve ever tried to learn a foreign language, you probably spent some time repeating the same silly

and useless phrases over and over. Probably the most typical, when you learn English, is the infamous “The book
is on the table.” To demonstrate radio buttons, the Phrases1 example creates a tool to build such phrases by
choosing among different available options.

This form is quite complex. If you rebuild it, remember that you must place the GroupBox components
first and the radio buttons later. After doing this, you have to enter a proper caption for each element. The last
selection is based on a radio group component, instead of a group box holding some radio buttons (as you can see
in the textual description of the form below). In this case you create the options by entering a list of values in the
Items property.

Remember that you also need to add a label, select a large font for it, and enter text corresponding to the
radio buttons that are checked at design-time. This is an important point: When you place some radio buttons in a

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 91

form or in a group box, remember to check one of the elements at design-time. One radio button in each group
should always be checked, and the ItemIndex property of the radio group, indicating the current selection,
should have a proper value.

Here is the textual description of the form with a summary of this information:
object Form1: TForm1

Caption = 'Phrases'
object Label1: TLabel

Width = 243
Caption = 'The book is on the table'
Font.Height = -21
Font.Name = 'Arial'
Font.Style = [fsBold]

end
object GroupBox1: TGroupBox

Caption = 'First Object'
object RadioBook: TRadioButton

Caption = 'The book'
Checked = True
OnClick = ChangeText

end
object RadioPen: TRadioButton

Caption = 'The pen'
OnClick = ChangeText

end
object RadioPencil: TRadioButton...
object RadioChair: TRadioButton...

end
object GroupBox2: TGroupBox

Caption = 'Position'
object RadioOn: TRadioButton

Caption = 'on'
Checked = True
OnClick = ChangeText

end

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 92

object RadioUnder: TRadioButton...
object RadioNear: TRadioButton...

end
object RadioGroup1: TRadioGroup

Caption = 'Second Object'
Items.Strings = (

'the table'
'the big box'
'the carpet'
'the computer')

OnClick = ChangeText
end

end
Now we have to write some code so that when the user clicks on the radio buttons, the phrase changes

accordingly. There are different ways to do this. One is to follow the same approach as in the last example,
providing a method for each button’s OnClick event. Then we need to store the various portions of the phrase
in some of the form’s variables, change the portion corresponding to that button, and rebuild the whole phrase.

An alternative solution is to write a single method that looks at which buttons are currently checked and
builds the corresponding phrase. This single method must be connected to the OnClick event of every radio
button and of the RadioGroup component, a task we can easily accomplish. Select each of the radio buttons on
the form (clicking on each one while you hold down the Shift key) and enter the name of the method in the
Object Inspector. Since the method used to compute the new phrase doesn’t refer to a specific control, you might
name it yourself, simply entering a name in the second column of the Object Inspector next to the OnClick
event. Here is the code of this single complex method:

procedure TForm1.ChangeText(Sender: TObject);
var

Phrase: string;
I: integer;

begin
{look at which radio button is selected
and add its text to the phrase}
for I := 0 to GroupBox1.ControlCount - 1 do

if (GroupBox1.Controls[I] as TRadioButton).Checked then
Phrase := (GroupBox1.Controls[I] as TRadioButton).Caption;

{add the verb and blank spaces}
Phrase := Phrase + ' is ';

{repeat the operation on the second group box}
for I := 0 to GroupBox2.ControlCount - 1 do

with GroupBox2.Controls[I] as TRadioButton do
if Checked then

Phrase := Phrase + Caption;

{retrieve the radio group selection, and display
the result in the label}
Label1.Caption := Phrase + ' ' +

RadioGroup1.Items [RadioGroup1.ItemIndex];
end;

The ChangeText method starts looking at which of the first group of radio buttons is selected, then
moves on to adding a verb and the proper spaces between words. To determine which control in a group box is
checked, the procedure scans these controls in a for loop. The for loop ranges from 0 to the number of controls

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 93

minus 1, because the Controls array is zero-based, and tests whether the Checked property of the radio
button is True. A cast is required to perform this operation — we cannot use the Checked property on a
generic control. When the checked radio button has been found, the program simply copies its caption to the
string. At this point, the for loop might terminate, but since only one radio button is checked at a time, it is safe
to let it reach its natural end — testing all the elements. The same operation is repeated two times, but you can
see that the second time a with statement is used to make the code shorter and more readable.

As you can see from the final portion of the method above, if you are using the RadioGroup component,
the code is much simpler. This control, in fact, has an ItemIndex property indicating which radio button is
selected and an Items property with a list of the text of the fake radio buttons. Overall, using a radio group is
very similar to using a list box (as we will see in the next example), aside from the obvious difference in the user
interface of the two components.

A List with Many Choices
If you want to add many selections, radio buttons are not appropriate, unless you create a really big form.

The usual number of radio buttons is no more than 5 or 6. Another problem is that although you can disable a
radio button, the elements of a group are usually fixed. Only when using a radio group can you have some
flexibility. For both of these problems, the solution is to use a list box. A list box can host a large number of
choices in a small space, because it can contain a scroll bar to show on screen only a limited portion of the whole
list. Another advantage of a list box is that you can easily add new items to it or remove some of the current
items. List boxes are extremely flexible and powerful.

Another important feature is that by using the ListBox component, you can choose
between allowing only a single selection, a behavior similar to a group of radio buttons, and
allowing multiple selections, which is similar to a group of check boxes. The next version of
this example will have a multiple-selection list box.

For the moment, let’s focus on a single-selection list box. We might use a couple of these components to
change the Phrases1 example slightly. Instead of having a number of radio buttons to select the first and second
objects of the phrase, we can use two list boxes. Besides allowing us to have a larger number of items, the
advantage is that we can allow the user to insert new objects in the list and prevent selection of the same object
twice, to avoid a phrase such as “The book is on the book.” As you might imagine, this example is really much
more complicated than the previous one and will require some fairly complex code.

The Form of the Phrases2 Example
As usual, the first step is to build a form. You can start with the form from the last example and remove

the two group boxes on the sides and replace them with two list boxes. The radio buttons inside the group boxes
will be deleted automatically. I’ve also replaced the central group box with a radio group. Actually, there’s not
much left hfrom the previous example!

Now, add some strings to the Items property of both list boxes. For the example to work properly, the
two list boxes should have the same strings; you can copy and paste them from the editor of the Items property

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 94

of one list box to the editor of the same property of the other component. To improve the usability of the
program, you might sort the strings in the list boxes, setting their Sorted property to True. Remember also to
add a couple of labels above the list boxes, to describe their contents.

In the lower part of the form, I’ve also added an edit field, with its label, and a button, and a bevel around
them to group them visually (the bevel is just a graphical component, not a container). As we will see later, when
a user presses the button, the text in the Edit control is added to both list boxes. This operation will take place
only if the text of the edit box is not empty and the string is not already present in the list boxes.

Here is the textual description of the components of this updated form (which is really very different
from the previous version):

object Form1: TForm1
Caption = 'Phrases'
OnCreate = FormCreate
object Label1: TLabel... // as in Phrases1
object Label2: TLabel

Caption = 'First object'
end
object Label3: TLabel

Caption = 'Second object'
end
object ListBox1: TListBox

Items.Strings = (
'big box'
'book'
'carpet'
'chair'
'computer'...)

Sorted = True
OnClick = ChangeText

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 95

end
object RadioGroup1: TRadioGroup

Caption = 'Position'
Items.Strings = (

'on'
'under'
'near')

end
object ListBox2: TListBox... // identical to ListBox1
object Bevel1: TBevel...
object Label4: TLabel

Caption = 'New object'
end
object EditNew: TEdit...
object ButtonAdd: TButton

Caption = 'Add'
OnClick = ButtonAddClick

end
end

Working with the List Boxes
Once you have built this or a similar form, you can start writing some code. The first thing to do is to

provide a new ChangeText procedure, connected with the OnClick event of the radio group and of the two
list boxes. This procedure is simpler than in the previous example. In fact, to retrieve the selected text from the
list box, you only need to get the number of the item selected (stored in the run-time property ItemIndex) and
then retrieve the string at the corresponding position of the Item array, as the Phrases1 program did.

Here is what the code for the procedure looks like initially (this is just a temporary version, different
from the one in the source code):

procedure TForm1.ChangeText(Sender: TObject);
var

Phrase: String;
begin

Phrase := 'The ';
Phrase := Phrase + ListBox1.Items [ListBox1.ItemIndex];
Phrase := Phrase + ' is ';
Phrase := Phrase + RadioGroup1.Items [RadioGroup1.ItemIndex];
Phrase := Phrase + ' the ';
Phrase := Phrase + ListBox2.Items [ListBox2.ItemIndex];
Label1.Caption := Phrase;

end;
This program, however, won’t work properly because, at the beginning, no item is selected in either list

box. To solve this problem, we can add some code to the form’s OnCreate event. In this code, we can look for
the two default strings, book and table, and select them. You should do this operation in two steps. First, you
need to look for the string’s index in the array of strings, with the IndexOf method. Then you can use that value
as the index of the currently selected item:

procedure TForm1.FormCreate(Sender: TObject);
var

N : Integer;
begin

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 96

N := ListBox1.Items.IndexOf ('book');
ListBox1.ItemIndex := N;
N := ListBox2.Items.IndexOf ('table');
ListBox2.ItemIndex := N;

end;

Removing a Selected String from the Other List Box
Once this part of the program works, we have two more problems to solve: We must remove the selected

string from the other list box (to avoid using the same term twice in a phrase), and we must write the code for the
click event on the button.

The first problem is more complex, but I’ll address it immediately since the solution of the second
problem will be based partially on the code we write for the first one. Our aim is to delete from a list box the item
currently selected in the other list box. This is easy to code. The problem is that once the selection changes, we
have to restore the previous items, or our list boxes will rapidly become empty. A good solution is to store the
two currently selected strings for the two list boxes in two private fields of the form, String1 and String2:

type
TForm1 = class(TForm)
...
private

String1, String2: String;
end;

Now we have to change the code executed at startup and the code executed each time a new selection is
made. In the FormCreate method, we need to store the initial value of the two strings and remove them from
the other list box; the first string should be removed from the second list box, and vice versa. Since the Delete
method of the TStrings class requires the index, we have to use the IndexOf function again to determine it:

procedure TForm1.FormCreate(Sender: TObject);
var

N : Integer;
begin

String1 := 'book';
String2 := 'table';

{delete the selected string from the other list box
to avoid a double selection}
ListBox2.Items.Delete (ListBox2.Items.IndexOf (String1));
ListBox1.Items.Delete (ListBox1.Items.IndexOf (String2));

{select the two strings in their respective list boxes}
N := ListBox1.Items.IndexOf (String1);
ListBox1.ItemIndex := N;
N := ListBox2.Items.IndexOf (String2);
ListBox2.ItemIndexh := N;

end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 97

The code to select the string should be executed after calling Delete, because removing
an element before the one currently selected will alter the selection. The fact is that the
selection is just a number referring to a string, not the reverse, as it should probably be. By
the way, this doesn’t depend on Delphi implementation but on the behavior of list boxes in
Windows.

Things get complicated when a new item is selected in one of the list boxes. The ChangeText
procedure has some new code at the beginning, executed only if the click took place on one of the list boxes
(remember that the code is also associated with the group box). For each string, we have to check whether the
selected item has changed and, in this case, add the previously selected string to the other list box and delete the
new string. Here is the new version of the ChangeText method:

procedure TForm1.ChangeText(Sender: TObject);
var

TmpStr: String;
begin

// if a list box has changed
if Sender is TListBox then
begin

// get the text of the first string
TmpStr := ListBox1.Items [ListBox1.ItemIndex];
// if the first one has changed
if TmpStr <> String1 then
begin

// update the strings in ListBox2
{1.} ListBox2.Items.Add (String1);
{2.} ListBox2.Items.Delete (

ListBox2.Items.IndexOf (TmpStr));
{3.} ListBox2.ItemIndex :=

ListBox2.Items.IndexOf (String2);
{4.} String1 := TmpStr;

end;

// get the text of the second string
TmpStr := ListBox2.Items [ListBox2.ItemIndex];
// if the second one has changed
if TmpStr <> String2 then
begin

// update the strings in ListBox1
ListBox1.Items.Add (String2);
ListBox1.Items.Delete (ListBox1.Items.IndexOf (TmpStr));
ListBox1.ItemIndex := ListBox1.Items.IndexOf (String1);
String2 := TmpStr;

end;
end;

// build the phrase with the current strings
Label1.Caption := 'The ' + String1 + ' is ' +

RadioGroup1.Items [RadioGroup1.ItemIndex] +
' the ' + String2;

end;
What is the effect of the first part of this code? Here is a detailed description of the operations, referring

to a new selection in the first list box. The procedure stores the selected element of the first list box in the

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 98

temporary string TmpStr. If this is different from the older selection, String1, four operations take place
(refer to the numbers in the listing above):

1. The previously selected string, String1, is added to the other list box, ListBox2.

2. The new selection, TmpStr, is removed from the other list box.

3. The selected string of the other list box, String2, is reselected in case its position has been changed
by the two preceding operations.

4. Once the two lists contain the correct elements, we can store the new value in String1 and use it
later on to build the phrase.

We perform the same steps for the other list box a few lines later. Notice that we don’t need to access the
list boxes again to build the phrase at the end of the OnChange method, since String1 and String2 already
contain the values we need.

Implementing the OnClick event for the Add button is quite simple. The only precautions we have to
take are to test whether there is actually some text in the edit box or if it is empty and to check whether the string
is already present in one of the two list boxes. Checking only one of the list boxes will miss a correspondence
between the text of the edit box and the item currently selected in the other list box.

To make this check, we can ask both ListBox components for the index of the new string; if it is not
present in the list — if there is no match — the value –1 will be returned. Otherwise, the IndexOf function
returns the correct index, starting with 0 for the first element. In technical terms, we can say that the function
returns the zero-based index of the element, or the error code –1 if it is not found. Here is the code:

procedure TForm1.ButtonAddClick(Sender: TObject);
begin

{if there is a string in the edit control and
the string is not already present in one of the lists}
if (EditNew.Text <> '') and

(ListBox1.Items.IndexOf(EditNew.Text) < 0) and
(ListBox2.Items.IndexOf(EditNew.Text) < 0) then

begin
{add the string to both list boxes}
ListBox1.Items.Add (EditNew.Text);
ListBox2.Items.Add (EditNew.Text);

{reselects the current items properly}
ListBox1.ItemIndex := ListBox1.Items.IndexOf (String1);
ListBox2.ItemIndex := ListBox2.Items.IndexOf (String2);

end
else

MessageDlg ('The edit control is empty or contains'
+ ' a string which is already present',
mtError, [mbOK], 0);

end;
In the final part of this method’s code, we need to reselect the current item of each list box since the

position of the selected item might change. This happens if the new item is inserted before the one that is
currently selected — that is, if it has a lower sort order.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 99

Allowing Multiple Selections
A list box can allow the selection of either a single element or a number of elements. We make this

choice in setting up a list box by specifying the value of its Multiple property. As the name implies, setting
Multiple to True allows multiple selections. There are really two different kinds of multiple selections in
Windows and in Delphi list boxes: multiple selection and extended selection. In the first case a user selects
multiple items simply by clicking on them, while in the second case the user can use the Shift and Ctrl keys to
select multiple consecutive or nonconsecutive items. This second choice is determined by the
ExtendedSelect property.

While setting up a multiple-selection list box is very simple, the problems start to appear when you have
to write the code. Accessing the selected item of a single-selection list box is simple. The ItemIndex property
holds the index of the selected item, and the selected string can be retrieved with a simple expression:

ListBox2.Items[ListBox2.ItemIndex];
In a multiple-selection list box, on the other hand, we do not know how many items are selected, or even

whether there is any item selected. In fact, a user can click on an item to select it, drag the cursor to select a
number of consecutive items in the list, or click the mouse button on an item while holding down Ctrl key to
toggle the selection of a single item without affecting the others. Using this last option, a user can even deselect
all the items in a list box.

A program can retrieve information on the currently selected items by examining the Selected array.
This array of Boolean values has the same number of entries as the list box. Each entry indicates whether the
corresponding item is selected.

For example, to know how many items are selected in a list box, we need to scan the Selected array,
usually with a for loop ranging from 0 to the number of items in the list minus one:

SelectCount := 0;
for ListItem := 0 to ListBox1.Items.Count - 1 do

if ListBox1.Selected[ListItem] then
Inc (SelectCount);

Actually, the ListBox component has an undocumented SelCount property, you can use to obtain
exactly the information computed in the code above. We won’t use this code in the next example, anyway, but a
more complex version.

The Third Version of the Phrases Example
With this information, we can build a new version of the Phrases example, allowing a user to select

several items in the first list box. The only real difference between the form of this new version and that of the
last one is the value of the MultiSelect property in the first list box is not set to True.

In addition, the label at the top of the form has been enlarged, enabling the WordWrap property and
disabling the AutoSize property, to accommodate longer phrases. Since the example’s code is complex
enough, I’ve removed the portion used to delete from a list box the item selected in the other list box. In the case
of multiple selections, this would have been really complicated.

The main problem we face is building the different phrases correctly. The basic idea is to scan the
Selected array each time and add each of the selected objects to the phrase. However, we need to place an
“and” before the name of the last object, omitting the comma if there are only two. Moreover, we need to decide

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 100

between singular and plural (is or are) and provide some default text if no element is selected. As you can see
from the table below, building these phrases is not simple. In fact, if we store the phrase “The book and the
computer,” when we need to add a third item, we must go back and change it.

Items Selected SelectCount Phrase
{none} 0 Nothing is
book 1 The book is
book, computer 2 The book and the computer are
book, computer, pen 3 The book, the computer, and the pen are
book, computer, pen,
small box

 4 The book, the computer, the pen, and the small
box are

An alternative idea is to create two different phrases, one valid if no other elements will be added, the
other prepared to host future objects (without the and). In the code, the TmpStr1 string is the tentative final
statement, while TmpStr2 is the temporary string used to add a further element. At the end of the loop,
TmpStr1 holds the correct value. As you can see in the code below, in case only two items are selected we have
to build the phrase in a slightly different way, removing the comma before the and conjunction.

Notice when scanning a sorted list box that the objects are always added to the resulting string in
alphabetical order, not in the order in which they were selected. You can study how this idea has been
implemented by looking at the new version of the ChangeText method, in the following code (and by studying
the following table, which describes step-by-step how the strings are built):

procedure TForm1.ChangeText(Sender: TObject);
var

Phrase, TmpStr1, TmpStr2: String;
SelectCount, ListItem: Integer;

begin
SelectCount := 0;

{look at each item of the multiple selection list box}
for ListItem := 0 to ListBox1.Items.Count - 1 do

if ListBox1.Selected [ListItem] then
begin

{if the item is selected increase the count}
Inc (SelectCount);
if SelectCount = 1 then
begin

{store the string of the first selection}
TmpStr1 := ListBox1.Items.Strings [ListItem];
TmpStr2 := TmpStr1;

end
else if SelectCount = 2 then
begin

{add the string of the second selection}
TmpStr1 := TmpStr1 + ' and the ' +

ListBox1.Items.Strings [ListItem];
TmpStr2 := TmpStr2 + ', the ' +

ListBox1.Items.Strings [ListItem];
end
else // SelectCount > 2
begin

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 101

{add the string of the further selection}
TmpStr1 := TmpStr2 + ', and the ' +

ListBox1.Items.Strings [ListItem];
TmpStr2 := TmpStr2 + ', the ' +

ListBox1.Items.Strings [ListItem];
end;

end;

{build the first part of the phrase}
if SelectCount > 0 then

Phrase := 'The ' + TmpStr1
else

Phrase := 'Nothing';

if SelectCount <= 1 then
Phrase := Phrase + ' is '

else
Phrase := Phrase + ' are ';

{add the text of the radio button}
Phrase := Phrase +

RadioGroup1.Items [RadioGroup1.ItemIndex];

{add the text of the second list box}
Phrase := Phrase + ' the ' +

ListBox2.Items [ListBox2.ItemIndex];
Label1.Caption := Phrase;

end;

Items Selected Steps TmpStr1 (Tentative Final
Statement)

 TmpStr2 (Temporary
Statement)

book 1 book book
+ computer 2 book and the computer book, the computer
+ pen 3 book, the computer, and the

pen
book, the computer, the pen

+ small box 4 book, the computer, the pen,
and the small box

book, the computer, the pen,
the small box

The other procedures of the program change only slightly. The FormCreate method is simplified
because we do not need to delete the selected item from the other list box. The Add method is simplified because
both list boxes always have the same items and because the multiple-selection list box creates no problems with
the selection if you add a new element.

An alternative solution to handle the status of multiple-selection list boxes is to look at the value of the
ItemIndex property, which holds the number of the item of the list having the focus. If a user clicks on several
items while holding down Ctrl, each time a click event takes place, you know which of the items have been
selected or deselected — you can easily determine which of the two operations took place by looking at the value
of the Selected array for that index. The problem is that if the user selects a number of elements by dragging
the mouse, this method won’t work. You need to intercept the dragging events, and this is considerably more
complex than the technique described earlier.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 102

Using a CheckListBox Component
A further extension to the Phrases example is the use of the CheckListBox component, a component

originally introduced by Borland in Delphi 3. This is basically a list box with a custom output (or an owner-draw
list box, to use the proper technical term). Each item of the list is preceded by a check box. A user can select a
single item of the list, but can also click on the check boxes to toggle their status.

If the component has the AllowGrayed property set to True, then each check box can be non-
selected, grayed, or selected. Clicking on the check box alternates these three possible conditions. To check the
current status of each item you can use the Checked and the State property. Both are array properties. The
first, Checked, is a Boolean property you should use when AllowGrayed is set to False. The second,
State, is a property of the TCheckBoxState data type:

type
TCheckBoxState = (cbUnchecked, cbChecked, cbGrayed)

This property should be used when AllowGrayed is set to True, to distinguish among the three
different states of each item. Apart from these properties, the specific user interface, and the new
OnClickCheck event, this component behaves as a ListBox.

As I mentioned at the beginning of this section, to show you an example of the use of this component
I’ve further updated the Phrases3 example, building the Phrases4 version. I’ve basically replaced the first
multiple selection list box with the new CheckListBox component, set its Sorted property to True, and copied
the Items. Then I’ve updated the code, replacing the ListBox1 object with the CheckListBox1 object, and
replacing the Selected property of the first with the Checked property of the second in the ChangeText
method. Here is an excerpt of the new version of this method:

for ListItem := 0 to CheckListBox1.Items.Count - 1 do

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 103

if CheckListBox1.Checked [ListItem] then
begin
{if the item is selected increase the count}
Inc (SelectCount);
if SelectCount = 1 then
begin
{store the string of the first selection}
TmpStr1 := CheckListBox1.Items.Strings [ListItem];
TmpStr2 := TmpStr1;

end
else if SelectCount = 2 then

...
The important point of this program is that this component makes it more obvious to the user that the list

box allows multiple selections. The plain list box, in fact, gives no clue of this fact.

Many Lists, Little Space
List boxes take up a lot of screen space, and they offer a fixed selection. That is, a user can choose only

among the items in the list box and cannot make any choice that the programmer did not specifically foresee.
You can solve both problems by using a ComboBox control. A combo box is similar to an edit box, and

you can often enter some text in it. It is also similar to a list box, with a drop-down arrow that displays a list box.
Even the name of the control suggests that it is a combination of two other controls, an Edit and a ListBox.
However, the behavior of a ComboBox component might change a lot, depending on the value of its Style
property. Here is a short description of the various styles:

• The csDropDown style defines a typical combo box, which allows direct editing and displays a
list box on request.

• The csDropDownList style defines a combo box that does not allow editing. By pressing a
key, the user selects the first word starting with that letter in the list.

• The csSimple style defines a combo box that always displays the list box below it. This
version of the control allows direct editing.

• The csOwnerDrawFixed and csOwnerDrawVariable styles define combo boxes based
on an owner-draw list — that is, a list containing graphics determined by the program rather than
simple strings.

To see the difference between the first three types, you can run the Combos example, which I’ll describe
in a moment. As you can appreciate by testing the program, Combos displays three combo boxes having three
different styles: drop-down, drop-down list, and simple.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 104

This program is very simple. Each combo box has the same basic strings—the names of more than 20
different animals. The first combo box contains an Add button. If the user presses the button, any text entered in
the combo box is added to its list, provided it is not already present. This is the code associated with the
OnClick event of the button:

procedure TForm1.ButtonAddClick(Sender: TObject);
begin
with ComboBox1 do

if (Text <> '') and (Items.IndexOf (Text) < 0) then
Items.Add (Text);

end;
You can use the second combo box to experiment with the automatic lookup technique. If you press a

key, the first of the names in the list starting with that letter will be selected. By pressing the up arrow key and
the down arrow key, you can further navigate in the list without opening it. This navigation technique of using
initial letters and arrows can be used with each of the combo boxes.

The third combo box is a variation of the first. Instead of adding the new element when the Add button is
pressed, that action is performed when the user presses the Enter key. To test for this event, we can write a
method for the combo box’s OnKeyPress event and check whether the key is the Enter key , which has the
numeric code 13. The remaining statements are similar to those of the button’s OnClick event:

procedure TForm1.ComboBox3KeyPress(
Sender: TObject; var Key: Char);

begin
{if the user presses the Enter key}
if Key = Chr (13) then

with ComboBox3 do
if (Text <> '') and (Items.IndexOf (Text) < 0) then

Items.Add (Text);
end;

Delphi's DateTimePicker component has a user interface similar to that of a
ComboBox.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 105

Choosing a Value in a Range
The last basic component I want to explore in this chapter is the scroll bar. Scroll bars are usually

associated with other components, such as list boxes and memo fields, or are associated directly with forms.
Notice, however, that when a scroll bar is associated with another component, it is really a portion of that
component — one of its properties — and there is little relationship to the ScrollBar component itself. Forms
having a scroll bar have no ScrollBar component. A portion of their border is used to display that graphical
element.

Direct usage of the ScrollBar component is quite rare, especially with the TrackBar Windows common
control. However, there are cases in which it can play a role. The typical example is to allow a user to choose a
numerical value in a large range (since a TrackBar is generally used for smaller ranges).

Most Windows programming books describe scroll bars using the example of selecting a color, and this
book is no exception. But if you’ve seen a typical Windows example, you’ll notice something very interesting:
using Delphi, you can build this example in about one-fourth the time and writing a minimal amount of code.

The Scroll Color Example
The ScrollC example — the name stands for scroll color — has a simple form with three scroll bars and

three corresponding labels, a track bar with its own label, and some shape components to show the current color.
Each scroll bar refers to one of the three fundamental colors, which in Windows are red, green, and blue (RGB).
Each label displays the name of the corresponding color and the current value.

Scroll bars have a number of peculiar properties. You can use Min and Max to determine the range of
possible values; Position holds the current position; and the LargeChange and SmallChange properties
indicate the increment caused by clicking on the bar or on the arrow at the end of the bar, respectively.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 106

In the ScrollC example, the value of each bar ranges from 0 to 255. The range is determined by the fact
that each color is a DWORD with the lower three bytes representing the Red, Green, and Blue values (which is
how colors are represented in Windows and in the VCL). The initial value of 192 has been chosen for the
position because with settings of 192 for red, 192 for green, and 192 for blue, you get the typical light gray,
which is the default value for the color of the form and of the shapes. Here is the textual description of one of
these three ScrollBar components:

object ScrollBarRed: TScrollBar
LargeChange = 25
Max = 255
Position = 192
OnScroll = ScrollBarRedScroll

end
The TrackBar components has similar properties (Min, Max, Position):

object TrackBar1: TTrackBar
Max = 30
Min = 1
Orientation = trHorizontal
Frequency = 1
Position = 25
TickMarks = tmBottomRight
TickStyle = tsAuto
OnChange = TrackBar1Change

end
This control is used, in this example, to set the LargeChange property of the three scrollbars, with the

following code:
procedure TFormScroll.TrackBar1Change(Sender: TObject);
begin

LabelScroll.Caption := 'Scroll by ' +
IntToStr(TrackBar1.Position);

ScrollBarGreen.LargeChange := TrackBar1.Position;
ScrollBarRed.LargeChange := TrackBar1.Position;
ScrollBarBlue.LargeChange := TrackBar1.Position;

end;
When one of the scroll bars changes (the OnScroll event), the program has to update the

corresponding label and the color of the shapes. The first of these shapes is used to show the color as it is
determined by the three RGB values of the scroll bars. Assigning the color to the Color property of the brush
used to fill the surface of the shape, we obtain a dithered color, an approximation of the real tint made with the
colors available on the video adapter. The same color is assigned to the Color property of the pen of the second
shape, resulting in the closest approximation of the requested color. Pens, in fact, do not use dithering, but rather
the closest pure color. You can see the difference by running this example, although the effect might change
depending on your video adapter.

If you browse through the code of the program, notice also that there is a third shape component used to
mimic the border of the second shape. The real border of this shape, in fact, is enlarged to fill its whole surface,
using a very wide pen. This way we use the color of the pen — the wide border — to actually fill the shape. Here
is the code corresponding to one of the scroll bars:

procedure TFormScroll.ScrollBarRedScroll(Sender: TObject;
ScrollCode: TScrollCode; var ScrollPos: Integer);

begin
LabelRed.Caption := 'Red: ' + IntToStr(ScrollPos);
Shape1.Brush.Color := RGB (ScrollBarRed.Position,

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 107

ScrollBarGreen.Position, ScrollBarBlue.Position);
Shape2.Pen.Color := RGB (ScrollBarRed.Position,

ScrollBarGreen.Position, ScrollBarBlue.Position);
end;

You need to copy this code once for each scroll bar and correct the name of the label and its output text.
The second and third statements always remain the same. They are based on a Windows function, RGB, which
takes three values in the range 0–255 and creates a 32-bit value with the code of the corresponding color.

It is interesting to note that the OnScroll event has three parameters: the sender, the kind of event
(ScrollCode), and the final position of the thumb (ScrollPos). This type of event can be used for very
precise control of the user’s actions. The ScrollCode parameter indicates if the user is dragging the thumb
(scTrack, scPosition, or scEndScroll), has clicked on one of the two final arrows (scLineUp or
scLineDown), has clicked on the bar in one of the two directions (scPageUp or scPageDown), or is trying
to scroll out of the range (scTop or scBottom).

What’s Next
In this chapter, we have started to explore some of the basic components available in Delphi. These

components correspond to the standard Windows controls and some of the Windows common controls, and are
extremely common in applications (with the exception of the stand-alone scroll bars). Of course, when you start
adding more advanced Delphi components to an application, you can easily build more complex and colorful user
interfaces and more powerful programs.

The next chapter is devoted to a specific and important topics: the use of menus. After that, we'll see
more about forms, have a light excursus on multimedia, and wrap up the book with some simple specific
techniques.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 108

CHAPTER 5: CREATING AND HANDLING MENUS

• The structure of a menu
• Using menu templates
• Checking, disabling, and modifying menus at run-time
• Creating menu items at run-time
• A custom menu check mark
• Bitmap menu items and owner-draw menu items
• The system menu
• Pop-up menus

he sample programs we have built so far have lacked one of the most important user-interface
elements of any Windows application: the menu bar. Although our forms have each had a system
menu, its use has been very limited. In practical applications, however, the menu bar is a central

element in the development of a program. While the user can click and sometimes drag the mouse to select
options, most complex tasks usually involve menu commands. Consider the applications you use and the number
of menu commands you issue in those programs (including those invoked by a shortcut key, such as Ctrl+C,
which is equivalent to the Edit | Copy command in most applications).

T
Menus are so important that almost any real Windows application has at least one. In fact, an application

can also have several menus that change at run-time (more on this later), various local menus (usually activated
with a right mouse click), and even a customized system menu.

The Borland programmers who created Delphi considered menus so important that they have placed the
corresponding components in the Standard page of the Components palette.

The Structure of the Main Menu
Before looking at the use of menus in Delphi, let me recap some general information about menus and

their structure. Usually, a menu has two levels. A menu bar, appearing below the title of the window, contains the
names of the pull-down menus, each of which in turn contains a number of items. However, the menu structure is
very flexible. It is possible to place a menu item directly in the menu bar and to place a second level pull-down
menu inside another pull-down menu.

You should avoid placing commands directly on the menu bar, because users tend to select the elements
of the menu bar to explore the structure of the menu. They do not expect to issue a command this way. If, for
some reason, you really need to place a command in the menu bar, at least place the standard exclamation mark
after it. Using an exclamation mark is a standard hint, but most users have never seen this “convention,” so it’s
best to avoid the whole situation altogether and simply have a pull-down menu with a single menu item. A typical
example is a Help menu with a single About menu item.

Putting a pull-down menu inside another pull-down menu — a second-level pull-down — is far more
common, and Windows in this case provides a default visual clue, a small triangular glyph at the right of the
menu. Many applications use this technique, because the system makes heavy use of multilevel menus (consider

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 109

the Programs menu of the Start button). However, keep in mind that selecting a menu item in a second-level pull-
down takes more time and can become tedious.

Many times, instead of having a second-level pull-down, you can simply group a number of options in
the original pull-down and place two separator bars, one before and one after the group. You can see an
exaggerated multilevel menu in the Levels example in the source code. Since this is a demonstration of what you
should try to avoid, I won’t list the structure of the menu here.

Different Roles of Menu Items
Now let’s turn our attention to menu items, regardless of their position in the menu structure. There are

three fundamental kinds of menu items:
• Commands are menu items used to execute an action. They have no special visual clue.

• State-setters are menu items used to toggle an option on and off, to change the state of a
particular element. These commands usually have a check mark on the left to indicate they are
active. In this case, selecting the command produces the opposite action.

• Dialog menu items are menu items that cause a dialog box to appear. The real difference between
these and the other menu items is that a user should be able to explore the possible effects of the
corresponding dialog box and eventually abort it by choosing the Cancel button. These
commands should have a visual clue, consisting of an ellipsis (three dots) after the text.

Besides the traditional state-setters with a check mark, you can also have radio menu
items with a bullet check mark. These menu items represent alternative selections, just as
RadioButton components do, and simply checking one of them disables the other
elements of the group. We’ll explore radio menu items in an example later on.

Building a Menu with the Menu Designer
Delphi includes a special editor for menus, the Menu Designer. To invoke this tool, place a MainMenu

component on a form and double-click on it. Don’t worry too much about the position of the menu component on
the form, since it doesn’t affect the result; the menu is always placed properly, below the form’s caption.

To be more precise, the form displays, below its caption, the menu indicated in its Menu
property, which is set by default as soon as you create the first main menu component of
the form. If the form has more than one main menu component, this property should be
set manually and can be changed both at design-time and at run-time.

The Menu Designer is really powerful: It allows you to create a menu simply by writing the text of the
commands, to move the items or pull-down menus by dragging them around, and to set the properties of the items
easily. It is also very flexible, allowing you to place a command directly in the menu bar (this happens each time
you do not write any element in the corresponding pull-down menu) or to create second-level pull-down menus.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 110

To accomplish this, select the Create Submenu command on the Menu Designer’s local menu (the local menu
invoked with the right mouse button).

Another very important feature available through the Menu Designer is the ability to create a menu from
a template. You can easily define new templates of your own. Simply create a menu, and use the Save As
Template command on the local menu to add it to the list. This makes sense particularly if you need to have a
similar menu in two applications or in two different forms of the same application.

The Standard Structure of a Menu
If you’ve used Windows applications for some time, you have certainly noticed that the structure of an

application’s menu is not an invention of its programmers. There are a number of standard Windows guidelines
describing how to arrange the commands in a menu. You can infer most of these rules by looking at the menus of
some of the best-selling applications.

An application’s menu bar should start with a File pull-down, followed by Edit, View, and then some
commands specific to the application. The final part of the sequence includes Options, Tools, and Window (in
MDI, or Multiple Document Interface, applications) and always terminates with Help. Each of these pull-down
menus has a standard layout, although the actual items depend on the application. The File menu, for example,
usually has commands such as New, Open, Save, Save As, Print, Print Setup, and Exit.

Shortcut Keys and Hotkeys
A common feature of menu items is that they contain an underlined letter, generally called a hotkey. This

letter, which is often the first letter of the text, can be used to select the menu using the keyboard. Pressing Alt
plus the underlined key selects the corresponding pull-down menu. By pressing another underlined key on that
menu, you issue a command.

Of course, each element of the menu bar must have a different underlined character. The same is true for
the menu items on a specific pull-down menu. (Obviously, menu items on different pull-down menus can have

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 111

the same underlined letter.) To indicate the underlined key, you simply place an ampersand (&) before it, as in
Save &As... or &File. In these examples, the underlined keys would be A for Save As and F for File.

Menu items have another standard feature: shortcut keys. When you see the shorthand description of a
key, or key combination, beside a menu item, it means you can press those keys to give that command. Although
giving menu commands with the mouse is easier, it tends to be somewhat slow, particularly for keyboard-
intensive applications, since you have to move one of your hands from the keyboard to the mouse. Pressing Alt
and the underlined letter might be faster, but it still requires two operations. Using a shortcut key usually involves
pressing a special key and another key at the same time (such as Ctrl+C). Windows doesn’t even display the
corresponding pull-down menu, so this results in a faster internal operation, too.

In Delphi, associating a shortcut key with a menu item (pull-down menus cannot have a shortcut key) is
very easy. You simply select a value for the ShortCut property, choosing one of the standard combinations:
Ctrl or Shift plus almost any key.

You might even add shortcut keys to a program without adding a real menu. For example, you can create
a pop-up menu, connect it to a form (by setting the PopupMenu property of the form), set the Visible
property of all of its items to False, and add the proper shortcut keys; a user will never see the menu, but the
shortcuts (documented in your Help system, of course) will work. If this is not clear, you can look at the HShort
example (the name stands for “Hidden Shortcut”) in the book code.

Using the Predefined Menu Templates
To let you start developing an application’s menu following the standard guidelines, Delphi contains

some predefined menu templates. The templates include two different File pull-down menus, an Edit menu
(including OLE commands), a Window menu, and two Help menus. There is also a complete MDI menu bar
template, which has the same four menu categories.

Using these standard templates brings you some advantages. First of all, it is faster to reuse an existing
menu than to build one from scratch. Second, the menu template follows the standard Windows guidelines for
naming menu commands, for using the proper shortcuts, and so on. Of course, using these menus makes sense in
a file-based application. But if the program you are writing doesn’t handle files, has no editing capabilities, and is
not MDI, you’ll end up using only the template Help pull-down menu.

Responding to Menu Commands
To build the MenuOne example, the first example with a menu, we will extend the LabelCo example of

the last chapter. The new version of the form has been extended with a MainMenu component. This menu bar has
four pull-down menus: the File pull-down with only the Exit option, the View pull-down with only the Toolbar
menu item, the Options menu with various options, and the Help menu with the About menu item.

To add the separator in the Options pull-down menu, simply insert a hyphen as the text of the command.
Do not change the Break property. (Except for rare situations, the Break property will make a mess of your
menu. You are better off forgetting that this property even exists.)

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 112

Of course, the Break property has its uses, or it would not have been added to the
component. You can better understand it if I use different names for its possible values,
NewLine or NewColumn. If an item on the menu bar has the mbMenuBarBreak (or
NewLine) value, this item will be displayed in a second or subsequent line. If a menu item
has the mbMenuBreak (or NewColumn) value, this item will be added to a second or
subsequent column of the pull-down. Neither of these features are used very often.

The Code Generated by the Menu Designer
Once you have built this menu, take a look at the list of components displayed by the Object Inspector, or

open the DFM file with the textual description of the form, which will also contain a textual description of the
menu structure. Here is the portion of the textual description of the form related to the menu and its items:

object MainMenu1: TMainMenu
object File1: TMenuItem

Caption = '&File'
object Exit1: TMenuItem

Caption = 'E&xit'
OnClick = Exit1Click

end
end
object View1: TMenuItem

Caption = '&View'
object Toolbar1: TMenuItem

Caption = '&Toolbar'
Checked = True
OnClick = Toolbar1Click

end
end
object Options1: TMenuItem

Caption = '&Options'
object Font1: TMenuItem

Caption = '&Font...'
OnClick = Font1Click

end
object BackColor1: TMenuItem

Caption = '&Back Color...'
OnClick = BackColor1Click

end
object N1: TMenuItem

Caption = '-'
end
object Left1: TMenuItem

Caption = '&Left'
ShortCut = 16460 // stands for Ctrl+L
OnClick = Left1Click

end
object Center1: TMenuItem

Caption = '&Center'
Checked = True
ShortCut = 16451 // stands for Ctrl+C

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 113

OnClick = Center1Click
end
object Right1: TMenuItem

Caption = '&Right'
ShortCut = 16466 // stands for Ctrl+R
OnClick = Right1Click

end
end
object Help1: TMenuItem

Caption = '&Help'
object About1: TMenuItem

Caption = '&About Menu One...'
OnClick = About1Click

end
end

end
As you can see in the listing above, there is a specific component for each menu item, one for each pull-

down menu, and, surprisingly, even one for each separator. Delphi builds the names of these components
automatically when you insert the menu item’s label. The rules are simple:

• Any blank or special character (including ampersands and hyphens) is removed.

• If there are no characters left, the letter N is added.

• A number is always added at the end of the name (1 if this is the first menu item with this name,
a higher number if not).

All of these new components are listed in the Object Inspector, and you can select them directly or
navigate among them by opening the Menu Designer and selecting menu items visually. Actually each of these
items is also listed as a component in the class definition of the form:

type
TFormColorText = class(TForm)

MainMenu1: TMainMenu;
Options1: TMenuItem;
Font1: TMenuItem;
BackColor1: TMenuItem;
N1: TMenuItem;
Left1: TMenuItem;
Center1: TMenuItem;
Right1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;
File1: TMenuItem;
Exit1: TMenuItem;
View1: TMenuItem;
Toolbar1: TMenuItem;
...

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 114

If there are menu items your code will not refer to (such as the separators), you can
actually delete the fields declaring these objects (as N1 above). They will be created
anyway, since they are listed in the form definition file, but you won’t be able to access
them easily from within the source code of the form. Since the objects are created anyway,
you won’t save much memory, though (only the space for the reference inside the form
class), but removing useless statements may improve code readability.

To respond to menu commands, you should define a method for the OnClick event of each menu item.
The OnClick event of the pull-down menus is used only in special cases — for example, to check whether the
menu items below should be disabled. The OnClick event of the separators is totally useless, because it will
never be activated.

Once you have defined the main menu of a form and it is displayed below the caption, you
can add a new method for the OnClick event of a menu command simply by selecting it
in the menu bar. If a handler is already present, Delphi will show you the corresponding
portion of the source code; otherwise, a new method will be added to the form.

The Code of the MenuOne Example
The code of the MenuOne example is very simple, and is similar to that of the LabelCo example it

extends. The OnClick event of the menu command for the background color and of the corresponding toolbar
button are connected to the same method:

object BtnBackColor: TButton
Caption = '&Back Color...'
OnClick = BackColor1Click

end
This method has the same code as the earlier version. The menu command and button related to the font

are both connected to the Font1Click method, which this time displays the font selection dialog box, not the
color selection dialog box. Notice that the code is quite compact, because it uses a with statement:

procedure TFormColorText.Font1Click(Sender: TObject);
begin

with FontDialog1 do
begin

Font := Label1.Font;
if Execute then

Label1.Font := Font;
end;

end;
The other three menu items of the Options pull-down menu (and the last three buttons of the toolbar)

have basically the same code as the LabelCo example: the code of their OnClick event handlers simply set the
Alignment property of the label. This works fine, but the resulting application doesn’t follow the standard
user-interface guidelines. Each time you have a series of choices in a menu, the selected choice should have a
check mark beside it.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 115

To accomplish this, you need to create two different operations. First, you have to place a check mark
near the default choice, Center, changing the value of the menu item’s Check property in the Object Inspector.
Second, you should correct the code so that each time the selection changes, the check mark is properly set:

procedure TFormColorText.Left1Click(Sender: TObject);
begin

Label1.Alignment := taLeftJustify;
Left1.Checked := True;
Center1.Checked := False;
Right1.Checked := False;

end;
The other two methods are similar. You can simply copy the source code of the last three statements,

paste this text twice into the other two methods, and correct the values of the three Checked properties so that
each time one of them is set to True. Removing the check marks from the other items of the group can be
handled in more efficient ways, but the real solution is to use radio menu items, instead of check marks. We’ll
look at this technique later on.

The View | Toolbar menu item is a typical item with a check mark, set when the toolbar is visible. Here is
its code:

procedure TFormColorText.Toolbar1Click(Sender: TObject);
begin

Panel1.Visible := not Panel1.Visible;
Toolbar1.Checked := Panel1.Visible;

end;
The program toggles the status of the Visible property of the panel, then sets the check mark — the

Checked property — of the menu item accordingly. You should only remember to set the initial value of this
property, to match the initial status of the panel. The Help | About and File | Exit commands simply show a
message box or call the Close method of the form, respectively. They are so simple I won’t show their source
code here. (You can find it in the MenuOneF.PAS file among th source code.)

Modifying the Menu at Run-Time
You can perform a number of operations in Windows to change the structure of a menu at run-time.

We’ll start by examining in detail the operations you can do on a single menu item, then move to pull-down
menus, build a flexible main menu, and change the default bitmap for the check mark.

Changing Menu Items at Run-Time
It is important to note that menu items can change at run-time. For example, when a menu command

cannot or should not be selected, it is usually grayed. In this case, the user has no way to issue that command.
You shouldn’t generally hide a menu item when it is not available, but simply disable it. This standard technique
lets users know that the command is currently not available. Otherwise, they might think the menu command was
somewhere else in the menu structure, and keep looking for it.

Another visual change is the use of the check mark, which applications can toggle on and off easily, as
we’ve seen in the last example. At times, to implement a state-setter menu item, you can change the text of the

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 116

menu item altogether, which might result in an easier interface. For example, suppose an application has a Show
Toolbar command. If you select it, a toolbar will appear and a check mark will be added to the item. This means
that if you again select the Show Toolbar command, the toolbar will disappear: The command you issue has the
opposite effect as its name. To avoid this problem, you might use two different captions for the two states of the
menu item, such as Show Toolbar and Hide Toolbar.

When the user can select more than two choices, it is better to use multiple menu items with a check
mark, or even better the new radio menu item user interface, which is becoming the standard approach.

Three properties are commonly used to modify a menu item:
• We used the Checked property in the example above to add or remove a check mark beside the

menu item.

• The Enabled property can be used to gray a menu item so that it cannot be selected by a user
(but it remains visible).

• The last property of this group is the Caption, the text of the menu item, which can be
modified to reflect the actual effect of a command, as discussed above.

I’ll demonstrate the use of these properties by extending the MenuOne example (the name of the new
project is MenuOne2) with new menu items. I’ve added two new menu items to the View pull-down menu (Hide
Label and Fixed Font) and two new menu items in the Options pull-down menu (Fixed View and Disable Help),
plus a couple of new separators.

The Hide Label menu item demonstrates the use of different captions for an item depending on the status
of the program. Here is its OnClick event handler:

procedure TFormColorText.HideLabel1Click(Sender: TObject);
begin

Label1.Visible := not Label1.Visible;
if Label1.Visible then

HideLabel1.Caption := 'Hide &Label'
else

HideLabel1.Caption := 'Show &Label'
end;

Disabling Menu Items and Hiding Pull-Down Menus
The other three new menu items of the MenuOne2 example are used to disable or hide other menu items

or pull-down menus. The View | Fixed Font command is used to disable the Options | Font menu item:
procedure TFormColorText.FixedFont1Click(Sender: TObject);
begin

ToggleCheck (FixedFont1);
Font1.Enabled := not Font1.Enabled;

end;
This method calls the custom ToggleCheck procedure I’ve written as a shortcut to the code for

toggling the check mark (something all these three final menu commands do). Here is its simple code:
procedure ToggleCheck (Item: TMenuItem);
begin

Item.Checked := not Item.Checked;
end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 117

I’ve already advised you against hiding menu items (by turning off their Visible property), because
users will probably try to find them in a different pull-down menu. Menu items should generally be disabled
when you want to prevent users from calling them. Hiding entire pull-down menus, however, is a common
practice. In many applications the pull-down menus you see reflect the window you are working on. Technically,
it is possible to disable a pull-down menu as well, but this is not very common. The last two menu items I’ve
added to the program do these two operations, as you can see in their corresponding OnClick event handlers:

procedure TFormColorText.FixedView1Click(Sender: TObject);
begin

ToggleCheck (FixedView1);
View1.Visible := not View1.Visible;

end;

procedure TFormColorText.DisableHelp1Click(Sender: TObject);
begin

ToggleCheck (DisableHelp1);
Help1.Enabled := not Help1.Enabled;

end;
The View pull-down menu has been removed, and the Help pull-down menu is grayed.

Using Radio Menu Items
In addition to using check marks, in Windows you can use radio menu items. These provide not only a

different user interface, but also different behavior (basically simpler code, since the system does some of the
work for us). A notable example of this new user-interface feature is the View menu of the Windows Explorer.

In Delphi, simply set the RadioItem property of a MenuItem component to True and you get the new
check mark for the item. If you set this property for several consecutive menu items and set their GroupIndex
property to the same value, they’ll use the new mark and behave as radio buttons. This means that only one of the
menu items in the group will be selected at a time. Instead of having to deselect all other items manually, as you
did in the first version of the MenuOne example, now you can simply select the proper menu item, and the rest is
automatic.

Here is how you can implement this feature, in the third version of the MenuOne example (which also
has another feature I’ll discuss in the next section). The following listing shows the updated textual description of
this group of menu items:

object Options1: TMenuItem
Caption = '&Options'
...
object Left1: TMenuItem

Caption = '&Left'
GroupIndex = 1
RadioItem = True
OnClick = Left1Click

end
object Center1: TMenuItem

Caption = '&Center'
Checked = True
GroupIndex = 1
RadioItem = True
OnClick = Center1Click

end

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 118

object Right1: TMenuItem
Caption = '&Right'
GroupIndex = 1
RadioItem = True
OnClick = Right1Click

end

This code will work as is, but we can actually simplify it. Here is the new version of the Right1Click
method:

procedure TFormColorText.Right1Click(Sender: TObject);
begin

Label1.Alignment := taRightJustify;
// Left1.Checked := False; // now useless
// Center1.Checked := False; // now useless
Right1.Checked := True;

end;
I’ve simply commented out the two useless statements, instead of deleting them, to let you see the differences
from the older version.

Creating Menu Items Dynamically
The run-time changes on menu items and pull-down menus we’ve seen so far were all based on the direct

manipulation of some properties. These components, however, also have some interesting methods, such as
Insert and Remove, that you can use to make further changes.

The basic idea is that each object of the TMenuItem class — which Delphi uses for both menu items
and pull-down menus — contains a list of menu items. Each of these items has the same structure, in a kind of

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 119

recursive way. A pull-down menu has a list of submenus, and each submenu has a list of submenus, each with its
own list of submenus, and so on.

The properties you can use to explore the structure of an existing menu are Items, which contains the
actual list of menu items, and Count, which contains the number of subitems. Adding new menu items (or entire
pull-down menus) to a menu is fairly easy. Slightly more complex is the handling of the commands related to the
new menu items. Basically, you need to write a specific message-response method in your code (without any help
from the Delphi environment), and then assign it to the new menu item by setting its OnClick property. As an
alternative, you can have a single method used for several OnClick events and use its Sender parameter to
determine which menu command the user issued.

All these features are demonstrated by the MenuOne3 example. As soon as you start this program, it
creates a new pull-down with menu items used to change the size of the font of the big label hosted by the form.
Instead of creating a bunch of menu items with captions indicating sizes ranging from 8 to 48, you can let the
program do this repetitive work for you. I could have created the pull-down at design-time, and then added the
menu items dynamically, but I prefer showing you the complete code, so that you can apply it to other cases.

To create a new menu item (or pull-down) you simply call the Create constructor of the TMenuItem
class:

var
PullDown: TMenuItem;

begin
PullDown := TMenuItem.Create (self);

Then you can simply set its Caption and other properties, and finally insert it in the proper parent
menu. The new pull-down should be inserted in Items of the MainMenu1 component. You can calculate the
position, knowing the index is zero-based, or you can ask the main menu component for the previous pull-down
menu:

Position := MainMenu1.Items.IndexOf (Options1);
MainMenu1.Items.Insert (Position + 1, PullDown);

The menu items of this pull-down are created in a while loop (I don’t use a for loop because I want to
provide only one menu item for every four possible sizes: 8, 12, 16, and so on). The code to create each item is
slightly more complex simply because I want to turn them into radio items, but the basic structure of the code is
very simple:

var
Item: TMenuItem;
I: Integer;

begin
...
I := 8;
while I <= 48 do
begin

Item := TMenuItem.Create (self);
Item.Caption := IntToStr (I);
PullDown.Insert (PullDown.Count, Item);
I := I + 4;

end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 120

To insert an item at the end I call the Insert method passing the number of items (PullDown.Count)
as a parameter. As you can see, the program adds one extra item at the end of the menu, used to set a different
size than those listed. The OnClick event of this last menu item is handled by the Font1Click method, which
shows the font selection dialog box:

Item := TMenuItem.Create (self);
Item.Caption := 'More...';
Item.OnClick := Font1Click;
PullDown.Insert (PullDown.Count, Item);

Also the OnClick events of the other menu items are connected with a method, but this time it is a
method you have to define manually, by adding its declaration to the form class:

type
TFormColorText = class(TForm)

...
public

procedure SizeItemClick(Sender: TObject);
end;

The method should have the proper signature (or parameters list). Here is the code of the method, which
is based on the Sender parameter:

procedure TFormColorText.SizeItemClick(Sender: TObject);
begin

with Sender as TMenuItem do
Label1.Font.Size := StrToInt (Caption);

end;
As you can see, this code doesn’t set the proper check mark (or radio item mark) next to the selected

item. The reason is that the user can select a new size by changing the font. For this reason, we can use a different
approach, and handle the OnClick event of the pull-down menu. This event is activated just before showing the
pull-down menu, so we can use it to set the proper check mark at that time:

procedure TFormColorText.SizeClick (Sender: TObject);

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 121

var
I: Integer;
Found: Boolean;

begin
Found := False;
with Sender as TMenuItem do
begin

// look for a match, skipping the last item
for I := 0 to Count - 2 do

if StrToInt (Items [I].Caption) =
Label1.Font.Size then

begin
Items [I].Checked := True;
Found := True;
System.Break; // skip the rest of the loop

end;
if not Found then

Items [Count - 1].Checked := True;
end;

end;
This code scans the items of the pull-down menu we have activated (the Sender), skipping only the

final one, and checks whether the caption matches the current Size of the font of the label. If no match is found, the
program checks the last menu item, to indicate that a different size is active.

Of course we have to set this SizeClick event handler at run-time, when the pull-down menu is
created. So we can finally look at the complete source code of the FormCreate method, which sums up all the
features I have discussed in this section:

procedure TFormColorText.FormCreate(Sender: TObject);
var

PullDown, Item: TMenuItem;
Position, I: Integer;

begin
// create the new pulldown menu
PullDown := TMenuItem.Create (self);
PullDown.Caption := '&Size';
PullDown.OnClick := SizeClick;
// compute the position and add it
Position := MainMenu1.Items.IndexOf (Options1);
MainMenu1.Items.Insert (Position + 1, PullDown);

// create menu items for various sizes
I := 8;
while I <= 48 do
begin

// create the new item
Item := TMenuItem.Create (self);
Item.Caption := IntToStr (I);
// make it a radio item
Item.GroupIndex := 1;
Item.RadioItem := True;
// handle click and insert
Item.OnClick := SizeItemClick;
PullDown.Insert (PullDown.Count, Item);
I := I + 4;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 122

end;

// add extra item at the end
Item := TMenuItem.Create (self);
Item.Caption := 'More...';
// make it a radio item
Item.GroupIndex := 1;
Item.RadioItem := True;
// handle click by showing the font dialog box
Item.OnClick := Font1Click;
PullDown.Insert (PullDown.Count, Item);

end;

Creating Menus and Menu Items Dynamically
When you want to create a menu or a menu item dynamically, you can use the corresponding

components, as I’ve done in the MenuOne3 example. As an alternative, you can also use some global functions
available in the Menus unit:

function NewMenu(Owner: TComponent; const AName: string;
Items: array of TMenuItem): TMainMenu;

function NewPopupMenu(Owner: TComponent;
const AName: string; Alignment: TPopupAlignment;
AutoPopup: Boolean; Items: array of TMenuitem):
TPopupMenu;

function NewSubMenu(const ACaption: string;
hCtx: Word; const AName: string;
Items: array of TMenuItem): TMenuItem;

function NewItem(const ACaption: string;
AShortCut: TShortCut; AChecked, AEnabled: Boolean;
AOnClick: TNotifyEvent; hCtx: Word;
const AName: string): TMenuItem;

function NewLine: TMenuItem;
The NewMenu and NewPopupMenu functions, in particular, should be used to create brand-new menus.

Calling the constructors of the corresponding classes, in fact, doesn’t always work properly.

Short and Long Menus
If you don’t like creating menu items dynamically, but still need to have a very flexible menu, there are a

couple of good alternatives. You can create a large menu with all the items you need, then hide all the items and
pull-down menus you do not want at the beginning. To add a new command you need only show it. This solution
is a follow-up to what we have done up to now.

You can also create several menus, possibly with common elements, and exchange them as required. This
approach is demonstrated in this section. A typical example of a form having two menus is one that uses two
different sets of menus (long and short) for two different kinds of users (expert and inexperienced). This
technique was common in major Windows applications for some years but has since been replaced by other
approaches, such as letting each user redefine the whole structure of the menu.

The idea is simple and its implementation straightforward:

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 123

1. Prepare the full menu of the application, adding a menu item with the Caption ‘Short’.

2. Add this menu to the Delphi menu template.

3. Place a second MainMenu component on the form, and copy its structure from the template.

4. In the second menu, remove the items corresponding to advanced features and change the Caption
of the special item from ‘Short’ to ‘Long’.

5. In the Menu property of the form, set the MainMenu component you want to use when the application
starts, choosing one of the two available. Note that this operation has an effect on the form at design-
time, too.

6. Write the code for the Short and Long commands so that when they are selected, the menu changes.

If you follow these steps, you’ll end up with an application similar to TwoMenus, which can change its
menu at run-time. The example has two different MainMenu components, with useless “dummy” menu items,
plus the Short and Long commands.

The application does nothing apart from changing the main menu when the Short Menu or Long Menu
items are selected. Here is the code for the Short Menu item:

procedure TForm1.ShortMenus1Click(Sender: TObject);
begin

{activate short menu}
Form1.Menu := MainMenu2;

end;

Graphical Menu Items
Besides the run-time changes on a menu’s structure I’ve listed so far, which are all directly available in

Delphi, there are a number of operations you can perform on menus using the Windows API. In fact, there are
several API functions referring to menus.

In particular, using Windows API functions for menus lets us add some graphics to them. We can
customize the check mark, replace the strings with bitmaps, and even paint in the menu items.

Customizing the Menu Check Mark
As I’ve just mentioned, there are a number of ways to customize a menu in Windows. In this section, I’m

going to show you how you can customize the check mark used by a menu item, using two bitmaps of your own.
This example, NewCheck, involves using bitmaps and calling a Windows API function.

First I should explain why we need two bitmaps, not just one. If you look at a menu item, it can have
either a check mark or nothing. In general, however, Windows uses two different bitmaps for the checked and
unchecked menu item. I’ve prepared two bitmaps, of 16 x 14 pixels, using the Delphi Image Editor. You can
easily run this program from the Tools menu, but you can prepare the bitmaps with any editor, including
Windows Paintbrush. The bitmaps should be stored in two BMP files in the same directory as the project.

The NewCheck example has a very simple form, with just two components, a MainMenu and a label:
object Form1: TForm1

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 124

Caption = 'New Check'
Menu = MainMenu1
OnCreate = FormCreate
OnDestroy = FormDestroy
object Label1: TLabel

Alignment = taCenter
AutoSize = False
Caption = 'OFF'
Font.Height = -96
Font.Name = 'Arial'
Font.Style = [fsBold]

end
object MainMenu1: TMainMenu

object Command1: TMenuItem
Caption = '&Command'
OnClick = Command1Click
object Toggle1: TMenuItem

Caption = '&Toggle'
OnClick = Toggle1Click

end
end

end
end

As you can see in the listing above, the menu item has a single command (Toggle), which will be used to
change the text of the label from ‘ON’ to ‘OFF’ and change the check mark, too:

procedure TForm1.Toggle1Click(Sender: TObject);
begin

Toggle1.Checked := not Toggle1.Checked;
if Toggle1.Checked then

Label1.Caption := 'ON'
else

Label1.Caption := 'OFF';
end;

The most important portion of the code of this example is the call to the SetMenuItemBitmaps
Windows API function:

function SetMenuItemBitmaps (Menu: HMenu;
Position, Flags: Word;
BitmapUnchecked, BitmapChecked: HBitmap): Bool;

This function has a number of parameters:
• The first parameter is the pull-down menu we refer to.

• The second parameter is the position of the menu item in that pull-down menu.

• The third parameter is a flag that determines how to interpret the previous parameter
(Position).

• The last two parameters indicate the bitmaps that should be used.

Notice that this function changes the check mark bitmaps only for a specific menu item. Here is the code
you can use in Delphi to call the function:

procedure TForm1.Command1Click(Sender: TObject);
begin

SetMenuItemBitmaps (Command1.Handle,

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 125

Toggle1.Command, MF_BYCOMMAND,
Bmp2.Handle, Bmp1.Handle);

end;
This call uses two bitmap variables that are defined in the code and the names of some components

(Command1 is the name of the pull-down, and Toggle1 is the name of the menu item). The code above shows
that it is usually very easy to pass the handle of an element to a Windows function — just use its Handle
property.

At first I thought this function could be called when the form was created, after the two bitmaps had been
loaded from the file, but it cannot. Delphi changes the default Windows behavior somewhat, forcing the
application to re-associate the bitmap with the menu items each time they are displayed. The solution I’ve found
is to execute this call each time the pull-down menu is selected — that is, on the OnClick event of the pull-
down.

The only thing left is to load the bitmaps. You need to add two fields of the TBitmap type to the form
class, create an instance of the two objects, and then load the bitmaps from the two BMP files. This is done only
once, when the form is created:

procedure TForm1.FormCreate(Sender: TObject);
begin

Bmp1 := TBitmap.Create;
Bmp2 := TBitmap.Create;
Bmp1.LoadFromFile ('ok.bmp');
Bmp2.LoadFromFile ('no.bmp');

end;
The two bitmaps should also be destroyed when the program terminates (in the handler of the

OnDestroy event of the form):
procedure TForm1.FormDestroy(Sender: TObject);
begin

Bmp1.Free;
Bmp2.Free;

end;
Notice that to run this program, you need to have the two BMP files in the same directory as the

executable file. The bitmaps, in fact, are loaded at run-time and are not embedded by Delphi in the EXE file. As
an alternative I could have used two non-visible Image components to hold the images.

You can indeed include a bitmap in the resources of an application and in its executable
file in order to be able to ship the application in a single file. This process, however, is
slightly more complex, so I’ve decided not to use it here.

Bitmap Menu Items
Instead of placing a bitmap close to a menu item to indicate the status of its Checked property, as we’ve

done in the previous section, you can actually replace the text of a menu item with a bitmap. In specific cases this
can make an application easier to use.

BitMenu is a very simple program. I’ve put a shape in the middle of a form and added a menu to set the
kind of shape (rectangle, rounded rectangle, or ellipse), and its color. Here is the textual description of the form
and its menu:

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 126

object Form1: TForm1
Caption = ' Bitmap Menu'
Menu = MainMenu1
OnCreate = FormCreate
OnDestroy = FormDestroy
OnResize = FormResize
object ShapeDemo: TShape... // default properties
object MainMenu1: TMainMenu

object File1: TMenuItem...
object Exit1: TMenuItem...

end
object Shape1: TMenuItem

Caption = '&Shape'
object Ellipse1: TMenuItem

Caption = 'Ellipse'
OnClick = Ellipse1Click

end
object RoundRec1: TMenuItem

Caption = 'RoundRec'
OnClick = RoundRec1Click

end
object Rectang1: TMenuItem

Caption = 'Rectang'
OnClick = Rectang1Click

end
end
object Color1: TMenuItem

Caption = '&Color'
object Red1: TMenuItem

Caption = 'Red'
OnClick = Red1Click

end
object Green1: TMenuItem

Caption = 'Green'
OnClick = Green1Click

end
object Blue1: TMenuItem

Caption = 'Blue'
OnClick = Blue1Click

end
end
object Help1: TMenuItem...
object About1: TMenuItem...

end
end

I’ve listed the complete description of the menu items because their captions will play an important role
in the code, as you’ll see shortly. As a second step I’ve made the program work, by handling the various menu
commands. Here are two examples from the two main pull-down menus:

procedure TForm1.Red1Click(Sender: TObject);
begin

ShapeDemo.Brush.Color := clRed;
end;

procedure TForm1.Ellipse1Click(Sender: TObject);

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 127

begin
ShapeDemo.Shape := stEllipse;

end;
I’ve also written a handler for the OnResize event of the form, to resize the shape depending on the

actual size of the form. Instead of setting its four positional properties (Left, Top, Width, and Height) I’ve
called the SetBounds method. This approach leads to faster code.

Now that we’ve written the code of the program, it is time to turn the menu items into bitmaps. To
accomplish this I’ve prepared a bitmap file for each of the three shapes and one for each of the three base colors.
Technically these bitmaps can have any size, but to make them look nice they should generally be wide and low
(the typical size of a menu item).

Having prepared the six bitmap files, each named with the caption of its menu items (plus the .BMP
extension), I’ve written a handler for the OnCreate event of the form, and replaced the text of the items of the
fake standard menu with bitmaps. This can be accomplished by calling the ModifyMenu API function:

function ModifyMenu (hMnu: HMENU;
uPosition, uFlags, uIDNewItem: UINT;
lpNewItem: PChar): BOOL; stdcall;

The first parameter is the handle of the menu we are working on (typically a pull-down menu), the
second is the position of the item we want to modify, the third is some menu flags indicating the effect of other
parameters, the fourth is the identifier of the menu item (stored by Delphi in the Command property), and the last is
the new string for the menu item. How can we use this to set a bitmap, instead? We simply pass the handle of a
bitmap in the last parameter (instead of the string), and use the mf_Bitmap menu flag among the values of the
uFlags parameter.

Now you are ready to look at the source code, which is based on two for loops. I wanted to make the
code as generic as possible, so that adding a new kind of shape or color will be pretty straightforward:

procedure TForm1.FormCreate(Sender: TObject);
var

I: Integer;
Bmp: TBitmap;

begin
// load the bitmaps for the shapes
for I := 0 to Shape1.Count - 1 do
begin

Bmp := TBitmap.Create;
Bmp.LoadFromFile (Shape1.Items [I].Caption + '.bmp');
ModifyMenu (Shape1.Handle,Shape1.Items [I].MenuIndex,

mf_ByPosition or mf_Bitmap,
Shape1.Items [I].Command, Pointer (Bmp.Handle));

Shape1.Items [I].Tag := Integer (Bmp);
end;

// load the bitmaps for the colors
for I := 0 to Color1.Count - 1 do
begin

Bmp := TBitmap.Create;
Bmp.LoadFromFile (Color1.Items [I].Caption + '.bmp');
ModifyMenu (Color1.Handle, Color1.Items [I].MenuIndex,

mf_ByPosition or mf_Bitmap, Color1.Items [I].Command,
Pointer (Bmp.Handle));

Color1.Items [I].Tag := Integer (Bmp);
end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 128

end;

In the two calls to the ModifyMenu API function in the code above, we’ve used the
mf_ByPosition flag in the third parameter, and passed the position of the item in the
second parameter. However, we still need to pass the menu command as the fourth
parameter, because this will be the command of the new menu item. If we don’t, we’ll lose
the connection between the menu item and its Delphi event handler.

As you can see I save the reference to each bitmap object I create in the Tag property of the
corresponding menu item. The only reason I have to save the bitmap objects is to be able to destroy them when
the application terminates:

procedure TForm1.FormDestroy(Sender: TObject);
var

I: Integer;
begin

for I := 0 to Shape1.Count - 1 do
TBitmap (Shape1.Items [I].Tag).Free;

for I := 0 to Color1.Count - 1 do
TBitmap (Color1.Items [I].Tag).Free;

end;
As an alternative I could have saved the bitmap objects in an array (declared as a field of the form), and

then destroyed each of the objects of the array at the end.
When you run this program, the Shape pull-down menu looks nice. The Color pull-down menu, however,

is not working properly. As soon as you select it, in fact, the colors are displayed properly. But when you move
over a menu item (as you can see by running the program) its colors are reversed by the menu item selection.
Reversing the color you are asking for results in a very odd user interface: to select the color blue you have to
click on an item that has temporarily turned to yellow!

Basically, you can use only black-and-white or gray-scaled bitmaps in a menu item. Color bitmaps create
a lot of problems. If you want to obtain this effect, you should use an owner-draw menu item, as described in the
next section.

Owner-Draw Menu Items
In Windows, the system is usually responsible for painting buttons, list boxes, edit boxes, menu items,

and similar elements. Basically these controls know how to paint themselves. As an alternative, however, the
system allows the owner of these controls, generally a form, to paint them. This technique, available for buttons,
list boxes, combo boxes, and menu items, is called owner-draw.

Actually in Delphi the situation is slightly more complex. The components can take care of painting
themselves also in this case (as is the case for the TBitBtn class for bitmap buttons), and eventually activate
corresponding events. If you don’t think about the internal details, owner-draw techniques for list boxes and
combo boxes require you simply to write the handler for a couple of events.

Delphi provides no support for owner-draw menu items, though. So in this case we have to use the
standard Windows approach, and handle a couple of system messages in our form. Here is the definition of these
methods in the source code of the ODMenu example, an extension of the BitMenu example discussed in the last
section:

type

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 129

TForm1 = class(TForm)
...

public
procedure WmMeasureItem (var Msg: TWmMeasureItem);

message wm_MeasureItem;
procedure WmDrawItem (var Msg: TWmDrawItem);

message wm_DrawItem;
end;

The wm_MeasureItem message is sent by Windows once for each menu item when the pull-down
menu is displayed to determine the size of each item. The wm_DrawItem message is sent when an item has to
be repainted. This happens when Windows first displays the items, and each time the status changes; for
example, when the mouse moves over an item, it should become highlighted. In fact, to paint the menu items, we
have to consider all the possibilities, including drawing the highlighted items with specific colors, drawing the
check mark if required, and so on.

In the ODMenu example I’ll handle the highlighted color, but skip other advanced aspects (such as the
check marks). I’ve modified the CreateForm method to call the ModifyMenu API function passing the
mfOwnerDraw menu flag. I also pass a code as the last parameter, to distinguish the various items. The other
parameters are the same as in the previous version of the example:

procedure TForm1.FormCreate(Sender: TObject);
var

I: Integer;
begin

...
// turn the menu items into owner-draw items
for I := 0 to Color1.Count - 1 do
begin

ModifyMenu (Color1.Handle, Color1.Items [I].MenuIndex,
mf_ByPosition or mf_OwnerDraw,
Color1.Items [I].Command, Pointer (I));

end;
end;

Now we have to write the code of the two owner-draw message handlers. The WmMeasureItem
method receives as a parameter (in the corresponding TWmMeasureItem structure) a pointer to the Windows
MeasureItemStruct structure (you can see the details of this structure in the Windows API help file). From
this last structure we use the CtlType field, which stores the type of element we are measuring, to check
whether this operation pertains to a menu. If it does, we use the ItemWidth and ItemHeight fields to set the
width and height of the item. Since all items have the same size, the code is quite simple. The last thing we have
to do is to provide a return value for the message, indicating we have handled it, in the Result field of the
message structure. Here is the complete code:

procedure TForm1.WmMeasureItem (var Msg: TWmMeasureItem);
begin

inherited;
with Msg.MeasureItemStruct^ do

if CtlType = odt_Menu then
begin

ItemWidth := 80;
ItemHeight := 30;
Msg.Result := 1; // we’ve handled it

end;
end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 130

Drawing a menu item is slightly more complex, since to write Delphi code we have to create a TCanvas
object, which encapsulates a Windows device context handle. Since we have to free this object to avoid memory
leaks, I’ve used a try-finally statement to destroy it even if an error occurs:

Canvas1 := TCanvas.Create;
Canvas1.Handle := hDC;
try

...
finally

Canvas1.Free;
end;

The code assigns to the Handle property of this TCanvas object the hDC field passed by the message
in the DrawItemStruct structure (there is, again, a pointer to this structure passed in one of the fields of the
TWmDrawItem parameter of the message-handler method). This hDC field passes to our code the handle to the
device context (the painting area, the Canvas) of the pull-down menu we are going to paint.

Once we have set up the drawing mechanism, we can start with the actual code. First we have to check
the state of the menu item, stored in the ItemState field. If this includes the ods_Selected flag (a
condition we can test by checking the result of a bitwise and expression); then we have to paint the background
of the menu item using the Windows system color for the highlighted items, clHighlight. Otherwise, we use
the standard color for menus, clMenu.

Some of the Delphi constants for colors correspond to the Windows system color. These
colors are not fixed, but reflect the current color setting made by the user.

Once we’ve assigned to the Brush of the canvas the background color, we can easily paint it by calling
the FillRect method. This method has one single parameter, corresponding to the rectangle we have to erase.
This information is available in the rcItem field of the DrawItemStruct structure. Notice, by the way, that
if you don’t limit your drawing area to this rectangle, you can paint over other menu items as well!

The second step is drawing the actual colored areas, which don’t depend on the status of the menu item,
since we want each color to show up properly even if the item is selected. By looking to the ItemData field, the
code retrieves the code passed as the last parameter of the ModifyMenu function call, used to make the menu
item owner-draw. Depending on the value of this field, the program sets a proper value for the Color of the
Brush using a simple case statement. At this point we only have to paint the area, by calling the Rectangle
function and passing, in the four parameters, a smaller area than the full surface of the menu item. In fact we need
to reserve a border with the background color. In the example the border is 5 pixels wide.

Here, finally, is the complete source code of the WmDrawItem method:
procedure TForm1.WmDrawItem (var Msg: TWmDrawItem);
var

Canvas1: TCanvas;
begin

inherited;
with Msg.DrawItemStruct^ do

if CtlType = odt_Menu then
begin

// create a canvas for painting
Canvas1 := TCanvas.Create;
Canvas1.Handle := hDC;
try

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 131

// set the background color and draw it
if (ods_Selected and ItemState <> 0) then

Canvas1.Brush.Color := clHighlight
else

Canvas1.Brush.Color := clMenu;
Canvas1.FillRect (rcItem);
case ItemData of

0: Canvas1.Brush.Color := clRed;
1: Canvas1.Brush.Color := clLime;
2: Canvas1.Brush.Color := clBlue;

end;
Canvas1.Rectangle (rcItem.Left + 5, rcItem.Top + 5,

rcItem.Right - 10, rcItem.Bottom - 10);
finally

Canvas1.Free;
end;

end;
end;

I suggest you run this program along with the BitMenu program, to see the differences in the way the
colored menu items are painted. Actually, looking at these two examples one might think of using the owner-
draw technique also for menu items with black-and-white bitmaps.

Customizing the System Menu
In some circumstances, it is interesting to add menu commands to the system menu itself, instead of (or

besides) having a menu bar. This might be useful for secondary windows, toolboxes, windows requiring a large
area on the screen, and for “quick-and-dirty” applications. Adding a single menu item to the system menu is
straightforward:

AppendMenu (GetSystemMenu (Handle, FALSE),
MF_SEPARATOR, 0, '');

AppendMenu (GetSystemMenu (Handle, FALSE),
MF_STRING, idSysAbout, '&About...');

The code fragment above (extracted from the SysMenu example) adds a separator and a new item to the
system menu item. The GetSystemMenu API function, which requires as a parameter the handle of the form,
returns a handle to the system menu. The AppendMenu API function is a general-purpose function you can use
to add menu items or complete pull-down menus to any menu (the menu bar, the system menu, or an existing
pull-down menu). When adding a menu item, you have to specify its text and a numeric identifier. In the example
I’ve defined this identifier as:

const
idSysAbout = 100;

In the SysMenu example, this code is executed in the OnCreate event handler, and it produces the new
system menu. Adding a menu item to the system menu is easy, but how can we handle its selection? Selecting a
normal menu generates the wm_Command Windows message. This is handled internally by Delphi, which
activates the OnClick event of the corresponding menu item component. The selection of system menu
commands, instead, generates a wm_SysCommand message, which is passed by Delphi to the default handler.
Windows usually needs to do something in response to a system menu command.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 132

We can intercept this command and check to see whether the command identifier (passed in the
CmdType field of the TWmSysCommand parameter) of the menu item is our idSysAbout. Since there isn’t a
corresponding event in Delphi, we have to define a new message response method to the form class:

public
procedure WMSysCommand (var Msg: TMessage);

message wm_SysCommand;
The code of this procedure is not very complex. We just need to check whether the command is our own

and call the default handler:
procedure TForm1.WMSysCommand (var Msg: TWMSysCommand);
begin

if Msg.CmdType = idSysAbout then
ShowMessage ('Mastering Delphi: SysMenu example');

inherited;
end;

To build a more complex system menu, instead of adding and handling each menu item as we have just
done, we can follow a different approach. Just add a MainMenu component to the form, create its structure (any
structure will do), and write the proper event handlers. Then reset the value of the Menu property of the form,
removing the menu bar. This way we have a MainMenu component but nothing on the screen.

Now we can add some code to the SysMenu example to add each of the items from the hidden menu to
the system menu. This operation takes place when the button of the form is pressed. The corresponding handler
uses generic code that doesn’t depend on the structure of the menu we are appending to the system menu:

procedure TForm1.Button1Click(Sender: TObject);
var

I: Integer;
begin

// add a separator
AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, 0, '');
// add the main menu to the system menu
with MainMenu1 do

for I := 0 to Items.Count - 1 do
AppendMenu (GetSystemMenu (self.Handle, FALSE),

mf_Popup, Items[I].Handle, PChar (Items[I].Caption));
// disable the button
Button1.Enabled := False;

end;
This code uses the expression self.Handle to access the handle of the form. This is required because

we are currently working on the MainMenu1 component, as specified by the with statement.
The menu flag used in this case, mf_Popup, indicates that we are adding a pull-down menu. In this

function call the fourth parameter is interpreted as the handle of the pull-down menu we are adding (in the
previous example we passed the identifier of the menu, instead). Since we are adding to the system menu items
with sub-menus, the final structure of the system menu will have two levels.

The Windows API uses the terms pop-up menu and pull-down menu interchangeably. This
is really odd, because most of us use the terms for two different things, the local menus
and the secondary menus of the menu bar. Apparently, they’ve done this because these
two elements are implemented with the same kind of internal windows; and the fact that
they are two distinct user-interface elements is probably something that was later
conceptually built over a single basic internal structure.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 133

Once you have added the menu items to the system menu, you need to handle them. Of course you can
check for each menu item in the WMSysCommand method, or you can try building a smarter approach. Since in
Delphi it is easier to write a handler for the OnClick event of each item, as usual, we can look for the item
corresponding to the given identifier in the menu structure. Delphi helps us by providing a FindItem method.

When we have found the menu item (and if we have found something), we can call its Click method
(which invokes the OnClick handler). Here is the code I’ve added to the WMSysCommand method:

var
Item: TMenuItem;

begin
...
Item := MainMenu1.FindItem (Msg.CmdType, fkCommand);
if Item <> nil then

Item.Click;
In this code, The CmdType field of the message structure that is passed to the WMSysCommand

procedure holds the command of the menu item being called.
You can also use a simple if or case statement to handle one of the system menu’s predefined menu

items that have special codes for this identifier, such as sc_Close, sc_Minimize, sc_Maximize, and so
on. For more information, you can see the description of the wm_SysCommand message in the Windows API
Help file, available in Delphi.

This application works but has one glitch. If you click the right mouse button over the
TaskBar icon representing the application, you get a plain system menu (actually even
different than the default one). The reason is that this system menu belongs to a different
window, the window of the Application global object.

Building a Complete Menu
Now that we know how to write a menu, disable and check menu items, and so on, we are ready to build

the menu for a full-fledged application. Do you remember the RichNote example of the last chapter? It was a
simple editor based on a RichEdit component. You could use it to write and change the font of the selected text,
but that was all. Now we want to add a menu and implement a number of features, including a complete scheme
for opening and saving the text files. In fact, we want to be able to ask the user to save any modified file before
opening a new one, to avoid losing any changes. Sounds like a professional application, doesn’t it?

First of all, we need to build the menu, following the standard. The main menu starts with two standard
pull-down menus, File and Edit, with the typical menu items. Then there are two specific pull-down menus, Font
and Paragraph, with menu items to set the text font and alignment. The last two pull-down menus, Options and
Help, are almost standard: Their names are standard, but their menu items are not. The Options menu has
commands to change the background color and to count the characters, and the Help menu has only the About
menu item.

In this example, we want to implement most but not all of the commands of the menu, for example
skipping the Clipboard commands. The following table shows the complete structure of the menu:

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 134

&File &Edit F&ont &Paragraph &Options &Help
&New Cu&t &Times New

Roman
 &Left Aligned &Backgroud

Color
 &About
RichNote...

&Open... &Copy &Courier New &Right Aligned &Read Only
&Save &Paste &Arial &Centered &Count chars...
Save&As... &Bold
&Print... &Italic
E&xit &Small

 &Medium
 &Large
 More &Fonts...

Having added a complete menu, we can now get rid of the simple panel and the font button of the
RichNote example. The only visual component left in the form of the RichNot2 version will be the RichEdit
component, which is aligned with the client area. Then there is the MainMenu component, and four components
for standard dialog boxes (OpenDialog, SaveDialog, FontDialog, and ColorDialog).

The File Menu
As I mentioned when we began working through the RichNot2 example, the most complex part of this

program is implementing the commands of the File pull-down menu—New, Open, Save, and Save As. In each
case, we need to track whether the current file has changed, saving the file only if it has. We should prompt the
user to save the file each time the program creates a new file, loads an existing one, or terminates.

To accomplish this, I’ve added two fields and three methods to the class describing the form of the
application:

private
FileName: string;
Modified: Boolean;

public
function SaveChanges: Boolean;
function Save: Boolean;
function SaveAs: Boolean;

The FileName string and the Modified flag are set when the form is created and changed when a
new file is loaded or the user renames a file with the Save As command. These two flags are initialized when the
form is first created:

procedure TFormRichNote.FormCreate(Sender: TObject);
begin

FileName := '';
Modified := False;

end;
The value of the flag changes as soon as you type new characters in the RichEdit control (in its

OnChange event handler):
procedure TFormRichNote.RichEdit1Change(Sender: TObject);
begin

Modified := True;
end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 135

When a new file is created, the program checks whether the text has been modified. If so, it calls the
SaveChanges function, which asks the user whether to save the changes, discard them, or skip the current
operation:

procedure TFormRichNote.New1Click(Sender: TObject);
begin

if not Modified or SaveChanges then
begin

RichEdit1.Text := '';
Modified := False;
FileName := '';
Caption := 'RichNote - [Untitled]';

end;
end;

If the creation of a new file is confirmed, some simple operations take place, including using ‘Untitled’
instead of the file name in the form’s caption.

Short-Circuit Evaluation
The expression if not Modified or SaveChanges then requires some explanation. By default,

Pascal performs what is called “short-circuit evaluation” of complex conditional expressions. The idea is simple:
if the expression not Modified is true, we are sure that the whole expression is going to be true, and we don’t
need to evaluate the second expression. In this particular case, the second expression is a function call, and the function
is called only if Modified is True. This behavior of or and and expressions can be changed by setting a
Delphi compiler option called Complete Boolean Eval. You can find it on the Compiler page of the Project
Options dialog box.

The message box displayed by the SaveChanges function has three options. If the user selects the
Cancel button, the function returns False. If the user selects No, nothing happens (the file is not saved) and the
function returns True, to indicate that although we haven’t actually saved the file, the requested operation (such
as creating a new file) can be accomplished. If the user selects Yes, the file is saved and the function returns
True.

In the code of this function, notice in particular the call to the MessageDlg function used as the value
of a case statement:

function TFormRichNote.SaveChanges: Boolean;
begin

case MessageDlg (
'The document ' + filename + ' has changed.' +
#13#13 + 'Do you want to save the changes?',
mtConfirmation, mbYesNoCancel, 0) of

idYes:
// call Save and return its result
Result := Save;

idNo:
// don’t save and continue
Result := True;

else // idCancel:
// don’t save and abort operation
Resulht := False;

end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 136

end;

In the MessageDlg call above, I’ve added explicit newline characters (#13) to improve the
readability of the output. As an alternative to using a numeric character constant, you can
call Chr(13).

To actually save the file, another function is invoked: Save. This method saves the file if it already has a
proper file name or asks the user to enter a name, calling the SaveAs functions. These are two more internal
functions, not directly connected with menu items:

function TFormRichNote.Save: Boolean;
begin

if Filename = '' then
Result := SaveAs // ask for a file name

else
begin

RichEdit1.Lines.SaveToFile (FileName);
Modified := False;
Result := True;

end;
end;

function TFormRichNote.SaveAs: Boolean;
begin

SaveDialog1.FileName := Filename;
if SaveDialog1.Execute then
begin

Filename := SaveDialog1.FileName;
Save;
Caption := 'RichNote - ' + Filename;
Result := True;

end
else

Result := False;
end;

I use two functions to perform the Save and SaveAs operations (and do not call the corresponding menu
handler directly) because I need a way to report a request to cancel the operation from the user. To avoid code
duplication, the handlers of the Save and SaveAs menu items call the two functions too, although they ignore the
return value:

procedure TFormRichNote.Save1Click(Sender: TObject);
begin

if Modified then
Save;

end;

procedure TFormRichNote.Saveas1Click(Sender: TObject);
begin

SaveAs;
end;

Opening a file is much simpler. Before loading a new file, the program checks whether the current file has
changed, asking the user to save it with the SaveChanges function, as before. The Open1Click method is
based on the OpenDialog component, another default dialog box provided by Windows and supported by Delphi:

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 137

procedure TFormRichNote.Open1Click(Sender: TObject);
begin

if not Modified or SaveChanges then
if OpenDialog1.Execute then
begin

Filename := OpenDialog1.FileName;
RichEdit1.Lines.LoadFromFile (FileName);
Modified := False;
Caption := 'RichNote - ' + FileName;

end;
end;

The only other detail related to file operations is that both the OpenDialog and SaveDialog components
of the NotesForm have a particular value for their Filter and DefaultExt properties, as you can see in the
following fragment from the textual description of the form:

object OpenDialog1: TOpenDialog
DefaultExt = 'rtf'
FileEditStyle = fsEdit
Filter = 'Rich Text File (*.rtf)|*.rtf|Any file (*.*)|*.*'
Options = [ofHideReadOnly, ofPathMustExist,ofFileMustExist]

end
The string used for the Filter property (which should be written on a single line) contains four pairs of

substrings, separated by the | symbol. Each pair has a description of the type of file that will appear in the File
Open or File Save dialog box, and the filter to be applied to the files in the directory, such as *.RTF. To set the
filters in Delphi, you can simply invoke the editor of this property, which displays a list with two columns.

The file-related methods above are also called from the FormCloseQuery method (the handler of the
OnCloseQuery event), which is called each time the user tries to close the form, terminating the program. We
can make this happen in various ways — by double-clicking on the system menu icon, selecting the system
menu’s Close command, pressing the Alt+F4 keys, or calling the Close method in the code, as in the File | Exit
menu command.

In FormCloseQuery, you can decide whether or not to actually close the application by setting the
CanClose parameter, which is passed by reference. Again, if the current file has been modified, we call the
SaveChanges function and use its return value. Again we can use the short-circuit evaluation technique:

procedure TFormRichNote.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
CanClose := not Modified or SaveChanges;

end;
The last menu item of the File menu is the Print command. Since the RichEdit component includes print

capabilities and they are very simple to use, I’ve decided to implement it anyway. Here is the code, which
actually produces a very nice printout:

procedure TFormRichNote.Print1Click(Sender: TObject);
begin

RichEdit1.Print (FileName);
end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 138

The Paragraph Menu
Compared to the File menu, the other pull-down menus of this example are simpler. The code of the

Paragraph menu is based on some properties of its items. Here is their textual description (from the DFM file):
object Paragraph1: TMenuItem

Caption = '&Paragraph'
object LeftAligned1: TMenuItem

Caption = '&Left Aligned'
Checked = True
GroupIndex = 1
RadioItem = True
OnClick = RightAligned1Click

end
object RightAligned1: TMenuItem

Caption = '&Right Aligned'
GroupIndex = 1
RadioItem = True
OnClick = RightAligned1Click

end
object Centered1: TMenuItem

Caption = '&Centered'
GroupIndex = 1
RadioItem = True
OnClick = RightAligned1Click

end
end

As you can see, the program uses radio menu items, by giving to the three items the same value for the
GroupIndex property and setting the RadioItem property to True. The menu items also share the same
RightAligned1Click method for their OnClick event. Here is the code of the method, which is based on
the correspondence between the position of the menu items in the pull-down (indicated by their MenuIndex
property) and the order of the values of the TAlignment enumeration. It is a trick, but it works. Here is the
code:

procedure TFormRichNote.RightAligned1Click(Sender: TObject);
begin

RichEdit1.Paragraph.Alignment :=
TAlignment ((Sender as TMenuItem).MenuIndex);

(Sender as TMenuItem).Checked := True;
end;

First, this procedure sets the alignment of the current paragraph (the paragraph including the selected text
or the editor cursor), then it checks the current menu item — the menu item that has activated the method (the
Sender object). As you can see, this code relies on some controlled typecasts, based on the as keyword: this is
what you have to do any time you want to write generic code (that is, to attach the same methods to events of
different components).

Notice that setting the check mark for the current menu item is correct only until you change the selection
or the current line in the text. For this reason, we can handle the OnSelectionChange event of the RichEdit
component, and update the check mark of the Paragraph menu each time:

procedure TFormRichNote.RichEdit1SelectionChange(Sender: TObject);
begin

Paragraph1.Items [Integer (RichEdit1.Paragraph.Alignment)].
Checked := True;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 139

end;

The Font Menu
The Font pull-down menu is built on the same concept, but it has two groups of radio items, plus items

with a standard check mark. Each group, then, uses a different approach to handle the menu item selection with a
single event response method. You can see the details of the properties of the menu items directly in the
RichForm.DFM source code file (this listing was too long to reproduce here).

The code of the first group of menu items (used to select the font) is based on a simple trick: the name of
the font to select corresponds to the Caption of the menu item, without the initial & character:

procedure TFormRichNote.TimesRoman1Click(Sender: TObject);
var

FontName: string;
begin

// get the font name and remove the &
FontName := (Sender as TMenuItem).Caption;
Delete (FontName, 1, 1);
// change selected text font
if RichEdit1.SelLength > 0 then

RichEdit1.SelAttributes.Name := FontName;
(Sender as TMenuItem).Checked := True;

end;
This code acts on the current selection (using the SelAttributes property of the RichEdit1

component), as the RichNote example in Chapter 8 did. Notice that you can easily extend this code by adding
new menu items consisting of the name of the font preceded by the & character. Then you’ll necessarily have to
set the same value for the GroupIndex property of the previous items (in this case 1). So if you simply set the
RadioItem property to True and connect the OnClick event to the TimesRoman1Click method, they’ll
behave just like the existing font selection menu items.

The second group of items controls the selection of the bold and italic styles. This is accomplished by
two similar but separate methods. Here is one of them:

procedure TFormRichNote.Bold1Click(Sender: TObject);
begin

Bold1.Checked := not Bold1.Checked;
if RichEdit1.SelLength > 0 then

with RichEdit1.SelAttributes do
if Bold1.Checked then

Style := Style + [fsBold]
else

Style := Style - [fsBold];
end;

The last part of the menu has another group of radio menu items, used to set the size of the font. These
menu items refer to a font size in the caption and have the same value stored in their Tag property. This makes
the code very easy to write. Again, there is a single method for the three menu items, but you can add new items
to this group with very little effort:

procedure TFormRichNote.Large1Click(Sender: TObject);
begin

if RichEdit1.SelLength > 0 then
RichEdit1.SelAttributes.Size :=(Sender as TMenuItem).Tag;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 140

(Sender as TMenuItem).Checked := True;
end;

The last item of this menu simply activates the Font dialog box. Notice that the font returned by this
dialog box cannot be assigned directly to the SelAttributes property; we need to call the Assign method,
instead:

procedure TFormRichNote.More1Click(Sender: TObject);
begin

FontDialog1.Font := RichEdit1.Font;
if FontDialog1.Execute then

RichEdit1.SelAttributes.Assign (FontDialog1.Font);
// update the check marks
RichEdit1SelectionChange (self);

end;

All the commands of this menu affect the status of the current selection, setting the check boxes and
radio items properly. The method above, instead, calls the RichEdit1SelectionChange method. This is
the handler of the OnSelectionChange event of the RichEdit component.

This method scans some of the groups to determine which element has to be checked. As in other
examples before, this code has been written so that you can easily extend it for new menu items (the listing also
includes the code used to reset the paragraph alignment, discussed earlier):

procedure TFormRichNote.RichEdit1SelectionChange(Sender: TObject);
var

FontName: string;
I: Integer;

begin
// check the font name radio menu item
FontName := '&' + RichEdit1.SelAttributes.Name;
for I := 0 to 2 do

with Font1.Items [I] do
if FontName = Caption then

Checked := True;

// check the bold and italic items
Italic1.Checked :=

fsItalic in RichEdit1.SelAttributes.Style;
Bold1.Checked :=

fsBold in RichEdit1.SelAttributes.Style;

// check the font size
for I := Small1.MenuIndex to Large1.MenuIndex do

with Font1.Items [I] do
if Tag = RichEdit1.SelAttributes.Size then

Checked := True;

// check the paragraph style
Paragraph1.Items [Integer (RichEdit1.Paragraph.Alignment)].

Checked := True;
end;

This method doesn’t work perfectly. When you set a custom font, the selection doesn’t change properly
(because the current item remains selected). To fix it, we should remove any radio check mark when the value is
not one of the possible selections, or add new menu items for this special case. The example is complex enough,
so I think we can live with this minor inconvenience.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 141

The Options Menu
The last pull-down menu of the RichNot2 example is the Options menu. This menu has three unrelated

commands used to customize the user interface, and to determine and display the length of the text. The first
command displays a color selection dialog box, used to change the color of the background of the RichEdit
component:

procedure TFormRichNote.BackColor1Click(Sender: TObject);
begin

ColorDialog1.Color := RichEdit1.Color;
if ColorDialog1.Execute then

RichEdit1.Color := ColorDialog1.Color;
end;

The second command can be used to mark the text as read-only. In theory this property should be set
depending on the status of the file on the disk. In the example, instead, the user can toggle the read-only attribute
manually:

procedure TFormRichNote.ReadOnly1Click(Sender: TObject);
begin

RichEdit1.ReadOnly := not RichEdit1.ReadOnly;
ReadOnly1.Checked := not ReadOnly1.Checked;

end;
The last menu item activates a method to count the number of characters in the text and display the total

in a message box. The core of the method is the call to the GetTextLen function of the RichEdit control. The
number is extracted and formatted into an output string:

procedure TFormRichNote.Countchars1Click(Sender: TObject);
begin

MessageDlg (Format (
'The text has %d characters', [RichEdit1.GetTextLen]),
mtInformation, [mbOK], 0);

end;
The handler of the OnClick event of this last item of the Options menu terminates the example. As

mentioned at the beginning, this was a rather long and complex example, but its purpose was to show you the
implementation of the menu commands of a real-world application. In particular, I explained in detail the File
pull-down menu because this is something you’ll probably need to handle in any file-related application.

Now we are ready to delve into another topic involving menus, the use of local menus activated by the
right mouse button click.

Pop-Up Menus
In Windows, it is common to see applications that have special local menus you activate by clicking the

right mouse button. The menu that is displayed — a pop-up menu, in common Windows terminology — usually
depends on the position of the mouse click. These menus tend to be easy to use since they group only the few
commands related to the element that is currently selected. They are also usually faster to use than full-blown
menus because you don’t need to move the mouse up to the menu bar and then down again to go on working.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 142

In Delphi, there are basically two ways to display pop-up menus, using the corresponding component.
You can let Delphi handle them automatically or you can choose a manual technique. I’ll explore both
approaches, starting with the first, which is the simplest one.

To add a pop-up menu to a form, you need to perform a few simple operations. Create a PopupMenu
component, add some menu items to it, and select the component as the value of the form’s PopupMenu
property. That’s all. Of course, you should also add some handlers for the OnClick events of the local menu’s
various menu items, as you do with an ordinary menu.

An Automatic Local Menu
To show you how to create a local menu, I’ve built an example that is an extension of the Dragging

example. The new example is named Local1. I’ve added a first PopupMenu component to its form and connected
it using the PopupMenu property of the form itself. Once this is done, running the program and clicking the
right mouse button on the form displays the local menu. Then, I’ve added a second pop-up menu component, with
two levels, to the form, and I’ve attached it to the StaticText component on the right, LabelTarget. To
connect a local menu to a specific component, you simply need to set its PopupMenu property. The four
methods related to the first group of commands of the Colors pull-down menu just select a color:

procedure TDraggingForm.Aqua1Click(Sender: TObject);
begin

LabelTarget.Color := clAqua;
end;

The Transparent command selects the color of the parent form as the current color, setting the value of
the ParentColor property to True.

The components of a form usually borrow some properties from the form. This is indicated
by specific properties, such as ParentColor or ParentFont. When these properties
are set to True, the current value of the component’s property is ignored, and the value of
the form is used instead. Usually, this is not a problem, because as soon as you set a
property of the component (for example, the font), the corresponding property indicating
the use of the parent attribute (ParentFont) is automatically set to False.

The last command of the pull-down menu, User Defined, presents the standard Color Selection dialog
box to the user. The three commands of the pop-up menu’s second pull-down change the alignment of the text of
the big label and add a check mark near the current selection, deselecting the other two menu items. Here is one
of the three methods:

procedure TDraggingForm.Center1Click(Sender: TObject);
begin

LabelTarget.Alignment := taCenter;
Left1.Checked := False;
Center1.Checked := True;
Right1.Checked := False;

end;
A pop-up menu, in fact, can use all the features of a main menu and can have checked, disabled, or

hidden items, and more. I could have also used radio menu items for this pop-up menu, but this doesn’t seem to
be a very common approach.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 143

Modifying a Pop-Up Menu When It Is Activated
Why not use the same technique to display a check mark near the selected color? It is possible, but it’s

not a very good solution. In fact, there are six menu items to consider, and the color can also change when a user
drags it from one of the labels on the left of the form. For this reason, and to show you another technique, I’ve
followed a different approach.

Each time a pop-up menu is displayed, the OnPopup event is sent to your application. In the code of the
corresponding method, you can place the check mark on the current selection of the color, independently from
the action used to set it:

procedure TDraggingForm.PopupMenu2Popup(Sender: TObject);
var

I: Integer;
begin

// unchecks all menu items (not required for radio menu items)
with Colors1 do

for I := 0 to Count - 1 do
Items[I].Checked := False;

// checks the proper item
case LabelTarget.Color of

clRed: Red1.Checked := True;
clAqua: Aqua1.Checked := True;
clGreen: Green1.Checked := True;
clYellow: Yellow1.Checked := True;

else
if LabelTarget.ParentColor then

Transparent1.Checked := True
else

UserDefined1.Checked := True;
end;

end;
This method’s code requires some explanation. At the beginning, the menu items are all unchecked by

using a for loop on the Items array of the Colors1 menu. The advantage of this loop is that it operates on all
the menu items, regardless of their number. Then the program uses a case statement to check the proper item.

Handling Pop-Up Menus Manually
In the Local1 example, we saw how to use automatic pop-up menus. As an alternative, you can set the

AutoPopup property to False or not connect the pop-up menu to any component, and use the pop-up menu’s
Popup method to display it on the screen. This procedure requires two parameters: the x and y values of the
position where the menu is going to be displayed. The problem is that you need to supply the screen coordinates
of the point, not the client coordinates, which are the usual coordinates relative to the form’s client area.

As an example, I’ve taken an existing application with a menu — the third version of the MenuOne
example, described in this chapter — and added a peculiar pop-up menu. The idea is that there are two different
pop-up menus, one to change the colors and the other to change the alignment of the text. Each time the user
right-clicks on the caption, one of the two pop-up menus is displayed. In real applications, you’ll probably have
to decide which menu to display depending on the status of some variable. Here, I’ve followed a simple (and

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 144

arbitrary) rule: Each time the right mouse button is clicked, the pop-up menu changes. My aim is to show you
how to do this in the simplest possible way.

The two pop-up menus are very simple, and correspond to actions already available in the main menu
(and connected with the same event handlers). Actually, I’ve built these pop-up menus by copying the main menu
to a menu template and then pasting from it. The only change I’ve made is to remove the shortcut keys.

When the user clicks the right mouse button over the label, which takes up the whole surface of the form,
a method displays one of the two menus. Instead of using the OnClick event, I’ve trapped the OnMouseDown
event of the label. This second event passes as parameters the coordinates of the mouse click.

These coordinates are relative to the label, so you have to convert them to screen coordinates by calling
the ClientToScreen method of the label:

procedure TFormColorText.Label1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var
ClientPoint, ScreenPoint: TPoint;

begin
if Button = mbRight then
begin

ClientPoint.X := X;
ClientPoint.Y := Y;
ScreenPoint := Label1.ClientToScreen (ClientPoint);
Inc (ClickCount);
if Odd (ClickCount) then

PopupMenu1.Popup (ScreenPoint.X, ScreenPoint.Y)
else

PopupMenu2.Popup (ScreenPoint.X, ScreenPoint.Y);
end;

end;
In this procedure, you first have to check whether the right mouse button was clicked. The second step is

to translate the coordinate of the position of the mouse click from client coordinates to screen coordinates. Screen
coordinates are required by the PopupMenu component’s Popup method.

The last thing we have to do is provide the proper check marks for the menu items of the second pop-up
menu. A solution is to copy the current check marks of the main menu to the pop-up before displaying it:

if Odd (ClickCount) then
PopupMenu1.Popup (ScreenPoint.X, ScreenPoint.Y)

else
begin

{set the check marks as in the main menu}
Left2.Checked := Left1.Checked;
Center2.Checked := Center1.Checked;
Right2.Checked := Right1.Checked;
PopupMenu2.Popup (ScreenPoint.X, ScreenPoint.Y);

end;
An alternative solution—the one I’ve actually implemented in the Local2 example — is to set this check

mark every time you set the check marks of the main menu, as in the following code:
procedure TFormColorText.Left1Click(Sender: TObject);
begin

Label1.Alignment := taLeftJustify;
Left1.Checked := True;
Left2.Checked := True;

end;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 145

In a more general application you might want to write a generic routine to apply the check marks more
consistently, but in this example one of these two simple techniques will do.

What’s Next
In this chapter, we have seen how to create main menus and pop-up menus in Delphi. We’ve discussed

the standard guidelines for the names of the pull-down menus and of the menu items, shortcut keys, check marks,
graphical menus, local menus, and many other topics. You can explore in other directions, as well. For example,
you can create a menu dynamically (at run-time) or copy portions of a menu to another menu, as in the SysMenu
example.

The next step, however, is to explore a less common but very nice feature of Delphi programming,
multimedia.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 146

CHAPTER 6: MULTIMEDIA FUN

• Windows default sounds
• From a beep to music
• The Media Player component
• Playing sounds and running videos
• Applications for audio CD drives

Among the many devices, the multimedia subsystem focuses sound cards or CD-ROM drives. Of course,
besides being physically connected to your computer, these devices must be properly installed in Windows for
your Delphi applications to access them.

Windows provides a specific API, known as the Multimedia API, to handle external devices such as
video, MIDI, and CD drives. Delphi includes a corresponding Help file along with an easy-to-use component, the
Media Player, to manipulate most multimedia devices. Before discussing this component, which is the main topic
of the chapter, we’ll look at some simpler ways to produce sound in Windows, beyond the simple beeps we have
used previously.

Windows Default Sounds
In the book’s earlier examples, every time we wanted to notify the user of an error or a specific event, we

called a Delphi system procedure (Beep) or a Windows API function (MessageBeep). The Beep procedure is
defined in the Delphi run-time library as follows:

procedure Beep;
begin

MessageBeep(0);
end;

It simply passes the value 0 to the MessageBeep API function. Besides the values 0 and -1, both used
to produce a beep with the internal speaker of the computer, the MessageBeep function can also accept other
values, and play the corresponding sounds with your sound board. Here are the acceptable constants and the
corresponding Windows sounds they produce (these are the sound names available in Control Panel):

mb_IconAsterisk SystemAsterisk sound
mb_IconExclamation SystemExclamation sound
mb_IconHand SystemHand sound
mb_IconQuestion SystemQuestion sound
mb_Ok SystemDefault sound

You can change the association between system events and sound files using the Control Panel, which
lists the sounds under the names shown in the right column above. These associations are stored in the Windows
System Registry.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 147

Notice that these constants are also the possible values of the MessageBox API function, encapsulated
in the MessageBox method of the TApplication class. It is common to produce the corresponding sound
when the message box is displayed. This feature is not directly available in the Delphi MessageDlg function
(which displays a message box with a corresponding icon), but we can extend it easily by building a
SoundMessageDlg function, as demonstrated by the following example.

Every Box Has a Beep
To show you the capabilities of the MessageBeep API function, I’ve prepared a simple example,

Beeps. The form of this example has a RadioGroup with some radio buttons from which the user can choose one
of the five valid constants of the MessageBeep function. Here is the definition of the RadioGroup, from the
textual description of the form:

object RadioGroup1: TRadioGroup
Caption = 'Parameters'
ItemIndex = 0
Items.Strings = (

'mb_IconAsterisk'
'mb_IconExclamation'
'mb_IconHand'
'mb_IconQuestion'
'mb_Ok')

end
The program plays the sound corresponding to the current selection when the user clicks on the Beep

Sound button (one of the push buttons of the form). This button’s OnClick event-handler first determines which
radio button was selected, using a case statement, and then plays the corresponding sound:

procedure TForm1.BeepButtonClick(Sender: TObject);
var

BeepConstant: Cardinal;
begin

case RadioGroup1.ItemIndex of
0: BeepConstant := mb_IconAsterisk;
1: BeepConstant := mb_IconExclamation;
2: BeepConstant := mb_IconHand;
3: BeepConstant := mb_IconQuestion;
4: BeepConstant := mb_Ok;

else
BeepConstant := 0;

end;
MessageBeep (BeepConstant);

end;
The else clause of the case statement is provided mainly to prevent an annoying (but not dangerous)

compiler warning. To compare the selected sound with the default beep sound, click on the second button of the
column (labeled Beep –1), which has the following code:

procedure TForm1.BeepOneButtonClick(Sender: TObject);
begin

MessageBeep (Cardinal (–1));
end;

You can also pass the corresponding $FFFFFFFF hexadecimal value to the MessageBeep function.
There is actually no difference between the two approaches. To test whether a sound driver is installed in your

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 148

system (with or without a sound card, since it is possible to have a sound driver for the PC speaker), click on the
first button (labeled Test), which uses a multimedia function, WaveOutGetNumDevs, to perform the test:

procedure TForm1.TestButtonClick(Sender: TObject);
begin

if WaveOutGetNumDevs > 0 then
SoundMessageDlg ('Sound is supported',

mtInformation, [mbOk], 0)
else

SoundMessageDlg ('Sound is NOT supported',
mtError, [mbOk], 0);

end;
To compile this function, you need to add the MmSystem unit to the uses clause. If your computer has

no sound driver installed, you will hear only standard beeps, regardless of which sound is selected. The last two
buttons have a similar aim: they both display a message box and play the corresponding sound.

The OnClick event handler of the Message Box button uses the traditional Windows approach. It calls
the MessageBeep function and then the MessageBox method of the Application object soon afterward.
The effect is that the sound is 1played when the message box is displayed. In fact (depending on the sound
driver), playing a sound doesn’t usually stop other Windows operations. Here is the code related to this fourth
button:

procedure TForm1.BoxButtonClick(Sender: TObject);
var

BeepConstant: Cardinal;
begin

case RadioGroup1.ItemIndex of
0: BeepConstant := mb_IconAsterisk;
1: BeepConstant := mb_IconExclamation;
2: BeepConstant := mb_IconHand;
3: BeepConstant := mb_IconQuestion;

else {including 4:}
BeepConstant := mb_Ok;

end;
MessageBeep (BeepConstant);
Application.MessageBox (

PChar (RadioGroup1.Items [RadioGroup1.ItemIndex]),
'Sound', BeepConstant);

end;
If you click on the last button, the program calls the SoundMessageDlg function, which is not an

internal Delphi function. It’s one I’ve added to the program, but you can use it in your applications. The only
suggestion I have is to choose a shorter name if you want to use it frequently. SoundMessageDlg plays a
sound, specified by its AType parameter, and then displays the Delphi standard message box:

function SoundMessageDlg (const Msg: string;
AType: TMsgDlgType; AButtons: TMsgDlgButtons;
HelpCtx: Longint): Integer;

var
BeepConstant: Cardinal;

begin
case AType of

mtWarning: BeepConstant := mb_IconExclamation;
mtError: BeepConstant := mb_IconHand;
mtInformation: BeepConstant := mb_IconAsterisk;
mtConfirmation: BeepConstant := mb_IconQuestion;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 149

else
BeepConstant := mb_Ok;

end;
MessageBeep(BeepConstant);
Result := MessageDlg (Msg, AType,

AButtons, HelpCtx);
end;

procedure TForm1.MessDlgButtonClick(Sender: TObject);
var

DlgType: TMsgDlgType;
begin

case RadioGroup1.ItemIndex of
0: DlgType := mtInformation;
1: DlgType := mtWarning;
2: DlgType := mtError;
3: DlgType := mtConfirmation;

else {including 4:}
DlgType := mtCustom;

end;
SoundMessageDlg (

RadioGroup1.Items [RadioGroup1.ItemIndex],
DlgType, [mbOK], 0);

end;
SoundMessageDlg is a simple function, but your programs can really benefit from its use.

From Beeps to Music
When you use the MessageBeep function, your choice of sounds is limited to the default system

sounds. Another Windows API function, PlaySound, can be used to play a system sound, as well as any other
waveform file (WAV). Again, I’ve built a simple example to show you this approach. The example is named
ExtBeep (for Extended Beep) and has the simple form.

The form’s list box shows the names of some system sounds and some WAV files, available in the current
directory (that is, the directory containing ExtBeep.exe itself). When the user clicks on the Play button, the
PlaySound function (defined in the MmSystem unit) is called:

procedure TForm1.PlayButtonClick(Sender: TObject);
begin

PlaySound (PChar (Listbox1.Items [ListBox1.ItemIndex]),
0, snd_Async);

end;
The first parameter is the name of the sound—either a system sound, a WAV file, or a specific sound

resource (see the Win32 API Help file for details). The second parameter specifies where to look for a resource
sound, and the third contains a series of flags, in this case indicating that the function should return immediately
and let the sound play asynchronously. (An alternative value for this parameter is snd_Sync. If you use this
value, the function won’t return until the sound has finished playing.) With asynchronous play, you can interrupt
a long sound by calling the PlaySound function again, using nil for the first parameter:

procedure TForm1.StopButtonClick(Sender: TObject);
begin

PlaySound (nil, 0, 0);

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 150

end;
This is the code executed by the ExtBeep example when the user clicks on the Stop button. This button is

particularly useful for stopping the repeated execution of the sound started by the Loop button, which calls
PlaySound passing as its last parameter (snd_Async or snd_Loop).

The only other method of the example, FormCreate, selects the first item of the list box at startup, by
setting its ItemIndex property to 0. This avoids run-time errors if the user clicks on the button before selecting
an item from the list box. You can test this example by running it, and by adding the names of the other WAV files
or system sounds (as listed in the registration database). I suggest you also test other values for the third
parameter of the function (see the API help files for details).

The Media Player Component
Now let’s move back to Delphi and use the Media Player component. The Delphi TMediaPlayer class

encapsulates most of the capabilities of the Windows Media Control Interface (MCI), a high-level interface for
controlling internal and external media devices.

Perhaps the most important property of the TMediaPlayer component is DeviceType. Its value can
be dtAutoSelect, indicating that the type of the device depends on the file extension of the current file (the
FileName property). As an alternative, you can select a specific device type, such as dtAVIVideo,
dtCDAudio, dtWaveAudio, and many others.

Once the device type (and eventually the file) have been selected, you can open the corresponding device
(or set AutoOpen to True), and the buttons of the Media Player component will be enabled. The component
has a number of buttons, not all of which are appropriate for each media type. There are actually three properties
referring to the buttons: VisibleButtons, EnabledButtons, and ColoredButtons. The first
determines which of the buttons are present in the control, the second determines which buttons are enabled, and
the third determines which buttons have colored marks. By using the first two of these properties, you can
permanently or temporarily hide or disable some of the buttons.

The component has several events. The OnClick event is unusual because it contains one parameter
indicating which button was pressed and a second parameter you can use to disable the button’s default action.
The OnNotify event later tells the component whether the action generated by the button was successful.
Another event, OnPostClick, is sent either when the action starts or when it ends, depending on the value of
the Wait property. This property determines whether the operation on the device should be synchronous.

Playing Sound Files
Our first example using the Media Player is very simple. The form of the MmSound example has some

labels describing the current status, a button to select a new file, an OpenDialog component, and a Media Player
component with the following settings:

object MediaPlayer1: TMediaPlayer
VisibleButtons = [btPlay, btPause,

btStop, btNext, btPrev]
OnClick = MediaPlayer1Click
OnNotify = MediaPlayer1Notify

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 151

end
When a user opens a new file, a wave table, or a MIDI file, the program enables the Media Player, and

you can play the sound and use the other buttons, too:
procedure TForm1.NewButtonClick(Sender: TObject);
begin

if OpenDialog1.Execute then
begin

FileLabel.Caption := OpenDialog1.Filename;
MediaPlayer1.Filename := OpenDialog1.Filename;
MediaPlayer1.Open;
MediaPlayer1.Notify := True;

end;
end;

Since I set the Notify property to True, the Media Player invokes the corresponding event handler,
which outputs the information to a label:

procedure TForm1.MediaPlayer1Notify(Sender: TObject);
begin

case MediaPlayer1.NotifyValue of
nvSuccessful : NotifLabel.Caption := 'Success';
nvSuperseded : NotifLabel.Caption := 'Superseded';
nvAborted : NotifLabel.Caption := 'Aborted';
nvFailure : NotifLabel.Caption := 'Failure';

end;
MediaPlayer1.Notify := True;

end;
Notice that you need to set the Notify property to True every time the OnNotify event handler is

called in order to receive further notifications. Another label is updated to display the requested command.
procedure TForm1.MediaPlayer1Click(Sender: TObject;

Button: TMPBtnType; var DoDefault: Boolean);
begin

case Button of
btPlay: ActionLabel.Caption := 'Playing';
btPause: ActionLabel.Caption := 'Paused';
btStop: ActionLabel.Caption := 'Stopped';
btNext: ActionLabel.Caption := 'Next';
btPrev: ActionLabel.Caption := 'Previous';

end;
end;

Running Videos
So far, we have worked with sound only. Now it is time to move to another kind of media device: video.

You indeed have a video device on your system, but to play video files (such as AVI files), you need a specific
driver (directly available in Windows). If your computer can display videos, writing a Delphi application to do so
is almost trivial: place a Media Player component in a form, select an AVI file in the FileName property, set
the AutoOpen property to True, and run the program. As soon as you click on the Play button, the system
opens a second window and shows the video in it.

Instead of playing the file in its own window, we can add a panel (or any other windowed component) to
the form and use the name of this panel as the value of the Media Player’s Display property. As an alternative,

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 152

we can set the Display and the DisplayRect properties to indicate which portions of the output window the
video should cover.

Although it is possible to create a similar program writing no code at all, to do so I would have to know
which AVI files reside on your computer, and specify the full path of one of them in the FileName property of
the Media Player component. As an alternative, I’ve written a simple routine to open and start playing a file
automatically. You only have to click on the panel (as the caption suggests).

procedure TForm1.Panel1Click(Sender: TObject);
begin

if OpenDialog1.Execute then
begin

MediaPlayer1.FileName := OpenDialog1.Filename;
MediaPlayer1.Open;
MediaPlayer1.Perform (wm_LButtonDown, 0, $00090009);
MediaPlayer1.Perform (wm_LButtonUp, 0, $00090009);

end;
end;

After opening the Media Player, I could have called its Play method immediately to start it. But that
would not have enabled and disabled the buttons properly. So I decided to simulate a click in position 9 on the x-
axis and 9 on the y-axis of the Media Player window (instead of building the 32-bit value including both
coordinates with a function, you can use the hexadecimal value directly, as in the code above). To avoid errors, I
disabled all the buttons at design-time, until the simulated click takes place. I also automatically close the player
when the application is closed (in the OnClose event handler).

A Video in a Form
The Media Player component has some limits regarding the window it can use to produce the output.

You can use many components, but not all of them. A strange thing you can try is to use the Media Player
component itself as the video’s output window. This works, but there are two problems. First, the Media Player
component cannot be aligned, and it cannot be sized at will. If you try to use big buttons, their size will be
reduced automatically at run-time. The second problem is that if you click on the Pause button, you’ll see the
button in front of the video, while the other buttons are still covered. (I suggest you try this approach, anyway,
just for fun.)

One thing you cannot do easily is display the video in a form. In fact, although you cannot set the form as
the value of the Media Player’s Display property at design-time, you can set it at run-time. To try this, simply
place a hidden Media Player component (set the Visible property to False) and an OpenDialog
component in a form. Set a proper title and hint for the form itself, and enable the ShowHints property. Then
write the following code to load, start, and stop the video when the user clicks on the form:

procedure TForm1.FormClick(Sender: TObject);
begin

if MediaPlayer1.FileName = '' then
if OpenDialog1.Execute then
begin

MediaPlayer1.FileName := OpenDialog1.FileName;
MediaPlayer1.Open;
Playing := False;

end
else

exit; // stop if no file is selected

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 153

if Playing then
begin

MediaPlayer1.Stop;
Playing := False;
Caption := 'MM Video (Stopped)';
Hint := 'Click to play video';

end
else
begin

MediaPlayer1.Display := self;
MediaPlayer1.DisplayRect := ClientRect;
MediaPlayer1.Play;
Playing := True;
Caption := 'MMV (Playing)';
Hint := 'Click to stop video';

end;
end;

In this code, Playing is a private Boolean field of the form. Notice that the program shows the video
using the full client area of the form. If the form is resized, you can simply enlarge the output rectangle
accordingly:

procedure TForm1.FormResize(Sender: TObject);
begin

MediaPlayer1.DisplayRect := ClientRect;
end;

The best way to view a video is to use its original size, but with this program you can actually stretch it,
and even change its proportions. Of course, the Media Player can also stop when it reaches the end of a file or
when an error occurs. In both cases, we receive a notification event:

procedure TForm1.MediaPlayer1Notify(Sender: TObject);
begin

Playing := False;
Caption := 'MMV (Stopped)';
Hint := 'Click to play video';

end;

Working with a CD Drive
In addition to audio and video files, the MCI interface is generally used to operate external devices.

There are many examples, but the most common MCI device connected to a PC is probably a CD-ROM drive.
Most CD-ROM drives can also read audio CDs, sending the output to an external speaker or a sound card. You
can use the MCI interface and the Media Player component to write applications that handle such a device.
Basically, you need to set the DeviceType property to dtCDAudio, making sure no file is selected in the
FileName property, and be ready with a CD player.

In fact, just by placing a Media Player component in a form, setting the above properties, and compiling
and running the program, you end up with a fully functional audio CD player. When you start customizing the
player, though, not everything is as simple as it seems at first glance. I’ve built an example using some more
capabilities of this component and of Windows multimedia support related to audio CDs. The form of this

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 154

program has a couple of buttons, some labels to show the current status, a timer, and a SpinEdit component you
can use to choose a track from the disk.

The idea is to use the labels to inform the user of the number of tracks on a disk, the current track, the
current position within a track, and the length of the track, monitoring the current situation using the timer.

In general, if you can, use the tfTMSF value (Track, Minute, Second, Frame) for the TimeFormat
property of the Media Player component to access positional properties (such as Position and Length).
Extracting the values is not too complex if you use the proper functions of the MmSystem unit, such as the
following:

CurrentTrack := Mci_TMSF_Track (MediaPlayer1.Position);
Here are the two functions that compute the values for the whole disk and for the current track:

procedure TForm1.CheckDisk;
var

NTracks, NLen: Integer;
begin

NTracks := MediaPlayer1.Tracks;
NLen := MediaPlayer1.Length;
DiskLabel.Caption := Format (

'Tracks: %.2d, Length:%.2d:%.2d', [NTracks,
Mci_TMSF_Minute (NLen), Mci_TMSF_Second (NLen)]);

SpinEdit1.MaxValue := NTracks;
end;

procedure TForm1.CheckPosition;
var

CurrentTrack, CurrentPos, TrackLen: Integer;
begin

CurrentPos := MediaPlayer1.Position;
CurPosLabel.Caption := Format ('Position: %.2d:%.2d',

[Mci_TMSF_Minute (CurrentPos),
Mci_TMSF_Second (CurrentPos)]);

CurrentTrack := Mci_TMSF_Track (CurrentPos);
TrackLen := MediaPlayer1.TrackLength [CurrentTrack];
TrackNumberLabel.Caption := Format (

'Current track: %.2d, Length:%.2d:%.2d', [CurrentTrack,
Mci_MSF_Minute (TrackLen), Mci_MSF_Second (TrackLen)]);

end;
The code seems complex only because of the many conversions it makes. Notice in particular that the

length of the current track (stored in the TrackLength property) is not measured using the default format, as
the online help suggests, but with the MSF (Minute Second Frame) format.

The global values for the disk are computed only at startup and when the New CD button is clicked:
procedure TForm1.FormCreate(Sender: TObject);
begin

MediaPlayer1.TimeFormat := tfTMSF;
MediaPlayer1.Open;
CheckDisk;
CheckPosition;

end;

procedure TForm1.NewButtonClick(Sender: TObject);
begin

CheckDisk;

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 155

CheckPosition;
end;

The values for the current track and position are computed this way each time the timer interval elapses,
by calling the CheckPosition method. This is far from perfect, because if you want to play an audio CD
while using other programs, a timer accessing the Media Player information often slows down the system too
much. Of course, this mainly depends on your hardware. Besides telling the user what is going on, the form has
the Media Player component to allow the user to start and stop playing, change tracks, and so on. The operations
on this component activate and halt the timer:

procedure TForm1.MediaPlayer1PostClick(
Sender: TObject; Button: TMPBtnType);

begin
if MediaPlayer1.Mode = mpPlaying then

Timer1.Enabled := True
else

Timer1.Enabled := False;
CheckPosition;

end;
You can also use the Go button to jump to the track selected in the SpinEdit component, where the

MaxValue property is set by the CheckDisk method. Here is the code I’ve written:
procedure TForm1.GoButtonClick(Sender: TObject);
var

Playing: Boolean;
begin

Playing := (MediaPlayer1.Mode = mpPlaying);
if Playing then

MediaPlayer1.Stop;
MediaPlayer1.Position :=

MediaPlayer1.TrackPosition[SpinEdit1.Value];
CheckPosition;
if Playing then

MediaPlayer1.Play;
end;

A good extension to this program would be to connect it to a CD database with the title of each CD you
own and the title of each track. (I would have done that if it hadn’t been for the time it would have taken to enter
the title and track of each of my disks.) Remember, anyway, that a similar program is already available in
Windows.

What's Next
In this chapter, we have seen how to add some audio and video capabilities to Delphi applications. We

have seen how to add sound effects to respond to user actions. We have also seen examples of how to use the
Media Player with sound files, video files, and an external device (an audio CD). With computers and CD-ROM
players becoming faster every year, video is becoming an important feature of many applications. Don’t
underestimate this area of programming simply because you are writing serious business programs.

Marco Cantù's Essential Delphi – Copyright 1996-2002 Marco Cantù – www.marcocantu.com/edelphi 156

EPILOGUE

elphi is a great programming environment. Now that you have learned about its core features,
and seen the development of a number of programs, you might want to understand more about
the language and fully master the internals of the VCL. This is where one of the books of the

Mastering Delphi series I've written might help you. But you might also find more information in the other free
e-books available on my web site.

D
As I mentioned in the Introduction, check the book page page, at

http://www.marcocantu.com/edelphi
for corrections and updates; the site has also links to other Delphi sites, documentation, simple wizards

and components, and hosts also a newsgroup, which is the preferred way to report problems about this book (in
the related section). It is possible to read the newsgroup also directly on the web from my site, and also sign-up to
a mailing list in which I'll announce future edition of this and other volumes.

Again, as discussed in the introduction donations are welcome, also in the form of code examples,
chapters for this and other books... but also offering cash, buying a printed book, or attending one of the Delphi
classes I set up.

http://www.marcocantu.com/edelphi

MASTERING™ DELPHI™ 6

Marco Cantù

San Francisco • Paris • Düsseldorf • Soest • London

2874FM.qxd 7/2/01 2:32 PM Page v

http://www.sybex.com

Associate Publisher: Richard Mills
Contracts and Licensing Manager: Kristine O’Callaghan
Acquisitions Editor: Denise Santoro Lincoln
Developmental Editors: Diane Lowery and Denise Santoro Lincoln
Editor: Pete Gaughan
Production Editor: Leslie E. H. Light
Technical Editors: Danny Thorpe and Eddie Churchill
Book Designer: Robin Kibby
Graphic Illustrator: Tony Jonick
Electronic Publishing Specialist: Kris Warrenburg, Cyan Design
Proofreaders: Nanette Duffy, Amey Garber, Jennifer Greiman,
Emily Hsuan, Laurie O’Connell, Nancy Riddiough
Indexer: Ted Laux
CD Coordinator: Christine Harris
CD Technician: Kevin Ly
Cover Designer: Design Site
Cover Illustrator/Photographer: Sergie Loobkoff

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway,
Alameda, CA 94501. World rights reserved. The author created
reusable code in this publication expressly for reuse by readers.
Sybex grants readers limited permission to reuse the code found
in this publication or its accompanying CD-ROM so long as the
author is attributed in any application containing the reusable
code and the code itself is never distributed, posted online by
electronic transmission, sold, or commercially exploited as a
stand-alone product. Aside from this specific exception concern-
ing reusable code, no part of this publication may be stored in a
retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photograph, magnetic, or other
record, without the prior agreement and written permission of
the publisher.

Library of Congress Card Number: 2001088115
ISBN: 0-7821-2874-2

SYBEX and the SYBEX logo are either registered trademarks or
trademarks of SYBEX Inc. in the United States and/or other
countries.

Mastering is a trademark of SYBEX Inc.
Screen reproductions produced with Collage Complete.
Collage Complete is a trademark of Inner Media Inc.

The CD interface was created using Macromedia Director,
Copyright © 1994, 1997–1999 Macromedia Inc. For more infor-
mation on Macromedia and Macromedia Director, visit
http://www.macromedia.com.

TRADEMARKS: SYBEX has attempted throughout this book to
distinguish proprietary trademarks from descriptive terms by fol-
lowing the capitalization style used by the manufacturer.
The author and publisher have made their best efforts to prepare
this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon
pre-release versions supplied by software manufacturer(s). The

author and the publisher make no representation or warranties of
any kind with regard to the completeness or accuracy of the con-
tents herein and accept no liability of any kind including but not
limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to
be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

2874FM.qxd 7/2/01 2:32 PM Page vi

http://www.sybex.com
http://www.macromedia.com

Software License Agreement: Terms and Conditions
The media and/or any online materials accompanying this book that
are available now or in the future contain programs and/or text files
(the “Software”) to be used in connection with the book. SYBEX
hereby grants to you a license to use the Software, subject to the
terms that follow. Your purchase, acceptance, or use of the Software
will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless other-
wise indicated and is protected by copyright to SYBEX or other
copyright owner(s) as indicated in the media files (the “Owner(s)”).
You are hereby granted a single-user license to use the Software for
your personal, noncommercial use only. You may not reproduce,
sell, distribute, publish, circulate, or commercially exploit the Soft-
ware, or any portion thereof, without the written consent of SYBEX
and the specific copyright owner(s) of any component software
included on this media.

In the event that the Software or components include specific license
requirements or end-user agreements, statements of condition, dis-
claimers, limitations or warranties (“End-User License”), those
End-User Licenses supersede the terms and conditions herein as to
that particular Software component. Your purchase, acceptance, or
use of the Software will constitute your acceptance of such End-
User Licenses.

By purchase, use or acceptance of the Software you further agree to
comply with all export laws and regulations of the United States as
such laws and regulations may exist from time to time.

Reusable Code in This Book
The author created reusable code in this publication expressly for
reuse for readers. Sybex grants readers permission to reuse for any
purpose the code found in this publication or its accompanying
CD-ROM so long as the author is attributed in any application con-
taining the reusable code, and the code itself is never sold or com-
mercially exploited as a stand-alone product.

Software Support
Components of the supplemental Software and any offers associated
with them may be supported by the specific Owner(s) of that mater-
ial but they are not supported by SYBEX. Information regarding any
available support may be obtained from the Owner(s) using the
information provided in the appropriate readme files or listed else-
where on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support
or decline to honor any offer, SYBEX bears no responsibility. This
notice concerning support for the Software is provided for your
information only. SYBEX is not the agent or principal of the
Owner(s), and SYBEX is in no way responsible for providing any
support for the Software, nor is it liable or responsible for any sup-
port provided, or not provided, by the Owner(s).

Warranty
SYBEX warrants the enclosed media to be free of physical defects
for a period of ninety (90) days after purchase. The Software is not
available from SYBEX in any other form or media than that
enclosed herein or posted to www.sybex.com. If you discover a
defect in the media during this warranty period, you may obtain a
replacement of identical format at no charge by sending the defec-
tive media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501
(510) 523-8233
Fax: (510) 523-2373
e-mail: info@sybex.com
WEB: HTTP://WWW.SYBEX.COM

After the 90-day period, you can obtain replacement media of iden-
tical format by sending us the defective disk, proof of purchase, and
a check or money order for $10, payable to SYBEX.

Disclaimer
SYBEX makes no warranty or representation, either expressed or
implied, with respect to the Software or its contents, quality, perfor-
mance, merchantability, or fitness for a particular purpose. In no
event will SYBEX, its distributors, or dealers be liable to you or any
other party for direct, indirect, special, incidental, consequential, or
other damages arising out of the use of or inability to use the Soft-
ware or its contents even if advised of the possibility of such damage.
In the event that the Software includes an online update feature,
SYBEX further disclaims any obligation to provide this feature for
any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states.
Therefore, the above exclusion may not apply to you. This warranty
provides you with specific legal rights; there may be other rights that
you may have that vary from state to state. The pricing of the book
with the Software by SYBEX reflects the allocation of risk and limita-
tions on liability contained in this agreement of Terms and Conditions.

Shareware Distribution
This Software may contain various programs that are distributed as
shareware. Copyright laws apply to both shareware and ordinary
commercial software, and the copyright Owner(s) retains all rights.
If you try a shareware program and continue using it, you are
expected to register it. Individual programs differ on details of trial
periods, registration, and payment. Please observe the requirements
stated in appropriate files.

Copy Protection
The Software in whole or in part may or may not be copy-protected
or encrypted. However, in all cases, reselling or redistributing these
files without authorization is expressly forbidden except as specifi-
cally provided for by the Owner(s) therein.

2874FM.qxd 7/2/01 2:32 PM Page vii

http://www.sybex.com
HTTP://WWW.SYBEX.COM

To Lella, the love of my life,
and Benedetta, our love come to life.

2874FM.qxd 7/2/01 2:32 PM Page ix

http://www.sybex.com

ACKNOWLEDGMENTS

This edition of Mastering Delphi marks the seventh year of the Delphi era, as it took Bor-
land two years to release the latest incarnation of Delphi (along with its Linux twin, Kylix).
As it has for many other programmers, Delphi has been my primary interest throughout
these years; and writing, consulting, teaching, and speaking at conferences about Delphi have
absorbed more and more of my time, leaving other languages and programming tools in the
dust of my office. Because my work and my life are quite intertwined, many people have been
involved in both, and I wish I had enough space and time to thank them all as they deserve.
Instead, I’ll just mention a few particular people and say a warm “Thank You” to the entire
Delphi community (especially for the Spirit of Delphi 1999 Award I’ve been happy to share
with Bob Swart).

The first official thanks are for the Borland programmers and managers who made Delphi
possible and continue to improve it: Chuck Jazdzewski, Danny Thorpe, Eddie Churchill,
Allen Bauer, Steve Todd, Mark Edington, Jim Tierney, Ravi Kumar, Jörg Weingarten,
Anders Ohlsson, and all the others I have not had a chance to meet. I’d also like to give par-
ticular mention to my friends Ben Riga (the current Delphi product manager), John Kaster
and David Intersimone (at Borland’s Developer Relations), and others who have worked at
Borland, including Charlie Calvert, Zack Urlocker and Nan Borreson.

The next thanks are for the Sybex editorial and production crew, many of whom I don’t even
know. Special thanks go to Pete Gaughan, Leslie Light, Denise Santoro Lincoln, and Diane
Lowery; I’d also like to thank Richard Mills, Kristine O’Callaghan, and Kris Warrenburg.

This edition of Mastering Delphi has once again had an incredibly picky and detailed review
from Delphi R&D team member Danny Thorpe. His highlights and comments in this and
past editions have improved the book in all areas: technical content, accuracy, examples, and
even readability. Thanks a lot. Previous editions also had special contributions: Tim Gooch
worked on Part V for Mastering Delphi 4, and Giuseppe Madaffari contributed database mate-
rial for the Delphi 5 edition. For this edition, Guy Smith-Ferrier rewrote the chapter on
ADO, and Nando Dessena helped me with the InterBase chapter. Many improvements to the
text and sample programs were suggested by technical reviewers of past editions (Juancarlo
Añez, Ralph Friedman, Tim Gooch, and Alain Tadros) and in other reviews over the years by
Bob Swart, Giuseppe Madaffari, and Steve Tendon.

2874FM.qxd 7/2/01 2:32 PM Page x

http://www.sybex.com

Special thanks go to my friends Bruce Eckel, Andrea Provaglio, Norm McIntosh, Johanna
and Phil of the BUG-UK, Ray Konopka, Mark Miller, Cary Jensen, Chris Frizelle of The
Delphi Magazine, Foo Say How, John Howe, Mike Orriss, Chad “Kudzu” Hower, Dan Miser,
Marco Miotti, and the entire D&D Team (Paolo, Andrea, Uberto, Nando, Giuseppe, and
Mr. Coke). Also, a very big “Thank You” to all the attendees of my Delphi programming
courses, seminars, and conferences in Italy, the United States, France, the United Kingdom,
Singapore, the Netherlands, Germany, Sweden...

My biggest thanks go to my wife Lella who had to endure yet another many-months-long
book-writing session and too many late nights (after spending the evenings with our daughter,
Benedetta—I’ll thank her with a hug, as Daddy’s book looks quite boring to her). Many of our
friends (and their kids) provided healthy breaks in the work: Sandro and Monica with Luca,
Stefano and Elena, Marco and Laura with Matteo, Bianca, Luca and Elena with Tommaso,
Chiara and Daniele with Leonardo, Laura, Vito and Marika with Sofia. Our parents, brothers,
sisters, and their families were very supportive, too. It was nice to spend some of our free time
with them and our six nephews—Matteo, Andrea, Giacomo, Stefano, Andrea, and Pietro.

Finally, I would like to thank all of the people, many of them unknown, who enjoy life and
help to build a better world. If I never stop believing in the future and in peace, it is also
because of them.

2874FM.qxd 7/2/01 2:32 PM Page xi

http://www.sybex.com

INTRODUCTION

The first time Zack Urlocker showed me a yet-to-be-released product code-named Delphi,
I realized that it would change my work—and the work of many other software developers. I
used to struggle with C++ libraries for Windows, and Delphi was and still is the best combi-
nation of object-oriented programming and visual programming for Windows.

Delphi 6 simply builds on this tradition and on the solid foundations of the VCL to deliver
another astonishing and all-encompassing software development tool. Looking for database,
client/server, multitier, intranet, or Internet solutions? Looking for control and power?
Looking for fast productivity? With Delphi 6 and the plethora of techniques and tips pre-
sented in this book, you’ll be able to accomplish all this.

Six Versions and Counting
Some of the original Delphi features that attracted me were its form-based and object-oriented
approach, its extremely fast compiler, its great database support, its close integration with
Windows programming, and its component technology. But the most important element was
the Object Pascal language, which is the foundation of everything else.

Delphi 2 was even better! Among its most important additions were these: the Multi-
Record Object and the improved database grid, OLE Automation support and the variant
data type, full Windows 95 support and integration, the long string data type, and Visual
Form Inheritance. Delphi 3 added to this the code insight technology, DLL debugging sup-
port, component templates, the TeeChart, the Decision Cube, the WebBroker technology,
component packages, ActiveForms, and an astonishing integration with COM, thanks to
interfaces.

Delphi 4 gave us the AppBrowser editor, new Windows 98 features, improved OLE and
COM support, extended database components, and many additions to the core VCL classes,
including support for docking, constraining, and anchoring controls. Delphi 5 added to the
picture many more improvements of the IDE (too many to list here), extended database sup-
port (with specific ADO and InterBase datasets), an improved version of MIDAS with Inter-
net support, the TeamSource version-control tool, translation capabilities, the concept of
frames, and new components.

2874FM.qxd 7/2/01 2:33 PM Page xxxv

http://www.sybex.com

xxxvi

Now Delphi 6 adds to all these features support for cross-platform development with the
new Component Library for Cross-Platform (CLX), an extended run-time library, the new
dbExpress database engine, Web services and exceptional XML support, a powerful Web
development framework, more IDE enhancements, and a plethora of new components and
classes, as you’ll see in the following pages.

Delphi is a great tool, but it is also a complex programming environment that involves
many elements. This book will help you master Delphi programming, including the Object
Pascal language, Delphi components (both using the existing ones and developing your
own), database and client/server support, the key elements of Windows and COM program-
ming, and Internet and Web development.

You do not need in-depth knowledge of any of these topics to read this book, but you do
need to know the basics of Pascal programming. Having some familiarity with Delphi will
help you considerably, particularly after the introductory chapters. The book starts covering
its topics in depth immediately; much of the introductory material from previous editions has
been removed. Some of this material and an introduction to Pascal is available on the com-
panion CD-ROM and on my Web site and can be a starting point if you are not confident
with Delphi basics. Each new Delphi 6 feature is covered in the relevant chapters throughout
the book.

The Structure of the Book
The book is divided into four parts:

• Part I, “Foundations,” introduces new features of the Delphi 6 Integrated Develop-
ment Environment (IDE) in Chapter 1, then moves to the Object Pascal language and
to the run-time library (RTL) and Visual Component Library (VCL), providing both
foundations and advanced tips.

• Part II, “Visual Programming,” covers standard components, Windows common con-
trols, graphics, menus, dialogs, scrolling, docking, multipage controls, Multiple Docu-
ment Interface, the Action List and Action Manager architectures, and many other
topics. The focus is on both the VCL and CLX libraries. The final chapters discuss the
development of custom components and the use of libraries and packages.

• Part III, “Database Programming,” covers plain database access, in-depth coverage of
the data-aware controls, client/server programming, dbExpress, InterBase, ADO and
dbGo, DataSnap (or MIDAS), and the development of custom data-aware controls and
data sets.

Introduction

2874FM.qxd 7/2/01 2:33 PM Page xxxvi

http://www.sybex.com

xxxvii

• Part IV, “Beyond Delphi: Connecting with the World,” first discusses COM, OLE
Automation, and COM+. Then it moves to Internet programming, covering TCP/IP
sockets, Internet protocols and Indy, Web server-side extensions (with WebBroker and
WebSnap), XML, and the development of Web services.

As this brief summary suggests, the book covers topics of interest to Delphi users at nearly
all levels of programming expertise, from “advanced beginners” to component developers.

In this book, I’ve tried to skip reference material almost completely and focus instead on
techniques for using Delphi effectively. Because Delphi provides extensive online documen-
tation, to include lists of methods and properties of components in the book would not only
be superfluous, it would also make it obsolete as soon as the software changes slightly. I sug-
gest that you read this book with the Delphi Help files at hand, to have reference material
readily available.

However, I’ve done my best to allow you to read the book away from a computer if you
prefer. Screen images and the key portions of the listings should help in this direction. The
book uses just a few conventions to make it more readable. All the source code elements,
such as keywords, properties, classes, and functions, appear in this font, and code excerpts
are formatted as they appear in the Delphi editor, with boldfaced keywords and italic com-
ments and strings.

Free Source Code on CD (and the Web)
This book focuses on examples. After the presentation of each concept or Delphi compo-
nent, you’ll find a working program example (sometimes more than one) that demonstrates
how the feature can be used. All told, there are about 300 examples presented in the book.
These programs are directly available on the companion CD-ROM. The same material is
also available on my Web site (www.marcocantu.com), where you’ll also find updates and
examples from past editions. Inside the back cover of the book, you’ll find more information
about the CD. Most of the examples are quite simple and focus on a single feature. More
complex examples are often built step-by-step, with intermediate steps including partial solu-
tions and incremental improvements.

NOTE Some of the database examples also require you to have the Delphi sample database
DBDEMOS installed; it is part of the default Delphi installation. Others require the InterBase
EMPLOYEE sample database.

Beside the source code files, the CD hosts the ready-to-use compiled programs. There is
also an HTML version of the source code, with full syntax highlighting, along with a com-

Introduction

2874FM.qxd 7/2/01 2:33 PM Page xxxvii

http://www.sybex.com

xxxviii

plete cross-reference of keywords and identifiers (class, function, method, and property
names, among others). The cross-reference is an HTML file, so you’ll be able to use your
browser to easily find all the programs that use a Delphi keyword or identifier you’re looking
for (not a full search engine, but close enough).

The directory structure of the sample code is quite simple. Basically, each chapter of the
book has its own folder, with a subfolder for each example (e.g., 06\Borders). In the text, the
examples are simply referenced by name (e.g., Borders).

TIP To change an example, first copy it (or the entire md6code folder) to your hard disk, but before
opening it remember to set the read-only flag to False (it is True by default on the read-only
media)

NOTE Be sure to read the source code archive’s Readme file, which contains important information
about using the software legally and effectively.

How to Reach the Author
If you find any problems in the text or examples in this book, both the publisher and I would
be happy to hear from you. Besides reporting errors and problems, please give us your unbi-
ased opinion of the book and tell us which examples you found most useful and which you
liked least. There are several ways you can provide this feedback:

• On the Sybex Web site (www.sybex.com), you’ll find updates to the text or code as nec-
essary. To comment on this book, click the Contact Sybex link and then choose Book
Content Issues. This link displays a form where you can enter your comments.

• My own Web site (www.marcocantu.com) hosts further information about the book and
about Delphi, where you might find answers to your questions. The site has news and
tips, technical articles, free online books, white papers, Delphi links, and my collection
of Delphi components and tools.

• I have also set up a newsgroup section specifically devoted to my books and to general
Delphi Q&A. Refer to my Web site for a list of the newsgroup areas and for the
instructions to subscribe to them. (In fact, these newsgroups are totally free but require
a login password.) The newsgroups can also be accessed via a Web interface you can
find on my site.

• Finally, you can reach me via e-mail at marco@marcocantu.com. For technical questions,
please try using the newsgroups first, as you might get answers earlier and from multiple
people. My mailbox is usually quite full and, regretfully, I cannot reply promptly to
every request. (Please write to me in English or Italian.)

Introduction

2874FM.qxd 7/2/01 2:33 PM Page xxxviii

http://www.sybex.com

Foundations
� Chapter 1: The Delphi 6 IDE

� Chapter 2: The Object Pascal Language: Classes and
Objects

� Chapter 3: The Object Pascal Language: Inheritance and
Polymorphism

� Chapter 4: The Run-Time Library

� Chapter 5: Core Library Classes

PART I

2874c01.qxd 7/2/01 2:39 PM Page 1

http://www.sybex.com

1CH A P T E R

The Delphi 6 IDE

� Object TreeView and Designer view

� The AppBrowser editor

� The code insight technology

� Designing forms

� The Project Manager

� Delphi files

2874c01.qxd 7/2/01 2:39 PM Page 3

http://www.sybex.com

4

In a visual programming tool such as Delphi, the role of the environment is at times even
more important than the programming language. Delphi 6 provides many new features in its
visual development environment, and this chapter covers them in detail. This chapter isn’t a
complete tutorial but mainly a collection of tips and suggestions aimed at the average Delphi
user. In other words, it’s not for newcomers. I’ll be covering the new features of the Delphi 6
Integrated Development Environment (IDE) and some of the advanced and little-known
features of previous versions as well, but in this chapter I won’t provide a step-by-step intro-
duction. Throughout this book, I’ll assume you already know how to carry out the basic
hands-on operations of the IDE, and all the chapters after this one focus on programming
issues and techniques.

If you are a beginning programmer, don’t be afraid. The Delphi Integrated Development
Environment is quite intuitive to use. Delphi itself includes a manual (available in Acrobat
format on the Delphi CD) with a tutorial that introduces the development of Delphi appli-
cations. You can also find a step-by-step introduction to the Delphi IDE on my Web site,
http://www.marcocantu.com. The short online book Essential Delphi is based on material
from the first chapters of earlier editions of Mastering Delphi.

Editions of Delphi 6
Before delving into the details of the Delphi programming environment, let’s take a side step
to underline two key ideas. First, there isn’t a single edition of Delphi; there are many of them.
Second, any Delphi environment can be customized. For these reasons, Delphi screens you
see illustrated in this chapter may differ from those on your own computer. Here are the cur-
rent editions of Delphi:

• The “Personal” edition is aimed at Delphi newcomers and casual programmers and has
support for neither database programming nor any of the other advanced features of
Delphi 6.

• The “Professional” edition is aimed at professional developers. It includes all the basic
features, plus database programming support (including ADO support), basic Web
server support (WebBroker), and some of the external tools. This book generally
assumes you are working with at least the Professional edition.

• The “Enterprise” edition is aimed at developers building enterprise applications. It
includes all the new XML and advanced Web services technologies, internationaliza-
tion, three-tier architecture, and many other tools. Some chapters of this book cover
features included only in Delphi Enterprise; these sections are specifically identified.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:39 PM Page 4

http://www.sybex.com
http://www.marcocantu.com

5

NOTE In the past, some of the features of Delphi Enterprise have been available as an “up-sell” to
owners of Delphi Professional. This might also happen for this version.

Besides the different editions available, there are ways to customize the Delphi environ-
ment. In the screen illustrations throughout the book, I’ve tried to use a standard user inter-
face (as it comes out of the box); however, I have my preferences, of course, and I generally
install many add-ons, which might be reflected in some of the screen shots.

The Delphi 6 IDE
The Delphi 6 IDE includes large and small changes that will really improve a programmer’s
productivity. Among the key features are the introduction of the Object TreeView for every
designer, an improved Object Inspector, extended code completion, and loadable views,
including diagrams and HTML.

Most of the features are quite easy to grasp, but it’s worth examining them with some care
so that you can start using Delphi 6 at its full potential right away. You can see an overall
image of Delphi 6 IDE, highlighting some of the new features, in Figure 1.1.

F I G U R E 1 . 1 :
The Delphi 6 IDE: Notice
the Object TreeView and
the Diagram view.

The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 5

http://www.sybex.com

6

The Object TreeView
Delphi 5 introduced a TreeView for data modules, where you could see the relations among
nonvisual components, such as datasets, fields, actions, and so on. Delphi 6 extends the idea
by providing an Object TreeView for every designer, including plain forms. The Object
TreeView is placed by default above the Object Inspector; use the View ➢ Object TreeView
command in case it is hidden.

The Object TreeView shows all of the components and objects on the form in a tree, rep-
resenting their relations. The most obvious is the parent/child relation: Place a panel on a
form, a button inside it and one outside of the panel. The tree will show the two buttons, one
under the form and the other under the panel, as in Figure 1.1. Notice that the TreeView is
synchronized with the Object Inspector and Form Designer, so as you select an item and
change the focus in any one of these three tools, the focus changes in the other two tools.

Besides parent/child, the Object TreeView shows also other relations, such as owner/owned,
component/subobject, collection/item, plus various specific ones, including dataset/connection
and data source/dataset relations. Here, you can see an example of the structure of a menu in
the tree.

At times, the TreeView also displays “dummy” nodes, which do not correspond to an
actual object but do correspond to a predefined one. As an example of this behavior, drop a
Table component (from the BDE page) and you’ll see two grayed icons for the session and
the alias. Technically, the Object TreeView uses gray icons for components that do not have
design-time persistence. They are real components (at design time and at run time), but
because they are default objects that are constructed at run time and have no persistent data
that can be edited at design time, the Data Module Designer does not allow you to edit their
properties. If you drop a Table on the form, you’ll also see items with a red question mark
enclosed in a yellow circle next to them. This symbol indicates partially undefined items
(there used to be a red square around those items in Delphi 5).

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 6

http://www.sybex.com

7

The Object TreeView supports multiple types of dragging:

• You can select a component from the palette (by clicking it, not actually dragging it),
move the mouse over the tree, and click a component to drop it there. This allows you
to drop a component in the proper container (form, panel, and others) regardless of the
fact that its surface might be totally covered by other components, something that pre-
vents you from dropping the component in the designer without first rearranging
those components.

• You can drag components within the TreeView—for example, moving a component
from one container to another—something that, with the Form Designer, you can do
only with cut and paste techniques. Moving instead of cutting provides the advantage
that if you have connections among components, these are not lost, as happens when
you delete the component during the cut operation.

• You can drag components from the TreeView to the Diagram view, as we’ll see later.

Right-clicking any element of the TreeView displays a shortcut menu similar to the com-
ponent menu you get when the component is in a form (and in both cases, the shortcut menu
may include items related to the custom component editors). You can even delete items from
the tree.

The TreeView doubles also as a collection editor, as you can see here for the Columns prop-
erty of a ListView control. In this case, you can not only rearrange and delete items, but also
add new items to the collection.

TIP You can print the contents of the Object TreeView for documentation purposes. Simply select the
window and use the File ➢ Print command, as there is no Print command in the shortcut menu.

The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 7

http://www.sybex.com

8

Loadable Views
Another important change has taken place in the Code Editor window. For any single file
loaded in the IDE, the editor can now show multiple views, and these views can be defined
programmatically and added to the system, then loaded for given files—hence the name load-
able views.

The most frequently used view is the Diagram page, which was already available in Delphi 5
data modules, although it was less powerful. Another set of views is available in Web applica-
tions, including an HTML Script view, an HTML Result preview, and many others dis-
cussed in Chapter 22.

The Diagram View
Along with the TreeView, another feature originally introduced in Delphi 5 Data Modules and
now available for every designer is the Diagram view. This view shows dependencies among
components, including parent/child relations, ownership, linked properties, and generic rela-
tions. For dataset components, it also supports master/detail relations and lookup connections.
You can even add your comments in text blocks linked to specific components.

The Diagram is not built automatically. You must drag components from the TreeView to
the diagram, which will automatically display the existing relations among the components
you drop there. In Delphi 6, you can now select multiple items from the Object TreeView
and drag them all at once to the Diagram page.

What’s nice is that you can set properties by simply drawing arrows between the compo-
nents. For example, after moving an edit and a label to Diagram, you can select the Property
Connector icon, click the label, and drag the mouse cursor over the edit. When you release
the mouse button, the Diagram will set up a property relation based on the FocusControl
property, which is the only property of the label referring to an edit control. This situation is
depicted in Figure 1.2.

As you can see, setting properties is directional: If you drag the property relation line from
the edit to the label, you end up trying to use the label as the value of a property of the edit
box. Because this isn’t possible, you’ll see an error message indicating the problem and offer-
ing to connect the components in the opposite way.

In Delphi 6, the Diagram view allows you to create multiple diagrams for each Delphi
unit—that is, for each form or data module. Simply give a name to the diagram and possibly
add a description, click the New Diagram button, prepare another diagram, and you’ll be
able to switch back and forth between diagrams using the combo box available in the toolbar
of the Diagram view.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 8

http://www.sybex.com

9

Although you can use the Diagram view to set up relations, its main role is to document
your design. For this reason, it is important to be able to print the content of this view. Using
the standard File ➢ Print command while the Diagram is active, Delphi prompts you for
options, as you can see in Figure 1.3, allowing you to customize the output in many ways.

The information in the Data Diagram view is saved in a separate file, not as part of the
DFM file. Delphi 5 used design-time information (DTI) files, which had a structure similar
to INI files. Delphi 6 can still read the older .DTI format, but uses the new Delphi Diagram
Portfolio format (.DDP). These files apparently use the DFM binary format (or a similar
one), so they are not editable as text. All of these files are obviously useless at run time (it
makes no sense to include them in the compilation of the executable file).

F I G U R E 1 . 3 :
The Print Options for the
Diagram view

F I G U R E 1 . 2 :
The Diagram view allows
you to connect components
using the Property connector.

The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 9

http://www.sybex.com

10

An IDE for Two Libraries
Another very important change I just want to introduce here is the fact that Delphi 6, for the
first time, allows you to use to different component libraries, VCL (Visual Components
Library) and CLX (Component Library for Cross-Platform). When you create a new project,
you simply choose which of the two libraries you want to use, starting with the File ➢ New ➢
Application command for a classic VCL-based Windows program and with the File ➢
New ➢ CLX Application command for a new CLX-based portable application.

Creating a new project or opening an existing one, the Component Palette is rearranged to
show only the controls related to the current library (although most of them are actually
shared). This topic is fully covered in Chapter 6, so I don’t want to get into the details here;
I’ll just underline that you can use Delphi 6 to build applications you can compile right away
for Linux using Kylix. The effect of this change on the IDE is really quite large, as many
things “under the hood” had to be reengineered. Only programmers using the ToolsAPI and
other advanced elements will notice all these internal differences, as they are mostly trans-
parent to most users.

Smaller Enhancements
Besides this important change and others I’ll discuss in later sections, such as the update of
the Object Inspector and of code completion, there are small (but still quite important)
changes in the Delphi 6 IDE. Here is a list of these changes:

• There is a new Window menu in the IDE. This menu lists the open windows, some-
thing you could obtain in the past using the Alt+0 keys. This is really very handy, as
windows often end up behind others and are hard to find. (Thanks, Borland, for listen-
ing to this and other simple but effective requests from users.)

TIP Two entries of the Main Window registry section of Delphi (under \Software\Borland\
Delphi\6.0 for the current user) allow you to hide this menu and disable its alphabetic sort
order. This registry keys use strings (in place of Boolean values) where “-1” indicates true and
“0” false.

• The File menu doesn’t include specific items for creating new forms or applications.
These commands have been increased in number and grouped under the File ➢ New
secondary menu. The Other command of this menu opens the New Item dialog box
(the Object Repository) as the File ➢ New command did in the past.

• The Component Palette local menu has a submenu listing all of the palette pages in
alphabetic order. You can use it to change the active page, particularly when it is not
visible on the screen.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 10

http://www.sybex.com

11

TIP The order of the entries in the Tabs submenu of the Component Palette local menu can be set
in the same order as the palette itself, and not sorted alphabetically. This is accomplished by
setting to “0” (false) the value of the Sort Palette Tabs Menu key of the Main Window registry
section of Delphi (under \Software\Borland\Delphi\6.0 for the current user).

• There is a new toolbar, the Internet toolbar, which is initially disabled. This toolbar
supports WebSnap applications.

Updated Environment Options Dialog Box
Quite a few small changes relate to the commonly used Environment Options dialog box.
The pages of this dialog box have been rearranged, moving the Form Designer options from
the Preferences page to the new Designer page. There are also a few new options and pages:

• The Preferences page of the Environment Options dialog box has a new check box that
prevents Delphi windows from automatically docking with each other. This is a very
welcome addition!

• A new page, Environment Variables, allows you to see system environment variables
(such as the standard path names and OS settings) and set user-defined variables. The
nice point is that you can use both system- and user-defined environment variables in
each of the dialog boxes of the IDE—for example, you can avoid hard-coding com-
monly used path names, replacing them with a variable. In other words, the environ-
ment variables work similarly to the $DELPHI variable, referring to Delphi’s base
directory, but can be defined by the user.

• Another new page is called Internet. In this page, you can choose the default file exten-
sions used for HTML and XML files (mainly by the WebSnap framework) and also
associate an external editor with each extension.

Delphi Extreme Toys
At times, the Delphi team comes up with small enhancements of the IDE that aren’t included
in the product because they either aren’t of general use or will require time to be improved in
quality, user interface, or robustness. Some of these internal wizards and IDE extensions have
now been made available, with the collective name of Delphi Extreme Toys, to registered
Delphi 6 users. You should automatically get this add-on as you register your copy of the
product (online or through a Borland office).

There isn’t an official list of the content of the Extreme Toys, as Borland plans to keep
extending them. The initial release includes an IDE-based search engine for seeking answers
on Delphi across the Internet, a wizard for turning on and off specific compiler warnings,

The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 11

http://www.sybex.com

12

and an “invokamatic” wizard for accelerating the creation of Web services. The Extreme
Toys will, in essence, be unofficial wizards, code utilities, and components from the Delphi
team—or useful stuff from various people.

Recent IDE Additions
Delphi 5 provided a huge number of new features to the IDE. In case you’ve only used ver-
sions of Delphi prior to 5, or need to brush up on some useful added information, this is a
short summary of the most important of the features introduced in Delphi 5.

Saving the Desktop Settings
The Delphi IDE allows programmers to customize it in various ways—typically, opening
many windows, arranging them, and docking them to each other. However, programmers
often need to open one set of windows at design time and a different set at debug time. Simi-
larly, programmers might need one layout when working with forms and a completely differ-
ent layout when writing components or low-level code using only the editor. Rearranging
the IDE for each of these needs is a tedious task.

For this reason, Delphi allows you to save a given arrangement of IDE windows (called a
desktop) with a name and restore it easily. Also, you can make one of these groupings your
default debugging setting, so that it will be restored automatically when you start the debug-
ger. All these features are available in the Desktops toolbar. You can also work with desktop
settings using the View ➢ Desktops menu.

Desktop setting information is saved in DST files, which are INI files in disguise. The
saved settings include the position of the main window, the Project Manager, the Alignment
Palette, the Object Inspector (including its new property category settings), the editor win-
dows (with the status of the Code Explorer and the Message View), and many others, plus
the docking status of the various windows.

Here is a small excerpt from a DST file, which should be easily readable:
[Main Window]
Create=1
Visible=1
State=0
Left=0
Top=0
Width=1024
Height=105
ClientWidth=1016
ClientHeight=78

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 12

http://www.sybex.com

13

[ProjectManager]
Create=1
Visible=0
State=0
...
Dockable=1

[AlignmentPalette]
Create=1
Visible=0
...

Desktop settings override project settings. This helps eliminate the problem of moving a
project between machines (or between developers) and having to rearrange the windows to
your liking. Delphi 5 separates per-user and per-machine preferences from the project set-
tings, to better support team development.

TIP If you open Delphi and cannot see the form or other windows, I suggest you try checking (or
deleting) the desktop settings. If the project desktop was last saved on a system running in a
high-resolution video mode (or a multimonitor configuration) and opened on a different sys-
tem with lower screen resolution or fewer monitors, some of the windows in the project might
be located off-screen on the lower-resolution system. The simplest ways to fix that are either
to load your own named desktop configuration after opening the project, thus overriding the
project desktop settings, or just delete the DST file that came with the project files.

The To-Do List
Another feature added in Delphi 5 was the to-do list. This is a list of tasks you still have to do
to complete a project, a collection of notes for the programmer (or programmers, as this tool
can be very handy in a team). While the idea is not new, the key concept of the to-do list in
Delphi is that it works as a two-way tool.

In fact, you can add or modify to-do items by adding special TODO comments to the source
code of any file of a project; you’ll then see the corresponding entries in the list. But you can
also visually edit the items in the list to modify the corresponding source code comment. For
example, here is how a to-do list item might look like in the source code:

procedure TForm1.FormCreate(Sender: TObject);
begin
// TODO -oMarco: Add creation code

end;

The same item can be visually edited in the window shown in Figure 1.4.

Recent IDE Additions

2874c01.qxd 7/2/01 2:40 PM Page 13

http://www.sybex.com

14

The exception to this two-way rule is the definition of project-wide to-do items. You must
add these items directly to the list. To do that, you can either use the Ctrl+A key combination
in the To-Do List window or right-click in the window and select Add from the shortcut
menu. These items are saved in a special file with the .TODO extension.

You can use multiple options with a TODO comment. You can use –o (as in the code excerpt
above) to indicate the owner, the programmer who entered the comment; the –c option to
indicate a category; or simply a number from 1 to 5 to indicate the priority (0, or no number,
indicates that no priority level is set). For example, using the Add To-Do Item command on
the editor’s shortcut menu (or the Ctrl+Shift+T shortcut) generated this comment:

{ TODO 2 -oMarco : Button pressed }

Delphi treats everything after the colon, up to the end of line or the closing brace, depending
on the type of comment, as the text of the to-do item. Finally, in the To-Do List window you
can check off an item to indicate that it has been done. The source code comment will
change from TODO to DONE. You can also change the comment in the source code manually to
see the check mark appear in the To-Do List window.

One of the most powerful elements of this architecture is the main To-Do List window,
which can automatically collect to-do information from the source code files as you type them,
sort and filter them, and export them to the Clipboard as plain text or an HTML table.

F I G U R E 1 . 4 :
The Edit To-Do Item
window can be used to
modify a to-do item, an
operation you can also do
directly in the source code.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 14

http://www.sybex.com

15

The AppBrowser Editor
The editor included with Delphi hasn’t changed recently, but it has many features that many
Delphi programmers don’t know and use. It’s worth briefly examining this tool. The Delphi
editor allows you to work on several files at once, using a “notebook with tabs” metaphor,
and you can also open multiple editor windows. You can jump from one page of the editor to
the next by pressing Ctrl+Tab (or Shift+Ctrl+Tab to move in the opposite direction).

TIP In Delphi 6, you can drag-and-drop the tabs with the unit names in the upper portion of the
editor to change their order, so that you can use a single Ctrl+Tab to move between the units
you are mostly interested in. The local menu of the editor has also a Pages command, which
lists all of the available pages in a submenu, a handy feature when many units are loaded.

Several options affect the editor, located in the new Editor Properties dialog box. You have
to go to the Preferences page of the Environment Options dialog box, however, to set the
editor’s AutoSave feature, which saves the source code files each time you run the program
(preventing data loss in case the program crashes badly).

I won’t discuss the various settings of the editor, as they are quite intuitive and are described
in the online Help. A tip to remember is that using the Cut and Paste commands is not the
only way to move source code. You can also select and drag words, expressions, or entire lines
of code. You can also copy text instead of moving it, by pressing the Ctrl key while dragging.

The Code Explorer
The Code Explorer window, which is generally docked on the side of the editor, simply lists
all of the types, variables, and routines defined in a unit, plus other units appearing in uses
statements. For complex types, such as classes, the Code Explorer can list detailed informa-
tion, including a list of fields, properties, and methods. All the information is updated as soon
as you start typing in the editor. You can use the Code Explorer to navigate in the editor. If
you double-click one of the entries in the Code Explorer, the editor jumps to the corre-
sponding declaration.

TIP In Delphi 6 you can modify variables, properties, and method names directly in the Code
Explorer.

While all that is quite obvious after you’ve used Delphi for a few minutes, some features
of the Code Explorer are not so intuitive. One important point is that you have full control of
the layout of the information, and you can reduce the depth of the tree usually displayed in
this window by customizing the Code Explorer. Collapsing the tree can help you make your

The AppBrowser Editor

2874c01.qxd 7/2/01 2:40 PM Page 15

http://www.sybex.com

16

selections more quickly. You can configure the Code Explorer by using the corresponding
page of the Environment Options, as shown in Figure 1.5.

Notice that when you deselect one of the Explorer Categories items on the right side of
this page of the dialog box, the Explorer doesn’t remove the corresponding elements from
view—it simply adds the node in the tree. For example, if you deselect the Uses check box,
Delphi doesn’t hide the list of the used units from the Code Explorer. On the contrary, the
used units are listed as main nodes instead of being kept in the Uses folder. I generally disable
the Types, Classes, and Variables selections.

Because each item of the Code Explorer tree has an icon marking its type, arranging by
field and method seems less important than arranging by access specifier. My preference is to
show all items in a single group, as this requires the fewest mouse clicks to reach each item.
Selecting items in the Code Explorer, in fact, provides a very handy way of navigating the
source code of a large unit. When you double-click a method in the Code Explorer, the focus
moves to the definition in the class declaration (in the interface portion of the unit). You can
use the Ctrl+Shift combination with the Up or Down arrow keys to jump from the definition
of a method or procedure in the interface portion of a unit to its complete definition in the
implementation portion (or back again).

F I G U R E 1 . 5 :
You can configure the
Code Explorer in the
Environment Options
dialog box.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 16

http://www.sybex.com

17

NOTE Some of the Explorer Categories shown in Figure 1.5 are used by the Project Explorer, rather
than by the Code Explorer. These include, among others, the Virtuals, Statics, Inherited, and
Introduced grouping options.

Browsing in the Editor
Another feature of the AppBrowser editor is Tooltip symbol insight. Move the mouse over a
symbol in the editor, and a Tooltip will show you where the identifier is declared. This fea-
ture can be particularly important for tracking identifiers, classes, and functions within an
application you are writing, and also for referring to the source code of the Visual Compo-
nent Library (VCL).

WARNING Although it may seem a good idea at first, you cannot use Tooltip symbol insight to find out
which unit declares an identifier you want to use. If the corresponding unit is not already
included, in fact, the Tooltip won’t appear.

The real bonus of this feature, however, is that you can turn it into a navigational aid. When
you hold down the Ctrl key and move the mouse over the identifier, Delphi creates an active
link to the definition instead of showing the Tooltip. These links are displayed with the blue
color and underline style that are typical of Web browsers, and the pointer changes to a hand
whenever it’s positioned on the link.

For example, you can Ctrl+click the TLabel identifier to open its definition in the VCL
source code. As you select references, the editor keeps track of the various positions you’ve
jumped to, and you can move backward and forward among them—again as in a Web
browser. You can also click the drop-down arrows near the Back and Forward buttons to view
a detailed list of the lines of the source code files you’ve already jumped to, for more control
over the backward and forward movement.

How can you jump directly to the VCL source code if it is not part of your project? The
AppBrowser editor can find not only the units in the Search path (which are compiled as part
of the project), but also those in Delphi’s Debug Source, Browsing, and Library paths. These
directories are searched in the order I’ve just listed, and you can set them in the Directories/
Conditionals page of the Project Options dialog box and in the Library page of the Environ-
ment Options dialog box. By default, Delphi adds the VCL source code directories in the
Browsing path of the environment.

The AppBrowser Editor

2874c01.qxd 7/2/01 2:40 PM Page 17

http://www.sybex.com

18

Class Completion
The third important feature of Delphi’s AppBrowser editor is class completion, activated by
pressing the Ctrl+Shift+C key combination. Adding an event handler to an application is a
fast operation, as Delphi automatically adds the declaration of a new method to handle the
event in the class and provides you with the skeleton of the method in the implementation
portion of the unit. This is part of Delphi’s support for visual programming.

Newer versions of Delphi also simplify life in a similar way for programmers who write a
little extra code behind event handlers. The new code-generation feature, in fact, applies to
general methods, message-handling methods, and properties. For example, if you type the
following code in the class declaration:

public
procedure Hello (MessageText: string);

and then press Ctrl+Shift+C, Delphi will provide you with the definition of the method in
the implementation section of the unit, generating the following lines of code:

{ TForm1 }
procedure TForm1.Hello(MessageText: string);
begin
end;

This is really handy, compared with the traditional approach of many Delphi program-
mers, which is to copy and paste one or more declarations, add the class names, and finally
duplicate the begin...end code for every method copied.

Class completion can also work the other way around. You can write the implementation
of the method with its code directly, and then press Ctrl+Shift+C to generate the required
entry in the class declaration.

Code Insight
Besides the Code Explorer, class completion, and the navigational features, the Delphi editor
supports the code insight technology. Collectively, the code insight techniques are based on a
constant background parsing, both of the source code you write and of the source code of the
system units your source code refers to.

Code insight comprises five capabilities: code completion, code templates, code parameters,
Tooltip expression evaluation, and Tooltip symbol insight. This last feature was already cov-
ered in the section “Browsing in the Editor”; the other four will be discussed in the following
subsections. You can enable, disable, and configure each of these features in the Code Insight
page of the Editor Options dialog box.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 18

http://www.sybex.com

19

Code Completion
Code completion allows you to choose the property or method of an object simply by look-
ing it up on a list or by typing its initial letters. To activate this list, you just type the name of
an object, such as Button1, then add the dot, and wait. To force the display of the list, press
Ctrl+spacebar; to remove it when you don’t want it, press Esc. Code completion also lets you
look for a proper value in an assignment statement.

In Delphi 6, as you start typing, the list filters its content according to the initial portion of
the element you’ve inserted. The code completion list uses colors and shows more details to
help you distinguish different items. Another new feature is that in the case of functions with
parameters, parentheses are included in the generated code, and the parameters list hint is
displayed immediately.

As you type := after a variable or property, Delphi will list all the other variables or objects
of the same type, plus the objects having properties of that type. While the list is visible, you
can right-click it to change the order of the items, sorting either by scope or by name, and
you can also resize the window.

In Delphi 6, code completion also works in the interface section of a unit. If you press
Ctrl+spacebar while the cursor is inside the class definition, you’ll get a list of: virtual meth-
ods you can override (including abstract methods), the methods of implemented interfaces,
the base class properties, and eventually system messages you can handle. Simply selecting
one of them will add the proper method to the class declaration. In this particular case, the
code completion list allows multiple selection.

TIP When the code you’ve written is incorrect, code insight won’t work, and you may see just a
generic error message indicating the situation. It is possible to display specific code insight
errors in the Message pane (which must already be open; it doesn’t open automatically to dis-
play compilation errors). To activate this feature, you need to set an undocumented registry
entry, setting the string key \Delphi\6.0\Compiling\ShowCodeInsiteErrors to the value ‘1’.

There are advanced features of Delphi 6 code completion that aren’t easy to spot. One
that I found particularly useful relates to the discovery of symbols in units not used by your
project. As you invoke it (with Ctrl+spacebar) over a blank line, the list also includes sym-
bols from common units (such as Math, StrUtils, and DateUtils) not already included in
the uses statement of the current one. By selecting one of these external symbols, Delphi
adds the unit to the uses statement for you. This feature (which doesn’t work inside expres-
sions) is driven by a customizable list of extra units, stored in the registry key \Delphi\6.0\
CodeCompletion\ExtraUnits.

The AppBrowser Editor

2874c01.qxd 7/2/01 2:40 PM Page 19

http://www.sybex.com

20

Code Templates
Code templates allow you to insert one of the predefined code templates, such as a complex
statement with an inner begin...end block. Code templates must be activated manually, by
typing Ctrl+J to show a list of all of the templates. If you type a few letters (such as a key-
word) before pressing Ctrl+J, Delphi will list only the templates starting with those letters.

You can add your own custom code templates, so that you can build your own shortcuts for
commonly used blocks of code. For example, if you use the MessageDlg function often, you
might want to add a template for it. In the Code Insight page of the Environment Options
dialog box, click the Add button in the Code Template area, type in a new template name (for
example, mess), type a description, and then add the following text to the template body in
the Code memo control:

MessageDlg (‘|’, mtInformation, [mbOK], 0);

Now every time you need to create a message dialog box, you simply type mess and then
press Ctrl+J, and you get the full text. The vertical line (or pipe) character indicates the posi-
tion within the source code where the cursor will be in the editor after expanding the tem-
plate. You should choose the position where you want to start typing to complete the code
generated by the template.

Although code templates might seem at first sight to correspond to language keywords,
they are in fact a more general mechanism. They are saved in the DELPHI32.DCI file, so it
should be possible to copy this file to make your templates available on different machines.
Merging two code template files is not documented, though.

Code Parameters
Code parameters display, in a hint or Tooltip window, the data type of a function’s or method’s
parameters while you are typing it. Simply type the function or method name and the open
(left) parenthesis, and the parameter names and types appear immediately in a pop-up hint
window. To force the display of code parameters, you can press Ctrl+Shift+spacebar. As a fur-
ther help, the current parameter appears in bold type.

Tooltip Expression Evaluation
Tooltip expression evaluation is a debug-time feature. It shows you the value of the identifier,
property, or expression that is under the mouse cursor.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 20

http://www.sybex.com

21

More Editor Shortcut Keys
The editor has many more shortcut keys that depend on the editor style you’ve selected.
Here are a few of the less-known shortcuts, most of which are useful:

• Ctrl+Shift plus a number key from 0 to 9 activates a bookmark, indicated in a “gutter”
margin on the side of the editor. To jump back to the bookmark, press the Ctrl key plus
the number key. The usefulness of bookmarks in the editor is limited by the facts that a
new bookmark can override an existing one and that bookmarks are not persistent;
they are lost when you close the file.

• Ctrl+E activates the incremental search. You can press Ctrl+E and then directly type
the word you want to search for, without the need to go through a special dialog box
and click the Enter key to do the actual search.

• Ctrl+Shift+I indents multiple lines of code at once. The number of spaces used is the
one set by the Block Indent option in the General page of the Editor Properties dia-
log box. Ctrl+Shift+U is the corresponding key for unindenting the code.

• Ctrl+O+U toggles the case of the selected code; you can also use Ctrl+K+E to switch to
lowercase and Ctrl+K+F to switch to uppercase.

• Ctrl+Shift+R starts recording a macro, which you can later play by using the Ctrl+Shift+P
shortcut. The macro records all the typing, moving, and deleting operations done in the
source code file. Playing the macro simply repeats the sequence—an operation that might
have little meaning once you’ve moved on to a different source code file. Editor macros
are quite useful for performing multistep operations over and over again, such as refor-
matting source code or arranging data more legibly in source code.

• Holding down the Alt key, you can drag the mouse to select rectangular areas of the
editor, not just consecutive lines and words.

The Form Designer
Another Delphi window you’ll interact with very often is the Form Designer, a visual tool for
placing components on forms. In the Form Designer, you can select a component directly
with the mouse or through the Object Inspector, a handy feature when a control is behind
another one or is very small. If one control covers another completely, you can use the Esc
key to select the parent control of the current one. You can press Esc one or more times to
select the form, or press and hold Shift while you click the selected component. This will
deselect the current component and select the form by default.

The Form Designer

2874c01.qxd 7/2/01 2:40 PM Page 21

http://www.sybex.com

22

There are two alternatives to using the mouse to set the position of a component. You can
either set values for the Left and Top properties, or you can use the arrow keys while holding
down Ctrl. Using arrow keys is particularly useful for fine-tuning an element’s position. (The
Snap To Grid option works only for mouse operations.) Similarly, by pressing the arrow keys
while you hold down Shift, you can fine-tune the size of a component. (If you press Shift+Ctrl
along with an arrow key, the component will be moved only at grid intervals.) Unfortunately,
during these fine-tuning operations, the component hints with the position and size are not
displayed.

To align multiple components or make them the same size, you can select several compo-
nents and set the Top, Left, Width, or Height property for all of them at the same time. To
select several components, you can click them with the mouse while holding down the Shift
key, or, if all the components fall into a rectangular area, you can drag the mouse to “draw” a
rectangle surrounding them. When you’ve selected multiple components, you can also set
their relative position using the Alignment dialog box (with the Align command of the form’s
shortcut menu) or the Alignment Palette (accessible through the View ➢ Alignment Palette
menu command).

When you’ve finished designing a form, you can use the Lock Controls command of the
Edit menu to avoid accidentally changing the position of a component in a form. This is par-
ticularly helpful, as Undo operations on forms are limited (only an Undelete one), but the
setting is not persistent.

Among its other features, the Form Designer offers several Tooltip hints:

• As you move the pointer over a component, the hint shows you the name and type of
the component. Delphi 6 offers extended hints, with details on the control position,
size, tab order, and more. This is an addition to the Show Component Captions envi-
ronment setting, which I keep active.

• As you resize a control, the hint shows the current size (the Width and Height proper-
ties). Of course, this feature is available only for controls, not for nonvisual compo-
nents (which are indicated in the Form Designer by icons).

• As you move a component, the hint indicates the current position (the Left and Top
properties).

Finally, you can save DFM (Delphi Form Module) files in plain text instead of the tradi-
tional binary resource format. You can toggle this option for an individual form with the
Form Designer’s shortcut menu, or you can set a default value for newly created forms in the

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 22

http://www.sybex.com

23

Designer page of the Environment Options dialog box. In the same page, you can also spec-
ify whether the secondary forms of a program will be automatically created at startup, a deci-
sion you can always reverse for each individual form (using the Forms page of the Project
Options dialog box).

Having DFM files stored as text was a welcome addition in Delphi 5; it lets you operate
more effectively with version-control systems. Programmers won’t get a real advantage from
this feature, as you could already open the binary DFM files in the Delphi editor with a spe-
cific command of the shortcut menu of the designer. Version-control systems, on the other
hand, need to store the textual version of the DFM files to be able to compare them and cap-
ture the differences between two versions of the same file.

In any case, note that if you use DFM files as text, Delphi will still convert them into a binary
resource format before including them in the executable file of your programs. DFMs are
linked into your executable in binary format to reduce the executable size (although they are
not really compressed) and to improve run-time performance (they can be loaded faster).

NOTE Text DFM files are more portable between versions of Delphi than their binary version. While
an older version of Delphi might not accept a new property of a control in a DFM created by a
newer version of Delphi, the older Delphis will still be able to read the rest of the text DFM file.
If the newer version of Delphi adds a new data type, though, older Delphis will be unable to
read the newer Delphi’s binary DFMs at all. Even if this doesn’t sound likely, remember that 64-bit
operating systems are just around the corner. When in doubt, save in text DFM format. Also
note that all versions of Delphi support text DFMs, using the command-line tool Convert in the
bin directory.

The Object Inspector in Delphi 6
Delphi 5 provided new features to the Object Inspector, and Delphi 6 includes even more
additions to it. As this is a tool programmers use all the time, along with the editor and the
Form Designer, its improvements are really significant.

The most important change in Delphi 6 is the ability of the Object Inspector to expand
component references in-place. Properties referring to other components are now displayed
in a different color and can be expanded by selecting the + symbol on the left, as it happens
with internal subcomponents. You can then modify the properties of that other component
without having to select it. See Figure 1.6 for an example.

NOTE This interface-expansion feature also supports subcomponents, as demonstrated by the new
LabeledEdit control.

The Form Designer

2874c01.qxd 7/2/01 2:40 PM Page 23

http://www.sybex.com

24

TIP A related feature of the Object Inspector is the ability to select the component referenced by a
property. To do this, double-click the property value with the left mouse button while keeping
the Ctrl key pressed. For example, if you have a MainMenu component in a form and you are
looking at the properties of the form in the Object Inspector, you can select the MainMenu
component by moving to the MainMenu property of the form and Ctrl+double-clicking the
value of this property. This selects the main menu indicated as the value of the property in
the Object Inspector.

Here are some other relevant changes of the Object Inspector:

• The list at the top of the Object Inspector shows the type of the object and can be
removed to save some space (and considering the presence of the Object TreeView).

• The properties that reference an object are now a different color and may be expanded
without changing the selection.

• You can optionally also view read-only properties in the Object Inspector. Of course,
they are grayed out.

• The Object Inspector has a new Properties dialog box (see Figure 1.7), which allows
you to customize the colors of the various types of properties and the overall behavior
of this window.

F I G U R E 1 . 6 :
A connected component
(a pop-up menu) expanded
in the Object Inspector
while working on another
component (a list box)

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 24

http://www.sybex.com

25

• Since Delphi 5, the drop-down list for a property can include graphical elements. This
is used for properties such as Color and Cursor, and is particularly useful for the
ImageIndex property of components connected with an ImageList.

NOTE Interface properties can now be configured at design time using the Object Inspector. This
makes use of the Interfaced Component Reference model introduced in Kylix/Delphi 6, where
components may implement and hold references to interfaces as long as the interfaces are
implemented by components. Interfaced Component References work like plain old compo-
nent references, except that interface properties can be bound to any component that imple-
ments the necessary interface. Unlike component properties, interface properties are not
limited to a specific component type (a class or its derived classes). When you click the drop-
down list in the Object Inspector editor for an interface property, all components on the cur-
rent form (and linked forms) that implement the interface are shown.

Drop-Down Fonts in the Object Inspector
The Delphi Object Inspector has graphical drop-down lists for several properties. You might
want to add one showing the actual image of the font you are selecting, corresponding to the
Name subproperty of the Font property. This capability is actually built into Delphi, but it has
been disabled because most computers have a large number of fonts installed and rendering

F I G U R E 1 . 7 :
The new Object Inspector
Properties dialog box

The Form Designer

Continued on next page

2874c01.qxd 7/2/01 2:40 PM Page 25

http://www.sybex.com

26

them can really slow down the computer. If you want to enable this feature, you have to install
in Delphi a package that enables the FontNamePropertyDisplayFontNames global variable
of the new VCLEditors unit. I’ve done this in the OiFontPk package, which you can find among
the program examples for this chapter on the companion CD-ROM.

Once this package is installed, you can move to the Font property of any component and use
the graphical Name drop-down menu, as displayed here:

There is a second, more complex customization of the Object Inspector that I like and use
frequently: a custom font for the entire Object Inspector, to make its text more visible. This
feature is particularly useful for public presentations. You can find the package to install cus-
tom fonts in the Object Inspector on my Web site, www.marcocantu.com.

Property Categories
Delphi 5 also introduced the idea of property categories, activated by the Arrange option of
the local menu of the Object Inspector. If you set it, properties won’t be listed alphabetically
but arranged by group, with each property possibly appearing in multiple groups.

Categories have the benefit of reducing the complexity of the Object Inspector. You can
use the View submenu from the shortcut menu to hide properties of given categories, regard-
less of the way they are displayed (that is, even if you prefer the traditional arrangement by
name, you can still hide the properties of some categories).

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 26

http://www.sybex.com

27

Secrets of the Component Palette
The Component Palette is very simple to use, but there are a few things you might not know.
There are four simple ways to place a component on a form:

• After selecting a control in the palette, click within the form to set the position for the
control, and press-and-drag the mouse to size it.

• After selecting any component, simply click within the form to place it with the default
height and width.

• Double-click the icon in the palette to add a component of that type in the center of
the form.

• Shift-click the component icon to place several components of the same kind in the
form. To stop this operation, simply click the standard selector (the arrow icon) on the
left side of the Component Palette.

You can select the Properties command on the shortcut menu of the palette to completely
rearrange the components in the various pages, possibly adding new elements or just moving
them from page to page. In the resulting Properties page, you can simply drag a component
from the Components list box to the Pages list box to move that component to a different page.

TIP When you have too many pages in the Component Palette, you’ll need to scroll them to reach
a component. There is a simple trick you can use in this case: Rename the pages with shorter
names, so that all the pages will fit on the screen. Obvious—once you’ve thought about it.

The real undocumented feature of the Component Palette is the “hot-track” activation. By
setting special keys of the Registry, you can simply select a page of the palette by moving over
the tab, without any mouse click. The same feature can be applied to the component scrollers
on both sides of the palette, which show up when a page has too many components. To acti-
vate this hidden feature, you must add an Extras key under HKEY_CURRENT_USER\Software\
Borland\Delphi\6.0. Under this key enter two string values, AutoPaletteSelect and
AutoPaletteScroll, and set each value to the string ‘1’.

Defining Event Handlers
There are several techniques you can use to define a handler for an event of a component:

• Select the component, move to the Events page, and either double-click in the white
area on the right side of the event or type a name in that area and press the Enter key.

• For many controls, you can double-click them to perform the default action, which is
to add a handler for the OnClick, OnChange, or OnCreate events.

Secrets of the Component Palette

2874c01.qxd 7/2/01 2:40 PM Page 27

http://www.sybex.com

28

When you want to remove an event handler you have written from the source code of a
Delphi application, you could delete all of the references to it. However, a better way is to
delete all of the code from the corresponding procedure, leaving only the declaration and the
begin and end keywords. The text should be the same as what Delphi automatically gener-
ated when you first decided to handle the event. When you save or compile a project, Delphi
removes any empty methods from the source code and from the form description (including
the reference to them in the Events page of the Object Inspector). Conversely, to keep an
event handler that is still empty, consider adding a comment to it (even just the // charac-
ters), so that it will not be removed.

Copying and Pasting Components
An interesting feature of the Form Designer is the ability to copy and paste components
from one form to another or to duplicate the component in the form. During this operation,
Delphi duplicates all the properties, keeps the connected event handlers, and, if necessary,
changes the name of the control (which must be unique in each form).

It is also possible to copy components from the Form Designer to the editor and vice
versa. When you copy a component to the Clipboard, Delphi also places the textual descrip-
tion there. You can even edit the text version of a component, copy the text to the Clipboard,
and then paste it back into the form as a new component. For example, if you place a button
on a form, copy it, and then paste it into an editor (which can be Delphi’s own source-code
editor or any word processor), you’ll get the following description:

object Button1: TButton
Left = 152
Top = 104
Width = 75
Height = 25
Caption = ‘Button1’
TabOrder = 0

end

Now, if you change the name of the object, its caption, or its position, for example, or add
a new property, these changes can be copied and pasted back to a form. Here are some sample
changes:

object Button1: TButton
Left = 152
Top = 104
Width = 75
Height = 25
Caption = ‘My Button’
TabOrder = 0
Font.Name = ‘Arial’

end

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 28

http://www.sybex.com

29

Copying this description and pasting it into the form will create a button in the specified
position with the caption My Button in an Arial font.

To make use of this technique, you need to know how to edit the textual representation of
a component, what properties are valid for that particular component, and how to write the
values for string properties, set properties, and other special properties. When Delphi inter-
prets the textual description of a component or form, it might also change the values of other
properties related to those you’ve changed, and it might change the position of the compo-
nent so that it doesn’t overlap a previous copy. Of course, if you write something completely
wrong and try to paste it into a form, Delphi will display an error message indicating what
has gone wrong.

You can also select several components and copy them all at once, either to another form
or to a text editor. This might be useful when you need to work on a series of similar compo-
nents. You can copy one to the editor, replicate it a number of times, make the proper changes,
and then paste the whole group into the form again.

From Component Templates to Frames
When you copy one or more components from one form to another, you simply copy all of
their properties. A more powerful approach is to create a component template, which makes a
copy of both the properties and the source code of the event handlers. As you paste the tem-
plate into a new form, by selecting the pseudo-component from the palette, Delphi will
replicate the source code of the event handlers in the new form.

To create a component template, select one or more components and issue the Component ➢
Create Component Template menu command. This opens the Component Template Informa-
tion dialog box, where you enter the name of the template, the page of the Component
Palette where it should appear, and an icon.

By default, the template name is the name of the first component you’ve selected followed
by the word Template. The default template icon is the icon of the first component you’ve
selected, but you can replace it with an icon file. The name you give to the component template
will be used to describe it in the Component Palette (when Delphi displays the pop-up hint).

Secrets of the Component Palette

2874c01.qxd 7/2/01 2:40 PM Page 29

http://www.sybex.com

30

All the information about component templates is stored in a single file, DELPHI32.DCT, but
there is apparently no way to retrieve this information and edit a template. What you can do,
however, is place the component template in a brand-new form, edit it, and install it again as
a component template using the same name. This way you can overwrite the previous definition.

TIP A group of Delphi programmers can share component templates by storing them in a common
directory, adding to the Registry the entry CCLibDir under the key \Software\Borland\
Delphi\6.0\Component Templates.

Component templates are handy when different forms need the same group of components
and associated event handlers. The problem is that once you place an instance of the template
in a form, Delphi makes a copy of the components and their code, which is no longer related
to the template. There is no way to modify the template definition itself, and it is certainly not
possible to make the same change effective in all the forms that use the template. Am I asking
too much? Not at all. This is what the frames technology in Delphi does.

A frame is a sort of panel you can work with at design time in a way similar to a form. You
simply create a new frame, place some controls in it, and add code to the event handlers. After
the frame is ready, you can open a form, select the Frame pseudo-component from the Stan-
dard page of the Component Palette, and choose one of the available frames (of the current
project). After placing the frame in a form, you’ll see it as if the components were copied to it.
If you modify the original frame (in its own designer), the changes will be reflected in each of
the instances of the frame.

You can see a simple example, called Frames1, in Figure 1.8 (its code is available on the
companion CD). A screen snapshot doesn’t really mean much; you should open the program
or rebuild a similar one if you want to start playing with frames. Like forms, frames define
classes, so they fit within the VCL object-oriented model much more easily than component
templates. Chapter 4 provides an in-depth look at VCL and includes a more detailed descrip-
tion of frames. As you might imagine from this short introduction, frames are a powerful new
technique.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 30

http://www.sybex.com

31

Managing Projects
Delphi’s multitarget Project Manager (View ➢ Project Manager) works on a project group,
which can have one or more projects under it. For example, a project group can include a
DLL and an executable file, or multiple executable files.

TIP In Delphi 6, all open packages will show up as projects in the Project Manager view, even if
they haven’t been added to the project group.

In Figure 1.9, you can see the Project Manager with the project group for the current
chapter. As you can see, the Project Manager is based on a tree view, which shows the hierar-
chical structure of the project group, the projects, and all of the forms and units that make up
each project. You can use the simple toolbar and the more complex shortcut menus of the
Project Manager to operate on it. The shortcut menu is context-sensitive; its options depend
on the selected item. There are menu items to add a new or existing project to a project
group, to compile or build a specific project, or to open a unit.

Of all the projects in the group, only one is active, and this is the project you operate upon
when you select a command such as Project ➢ Compile. The Project pull-down of the main
menu has two commands you can use to compile or build all the projects of the group. (Strangely
enough, these commands are not available in the shortcut menu of the Project Manager for the
project group.) When you have multiple projects to build, you can set a relative order by using the
Build Sooner and Build Later commands. These two commands basically rearrange the projects
in the list.

F I G U R E 1 . 8 :
The Frames1 example
demonstrates the use of
frames. The frame (on the
left) and its instance inside
a form (on the right) are
kept in synch.

Managing Projects

2874c01.qxd 7/2/01 2:40 PM Page 31

http://www.sybex.com

32

Among its advanced features, you can drag source code files from Windows folders or Win-
dows Explorer onto a project in the Project Manager window to add them to that project.

The Project Manager automatically selects as the current project the one you are working
with—for example, opening a file. You can easily see which project is selected and change it
by using the combo box on the top of the form.

TIP Besides adding Pascal files and projects, you can add Windows resource files to the Project
Manager; they are compiled along with the project. Simply move to a project, select the Add
shortcut menu, and choose Resource File (*.rc) as the file type. This resource file will be auto-
matically bound to the project, even without a corresponding $R directive.

Delphi saves the project groups with the new .BPG extension, which stands for Borland
Project Group. This feature comes from C++Builder and from past Borland C++ compilers,
a history that is clearly visible as you open the source code of a project group, which is basi-
cally that of a makefile in a C/C++ development environment. Here is a simple example:

#—————————————————————————————
VERSION = BWS.01
#—————————————————————————————
!ifndef ROOT
ROOT = $(MAKEDIR)\..

F I G U R E 1 . 9 :
Delphi’s multitarget Project
Manager

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 32

http://www.sybex.com

33

!endif
#—————————————————————————————
MAKE = $(ROOT)\bin\make.exe -$(MAKEFLAGS) -f$**
DCC = $(ROOT)\bin\dcc32.exe $**
BRCC = $(ROOT)\bin\brcc32.exe $**
#—————————————————————————————
PROJECTS = Project1.exe
#—————————————————————————————
default: $(PROJECTS)
#—————————————————————————————
Project1.exe: Project1.dpr
$(DCC)

Project Options
The Project Manager doesn’t provide a way to set the options of two different projects at one
time. What you can do instead is invoke the Project Options dialog from the Project Manager
for each project. The first page of Project Options (Forms) lists the forms that should be cre-
ated automatically at program startup and the forms that are created manually by the pro-
gram. The next page (Application) is used to set the name of the application and the name of
its Help file, and to choose its icon. Other Project Options choices relate to the Delphi com-
piler and linker, version information, and the use of run-time packages.

There are two ways to set compiler options. One is to use the Compiler page of the Project
Options dialog. The other is to set or remove individual options in the source code with the
{$X+} or {$X-} commands, where you’d replace X with the option you want to set. This sec-
ond approach is more flexible, since it allows you to change an option only for a specific
source-code file, or even for just a few lines of code. The source-level options override the
compile-level options.

All project options are saved automatically with the project, but in a separate file with a
.DOF extension. This is a text file you can easily edit. You should not delete this file if you
have changed any of the default options. Delphi also saves the compiler options in another
format in a CFG file, for command-line compilation. The two files have similar content but
a different format: The dcc command-line compiler, in fact, cannot use .DOF files, but needs
the .CFG format.

Another alternative for saving compiler options is to press Ctrl+O+O (press the O key
twice while keeping Ctrl pressed). This inserts, at the top of the current unit, compiler direc-
tives that correspond to the current project options, as in the following listing:

{$A+,B-,C+,D+,E-,F-,G+,H+,I+,J+,K-,L+,M-,N+,O+,P+,Q-,R-,S-,T-,U-,V+,
W-,X+,Y+,Z1}

{$MINSTACKSIZE $00004000}

Managing Projects

2874c01.qxd 7/2/01 2:40 PM Page 33

http://www.sybex.com

34

{$MAXSTACKSIZE $00100000}

{$IMAGEBASE $00400000}

{$APPTYPE GUI}

Compiling and Building Projects
There are several ways to compile a project. If you run it (by pressing F9 or clicking the Run
toolbar icon), Delphi will compile it first. When Delphi compiles a project, it compiles only
the files that have changed.

If you select Compile ➢ Build All instead, every file is compiled, even if it has not changed.
You should only need this second command infrequently, since Delphi can usually determine
which files have changed and compile them as required. The only exception is when you
change some project options, in which case you have to use the Build All command to put
the new options into effect.

To build a project, Delphi first compiles each source code file, generating a Delphi com-
piled unit (DCU). (This step is performed only if the DCU file is not already up-to-date.)
The second step, performed by the linker, is to merge all the DCU files into the executable
file, optionally with compiled code from the VCL library (if you haven’t decided to use pack-
ages at run time). The third step is binding into the executable file any optional resource
files, such as the RES file of the project, which hosts its main icon, and the DFM files of the
forms. You can better understand the compilation steps and follow what happens during this
operation if you enable the Show Compiler Progress option (in the Preferences page of the
Environment Options dialog box).

WARNING Delphi doesn’t always properly keep track of when to rebuild units based on other units you’ve
modified. This is particularly true for the cases (and there are many) in which user intervention
confuses the compiler logic. For example, renaming files, modifying source files outside the
IDE, copying older source files or DCU files to disk, or having multiple copies of a unit source
file in your search path can break the compilation. Every time the compiler shows some
strange error message, the first thing you should try is the Build All command to resynchronize
the make feature with the current files on disk.

The Compile command can be used only when you have loaded a project in the editor. If
no project is active and you load a Pascal source file, you cannot compile it. However, if you
load the source file as if it were a project, that will do the trick and you’ll be able to compile the
file. To do this, simply select the Open Project toolbar button and load a PAS file. Now you
can check its syntax or compile it, building a DCU.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 34

http://www.sybex.com

35

I’ve mentioned before that Delphi allows you to use run-time packages, which affect the
distribution of the program more than the compilation process. Delphi packages are dynamic
link libraries (DLLs) containing Delphi components. By using packages, you can make an
executable file much smaller. However, the program won’t run unless the proper dynamic
link libraries (such as vcl50.bpl, which is quite large) are available on the computer where
you want to run the program.

If you add the size of this dynamic library to that of the small executable file, the total
amount of disk space required by the apparently smaller program built with run-time pack-
ages is much larger than the space required by the apparently bigger stand-alone executable
file. Of course, if you have multiple applications on a single system, you’ll end up saving a lot,
both in disk space and memory consumption at run time. The use of packages is often but
not always recommended. I’ll discuss all the implications of packages in detail in Chapter 12.

In both cases, Delphi executables are extremely fast to compile, and the speed of the result-
ing application is comparable to that of a C or C++ program. Delphi compiled code runs at
least five times faster than the equivalent code in interpreted or “semicompiled” tools.

Exploring a Project
Past versions of Delphi included an Object Browser, which you could use when a project was
compiled to see a hierarchical structure of its classes and to look for its symbols and the
source-code lines where they are referenced. Delphi now includes a similar but enhanced
tool, called Project Explorer. Like the Code Explorer, it is updated automatically as you type,
without recompiling the project.

The Project Explorer allows you to list Classes, Units, and Globals, and lets you choose
whether to look only for symbols defined within your project or for those from both your
project and VCL. You can see an example with only project symbols in Figure 1.10.

F I G U R E 1 . 1 0 :
The Project Explorer

Managing Projects

2874c01.qxd 7/2/01 2:40 PM Page 35

http://www.sybex.com

36

You can change the settings of this Explorer and those of the Code Explorer in the
Explorer page of the Environment Options or by selecting the Properties command in the
shortcut menu of the Project Explorer. Some of the Explorer categories you see in this win-
dow are specific to the Project Explorer; others relate to both tools.

Additional and External Delphi Tools
Besides the IDE, when you install Delphi you get other, external tools. Some of them, such
as the Database Desktop, the Package Collection Editor (PCE.exe), and the Image Editor
(ImagEdit.exe), are available from Tools menu of the IDE. In addition, the Enterprise edi-
tion has a link to the SQL Monitor (SqlMon.exe).

Other tools that are not directly accessible from the IDE include many command-line
tools you can find in the bin directory of Delphi. For example, there is a command-line
Delphi compiler (DCC.exe), a Borland resource compiler (BRC32.exe and BRCC32.exe), and an
executable viewer (TDump.exe).

Finally, some of the sample programs that ship with Delphi are actually useful tools that
you can compile and keep at hand. I’ll discuss some of these tools in the book, as needed.
Here are a few of the useful and higher-level tools, mostly available in the \Delphi6\bin
folder and in the Tools menu:

Web App Debugger (WebAppDbg.exe) is the debugging Web server introduced in Delphi 6.
It is used to keep track of the requests send to your applications and debug them. I’ll dis-
cuss this tool in Chapter 21.

XML Mapper (XmlMapper.exe), again new in Delphi 6, is a tool for creating XML trans-
formations to be applied to the format produced by the ClientDataSet component. More
on this topic in Chapter 22.

External Translation Manager (etm60.exe) is the stand-alone version of the Integrated
Translation Manager. This external tool can be given to external translators and is available
for the first time in Delphi 6.

Borland Registry Cleanup Utility (D6RegClean.exe) helps you remove all of the Registry
entries added by Delphi 6 to a computer.

TeamSource is an advanced version-control system provided with Delphi, starting with
version 5. The tool is very similar to its past incarnation and is installed separately from
Delphi.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 36

http://www.sybex.com

37

WinSight (Ws.exe) is a Windows “message spy” program available in the bin directory.

Database Explorer can be activated from the Delphi IDE or as a stand-alone tool, using
the DBExplor.exe program of the bin directory.

OpenHelp (oh.exe) is the tool you can use to manage the structure of Delphi’s own Help
files, integrating third-party files into the help system.

Convert (Convert.exe) is a command-line tool you can use to convert DFM files into the
equivalent textual description and vice versa.

Turbo Grep (Grep.exe) is a command-line search utility, much faster than the embedded
Find In Files mechanism but not so easy to use.

Turbo Register Server (TRegSvr.exe) is a tool you can use to register ActiveX libraries
and COM servers. The source code of this tool is available under \Demos\ActiveX\
TRegSvr.

Resource Explorer is a powerful resource viewer (but not a full-blown resource editor)
you can find under \Demos\ResXplor.

Resource Workshop The Delphi 5 CD also includes a separate installation for Resource
Workshop. This is an old 16-bit resource editor that can also manage Win32 resource files.
It was formerly included in Borland C++ and Pascal compilers for Windows and was much
better than the standard Microsoft resource editors then available. Although its user inter-
face hasn’t been updated and it doesn’t handle long filenames, this tool can still be very
useful for building custom or special resources. It also lets you explore the resources of
existing executable files.

The Files Produced by the System
Delphi produces various files for each project, and you should know what they are and how
they are named. Basically, two elements have an impact on how files are named: the names
you give to a project and its units, and the predefined file extensions used by Delphi.
Table 1.1 lists the extensions of the files you’ll find in the directory where a Delphi project
resides. The table also shows when or under what circumstances these files are created and
their importance for future compilations.

The Files Produced by the System

2874c01.qxd 7/2/01 2:40 PM Page 37

http://www.sybex.com

38

TABLE 1.1: Delphi Project File Extensions

Extension File Type and Description Creation Time Required to Compile?

No. This file stores “design-
time only” information, not
required by the resulting
program but very impor-
tant for the programmer.

DevelopmentThe new Delphi Diagram Portfo-
lio, used by the Diagram view of
the editor (was .DTI in Delphi 5)

.DDP

Only if the source code is
not available. DCU files for
the units you write are an
intermediate step, so they
make compilation faster.

CompilationDelphi Compiled Unit: the result
of the compilation of a Pascal file.

.DCU

Required when you use
packages. You’ll distribute
it only to other developers
along with DPL files.

CompilationDelphi Component Package: a
file with symbol information for
the code that was compiled
into the package. It doesn’t
include compiled code, which
is stored in DCU files.

.DCP

Required only if special
compiler options have
been set.

DevelopmentConfiguration file with project
options. Similar to the DOF files.

.CFG

Distributed to users.CompilationThe Microsoft Cabinet com-
pressed-file format used for Web
deployment by Delphi. A CAB
file can store multiple com-
pressed files.

.CAB

You’ll distribute packages
to other Delphi developers
and, optionally, to end-
users.

Compilation: LinkingBorland Package Library: a DLL
including VCL components to be
used by the Delphi environment
at design time or by applications
at run time. (These files used a
.DPL extension in Delphi 3.)

.BPL

Required to recompile all
the projects of the group at
once.

DevelopmentBorland Project Group: the files
used by the new multiple-target
Project Manager. It is a sort of
makefile.

.BPG

Usually not, but they might
be needed at run time and
for further editing.

Development: Image EditorBitmap, icon, and cursor files:
standard Windows files used to
store bitmapped images.

.BMP, .ICO, .CUR

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 38

http://www.sybex.com

39

TABLE 1.1 continued: Delphi Project File Extensions

Extension File Type and Description Creation Time Required to Compile?

No. You should actually
delete it if you copy the
project to a new directory.

DevelopmentDesktop file: contains informa-
tion about the position of the
Delphi windows, the files open in
the editor, and other Desktop
settings.

.DSK

No. This file is generated
automatically when you
save a new version of a
project file.

DevelopmentBackup of the Delphi Project file
(.DPR).

.~DP

Yes.DevelopmentDelphi Project file. (This file actu-
ally contains Pascal source code.)

.DPR

Yes.DevelopmentDelphi Package: the project
source code file of a package.

.DPK

Required only if special
compiler options have been
set.

DevelopmentDelphi Option File: a text file with
the current settings for the pro-
ject options.

.DOF

See .EXE.Compilation: LinkingDynamic Link Library: another
version of an executable file.

.DLL

Yes (for ITE). These files
contain the translated
strings that you edit in the
Translation Manager.

Development (ITE)Support file for the Integrated
Translation Environment (there is
one DFN file for each form and
each target language).

.DFN

No. This file is produced
when you save a new ver-
sion of the unit related to
the form and the form file
along with it.

DevelopmentBackup of Delphi Form File
(DFM).

.~DF

Yes. Every form is stored in
both a PAS and a DFM file.

DevelopmentDelphi Form File: a binary file
with the description of the prop-
erties of a form (or a data mod-
ule) and of the components it
contains.

.DFM

The Files Produced by the System

2874c01.qxd 7/2/01 2:40 PM Page 39

http://www.sybex.com

40

TABLE 1.1 continued: Delphi Project File Extensions

Extension File Type and Description Creation Time Required to Compile?

Yes. The main RES file of an
application is rebuilt by Del-
phi according to the infor-
mation in the Application
page of the Project Options
dialog box.

Development Options dia-
log box. The ITE (Integrated
Translation Environment)
generates resource files
with special comments.

Resource file: the binary file asso-
ciated with the project and usu-
ally containing its icon. You can
add other files of this type to a
project. When you create custom
resource files you might use also
the textual format, .RC.

.RES, .RC

No. This file is generated
automatically by Delphi
when you save a new ver-
sion of the source code.

DevelopmentBackup of the Pascal file (.PAS)..~PA

Yes.DevelopmentPascal file: the source code of a
Pascal unit, either a unit related
to a form or a stand-alone unit.

.PAS

See .EXE.Compilation: LinkingOLE Control Extension: a special
version of a DLL, containing
ActiveX controls or forms.

OCX

It might be required to
merge Delphi with C++
compiled code in a single
project.

Intermediate compilation
step, generally not used in
Delphi

Object (compiled) file, typical of
the C/C++ world.

.OBJ

No. It is required to use the
control in another develop-
ment environment.

ActiveX Wizard and other
tools

The license files related to an
OCX file.

.LIC

No. This is not involved in
the project compilation.

Web deployment of an
ActiveForm

Or .HTML, for Hypertext Markup
Language: the file format used
for Internet Web pages.

.HTM

No. This is the file you’ll
distribute. It includes all of
the compiled units, forms,
and resources.

Compilation: LinkingExecutable file: the Windows
application you’ve produced.

.EXE

No. Object Browser uses
this file, instead of the data
in memory, when you can-
not recompile a project.

Compilation (but only if the
Save Symbols option is set)

Delphi Symbol Module: stores all
the browser symbol information.

.DSM

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 40

http://www.sybex.com

41

TABLE 1.1 continued: Delphi Project File Extensions

Extension File Type and Description Creation Time Required to Compile?

Besides the files generated during the development of a project in Delphi, there are many
others generated and used by the IDE itself. In Table 1.2, I’ve provided a short list of exten-
sions worth knowing about. Most of these files are in proprietary and undocumented for-
mats, so there is little you can do with them.

TABLE 1.2: Selected Delphi IDE Customization File Extensions

Extension File Type

.DCI Delphi code templates

.DRO Delphi’s Object Repository (The repository should be modified with the Tools ➢ Repository
command.)

.DMT Delphi menu templates

.DBI Database Explorer information

.DEM Delphi edit mask (files with country-specific formats for edit masks)

.DCT Delphi component templates

.DST Desktop settings file (one for each desktop setting you’ve defined)

Used by ADO to refer to a
data provider. Similar to an
alias in the BDE world (see
Chapter 12).

DevelopmentMicrosoft Data Link..UDL

No. This file hosts notes for
the programmers.

DevelopmentTo-do list file, holding the items
related to the entire project.

TODO

This is a file other OLE pro-
grams might need.

DevelopmentType Library: a file built automati-
cally or by the Type Library Editor
for OLE server applications.

.TLB

No. Required to manage
the translations.

Development (ITE)Translation Repository (part of
the Integrated Translation Envi-
ronment).

.RPS

The Files Produced by the System

2874c01.qxd 7/2/01 2:40 PM Page 41

http://www.sybex.com

42

Looking at Source Code Files
I’ve just listed some files related to the development of a Delphi application, but I want to spend
a little time covering their actual format. The fundamental Delphi files are Pascal source code
files, which are plain ASCII text files. The bold, italic, and colored text you see in the editor
depends on syntax highlighting, but it isn’t saved with the file. It is worth noting that there is one
single file for the whole code of the form, not just small code fragments.

TIP In the listings in this book, I’ve matched the bold syntax highlighting of the editor for key-
words and the italic for strings and comments.

For a form, the Pascal file contains the form class declaration and the source code of the
event handlers. The values of the properties you set in the Object Inspector are stored in a
separate form description file (with a .DFM extension). The only exception is the Name prop-
erty, which is used in the form declaration to refer to the components of the form.

The DFM file is a binary and, in Delphi, can be saved either as a plain-text file or in the tradi-
tional Windows Resource format. You can set the default format you want to use for new pro-
jects in the Designer page of the Environment Options dialog box, and you can toggle the
format of individual forms with the Text DFM command of a form’s shortcut menu. A plain-text
editor can read only the text version. However, you can load DFM files of both types in the
Delphi editor, which will, if necessary, first convert them into a textual description. The simplest
way to open the textual description of a form (whatever the format) is to select the View As Text
command on the shortcut menu in the Form Designer. This closes the form, saving it if neces-
sary, and opens the DFM file in the editor. You can later go back to the form using the View As
Form command on the shortcut menu in the editor window.

You can actually edit the textual description of a form, although this should be done with
extreme care. As soon as you save the file, it will be turned back into a binary file. If you’ve
made incorrect changes, compilation will stop with an error message and you’ll need to cor-
rect the contents of your DFM file before you can reopen the form. For this reason, you
shouldn’t try to change the textual description of a form manually until you have good
knowledge of Delphi programming.

TIP In the book, I often show you excerpts of DFM files. In most of these excerpts, I only show the
most relevant components or properties; generally, I have removed the positional properties,
the binary values, and other lines providing little useful information.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 42

http://www.sybex.com

43

In addition to the two files describing the form (PAS and DFM), a third file is vital for
rebuilding the application. This is the Delphi project file (DPR), which is another Pascal
source code file. This file is built automatically, and you seldom need to change it manually.
You can see this file with the Project -> View Source menu command.

Some of the other, less relevant files produced by the IDE use the structure of Windows
INI files, in which each section is indicated by a name enclosed in square brackets. For exam-
ple, this is a fragment of an option file (DOF):

[Compiler]
A=1
B=0
ShowHints=1
ShowWarnings=1

[Linker]
MinStackSize=16384
MaxStackSize=1048576
ImageBase=4194304

[Parameters]
RunParams=
HostApplication=

The same structure is used by the Desktop files (DSK), which store the status of the Delphi
IDE for the specific project, listing the position of each window. Here is a small excerpt:

[MainWindow]
Create=1
Visible=1
State=0
Left=2
Top=0
Width=800
Height=97

NOTE A lot of information related to the status of the Delphi environment is saved in the Windows
Registry, as well as in DSK and other files. I’ve already indicated a few special undocumented
entries of the Registry you can use to activate specific features. You should explore the
HKEY_CURRENT_USER\Software\Borland\Delphi\6.0 section of the Registry to examine
all the settings of the Delphi IDE (including all those you can modify with the Project Options
and the Environment Options dialog boxes, as well as many others).

The Files Produced by the System

2874c01.qxd 7/2/01 2:40 PM Page 43

http://www.sybex.com

44

The Object Repository
Delphi has menu commands you can use to create a new form, a new application, a new data
module, a new component, and so on. These commands are located in the File ➢ New menu
and in other pull-down menus. What happens if you simply select File ➢ New ➢ Other?
Delphi opens the Object Repository, which is used to create new elements of any kind:
forms, applications, data modules, thread objects, libraries, components, automation objects,
and more.

The New dialog box (shown in Figure 1.11) has several pages, hosting all the new elements
you can create, existing forms and projects stored in the Repository, Delphi wizards, and the
forms of the current project (for visual form inheritance). The pages and the entries in this
tabbed dialog box depend on the specific version of Delphi, so I won’t list them here.

TIP The Object Repository has a shortcut menu that allows you to sort its items in different ways
(by name, by author, by date, or by description) and to show different views (large icons, small
icons, lists, and details). The Details view gives you the description, the author, and the date of
the tool, information that is particularly important when looking at wizards, projects, or forms
that you’ve added to the Repository.

F I G U R E 1 . 1 1 :
The first page of the New
dialog box, generally
known as the “Object
Repository”

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 44

http://www.sybex.com

45

The simplest way to customize the Object Repository is to add new projects, forms, and data
modules as templates. You can also add new pages and arrange the items on some of them (not
including the New and “current project” pages). Adding a new template to Delphi’s Object
Repository is as simple as using an existing template to build an application. When you have
a working application you want to use as a starting point for further development of similar
programs, you can save the current status to a template, ready to use later on. Simply use the
Project ➢ Add To Repository command, and fill in its dialog box.

Just as you can add new project templates to the Object Repository, you can also add new
form templates. Simply move to the form that you want to add and select the Add To Reposi-
tory command of its shortcut menu. Then indicate the title, description, author, page, and
icon in its dialog box.

You might want to keep in mind that as you copy a project or form template to the reposi-
tory and then copy it back to another directory, you are simply doing a copy and paste opera-
tion. This isn’t much different than copying the files manually.

The Empty Project Template
When you start a new project, it automatically opens a blank form, too. If you want to base a
new project on one of the form objects or Wizards, this is not what you want, however. To
solve this problem, you can add an Empty Project template to the Gallery.

The steps required to accomplish this are simple:

1. Create a new project as usual.

2. Remove its only form from the project.

3. Add this project to the templates, naming it Empty Project.

When you select this project from the Object Repository, you gain two advantages: You have
your project without a form, and you can pick a directory where the project template’s files will
be copied. There is also a disadvantage—you have to remember to use the File ➢ Save Project
As command to give a new name to the project, because saving the project any other way
automatically uses the default name in the template.

To further customize the Repository, you can use the Tools ➢ Repository command. This
opens the Object Repository dialog box, which you can use to move items to different pages,
to add new elements, or to delete existing ones. You can even add new pages, rename or

The Object Repository

2874c01.qxd 7/2/01 2:40 PM Page 45

http://www.sybex.com

46

delete them, and change their order. An important element of the Object Repository setup is
the use of defaults:

• Use the New Form check box below the list of objects to designate a form as the one to
be used when a new form is created (File ➢ New Form).

• The Main Form check box indicates which type of form to use when creating the main
form of a new application (File ➢ New Application) when no special New Project is
selected.

• The New Project check box, available when you select a project, marks the default pro-
ject that Delphi will use when you issue the File ➢ New Application command.

Only one form and only one project in the Object Repository can have each of these three
settings marked with a special symbol placed over its icon. If no project is selected as New
Project, Delphi creates a default project based on the form marked as Main Form. If no form
is marked as the main form, Delphi creates a default project with an empty form.

When you work on the Object Repository, you work with forms and modules saved in the
OBJREPOS subdirectory of the Delphi main directory. At the same time, if you use a form or
any other object directly without copying it, then you end up having some files of your pro-
ject in this directory. It is important to realize how the Repository works, because if you want
to modify a project or an object saved in the Repository, the best approach is to operate on
the original files, without copying data back and forth to the Repository.

Installing New DLL Wizards
Technically, new wizards come in two different forms: They may be part of components or pack-
ages, or they may be distributed as stand-alone DLLs. In the first case, they would be installed
the same way you install a component or a package. When you’ve received a stand-alone DLL,
you should add the name of the DLL in the Windows Registry under the key \Software\Borland\
Delphi\6.0\Experts. Simply add a new string key under this key, choose a name you like (it
doesn’t really matter what it is), and use as text the path and filename of the wizard DLL. You
can look at the entries already present under the Experts key to see how the path should be
entered.

Chapter 1 • The Delphi 6 IDE

2874c01.qxd 7/2/01 2:40 PM Page 46

http://www.sybex.com

47

What’s Next?
This chapter has presented an overview of the new and more advanced features of the Delphi 6
programming environment, including tips and suggestions about some lesser-known features
that were already available in previous Delphi versions. I didn’t provide a step-by-step
description of the IDE, partly because it is generally simpler to start using Delphi than it is to
read about how to use it. Moreover, there is a detailed Help file describing the environment
and the development of a new simple project; and you might already have some exposure to
one of the past versions of Delphi or a similar development environment.

Now we are ready to spend the next two chapters looking into the Object Pascal language
and then proceed by studying the RTL and the class library included in Delphi 6.

What’s Next?

2874c01.qxd 7/2/01 2:40 PM Page 47

http://www.sybex.com

2CH A P T E R

The Object Pascal
Language: Classes and
Objects

� The Pascal language

� New conditional compilation and hint directives

� Classes and objects

� The Self keyword

� Class methods and overloading

� Encapsulation: private and public

� Using properties

� Constructors

� Objects and memory

2874c02.qxd 7/2/01 4:07 PM Page 49

http://www.sybex.com

50

Most modern programming languages support object-oriented programming (OOP). OOP
languages are based on three fundamental concepts: encapsulation (usually implemented
with classes), inheritance, and polymorphism (or late binding).

You can write Delphi applications even without knowing the details of Object Pascal. As
you create a new form, add new components, and handle events, Delphi prepares most of the
related code for you automatically. But knowing the details of the language and its implemen-
tation will help you to understand precisely what Delphi is doing and to master the language
completely.

A single chapter doesn’t allow space for a full introduction to the principles of object-oriented
programming and the Object Pascal language. Instead, I will outline the key OOP features of
the language and show how they relate to everyday Delphi programming. Even if you don’t have
a precise knowledge of OOP, the chapter will introduce each of the key concepts so that you
won’t need to refer to other sources.

The Pascal Language
The Object Pascal language used by Delphi is an OOP extension of the classic Pascal language,
which Borland pushed forward for many years with its Turbo Pascal compilers. The syntax of
the Pascal language is known to be quite verbose and more readable than, for example, the C
language. Its OOP extension follows the same approach, delivering the same power of the
recent breed of OOP languages, from Java to C#.

In this chapter, I’ll discuss only the object-oriented extensions of the Pascal language avail-
able in Delphi. However, I’ll highlight recent additions Borland has done to the core lan-
guage. These features have been introduced in Delphi 6 and are, at least partially, related to
the Linux version of Delphi.

New Pascal features include the $IF and $ELSEIF directives for conditional compilation,
the $WARN and $MESSAGE directives, and the platform, library, and deprecated hint direc-
tives. These topics are discussed in the following sections. Changes to the assembler (with
new directives, support for MMX and Pentium Pro instructions, and many more features)
are really beyond the scope of this book.

Other relatively minor changes in the language include a change in the default value for
the $WRITEABLECONST compiler switch, which is now disabled. This option allows programs
to modify the value of typed constants and should generally be left disabled, using variables
instead of constants for modifyable values. Another change is the support for the Int64 data
type in variants. Finally, you can assign specific values to the elements of an enumeration (as
in the C/C++ language), instead of using the default sequence of values.

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 50

http://www.sybex.com

51

The New $IF Compiler Directive
Delphi has always had a $IFDEF directive you could use to test whether a specific symbol was
defined. (Delphi also has a $IFNDEF directive, with the opposite test.) This is used to obtain
conditional compilation, as in

{$IFDEF DEBUG}
// executes only if the DEBUG directive is set
ShowMessage (‘Executing critical code’);

{$ENDIF}

By setting or not setting the DEBUG directive and recompiling, the extra line of code will be
included or skipped by the compiler.

This code directive is powerful, but checking for multiple versions of Delphi and operating
systems can force you to use multiple-nested $IFDEF directives, making the code totally unread-
able. For this reason, Borland has introduced a new and more powerful directive for condi-
tional compilation, $IF. Inside the directive you can use the Defined function to check whether
a conditional symbol is defined, or use the Declared function to see whether a language con-
stant is defined and use these constants within a constant Boolean expression. Here is some
code that shows how to use a constant within the $IF directive (you can find this and other code
excerpts of this and the next section in the IfDirective example on the companion CD):

const
DebugControl = 2;

{$IF Defined(DEBUG) and (DebugControl > 3)}
ShowMessage (‘Executing critical code’);

{$IFEND}

Notice that the statement is closed by a $IFEND and that you can also have an optional $ELSE
branch. You can also concatenate conditions with the $ELSEIF directive, followed by another
condition and evaluated only as an alternative to the $IF directive it refers to:

{$IF one}
...

{$ELSEIF two}
...

{$ELSE}
...

{$IFEND}

Within the expressions of the $IF directive, you can use only untyped constants, which are
really and invariably treated as constants by the compiler. You can follow the general rules of
Pascal constant expressions. You can use all the language operators, the and, or, xor, and not
Boolean operators, and mathematical ones including div, mod, +, -, *, /, > and <, to mention
just a few common ones. You can also use predefined functions such as SizeOf, High, Low,

The Pascal Language

2874c02.qxd 7/2/01 4:07 PM Page 51

http://www.sybex.com

52

Prev, Succ, and others listed in the Delphi Help page “Constant expressions.” The expression
can use constant symbols of any type, including floats and strings, so long as the expression
itself ultimately evaluates to a True or False value.

WARNING In these constant expressions, it is not possible to use type constants, which can be optionally
modified in the code depending on the status of the writeable-typed constants directive ($J or
$WRITEABLECONST). In any case, using constants you can modify is quite a bad idea in the
first place.

Delphi provides a few predefined conditional symbols, including compiler version, the
operating system, the GUI environment, and so on. I’ve listed the most important ones in
Table 2.1. You can also use the RTLVersion constant defined in the System unit to test which
version of Delphi (and its run-time library) you are compiling on. The predefined symbol
ConditionalExpressions can be used to shield the new directives from older versions of
Delphi:

{$IFDEF ConditionalExpressions}
{$IF System.RTLVersion > 14.0}

// do something
{$IFEND}

{$ENDIF}

TABLE 2.1: Commonly Used Predefined Conditional Symbols

Symbol Description

VER140 Compiling with Delphi 6, which is the 14.0 version of the Borland Pascal com-
piler; Delphi 5 used VER130, with lower numbers for past versions.

MSWINDOWS Compiling on the Windows platform (new in Delphi 6).

LINUX Compiling on the Linux platform. On Kylix, there are also the LINUX32,
POSIX, and ELF predefined symbols.

WIN32 Compiling only on the 32-bit Windows platform. This symbol was introduced
in Delphi 2 to distinguish from 16-bit Windows compilations (Delphi 1 defined
the WINDOWS symbol). You should use WIN32 only to mark code specifically
for Win32, not Win16 or future Win64 platforms (for which the WIN64 symbol
has been reserved). Use MSWINDOWS, instead, to distinguish between Win-
dows and other operating systems.

CONSOLE Compiling a console application, and not a GUI one. This symbol is meaningful
only under Windows, as all Linux applications are console applications.

BCB Defined when the C++Builder IDE invokes the Pascal compiler.

ConditionalExpressions Indicates that the $IF directive is available. It is defined in Kylix and Delphi 6,
but not in earlier versions.

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 52

http://www.sybex.com

53The Pascal Language

TIP I recommend using conditional compilation sparingly and only when it is really required. It is
generally better, whenever possible, to write code that can adapt to different situations—for
example, adding different versions of the same class (or different inherited classes) to the same
program. Excessive use of conditional compilation makes a program hard to read and to
debug.

WARNING Remember to issue a Build All command when you change a conditional symbol or a constant,
which can affect a conditional compilation; otherwise the affected units won’t be recompiled
unless their source code changes.

New Hint Directives
Supporting multiple operating systems within the same source code base implies a number of
compatibility issues. Besides a modified run-time library and a wholly new component library
(discussed in Chapter 4, “The Run-Time Library,” and Chapter 5, “Core Library Classes”),
Delphi 6 includes special directives Borland uses to mark special portions of the code. As they
introduced the idea of custom warnings and messages (described in the previous section),
they’ve added a few special predefined ones.

The platform Directive
The first directive of this group is the platform directive, used to mark nonportable code. This
directive can be used to mark procedures, variables, types, and almost any defined symbol.
Borland uses platform in its libraries, so that when you use a platform-specific capability
(for example, calling the IncludeTrailingBackslash function of the SysUtils unit), you’ll
receive a warning message, such as:

Symbol ‘IncludeTrailingBackslash’ is specific to a platform.

This warning is a hint for developers who plan to port their code between the Linux and
Windows platforms, even in the future. In many cases, you’ll be able to find an alternative
approach that is fully platform independent. Check the help file (or eventually the library
source code) for hints in this direction. In the case of the IncludeTrailingBackslash func-
tion, there is now a new version, called IncludeTrailingDelimiter, that is also portable to a
Unix-based file system.

Of course you can use the platform directive to mark your code, for example, if you write a
component or library that has platform-specific features. Here are a few examples:

var
windowsversion: Integer = 2000 platform;

2874c02.qxd 7/2/01 4:07 PM Page 53

http://www.sybex.com

54

procedure Test; platform;
begin
Beep;

end;

type
TWinClass = class
x: Integer;

end platform;

The code fragments of this section are available, for your experiments, in the IfDirective
example on the companion CD.

NOTE The position of semicolons for hint directives can be quite confusing at first. The rule is that a
hint directive must appear before the semicolon following the symbol it modifies. But a proce-
dure, function, or unit header declaration can be followed only by reserved words, so its hint
directive can appear following the semicolon. A type, variable, or constant declaration can be
followed by another identifier, so the hint directive must come before the semicolon closing its
declaration. Part of the rationale behind this is that the hint directives are not reserved words,
so they can be used as the name of an identifier.

The deprecated Directive
The deprecated directive works in a similar way to the platform directive; the only real dif-
ferences are that it is used in a different context and produces a different compiler warning.
The role of deprecated is to mark identifiers that are still part of the system for compatibility
reasons, but either are going to be removed in the future or expose you to risks of incompati-
bility. This symbol is used sparingly in the Delphi library.

The library Directive
The library directive works in a similar way to deprecated and platform; its role is to mark
out code or components that are specific to a library (either VCL or CLX) and are not portable
among them. However, apparently this symbol is never used within the Delphi library.

The $WARN Directive
The $WARNINGS directive (and the corresponding compiler option) allows you to turn off all
the warning messages. Most programmers like to keep the messages on and tend to work
with programs that compile with no hints and warnings. With the advent of the three hint
directives discussed in the last section, however, there are programs specifically aimed for a
platform, which cannot compile without compatibility warnings.

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 54

http://www.sybex.com

55

To overcome this situation, Delphi 6 introduces the $WARN directive, specifically aimed at
disabling hint directives. As an example, you’ll disable platform hints by writing this code:

{$WARN SYMBOL_PLATFORM OFF}

The $WARN directive has five different parameters, related to the three hint directives, and
can use the ON and OFF values for each:

• SYMBOL_PLATFORM and UNIT_PLATFORM can be used to disable the platform directive in
the current unit or in the unit where the directive is specified. The warning, in fact, is
issued while compiling the code that uses the symbol, not while compiling the code
with the definition.

• SYMBOL_LIBRARY and UNIT_LIBRARY work on the library directive in the same manner
as the platform-related parameters above.

• SYMBOL_DEPRECATED can be used to disable the deprecated directive.

The $MESSAGE Directive
The compiler has now the ability to generate warnings in many different situations, so that the
developer of a library or a portion of a program can let other programmers know of a given
problem or risk in using a given feature, when the program can still legally compile. An exten-
sion to this idea is to let programmers insert custom warning messages in the code, with this
syntax:

{$MESSAGE ‘Old version of the unit: consider using the updated version’}

Compiling this code will issue a hint message with the text provided. This feature can be
used to indicate possible problems, suggest alternative approaches, mark unfinished code,
and more. This is probably more reliable than using a TODO item (discussed in the preceding
chapter), because a programmer might not open the To-Do List window but the compiler
will remind him of the pending problem. However, it is the compiler that issues the message,
so you’ll see it even if the given portion of the code is not really used by the program because
the linker will remove it from the executable file.

These type of free messages, like the hint directives, become very useful to let the developer
of a component communicate with the programmers using it, warning of potential pitfalls.

Introducing Classes and Objects
The cornerstone of the OOP extensions available in Object Pascal is represented by the
class keyword, which is used inside type declarations. Classes define the blueprint of the

Introducing Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 55

http://www.sybex.com

56

objects you create in Delphi. As the terms class and object are commonly used and often mis-
used, let’s be sure we agree on their definitions.

A class is a user-defined data type, which has a state (its representation) and some opera-
tions (its behavior). A class has some internal data and some methods, in the form of proce-
dures or functions, and usually describes the generic characteristics and behavior of some
similar objects.

An object is an instance of a class, or a variable of the data type defined by the class. Objects
are actual entities. When the program runs, objects take up some memory for their internal
representation. The relationship between object and class is the same as the one between
variable and type.

To declare a new class data type in Object Pascal, with some local data fields and some
methods, use the following syntax:

type
TDate = class
Month, Day, Year: Integer;
procedure SetValue (m, d, y: Integer);
function LeapYear: Boolean;

end;

NOTE The convention in Delphi is to use the letter T as a prefix for the name of every class you write
and every other type (T stands for Type). This is just a convention—to the compiler, T is just a
letter like any other—but it is so common that following it will make your code easier to
understand.

The following is a complete class definition, with two methods declared and not yet fully
defined. The definition of these two methods (the LeapYear function and the SetValue pro-
cedure) must be present in the same unit of the class declaration and are written with this
syntax:

procedure TDate.SetValue (m, d, y: Integer);
begin
Month := m;
Day := d;
Year := y;

end;

function TDate.LeapYear: Boolean;
begin
// call IsLeapYear in SysUtils.pas
Result := IsLeapYear (Year);

end;

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 56

http://www.sybex.com

57

The method names are prefixed with the class name (using the dot-notation), because a unit
can hold multiple classes, possibly with methods having the same names. You can actually
avoid retyping the method names and parameter list by using the class completion feature of
the editor. Simply type or modify the class definition and press Ctrl+Shift+C while the cursor
is within the class definition itself; this will allow Delphi to generate a skeleton of the defini-
tion of the methods, including the begin and end statements.

Once the class has been defined, we can create an object and use it as follows:
var
ADay: TDate;

begin
// create an object
ADay := TDate.Create;
// use the object
ADay.SetValue (1, 1, 2000);
if ADay.LeapYear then
ShowMessage (‘Leap year: ‘ + IntToStr (ADay.Year));

// destroy the object
ADay.Free;

end;

Notice that ADay.LeapYear is an expression similar to ADay.Year, although the first is a
function call and the second a direct data access. You can optionally add parentheses after the
call of a function with no parameters. You can find the code snippets above in the source
code of the Date1 example; the only difference is that the program creates a date based on
the year provided in an edit box.

Classes, Objects, and Visual Programming
When I teach classes about OOP in Delphi, I always tell my students that regardless of how
much OOP you know and how much you use it, Delphi forces you in the OOP direction.
Even if you simply create a new application with a form and place a button over it to execute
some code when the button is pressed, you are building an object-oriented application. In
fact, the form is an object of a new class (by default TForm1, which inherits from the base
TForm class provided by Borland), and the button is an instance of the TButton class, provided
by Borland, as you can see in the following code snippet:

type
TForm1 = class(TForm)
Button1: TButton;

end;

Given these premises, it would be very hard to build a Delphi application without using
classes and objects. Yes, I know it is technically possible, but I doubt it would make a lot of

Introducing Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 57

http://www.sybex.com

58

sense. Not using objects and classes with Delphi would probably be more difficult than using
them, as you have to give up all of the design-time tools for visual programming.

In any case, the real challenge is using OOP properly, something I’ll try to teach you in
this chapter (and in the rest of the book), along with an introduction to the key elements of
the Object Pascal language.

The Self Keyword
Methods are very similar to procedures and functions. The real difference is that methods
have an implicit parameter, which is a reference to the current object. Within a method you
can refer to this parameter—the current object—using the Self keyword. This extra hidden
parameter is needed when you create several objects of the same class, so that each time you
apply a method to one of the objects, the method will operate only on its own data and not
affect sibling objects.

For example, in the SetValue method of the TDate class, listed earlier, we simply use Month,
Year, and Day to refer to the fields of the current object, something you might express as

Self.Month := m;
Self.Day := d;

This is actually how the Delphi compiler translates the code, not how you are supposed to
write it. The Self keyword is a fundamental language construct used by the compiler, but at
times it is used by programmers to resolve name conflicts and to make tricky code more
readable.

NOTE The C++ and Java languages have a similar feature based on the keyword this.

All you really need to know about Self is that the technical implementation of a call to a
method differs from that of a call to a generic subroutine. Methods have an extra hidden
parameter, Self. Because all this happens behind the scenes, you do not need to know how
Self works at this time.

If you look at the definition of the TMethod data type in the System unit, you’ll see that it is
a record with a Code field and a Data field. The first is a pointer to the function’s address in
memory; the second the value of the Self parameter to use when calling that function address.
We’ll discuss method pointers in Chapter 5.

Overloaded Methods
Object Pascal supports overloaded functions and methods: you can have multiple methods
with the same name, provided that the parameters are different. By checking the parameters,
the compiler can determine which of the versions of the routine you want to call.

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 58

http://www.sybex.com

59

There are two basic rules:

• Each version of the method must be followed by the overload keyword.

• The differences must be in the number or type of the parameters or both. The return
type cannot be used to distinguish between two methods.

Overloading can be applied to global functions and procedures and to methods of a class.
As an example of overloading, I’ve added to the TDate class two different versions of the
SetValue method:

type
TDate = class
public
procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;

...//the rest of the class declaration

procedure TDate.SetValue (y, m, d: Integer);
begin
fDate := EncodeDate (y, m, d);

end;

procedure TDate.SetValue(NewDate: TDateTime);
begin
fDate := NewDate;

end;

NOTE In Delphi 6, the compiler has been enhanced to improve the resolution of overloaded meth-
ods, allowing the compilation of calls that were considered ambiguous. In particular, the com-
piler handles the difference between AnsiString and WideString types. The overload
resolution also has better support for variant-type parameters (which will provide matches in
case there is no exact match for another overloaded version) and interfaces (which are given
precedence to object types). Finally, the compiler allows the nil value to match an interface-
type parameter. Some of these improvements were already introduced in the Kylix compiler.

Creating Components Dynamically
In Delphi, the Self keyword is often used when you need to refer to the current form explic-
itly in one of its methods. The typical example is the creation of a component at run time,
where you must pass the owner of the component to its Create constructor and assign the same
value to its Parent property. (The difference between Owner and Parent properties is discussed
in the next chapter.) In both cases, you have to supply the current form as parameter or value,
and the best way to do this is to use the Self keyword.

Introducing Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 59

http://www.sybex.com

60

To demonstrate this kind of code, I’ve written the CreateC example (the name stands for
Create Component) included on the companion CD. This program has a simple form with no
components and a handler for its OnMouseDown event. I’ve used OnMouseDown because it
receives as its parameter the position of the mouse click (unlike the OnClick event). I need
this information to create a button component in that position. Here is the code of the
method:

procedure TForm1.FormMouseDown (Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var
Btn: TButton;

begin
Btn := TButton.Create (Self);
Btn.Parent := Self;
Btn.Left := X;
Btn.Top := Y;
Btn.Width := Btn.Width + 50;
Btn.Caption := Format (‘Button at %d, %d’, [X, Y]);

end;

The effect of this code is to create buttons at mouse-click positions, with a caption indicat-
ing the exact location, as you can see in Figure 2.1. In the code above, notice in particular the
use of the Self keyword, as the parameter of the Create method and as the value of the Parent
property. I’ll discuss these two elements (ownership and the Parent property) in Chapter 5.

It is very common to write code like the above method using a with statement, as in the
following listing:

procedure TForm1.FormMouseDown (Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

F I G U R E 2 . 1 :
The output of the CreateC
example, which creates
Button components at
run time

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 60

http://www.sybex.com

61

begin
with TButton.Create (Self) do
begin
Parent := Self;
Left := X;
Top := Y;
Width := Width + 50;
Caption := Format (‘Button in %d, %d’, [X, Y]);

end;
end;

TIP When writing a procedure like the code you’ve just seen, you might be tempted to use the
Form1 variable instead of Self. In this specific example, that change wouldn’t make any prac-
tical difference, but if there are multiple instances of a form, using Form1 would be an error. In
fact, if the Form1 variable refers to the first form of that type being created, by clicking in
another form of the same type, the new button will always be displayed in the first form. Its
Owner and Parent will be Form1 and not the form the user has clicked. In general, referring to
a particular instance of a class when the current object is required is bad OOP practice.

Class Methods and Class Data
When you define a field in a class, you actually specify that the field should be added to each
object of that class. Each instance has its own independent representation (referred to by the
Self pointer). In some cases, however, it might be useful to have a field that is shared by all
the objects of a class.

Other object-oriented programming languages have formal constructs to express this,
while in Object Pascal we can simulate this feature using the encapsulation provided at the
unit level. You can simply add a variable in the implementation portion of a unit, to obtain a
class variable—a single memory location shared by all of the objects of a class.

If you need to access this value from outside the unit, you might use a method of the class.
However, this forces you to apply this method to one of the instances of the class. An alterna-
tive solution is to declare a class method. A class method cannot access the data of any single
object but can be applied to a class as a whole rather than to a particular instance.

To declare a class method in Object Pascal, you simply add the class keyword in front of it:
type
MyClass = class
class function ClassMeanValue: Integer;

The use of class methods is not very common in Object Pascal, because you can obtain the
same effect by adding a procedure or function to a unit declaring a class. Object-oriented
purists, however, will definitely prefer the use of a class method over a routine unrelated to a

Introducing Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 61

http://www.sybex.com

62

class. For example, an OOP purist would add a class method for getting the current date to a
TDate class instead of using a global function (also because some OOP languages, including
Java, don’t have the notion of global functions).

We’ll see several class methods in the next chapter, when we’ll examine the structure of the
TObject class.

TIP Contrary to other OOP languages, Delphi class methods can also be virtual, so they can be
overridden and used to obtain polymorphism (a technique discussed later in this chapter).

Encapsulation
A class can have any amount of data and any number of methods. However, for a good object-
oriented approach, data should be hidden, or encapsulated, inside the class using it. When you
access a date, for example, it makes no sense to change the value of the day by itself. In fact,
changing the value of the day might result in an invalid date, such as February 30. Using
methods to access the internal representation of an object limits the risk of generating erro-
neous situations, as the methods can check whether the date is valid and refuse to modify the
new value if it is not. Encapsulation is important because it allows the class writer to modify
the internal representation in a future version.

The concept of encapsulation is often indicated by the idea of a “black box,” where you
don’t know about the internals: You only know how to interface with it or how to use it
regardless of its internal structure. The “how to use” portion, called the class interface, allows
other parts of a program to access and use the objects of that class. However, when you use
the objects, most of their code is hidden. You seldom know what internal data the object has,
and you usually have no way to access the data directly. Of course, you are supposed to use
methods to access the data, which is shielded from unauthorized access. This is the object-
oriented approach to a classical programming concept known as information hiding.

Delphi implements this class-based encapsulation but still supports the classic module-
based encapsulation using the structure of units. Because the two are strictly related, let me
recap the traditional approach first.

Encapsulation and Units
A unit in Object Pascal is a secondary source-code file, with the main source-code file being
represented by the project source code. Every unit has two main sections, called interface
and implementation, as well as two optional ones for initialization and finalization
code. I want to focus here on the information hiding implemented by units.

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 62

http://www.sybex.com

63

In short, every identifier (type, routine, variable, and so on) that you declare in the interface
portion of a unit becomes visible to any other unit of the program, provided there is a uses
statement referring back to the unit that defines the identifier. All the routines and methods
you declare in the interface portion of the unit must later be fully defined in the implemented
portion of the same unit. In the interface section of a unit, however, you cannot write any
actual statements to execute.

On the other hand, any identifier you declare in the implementation portion of the unit is
local to the unit and is not visible outside it. A unit can have local data, local support func-
tions, and even local types that the rest of the program is not allowed to access. This provides
a direct way to hide the implementation details of an abstraction from its users, so you can
later change your code without affecting other units of the program (and without even hav-
ing to notify the changes to other programmers writing those units).

When you write classes in a unit, you’ll generally define them in the interface portion of a
unit, but some special keywords allow you to hide portions of this class interface.

Private, Protected, and Public
For class-based encapsulation, the Object Pascal language has three access specifiers: private,
protected, and public. A fourth, published, controls RTTI and design time information and
will be discussed in more detail in Chapter 5. Here are the three classic access specifiers:

• The private directive denotes fields and methods of a class that are not accessible out-
side the unit (the source code file) that declares the class.

• The protected directive is used to indicate methods and fields with limited visibility.
Only the current class and its subclasses can access protected elements. We’ll discuss
this keyword again in the “Protected Fields and Encapsulation” section.

• The public directive denotes fields and methods that are freely accessible from any
other portion of a program as well as in the unit in which they are defined.

Generally, the fields of a class should be private; the methods are usually public. How-
ever, this is not always the case. Methods can be private or protected if they are needed
only internally to perform some partial computation. Fields can be protected so that you can
manipulate them in subclasses, but only if you are fairly sure that their type definition is not
going to change. Access specifiers only restrict code outside your unit from accessing certain
members of classes declared in the interface section of your unit. This means that if two classes
are in the same unit, there is no protection for their private fields. Only by placing a class in the
interface portion of a unit will you limit the visibility from classes and functions in other units
to the public method and fields of the class.

Encapsulation

2874c02.qxd 7/2/01 4:07 PM Page 63

http://www.sybex.com

64

As an example, consider this new version of the TDate class:
type
TDate = class
private
Month, Day, Year: Integer;

public
procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;
function LeapYear: Boolean;
function GetText: string;
procedure Increase;

end;

In this version, the fields are now declared to be private, and there are some new methods.
The first, GetText, is a function that returns a string with the date. You might think of adding
other functions, such as GetDay, GetMonth, and GetYear, which simply return the correspond-
ing private data, but similar direct data-access functions are not always needed. Providing
access functions for each and every field might reduce the encapsulation and make it harder to
modify the internal implementation of a class. Access functions should be provided only if
they are part of the logical interface of the class you are implementing.

Another new method is the Increase procedure, which increases the date by one day. This
is far from simple, because you need to consider the different lengths of the various months
as well as leap and non–leap years. What I’ll do to make it easier to write the code is change
the internal implementation of the class to Delphi’s TDateTime type for the internal imple-
mentation. The class definition will change to (the complete code will be in the next example,
DateProp):

type
TDate = class
private
fDate: TDateTime;

public
procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;
function LeapYear: Boolean;
function GetText: string;
procedure Increase;

end;

Notice that because the only change is in the private portion of the class, you won’t have
to modify any of your existing programs that use it. This is the advantage of encapsulation!

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 64

http://www.sybex.com

65

NOTE The TDateTime type is actually a floating-point number. The integral portion of the number indi-
cates the date since 12/30/1899, the same base date used by OLE Automation and Microsoft
applications. (Use negative values to express previous years.) The decimal portion indicates the
time as a fraction. For example, a value of 3.75 stands for the second of January 1900, at
6:00 A.M. (three-quarters of a day). To add or subtract dates, you can add or subtract the number
of days, which is much simpler than adding days with a day/month/year representation.

Encapsulating with Properties
Properties are a very sound OOP mechanism, or a very well thought out application of the
idea of encapsulation. Essentially, you have a name that completely hides its implementation
details. This allows you to modify the class extensively without affecting the code using it. A
good definition of properties is that of virtual fields. From the perspective of the user of the
class that defines them, properties look exactly like fields, as you can generally read or write
their value. For example, you can read the value of the Caption property of a button and
assign it to the Text property of an edit box with the following code:

Edit1.Text := Button1.Caption;

This looks like we are reading and writing fields. However, properties can be directly
mapped to data, as well as to access methods, for reading and writing the value. When prop-
erties are mapped to methods, the data they access can be part of the object or outside of it,
and they can produce side effects, such as repainting a control after you change one of its val-
ues. Technically, a property is an identifier that is mapped to data or methods using a read
and a write clause. For example, here is the definition of a Month property for a date class:

property Month: Integer read FMonth write SetMonth;

To access the value of the Month property, the program reads the value of the private field
FMonth, while to change the property value it calls the method SetMonth (which must be
defined inside the class, of course). Different combinations are possible (for example, we
could also use a method to read the value or directly change a field in the write directive),
but the use of a method to change the value of a property is very common. Here are two
alternative definitions for the property, mapped to two access methods or mapped directly to
data in both directions:

property Month: Integer read GetMonth write SetMonth;
property Month: Integer read FMonth write FMonth;

TIP When you write code that accesses a property, it is important to realize that a method might
be called. The issue is that some of these methods take some time to execute; they can also
produce side effects, often including a (slow) repainting of the component on the screen.
Although side effects of properties are seldom documented, you should be aware that they
exist, particularly when you are trying to optimize your code.

Encapsulation

2874c02.qxd 7/2/01 4:07 PM Page 65

http://www.sybex.com

66

Often, the actual data and access methods are private (or protected) while the property is
public. This means you must use the property to have access to those methods or data, a
technique that provides both an extended and a simplified version of encapsulation. It is an
extended encapsulation because not only can you change the representation of the data and its
access functions, but you can also add or remove access functions without changing the call-
ing code at all. A user only needs to recompile the program using the property.

Class Completion for Properties
Properties provide a simplified encapsulation because when extra code is not required, you map
the properties directly to fields, without writing tedious and useless access methods. And even
when you want to write those methods, the IDE can use class completion (the Ctrl+Shift+C
key combination) to generate the skeleton of the access methods of the properties for you. If
you simply type in a class (say TMyClass),

property X: Integer;

and activate class completion, Delphi generates a SetX method for the property and adds the
FX field to the class. The resulting code looks like this:

type
TMyClass = class(TForm)
private
FX: Integer;
procedure SetX(const Value: Integer);

public
property X: Integer read FX write SetX;

end;

implementation

procedure TMyClass.SetX(const Value: Integer);
begin
FX := Value;

end;

This really saves a lot of typing. You can even partially control how class completion gen-
erates Set and Get methods for the property. In fact, if you first type the property declaration
including the read and write directives, as in

property X: Integer read GetX write SetX;

Class completion will generate the requested methods or add the field definition. If you want
both the field and the methods, type in only the property name and its data type (as in the
first example above), and let Delphi expand the declaration. At this point, fix the expanded
declaration by replacing the FX field with a GetX method in the read portion, and invoke class
completion a second time.

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:07 PM Page 66

http://www.sybex.com

67

Properties for the TDate Class
As an example, I’ve added properties for accessing the year, the month, and the day to an
object of the TDate class discussed earlier. These properties are not mapped to specific fields,
but they all map to the single fDate field storing the entire date information. This is the new
definition of the class:

type
TDate = class
private
fDate: TDateTime;
procedure SetDay(const Value: Integer);
procedure SetMonth(const Value: Integer);
procedure SetYear(const Value: Integer);
function GetDay: Integer;
function GetMonth: Integer;
function GetYear: Integer;

public
procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;
function LeapYear: Boolean;
function GetText: string;
procedure Increase;
property Year: Integer read GetYear write SetYear;
property Month: Integer read GetMonth write SetMonth;
property Day: Integer read GetDay write SetDay;

end;

Each of the Get and Set methods is easily implemented using functions available in the
new DateUtils unit (discuss in more detail in Chapter 4). Here is the code for two of them
(the others are very similar):

function TDate.GetYear: Integer;
begin
Result := YearOf (fDate);

end;

procedure TDate.SetYear(const Value: Integer);
begin
fDate := RecodeYear (fDate, Value);

end;

The code for this class is available in the DateProp example. The program uses a secondary
unit for the definition of the TDate class to enforce encapsulation and creates a single-date
object stored in a form variable and kept in memory for the entire execution of the program.
Using a standard approach, the object is created in the form OnCreate event handler and
destroyed in the form OnDestroy event handler.

Encapsulation

2874c02.qxd 7/2/01 4:08 PM Page 67

http://www.sybex.com

68

The form of the program (see Figure 2.2) has three edit boxes and buttons to copy the
values of these edit boxes to and from the properties of the date object:

procedure TDateForm.BtnReadClick(Sender: TObject);
begin
EditYear.Text := IntToStr (TheDay.Year);
EditMonth.Text := IntToStr (TheDay.Month);
EditDay.Text := IntToStr (TheDay.Day);

end;

WARNING When writing the values, the program uses the SetValue method instead of setting each of
the properties. In fact, assigning the month and the day separately can cause you trouble
when the month is not valid for the current day. For example, the day is currently January 31,
and you want to assign to it February 20. If you assign the month first, this part of the assign-
ment will fail, as February 31 does not exist. If you assign the day first, the problem will arise
when doing the reverse assignment. Due to the validity rules for dates, it is better to assign
everything at once.

Advanced Features of Properties
Properties have several advanced features I’ll focus on in future chapters, specifically the
introduction to the base classes of the library in Chapter 5 and writing custom Delphi com-
ponents in Chapter 11, “Creating Components.” This is a short summary of these more
advanced features:

• The write directive of a property can be omitted, making it a read-only property. The
compiler will issue an error if you try to change it. You can also omit the read directive and
define a write-only property, but that doesn’t make much sense and is used infrequently.

• The Delphi IDE gives special treatment to design-time properties, declared with the
published access specifier and generally displayed in the Object Inspector for the
selected component. More on the published keyword and its effect is in Chapter 5.

• The other properties, often called run-time only properties, are those declared with the
public access specifier. These properties can be used in the program code.

F I G U R E 2 . 2 :
The form of the DateProp
example

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:08 PM Page 68

http://www.sybex.com

69

• You can define array-based properties, which use the typical notation with square brack-
ets to access an element of a list. The string list–based properties, such as the Lines of a
list box, are a typical example of this group.

• Properties have special directives, including stored and default, which control the
component streaming system, introduced in Chapter 5 and detailed in Chapter 11.

NOTE You can usually assign a value to a property or read it, and you can even use properties in
expressions, but you cannot always pass a property as a parameter to a procedure or method.
This is because a property is not a memory location, so it cannot be used as a var parameter;
it cannot be passed by reference.

Encapsulation and Forms
One of the key ideas of encapsulation is to reduce the number of global variables used by a
program. A global variable can be accessed from every portion of a program. For this reason,
a change in a global variable affects the whole program. On the other hand, when you change
the representation of a class’s field, you only need to change the code of some methods of
that class and nothing else. Therefore, we can say that information hiding refers to encapsu-
lating changes.

Let me clarify this idea with an example. When you have a program with multiple forms,
you can make some data available to every form by declaring it as a global variable in the
interface portion of the unit of one of the forms:

var
Form1: TForm1;
nClicks: Integer;

This works but has two problems. First, the data is not connected to a specific instance of
the form, but to the entire program. If you create two forms of the same type, they’ll share
the data. If you want every form of the same type to have its own copy of the data, the only
solution is to add it to the form class:

type
TForm1 = class(TForm)
public
nClicks: Integer;

end;

The second problem is that if you define the data as a global variable or as a public field of
a form, you won’t be able to modify its implementation in the future without affecting the

Encapsulation

2874c02.qxd 7/2/01 4:08 PM Page 69

http://www.sybex.com

70

code that uses the data. For example, if you only have to read the current value from other
forms, you can declare the data as private and provide a method to read the value:

type
TForm1 = class(TForm)
public
function GetClicks: Integer;

private
nClicks: Integer;

end;

function TForm1.GetClicks: Integer;
begin
Result := nClicks;

end;

Adding Properties to Forms
An even better solution is to add a property to the form. Every time you want to make some
information of a form available to other forms, you should really use a property, for all the
reasons discussed in the previous section. Simply change the field declaration of the form,
shown in the preceding listing, by adding the keyword property in front of it and then press
Ctrl+Shift+C to activate code completion. Delphi will automatically generate all of the extra
code you need. In the form, you also need to handle the OnClick event, increasing the value
of the property (and showing it in the form caption):

procedure TForm1.FormClick(Sender: TObject);
begin
Inc (FClicks);
Caption := ‘Clicks: ‘ + IntToStr (FClicks);

end;

The complete code for this form class is available in the FormProp example and illustrated
in Figure 2.3. The program can create multi-instances of the form (that is, multiple objects
based on the same form class), each with its own click count. Clicking the Create Form but-
ton creates the secondary forms, using the following code:

procedure TForm1.btnCreateFormClick(Sender: TObject);
begin
with TForm1.Create (Self) do
Show;

end;

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:08 PM Page 70

http://www.sybex.com

71

NOTE Notice that adding a property to a form doesn’t add to the list of the form properties in the
Object Inspector.

In my opinion, properties should also be used in the form classes to encapsulate the access
to the components of a form. For example, if you have a main form with a status bar used to
display some information (and with the SimplePanel property set to True) and you want to
modify the text from a secondary form, you might be tempted to write:

Form1.StatusBar1.SimpleText := ‘new text’;

This is a standard practice in Delphi, but it’s not a good one, because it doesn’t provide any
encapsulation of the form structure or components. If you have similar code in many places
throughout an application, and you later decide to modify the user interface of the form (replac-
ing StatusBar with another control or activating multiple panels), you’ll have to fix the code in
many places. The alternative is to use a method or, even better, a property to hide the specific
control. Simply type

property StatusText: string read GetText write SetText;

and press the Ctrl+Shift+C combination again, to let Delphi add the definition of both meth-
ods for reading and writing the property:

function TForm1.GetText: string;
begin
Result := StatusBar1.SimpleText;

end;

procedure TForm1.SetText(const Value: string);
begin
StatusBar1.SimpleText := Value;

end;

F I G U R E 2 . 3 :
Two forms of the FormProp
example at run time

Encapsulation

2874c02.qxd 7/2/01 4:08 PM Page 71

http://www.sybex.com

72

In the other forms of the program, you can simply refer to the StatusText property of the
form, and if the user interface changes, only the Set and Get methods of the property are
affected.

NOTE See Chapter 5 for a detailed discussion of how you can avoid having published form fields for
components, which will improve encapsulation. But don’t rush there: the description requires
a good knowledge of Delphi, and the technique discussed has a few drawbacks!

Constructors
As I’ve mentioned, to allocate the memory for the object, we call the Create method. This is
a constructor, a special method that you can apply to a class to allocate memory for an instance
of that class. The instance is returned by the constructor and can be assigned to a variable for
storing the object and using it later on. The default TObject.Create constructor initializes all
the data of the new instance to zero.

If you want your instance data to start out with a nonzero value, then you need to write a
custom constructor to do that. The new constructor can be called Create, or it can have any
other name; use the constructor keyword in front of it. Notice that you don’t need to call
TObject.Create: it is Delphi that allocates the memory for the new object, not the class con-
structor. All you have to do is to initialize the class base.

If you create objects without initializing them, calling methods later may result in odd
behavior or even a run-time error. A consistent use of constructors to initialize objects’ data
is an important preventive technique to avoid these errors in the first place. For example, we
must call the SetValue procedure of the TDate class after we’ve created the object. As an
alternative, we can provide a customized constructor, which creates the object and gives it
an initial value.

Although you can use any name for a constructor, you should stick to the standard name,
Create. If you use a name other than Create, the Create constructor of the base TObject
class will still be available, but a programmer calling this default constructor might bypass
the initialization code you’ve provided because they don’t recognize the name.

By defining a Create constructor with some parameters, you replace the default definition
with a new one and make its use compulsory. For example, after you define

type
TDate = class
public
constructor Create (y, m, d: Integer);

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:08 PM Page 72

http://www.sybex.com

73

constructor TDate.Create (y, m, d: Integer);
begin
fDate := EncodeDate (y, m, d);

end;

you’ll be able to call this constructor and not the standard Create:
var
ADay: TDate;

begin
// Error, does not compile:
ADay := TDate.Create;
// OK:
ADay := TDate.Create (1, 1, 2000);

The rules for writing constructors for custom components are different, as we’ll see in
Chapter 11. In short, when you inherit from TComponent, you should override the default
Create constructor with one parameter and avoid disabling it.

Overloaded Constructors
Overloading is particularly relevant for constructors, because we can add to a class multiple
constructors and call them all Create, which makes them easy to remember.

NOTE Historically, overloading was added to C++ to allow the use of multiple constructors that have
the same name (the name of the class). In Object Pascal, this feature was considered unneces-
sary because multiple constructors can have different specific names. The increased integra-
tion of Delphi with C++Builder has motivated Borland to make this feature available in both
languages, starting with Delphi 4. Technically, when C++Builder constructs an instance of a
Delphi VCL class, it looks for a Delphi constructor named Create and nothing but Create. If
the Delphi class has constructors by other names, they cannot be used from C++Builder code.
Therefore, when creating classes and components you intend to share with C++Builder pro-
grammers, you should be careful to name all your constructors Create and distinguish
between them by their parameter lists (using overload). Delphi does not require this, but it is
required for C++Builder to use your Delphi classes.

As an example, I’ve added to the class two separate Create constructors: one with no para-
meters, which hides the default constructor, and one with the initialization values. The con-
structor with no parameter uses as the default value today’s date:

type
TDate = class
public
constructor Create; overload;
constructor Create (y, m, d: Integer); overload;

Constructors

2874c02.qxd 7/2/01 4:08 PM Page 73

http://www.sybex.com

74

constructor TDate.Create (y, m, d: Integer);
begin
fDate := EncodeDate (y, m, d);

end;

constructor TDate.Create;
begin
fDate := Date;

end;

Having these two constructors makes it possible to define a new TDate object in two differ-
ent ways:

var
Day1, Day2: TDate;

begin
Day1 := TDate.Create (2001, 12, 25);
Day2 := TDate.Create; // today

See the section “The Complete TDate Class” later in this chapter for the DateView exam-
ple, which includes the code of these constructors.

Destructors
In the same way that a class can have a custom constructor, it can have a custom destructor, a
method declared with the destructor keyword and called Destroy, which can perform some
resource cleanup before an object is destroyed. Just as a constructor call allocates memory for
the object, a destructor call frees the memory.

We can write code for a destructor, generally overriding the default Destroy destructor, to
let the object execute some code before it is destroyed. Destructors are needed only for objects
that acquire resources in their constructors or during their lifetime. In your code, of course,
you don’t have to handle memory de-allocation—this is something Delphi does for you.

Destroy is a virtual destructor of the TObject class. Most of the classes that require custom
clean-up code when the objects are destroyed override this virtual method. The reason you
should never define a new destructor is that objects are usually destroyed by calling the Free
method, and this method calls the Destroy virtual destructor of the specific class (virtual meth-
ods will be discussed later in this chapter).

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:08 PM Page 74

http://www.sybex.com

75

Free (and nil)
Free is a method of the TObject class, inherited by all other classes. The Free method basi-

cally checks whether the current object (Self) is not nil before calling the Destroy virtual
destructor. Here is its pseudocode (the actual Delphi code is written in assembler):

procedure TObject.Free;
begin
if Self <> nil then
Destroy;

end;

By looking at this code, you can see that calling Free doesn’t set the object to nil automati-
cally; this is something you should do yourself! The reason is that the object doesn’t know
which variables may be referring to it, so it has no way to set them all to nil.

NOTE Automatically setting an object to nil is not possible. You might have several references to
the same object, and Delphi doesn’t track them. At the same time, within a method (such as
Free) we can operate on the object, but we know nothing about the object reference—the
memory address of the variable we’ve used to call the method. In other words, inside the Free
method or any other method of a class, we know the memory address of the object (Self),
but we don’t know the memory location of the variable referring to the object.

Delphi 5 introduced a FreeAndNil procedure you can use to free an object and set its refer-
ence to nil at the same time. Simply call

FreeAndNil (Obj1)

instead of writing
Obj1.Free;
Obj1 := nil;

The FreeAndNil procedure knows about the object reference, passed as a parameter, and
can act on it. Here is Delphi code for FreeAndNil:

procedure FreeAndNil(var Obj);
var
P: TObject;

begin
P := TObject(Obj);
// clear the reference before destroying the object
TObject(Obj) := nil;
P.Free;

end;

NOTE There’s more on this topic in the section “Destroying Objects Only Once” later in this chapter.

Constructors

2874c02.qxd 7/2/01 4:08 PM Page 75

http://www.sybex.com

76

The Complete TDate Class
In the initial portion of this chapter, I’ve shown you bits and pieces of the source code for dif-
ferent versions of a TDate class. In Listing 2.1 is the complete interface portion of the unit
that defines the TDate class.

➲ Listing 2.1: The TDate class, from the ViewDate example

unit Dates;

interface

type
TDate = class
private
fDate: TDateTime;
procedure SetDay(const Value: Integer);
procedure SetMonth(const Value: Integer);
procedure SetYear(const Value: Integer);
function GetDay: Integer;
function GetMonth: Integer;
function GetYear: Integer;

public
constructor Create; overload;
constructor Create (y, m, d: Integer); overload;
procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;
function LeapYear: Boolean;
procedure Increase (NumberOfDays: Integer = 1);
procedure Decrease (NumberOfDays: Integer = 1);
function GetText: string;
property Year: Integer read GetYear write SetYear;
property Month: Integer read GetMonth write SetMonth;
property Day: Integer read GetDay write SetDay;

end;

implementation

uses
SysUtils, DateUtils;

procedure TDate.SetValue (y, m, d: Integer);
begin
fDate := EncodeDate (y, m, d);

end;

function TDate.LeapYear: Boolean;
begin
Result := IsInLeapYear(fDate);

end;

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:08 PM Page 76

http://www.sybex.com

77

procedure TDate.Increase (NumberOfDays: Integer = 1);
begin
fDate := fDate + NumberOfDays;

end;

function TDate.GetText: string;
begin
GetText := DateToStr (fDate);

end;

procedure TDate.Decrease (NumberOfDays: Integer = 1);
begin
fDate := fDate - NumberOfDays;

end;

constructor TDate.Create (y, m, d: Integer);
begin
fDate := EncodeDate (y, m, d);

end;

constructor TDate.Create;
begin
fDate := Date;

end;

procedure TDate.SetValue(NewDate: TDateTime);
begin
fDate := NewDate;

end;

procedure TDate.SetDay(const Value: Integer);
begin
fDate := RecodeDay (fDate, Value);

end;

procedure TDate.SetMonth(const Value: Integer);
begin
fDate := RecodeMonth (fDate, Value);

end;

procedure TDate.SetYear(const Value: Integer);
begin
fDate := RecodeYear (fDate, Value);

end;

function TDate.GetDay: Integer;
begin
Result := DayOf (fDate);

end;

The Complete TDate Class

2874c02.qxd 7/2/01 4:08 PM Page 77

http://www.sybex.com

78

function TDate.GetMonth: Integer;
begin
Result := MonthOf (fDate);

end;

function TDate.GetYear: Integer;
begin
Result := YearOf (fDate);

end;

end.

The aim of the Increase and Decrease methods, which have a default value for their
parameter, is quite easy to understand. If called with no parameter, they change the value of
the date to the next or previous day. If a NumberOfDays parameter is part of the call, they add
or subtract that number.

GetText returns a string with the formatted date, using the DateToStr function.

The form of the example I’ve built to show you how to use the TDate class, as illustrated in
Figure 2.4, has a caption to display a date and six buttons, which can be used to modify the
date. To make the label component look nice, I’ve given it a big font, made it as wide as the
form, set its Alignment property to taCenter, and set its AutoSize property to False.

The startup code of this program is in the OnCreate event handler. In the corresponding
method, we create an instance of the TDate class, initialize this object, and then show its tex-
tual description in the Caption of the label.

procedure TDateForm.FormCreate(Sender: TObject);
begin
TheDay := TDate.Create (2001, 12, 25);
LabelDate.Caption := TheDay.GetText;

end;

F I G U R E 2 . 4 :
The output of the ViewDate
example at startup

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:08 PM Page 78

http://www.sybex.com

79

TheDay is a private field of the class of the form, TDateForm. (By the way, the name for the
form class is automatically chosen by Delphi when we change the Name property of the form
to DateForm.) The object is then destroyed along with the form:

procedure TDateForm.FormDestroy(Sender: TObject);
begin
TheDay.Free;

end;

When the user clicks one of the six buttons, we need to apply the corresponding method to
the TheDay object and then display the new value of the date in the label:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
TheDay.SetValue (Date);
LabelDate.Caption := TheDay.GetText;

end;

Notice that in this code we reuse an existing object, assigning a new date to it. We could
also create a new object and assign it to the existing TheDate variable, but this can lead to
confusing situations, as explained in the next section.

Delphi’s Object Reference Model
In some OOP languages, declaring a variable of a class type creates an instance of that class.
Object Pascal, instead, is based on an object reference model. The idea is that a variable of a
class type, such as the TheDay variable in the preceding ViewDate example, does not hold the
value of the object. Rather, it contains a reference, or a pointer, to indicate the memory loca-
tion where the object has been stored. You can see this structure depicted in Figure 2.5.

The only problem with this approach is that when you declare a variable, you don’t create
an object in memory; you only reserve the memory location for a reference to an object.
Object instances must be created manually, at least for the objects of the classes you define.
Instances of the components you place on a form are built automatically by Delphi.

internal infomemory
reference

field

F I G U R E 2 . 5 :
A representation of the
structure of an object in
memory, with a variable
referring to it

Delphi’s Object Reference Model

2874c02.qxd 7/2/01 4:08 PM Page 79

http://www.sybex.com

80

You’ve seen how to create an instance of an object by applying a constructor to its class.
Once you have created an object and you’ve finished using it, you need to dispose of it (to
avoid filling up memory you don’t need any more, which causes what is known as a memory
leak). This can be accomplished by calling the Free method. As long as you create objects
when you need them and free them when you’re finished with them, the object reference
model works without a glitch. The object reference model has many consequences on assign-
ing object and on managing memory, as we’ll see in the next two sections.

Assigning Objects
If a variable holding an object only contains a reference to the object in memory, what happens
if you copy the value of that variable? Suppose we write the BtnTodayClick method of the
ViewDate example in the following way:

procedure TDateForm.BtnTodayClick(Sender: TObject);
var
NewDay: TDate;

begin
NewDay := TDate.Create;
TheDay := NewDay;
LabelDate.Caption := TheDay.GetText;

end;

This code copies the memory address of the NewDay object to the TheDay variable (as shown
in Figure 2.6); it doesn’t copy the data of an object into the other. In this particular circum-
stance, this is not a very good approach, as we keep allocating memory for a new object every
time the button is pressed, but we never release the memory of the object the TheDay variable
was previously pointing to. This specific issue can be solved by freeing the old object, as in
the following code (which is also simplified, without the use of an explicit variable for the
newly created object):

assignment

F I G U R E 2 . 6 :
A representation of the
operation of assigning an
object reference to another
one. This is different from
copying the actual content
of an object to another.

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:08 PM Page 80

http://www.sybex.com

81

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
TheDay.Free;
TheDay := TDate.Create;

The important thing to keep in mind is that, when you assign an object to another object,
Delphi copies the reference to the object in memory to the new object/reference. You should
not consider this a negative: In many cases, being able to define a variable referring to an exist-
ing object can be a plus. For example, you can store the object returned by calling a function or
accessing a property and use it in subsequent statements, as this code snippet indicates:

var
ADay: TDate;

begin
ADay: UserInformation.GetBirthDate;
// use a ADay

The same happens if you pass an object as a parameter to a function: You don’t create a
new object, but you refer to the same one in two different places of the code. For example, by
writing this procedure and calling it as follows, you’ll modify the Caption property of the
Button1 object, not of a copy of its data in memory (which would be totally useless):

procedure CaptionPlus (Button: TButton);
begin
Button.Caption := Button.Caption + ‘+’;

end;

// call...
CaptionPlus (Button1)

What if you really want to change the data inside an existing object, so that it matches the
data of another object? You have to copy each field of the object, which is possible only if
they are all public, or provide a specific method to copy the internal data. Some classes of the
VCL have an Assign method, which does this copy operation. To be more precise, most of
the VCL classes inheriting from TPersistent, but not inheriting from TComponent, have the
Assign method. Other TComponent-derived classes have this method but raise an exception
when it is called.

In the DateCopy example, slightly modified from the ViewDate program, I’ve added an
Assign method to the TDate class, and I’ve called it from the Today button, with the follow-
ing code:

procedure TDate.Assign (Source: TDate);
begin
fDate := Source.fDate;

end;

Delphi’s Object Reference Model

2874c02.qxd 7/2/01 4:08 PM Page 81

http://www.sybex.com

82

procedure TDateForm.BtnTodayClick(Sender: TObject);
var
NewDay: TDate;

begin
NewDay := TDate.Create;
TheDay.Assign(NewDay);
LabelDate.Caption := TheDay.GetText;
NewDay.Free;

end;

Objects and Memory
Memory management in Delphi is subject to three rules: Every object must be created before
it can be used; every object must be destroyed after it has been used; and every object must
be destroyed only once. Whether you have to do these operations in your code, or you can
let Delphi handle memory management for you, depends on the model you choose among
the different approaches provided by Delphi.

Delphi supports three types of memory management for dynamic elements (that is, elements
not in the stack and the global memory area):

• Every time you create an object explicitly, in the code of your application, you should
also free it. If you fail to do so, the memory used by that object won’t be released for
other objects until the program terminates.

• When you create a component, you can specify an owner component, passing the
owner to the component constructor. The owner component (often a form) becomes
responsible for destroying all the objects it owns. In other words, when you free the
form, it frees all the components it owns. So, if you create a component and give it an
owner, you don’t have to remember to destroy it. This is the standard behavior of the
components you create at design time by placing them on a form or data module.

• When you allocate memory for strings, dynamic arrays, and objects referenced by
interface variables (discussed in Chapter 3), Delphi automatically frees the memory
when the reference goes out of scope. You don’t need to free a string: when it becomes
unreachable, its memory is released.

Destroying Objects Only Once
Another problem is that if you call the Destroy destructor of an object twice, you get an
error. If you remember to set the object to nil, you can call Free twice with no problem.

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:08 PM Page 82

http://www.sybex.com

83

NOTE You might wonder why you can safely call Free if the object reference is nil, but you can’t
call Destroy. The reason is that Free is a known method at a given memory location, whereas
the virtual function Destroy is determined at run time by looking at the type of the object, a
very dangerous operation if the object doesn’t exist any more.

To sum things up, here are a couple of guidelines:

• Always call Free to destroy objects, instead of calling the Destroy destructor.

• Use FreeAndNil, or set object references to nil after calling Free, unless the reference
is going out of scope immediately afterward.

In general, you can also check whether an object is nil by using the Assigned function. So
the following two statements are equivalent, at least in most cases:

if Assigned (ADate) then ...
if ADate <> nil then ...

Notice that these statements test only whether the pointer is not nil; they do not check
whether it is a valid pointer. If you write the following code, the test will be satisfied, and
you’ll get an error on the line with the call to the method of the object:

ToDestroy.Free;
if ToDestroy <> nil then
ToDestroy.DoSomething;

It is important to realize that calling Free doesn’t set the object to nil.

What’s Next?
In this chapter, we have discussed the foundations of object-oriented programming (OOP) in
Object Pascal. We have considered the definition of classes, the use of methods, encapsula-
tion, and memory management, but also some more advanced concepts such as properties
and the dynamic creation of components.

This is certainly a lot of information if you are a newcomer, but if you are fluent in another
OOP language or if you’ve already used past versions of Delphi, you should be able to apply
the topics covered in this chapter to your programming.

The next chapter continues on the same line, highlighting inheritance in particular, along
with virtual functions and interfaces. It also includes a discussion on exception handling and

What’s Next?

2874c02.qxd 7/2/01 4:08 PM Page 83

http://www.sybex.com

84

class references, so that at the end you’ll have a complete overview of the language. At that
point, you’ll be ready to start focusing on the libraries the compiler relies on, and we’ll get
back to see how properties are used by Delphi and its IDE (in Chapter 5). Other chapters
will provide further information on applying the OOP concepts to Delphi programming.
You’ll find OOP tips throughout the entire book, but particularly in Chapter 11, devoted to
writing custom Delphi components.

Chapter 2 • The Object Pascal Language: Classes and Objects

2874c02.qxd 7/2/01 4:08 PM Page 84

http://www.sybex.com

3CH A P T E R

The Object Pascal Language:
Inheritance and
Polymorphism

� Inheritance

� Virtual methods

� Polymorphism

� Type-safe down-casting (run-time type information)

� Interfaces

� Working with exceptions

� Class references

2874c03.qxd 7/2/01 4:09 PM Page 85

http://www.sybex.com

86

After the introduction to classes and objects we’ve seen over the last chapter, let’s move on
to another key element of the language, inheritance. Deriving a class from an existing one is the
real revolutionary idea of object-oriented programming, and it goes along with polymorphism,
virtual functions, abstract functions, and many other topics discussed in this chapter.

We’ll focus also on interfaces, another intriguing idea of the most recent OOP languages,
and we’ll cover a few more elements of Object Pascal, such as exception handling and class
references. Together with the previous chapter, this will provide an almost complete roundup
of the language.

Inheriting from Existing Types
We often need to use a slightly different version of an existing class that we have written or
that someone has given to us. For example, you might need to add a new method or slightly
change an existing one. You can do this easily by modifying the original code, unless you
want to be able to use the two different versions of the class in different circumstances. Also,
if the class was originally written by someone else (including Borland), you might want to
keep your changes separate.

A typical alternative is to make a copy of the original type definition, change its code to
support the new features, and give a new name to the resulting class. This might work, but it
also might create problems: In duplicating the code you also duplicate the bugs; and if you
want to add a new feature, you’ll need to add it two or more times, depending on the number
of copies of the original code you’ve made. This approach results in two completely different
data types, so the compiler cannot help you take advantage of the similarities between the
two types.

To solve these kinds of problems in expressing similarities between classes, Object Pascal
allows you to define a new class directly from an existing one. This technique is known as
inheritance (or subclassing) and is one of the fundamental elements of object-oriented program-
ming languages. To inherit from an existing class, you only need to indicate that class at the
beginning of the declaration of the subclass. For example, Delphi does this automatically
each time you create a new form:

type
TForm1 = class(TForm)
end;

This simple definition indicates that the TForm1 class inherits all the methods, fields, proper-
ties, and events of the TForm class. You can apply any public method of the TForm class to an
object of the TForm1 type. TForm, in turn, inherits some of its methods from another class,
and so on, up to the TObject base class.

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 86

http://www.sybex.com

87

As an example of inheritance, we can change the ViewDate program, deriving a new class
from TDate and modifying its GetText function. You can find this code in the DATES.PAS file
of the NewDate example on the companion CD.

type
TNewDate = class (TDate)
public
function GetText: string;

end;

In this example, the TNewDate class is derived from TDate. It is common to say that TDate is
an ancestor class or parent class of TNewDate and that TNewDate is a subclass, descendant class, or
child class of TDate.

To implement the new version of the GetText function, I used the FormatDateTime function,
which uses (among other features) the predefined month names available in Windows; these
names depend on the user’s regional and language settings. Many of these regional settings
are actually copied by Delphi into constants defined in the library, such as LongMonthNames,
ShortMonthNames, and many others you can find under the “Currency and date/time formatting
variables” topic in the Delphi Help file. Here is the GetText method, where ‘dddddd’ stands for
the long date format:

function TNewDate.GetText: string;
begin
GetText := FormatDateTime (‘dddddd’, fDate);

end;

TIP Using regional information, the NewDate program automatically adapts itself to different
Windows user settings. If you run this same program on a computer with regional settings
referring to a language other than English, it will automatically show month names in that
language. To test this behavior, you just need to change the regional settings; you don’t need
a new version of Windows. Notice that regional-setting changes immediately affect the run-
ning programs.

Once we have defined the new class, we need to use this new data type in the code of the
form of the NewDate example. Simply define the TheDay object of type TNewDate, and call its
constructor in the FormCreate method:

type
TDateForm = class(TForm)
...

private
TheDay: TNewDate; // updated declaration

end;

Inheriting from Existing Types

2874c03.qxd 7/2/01 4:09 PM Page 87

http://www.sybex.com

88

procedure TDateForm.FormCreate(Sender: TObject);
begin
TheDay := TNewDate.Create (2001, 12, 25); // updated
DateLabel.Caption := TheDay.GetText;

end;

Without any other changes, the new NewDate example will work properly. The TNewDate
class inherits the methods to increase the date, add a number of days, and so on. In addition,
the older code calling these methods still works. Actually, to call the new version of the GetText
method, we don’t need to change the source code! The Delphi compiler will automatically
bind that call to a new method. The source code of all the other event handlers remains
exactly the same, although its meaning changes considerably, as the new output demonstrates
(see Figure 3.1).

Protected Fields and Encapsulation
The code of the GetText method of the TNewDate class compiles only if it is written in the
same unit as the TDate class. In fact, it accesses the fDate private field of the ancestor class.
If we want to place the descendant class in a new unit, we must either declare the fDate field
as protected or add a protected access method in the ancestor class to read the value of the
private field.

Many developers believe that the first solution is always the best, because declaring most of
the fields as protected will make a class more extensible and will make it easier to write sub-
classes. However, this violates the idea of encapsulation. In a large hierarchy of classes, chang-
ing the definition of some protected fields of the base classes becomes as difficult as changing
some global data structures. If ten derived classes are accessing this data, changing its defini-
tion means potentially modifying the code in each of the ten classes.

F I G U R E 3 . 1 :
The output of the NewDate
program, with the name of
the month and of the day
depending on Windows
regional settings

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 88

http://www.sybex.com

89

In other words, flexibility, extension, and encapsulation often become conflicting objec-
tives. When this happens, you should try to favor encapsulation. If you can do so without
sacrificing flexibility, that will be even better. Often this intermediate solution can be
obtained by using a virtual method, a topic I’ll discuss in detail later in the section “Late
Binding and Polymorphism.” If you choose not to use encapsulation in order to obtain faster
coding of the subclasses, then your design might not follow the object-oriented principles.

Accessing Protected Data of Other Classes
We’ve seen that in Delphi, the private and protected data of a class is accessible to any
functions or methods that appear in the same unit as the class. For example, consider this class
(part of the Protection example on the companion CD):

type

TTest = class

protected

ProtectedData: Integer;

public

PublicData: Integer;

function GetValue: string;

end;

The GetValue method simply returns a string with the two integer values:

function TTest.GetValue: string;

begin

Result := Format (‘Public: %d, Protected: %d’,

[PublicData, ProtectedData]);

end;

Once you place this class in its own unit, you won’t be able to access its protected portion from
other units directly. Accordingly, if you write the following code,

procedure TForm1.Button1Click(Sender: TObject);

var

Obj: TTest;

begin

Obj := TTest.Create;

Obj.PublicData := 10;

Obj.ProtectedData := 20; // won’t compile

ShowMessage (Obj.GetValue);

Obj.Free;

end;

the compiler will issue an error message, “Undeclared identifier: ‘ProtectedData.’”

Inheriting from Existing Types

Continued on next page

2874c03.qxd 7/2/01 4:09 PM Page 89

http://www.sybex.com

90

At this point, you might think there is no way to access the protected data of a class defined in a
different unit. (This is what Delphi manuals and most Delphi books say.) However, there is a way
around it. Consider what happens if you create an apparently useless derived class, such as

type

TFake = class (TTest);

Now, if you make a direct cast of the object to the new class and access the protected data
through it, this is how the code will look:

procedure TForm1.Button2Click(Sender: TObject);

var

Obj: TTest;

begin

Obj := TTest.Create;

Obj.PublicData := 10;

TFake (Obj).ProtectedData := 20; // compiles!

ShowMessage (Obj.GetValue);

Obj.Free;

end;

This code compiles and works properly, as you can see by running the Protection program.
How is it possible for this approach to work? Well, if you think about it, the TFake class auto-
matically inherits the protected fields of the TTest base class, and because the TFake class is in
the same unit as the code that tries to access the data in the inherited fields, the protected
data is accessible. As you would expect, if you move the declaration of the TFake class to a
secondary unit, the program won’t compile any more.

Now that I’ve shown you how to do this, I must warn you that violating the class-protection
mechanism this way is likely to cause errors in your program (from accessing data that you
really shouldn’t), and it runs counter to good OOP technique. However, there are times when
using this technique is the best solution, as you’ll see by looking at the VCL source code and
the code of many Delphi components. Two examples that come to mind are accessing the
Text property of the TControl class and the Row and Col positions of the DBGrid control.
These two ideas are demonstrated by the TextProp and DBGridCol examples, respectively.
(These examples are quite advanced, so I suggest that only programmers with a good back-
ground of Delphi programming read them at this point in the text—other readers might come
back later.) Although the first example shows a reasonable example of using the typecast
cracker, the DBGrid example of Row and Col is actually a counterexample, one that illustrates
the risks of accessing bits that the class writer chose not to expose. The row and column of a
DBGrid do not mean the same thing as they do in a DrawGrid or StringGrid (the base
classes). First, DBGrid does not count the fixed cells as actual cells (it distinguishes data cells

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

Continued on next page

2874c03.qxd 7/2/01 4:09 PM Page 90

http://www.sybex.com

91

from decoration), so your row and column indexes will have to be adjusted by whatever deco-
rations are currently in effect on the grid (and those can change on the fly). Second, the
DBGrid is a virtual view of the data. When you scroll up in a DBGrid, the data may move
underneath it, but the currently selected row might not change.

This technique— declaring a local type only so that you can access protected data members of
a class—is often described as a hack, and it should be avoided whenever possible. The prob-
lem is not accessing protected data of a class in the same unit but declaring a class for the sole
purpose of accessing protected data of an existing object of a different class! The danger of
this technique is in the hard-coded typecast of an object from a class to a different one.

Inheritance and Type Compatibility
Pascal is a strictly typed language. This means that you cannot, for example, assign an integer
value to a Boolean variable, unless you use an explicit typecast. The rule is that two values are
type-compatible only if they are of the same data type, or (to be more precise) if their data type
refers to a single type definition.

WARNING If you redefine the same data type in two different units, they won’t be compatible, even if
their name is identical. A program using two equally named types of two different units will be
a nightmare to compile and debug.

There is an important exception to this rule in the case of class types. If you declare a class,
such as TAnimal, and derive from it a new class, say TDog, you can then assign an object of
type TDog to a variable of type TAnimal. That is because a dog is an animal! So, although this
might surprise you, the following constructor calls are both legal:

var
MyAnimal1, MyAnimal2: TAnimal;

begin
MyAnimal1 := TAnimal.Create;
MyAnimal2 := TDog.Create;

As a general rule, you can use an object of a descendant class any time an object of an
ancestor class is expected. However, the reverse is not legal; you cannot use an object of an
ancestor class when an object of a descendant class is expected. To simplify the explanation,
here it is again in code terms:

type
TDog = class (TAnimal)
...

end;

Inheriting from Existing Types

2874c03.qxd 7/2/01 4:09 PM Page 91

http://www.sybex.com

92

var
MyAnimal: TAnimal;
MyDog: TDog;

begin
MyAnimal := MyDog; // This is OK
MyDog := MyAnimal; // This is an error!!!

Before we look at the implications of this important feature of the language, you can try
out the Animals1 example from the companion CD, which defines the two TAnimal and TDog
classes:

type
TAnimal = class
public
constructor Create;
function GetKind: string;

private
Kind: string;

end;

TDog = class (TAnimal)
public
constructor Create;

end;

The two Create methods set the value of Kind, which is returned by the GetKind function.
The form displayed by this example, shown in Figure 3.2, has a private field MyAnimal of type
TAnimal. An instance of this class is created and initialized when the form is created and each
time one of the radio buttons is selected:

procedure TFormAnimals.FormCreate(Sender: TObject);
begin
MyAnimal := TAnimal.Create;

end;

procedure TFormAnimals.RadioDogClick(Sender: TObject);
begin
MyAnimal.Free;
MyAnimal := TDog.Create;

end;

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 92

http://www.sybex.com

93

Finally, the Kind button calls the GetKind method for the current animal and displays the
result in the label:

procedure TFormAnimals.BtnKindClick(Sender: TObject);
begin
KindLabel.Caption := MyAnimal.GetKind;

end;

Late Binding and Polymorphism
Pascal functions and procedures are usually based on static or early binding. This means that a
method call is resolved by the compiler and linker, which replace the request with a call to
the specific memory location where the function or procedure resides. (This is known as the
address of the function.) OOP languages allow the use of another form of binding, known as
dynamic or late binding. In this case, the actual address of the method to be called is deter-
mined at run time based on the type of the instance used to make the call.

The advantage of this technique is known as polymorphism. Polymorphism means you can
write a call to a method, applying it to a variable, but which method Delphi actually calls
depends on the type of the object the variable relates to. Delphi cannot determine until run
time the actual class of the object the variable refers to, because of the type-compatibility
rule discussed in the previous section.

NOTE The term polymorphism is quite a mouthful. A glance at the dictionary tells us that in a general
sense, it refers to something having more than one form. In the OOP sense, then, it refers to
the facts that there may be several versions of a given method across several related classes
and that a single method call on an object instance of a particular class type can refer to one
of these versions. Which version of the method gets called depends on the type of the object
instance used to make the call at run time.

F I G U R E 3 . 2 :
The form of the Animals1
example

Late Binding and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 93

http://www.sybex.com

94

For example, suppose that a class and its subclass (let’s say TAnimal and TDog) both define a
method, and this method has late binding. Now you can apply this method to a generic vari-
able, such as MyAnimal, which at run time can refer either to an object of class TAnimal or to
an object of class TDog. The actual method to call is determined at run time, depending on
the class of the current object.

The Animals2 example extends the Animals1 program to demonstrate this technique. In
the new version, the TAnimal and the TDog classes have a new method: Voice, which means to
output the sound made by the selected animal, both as text and as sound. This method is
defined as virtual in the TAnimal class and is later overridden when we define the TDog class,
by the use of the virtual and override keywords:

type
TAnimal = class
public
function Voice: string; virtual;

TDog = class (TAnimal)
public
function Voice: string; override;

Of course, the two methods also need to be implemented. Here is a simple approach:
uses
MMSystem;

function TAnimal.Voice: string;
begin
Voice := ‘Voice of the animal’;
PlaySound (‘Anim.wav’, 0, snd_Async);

end;

function TDog.Voice: string;
begin
Voice := ‘Arf Arf’;
PlaySound (‘dog.wav’, 0, snd_Async);

end;

TIP This example uses a call to the PlaySound API function, defined in the MMSystem unit. The
first parameter of this function is the name of the WAV sound file or the system sound you
want to execute. The second parameter indicates an optional resource file containing the
sound. The third parameter indicates (among other options) whether the call should be
synchronous or asynchronous; that is, whether the program should wait for the sound to
finish before continuing with the following statements.

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 94

http://www.sybex.com

95

Now what is the effect of the call MyAnimal.Voice? It depends. If the MyAnimal variable
currently refers to an object of the TAnimal class, it will call the method TAnimal.Voice. If it
refers to an object of the TDog class, it will call the method TDog.Voice instead. This happens
only because the function is virtual (as you can experiment by removing this keyword and
recompiling).

The call to MyAnimal.Voice will work for an object that is an instance of any descendant of
the TAnimal class, even classes that are defined in other units—or that haven’t been written yet!
The compiler doesn’t need to know about all the descendants in order to make the call compat-
ible with them; only the ancestor class is needed. In other words, this call to MyAnimal.Voice is
compatible with all future TAnimal subclasses.

NOTE This is the key technical reason why object-oriented programming languages favor reusability.
You can write code that uses classes within a hierarchy without any knowledge of the specific
classes that are part of that hierarchy. In other words, the hierarchy—and the program—is still
extensible, even when you’ve written thousands of lines of code using it. Of course, there is
one condition: the ancestor classes of the hierarchy need to be designed very carefully.

The Animals2 program demonstrates the use of these new classes and has a form similar to
that of the previous example. This code is executed by clicking the button:

procedure TFormAnimals.BtnVerseClick(Sender: TObject);
begin
LabelVoice.Caption := MyAnimal.Voice;

end;

In Figure 3.3, you can see an example of the output of this program. By running it, you’ll
also hear the corresponding sounds produced by the PlaySound API call.

F I G U R E 3 . 3 :
The output of the Animals2
example

Late Binding and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 95

http://www.sybex.com

96

Overriding and Redefining Methods
As we have just seen, to override a late-bound method in a descendant class, you need to use the
override keyword. Note that this can take place only if the method was defined as virtual in
the ancestor class. Otherwise, if it was a static method, there is no way to activate late binding,
other than by changing the code of the ancestor class.

The rules are simple: A method defined as static remains static in every subclass, unless you
hide it with a new virtual method having the same name. A method defined as virtual remains
late-bound in every subclass. There is no way to change this, because of the way the compiler
generates different code for late-bound methods.

NOTE The new C# programming language proposed by Microsoft (which is in essence a clone of
Java) has the same notion as the Object Pascal language of marking the overridden version of
a method with a specific keyword.

To redefine a static method, you add a method to a subclass having the same parameters or
different parameters than the original one, without any further specifications. To override a
virtual method, you must specify the same parameters and use the override keyword:

type
MyClass = class
procedure One; virtual;
procedure Two; {static method}

end;

MySubClass = class (MyClass)
procedure One; override;
procedure Two;

end;

There are typically two ways to override a method. One is to replace the method of the
ancestor class with a new version. The other is to add some more code to the existing method.
This can be accomplished by using the inherited keyword to call the same method of the
ancestor class. For example, you can write

procedure MySubClass.One;
begin
// new code
...
// call inherited procedure MyClass.One
inherited One;

end;

You might wonder why you need to use the override keyword. In other languages, when
you redefine a method in a subclass, you automatically override the original one. However,

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 96

http://www.sybex.com

97

having a specific keyword allows the compiler to check the correspondence between the names
of the methods of the ancestor class and the subclass (misspelling a redefined function is a com-
mon error in other OOP languages), check that the method was virtual in the ancestor class,
and so on.

When you override an existing virtual method of a base class, you must use the same
parameters. When you introduce a new version of a method in a descendent class, you can
declare it with the parameters you want. In fact, this will be a new method unrelated to the
ancestor method of the same name. They only happen to use the same name. Here is an
example:

type
TMyClass = class
procedure One;

end;

TMySubClass = class (TMyClass)
procedure One (S: string);

end;

NOTE Using the class definitions above, when you create an object of the TMySubClass class, you
can apply to it the One method with the string parameter, but not the parameter-less version
defined in the base class. If this is what you need, it can be accomplished by marking the
re-declared method (the one in the derived class) with the overload keyword. If the method
has different parameters than the version in the base class, it becomes effectively an over-
loaded method; otherwise it replaces the base class method. Notice that the method doesn’t
need to be marked as overload in the base class. However, if the method in the base class is
virtual, the compiler issues the warning “Method ‘One’ hides virtual method of base type
‘TMyClass.’” To avoid this message and to instruct the compiler more precisely on your inten-
tions, you can use the reintroduce directive. If you are interested in this advanced topic, you
can find this code in the Reintr example on the companion CD and experiment with it further.

Virtual versus Dynamic Methods
In Delphi, there are two different ways to activate late binding. You can declare the method
as virtual, as we have seen before, or declare it as dynamic. The syntax of these two key-
words is exactly the same, and the result of their use is also the same. What is different is the
internal mechanism used by the compiler to implement late binding.

virtual methods are based on a virtual method table (VMT, also known as a vtable), which is
an array of method addresses. For a call to a virtual method, the compiler generates code to
jump to an address stored in the nth slot in the object’s virtual method table.

Late Binding and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 97

http://www.sybex.com

98

Virtual method tables allow fast execution of the method calls. Their main drawback is that
they require an entry for each virtual method for each descendant class, even if the method
is not overridden in the subclass. At times, this has the effect of propagating VMT entries
throughout a class hierarchy (even for methods that aren’t redefined). This might require a
lot of memory just to store the same method address multiple times.

Dynamic method calls, on the other hand, are dispatched using a unique number indicating
the method. The search for the corresponding function is generally slower than the one-step
table lookup for virtual methods. The advantage is that dynamic method entries only prop-
agate in descendants when the descendants override the method. For large or deep object
hierarchies, using dynamic methods instead of virtual methods can result in significant
memory savings with only a minimal speed penalty.

From a programmer’s perspective, the difference between these two approaches lies only in
a different internal representation and slightly different speed or memory usage. Apart from
this, virtual and dynamic methods are the same.

Message Handlers
A late-bound method can be used to handle a Windows message, too, although the technique
is somewhat different. For this purpose Delphi provides yet another directive, message, to
define message-handling methods, which must be procedures with a single var parameter.
The message directive is followed by the number of the Windows message the method wants
to handle.

WARNING The message directive is also available in Delphi for Linux and is fully supported by the lan-
guage and the RTL. However, the visual portion of the CLX application framework does not
use message methods to dispatch notifications to controls. For this reason, whenever possible,
you should use a virtual method provided by the library rather than handle a Windows mes-
sage directly. Of course, this matters only if you want your code to be more portable.

For example, the following code allows you to handle a user-defined message, with the
numeric value indicated by the wm_User Windows constant:

type
TForm1 = class(TForm)
...
procedure WmUser (var Msg: TMessage);
message wm_User;

end;

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 98

http://www.sybex.com

99

The name of the procedure and the actual type of the parameters are up to you, although
there are several predefined record types for the various Windows messages. You could later
send this message, invoking the corresponding method, by writing:

PostMessage (Form1.Handle, wm_User, 0, 0);

This technique can be extremely useful for veteran Windows programmers, who know all
about Windows messages and API functions. You can also dispatch a message to an object by
calling the TObject.Dispatch method on the object. This will be a synchronous message call,
not asynchronous like PostMessage. TObject.Dispatch is fully platform independent.

The ability to handle Windows messages and call API functions as you do when you are
programming Windows with the C language may horrify some programmers and delight
others. But in Delphi, when writing Windows applications, you will seldom need to use
message methods or call Windows APIs directly. Obviously, these techniques will also affect
the portability of your code to other platforms.

Abstract Methods
The abstract keyword is used to declare methods that will be defined only in subclasses of
the current class. The abstract directive fully defines the method; it is not a forward declara-
tion. If you try to provide a definition for the method, the compiler will complain. In Object
Pascal, you can create instances of classes that have abstract methods. However, when you
try to do so, Delphi’s 32-bit compiler issues the warning message “Constructing instance of
<class name> containing abstract methods.” If you happen to call an abstract method at run
time, Delphi will raise an exception, as demonstrated by the following Animals3 example.

NOTE C++ and Java use a more strict approach: in these languages, you cannot create instances of
classes containing abstract methods.

You might wonder why you would want to use abstract methods. The reason lies in the
use of polymorphism. If class TAnimal has the abstract method Voice, every subclass can
redefine it. The advantage is that you can now use the generic MyAnimal object to refer to
each animal defined by a subclass and invoke this method. If this method was not present in
the interface of the TAnimal class, the call would not have been allowed by the compiler,
which performs static type checking. Using a generic MyAnimal object, you can call only the
method defined by its own class, TAnimal.

You cannot call methods provided by subclasses, unless the parent class has at least the dec-
laration of this method—in the form of an abstract method. The next example, Animals3,
demonstrates the use of abstract methods and the abstract call error. In Listing 3.1, you can
see the interfaces of the classes of this new example. (Here TAnimal is an abstract class.)

Late Binding and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 99

http://www.sybex.com

100

➲ Listing 3.1: Declaration of the three classes of the Animals3 example

type
TAnimal = class
public
constructor Create;
function GetKind: string;
function Voice: string; virtual; abstract;

private
Kind: string;

end;

TDog = class (TAnimal)
public
constructor Create;
function Voice: string; override;
function Eat: string; virtual;

end;

TCat = class (TAnimal)
public
constructor Create;
function Voice: string; override;
function Eat: string; virtual;

end;

The most interesting portion of Listing 3.1 is the definition of the class TAnimal, which
includes a virtual abstract method: Voice. It is also important to notice that each derived
class overrides this definition and adds a new virtual method, Eat. What are the implications
of these two different approaches? To call the Voice function, we can write the same code as
in the previous version of the program:

LabelVoice.Caption := MyAnimal.Voice;

How can we call the Eat method? We cannot apply it to an object of the TAnimal class. The
statement

LabelVoice.Caption := MyAnimal.Eat;

generates the compiler error “Field identifier expected.”

To solve this problem, you can use run-time type information (RTTI) to cast the TAnimal
object to a TCat or TDog object; but without the proper cast, the program will raise an exception.
You will see an example of this approach in the next section. Adding the method definition to the
TAnimal class is a typical solution to the problem, and the presence of the abstract keyword
favors this choice.

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 100

http://www.sybex.com

101

NOTE What happens if a method overriding an abstract method calls inherited? In past versions of
Delphi, this resulted in an abstract method call. In Delphi 6, the compiler has been enhanced
to notice the presence of the abstract method and simply skip the inherited call. This means
you can safely always use inherited in every overridden method, unless you specifically want
to disable executing some code of the base class.

Type-Safe Down-Casting
The Object Pascal type-compatibility rule for descendant classes allows you to use a descendant
class where an ancestor class is expected. As I mentioned earlier, the reverse is not possible.

Now suppose that the TDog class has an Eat method, which is not present in the TAnimal
class. If the variable MyAnimal refers to a dog, it should be possible to call the function. But if
you try, and the variable is referring to another class, the result is an error. By making an
explicit typecast, we could cause a nasty run-time error (or worse, a subtle memory overwrite
problem), because the compiler cannot determine whether the type of the object is correct
and the methods we are calling actually exist.

To solve the problem, we can use techniques based on run-time type information (RTTI, for
short). Essentially, because each object “knows” its type and its parent class, and we can ask
for this information with the is operator or using the InheritsFrom method of the TObject
class. The parameters of the is operator are an object and a class type, and the return value is
a Boolean:

if MyAnimal is TDog then ...

The is expression evaluates as True only if the MyAnimal object is currently referring to an
object of class TDog or a type descendant from TDog. This means that if you test whether a
TDog object is of type TAnimal, the test will succeed. In other words, this expression evaluates
as True if you can safely assign the object (MyAnimal) to a variable of the data type (TDog).

Now that you know for sure that the animal is a dog, you can make a safe typecast (or type
conversion). You can accomplish this direct cast by writing the following code:

var
MyDog: TDog;

begin
if MyAnimal is TDog then
begin
MyDog := TDog (MyAnimal);
Text := MyDog.Eat;

end;

Type-Safe Down-Casting

2874c03.qxd 7/2/01 4:09 PM Page 101

http://www.sybex.com

102

This same operation can be accomplished directly by the second RTTI operator, as, which
converts the object only if the requested class is compatible with the actual one. The parameters
of the as operator are an object and a class type, and the result is an object converted to the
new class type. We can write the following snippet:

MyDog := MyAnimal as TDog;
Text := MyDog.Eat;

If we only want to call the Eat function, we might also use an even shorter notation:
(MyAnimal as TDog).Eat;

The result of this expression is an object of the TDog class data type, so you can apply to it
any method of that class. The difference between the traditional cast and the use of the as
cast is that the second raises an exception if the type of the object is incompatible with the
type you are trying to cast it to. The exception raised is EInvalidCast (exceptions are
described at the end of this chapter).

To avoid this exception, use the is operator and, if it succeeds, make a plain typecast (in
fact, there is no reason to use is and as in sequence, doing the type check twice):

if MyAnimal is TDog then
TDog(MyAnimal).Eat;

Both RTTI operators are very useful in Delphi because you often want to write generic
code that can be used with several components of the same type or even of different types.
When a component is passed as a parameter to an event-response method, a generic data
type is used (TObject), so you often need to cast it back to the original component type:

procedure TForm1.Button1Click(Sender: TObject);
begin
if Sender is TButton then
...

end;

This is a common technique in Delphi, and I’ll use it in examples throughout the book. The
two RTTI operators, is and as, are extremely powerful, and you might be tempted to consider
them as standard programming constructs. Although they are indeed powerful, you should
probably limit their use to special cases. When you need to solve a complex problem involving
several classes, try using polymorphism first. Only in special cases, where polymorphism alone
cannot be applied, should you try using the RTTI operators to complement it. Do not use RTTI
instead of polymorphism. This is bad programming practice, and it results in slower programs.
RTTI, in fact, has a negative impact on performance, because it must walk the hierarchy of
classes to see whether the typecast is correct. As we have seen, virtual method calls require just
a memory lookup, which is much faster.

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 102

http://www.sybex.com

103

NOTE There is actually more to run-time type information (RTTI) than the is and as operators. You
can access to detailed class and type information at run time, particularly for published prop-
erties, events, and methods. More on this topic in Chapter 5.

Using Interfaces
When you define an abstract class to represent the base class of a hierarchy, you can come to
a point in which the abstract class is so abstract that it only lists a series of virtual functions
without providing any actual implementation. This kind of purely abstract class can also be
defined using a specific technique, an interface. For this reason, we refer to these classes as
interfaces.

Technically, an interface is not a class, although it may resemble one. Interfaces are not
classes, because they are considered a totally separate element with distinctive features:

• Interface type objects are reference-counted and automatically destroyed when there
are no more references to the object. This mechanism is similar to how Delphi man-
ages long strings and makes memory management almost automatic.

• A class can inherit from a single base class, but it can implement multiple interfaces.

• As all classes descend from TObject, all interfaces descend from IInterface, forming a
totally separate hierarchy.

The base interface class used to be IUnknown until Delphi 5, but Delphi 6 introduces a new
name for it, IInterface, to mark even more clearly the fact that this language feature is sepa-
rate from Microsoft’s COM. In fact, Delphi interfaces are available also in the Linux version
of the product.

You can use this rule: Interface types describing things that relate to COM and the related
operating-system services should inherit from IUnknown. Interface types that describe things
that do not necessarily require COM (for example, interfaces used for the internal applica-
tion structure) should inherit from IInterface. Doing this consistently in your applications
will make it easier to identify which portions of your application probably assume or require
the Windows operating system and which portions are probably OS-independent.

NOTE Borland introduced interfaces in Delphi 3 along with the support COM programming. Though
the interface language syntax may have been created to support COM, interfaces do not
require COM. You can use interfaces to implement abstraction layers within your applications,
without building COM server objects. For example, the Delphi IDE uses interfaces extensively
in its internal architecture. COM is discussed in Chapter 19.

Using Interfaces

2874c03.qxd 7/2/01 4:09 PM Page 103

http://www.sybex.com

104

From a more general point of view, interfaces support a slightly different object-oriented
programming model than classes. Objects implementing interfaces are subject to polymorphism
for each of the interfaces they support. Indeed, the interface-based model is powerful. But
having said that, I’m not interested in trying to assess which approach is better in each case.
Certainly, interfaces favor encapsulation and provide a looser connection between classes
than inheritance. Notice that the most recent OOP languages, from Java to C#, have the
notion of interfaces.

Here is the syntax of the declaration of an interface (which, by convention, starts with the
letter I):

type
ICanFly = interface
[‘{EAD9C4B4-E1C5-4CF4-9FA0-3B812C880A21}’]
function Fly: string;

end;

The above interface has a GUID, a numeric ID following its declaration and based on
Windows conventions. You can generate these identifiers (called GUIDs in jargon) by
pressing Ctrl+Shift+G in the Delphi editor.

Although you can compile and use interfaces even without specifying a GUID (as in the code
above) for them, you’ll generally want to do it, as this is required to perform QueryInterface or
dynamic as typecasts using that interface type. Since the whole point of interfaces is (usually) to
take advantage of greatly extended type flexibility at run time, if compared with class types,
interfaces without GUIDs are not very useful.

Once you’ve declared an interface, you can define a class to implement it, as in:
type
TAirplane = class (TInterfacedObject, ICanFly)
function Fly: string;

end;

The RTL already provides a few base classes to implement the basic behavior required by the
IInterface interface. The simplest one is the TInterfacedObject class I’ve used in this code.

You can implement interface methods with static methods (as in the code above) or with
virtual methods. You can override virtual methods in subclasses by using the override direc-
tive. If you don’t use virtual methods, you can still provide a new implementation in a sub-
class by redeclaring the interface type in the subclass, rebinding the interface methods to new
versions of the static methods. At first sight, using virtual methods to implement interfaces
seems to allow for smoother coding in subclasses, but both approaches are equally powerful
and flexible. However, the use of virtual methods affects code size and memory.

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 104

http://www.sybex.com

105

NOTE The compiler has to generate stub routines to fix up the interface call entry points to the
matching method of the implementing class, and adjust the self pointer. The interface
method stubs for static methods are very simple: adjust self and jump to the real method in
the class. The interface method stubs for virtual methods are much more complicated, requir-
ing about four times more code (20 to 30 bytes) in each stub than the static case. Also, adding
more virtual methods to the implementing class just bloats the virtual method table (VMT) that
much more in the implementing class and all its descendents. Interfaces already have their
own VMT, and redeclaring interfaces in descendents to rebind the interface to new methods in
the descendent is just as polymorphic as using virtual methods, but much smaller in code size.

Now that we have defined an implementation of the interface, we can write some code to
use an object of this class, as usual:

var
Airplane1: TAirplane;

begin
Airplane1 := TAirplane.Create;
Airplane1.Fly;
Airplane1.Free;

end;

But we can also use an interface-type variable:
var
Flyer1: ICanFly;

begin
Flyer1 := TAirplane.Create;
Flyer1.Fly;

end;

As soon as you assign an object to an interface-type variable, Delphi automatically checks
to see whether the object implements that interface, using the as operator. You can explicitly
express this operation as follows:

Flyer1 := TAirplane.Create as ICanFly;

NOTE The compiler generates different code for the as operator when used with interfaces or with
classes. With classes, the compiler introduces run-time checks to verify that the object is effec-
tively “type-compatible” with the given. With interfaces, the compiler sees at compile time
that it can extract the necessary interface from the available class type, so it does. This opera-
tion is like a “compile-time as,” not something that exists at run time.

Whether we use the direct assignment or the as statement, Delphi does one extra thing:
it calls the _AddRef method of the object (defined by IInterface and implemented by
TInterfacedObject), increasing its reference count. At the same time, as soon as the

Using Interfaces

2874c03.qxd 7/2/01 4:09 PM Page 105

http://www.sybex.com

106

Flyer1 variable goes out of scope, Delphi calls the _Release method (again part of IInterface),
which decreases the reference count, checks whether the reference count is zero, and if
necessary, destroys the object. For this reason in the listing above, there is no code to free the
object we’ve created.

In other words, in Delphi, objects referenced by interface variables are reference-counted,
and they are automatically de-allocated when no interface variable refers to them any more.

WARNING When using interface-based objects, you should generally access them only with object vari-
ables or only with interface variables. Mixing the two approaches breaks the reference count-
ing scheme provided by Delphi and can cause memory errors that are extremely difficult to
track. In practice, if you’ve decided to use interfaces, you should probably use exclusively inter-
face-based variables.

Interface Properties, Delegation, Redefinitions,
Aggregation, and Reference Counting Blues
To demonstrate a few technical elements related to interfaces, I’ve written the IntfDemo
example. This example is based on two different interfaces, IWalker and IJumper, defined as
follows:

IWalker = interface
[‘{0876F200-AAD3-11D2-8551-CCA30C584521}’]
function Walk: string;
function Run: string;
procedure SetPos (Value: Integer);
function GetPos: Integer;

property Position: Integer read GetPos write SetPos;
end;

IJumper = interface
[‘{0876F201-AAD3-11D2-8551-CCA30C584521}’]
function Jump: string;
function Walk: string;
procedure SetPos (Value: Integer);
function GetPos: Integer;

property Position: Integer read GetPos write SetPos;
end;

Notice that the first interface also defines a property. An interface property is just a name
mapped to a read and a write method. You cannot map an interface property to a field, simply
because an interface cannot have a data field.

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 106

http://www.sybex.com

107

Here comes a sample implementation of the IWalker interface. Notice that you don’t have
to define the property, only its access methods:

TRunner = class (TInterfacedObject, IWalker)
private
Pos: Integer;

public
function Walk: string;
function Run: string;
procedure SetPos (Value: Integer);
function GetPos: Integer;

end;

The code is trivial, so I’m going to skip it (you can find it in the IntfDemo example, where
there is also a destructor showing a message, used to verify that reference counting works
properly). I’ve implemented the same interface also in another class, TAthlete, that I’ll dis-
cuss in a second.

As I want to implement also the IJumper interface in two different classes, I’ve followed a
different approach. Delphi allows you to delegate the implementation of an interface inside a
class to an object exposed with a property. In other words, I want to share the actual imple-
mentation code for an interface implemented by several unrelated classes.

To support this technique, Delphi has a special keyword, implements. For example, you
can write:

TMyJumper = class (TInterfacedObject, IJumper)
private
fJumpImpl: IJumper;

public
constructor Create;
property Jumper: IJumper read fJumpImpl implements IJumper;

end;

In this case the property refers to an interface variable, but you can also use a plain object
variable (my preferred approach). The constructor is required for initializing the internal
implementation object:

constructor TMyJumper.Create;
begin
fJumpImpl := TJumperImpl.Create;

end;

As a first attempt (and in the last edition of the book), I defined the implementation class as
follows:

TJumperImpl = class (TInterfacedObject, IJumper)
private
Pos: Integer;

public
function Jump: string;

Using Interfaces

2874c03.qxd 7/2/01 4:09 PM Page 107

http://www.sybex.com

108

function Walk: string;
procedure SetPos (Value: Integer);
function GetPos: Integer;

end;

If you try this code, the program will compile and everything will run smoothly, until you
try to check out what happens with reference counting. It won’t work, period. The problem
lies in the fact that when the program extracts the IJumper interface from the TMyJumper object,
it actually increases and decreases the reference counting of the inner object, instead of the
external one. In other words, you have a single compound object and two separate reference
counts going on. This can lead to objects being both kept in memory and released too soon.

The solution to this problem is to have a single reference count, by redirecting the _AddRef
and _Release calls of the internal object to the external one (actually we need to do the same
also for QueryInterface). In the example, I’ve used the TAggregatedObject provided in
Delphi 6 by the system unit; refer to the sidebar “Implementing Aggregates” for more details.

As a result of this approach, the implementation class is now defined as follows:
TJumperImpl = class (TAggregatedObject, IJumper)
private
Pos: Integer;

public
function Jump: string;
function Walk: string;
procedure SetPos (Value: Integer);
function GetPos: Integer;

property Position: Integer read GetPos write SetPos;
end;

An object using this class for implementing the IJumper interface must have a Create con-
structor, to create the internal object, and a destructor, to destroy it. The constructor of the
aggregate object requires the container object as parameter, so that it can redirect back the
IInterface calls. The key element, of course, is the property mapped to the interface with
the implements keyword:

TMyJumper = class (TInterfacedObject, IJumper)
private
fJumpImpl: TJumperImpl;

public
constructor Create;
property Jumper: TJumperImpl read fJumpImpl implements IJumper;
destructor Destroy; override;

end;

constructor TMyJumper.Create;
begin
fJumpImpl := TJumperImpl.Create (self);

end;

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 108

http://www.sybex.com

109

This example is simple, but in general, things get more complex as you start to modify
some of the methods or add other methods that still operate on the data of the internal
fJumpImpl object. This final step is demonstrated, along with other features, by the TAthlete
class, which implements both the IWalker and IJumper interfaces:

TAthlete = class (TInterfacedObject, IWalker, IJumper)
private
fJumpImpl: TJumperImpl;

public
constructor Create;
destructor Destroy; override;
function Run: string; virtual;
function Walk1: string; virtual;
function IWalker.Walk = Walk1;
procedure SetPos (Value: Integer);
function GetPos: Integer;

property Jumper: TJumperImpl read fJumpImpl implements IJumper;
end;

One of the interfaces is implemented directly, whereas the other is delegated to the inter-
nal fJumpImpl object. Notice also that by implementing two interfaces that have a method in
common, we end up with a name clash. The solution is to rename one of the methods, with
the statement

function IWalker.Walk = Walk1;

This declaration indicates that the class implements the Walk method of the IWalker inter-
face with a method called Walk1 (instead of with a method having the same name). Finally, in
the implementation of all of the methods of this class, we need to refer to the Position prop-
erty of the fJumpImpl internal object. By declaring a new implementation for the Position
property, we’ll end up with two positions for a single athlete, a rather odd situation. Here are
a couple of examples:

function TAthlete.GetPos: Integer;
begin
Result := fJumpImpl.Position;

end;

function TAthlete.Run: string;
begin
fJumpImpl.Position := fJumpImpl.Position + 2;
Result := IntToStr (fJumpImpl.Position) + ‘: Run’;

end;

You can further experiment with the IntfDemo example, which has a simple form with
buttons to create and call methods of the various objects. Nothing fancy, though, as you can
see in Figure 3.4. Simply keep in mind that each call returns the position after the requested

Using Interfaces

2874c03.qxd 7/2/01 4:09 PM Page 109

http://www.sybex.com

110

movement and a description of the movement itself. Also, each object notifies with a message
when it is destroyed.

Implementing Aggregates
As mentioned, when you want to use an internal object to implement an interface, you are
faced with reference counting problems. Of course, you can provide your own version of the
_AddRef and _Release methods of IInterface, but having a ready-to-use solution might
help. In fact, QueryInterface on the internal object must also be reflected to the outer
object. The user of the interface (whether it works on the outer object or the internal one)
should never be able to discern any difference in behavior between _AddRef, _Release, and
QueryInterface calls on the aggregated interface and any other interface obtained from the
implementing class.

Borland provides a solution to this problem with the TAggregatedObject class. In past version of
Delphi, this was defined in the ComObj unit, but now it has been moved into the System unit, to
make this feature also available to Linux and to separate it completely from COM support.

The TAggregatedObject class keeps a reference to the controller, the external object, passed as
parameter in the constructor. This weak reference is kept using a pointer type variable to avoid
artificially increasing the reference count of the controller from the aggregated object, something
that will prevent the object’s reference count from reaching zero. You create an object of this type
(used as internal object) passing the reference to the controller (the external object), and all of the
IInterface methods are passed back to the controller. A similar class, TContainedObject, lets
the controller resolve reference counting, but handles the QueryInterface call internally, limit-
ing the type resolution only to interfaces supported by the internal object.

F I G U R E 3 . 4 :
The IntfDemo example

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 110

http://www.sybex.com

111

Working with Exceptions
Another key feature of Object Pascal I’ll cover in this chapter is the support for exceptions. The
idea of exceptions is to make programs more robust by adding the capability of handling soft-
ware or hardware errors in a uniform way. A program can survive such errors or terminate
gracefully, allowing the user to save data before exiting. Exceptions allow you to separate the
error-handling code from your normal code, instead of intertwining the two. You end up writ-
ing code that is more compact and less cluttered by maintenance chores unrelated to the
actual programming objective.

Another benefit is that exceptions define a uniform and universal error-reporting mechanism,
which is also used by Delphi components. At run time, Delphi raises exceptions when some-
thing goes wrong (in the run-time code, in a component, in the operating system). From the
point of the code in which it is raised, the exception is passed to its calling code, and so on.
Ultimately, if no part of your code handles the exception, Delphi handles it, by displaying a
standard error message and trying to continue the program, by handing the next system mes-
sage or user request.

The whole mechanism is based on four keywords:

try delimits the beginning of a protected block of code.

except delimits the end of a protected block of code and introduces the exception-han-
dling statements, with this syntax form:

on exception-type do statement

finally is used to specify blocks of code that must always be executed, even when excep-
tions occur. This block is generally used to perform cleanup operations that should always
be executed, such as closing files or database tables, freeing objects, and releasing memory
and other resources acquired in the same program block.

raise is the statement used to generate an exception. Most exceptions you’ll encounter in
your Delphi programming will be generated by the system, but you can also raise excep-
tions in your own code when it discovers invalid or inconsistent data at run time. The
raise keyword can also be used inside a handler to re-raise an exception; that is, to propa-
gate it to the next handler.

The most important element to notice up front is that exception handling is no substitute
for if statements or for tests on input parameters of functions. So in theory we could write
this code:

function DivideTwicePlusOne (A, B: Integer): Integer;
begin
try
// error if B equals 0
Result := A div B;

Working with Exceptions

2874c03.qxd 7/2/01 4:09 PM Page 111

http://www.sybex.com

112

// do something else... skip if exception is raised
Result := Result div B;
Result := Result + 1;

except
on EDivByZero do
Result := 0;

end;
end;

In practice, however, this is certainly not a good way of writing your programs. The except
block above, like most of the except blocks of the simple examples presented here, has almost
no sense at all. In the code above, you should probably not handle the exception but let the
program display the error message to the user. An algorithm calling this DivideTwicePlusOne
function should not continue (with a meaningless zero value) when this internal error is
encountered.

Program Flow and the finally Block
But how do we stop the algorithm? The power of exceptions in Delphi relates to the fact that
they are “passed” from a routine or method to the calling one, up to a global handler (if the
program provides one, as Delphi applications generally do). So the real problem you might
have is not how to stop an exception but how to execute some code when an exception is
raised.

Consider this method (part of the TryFinally example from the CD), which performs some
time-consuming operations and uses the hourglass cursor to show the user that it’s doing
something:

procedure TForm1.BtnWrongClick(Sender: TObject);
var
I, J: Integer;

begin
Screen.Cursor := crHourglass;
J := 0;
// long (and wrong) computation...
for I := 1000 downto 0 do
J := J + J div I;

MessageDlg (‘Total: ‘ + IntToStr (J), mtInformation, [mbOK], 0);
Screen.Cursor := crDefault;

end;

Because there is an error in the algorithm (as the variable I can reach a value of 0 and is
also used in a division), the program will break, but it won’t reset the default cursor. This is
what a try/finally block is for:

procedure TForm1.BtnTryFinallyClick(Sender: TObject);
var
I, J: Integer;

begin

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 112

http://www.sybex.com

113

Screen.Cursor := crHourglass;
J := 0;
try
// long (and wrong) computation...
for I := 1000 downto 0 do
J := J + J div I;

MessageDlg (‘Total: ‘ + IntToStr (J), mtInformation, [mbOK], 0);
finally
Screen.Cursor := crDefault;

end;
end;

When the program executes this function, it always resets the cursor, whether an exception
(of any sort) occurs or not.

This code doesn’t handle the exception; it merely makes the program robust in case an
exception is raised. As a try block can be followed by either an except or a finally statement,
but not both of them at the same time, the typical solution if you want to also handle the
exception is to use two nested try blocks. In this case, you associate the internal one with a
finally statement and the external one with an except statement, or vice versa as the situa-
tion requires. Here is the code of this third button of the TryFinally example:

procedure TForm1.BtnTryTryClick(Sender: TObject);
var
I, J: Integer;

begin
Screen.Cursor := crHourglass;
J := 0;
try try
// long (and wrong) computation...
for I := 1000 downto 0 do
J := J + J div I;

MessageDlg (‘Total: ‘ + IntToStr (J), mtInformation, [mbOK], 0);
finally
Screen.Cursor := crDefault;

end;
except
on E: EDivByZero do
begin
// re-raise the exception with a new message
raise Exception.Create (‘Error in Algorithm’);

end;
end;

end;

Every time you have some finalization code at the end of a method, you should place this
code in a finally block. You should always, invariably, and continuously (how can I stress
this more?) protect your code with finally statements, to avoid resource or memory leaks in
case an exception is raised.

Working with Exceptions

2874c03.qxd 7/2/01 4:09 PM Page 113

http://www.sybex.com

114

TIP Handling the exception is generally much less important than using finally blocks, since Del-
phi can survive most of them. And too many exception-handling blocks in your code probably
indicate errors in the program flow and possibly a misunderstanding of the role of exceptions
in the language. In the examples in the rest of the book you’ll see many try/finally blocks,
a few raise statements, and almost no try/except blocks.

Exception Classes
In exception-handling statements shown earlier, we caught the EDivByZero exception, which
is defined by Delphi’s RTL. Other such exceptions refer to run-time problems (such as a
wrong dynamic cast), Windows resource problems (such as out-of-memory errors), or com-
ponent errors (such as a wrong index). Programmers can also define their own exceptions;
you can create a new subclass of the default exception class or one of its subclasses:

type
EArrayFull = class (Exception);

When you add a new element to an array that is already full (probably because of an error in
the logic of the program), you can raise the corresponding exception by creating an object of
this class:

if MyArray.Full then
raise EArrayFull.Create (‘Array full’);

This Create method (inherited from the Exception class) has a string parameter to describe the
exception to the user. You don’t need to worry about destroying the object you have created for
the exception, because it will be deleted automatically by the exception-handler mechanism.

The code presented in the previous excerpts is part of a sample program, called Exception1.
Some of the routines have actually been slightly modified, as in the following DivideTwicePlusOne
function:

function DivideTwicePlusOne (A, B: Integer): Integer;
begin
try
// error if B equals 0
Result := A div B;
// do something else... skip if exception is raised
Result := Result div B;
Result := Result + 1;

except
on EDivByZero do
begin
Result := 0;
MessageDlg (‘Divide by zero corrected.’, mtError, [mbOK], 0);

end;
on E: Exception do
begin
Result := 0;

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 114

http://www.sybex.com

115

MessageDlg (E.Message, mtError, [mbOK], 0);
end;

end; // end except
end;

Debugging and Exceptions
When you start a program from the Delphi environment (for example, by pressing the F9 key),
you’ll generally run it within the debugger. When an exception is encountered, the debugger
will stop the program by default. This is normally what you want, of course, because you’ll
know where the exception took place and can see the call of the handler step-by-step. You can
also use the Stack Trace feature of Delphi to see the sequence of function and method calls,
which caused the program to raise an exception.

In the case of the Exception1 test program, however, this behavior will confuse the program’s
execution. In fact, even if the code is prepared to properly handle the exception, the debugger
will stop the program execution at the source code line closest to where the exception was
raised. Then, moving step-by-step through the code, you can see how it is handled.

If you just want to let the program run when the exception is properly handled, run the pro-
gram from Windows Explorer, or temporarily disable the Stop on Delphi Exceptions options in
the Language Exceptions page of the Debugger Options dialog box (activated by the Tools ➢
Debugger Options command), shown in the Language Exceptions page of the Debugger
Options dialog box shown here.

Working with Exceptions

2874c03.qxd 7/2/01 4:09 PM Page 115

http://www.sybex.com

116

In the Exception1 code there are two different exception handlers after the same try block. You
can have any number of these handlers, which are evaluated in sequence. For this reason, you
need to place the broader handlers (the handlers of the ancestor Exception classes) at the end.

In fact, using a hierarchy of exceptions, a handler is also called for the subclasses of the
type it refers to, as any procedure will do. This is polymorphism in action again. But keep in
mind that using a handler for every exception, such as the one above, is not usually a good
choice. It is better to leave unknown exceptions to Delphi. The default exception handler in
the VCL displays the error message of the exception class in a message box, and then resumes
normal operation of the program. You can actually modify the normal exception handler with
the Application.OnException event, as demonstrated in the ErrorLog example later in this
chapter.

Another important element of the code above is the use of the exception object in the
handler (see on E: Exception do). The object E of class Exception receives the value of the
exception object passed by the raise statement. When you work with exceptions, remember
this rule: You raise an exception by creating an object and handle it by indicating its type.
This has an important benefit, because as we have seen, when you handle a type of exception,
you are really handling exceptions of the type you specify as well as any descendant type.

Delphi defines a hierarchy of exceptions, and you can choose to handle each specific type
of exception in a different way or handle groups of them together.

Logging Errors
Most of the time, you don’t know which operation is going to raise an exception, and you
cannot (and should not) wrap each and every piece of code in a try/except block. The gen-
eral approach is to let Delphi handle all the exceptions and eventually pass them all to you,
by handling the OnException event of the global Application object. This can be done rather
easily with the ApplicationEvents component.

In the ErrorLog example, I’ve added to the main form a copy of the ApplicationEvents
component and added a handler for its OnException event:

procedure TFormLog.LogException(Sender: TObject; E: Exception);
var
Filename: string;
LogFile: TextFile;

begin
// prepares log file
Filename := ChangeFileExt (Application.Exename, ‘.log’);
AssignFile (LogFile, Filename);
if FileExists (FileName) then
Append (LogFile) // open existing file

else
Rewrite (LogFile); // create a new one

// write to the file and show error

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 116

http://www.sybex.com

117

Writeln (LogFile, DateTimeToStr (Now) + ‘:’ + E.Message);
if not CheckBoxSilent.Checked then
Application.ShowException (E);

// close the file
CloseFile (LogFile);

end;

NOTE The ErrorLog example uses the text file support provided by the traditional Turbo Pascal
TextFile data type. You can assign a text file variable to an actual file and then read or write it.
You can find more on TextFile operations in Chapter 12 of Essential Pascal, available on the
companion CD.

In the global exceptions handler, you can write to the log, for example, the date and time
of the event, and also decide whether to show the exception as Delphi usually does (executing
the ShowException method of the TApplication class). In fact, Delphi by default executes
ShowException only if there is no OnException handler installed.

Finally, remember to close the file, flushing the buffers, every time the exception is handled
or when the program terminates. I’ve chosen the first approach to avoid keeping the log file
open for the lifetime of the application, potentially making it difficult to work on it. You can
accomplish this in the OnDestroy event handler of the form:

procedure TFormLog.FormDestroy(Sender: TObject);
begin
CloseFile (LogFile);

end;

The form of the program includes a check box to determine its behavior and two buttons
generating exceptions. In Figure 3.5, you can see the ErrorLog program running and a sample
exceptions log open in Notepad.

F I G U R E 3 . 5 :
The ErrorLog example and
the log it produces

Working with Exceptions

2874c03.qxd 7/2/01 4:09 PM Page 117

http://www.sybex.com

118

Class References
The final language feature I want to discuss in this chapter is class references, which implies the
idea of manipulating classes themselves (not just class instances) within your code. The first
point to keep in mind is that a class reference isn’t a class, it isn’t an object, and it isn’t a refer-
ence to an object; it is simply a reference to a class type.

A class reference type determines the type of a class reference variable. Sounds confusing?
A few lines of code might make this a little clearer. Suppose you have defined the class TMy-
Class. You can now define a new class reference type, related to that class:

type
TMyClassRef = class of TMyClass;

Now you can declare variables of both types. The first variable refers to an object, the second
to a class:

var
AClassRef: TMyClassRef;
AnObject: TMyClass;

begin
AClassRef := TMyClass;
AnObject := TMyClass.Create;

You may wonder what class references are used for. In general, class references allow you
to manipulate a class data type at run time. You can use a class reference in any expression
where the use of a data type is legal. Actually, there are not many such expressions, but the
few cases are interesting. The simplest case is the creation of an object. We can rewrite the
two lines above as follows:

AClassRef := TMyClass;
AnObject := AClassRef.Create;

This time I’ve applied the Create constructor to the class reference instead of to an actual
class; I’ve used a class reference to create an object of that class.

NOTE Class references remind us of the concept of metaclass available in other OOP languages. In
Object Pascal, however, a class reference is not itself a class but only a type pointer. Therefore,
the analogy with metaclasses (classes describing other classes) is a little misleading. Actually,
TMetaclass is also the term used in Borland C++Builder.

Class reference types wouldn’t be as useful if they didn’t support the same type-compatibility
rule that applies to class types. When you declare a class reference variable, such as MyClassRef
above, you can then assign to it that specific class and any subclass. So if MyNewClass is a sub-
class of my class, you can also write

AClassRef := MyNewClass;

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 118

http://www.sybex.com

119

Delphi declares a lot of class references in the run-time library and the VCL, including the
following:

TClass = class of TObject;
ExceptClass = class of Exception;
TComponentClass = class of TComponent;
TControlClass = class of TControl;
TFormClass = class of TForm;

In particular, the TClass class reference type can be used to store a reference to any class you
write in Delphi, because every class is ultimately derived from TObject. The TFormClass refer-
ence, instead, is used in the source code of most Delphi projects. The CreateForm method of
the Application object, in fact, requires as parameter the class of the form to create:

Application.CreateForm(TForm1, Form1);

The first parameter is a class reference; the second is a variable that stores a reference to the
created object instance.

Finally, when you have a class reference you can apply to it the class methods of the related
class. Considering that each class inherits from TObject, you can apply to each class reference
some of the methods of TObject, as we’ll see in the next chapter.

Creating Components Using Class References
What is the practical use of class references in Delphi? Being able to manipulate a data type at
run time is a fundamental element of the Delphi environment. When you add a new compo-
nent to a form by selecting it from the Component Palette, you select a data type and create
an object of that data type. (Actually, that is what Delphi does for you behind the scenes.) In
other words, class references give you polymorphism for object construction.

To give you a better idea of how class references work, I’ve built an example named ClassRef.
The form displayed by this example is quite simple. It has three radio buttons, placed inside a
panel in the upper portion of the form. When you select one of these radio buttons and click
the form, you’ll be able to create new components of the three types indicated by the button
labels: radio buttons, push buttons, and edit boxes.

To make this program run properly, you need to change the names of the three compo-
nents. The form must also have a class reference field:

private
ClassRef: TControlClass;
Counter: Integer;

The first field stores a new data type every time the user clicks one of the three radio buttons.
Here is one of the three methods:

procedure TForm1.RadioButtonRadioClick(Sender: TObject);
begin
ClassRef := TRadioButton;

end;

Class References

2874c03.qxd 7/2/01 4:09 PM Page 119

http://www.sybex.com

120

The other two radio buttons have OnClick event handlers similar to this one, assigning the
value TEdit or TButton to the ClassRef field. A similar assignment is also present in the han-
dler of the OnCreate event of the form, used as an initialization method.

The interesting part of the code is executed when the user clicks the form. Again, I’ve cho-
sen the OnMouseDown event of the form to hold the position of the mouse click:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var
NewCtrl: TControl;
MyName: String;

begin
// create the control
NewCtrl := ClassRef.Create (Self);
// hide it temporarily, to avoid flickering
NewCtrl.Visible := False;
// set parent and position
NewCtrl.Parent := Self;
NewCtrl.Left := X;
NewCtrl.Top := Y;
// compute the unique name (and caption)
Inc (Counter);
MyName := ClassRef.ClassName + IntToStr (Counter);
Delete (MyName, 1, 1);
NewCtrl.Name := MyName;
// now show it
NewCtrl.Visible := True;

end;

The first line of the code for this method is the key. It creates a new object of the class data
type stored in the ClassRef field. We accomplish this simply by applying the Create con-
structor to the class reference. Now you can set the value of the Parent property, set the
position of the new component, give it a name (which is automatically used also as Caption
or Text), and make it visible.

Notice in particular the code used to build the name; to mimic Delphi’s default naming con-
vention, I’ve taken the name of the class with the expression ClassRef.ClassName, using a class
method of the TObject class. Then I’ve added a number at the end of the name and removed
the initial letter of the string. For the first radio button, the basic string is TRadioButton,
plus the 1 at the end, and minus the T at the beginning of the class name—RadioButton1.
Sound familiar?

You can see an example of the output of this program in Figure 3.6. Notice that the nam-
ing is not exactly the same as used by Delphi. Delphi uses a separate counter for each type of

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 120

http://www.sybex.com

121

control; I’ve used a single counter for all of the components. If you place a radio button, a
push button, and an edit box in a form of the ClassRef example, their names will be
RadioButton1, Button2, and Edit3.

NOTE For polymorphic construction to work, the base class type of the class reference must have a vir-
tual constructor. If you use a virtual constructor (as in the example), the constructor call applied
to the class reference will call the constructor of the type that the class reference variable
currently refers to. But without a virtual constructor, your code will call the constructor of fixed
class type indicated in the class reference declaration. Virtual constructors are required for poly-
morphic construction in the same way that virtual methods are required for polymorphism.

What’s Next?
In this chapter, we have discussed the more advanced elements of object-oriented program-
ming in Object Pascal. We have considered inheritance, virtual and abstract methods, poly-
morphism, safe typecasting, interfaces, exceptions, and class references.

Understanding the secrets of Object Pascal and the structure of the Delphi library is vital
for becoming an expert Delphi programmer. These topics form the foundation of working
with the VCL and CLX class libraries; after exploring them in the next two chapters, we’ll
finally go on in Part II of the book to explore the development of real applications using all
the various components provided by Delphi.

F I G U R E 3 . 6 :
An example of the output
of the ClassRef example

What’s Next?

2874c03.qxd 7/2/01 4:09 PM Page 121

http://www.sybex.com

122

In the meantime, the next chapter will give you an over view of the Delphi run-time library,
mainly a collection of functions with little OOP involved. The RTL is an assorted collection
of routines and tasks for performing basic tasks with Delphi, and it has been largely extended
in Delphi 6.

Chapter 5 will give you more information about the Object Pascal language, discussing
features related to the structure of the Delphi class library, such as the effect of the published
keyword and the role of events. The chapter, as a whole, will discuss the overall architecture
of the component library.

Chapter 3 • The Object Pascal Language: Inheritance and Polymorphism

2874c03.qxd 7/2/01 4:09 PM Page 122

http://www.sybex.com

4CH A P T E R

The Run-Time Library

� Overview of the RTL

� New Delphi 6 RTL functions

� The conversion engine

� Dates, strings, and other new RTL units

� The TObject class

� Showing class information at run time

2874c04.qxd 7/3/01 1:14 PM Page 123

http://www.sybex.com

124

Delphi uses Object Pascal as its programming language and favors an object-oriented
approach, tied with a visual development style. This is where Delphi shines, and we will
cover component-based and visual development in this book; however, I want to underline
the fact that a lot of ready-to-use features of Delphi come from its run-time library, or RTL
for short. This is a large collection of functions you can use to perform simple tasks, as well
as some complex ones, within your Pascal code. (I use “Pascal” here, because the run-time
library mainly contains procedures and functions and not classes and objects.)

There is actually a second reason to devote this chapter of the book to the run-time library:
Delphi 6 sees a large number of enhancements to this area. There are new groups of func-
tions, functions have been moved to new units, and other elements have changed, creating a
few incompatibilities with existing code. So even if you’ve used past versions of Delphi and
feel confident with the RTL, you should still read at least portions of this chapter.

The Units of the RTL
As I mentioned above, in Delphi 6 the RTL (run-time library) has a new structure and several
new units. The reason for adding new units is that many new functions were added. In most
cases, you’ll find the existing functions in the units where they used to be, but the new func-
tions will appear in specific units. For example, new functions related to dates are now in the
DateUtils unit, but existing date functions have not been moved away from SysUtils in order
to avoid incompatibilities with existing code.

The exception to this rule relates to some of the variant support functions, which were
moved out of the System unit to avoid unwanted linkage of specific Windows libraries, even
in programs that didn’t use those features. These variant functions are now part of the new
Variants unit, described later in the chapter.

WARNING Some of your existing Delphi code might need to use this new Variants unit to recompile. Del-
phi 6 is smart enough to acknowledge this and auto-include the Variants unit in projects that
use the Variant type, issuing only a warning.

A little bit of fine-tuning has also been applied to reduce the minimum size of an executable
file, at times enlarged by the unwanted inclusion of global variables or initialization code.

Executable Size under the Microscope
While touching up the RTL, Borland engineers have been able to trim a little “fat” out of each
and every Delphi application. Reducing the minimum program size of a few KB seems quite
odd, with all the bloated applications you find around these days, but it is a good service to
developers. There are cases in which even few KB (multiplied by many applications) can reduce
size and eventually download time.

Chapter 4 • The Run-Time Library

Continued on next page

2874c04.qxd 7/3/01 1:14 PM Page 124

http://www.sybex.com

125

As a simple test, I’ve built the MiniSize program, which is not an attempt to build the smallest
possible program, but rather an attempt to build a very small program that does something
interesting: It reports the size of its own executable file. All of the code of this example is in the
source code on the companion CD:

program MiniSize;

uses

Windows;

{$R *.RES}

var

nSize: Integer;

hFile: THandle;

strSize: String;

begin

// open the current file and read the size

hFile := CreateFile (PChar (ParamStr (0)),

0, FILE_SHARE_READ, nil, OPEN_EXISTING, 0, 0);

nSize := GetFileSize (hFile, nil);

CloseHandle (hFile);

// copy the size to a string and show it

SetLength (strSize, 20);

Str (nSize, strSize);

MessageBox (0, PChar (strSize),

‘Mini Program’, MB_OK);

end.

The program opens its own executable file, after retrieving its name from the first command-
line parameter (ParamStr (0)), extracts the size, converts it into a string using the simple Str
function, and shows the result in a message. The program does not have top-level windows.
Moreover, I use the Str function for the integer-to-string conversion to avoid including SysU-
tils, which defines all the more complex formatting routines and would impose a little extra
overhead.

If you compile this program with Delphi 5, you obtain an executable size of 18,432 bytes. Del-
phi 6 reduces this size to only 15,360 bytes, trimming about 3 KB. Replacing the long string
with a short string, and modifying the code a little, you can trim down the program further, up
to 9,216 bytes. This is because you’ll end up removing the string support routines and also the
memory allocator, something possible only in programs using exclusively low-level calls. You
can find both versions in the source code of the example.

The Units of the RTL

Continued on next page

2874c04.qxd 7/3/01 1:14 PM Page 125

http://www.sybex.com

126

Notice, anyway, that decisions of this type always imply a few trade-offs. In eliminating the
overhead of variants from Delphi applications that don’t use them, for example, Borland added
a little extra burden to applications that do. The real advantage of this operation, though, is in
the reduced memory footprint of Delphi applications that do not use variants, as a result of not
having to bring in several megabytes of the Ole2 system libraries.

What is really important, in my opinion, is the size of full-blown Delphi applications based on
run-time packages. A simple test with a do-nothing program, the MiniPack example, shows
an executable size of 15,972 bytes.

In the following sections is a list of the RTL units in Delphi 6, including all the units available
(with the complete source code) in the Source\Rtl\Sys subfolder of the Delphi directory and
some of those available in the new subfolder Source\Rtl\Common. This new directory hosts the
source code of units that make up the new RTL package, which comprises both the function-
based library and the core classes, discussed in the next chapter.

NOTE The VCL50 package has now been split into the VCL and RTL packages, so that nonvisual
applications using run-time packages don’t have the overhead of also deploying visual por-
tions of the VCL. Also, this change helps with Linux compatibility, as the new package is
shared between the VCL and CLX libraries. Notice also that the package names in Delphi 6
don’t have the version number in their name anymore. When they are compiled, though, the
BPL does have the version in its file name, as discussed in more detail in Chapter 12.

I’ll give a short overview of the role of each unit and an overview of the groups of functions
included. I’ll also devote more space to the new Delphi 6 units. I won’t provide a detailed list
of the functions included, because the online help includes similar reference material. How-
ever, I’ve tried to pick a few interesting or little-known functions, and I will discuss them
shortly.

The System and SysInit Units
System is the core unit of the RTL and is automatically included in any compilation (consid-
ering an automatic and implicit uses statement referring to it). Actually, if you try adding the
unit to the uses statement of a program, you’ll get the compile-time error:

[Error] Identifier redeclared: System

The System unit includes, among other things:

• The TObject class, the base class of any class defined in the Object Pascal language,
including all the classes of the VCL. (This class is discussed later in this chapter.)

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 126

http://www.sybex.com

127

• The IUnknown and IDispatch interfaces as well as the simple implementation class
TInterfacedObject. There are also the new IInterface and IInvokable interfaces.
IInterface was added to underscore the point that the interface type in Delphi’s
Object Pascal language definition is in no way dependent on the Windows operating
system (and never has been). IInvokable was added to support SOAP-based invoca-
tion. (Interfaces and related classes were introduced in the last chapter and will be dis-
cussed further in multiple sections of the book.)

• Some variant support code, including the variant type constants, the TVarData record
type and the new TVariantManager type, a large number of variant conversion routines,
and also variant records and dynamic arrays support. This area sees a lot of changes
compared to Delphi 5. The basic information on variants is provided in Chapter 10 of
Essential Pascal (available on the companion CD), while an introduction to custom vari-
ants is available later in this chapter.

• Many base data types, including pointer and array types and the TDateTime type I’ve
already described in the last chapter.

• Memory allocation routines, such as GetMem and FreeMem, and the actual memory man-
ager, defined by the TMemoryManager record and accessed by the GetMemoryManager and
SetMemoryManager functions. For information, the GetHeapStatus function returns a
THeapStatus data structure. Two new global variables (AllocMemCount and AllocMemSize)
hold the number and total size of allocated memory blocks. There is more on memory
and the use of these functions in Chapter 10.

• Package and module support code, including the PackageInfo pointer type, the
GetPackageInfoTable global function, and the EnumModules procedure (packages inter-
nals are discussed in Chapter 12).

• A rather long list of global variables, including the Windows application instance Main-
Instance; IsLibrary, indicating whether the executable file is a library or a stand-alone
program; IsConsole, indicating console applications; IsMultiThread, indicating whether
there are secondary threads; and the command-line string CmdLine. (The unit includes
also the ParamCount and ParamStr for an easy access to command-line parameters.) Some
of these variables are specific to the Windows platform.

• Thread-support code, with the BeginThread and EndThread functions; file support
records and file-related routines; wide string and OLE string conversion routines; and
many other low-level and system routines (including a number of automatic conversion
functions).

The companion unit of System, called SysInit, includes the system initialization code, with
functions you’ll seldom use directly. This is another unit that is always implicitly included, as
it is used by the System unit.

The Units of the RTL

2874c04.qxd 7/3/01 1:14 PM Page 127

http://www.sybex.com

128

New in System Unit
I’ve already described some interesting new features of the System unit in the list above, and
most of the changes relate to making the core Delphi RTL more cross-platform portable,
replacing Windows-specific features with generic implementations. Along this line, there are
new names for interface types, totally revised support for variants, new pointer types, dynamic
array support, and functions to customize the management of exception objects.

Another addition for compatibility with Linux relates to line breaks in text files. There is a
new DefaultTextLineBreakStyle variable, which can be set to either tlbsLF or tlbsCRLF, and
a new sLineBreak string constant, which has the value #13#10 in the Windows version of Delphi
and the value #10 in the Linux version. The line break style can also be set on a file-by-file basis
with SetTextLineBreakStyle function.

Finally, the System unit now includes the TFileRec and TTextRec structures, which were
defined in the SysUtils unit in earlier versions of Delphi.

The SysUtils and SysConst Units
The SysConst unit defines a few constant strings used by the other RTL units for displaying
messages. These strings are declared with the resourcestring keyword and saved in the pro-
gram resources. As other resources, they can be translated by means of the Integrated Trans-
lation Manager or the External Translation Manager.

The SysUtils unit is a collection of system utility functions of various types. Different from
other RTL units, it is in large part an operating system–dependent unit. The SysUtils unit
has no specific focus, but it includes a bit of everything, from string management to locale
and multibyte-characters support, from the Exception class and several other derived excep-
tion classes to a plethora of string-formatting constants and routines.

Some of the features of SysUtils are used every day by every programmer as the IntToStr
or Format string-formatting functions; other features are lesser known, as they are the Windows
version information global variables. These indicate the Windows platform (Window 9x or
NT/2000), the operating system version and build number, and the eventual service pack
installed on NT. They can be used as in the following code, extracted from the WinVersion
example on the companion CD:

case Win32Platform of
VER_PLATFORM_WIN32_WINDOWS: ShowMessage (‘Windows 9x’);
VER_PLATFORM_WIN32_NT: ShowMessage (‘Windows NT’);

end;

ShowMessage (‘Running on Windows: ‘ + IntToStr (Win32MajorVersion) + ‘.’ +
IntToStr (Win32MinorVersion) + ‘ (Build ‘ + IntToStr (Win32BuildNumber) +
‘) ‘ + #10#13 + ‘Update: ‘ + Win32CSDVersion);

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 128

http://www.sybex.com

129

The second code fragment produces a message like the one in Figure 4.1, depending, of
course, on the operating-system version you have installed.

Another little-known feature, but one with a rather long name, is a class that supports
multithreading: TMultiReadExclusiveWriteSynchronizer. This class allows you to work with
resources that can be used by multiple threads at the same time for reading (multiread) but
must be used by one single thread when writing (exclusive-write). This means that the writ-
ing cannot start until all the reading threads have terminated.

NOTE The multi-read synchronizer is unique in that it supports recursive locks and promotion of read
locks to write locks. The main purpose of the class is to allow multiple threads easy, fast access
to read from a shared resource, but still allow one thread to gain exclusive control of the
resource for relatively infrequent updates. There are other synchronization classes in Delphi,
declared in the SyncObjs unit and closely mapped to operating-system synchronization objects
(such as events and critical sections in Windows).

New SysUtils Functions
Delphi 6 has some new functions within the SysUtils unit. One of the new areas relates to
Boolean to string conversion. The BoolToStr function generally returns ‘-1’ and ‘0’ for true
and false values. If the second optional parameter is specified, the function returns the first
string in the TrueBoolStrs and FalseBoolStrs arrays (by default ‘TRUE’ and ‘FALSE’):

BoolToStr (True) // returns ‘-1’
BoolToStr (False, True) // returns ‘FALSE’ by default

The reverse function is StrToBool, which can convert a string containing either one of the
values of two Boolean arrays mentioned above or a numeric value. In the latter case, the result
will be true unless the numeric value is zero. You can see a simple demo of the use of the
Boolean conversion functions in the StrDemo example, later in this chapter.

F I G U R E 4 . 1 :
The version information
displayed by the WinVer-
sion example

The Units of the RTL

2874c04.qxd 7/3/01 1:14 PM Page 129

http://www.sybex.com

130

Other new functions of SysUtils relate to floating-point conversions to currency and date
time types: FloatToCurr and FloatToDateTime can be used to avoid an explicit type cast. The
TryStrToFloat and TryStrToCurr functions try to convert a string into a floating point or
currency value and will return False in case of error instead of generating an exception (as
the classic StrToFloat and StrToCurr functions do).

There is an AnsiDequotedStr function, which removes quotes from a string, matching the
AnsiQuoteStr function added in Delphi 5. Speaking of strings, Delphi 6 has much-improved
support for wide strings, with a series of new routines, including WideUpperCase, WideLowerCase,
WideCompareStr, WideSameStr, WideCompareText, WideSameText, and WideFormat. All of these
functions work like their AnsiString counterparts.

Three functions (TryStrToDate, TryEncodeDate, and TryEncodeTime) try to convert a
string to a date or to encode a date or time, without raising an exception, similarly to the Try
functions previously mentioned. In addition, the DecodeDateFully function returns more
detailed information, such as the day of the week, and the CurrentYear function returns the
year of today’s date.

There is a portable, friendly, overloaded version of the GetEnvironmentVariable function.
This new version uses string parameters instead of PChar parameters and is definitely easier
to use:

function GetEnvironmentVariable(Name: string): string;

Other new functions relate to interface support. Two new overloaded versions of the little-
known Support function allow you to check whether an object or a class supports a given
interface. The function corresponds to the behavior of the is operator for classes and is
mapped to the QueryInterface method. Here’s an example in the code of the IntfDemo pro-
gram from Chapter 3:

var
W1: IWalker;
J1: IJumper;

begin
W1 := TAthlete.Create;
// more code...
if Supports (w1, IJumper) then
begin
J1 := W1 as IJumper;
Log (J1.Walk);

end;

There are also an IsEqualGUID function and two functions for converting strings to
GUIDs and vice versa. The function CreateGUID has been moved to SysUtils, as well, to
make it also available on Linux (with a custom implementation, of course).

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 130

http://www.sybex.com

131

Finally, Delphi 6 has some more Linux-compatibility functions. The AdjustLineBreaks
function can now do different types of adjustments to carriage-return and line-feed sequences,
along with the introduction of new global variables for text files in the System unit, as described
earlier. The FileCreate function has an overloaded version in which you can specify file-access
rights the Unix way. The ExpandFileName function can locate files (on case-sensitive file systems)
even when their cases don’t exactly correspond. The functions related to path delimiters (back-
slash or slash) have been made more generic and renamed accordingly. (For example, the
IncludeTralingBackslash function is now better known as IncludingTrailingPathDelimiter.)

The Math Unit
The Math unit hosts a collection of mathematical functions: about forty trigonometric func-
tions, logarithmic and exponential functions, rounding functions, polynomial evaluations,
almost thirty statistical functions, and a dozen financial functions.

Describing all of the functions of this unit would be rather tedious, although some readers
are probably very interested in the mathematical capabilities of Delphi. Here are some of the
newer math functions.

New Math Functions
Delphi 6 adds to the Math unit quite a number of new features. There is support for infinite
constants (Infinity and NegInfinity) and related comparison functions (IsInfinite and
IsNan). There are new trigonometric functions for cosecants and cotangents and new angle-
conversion functions.

A handy feature is the availability of an overloaded IfThen function, which returns one of
two possible values depending on a Boolean expression. (A similar function is now available
also for strings.) You can use it, for example, to compute the minimum of two values:

nMin := IfThen (nA < nB, na, nB);

NOTE The IfThen function is similar to the ?: operator of the C/C++ language, which I find very
handy because you can replace a complete if/then/else statement with a much shorter
expression, writing less code and often declaring fewer temporary variables.

The RandomRange and RandomFrom can be used instead of the traditional Random function to
have more control on the random values produced by the RTL. The first function returns a
number within two extremes you specify, while the second selects a random value from an
array of possible numbers you pass to it as a parameter.

The InRange Boolean function can be used to check whether a number is within two other
values. The EnsureRange function, instead, forces the value to be within the specified range.

The Units of the RTL

2874c04.qxd 7/3/01 1:14 PM Page 131

http://www.sybex.com

132

The return value is the number itself or the lower limit or upper limit, in the event the number
is out of range. Here is an example:

// do something only if value is within min and max
if InRange (value, min, max) then
...

// make sure the value is between min and max
value := EnsureRange (value, min, max);
...

Another set of very useful functions relates to comparisons. Floating-point numbers are
fundamentally inexact; a floating-point number is an approximation of a theoretical real value.
When you do mathematical operations on floating-point numbers, the inexactness of the
original values accumulates in the results. Multiplying and dividing by the same number
might not return exactly the original number but one that is very close to it. The SameValue
function allows you to check whether two values are close enough in value to be considered
equal. You can specify how close the two numbers should be or let Delphi compute a reason-
able error range for the representation you are using. (This is why the function is overloaded.)
Similarly, the IsZero function compares a number to zero, with the same “fuzzy logic.”

The CompareValue function uses the same rule for floating-point numbers but is available
also for integers; it returns one of the three constants LessThanValue, EqualsValue, and
GreaterThanValue (corresponding to –1, 0, and 1). Similarly, the new Sign function returns
–1, 0, and 1 to indicate a negative value, zero, or a positive value.

The DivMod function is equivalent to both div and mod operations, returning the result of
the integer division and the remainder (or modulus) at once. The RoundTo function allows
you to specify the rounding digit—allowing, for example, rounding to the nearest thousand
or to two decimals:

RoundTo (123827, 3); // result is 124,000
RoundTo (12.3827, -2); // result is 12.38

WARNING Notice that the RoundTo function uses a positive number to indicate the power of ten to
round to (for example, 2 for hundreds) or a negative number for the number of decimal
places. This is exactly the opposite of the Round function used by spreadsheets such as Excel.

There are also some changes to the standard rounding operations provided by the Round
function: You can now control how the FPU (the floating-point unit of the CPU) does the
rounding by calling the SetRoundMode function. There are also functions to control the FPU
precision mode and its exceptions.

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 132

http://www.sybex.com

133

The New ConvUtils and StdConvs Units
The new ConvUtils unit contains the core of the conversion engine. It uses the conversion
constants defined by a second unit, StdConvs. I’ll cover these two units later in this chapter,
showing you also how to extend them with new measurement units.

The New DateUtils Unit
The DateUtils unit is a new collection of date and time-related functions. It includes new
functions for picking values from a TDateTime variable or counting values from a given
interval, such as

// pick value
function DayOf(const AValue: TDateTime): Word;
function HourOf(const AValue: TDateTime): Word;
// value in range
function WeekOfYear(const AValue: TDateTime): Integer;
function HourOfWeek(const AValue: TDateTime): Integer;
function SecondOfHour(const AValue: TDateTime): Integer;

Some of these functions are actually quite odd, such as MilliSecondOfMonth or SecondOfWeek,
but Borland developers have decided to provide a complete set of functions, no matter how
impractical they sound. I actually used some of these functions in Chapter 2, to build the
TDate class.

There are functions for computing the initial or final value of a given time interval (day,
week, month, year) including the current date, and for range checking and querying; for
example:

function DaysBetween(const ANow, AThen: TDateTime): Integer;
function WithinPastDays(const ANow, AThen: TDateTime;
const ADays: Integer): Boolean;

Other functions cover incrementing and decrementing by each of the possible time inter-
vals, encoding and “recoding” (replacing one element of the TDateTime value, such as the day,
with a new one), and doing “fuzzy” comparisons (approximate comparisons where a differ-
ence of a millisecond will still make two dates equal). Overall, DateUtils is quite interesting
and not terribly difficult to use.

The New StrUtils Unit
The StrUtils unit is a new unit with some new string-related functions. One of the key features
of this unit is the availability of many new string comparison functions. There are functions
based on a “soundex” algorithm (AnsiResembleText), some providing lookup in arrays of
strings (AnsiMatchText and AnsiIndexText), sub-string location, and replacement (including
AnsiContainsText and AnsiReplaceText).

The Units of the RTL

2874c04.qxd 7/3/01 1:14 PM Page 133

http://www.sybex.com

134

NOTE Soundex is an algorithm to compare names based on how they sound rather then how
they are spelled. The algorithm computes a number for each word sound, so that compar-
ing two such numbers you can determine whether two names sound similar. The system
was first applied 1880 by the U.S. Bureau of the Census, patented in 1918, and is now in
the public domain. The soundex code is an indexing system that translates names into a
four-character code consisting of one letter and three numbers. More information is at
www.nara.gov/genealogy/coding.html.

Beside comparisons, other functions provide a two-way test (the nice IfThen function,
similar to the one we’ve already seen for numbers), duplicate and reverse strings, and
replace sub-strings. Most of these string functions were added as a convenience to Visual
Basic programmers migrating to Delphi.

I’ve used some of these functions in the StrDemo example on the companion CD, which
uses also some of the new Boolean-to-string conversions defined within the SysUtils unit.
The program is actually a little more than a test for a few of these functions. For example, it
uses the “soundex” comparison between the strings entered in two edit boxes, converting the
resulting Boolean into a string and showing it:

ShowMessage (BoolToStr (AnsiResemblesText
(EditResemble1.Text, EditResemble2.Text), True));

The program also showcases the AnsiMatchText and AnsiIndexText functions, after filling
a dynamic array of strings (called strArray) with the values of the strings inside a list box. I
could have used the simpler IndexOf method of the TStrings class, but this would have
defeated the purpose of the example. The two list comparisons are done as follows:

procedure TForm1.ButtonMatchesClick(Sender: TObject);
begin
ShowMessage (BoolToStr (AnsiMatchText(EditMatch.Text, strArray), True));

end;

procedure TForm1.ButtonIndexClick(Sender: TObject);
var
nMatch: Integer;

begin
nMatch := AnsiIndexText(EditMatch.Text, strArray);
ShowMessage (IfThen (nMatch >= 0, ‘Matches the string number ‘ +
IntToStr (nMatch), ‘No match’));

end;

Notice the use of the IfThen function in the last few lines of code, with two alternative out-
put strings, depending on the result of the initial test (nMatch <= 0).

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 134

http://www.sybex.com

135

Three more buttons do simple calls to three other new functions, with the following lines
of code (one for each):

// duplicate (3 times) a string
ShowMessage (DupeString (EditSample.Text, 3));
// reverse the string
ShowMessage (ReverseString (EditSample.Text));
// choose a random string
ShowMessage (RandomFrom (strArray));

The New Types Unit
The Types unit is a new Pascal file holding data types common to multiple operating sys-
tems. In past versions of Delphi, the same types were defined by the Windows unit; now
they’ve been moved to this common unit, shared by Delphi and Kylix. The types defined
here are simple ones and include, among others, the TPoint, TRect, and TSmallPoint record
structures plus their related pointer types.

The New Variants and VarUtils Units
Variants and VarUtils are two new variant-related units. The Variants unit contains generic
code for variants. As mentioned earlier, some of the routines in this unit have been moved here
from the System unit. Functions include generic variant support, variant arrays, variant copy-
ing, and dynamic array to variant array conversions. There is also the TCustomVariantType
class, which defines customizable variant data types.

The Variants unit is totally platform independent and uses the VarUtils unit, which con-
tains OS-dependent code. In Delphi, this unit uses the system APIs to manipulate variant
data, while in Kylix it uses some custom code provided by the RTL library.

Custom Variants and Complex Numbers
The possibility to extend the type system with custom variants is brand new in Delphi 6. It
allows you to define a new data type that, contrary to a class, overloads standard arithmetic
operators.

In fact, a variant is a type holding both type specification and the actual value. A variant can
contain a string, another can contain a number. The system defines automatic conversions
among variant types, allowing you to mix them inside operations (including custom variants).
This flexibility comes at a high cost: operations on variants are much slower than on native
types, and variants use extra memory.

As an example of a custom variant type, Delphi 6 ships with an interesting definition for
complex numbers, found in the VarCmplx unit (available in source-code format in the

The Units of the RTL

2874c04.qxd 7/3/01 1:14 PM Page 135

http://www.sybex.com

136

Rtl\Common folder). You can create complex variants by using one of the overloaded VarComplex-
Create functions and use them in any expression, as the following code fragment demonstrates:

var
v1, v2: Variant;

begin
v1 := VarComplexCreate (10, 12);
v2 := VarComplexCreate (10, 1);
ShowMessage (v1 + v2 + 5);

The complex numbers are actually defined using classes, but they are surfaced as variants
by inheriting a new class from the TCustomVariantType class (defined in the Variants unit),
overriding a few virtual abstract functions, and creating a global object that takes care of the
registration within the system.

Beside these internal definitions, the unit includes a long list of routines for operating on
variant, including mathematical and trigonometric operations. I’ll leave them to your study,
as not all readers may be interested in complex numbers for their programs.

WARNING Building a custom variant is certainly not an easy task, and I can hardly find reasons for using
them instead of objects and classes. In fact, with a custom variant you gain the advantage of
using operator overloading on your own data structures, but you lose compile-time checking,
make the code much slower, miss several OOP features, and have to write a lot of rather com-
plex code.

The DelphiMM and ShareMem Units
The DelphiMM and ShareMem units relate to memory management. The actual Delphi
memory manager is declared in the System unit. The DelphiMM unit defines an alternative
memory manager library to be used when passing strings from an executable to a DLL (a
Windows dynamic linking library), both built with Delphi.

The interface to this memory manager is defined in the ShareMem unit. This is the unit
you must include (compulsory as first unit) in the projects of both your executable and library
(or libraries). Then, you’ll also need to distribute and install the Borlndmm.dll library file
along with your program.

COM-Related Units
ComConts, ComObj, and ComServ provide low-level COM support. As these units are not
really part of the RTL, from my point of view, I won’t discuss them here in any detail. You
can refer to Chapter 20 for all the related information. In any case, these units have not
changed a lot since the last version of Delphi.

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 136

http://www.sybex.com

137

Converting Data
Delphi 6 includes a new conversion engine, defined in the ConvUtils unit. The engine by
itself doesn’t include any definition of actual measurement units; instead, it has a series of
core functions for end users.

The key function is the actual conversion call, the Convert function. You simply provide
the amount, the units it is expressed in, and the units you want it converted into. The follow-
ing would convert a temperature of 31 degrees Celsius to Fahrenheit:

Convert (31, tuCelsius, tuFahrenheit)

An overloaded version of the Convert function allows converting values that have two
units, such as speed (which has both a length and a time unit). For example, you can convert
miles per hours to meters per second with this call:

Convert (20, duMiles, tuHours, duMeters, tuSeconds)

Other functions in the unit allow you to convert the result of an addition or a difference,
check if conversions are applicable, and even list the available conversion families and units.

A predefined set of measurement units is provided in the StdConvs unit. This unit has con-
version families and an impressive number of actual values, as in the following reduced
excerpt:

// Distance Conversion Units
// basic unit of measurement is meters
cbDistance: TConvFamily;

duAngstroms: TConvType;
duMicrons: TConvType;
duMillimeters: TConvType;
duMeters: TConvType;
duKilometers: TConvType;
duInches: TConvType;
duMiles: TConvType;
duLightYears: TConvType;
duFurlongs: TConvType;
duHands: TConvType;
duPicas: TConvType;

This family and the various units are registered in the conversion engine in the initializa-
tion section of the unit, providing the conversion ratios (saved in a series of constants, as
MetersPerInch in the code below):

cbDistance := RegisterConversionFamily(‘Distance’);
duAngstroms := RegisterConversionType(cbDistance, ‘Angstroms’, 1E-10);
duMillimeters := RegisterConversionType(cbDistance, ‘Millimeters’, 0.001);
duInches := RegisterConversionType(cbDistance, ‘Inches’, MetersPerInch);

Converting Data

2874c04.qxd 7/3/01 1:14 PM Page 137

http://www.sybex.com

138

To test the conversion engine, I built a generic example (ConvDemo on the companion
CD) that allows you to work with the entire set of available conversions. The program fills a
combo box with the available conversion families and a list box with the available units of the
active family. This is the code:

procedure TForm1.FormCreate(Sender: TObject);
var
i: Integer;

begin
GetConvFamilies (aFamilies);
for i := Low(aFamilies) to High(aFamilies) do
ComboFamilies.Items.Add (ConvFamilyToDescription (aFamilies[i]));

// get the first and fire event
ComboFamilies.ItemIndex := 0;
ChangeFamily (self);

end;

procedure TForm1.ChangeFamily(Sender: TObject);
var
aTypes: TConvTypeArray;
i: Integer;

begin
ListTypes.Clear;
CurrFamily := aFamilies [ComboFamilies.ItemIndex];
GetConvTypes (CurrFamily, aTypes);
for i := Low(aTypes) to High(aTypes) do
ListTypes.Items.Add (ConvTypeToDescription (aTypes[i]));

end;

The aFamilies and CurrFamily variables are declared in the private section of the form as
follows:

aFamilies: TConvFamilyArray;
CurrFamily: TConvFamily;

At this point, a user can enter two measurement units and an amount in the corresponding
edit boxes of the form, as you can see in Figure 4.2. To make the operation faster, it is actu-
ally possible to select a value in the list and drag it to one of the two Type edit boxes. The
dragging support is described in the sidebar “Simple Dragging in Delphi.”

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 138

http://www.sybex.com

139

Simple Dragging in Delphi
The ConvDemo example I’ve built to show how to use the new conversion engine of Delphi 6
uses an interesting technique: dragging. In fact, you can move the mouse over the list box,
select an item, and then keep the left mouse button pressed and drag the item over one of the
edit boxes in the center of the form.

To accomplish this, I had to set the DragMode property of the list box (the source component)
to dmAutomatic and implement the OnDragOver and OnDragDrop events of the target edit
boxes (the two edit boxes are connected to the same event handlers, sharing the same code).
In the first method, the program indicates that the edit boxes always accept the dragging oper-
ation, regardless of the source. In the second method, the program copies the text selected in
the list box (the Source control of the dragging operation) to the edit box that fired the event
(the Sender object). Here is the code for the two methods:

procedure TForm1.EditTypeDragOver(Sender, Source: TObject;

X, Y: Integer; State: TDragState; var Accept: Boolean);

begin

Accept := True;

end;

procedure TForm1.EditTypeDragDrop(Sender, Source: TObject;

X, Y: Integer);

begin

(Sender as TEdit).Text := (Source as TListBox).Items

[(Source as TListBox).ItemIndex];

end;

F I G U R E 4 . 2 :
The ConvDemo example
at run time

Converting Data

2874c04.qxd 7/3/01 1:14 PM Page 139

http://www.sybex.com

140

The units must match those available in the current family. In case of error, the text of the
Type edit boxes is shown in red. This is the effect of the first part of the DoConvert method of
the form, which is activated as soon as the value of one of the edit boxes for the units or the
amount changes. After checking the types in the edit boxes, the DoConvert method does the
actual conversion, displaying the result in the fourth, grayed edit box. In case of errors, you’ll
get a proper message in the same box. Here is the code:

procedure TForm1.DoConvert(Sender: TObject);
var
BaseType, DestType: TConvType;

begin
// get and check base type
if not DescriptionToConvType(CurrFamily, EditType.Text, BaseType) then
EditType.Font.Color := clRed

else
EditType.Font.Color := clBlack;

// get and check destination type
if not DescriptionToConvType(CurrFamily, EditDestination.Text,

DestType) then
EditDestination.Font.Color := clRed

else
EditDestination.Font.Color := clBlack;

if (DestType = 0) or (BaseType = 0) then
EditConverted.Text := ‘Invalid type’

else
EditConverted.Text := FloatToStr (Convert (
StrToFloat (EditAmount.Text), BaseType, DestType));

end;

If all this is not interesting enough for you, consider that the conversion types provided
serve only as a demo: You can fully customize the engine, by providing the measurement
units you are interested in, as described in the next section.

What About Currency Conversions?
Converting currencies is not exactly the same as converting measurement units, as currency
rates change at very high speed. In theory, you can register a conversion rate with Delphi’s
conversion engine. From time to time, you check the new rate exchange, unregister the existing
conversion, and register a new one. However, keeping up with the actual rate means changing
the conversion so often that the operation might not make a lot of sense. Also, you’ll have to
triangulate conversions: you have to define a base unit (probably the U.S. dollar if you live in
America) and convert to and from this currency even for converting between two different ones.

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 140

http://www.sybex.com

141

What’s more interesting is to use the engine for converting member currencies of the euro,
for two reasons. First, conversion rates are fixed (until the single euro currency actually takes
over). Second, the conversion among euro currencies is legally done by converting a currency
to euros first and then from the euro amount to the other currency, the exact behavior of
Delphi’s conversion engine. There is only a small problem, as you should apply a rounding
algorithm at every step of the conversion. I’ll consider this problem after I’ve provided the
base code for integrating euro currencies with Delphi 6 conversion engine.

NOTE The ConvertIt demo of Delphi 6 provides support for euro conversions, using a slightly differ-
ent rounding approach (which might be more correct or not, I’m not really sure). I’ve decided
to keep this example anyway, as it is instructive in showing how to create a new measurement
system (and I lacked another example as good).

The example, called EuroConv, is actually meant to teach how to register any new mea-
surement unit with the engine. Following the template provided by the StdConvs unit, I’ve
created a new unit (called EuroConvConst) and in the interface portion I’ve declared vari-
ables for the family and the specific units, as follows:

interface

var
// Euro Currency Conversion Units
cbEuroCurrency: TConvFamily;

cuEUR: TConvType;
cuDEM: TConvType; // Germany
cuESP: TConvType; // Spain
cuFRF: TConvType; // France
cuIEP: TConvType; // Ireland
cuITL: TConvType; // Italy
// and so on...

In the implementation portion of the unit, I’ve defined constants for the various official
conversion rates:

implementation

const
DEMPerEuros = 1.95583;
ESPPerEuros = 166.386;
FRFPerEuros = 6.55957;
IEPPerEuros = 0.787564;
ITLPerEuros = 1936.27;
// and so on...

Converting Data

2874c04.qxd 7/3/01 1:14 PM Page 141

http://www.sybex.com

142

Finally, in the unit initialization code I’ve registered the family and the various currencies,
each with its own conversion rate and a readable name:

initialization
// Euro Currency’s family type
cbEuroCurrency := RegisterConversionFamily(‘EuroCurrency’);

cuEUR := RegisterConversionType(
cbEuroCurrency, ‘EUR’, 1);

cuDEM := RegisterConversionType(
cbEuroCurrency, ‘DEM’, 1 / DEMPerEuros);

cuESP := RegisterConversionType(
cbEuroCurrency, ‘ESP’, 1 / ESPPerEuros);

cuFRF := RegisterConversionType(
cbEuroCurrency, ‘FRF’, 1 / FRFPerEuros);

cuIEP := RegisterConversionType(
cbEuroCurrency, ‘IEP’, 1 / IEPPerEuros);

cuITL := RegisterConversionType(
cbEuroCurrency, ‘ITL’, 1 / ITLPerEuros);

NOTE The engine uses as a conversion factor the amount of the base unit to obtain the secondary
ones, with a constant like MetersPerInch, for example. The standard rate of euro currencies
is defined in the opposite way. For this reason, I’ve decided to keep the conversion constants
with the official values (as DEMPerEuros above) and pass them to the engine as fractions
(1/DEMPerEuros).

Having registered this unit, we can now convert 120 German marks to Italian liras by writing:
Convert (120, cuDEM, cuITL)

The demo program actually does a little more, providing two list boxes with the available
currencies, extracted as in the previous example, and edit boxes for the input value and final
result. You can see the form at run time in Figure 4.3.

F I G U R E 4 . 3 :
The output of the EuroConv
unit, showing the use of
Delphi’s conversion engine
with a custom measure-
ment unit

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 142

http://www.sybex.com

143

The program works nicely but is not perfect, as the proper rounding is not applied. In fact,
you should round not only the final result of the conversion but also the intermediate value.
Using the conversion engine to accomplish this directly is not easy. The engine allows you to
provide either a custom conversion function or a conversion rate. But writing identical con-
version functions for the all the various currencies seems a bad idea, so I’ve decided to go a
different path. (You can see examples of custom conversion functions in the StdConvs unit,
in the portion related to temperatures.)

In the EuroConv example, I’ve added to the unit with the conversion rates a custom func-
tion, called EuroConv, that does the proper conversion. Simply calling this function instead of
the standard Convert function does the trick (and I really see no drawback to this approach,
because in programs like this, you’ll hardly mix currencies with meters or temperatures). As
an alternative, I could inherit a new class from TConvTypeFactor, providing a new version of
the FromCommon and ToCommon methods, or I could have called the overloaded versions of the
RegisterConversionType that accepts these two functions as parameters. None of these tech-
niques, however, would have allowed me to handle special cases, such as the conversion of a
currency to itself.

This is the code of the EuroConv function, which uses the internal EuroRound function for
rounding to the number of digits specified in the Decimals parameter (which must be
between 3 and 6, according with the official rules):

type
TEuroDecimals = 3..6;

function EuroConvert (const AValue: Double;
const AFrom, ATo: TConvType;
const Decimals: TEuroDecimals = 3): Double;

function EuroRound (const AValue: Double): Double;
begin
Result := AValue * Power (10, Decimals);
Result := Round (Result);
Result := Result / Power (10, Decimals);

end;

begin
// check special case: no conversion
if AFrom = ATo then
Result := AValue

else
begin
// convert to Euro, then round
Result := ConvertFrom (AFrom, AValue);
Result := EuroRound (Result);

Converting Data

2874c04.qxd 7/3/01 1:14 PM Page 143

http://www.sybex.com

144

// convert to currency then round again
Result := ConvertTo (Result, ATo);
Result := EuroRound (Result);

end;
end;

Of course, you might want to extend the example by providing conversion to other non-
euro currencies, eventually picking the values automatically from a Web site. I’ll leave this as
a rather complex exercise.

The TObject Class
As mentioned earlier, a key element of the System unit is the definition of the TObject class,
the mother of all Delphi classes. Every class in the system is a subclass of the TObject class,
either directly (for example, if you indicate no base class) or indirectly. The whole hierarchy
of the classes of an Object Pascal program has a single root. This allows you to use the
TObject data type as a replacement for the data type of any class type in the system.

For example, event handlers of components usually have a Sender parameter of type TObject.
This simply means that the Sender object can be of any class, since every class is ultimately
derived from TObject. The typical drawback of such an approach is that to work on the
object, you need to know its data type. In fact, when you have a variable or a parameter of the
TObject type, you can apply to it only the methods and properties defined by the TObject
class itself. If this variable or parameter happens to refer to an object of the TButton type, for
example, you cannot directly access its Caption property. The solution to this problem lies in
the use of the safe down-casting or run-time type information (RTTI) operators (is and as)
discussed in Chapter 3.

There is another approach. For any object, you can call the methods defined in the TObject
class itself. For example, the ClassName method returns a string with the name of the class.
Because it is a class method (see Chapter 2 for details), you can actually apply it both to an
object and to a class. Suppose you have defined a TButton class and a Button1 object of that
class. Then the following statements have the same effect:

Text := Button1.ClassName;
Text := TButton.ClassName;

There are occasions when you need to use the name of a class, but it can also be useful to
retrieve a class reference to the class itself or to its base class. The class reference, in fact,
allows you to operate on the class at run time (as we’ve seen in the preceding chapter), while
the class name is just a string. We can get these class references with the ClassType and
ClassParent methods. The first returns a class reference to the class of the object, the second

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 144

http://www.sybex.com

145

to its base class. Once you have a class reference, you can apply to it any class methods of
TObject—for example, to call the ClassName method.

Another method that might be useful is InstanceSize, which returns the run-time size of
an object. Although you might think that the SizeOf global function provides this information,
that function actually returns the size of an object reference—a pointer, which is invariably four
bytes—instead of the size of the object itself.

In Listing 4.1, you can find the complete definition of the TObject class, extracted from the
System unit. Beside the methods I’ve already mentioned, notice InheritsFrom, which provides
a test very similar to the is operator but that can be applied also to classes and class references
(while the first argument of is must be an object).

➲ Listing 4.1: The definition of the TObject class (in the System RTL unit)

type
TObject = class
constructor Create;
procedure Free;
class function InitInstance(Instance: Pointer): TObject;
procedure CleanupInstance;
function ClassType: TClass;
class function ClassName: ShortString;
class function ClassNameIs(
const Name: string): Boolean;

class function ClassParent: TClass;
class function ClassInfo: Pointer;
class function InstanceSize: Longint;
class function InheritsFrom(AClass: TClass): Boolean;
class function MethodAddress(const Name: ShortString): Pointer;
class function MethodName(Address: Pointer): ShortString;
function FieldAddress(const Name: ShortString): Pointer;
function GetInterface(const IID: TGUID;out Obj): Boolean;
class function GetInterfaceEntry(
const IID: TGUID): PInterfaceEntry;

class function GetInterfaceTable: PInterfaceTable;
function SafeCallException(ExceptObject: TObject;
ExceptAddr: Pointer): HResult; virtual;

procedure AfterConstruction; virtual;
procedure BeforeDestruction; virtual;
procedure Dispatch(var Message); virtual;
procedure DefaultHandler(var Message); virtual;
class function NewInstance: TObject; virtual;
procedure FreeInstance; virtual;
destructor Destroy; virtual;

end;

The TObject Class

2874c04.qxd 7/3/01 1:14 PM Page 145

http://www.sybex.com

146

NOTE The ClassInfo method returns a pointer to the internal run-time type information (RTTI) of
the class, introduced in the next chapter.

These methods of TObject are available for objects of every class, since TObject is the
common ancestor class of every class. Here is how we can use these methods to access class
information:

procedure TSenderForm.ShowSender(Sender: TObject);
begin
Memo1.Lines.Add (‘Class Name: ‘ + Sender.ClassName);

if Sender.ClassParent <> nil then
Memo1.Lines.Add (‘Parent Class: ‘ + Sender.ClassParent.ClassName);

Memo1.Lines.Add (‘Instance Size: ‘ + IntToStr (Sender.InstanceSize));
end;

The code checks to see whether the ClassParent is nil in case you are actually using an
instance of the TObject type, which has no base type. This ShowSender method is part of the
IfSender example on the companion CD. The method is connected with the OnClick event
of several controls: three buttons, a check box, and an edit box. When you click each control,
the ShowSender method is invoked with the corresponding control as sender (more on events
in the next chapter). One of the buttons is actually a Bitmap button, an object of a TButton
subclass. You can see an example of the output of this program at run time in Figure 4.4.

F I G U R E 4 . 4 :
The output of the IfSender
example

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 146

http://www.sybex.com

147

You can use other methods to perform tests. For example, you can check whether the
Sender object is of a specific type with the following code:

if Sender.ClassType = TButton then ...

You can also check whether the Sender parameter corresponds to a given object, with this
test:

if Sender = Button1 then...

Instead of checking for a particular class or object, you’ll generally need to test the type
compatibility of an object with a given class; that is, you’ll need to check whether the class of
the object is a given class or one of its subclasses. This lets you know whether you can operate
on the object with the methods defined for the class. This test can be accomplished using the
InheritsFrom method, which is also called when you use the is operator. The following two
tests are equivalent:

if Sender.InheritsFrom (TButton) then ...
if Sender is TButton then ...

Showing Class Information
I’ve extended the IfSender example to show a complete list of base classes of a given object or
class. Once you have a class reference, in fact, you can add all of its base classes to the List-
Parent list box with the following code:

with ListParent.Items do
begin
Clear;
while MyClass.ClassParent <> nil do
begin
MyClass := MyClass.ClassParent;
Add (MyClass.ClassName);

end;
end;

You’ll notice that we use a class reference at the heart of the while loop, which tests for the
absence of a parent class (so that the current class is TObject). Alternatively, we could have
written the while statement in either of the following ways:

while not MyClass.ClassNameIs (‘TObject’) do...
while MyClass <> TObject do...

The code in the with statement referring to the ListParent list box is part of the ClassInfo
example (see the companion CD), which displays the list of parent classes and some other
information about a few components of the VCL, basically those on the Standard page of the
Component Palette. These components are manually added to a dynamic array holding
classes and declared as

private
ClassArray: array of TClass;

The TObject Class

2874c04.qxd 7/3/01 1:14 PM Page 147

http://www.sybex.com

148

When the program starts, the array is used to show all the class names in a list box. Select-
ing an item from the list box triggers the visual presentation of its details and its base classes,
as you can see in the output of the program, in Figure 4.5.

NOTE As a further extension to this example, it is possible to create a tree with all of the base classes
of the various components in a hierarchy. To do that, I’ve created the VclHierarchy program,
which you can find on my Web site, www.marcocantu.com, in the CanTools section.

What’s Next?
In this chapter I’ve focused my attention on new features of the Delphi 6 function-based run-
time library. I have provided only a summary of the entire RTL, not a complete overview, as
this would have taken too much space. You can find more examples of the basic RTL func-
tions of Delphi in my free electronic book Essential Pascal, which is featured on the compan-
ion CD.

In the next chapter, we’ll start moving from the function-based RTL to the class-based
RTL, which is the core of Delphi’s class library. I won’t debate whether the core classes com-
mon to the VCL and CLX, such as TObject, actually belong to the RTL or the class library.
I’ve covered everything defined in System, SysUtils, and other units hosting functions and
procedures in this chapter, while the next chapter focuses on the Classes unit and other core
units defining classes.

Along with the preceding two chapters on the Object Pascal language, this will provide a
foundation for discussing visual- and database-oriented classes, or components, if you prefer.
Looking to the various library units, we’ll find many more global functions, which don’t
belong to the core RTL but are still quite useful!

F I G U R E 4 . 5 :
The output of the ClassInfo
example

Chapter 4 • The Run-Time Library

2874c04.qxd 7/3/01 1:14 PM Page 148

http://www.sybex.com

5CH A P T E R

Core Library Classes

� The RTL package, CLX, and VCL

� TPersistent and published

� The TComponent base class and its properties

� Components and ownership

� Events

� Lists, container classes, and collections

� Streaming

� Summarizing the units of the RTL package

2874c05.qxd 7/2/01 4:16 PM Page 149

http://www.sybex.com

150

We saw in the preceding chapter that Delphi includes a large number of functions and
procedures, but the real power of Delphi’s visual programming lies in the huge class library it
comes with. Delphi’s standard class library contains hundreds of classes, with thousands of
methods, and it is so large that I certainly cannot provide a detailed reference in this book.
What I’ll do, instead, is explore various areas of this library starting with this chapter and
continuing through the following ones.

This first chapter is devoted to the core classes of the library as well as to some standard
programming techniques, such as the definition of events. We’ll explore some commonly
used classes, such as lists, string lists, collections, and streams. We’ll devote most of our time
to exploring the content of the Classes unit, but we’ll devote time also to other core units of
the library.

Delphi classes can be used either entirely in code or within the visual form designer. Some
of them are component classes, which show up in the Component Palette, while others are
more general-purpose. The terms class and component can be used almost as synonyms in
Delphi. Components are the central elements of Delphi applications. When you write a pro-
gram, you basically choose a number of components and define their interactions. That’s all
there is to Delphi visual programming.

Before reading this chapter, you need to have a good understanding of the Object Pascal
programming language, including inheritance, properties, virtual methods, class references,
and so on, as discussed in Chapters 2 and 3 of this book.

The RTL Package, VCL, and CLX
Until version 5, Delphi’s class library was known as VCL, which stands for Visual Components
Library. Kylix, the Delphi version for Linux, introduced a new component library, called CLX
(pronounced “clicks” and standing for Component Library for X-Platform or Cross Platform).
Delphi 6 includes both the VCL and CLX libraries. For visual components, the two class
libraries are alternative one to the other. However, the core classes and the database and Inter-
net portions of the two libraries are basically shared.

VCL was considered as a single large library, although programmers used to refer to differ-
ent parts of it (components, controls, nonvisual components, data sets, data-aware controls,
Internet components, and so on). CLX introduces a distinction in four parts: BaseCLX,
VisualCLX, DataCLX, and NetCLX. Only in VisualCLX does the library use a totally differ-
ent approach between the two platforms, with the rest of the code being inherently portable
to Linux. In the following section, I discuss the sections of these two libraries, while the rest of
the chapter focuses on the common core classes.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 150

http://www.sybex.com

151

In Delphi 6, this distinction is underlined by the fact that the core non-visual components
and classes of the library are part of the new RTL package, which is used by both VCL and
CLX. Moreover, using this package in non-visual applications (for example, Web server pro-
grams) allows you to reduce the size of the files to deploy and load in memory considerably.

Traditional Sections of VCL
Delphi programmers use to refer to different sections of VCL with names Borland originally
suggested in its documentation, and names that became common afterwards for different
groups of components. Technically, components are subclasses of the TComponent class, which
is one of the root classes of the hierarchy, as you can see in Figure 5.1. Actually the TComponent
class inherits from the TPersistent class; the role of these two classes will be explained in the
next section.

Besides components, the library includes classes that inherit directly from TObject and
from TPersistent. These classes are collectively known as Objects in portions of the documen-
tation, a rather confusing name for me. These noncomponent classes are often used for val-
ues of properties or as utility classes used in code; not inheriting from TComponent, these
classes cannot be used directly in visual programming.

NOTE To be more precise, noncomponent classes cannot be made available in the Component
Palette and cannot be dropped directly into a form, but they can be visually managed with the
Object Inspector, as subproperties of other properties or items of collections of various types.
So even noncomponent classes are often easily used when interacting with the Form Designer.

F I G U R E 5 . 1 :
A graphical representation
of the main groups of com-
ponents of VCL

The RTL Package, VCL, and CLX

2874c05.qxd 7/2/01 4:16 PM Page 151

http://www.sybex.com

152

The component classes can be further divided into two main groups: controls and nonvi-
sual components. Controls groups all the classes that descend from TControl.

Controls have a position and a size on the screen and show up in the form at design time
in the same position they’ll have at run time. Controls have two different subspecifications,
window-based or graphical, but I’ll discuss them in more detail in the next chapter.

Nonvisual components are all the components that are not controls—all the classes that
descend from TComponent but not from TControl. At design time, a nonvisual component
appears on the form as an icon (optionally with a caption below it). At run time, some of
these components may be visible (for example, the standard dialog boxes), and others are
always invisible (for example, the database table component).

TIP You can simply move the mouse cursor over a control or component in the Form Designer to
see a Tooltip with its name and class type (and, in Delphi 6, some extended information). You
can also use an environment option, Show Component Captions, to see the name of a nonvi-
sual component right under its icon.

The Structure of CLX
This is the traditional subdivision of VCL, which is very common for Delphi programmers.
Even with the introduction of CLX and some new naming schemes, the traditional names
will probably survive and merge into Delphi programmers’ jargon.

Borland now refers to different portions of the CLX library using one terminology under
Linux and a slightly different (and less clear) naming structure in Delphi. This is the subdivi-
sion of the Linux-compatible library:

BaseCLX forms the core of the class library, the topmost classes (such as TComponent), and
several general utility classes (including lists, containers, collections, and streams). Com-
pared to the corresponding classes of VCL, BaseCLX is largely unchanged and is highly
portable between the Windows and Linux platforms. This chapter is largely devoted to
exploring BaseCLX and the common VCL core classes.

VisualCLX is the collection of visual components, generally indicated as controls. This is
the portion of the library that is more tightly related to the operating system: VisualCLX is
implemented on top of the Qt library, available both on Windows and on Linux. Using
VisualCLX allows for full portability of the visual portion of your application between
Delphi on Windows and Kylix on Linux. However, most of the VisualCLX components
have corresponding VCL controls, so that you can also easily move your code from one
library to the other. I’ll discuss VisualCLX and the controls of VCL in the next chapter.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 152

http://www.sybex.com

153

DataCLX comprises all the database-related components of the library. Actually, DataCLX
is the front end of the new dbExpress database engine included in Delphi 6 and Kylix. Delphi
includes also the traditional BDE front end, dbGo, and InterBase Express (IBX). If we can
consider all these components as part of DataCLX, only the dbExpress front end and IBX
are portable between Windows and Linux. DataCLX includes also the ClientDataSet com-
ponent, now indicated as MyBase, and other related classes. Delphi’s data access components
are discussed in Part III of the book.

NetCLX includes the Internet-related components, from the WebBroker framework, to
the HTML producer components, from Indy (Internet Direct) to Internet Express, from
the new Site Express to XML support. This part of the library is, again, highly portable
between Windows and Linux. Internet support is discussed in the last part of the book.

VCL-Specific Sections of the Library
The preceding areas of the library are available, with the differences I’ve mentioned, on both
Delphi and Kylix. In Delphi 6, however, there are other sections of VCL, which for one reason
or another are specific to Windows only:

• The Delphi ActiveX (DAX) framework provides support for COM, OLE Automation,
ActiveX, and other COM-related technologies. See Chapter 16 for more information
on this area of Delphi.

• The Decision Cube components provide OLAP support but have ties with the BDE
and haven’t been updated recently. Decision Cube is not discussed in the book.

Finally, the default Delphi 6 installation includes some third-party components, such as
TeeChart for business graphics and QuickReport for reporting. These components will be
mentioned in the book but are not discussed in detail.

The TPersistent Class
The first core class of the Delphi library we’ll look at is the TPersistent class, which is quite
a strange one: it has very little code and almost no direct use, but it provides a foundation for
the entire idea of visual programming. You can see the definition of the class in Listing 5.1.

➲ Listing 5.1: The definition of the TPersistent class, from the Classes unit

{$M+}
TPersistent = class(TObject)
private
procedure AssignError(Source: TPersistent);

The TPersistent Class

2874c05.qxd 7/2/01 4:16 PM Page 153

http://www.sybex.com

154

protected
procedure AssignTo(Dest: TPersistent); virtual;
procedure DefineProperties(Filer: TFiler); virtual;
function GetOwner: TPersistent; dynamic;

public
destructor Destroy; override;
procedure Assign(Source: TPersistent); virtual;
function GetNamePath: string; dynamic;

end;

As the name implies, this class handles persistency—that is, saving the value of an object to
a file to be used later to re-create the object in the same state and with the same data. Persis-
tency is a key element of visual programming. In fact (as we saw in Chapter 1) at design time
in Delphi you manipulate actual objects, which are saved to DFM files and re-created at run
time when the specific component container—form or data module—is created.

The streaming support, though, is not embedded in the TPersistent class but is provided
by other classes, which target TPersistent and its descendants. In other words, you can “per-
sist” with Delphi default streaming-only objects of classes inheriting from TPersistent. One
of the reasons for this behavior lies in the fact that the class is compiled with a special option
turned on, {$M+}. This flag activates the generation of extended RTTI information for the
published portion of the class.

Delphi’s streaming system, in fact, doesn’t try to save the in-memory data of an object,
which would be complex because of the many pointers to other memory locations, totally
meaningless when the object would be reloaded. Instead, Delphi saves objects by listing the
value of all of properties marked with a special keyword, published. When a property refers
to another object, Delphi saves the name of the object or the entire object (with the same
mechanism) depending on its type and relationship with the main object.

Of the methods of the TPersistent class, the only one you’ll generally use is the Assign
procedure, which can be used for copying the actual value of an object. In the library, this
method is implemented by many noncomponent classes but by very few components. Actu-
ally, most subclasses reimplement the virtual protected AssignTo method, called by the
default implementation of Assign.

NOTE Other methods include DefineProperties, used for customizing the streaming system and
adding extra information (pseudo-properties), and the GetOwner and GetNamePath methods
used by collections and other special classes to identify themselves to the Object Inspector.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 154

http://www.sybex.com

155

The published Keyword
Along with the public, protected, and private access directives, you can use a fourth one,
called published. For any published field, property, or method, the compiler generates
extended RTTI information, so that Delphi’s run time environment or a program can query a
class for its published interface. For example, every Delphi component has a published inter-
face that is used by the IDE, in particular the Object Inspector. A regular use of published
fields is important when you write components. Usually, the published part of a component
contains no fields or methods but properties and events.

When Delphi generates a form or data module, it places the definitions of its components
and methods (the event handlers) in the first portion of its definition, before the public and
private keywords. These fields and methods of the initial portion of the class are published.
The default is published when no special keyword is added before an element of a compo-
nent class.

To be more precise, published is the default keyword only if the class was compiled with
the $M+ compiler directive or is descended from a class compiled with $M+. As this directive is
used in the TPersistent class, most classes of VCL and all of the component classes default
to published. However, noncomponent classes in Delphi (such as TStream and TList) are
compiled with $M- and default to public visibility.

The methods assigned to any event should be published methods, and the fields corre-
sponding to your components in the form should be published to be automatically con-
nected with the objects described in the DFM file and created along with the form. (We’ll
see later in this chapter the details of this situation and the problems it generates.)

Accessing Published Fields and Methods
As I’ve mentioned, there are three different declarations that make sense in the published
section of a class: fields, methods, and properties. I’ll discuss properties in the section “Access-
ing Properties by Name,” while here I’ll introduce possible ways of interacting with fields and
methods first. The TObject class, in fact, has three interesting methods for this area: Method-
Address, MethodName, and FieldAddress.

The first function, MethodAddress, returns the memory address of the compiled code (a sort
of function pointer) of the method passed as parameter in a string. By assigning this method
address to the Code field of a TMethod structure and assigning an object to the Data field, you
can obtain a complete method pointer. At this point, to call the method you’ll need to cast it to

The TPersistent Class

Continued on next page

2874c05.qxd 7/2/01 4:16 PM Page 155

http://www.sybex.com

156

the proper method pointer type. This is a code fragment highlighting the key points of this
technique:

var

Method: TMethod;

Evt: TNotifyEvent;

begin

Method.Code := MethodAddress (‘Button1Click’);

Method.Data := Self;

Evt := TNotifyEvent(Method);

Evt (Sender); // call the method

end;

Delphi uses similar code to assign an event handler when it loads a DFM file, as these files store
the name of the methods used to handle the events, while the components actually store the
method pointer. The second method, MethodName, does the opposite transformation, return-
ing the name of the method at a given memory address. This can be used to obtain the name
of an event handler, given its value, something Delphi does when streaming a component into
a DFM file.

Finally, the FieldAddress method of TObject returns the memory location of a published
field, given its name. This is used by Delphi to connect components created from the DFM files
with the fields of their owner (for example, a form) having the same name.

Notice that these three methods are seldom used in “normal” programs but play a key role to
make Delphi work as it actually does and are strictly related to the streaming system. You’ll
need to use these methods only when writing extremely dynamic programs or special-purpose
wizards or other Delphi extensions.

Accessing Properties by Name
The Object Inspector displays a list of an object’s published properties, even for components
you’ve written. To do this, it relies on the RTTI information generated for published proper-
ties. Using some advanced techniques, an application can retrieve a list of the published
properties of an object and use them.

Although this capability is not very well known, in Delphi it is possible to access properties
by name simply by using the string with the name of the property and then retrieving its
value. Access to the RTTI information of properties is provided through a group of undocu-
mented subroutines, part of the TypInfo unit.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 156

http://www.sybex.com

157

WARNING These subroutines have always been undocumented in past versions of Delphi, so that Borland
remained free to change them. However, from Delphi 1 to Delphi 5, changes were actually
very limited and related only to the data structures declared in TypInfo, not the functions pro-
vided by the unit. In Delphi 5 Borland actually added many more goodies, and a few “helper”
routines, that are officially promoted (even if still not fully documented in the help file but only
with comments provided in the unit).

Rather than explore the entire TypInfo unit here, we will look at only the minimal code
required to access properties by name. Prior to Delphi 5 it was necessary to use the GetPropInfo
function to retrieve a pointer to some internal property information and then apply one of the
access functions, such as GetStrProp, to this pointer. You also had to check for the existence and
the type of the property.

Delphi 5 introduced a new set of TypInfo routines, including the handy GetPropValue,
which returns a variant with the value of the property or varNULL if the property doesn’t exist.
You simply pass to this function the object and a string with the property name. A further
optional parameter allows you to choose the format for returning values of properties of the
set type.

For example, we can call
ShowMessage (GetPropValue (Button1, ‘Caption’));

This call has the same effect as calling ShowMessage, passing as parameter Button1.Caption.
The only real difference is that this version of the code is much slower, since the compiler
generally resolves normal access to properties in a more efficient way. The advantage of the
run-time access is that you can make it very flexible, as in the following RunProp example
(also available on the companion CD).

This program displays in a list box the value of a property of any type for each component
of a form. The name of the property we are looking for is provided in an edit box. This makes
the program very flexible. Besides the edit box and the list box, the form has a button to gen-
erate the output and some other components added only to test their properties. When you
click the button, the following code is executed:

uses
TypInfo;

procedure TForm1.Button1Click(Sender: TObject);
var
I: Integer;
Value: Variant;

begin
ListBox1.Clear;

The TPersistent Class

2874c05.qxd 7/2/01 4:16 PM Page 157

http://www.sybex.com

158

for I := 0 to ComponentCount -1 do
begin

if IsPublishedProp (Components[I], Edit1.Text) then
begin

Value := GetPropValue (Components[I], Edit1.Text);
ListBox1.Items.Add (Components[I].Name + '.' + Edit1.Text + ' = ' + string (Value));

end
else

ListBox1.Items.Add ('No ' + Components[I].Name + '.' + Edit1.Text);

You can see the effect of pressing the Fill List button while using the default Caption value
in the edit box in Figure 5.2. You can try with any other property name. Numbers will be con-
verted to strings by the variant conversion. Objects (such as the value of the Font property)
will be displayed as memory addresses.

WARNING Do not use regularly the TypInfo unit instead of polymorphism and other property-access tech-
niques. Use base-class property access first, or use the safe as typecast when required, and
reserve RTTI access to properties as a very last resort. Using TypInfo techniques makes your
code slower, more complex, and more prone to human error; in fact, it skips the compile-time
type-checking.

The TComponent Class
If the TPersistent class is really more important than it seems at first sight, the key class at
the heart of Delphi’s component-based class library is TComponent, which inherits from

F I G U R E 5 . 2 :
The output of the RunProp
example, which accesses
properties by name at run
time

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 158

http://www.sybex.com

159

TPersistent (and from TObject). The TComponent class defines many core elements of com-
ponents, but it is not as complex as you might think, as the base classes and the language
already provide most of what’s actually needed.

I won’t explore all of the details of the TComponent class, some of which are more important
for component designers than they are for component users. I’ll just discuss ownership (which
accounts for some public properties of the class) and the two published properties of the class,
Name and Tag.

Ownership
One of the core features of the TComponent class is the definition of ownership. When a com-
ponent is created, it can be assigned an owner component, which will be responsible for destroy-
ing it. So every component can have an owner and can also be the owner of other components.
Several public methods and properties of the class are actually devoted to handling the two sides
of ownership. Here is a list, extracted from the class declaration (in the Classes unit of VCL):

type
TComponent = class(TPersistent, IInterface, IInterfaceComponentReference)
public
constructor Create(AOwner: TComponent); virtual;
procedure DestroyComponents;
function FindComponent(const AName: string): TComponent;
procedure InsertComponent(AComponent: TComponent);
procedure RemoveComponent(AComponent: TComponent);

property Components[Index: Integer]: TComponent read GetComponent;
property ComponentCount: Integer read GetComponentCount;
property ComponentIndex: Integer
read GetComponentIndex write SetComponentIndex;

property Owner: TComponent read FOwner;

If you create a component giving it an owner, this will be added to the list of components
(InsertComponent), which is accessible using the Components array property. The specific
component has an Owner and knows its position in the owner components list, with the
ComponentIndex property. Finally, the destructor of the owner will take care of the destruc-
tion of the object it owns, calling DestroyComponents. There are a few more protected meth-
ods involved, but this should give you the overall picture.

What is important to emphasize is that component ownership can solve a large part of the
memory management problems of your applications, if used properly. If you always create
components with an owner—the default operation if you use the visual designers of the
IDE—you only need to remember to destroy these component containers when they are not
needed anymore, and you can forget about the components they contain. For example, you

The TComponent Class

2874c05.qxd 7/2/01 4:16 PM Page 159

http://www.sybex.com

160

delete a form to destroy all of the components it contains at once, which is a large simplifica-
tion compared to having to remember to free each and every object individually.

The Components Array
The Components property can also be used to access one component owned by another—let’s
say, a form. This can be very handy (compared to using directly a specific component) for
writing generic code, acting on all or many components at a time. For example, you can use
the following code to add to a list box the names of all the components of a form (this code is
actually part of the ChangeOwner example, presented in the next section):

procedure TForm1.Button1Click(Sender: TObject);
var
I: Integer;

begin
ListBox1.Items.Clear;
for I := 0 to ComponentCount - 1 do
ListBox1.Items.Add (Components [I].Name);

end;

This code uses the ComponentCount property, which holds the total number of components
owned by the current form, and the Components property, which is actually the list of the owned
components. When you access a value from this list you get a value of the TComponent type. For
this reason you can directly use only the properties common to all components, such as the
Name property. To use properties specific to particular components, you have to use the proper
type-downcast (as).

NOTE In Delphi, some components are also component containers: the GroupBox, Panel, PageCon-
trol, and, of course, Form components. When you use these controls, you can add other com-
ponents inside them. In this case, the container is the parent of the components (as indicated
by the Parent property), while the form is their owner (as indicated by the Owner property).
You can use the Controls property of a form or group box to navigate the child controls, and you
can use the Components property of the form to navigate all the owned components, regardless
of their parent.

Using the Components property, we can always access each component of a form. If you
need access to a specific component, however, instead of comparing each name with the
name of the component you are looking for, you can let Delphi do this work, by using the
FindComponent method of the form. This method simply scans the Components array looking
for a name match. More information about the role of the Name property for a component is
in a later section.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 160

http://www.sybex.com

161

Changing the Owner
We have seen that almost every component has an owner. When a component is created at
design time (or from the resulting DFM file), its owner will invariably be its form. When you
create a component at run time, the owner is passed as a parameter to the Create constructor.

Owner is a read-only property, so you cannot change it. The owner is set at creation time
and should generally not change during the lifetime of a component. To understand why you
should not change the owner of a component at design time nor freely change its name, read
the following discussion. Be warned, that the topic covered is not simple, so if you’re only
starting with Delphi, you might want to come back to this section at a later time.

To change the owner of a component, you can call the InsertComponent and RemoveComponent
methods of the owner itself, passing the current component as parameter. Using these meth-
ods you can change a component’s owner. However, you cannot apply them directly in an
event handler of a form, as we attempt to do here:

procedure TForm1.Button1Click(Sender: TObject);
begin
RemoveComponent (Button1);
Form2.InsertComponent (Button1);

end;

This code produces a memory access violation, because when you call RemoveComponent,
Delphi disconnects the component from the form field (Button1), setting it to nil. The solu-
tion is to write a procedure like this:

procedure ChangeOwner (Component, NewOwner: TComponent);
begin
Component.Owner.RemoveComponent (Component);
NewOwner.InsertComponent (Component);

end;

This method (extracted from the ChangeOwner example) changes the owner of the com-
ponent. It is called along with the simpler code used to change the parent component; the
two commands combined move the button completely to another form, changing its owner:

procedure TForm1.ButtonChangeClick(Sender: TObject);
begin
if Assigned (Button1) then
begin
// change parent
Button1.Parent := Form2;
// change owner
ChangeOwner (Button1, Form2);

end;
end;

The TComponent Class

2874c05.qxd 7/2/01 4:16 PM Page 161

http://www.sybex.com

162

The method checks whether the Button1 field still refers to the control, because while
moving the component, Delphi will set Button1 to nil. You can see the effect of this code in
Figure 5.3.

To demonstrate that the Owner of the Button1 component actually changes, I’ve added
another feature to both forms. The List button fills the list box with the names of the com-
ponents each form owns, using the procedure shown in the previous section. Click the two
List buttons before and after moving the component, and you’ll see what happens behind the
scenes. As a final feature, the Button1 component has a simple handler for its OnClick event,
to display the caption of the owner form:

procedure TForm1.Button1Click(Sender: TObject);
begin
ShowMessage (‘My owner is ‘ + ((Sender as TButton).Owner as TForm).Caption);

end;

The Name Property
Every component in Delphi should have a name. The name must be unique within the
owner component, which is generally the form into which you place the component. This
means that an application can have two different forms, each with a component with the
same name, although you might want to avoid this practice to prevent confusion. It is gener-
ally better to keep component names unique throughout an application.

Setting a proper value for the Name property is very important: If it’s too long, you’ll need
to type a lot of code to use the object; if it’s too short, you may confuse different objects.

F I G U R E 5 . 3 :
In the ChangeOwner
example, clicking the
Change button moves the
Button1 component to the
second form.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 162

http://www.sybex.com

163

Usually the name of a component has a prefix with the component type; this makes the
code more readable and allows Delphi to group components in the combo box of the
Object Inspector, where they are sorted by name. There are three important elements
related to the Name property of the components:

• First, the value of the Name property is used to define the name of the object in the dec-
laration of the form class. This is the name you’re generally going to use in the code to
refer to the object. For this reason, the value of the name property must be a legal Pas-
cal identifier (it has to be without spaces and must start with a letter, not a number).

• Second, if you set the Name property of a control before changing its Caption or Text
property, the new name is often copied to the caption. That is, if the name and the cap-
tion are identical, then changing the name will also change the caption.

• Third, Delphi uses the name of the component to create the default name of the meth-
ods related to its events. If you have a Button1 component, its default OnClick event
handler will be called Button1Click, unless you specify a different name. If you later
change the name of the component, Delphi will modify the names of the related meth-
ods accordingly. For example, if you change the name of the button to MyButton, the
Button1Click method automatically becomes MyButtonClick.

As mentioned earlier, if you have a string with the name of a component, you can get its
instance by calling the FindComponent of its owner, which returns nil in case the component
is not found. For example, you can write

var
Comp: TComponent;

begin
Comp := FindComponent (‘Button1’);
if Assigned (Comp) then
with Comp as TButton do
// some code...

NOTE Delphi includes also a FindGlobalComponent function, which finds a top-level component, basi-
cally a form or data module, that has a given name. To be precise, the FindGlobalComponent
function calls one or more installed functions, so in theory you can modify the way the func-
tion works. However, as FindGlobalComponent is used by the streaming system, I strongly
recommend against installing your own replacement functions. If you want to have a cus-
tomized way to search for components on other containers, simply write a new function with
a custom name.

The TComponent Class

2874c05.qxd 7/2/01 4:16 PM Page 163

http://www.sybex.com

164

Removing Form Fields
Every time you add a component to a form, Delphi adds an entry for it, along with some of
its properties, to the DFM file. To the Pascal file, Delphi adds the corresponding field in the
form class declaration. When the form is created, Delphi loads the DFM file and uses it to
re-create all the components and set their properties back. Then it hooks the new object with
the form field corresponding to its Name property.

For this reason, it is certainly possible to have a component without a name. If your appli-
cation will not manipulate the component or modify it at run time, you can remove the com-
ponent name from the Object Inspector. Examples are a static label with fixed text, or a menu
item, or even more obviously, menu item separators. By blanking out the name, you’ll
remove the corresponding element from the form class declaration. This reduces the size of
the form object (by only four bytes, the size of the object reference) and it reduces the DFM
file by not including a useless string (the component name). Reducing the DFM also implies
reducing the final EXE file size, even if only slightly.

WARNING If you blank out component names, just make sure to leave at least one named component of
each class used on the form so that the smart linker will link in the required code for the class.
If, as an example, you remove from a form all the fields referring to TLabel components, the
Delphi linker will remove the implementation of the TLabel class from the executable file.
The effect is that when the system loads the form at run time, it is unable to create an object
of an unknown class and issues an error indicating that the class is not available.

You can also keep the component name and manually remove the corresponding field of
the form class. Even if the component has no corresponding form field, it is created any-
way, although using it (through the FindComponent method, for example) will be a little
more difficult.

Hiding Form Fields
Many OOP purists complain that Delphi doesn’t really follow the encapsulation rules, because
all of the components of a form are mapped to public fields and can be accessed from other
forms and units. Fields for components, in fact, are listed in the first unnamed section of a
class declaration, which has a default visibility of published. However, Delphi does that only
as a default to help beginners learn to use the Delphi visual development environment quickly.
A programmer can follow a different approach and use properties and methods to operate on
forms. The risk, however, is that another programmer of the same team might inadvertently
bypass this approach, directly accessing the components if they are left in the published sec-
tion. The solution, which many programmers don’t know about, is to move the components
to the private portion of the class declaration.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 164

http://www.sybex.com

165

As an example, I’ve taken a very simple form with an edit box, a button, and a list box. When
the edit box contains text and the user presses the button, the text is added to the list box.
When the edit box is empty, the button is disabled. This is the simple code of the HideComp
example:

procedure TForm1.Button1Click(Sender: TObject);
begin
ListBox1.Items.Add (Edit1.Text);

end;

procedure TForm1.Edit1Change(Sender: TObject);
begin
Button1.Enabled := Length (Edit1.Text) <> 0;

end;

I’ve listed these methods only to show you that in the code of a form we usually refer to the
available components, defining their interactions. For this reason it seems impossible to get rid
of the fields corresponding to the component. However, what we can do is hide them, moving
them from the default published section to the private section of the form class declaration:

TForm1 = class(TForm)
procedure Button1Click(Sender: TObject);
procedure Edit1Change(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
Button1: TButton;
Edit1: TEdit;
ListBox1: TListBox;

end;

Now if you run the program you’ll get in trouble: The form will load fine, but because the
private fields are not initialized, the events above will use nil object references. Delphi usu-
ally initializes the published fields of the form using the components created from the DFM
file. What if we do it ourselves, with the following code?

procedure TForm1.FormCreate(Sender: TObject);
begin
Button1 := FindComponent (‘Button1’) as TButton;
Edit1 := FindComponent (‘Edit1’) as TEdit;
ListBox1 := FindComponent (‘ListBox1’) as TListBox;

end;

It will almost work, but it generates a system error, similar to the one we discussed in the
previous section. This time, the private declarations will cause the linker to link in the imple-
mentations of those classes, but the problem is that the streaming system needs to know the
names of the classes in order to locate the class reference needed to construct the compo-
nents while loading the DFM file.

The TComponent Class

2874c05.qxd 7/2/01 4:16 PM Page 165

http://www.sybex.com

166

The final touch we need is some registration code to tell Delphi at run time about the exis-
tence of the component classes we want to use. We should do this before the form is created,
so I generally place this code in the initialization section of the unit:

initialization
RegisterClasses ([TButton, TEdit, TListBox]);

Now the question is, is this really worth the effort? What we obtain is a higher degree of
encapsulation, protecting the components of a form from other forms (and other program-
mers writing them). I have to say that replicating these steps for each and every form can be
tedious, so I ended up writing a wizard to generate this code for me on the fly. The wizard is
far from perfect, as it doesn’t handle changes automatically, but it is usable. You can find it on
my Web site, www.marcocantu.com, under the CanTools section. My simple wizard apart, for
a large project built according to the principles of object-oriented programming, I recom-
mend you consider this or a similar technique.

The Customizable Tag Property
The Tag property is a strange one, because it has no effect at all. It is merely an extra memory
location, present in each component class, where you can store custom values. The kind of
information stored and the way it is used are completely up to you.

It is often useful to have an extra memory location to attach information to a component
without needing to define your component class. Technically, the Tag property stores a long
integer so that, for example, you can store the entry number of an array or list that corre-
sponds to an object. Using typecasting, you can store in the Tag property a pointer, an object,
or anything else that is four bytes wide. This allows a programmer to associate virtually any-
thing with a component using its tag. We’ll see how to use this property in several examples
in future chapters, including the ODMenu examples in Chapter 5.

Events
Now that I’ve introduced the TComponent class, there is one more element of Delphi we have
to introduce. Delphi components, in fact, are programmed using “PME,” properties, meth-
ods, and events. If methods and properties should be clear by now, events have not been fully
introduced yet. The reason is that events don’t imply a new language feature but are simply a
standard coding technique. An event, in fact, is technically a property, with the only differ-
ence being that it refers to a method (a method pointer type, to be precise) instead of other
types of data.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 166

http://www.sybex.com

167

Events in Delphi
When a user does something with a component, such as clicking it, the component generates
an event. Other events are generated by the system, in response to a method call or a change
to one of that component’s properties (or even a different component’s). For example, if you
set the focus on a component, the component currently having the focus loses it, triggering
the corresponding event.

Technically, most Delphi events are triggered when a corresponding operating system
message is received, although the events do not match the messages on a one-to-one basis.
Delphi events tend to be higher-level than operating system messages, and Delphi provides
a number of extra inter-component messages.

From a theoretical point of view, an event is the result of a request sent to a component or
control, which can respond to the message. Following this approach, to handle the click
event of a button, we would need to subclass the TButton class and add the new event handler
code inside the new class.

In practice, creating a new class for every component you want to use is too complex to be
a reasonable solution. In Delphi, the event handler of a component usually is a method of the
form that holds the component, not of the component itself. In other words, the component
relies on its owner, the form, to handle its events. This technique is called delegation, and it is
fundamental to the Delphi component-based model. This way, you don’t have to modify the
TButton class, unless you want to define a new type of component, but simply customize its
owner to modify the behavior of the button.

Method Pointers
Events rely on a specific feature of the Object Pascal language: method pointers. A method pointer
type is like a procedural type, but one that refers to a method. Technically, a method pointer type
is a procedural type that has an implicit Self parameter. In other words, a variable of a proce-
dural type stores the address of a function to call, provided it has a given set of parameters. A
method pointer variable stores two addresses: the address of the method code and the address
of an object instance (data). The address of the object instance will show up as Self inside the
method body when the method code is called using this method pointer.

NOTE This explains the definition of Delphi’s generic TMethod type, a record with a Code field and a
Data field.

Events

2874c05.qxd 7/2/01 4:16 PM Page 167

http://www.sybex.com

168

The declaration of a method pointer type is similar to that of a procedural type, except that
it has the keywords of object at the end of the declaration:

type
IntProceduralType = procedure (Num: Integer);
IntMethodPointerType = procedure (Num: Integer) of object;

z

When you have declared a method pointer, such as the one above, you can declare a variable
of this type and assign to it a compatible method—a method that has the same parameters—
of another object.

When you add an OnClick event handler for a button, Delphi does exactly that. The but-
ton has a method pointer type property, named OnClick, and you can directly or indirectly
assign to it a method of another object, such as a form. When a user clicks the button, this
method is executed, even if you have defined it inside another class.

What follows is a sketch of the code actually used by Delphi to define the event handler of
a button component and the related method of a form:

type
TNotifyEvent = procedure (Sender: TObject) of object;

MyButton = class
OnClick: TNotifyEvent;

end;

TForm1 = class (TForm)
procedure Button1Click (Sender: TObject);
Button1: MyButton;

end;

var
Form1: TForm1;

Now inside a procedure, you can write
MyButton.OnClick := Form1.Button1Click;

The only real difference between this code fragment and the code of VCL is that OnClick
is a property name, and the actual data it refers to is called FOnClick. An event that shows up
in the Events page of the Object Inspector, in fact, is nothing more than a property of a
method pointer type. This means, for example, that you can dynamically modify the event
handler attached to a component at design time or even build a new component at run time
and assign an event handler to it.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 168

http://www.sybex.com

169

Events Are Properties
Another important concept I’ve already mentioned is that events are properties. This means
that to handle an event of a component, you assign a method to the corresponding event
property. When you double-click an event in the Object Inspector, a new method is added
to the owner form and assigned to the proper event property of the component.

This is why it is possible for several events to share the same event handler or change an
event handler at run time. To use this feature, you don’t need much knowledge of the lan-
guage. In fact, when you select an event in the Object Inspector, you can press the arrow but-
ton on the right of the event name to see a drop-down list of “compatible” methods—a list of
methods having the same method pointer type. Using the Object Inspector, it is easy to select
the same method for the same event of different components or for different, compatible
events of the same component.

As we’ve added some properties to the TDate class in Chapter 3, we can add one event. The
event is going to be very simple. It will be called OnChange, and it can be used to warn the
user of the component that the value of the date has changed. To define an event, we simply
define a property corresponding to it, and we add some data to store the actual method
pointer the event refers to. These are the new definitions added to the class, available in the
DateEvt example:

type
TDate = class
private
FOnChange: TNotifyEvent;
...

protected
procedure DoChange; dynamic;
...

public
property OnChange: TNotifyEvent
read FonChange write FOnChange;

...
end;

The property definition is actually very simple. A user of this class can assign a new value
to the property and, hence, to the FOnChange private field. The class doesn’t assign a value to
this FOnChange field; it is the user of the component who does the assignment. The TDate
class simply calls the method stored in the FOnChange field when the value of the date changes.
Of course, the call takes place only if the event property has been assigned. The DoChange

Events

2874c05.qxd 7/2/01 4:16 PM Page 169

http://www.sybex.com

170

method (declared as a dynamic method as it is traditional with event firing methods) makes
the test and the method call:

procedure TDate.DoChange;
begin
if Assigned (FOnChange) then
FOnChange (Self);

end;

The DoChange method in turn is called every time one of the values changes, as in the follow-
ing method:

procedure TDate.SetValue (y, m, d: Integer);
begin
fDate := EncodeDate (y, m, d);
// fire the event
DoChange;

Now if we look at the program that uses this class, we can simplify its code considerably.
First, we add a new custom method to the form class:

type
TDateForm = class(TForm)
...
procedure DateChange(Sender: TObject);

The code of this method simply updates the label with the current value of the Text property
of the TDate object:

procedure TDateForm.DateChange;
begin
LabelDate.Caption := TheDay.Text;

end;

This event handler is then installed in the FormCreate method:
procedure TDateForm.FormCreate(Sender: TObject);
begin
TheDay := TDate.Init (2001, 7, 4);
LabelDate.Caption := TheDay.Text;
// assign the event handler for future changes
TheDay.OnChange := DateChange;

end;

Well, this seems like a lot of work. Was I lying when I told you that the event handler
would save us some coding? No. Now, after we’ve added some code, we can completely for-
get about updating the label when we change some of the data of the object. Here, as an
example, is the handler of the OnClick event of one of the buttons:

procedure TDateForm.BtnIncreaseClick(Sender: TObject);
begin
TheDay.Increase;

end;

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 170

http://www.sybex.com

171

The same simplified code is present in many other event handlers. Once we have installed
the event handler, we don’t have to remember to update the label continually. That elimi-
nates a significant potential source of errors in the program. Also note that we had to write
some code at the beginning because this is not a component installed in Delphi but simply a
class. With a component, you simply select the event handler in the Object Inspector and
write a single line of code to update the label. That’s all.

NOTE This is meant to be just a short introduction to defining events. A basic understanding of these
features is important for every Delphi programmer. If your aim is to write new components,
with complex events, you’ll find a lot more information on all these topics in Chapter 11.

Lists and Container Classes
It is often important to handle groups of components or objects. Besides using standard
arrays and dynamic arrays, there are a few classes of VCL that represent lists of other objects.
These classes can be divided into three groups: simple lists, collections, and containers. The
last group was introduced in Delphi 5 and has been further expanded in Delphi 6.

Lists and String Lists
Lists are represented by the generic list of objects, TList, and by the two lists of strings,
TStrings and TStringList:

• TList defines a list of pointers, which can be used to store objects of any class. A TList
is more flexible than a dynamic array, because it is expanded automatically, simply by
adding new items to it. The advantage of dynamic arrays over a TList, instead, is that
dynamic arrays allow you to indicate a specific type for contained objects and perform
the proper compile-time type checking.

• TStrings is an abstract class to represent all forms of string lists, regardless of their
storage implementations. This class defines an abstract list of strings. For this reason,
TStrings objects are used only as properties of components capable of storing the
strings themselves, such as a list box.

• TStringList, a subclass of TStrings, defines a list of strings with their own storage.
You can use this class to define a list of strings in a program.

TStringList and TStrings objects have both a list of strings and a list of objects associated
with the strings. This opens up a number of different uses for these classes. For example, you
can use them for dictionaries of associated objects or to store bitmaps or other elements to be
used in a list box.

Lists and Container Classes

2874c05.qxd 7/2/01 4:16 PM Page 171

http://www.sybex.com

172

The two classes of lists of strings also have ready-to-use methods to store or load their
contents to or from a text file, SaveToFile and LoadFromFile. To loop through a list, you can
use a simple for statement based on its index, as if the list were an array. All these lists have a
number of methods and properties. You can operate on lists using the array notation (“[” and
“]”) both to read and to change elements. There is a Count property, as well as typical access
methods, such as Add, Insert, Delete, Remove, and search methods (for example, IndexOf). In
Delphi 6, the TList class has an Assign method that, besides copying the source data, can
perform set operations on the two lists, including and, or, and xor.

To fill a string list with items and later check whether one is present, you can write code
like this:

var
sl: TStringList;
idx: Integer;

begin
sl := TStringList.Create;
try
sl.Add (‘one’);
sl.Add (‘two’);
sl.Add (‘three’);
// later
idx := sl.IndexOf (‘two’);
if idx >= 0 then
ShowMessage (‘String found’);

finally
sl.Free;

end;
end;

Using Lists of Objects
We can write an example focusing on the use of the generic TList class. When you need a list
of any kind of data, you can generally declare a TList object, fill it with the data, and then access
the data while casting it to the proper type. The ListDemo example demonstrates just this. It
also shows the pitfalls of this approach. Its form has a private variable, holding a list of dates:

private
ListDate: TList;

This list object is created when the form itself is created:
procedure TForm1.FormCreate(Sender: TObject);
begin
Randomize;
ListDate := TList.Create;

end;

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 172

http://www.sybex.com

173

A button of the form adds a random date to the list (of course, I’ve included in the project
the unit containing the date component built in the previous chapter):

procedure TForm1.ButtonAddClick(Sender: TObject);
begin
ListDate.Add (TDate.Create (1900 + Random (200), 1 + Random (12),
1 + Random (30)));

end;

When you extract the items from the list, you have to cast them back to the proper type,
as in the following method, which is connected to the List button (you can see its effect in
Figure 5.4):

procedure TForm1.ButtonListDateClick(Sender: TObject);
var
I: Integer;

begin
ListBox1.Clear;
for I := 0 to ListDate.Count - 1 do
Listbox1.Items.Add ((TObject(ListDate [I]) as TDate).Text);

end;

At the end of the code above, before we can do an as downcast, we first need to hard-cast
the pointer returned by the TList into a TObject reference. This kind of expression can result
in an invalid typecast exception, or it can generate a memory error when the pointer is not a
reference to an object.

F I G U R E 5 . 4 :
The list of dates shown by
the ListDemo example

Lists and Container Classes

2874c05.qxd 7/2/01 4:16 PM Page 173

http://www.sybex.com

174

To demonstrate that things can indeed go wrong, I’ve added one more button, which adds
a TButton object to the list:

procedure TForm1.ButtonWrongClick(Sender: TObject);
begin
// add a button to the list
ListDate.Add (Sender);

end;

If you click this button and then update one of the lists, you’ll get an error. Finally, remem-
ber that when you destroy a list of objects, you should remember to destroy all of the objects
of the list first. The ListDemo program does this in the FormDestroy method of the form:

procedure TForm1.FormDestroy(Sender: TObject);
var
I: Integer;

begin
for I := 0 to ListDate.Count - 1 do
TObject(ListDate [I]).Free;

ListDate.Free;
end;

Collections
The second group, collections, contains only two classes, TCollection and TCollectionItem.
TCollection defines a homogeneous list of objects, which are owned by the collection class.
The objects in the collection must be descendants of the TCollectionItem class. If you need
a collection storing specific objects, you have to create both a subclass of TCollection and a
matching subclass of TCollectionItem.

Collections are used to specify values of properties of components. It is very unusual to
work with collections for storing your own objects, so I won’t discuss them here.

Container Classes
Delphi 5 introduced a new series of container classes, defined in the Contnrs unit. Delphi 6
extends these classes by adding hashed associative lists, as discussed in the following section.
The container classes extend the TList classes by adding the idea of ownership and by defin-
ing specific extraction rules (mimicking stacks and queues) or sorting capabilities.

The basic difference between TList and the new TObjectList class, for example, is that the
latter is defined as a list of TObject objects, not a list of pointers. Even more important, how-
ever, is the fact that if the object list has the OwnsObjects property set to True, it automati-

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 174

http://www.sybex.com

175

cally deletes an object when it is replaced by another one and deletes each object when the
list itself is destroyed. Here’s a list of all the new container classes:

• The TObjectList class I’ve already described represents a list of objects, eventually
owned by the list itself.

• The inherited class TComponentList represents a list of components, with full support
for destruction notification (an important safety feature when two components are
connected using their properties; that is, when a component is the value of a property
of another component).

• The TClassList class is a list of class references. It inherits from TList and requires no
destruction.

• The classes TStack and TObjectStack represent lists of pointers and objects, from which
you can only extract elements starting from the last one you’ve inserted. A stack follows
the LIFO order (Last In, First Out). The typical methods of a stack are Push for inser-
tion, Pop for extraction, and Peek to preview the first item without removing it. You can
still use all the methods of the base class, TList.

• The classes TQueue and TObjectQueue represent lists of pointers and objects, from which
you always remove the first item you’ve inserted (FIFO: first in, first out). The methods
of these classes are the same as those of the stack classes but behave differently.

WARNING Unlike the TObjectList, the TObjectStack and the TObjectQueue do not own the inserted
objects and will not destroy those objects left in the data structure when it is destroyed. You
can simply Pop all the items, destroy them once you’re finished using them, and then destroy
the container.

To demonstrate the use of these classes, I’ve modified the earlier ListDate example into
the new Contain example on the CD. First, I changed the type of the ListDate variable to
TObjectList. In the FormCreate method, I’ve modified the list creation to the following
code, which activates the list ownership:

ListDate := TObjectList.Create (True);

At this point, we can simplify the destruction code, as applying Free to the list will automati-
cally free the dates it holds.

I’ve also added to the program a stack and a queue object, filling each of them with numbers.
One of the form’s two buttons displays a list of the numbers in each container, and the other
removes the last item (displayed in a message box):

procedure TForm1.btnQueueClick(Sender: TObject);
var
I: Integer;

Lists and Container Classes

2874c05.qxd 7/2/01 4:16 PM Page 175

http://www.sybex.com

176

begin
ListBox1.Clear;
for I := 0 to Stack.Count - 1 do begin
ListBox1.Items.Add (IntToStr (Integer (Queue.Peek)));
Queue.Push(Queue.Pop);

end;
ShowMessage (‘Removed: ‘ + IntToStr (Integer (Stack.Pop)));

end;

By pressing the two buttons, you can see that calling Pop for each container returns the last
item. The difference is that the TQueue class inserts elements at the beginning, and the
TStack class inserts them at the end.

Hashed Associative Lists
After whetting our appetite in Delphi 5, Borland has pushed the idea of container classes
a little further in Delphi 6, introducing a new set of lists, particularly TBucketList and
TObjectBucketList. These two lists are associative, which means they have a key and an
actual entry. The key is used to identify the items and search for them. To add an item, you
call the Add method, with two parameters, the key and the actual data. When you use the
Find method, you pass the key and retrieve the data. The same effect is achieved by using the
Data array property, passing the key as parameter.

These lists are also based on a hash system. The lists create an internal array of items, called
buckets, each having a sub-list of actual elements of the list. As you add an item, its key value is
used to compute the hash value, which determines the bucket to add the item to. When search-
ing the item, the hash is computed again, and the list immediately grabs the sublist containing
the item, searching for it there. This makes for very fast insertion and searches, but only if the
hash algorithm distributes the items evenly among the various buckets and if there are enough
different entries in the array. In fact, when many elements can be in the same bucket, searching
gets slower.

For this reason, as you create the TObjectBucketList you can specify the number of
entries for the list, using the parameter of the constructor, choosing a value between 2 and 256.
The value of the bucket is determined by taking the first byte of the pointer (or number)
passed as key and doing an and operation with a number corresponding to the entries.

NOTE I don’t find this algorithm very convincing for a hash system, but replacing it with your own
implies only overriding the BucketFor virtual function and eventually changing the number of
entries in the array, by setting a different value for the BucketCount property.

Another interesting feature, not available for lists, is the ForEach method, which allows you
to execute a given function on each item contained in the list. You pass to the ForEach
method a pointer to data of your own and a procedure, which receives four parameters,

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 176

http://www.sybex.com

177

including your custom pointer, each key and object of the list, and a Boolean parameter you
can set to False to stop the execution. In other words, these are the two signatures:

type
TBucketProc = procedure(AInfo, AItem, AData: Pointer;
out AContinue: Boolean);

function TCustomBucketList.ForEach(AProc: TBucketProc;
AInfo: Pointer): Boolean;

NOTE Besides these containers, Delphi includes also a THashedStringList class, which inherits
from TStringList. This class has no direct relationship with the hashed lists and is even
defined in a different unit,IniFiles. The hashed string list has two associated hash tables (of type
TStringHash), which are completely refreshed every time the content of the string list
changes. So this class is useful only for reading a large set of fixed strings, not for handling a
list of strings changing often over time. On the other hand, the TStringHash support class
seems to be quite useful in general cases, and has a good algorithm for computing the hash
value of a string.

Type-Safe Containers and Lists
Containers and lists have a problem: They are not type-safe, as I’ve shown in both examples
by adding a button object to a list of dates. To ensure that the data in a list is homogenous,
you can check the type of the data you extract before you insert it, but as an extra safety mea-
sure you might also want to check the type of the data while extracting it. However, adding
run-time type checking slows down a program and is risky—a programmer might fail to
check the type in some cases.

To solve both problems, you can create specific list classes for given data types and fashion
the code from the existing TList or TObjectList classes (or another container class). There
are two approaches to accomplish this:

• Derive a new class from the list class and customize the Add method and the access
methods, which relate to the Items property. This is also the approach used by Borland
for the container classes, which all derive from TList.

NOTE Delphi container classes use static overrides to perform simple type conveniences (parameters
and function results of the desired type). Static overrides are not the same as polymorphism;
someone using a container class via a TList variable will not be calling the container’s special-
ized functions. Static override is a simple and effective technique, but it has one very impor-
tant restriction: The methods in the descendent should not do anything beyond simple
type-casting, because you aren’t guaranteed that the descendent methods will be called. The
list might be accessed and manipulated using the ancestor methods as much as by the descen-
dent methods, so their actual operations must be identical. The only difference is the type
used in the descendent methods, which allows you to avoid extra typecasting.

Lists and Container Classes

2874c05.qxd 7/2/01 4:16 PM Page 177

http://www.sybex.com

178

• Create a brand-new class that contains a TList object, and map the methods of the new
class to the internal list using proper type checking. This approach defines a wrapper
class, a class that “wraps” around an existing one to provide a different or limited access
to its methods (in our case, to perform a type conversion).

I’ve implemented both solutions in the DateList example, which defines lists of TDate
objects. In the code that follows, you’ll find the declaration of the two classes, the inheritance-
based TDateListI class and the wrapper class TDateListW.

type
// inheritance-based
TDateListI = class (TObjectList)
protected
procedure SetObject (Index: Integer; Item: TDate);
function GetObject (Index: Integer): TDate;

public
function Add (Obj: TDate): Integer;
procedure Insert (Index: Integer; Obj: TDate);
property Objects [Index: Integer]: TDate
read GetObject write SetObject; default;

end;

// wrapper based
TDateListW = class(TObject)
private
FList: TObjectList;
function GetObject (Index: Integer): TDate;
procedure SetObject (Index: Integer; Obj: TDate);

function GetCount: Integer;
public
constructor Create;
destructor Destroy; override;
function Add (Obj: TDate): Integer;
function Remove (Obj: TDate): Integer;
function IndexOf (Obj: TDate): Integer;
property Count: Integer read GetCount;
property Objects [Index: Integer]: TDate
read GetObject write SetObject; default;

end;

Obviously, the first class is simpler to write—it has fewer methods, and they simply call the
inherited ones. The good thing is that a TDateListI object can be passed to parameters expect-
ing a TList. The problem is that the code that manipulates an instance of this list via a generic
TList variable will not be calling the specialized methods, because they are not virtual and
might end up adding to the list objects of other data types.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 178

http://www.sybex.com

179

Instead, if you decide not to use inheritance, you end up writing a lot of code, because you
need to reproduce each and every one of the original TList methods, simply calling the meth-
ods of the internal FList object. The drawback is that the TDateListW class is not type com-
patible with TList, which limits its usefulness. It can’t be passed as parameter to methods
expecting a TList.

Both of these approaches provide good type checking. After you’ve created an instance of
one of these list classes, you can add only objects of the appropriate type, and the objects you
extract will naturally be of the correct type. This is demonstrated by the DateList example.
This program has a few buttons, a combo box to let a user choose which of the lists to show,
and a list box to show the actual values of the list. The program stretches the lists by trying to
add a button to the list of TDate objects. To add an object of a different type to the TDateListI
list, we can simply convert the list to its base class, TList. This might accidentally happen if
you pass the list as a parameter to a method that expects a base class object. In contrast, for the
TDateListW list to fail we must explicitly cast the object to TDate before inserting it, something
a programmer should never do:

procedure TForm1.ButtonAddButtonClick(Sender: TObject);
begin
ListW.Add (TDate(TButton.Create (nil)));
TList(ListI).Add (TButton.Create (nil));
UpdateList;

end;

The UpdateList call triggers an exception, displayed directly in the list box, because I’ve
used an as typecast in the custom list classes. A wise programmer should never write the
above code. To summarize, writing a custom list for a specific type makes a program much
more robust. Writing a wrapper list instead of one that’s based on inheritance tends to be a
little safer, although it requires more coding.

NOTE Instead of rewriting wrapper-style list classes for different types, you can use my List Template
Wizard, available on my Web site, www.marcocantu.com.

Streaming
Another core area of the Delphi class library is its support for streaming, which includes file
management, memory, sockets, and other sources of information arranged in a sequence.
The idea of streaming is that you move along the data while reading it, much like the tradi-
tional read and write functions used by the Pascal language (and discussed in Chapter 12 of
Essential Pascal, available on the companion CD).

Streaming

2874c05.qxd 7/2/01 4:16 PM Page 179

http://www.sybex.com

180

The TStream Class
The VCL defines the abstract TStream class and several subclasses. The parent class, TStream,
has just a few properties, and you’ll never create an instance of it, but it has an interesting list
of methods you’ll generally use when working with derived stream classes.

The TStream class defines two properties, Size and Position. All stream objects have a spe-
cific size (which generally grows if you write something after the end of the stream), and you
must specify a position within the stream where you want to either read or write information.

Reading and writing bytes depends on the actual stream class you are using, but in both
cases you don’t need to know much more than the size of the stream and your relative posi-
tion in the stream to read or write data. In fact, that’s one of the advantages of using streams.
The basic interface remains the same whether you’re manipulating a disk file, a binary large
object (BLOB) field, or a long sequence of bytes in memory.

In addition to the Size and Position properties, the TStream class also defines several
important methods, most of which are virtual and abstract. (In other words, the TStream class
doesn’t define what these methods do; therefore, derived classes are responsible for imple-
menting them.) Some of these methods are important only in the context of reading or writ-
ing components within a stream (for instance, ReadComponent and WriteComponent), but
some are useful in other contexts, too. In Listing 5.2, you can find the declaration of the
TStream class, extracted from the Classes unit.

➲ Listing 5.2: The public portion of the definition of the TStream class

TStream = class(TObject)
public
// read and write a buffer
function Read(var Buffer; Count: Longint): Longint; virtual; abstract;
function Write(const Buffer; Count: Longint): Longint; virtual; abstract;
procedure ReadBuffer(var Buffer; Count: Longint);
procedure WriteBuffer(const Buffer; Count: Longint);

// move to a specific position
function Seek(Offset: Longint; Origin: Word): Longint; overload; virtual;
function Seek(const Offset: Int64; Origin: TSeekOrigin): Int64;
overload; virtual;

// copy the stream
function CopyFrom(Source: TStream; Count: Int64): Int64;

// read or write a component
function ReadComponent(Instance: TComponent): TComponent;
function ReadComponentRes(Instance: TComponent): TComponent;
procedure WriteComponent(Instance: TComponent);
procedure WriteComponentRes(const ResName: string; Instance: TComponent);

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 180

http://www.sybex.com

181

procedure WriteDescendent(Instance, Ancestor: TComponent);
procedure WriteDescendentRes(
const ResName: string; Instance, Ancestor: TComponent);

procedure WriteResourceHeader(const ResName: string; out FixupInfo: Integer);
procedure FixupResourceHeader(FixupInfo: Integer);
procedure ReadResHeader;

// properties
property Position: Int64 read GetPosition write SetPosition;
property Size: Int64 read GetSize write SetSize64;

end;

The basic use of a string involves calling the ReadBuffer and WriteBuffer methods, which
are very powerful but not terribly easy to use. The first parameter, in fact, is an untyped buffer
in which you can pass the variable to save from or load to. For example, you can save into a file
a number (in binary format) and a string, with this code:

var
stream: TStream;
n: integer;
str: string;

begin
n := 10;
str := ‘test string’;
stream := TFileStream.Create (‘c:\tmp\test’, fmCreate);
stream.WriteBuffer (n, sizeOf(integer));
stream.WriteBuffer (str[1], Length (str));
stream.Free;

A totally alternative approach is to let specific components save or load data to and from
streams. Many VCL classes define a LoadFromStream or a SaveToStream method, including
TStrings, TStringList, TBlobField, TMemoField, TIcon, and TBitmap.

Specific Stream Classes
Creating a TStream instance makes no sense, because this class is abstract and provides no
direct support for saving data. Instead, you can use one of the derived classes to load data from
or store it to an actual file, a BLOB field, a socket, or a memory block. Use TFileStream when
you want to work with a file, passing the filename and some file access options to the Create
method. Use TMemoryStream to manipulate a stream in memory and not an actual file.

Several units define TStream-derived classes. In the Classes unit are the following classes:

• THandleStream defines a stream that manipulates a disk file represented by a Windows
file handle.

Streaming

2874c05.qxd 7/2/01 4:16 PM Page 181

http://www.sybex.com

182

• TFileStream defines a stream that manipulates a disk file (a file that exists on a local or
network disk) represented by a filename. It inherits from THandleStream.

• TCustomMemoryStream is the base class for streams stored in memory but is not used
directly.

• TMemoryStream defines a stream that manipulates a sequence of bytes in memory. It
inherits from TCustomMemoryStream.

• TStringStream provides a simple way for associating a stream to a string in memory, so
that you can access the string with the TStream interface and also copy the string to and
from another stream.

• TResourceStream defines a stream that manipulates a sequence of bytes in memory,
and provides read-only access to resource data linked into the executable file of an
application (an example of these resource data are the DFM files). It inherits from
TCustomMemoryStream.

Stream classes defined in other units include

• TBlobStream defines a stream that provides simple access to database BLOB fields. There
are similar BLOB streams for other database access technologies rather than the BDE.

• TOleStream defines a stream for reading and writing information over the interface for
streaming provided by an OLE object.

• TWinSocketStream provides streaming support for a socket connection.

Using File Streams
Creating and using a file stream can be as simple as creating a variable of a type that descends
from TStream and calling components methods to load content from the file:

var
S: TFileStream;

begin
if OpenDialog1.Execute then
begin
S := TFileStream.Create (OpenDialog1.FileName, fmOpenRead);
try
Memo1.Lines.LoadFromStream (S);

finally
S.Free;

end;
end;

end;

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 182

http://www.sybex.com

183

As you can see in this code, the Create method for file streams has two parameters: the name
of the file and a flag indicating the requested access mode. In this case, we want to read the file,
so we used the fmOpenRead flag (other available flags are documented in the Delphi help).

NOTE Of the different modes, the most important are fmShareDenyWrite, which you’ll use when you’re
simply reading data from a shared file, and fmShareExclusive, which you’ll use when you’re writ-
ing data to a shared file.

A big advantage of streams over other file access techniques is that they’re very inter-
changeable, so you can work with memory streams and then save them to a file, or you can
perform the opposite operations. This might be a way to improve the speed of a file-intensive
program. Here is a snippet of code, a file-copying function, to give you another idea of how
you can use streams:

procedure CopyFile (SourceName, TargetName: String);
var
Stream1, Stream2: TFileStream;

begin
Stream1 := TFileStream.Create (SourceName, fmOpenRead);
try
Stream2 := TFileStream.Create (TargetName, fmOpenWrite or fmCreate);
try
Stream2.CopyFrom (Stream1, Stream1.Size);

finally
Stream2.Free;

end
finally
Stream1.Free;

end
end;

Another important use of streams is to handle database BLOB fields or other large fields
directly. In fact, you can export such data to a stream or read it from one by simply calling
the SaveToStream and LoadFromStream methods of the TBlobField class.

The TReader and TWriter Classes
By themselves, the stream classes of VCL don’t provide much support for reading or writing
data. In fact, stream classes don’t implement much beyond simply reading and writing blocks
of data. If you want to load or save specific data types in a stream (and don’t want to perform
a great deal of typecasting), you can use the TReader and TWriter classes, which derive from the
generic TFiler class.

Streaming

2874c05.qxd 7/2/01 4:16 PM Page 183

http://www.sybex.com

184

Basically, the TReader and TWriter classes exist to simplify loading and saving stream data
according to its type, and not just as a sequence of bytes. To do this, TWriter embeds special
signatures into the stream that specify the type for each object’s data. Conversely, the TReader
class reads these signatures from the stream, creates the appropriate objects, and then initial-
izes those objects using the subsequent data from the stream.

For example, I could have written out a number and a string to a stream by writing:
var
stream: TStream;
n: integer;
str: string;
w: TWriter;

begin
n := 10;
str := ‘test string’;
stream := TFileStream.Create (‘c:\tmp\test.txt’, fmCreate);
w := TWriter.Create (stream, 1024);
w.WriteInteger (n);
w.WriteString (str);
w.Free;
stream.Free;

This time the actual file will include also the extra signature characters, so that I can read
back this file only by using a TReader object. For this reason, using the TReader and TWriter is
generally confined to components streaming and is seldom applied in general file management.

Streams and Persistency
In Delphi, streams play a considerable role for persistency. For this reason, many methods of
TStream relate to saving and loading a component and its subcomponents. For example, you
can store a form in a stream by writing

stream.WriteComponent(Form1);

If you examine the structure of a Delphi DFM file, you’ll discover that it’s really just a
resource file that contains a custom format resource. Inside this resource, you’ll find the com-
ponent information for the form or data module and for each of the components it contains.
As you would expect, the stream classes provide two methods to read and write this custom
resource data for components: WriteComponentRes to store the data, and ReadComponentRes
to load it.

For your experiment in memory (not involving actual DFM files), though, using
WriteComponent is generally better suited. After you create a memory stream and save the
current form to it, the problem is how to display it. This can be accomplished by transform-
ing the binary representation of forms to a textual representation. Even though the Delphi

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 184

http://www.sybex.com

185

IDE, since version 5, can save DFM files in text format, the representation used internally
for the compiled code is invariably a binary format.

The form conversion can be accomplished by the IDE, generally with the View as Text
command of the form designer, and in other ways. There is also a command-line utility,
CONVERT.EXE, found in the Delphi Bin directory. Within your own code, the standard way to
obtain a conversion is to call the specific methods of VCL. There are four functions for con-
verting to and from the internal object format obtained by the WriteComponent method:

procedure ObjectBinaryToText(Input, Output: TStream); overload;
procedure ObjectBinaryToText(Input, Output: TStream;
var OriginalFormat: TStreamOriginalFormat); overload;

procedure ObjectTextToBinary(Input, Output: TStream); overload;
procedure ObjectTextToBinary(Input, Output: TStream;
var OriginalFormat: TStreamOriginalFormat); overload;

Four different functions, with the same parameters and names containing the name Resource
instead of Binary (as in ObjectResourceToText), convert the resource format obtained by
WriteComponentRes. A final method, TestStreamFormat, indicates whether a DFM is storing a
binary or textual representation.

In the FormToText program, I’ve used the ObjectBinaryToText method to copy the binary
definition of a form into another stream, and then I’ve displayed the resulting stream in a
memo, as you can see in Figure 5.5. This is the code of the two methods involved:

F I G U R E 5 . 5 :
The textual description of a
form component, displayed
inside itself by the FormTo-
Text example

Streaming

2874c05.qxd 7/2/01 4:16 PM Page 185

http://www.sybex.com

186

procedure TformText.btnCurrentClick(Sender: TObject);
var
MemStr: TStream;

begin
MemStr := TMemoryStream.Create;
try
MemStr.WriteComponent (Self);
ConvertAndShow (MemStr);

finally
MemStr.Free

end;
end;

procedure TformText.ConvertAndShow (aStream: TStream);
var
ConvStream: TStream;

begin
aStream.Position := 0;
ConvStream := TMemoryStream.Create;
try
ObjectBinaryToText (aStream, ConvStream);
ConvStream.Position := 0;
MemoOut.Lines.LoadFromStream (ConvStream);

finally
ConvStream.Free

end;
end;

Notice that by repeatedly clicking the Current Form Object button you’ll get more and
more text, and the text of the memo is included in the stream. After a few times, the entire
operation will get extremely slow, so that the program seems to be hung up. In this code, we
start to see some of the flexibility of using streams—we can write a generic procedure we can
use to convert any stream.

NOTE It’s important to stress that after you’ve written data to a stream, you must explicitly seek back
to the beginning (or set the Position property to 0) before you can use the stream further,
unless you want to append data to the stream, of course.

Another button, labeled Panel Object, shows the textual representation of a specific compo-
nent, the panel, passing the component to the WriteComponent method. The third button,
Form in Executable File, does a different operation. Instead of streaming an existing object in

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 186

http://www.sybex.com

187

memory, it loads in a TResourceStream object the design-time representation of the form—
that is, its DFM file—from the corresponding resource embedded in the executable file:

procedure TformText.btnResourceClick(Sender: TObject);
var
ResStr: TResourceStream;

begin
ResStr := TResourceStream.Create(hInstance, ‘TFORMTEXT’, RT_RCDATA);
try
ConvertAndShow (ResStr);

finally
ResStr.Free

end;
end;

By clicking the buttons in sequence (or modifying the form of the program) you can com-
pare the form saved in the DFM file to the current run-time object.

Writing a Custom Stream Class
Besides using the existing stream classes, Delphi programmers can write their own stream
classes, and use them in place of the existing ones. To accomplish this, you need only specify
how a generic block of raw data is saved and loaded, and VCL will be able to use your new
class wherever you call for it. You may not need to create a brand-new stream class for work-
ing with a new type of media, but only need to customize an existing stream. In that case, all
you have to do is write the proper read and write methods.

As an example, I created a class to encode and decode a generic file stream. Although this
example is limited by its use of a totally dumb encoding mechanism, it fully integrates with VCL
and works properly. The new stream class simply declares the two core reading and writing
methods and has a property that stores a key.

type

TEncodedStream = class (TFileStream)

private

FKey: Char;

public

constructor Create(const FileName: string; Mode: Word);

function Read(var Buffer; Count: Longint): Longint; override;

function Write(const Buffer; Count: Longint): Longint; override;

property Key: Char read FKey write FKey;

end;

Streaming

Continued on next page

2874c05.qxd 7/2/01 4:16 PM Page 187

http://www.sybex.com

188

The value of the key is simply added to each of the bytes saved to a file, and subtracted when the
data is read. Here is the complete code of the Write and Read methods, which uses pointers
quite heavily:

constructor TEncodedStream.Create(const FileName: string; Mode: Word);

begin

inherited Create (FileName, Mode);

FKey := ‘A’; // default

end;

function TEncodedStream.Write(const Buffer; Count: Longint): Longint;

var

pBuf, pEnc: PChar;

I, EncVal: Integer;

begin

// allocate memory for the encoded buffer

GetMem (pEnc, Count);

try

// use the buffer as an array of characters

pBuf := PChar (@Buffer);

// for every character of the buffer

for I := 0 to Count - 1 do

begin

// encode the value and store it

EncVal := (Ord (pBuf[I]) + Ord(Key)) mod 256;

pEnc [I] := Chr (EncVal);

end;

// write the encoded buffer to the file

Result := inherited Write (pEnc^, Count);

finally

FreeMem (pEnc, Count);

end;

end;

function TEncodedStream.Read(var Buffer; Count: Longint): Longint;

var

pBuf, pEnc: PChar;

I, CountRead, EncVal: Integer;

begin

// allocate memory for the encoded buffer

GetMem (pEnc, Count);

try

Chapter 5 • Core Library Classes

Continued on next page

2874c05.qxd 7/2/01 4:16 PM Page 188

http://www.sybex.com

189

// read the encoded buffer from the file

CountRead := inherited Read (pEnc^, Count);

// use the output buffer as a string

pBuf := PChar (@Buffer);

// for every character actually read

for I := 0 to CountRead - 1 do

begin

// decode the value and store it

EncVal := (Ord (pEnc[I]) - Ord(Key)) mod 256;

pBuf [I] := Chr (EncVal);

end;

finally

FreeMem (pEnc, Count);

end;

// return the number of characters read

Result := CountRead;

end;

The comments in this rather complex code should help you understand the details. Now that
we have an encoded stream, we can try to use it in a demo program, which is called EncDemo.
The form of this program has two memo components and three buttons, as you can see in the
graphic below. The first button loads a plain text file in the first memo; the second button
saves the text of this first memo in an encoded file; and the last button reloads the encoded file
into the second memo, decoding it. In this example, after encoding the file, I’ve reloaded it in
the first memo as a plain text file on the left, which of course is unreadable.

Continued on next page

2874c05.qxd 7/2/01 4:16 PM Page 189

http://www.sybex.com

190

Since we have the encoded stream class available, the code of this program is very similar to
that of any other program using streams. For example, here is the method used to save the
encoded file (you can compare its code to that of earlier examples based on streams):

procedure TFormEncode.BtnSaveEncodedClick(Sender: TObject);

var

EncStr: TEncodedStream;

begin

if SaveDialog1.Execute then

begin

EncStr := TEncodedStream.Create(SaveDialog1.Filename, fmCreate);

try

Memo1.Lines.SaveToStream (EncStr);

finally

EncStr.Free;

end;

end;

end;

Summarizing the Core VCL and BaseCLX Units
We’ve spent most of the space of this chapter discussing the classes of a single unit of the
library, Classes. This unit is certainly important, but it is not the only core unit of the library
(although there aren’t many others). In this section, I’m providing an overview of these units
and their content.

The Classes Unit
The Classes unit is at the heart of both VCL and CLX libraries, and though it sees many
internal changes from the last version of Delphi, there is little new for the average users.
(Most changes are related to modified IDE integration and are meant for expert component
writers.)

Here is a list of what you can find in the Classes unit, a unit that every Delphi programmer
should spend some time with:

• Many enumerated types, the standard method pointer types (including TNotifyEvent),
and many exception classes.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 190

http://www.sybex.com

191

• Core library classes, including TPersistent and TComponent but also TBasicAction and
TBasicActionLink.

• List classes, including TList, TThreadList (a thread-safe version of the list), TInterfaceList
(a list of interfaces, used internally), TCollection, TCollectionItem, TOwnedCollection
(which is simply a collection with an owner), TStrings, and TStringList.

• All the stream classes I discussed in the previous section but won’t list here again. There
are also the TFiler, TReader, and TWriter classes and a TParser class used internally for
DFM parsing.

• Utility classes, such as TBits for binary manipulation and a few utility routines (for
example, point and rectangle constructors, and string list manipulation routines such as
LineStart and ExtractStrings). There are also many registration classes, to notify the
system of the existence of components, classes, special utility functions you can replace,
and much more.

• The TDataModule class, a simple object container alternative to a form. Data modules
can contain only nonvisual components and are generally used in database and Web
applications.

NOTE In past versions of Delphi, the TDataModule class was defined in the Forms unit; now it has
been moved to the Classes unit. This was done to eliminate the code overhead of the GUI
classes from non-visual applications (for example, Web server modules) and to better separate
non-portable Windows code from OS-independent classes, such as TDataModule. Other
changes relate to the data modules, for example, to allow the creation of Web applications
with multiple data modules, something not possible in Delphi 5.

• New interface-related classes, such as TInterfacedPersistent, aimed at providing fur-
ther support for interfaces. This particular class allows Delphi code to hold onto a ref-
erence to a TPersistent object or any descendent implementing interfaces, and is a
core element of the new support for interfaced objects in the Object Inspector (see
Chapter 11 for an example).

• The new TRecall class, used to maintain a temporary copy of an object, particularly
useful for graphical-based resources.

• The new TClassFinder class used for finding a registered class instead of the Find-
Class method.

• The TThread class, which provides the core to operating system–independent support
for multithreaded applications.

Summarizing the Core VCL and BaseCLX Units

2874c05.qxd 7/2/01 4:16 PM Page 191

http://www.sybex.com

192

Other Core Units
Other units that are part of the RTL package are not directly used by typical Delphi pro-
grammers as often as Classes. Here is a list:

• The TypInfo unit includes support for Accessing RTTI information for published
properties, as we’ve seen in the section “Accessing Properties by Name.”

• The SyncObjs unit contains a few generic classes for thread synchronization.

Of course, the RTL package also includes the units with functions and procedures dis-
cussed in the preceding chapter, such as Math, SysUtils, Variants, VarUtils, StrUtils,
DateUtils, and so on.

What’s Next?
As we have seen in this chapter, the Delphi class library has a few root classes that play a con-
siderable role and that you should learn to leverage to the maximum possible extent. Some
programmers tend to become expert on the components they use every day, and this is impor-
tant, but without understanding the core classes (and ideas such as ownership and streaming),
you’ll have a tough time grasping the full power of Delphi.

Of course, in this book, we also need to discuss visual and database classes, which I will do
in the next chapter. Now that we’ve seen all the base elements of Delphi (language, RTL,
core classes), we are ready to discuss the development of real applications with this tool.

Part II of the book, which starts with the next chapter, is fully devoted to examples of the use
of the various components, particularly visual components with the development of the user
interface. We’ll start with the advanced use of traditional controls and menus, discuss the
actions architecture, cover the TForm class, and then examine toolbars, status bars, dialog boxes,
and MDI applications in later chapters. Then we’ll move to the development of database appli-
cations in Part III of the book.

Chapter 5 • Core Library Classes

2874c05.qxd 7/2/01 4:16 PM Page 192

http://www.sybex.com

Visual Programming
� Chapter 6: Controls: VCL Versus VisualCLX

� Chapter 7: Advanced VCL Controls

� Chapter 8: Building the User Interface

� Chapter 9: Working with Forms

� Chapter 10: The Architecture of Delphi Applications

� Chapter 11: Creating Components

� Chapter 12: Libraries and Packages

PART I I

2874c06.qxd 7/2/01 4:22 PM Page 193

http://www.sybex.com

6CH A P T E R

Controls: VCL Versus
VisualCLX

� VCL versus VisualCLX

� TControl, TWinControl, and TWidgetControl

� An overview of the standard components

� Basic and advanced menu construction

� Modifying the system menu

� Graphics in menus and list boxes

� OwnerDraw and styles

2874c06.qxd 7/2/01 4:22 PM Page 195

http://www.sybex.com

196

Now that you’ve been introduced to the Delphi environment and have seen an overview
of the Object Pascal language and the base elements of component library, we are ready to
delve into the second part of the book: the use of components and the development of the
user interface of applications. This is really what Delphi is about. Visual programming using
components is the key feature of this development environment.

Delphi comes with a large number of ready-to-use components. I won’t describe every
component in detail, examining each of its properties and methods; if you need this informa-
tion, you can find it in the Help system. The aim of Part II of this book is to show you how
to use some of the advanced features offered by the Delphi predefined components to build
applications and to discuss specific programming techniques.

I’ll start with a comparison of the VCL and VisualCLX libraries available in Delphi 6 and a
coverage of the core classes (particularly TControl). Then I’ll try to list all the various visual
components you have, because choosing the right basic controls is often a way to get into a
project faster.

VCL versus VisualCLX
As we’ve seen in the last chapter, Delphi 6 introduces the new CLX library alongside the tra-
ditional VCL library. There are certainly many differences, even in the use of the RTL and
code library classes, between developing programs specifically for Windows or with a cross-
platform attitude, but the user interface portion is where differences are most striking.

The visual portion of VCL is a wrapper of the Window API. It includes wrappers of the
native Windows controls (like buttons and edit boxes), of the common controls (like tree
views and list views), plus a bunch of native Delphi controls bound to the Windows concept
of a window. There is also a TCanvas class that wraps the basic graphic calls, so you can easily
paint on the surface of a window.

VisualCLX, the visual portion of CLX, is a wrapper of the Qt (pronounced “cute”) library.
It includes wrappers of the native Qt widgets, which range from basic to advanced controls,
very similar to Windows’ own standard and common controls. It includes also painting sup-
port using another, similar, TCanvas class. Qt is a C++ class library, developed by Trolltech
(www.trolltech.com), a Norwegian company with a strong relationship with Borland.

On Linux, Qt is one of the de facto standard user-interface libraries and is the basis of the
KDE desktop environment. On Windows, Qt provides an alternative to the use of the native
APIs. In fact, unlike VCL, which provides a wrapper to the native controls, Qt provides an
alternate implementation to those controls. This allows programs to be truly portable, as

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 196

http://www.sybex.com

197

there are no hidden differences created by the operating system (and that the operating sys-
tem vendor can introduce behind the scenes). It also allows us to avoid an extra layer; CLX
on top of Qt on top of Windows native controls suggests three layers, but in fact there are
two layers in each solution (CLX controls on top of Qt, VCL controls on top of Windows).

NOTE Distributing Qt applications on Windows implies the distribution of the Qt library itself (some-
thing you can generally take for granted on the Linux platform). Distributing the Qt libraries
with a professional application (as opposed to an open source project) generally implies paying
a license to Trolltech. If you use Delphi or Kylix to build Qt applications, however, Borland has
already paid the license to Trolltech for you. However, you must use the CLX classes wrapping
Qt: If you use the Qt classes directly, you apparently still owe the license to Qt, even when
using Delphi or Kylix.

Technically, there are huge differences behind the scenes between a native Windows applica-
tion built with VCL and a portable Qt program developed with VisualCLX. Suffice to say that
at the low level, Windows uses API function calls and messages to communicate with controls,
while Qt uses class methods and direct method callbacks and has no internal messages. Techni-
cally, the Qt classes offer a high-level object-oriented architecture, while the Windows API
is still bound to its C legacy and a message-based system dated 1985 (when Windows was
released). VCL offers an object-oriented abstraction on top of a low-level API, while Visual-
CLX remaps an already high-level interface into a more familiar class library.

NOTE To be honest, Microsoft has apparently reached the point of starting to abandon the tradi-
tional low-level Windows API for a native high-level class library, part of the dotNet architec-
ture. Of course, this change won’t happen overnight, but new high-level user-interface
technologies might be introduced only in dotNet. Actually, dotNet consists of multiple tech-
nologies, including a virtual machine or runtime interpreter, a low-level nonvisual RTL, and a
class framework for visual stuff (partially overlapping with VCL. If having a new visual class
library on top of the Windows API might be of little use to programmers already using a mod-
ern class library (like VCL) other areas of dotNet would be of interest to Delphi programmers. So
far, Borland has released no official statement regarding possible support for the dotNet byte
code and virtual machine, or other areas of the future Microsoft operating system offering.

Having a familiar class library on top of a totally new platform is the advantage for Delphi
programmers of using VisualCLX on Linux. This implies that the two class libraries, CLX
and VCL, are very similar for their users, even if they are very different internally, as I men-
tioned. From the outside, a button is an object of the TButton class for both libraries, and it
has more or less the same set of methods, properties, and events. In many occasions, you can
recompile your existing programs for the new class library in a matter of minutes, if they
don’t map directly to low-level APIs.

VCL versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 197

http://www.sybex.com

198

Delphi 6 Dual Libraries Support
Delphi 6 has full support for both libraries at design time and at run time. As you start devel-
oping a new application, you can use the File ➢ New Application command to create a new
VCL-based program and File ➢ New CLX Application for a new CLX-based program.
After giving one of these two commands, Delphi’s IDE will create a VCL or CLX design-
time form and update the Component Palette so that it displays only the visual components
compatible with the type of application you’ve selected (see Figure 6.1 for a comparison). In
fact, you cannot place a VCL button into a CLX form, and you cannot even mix forms of the
libraries within a single executable file. In other words, the user interface of every application
must be built using exclusively one of the two libraries, which (aside from the technical
implications) actually makes a lot of sense to me.

If you haven’t already done so, I suggest you to try experimenting with the creation of a
CLX application, looking at the available controls and trying to use them. You’ll find very
few differences in the use of the components, and if you have been using Delphi for some
time, you’ll probably be immediately adept with CLX.

Same Classes, Different Units
One of the cornerstones of the source-code compatibility between CLX and VCL code is
that fact that similar classes in the two libraries have exactly the same class name. Each
library has a class called TButton representing a push button; the methods and properties are
so similar, this code will work with both libraries:

with TButton.Create (Self) do
begin
SetBounds (20, 20, 80, 35);

F I G U R E 6 . 1 :
A comparison of the first
three pages of the
Component Palette for a
CXL-based application
(above) and a VCL-based
application (below)

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 198

http://www.sybex.com

199

Caption := ‘New’;
Parent := Self;

end;

The two TButton classes have the same name, and this is possible because they are saved in
two different units, called StdCtrls and QStdCtrls. Of course, you cannot have the two com-
ponents available at design time in the palette, as the Delphi IDE can register only compo-
nents with unique names. The entire VisualCLX library is defined by units corresponding to
the VCL units, but with the letter Q as a prefix—so there is a QForms unit, a QDialogs unit,
a QGraphics unit, and so on. There are also a few peculiar ones, such as the QStyle unit, that
have no correspondence in VCL.

Notice that there are no compile settings or other hidden techniques to distinguish
between the two libraries; what matters is the set of units referenced in the code. Remember
that these references must be consistent, as you cannot mix visual controls of the two
libraries in a single form and not even in a single program.

DFM and XFM
As you create a form at design time, this is saved to a form definition file. Traditional VCL
applications use the DFM extension, which stands for Delphi form module. CLX applica-
tions use the XFM extension, which stands for cross-platform (i.e., X) form modules. The
actual format of DFM or XFM files, which can be based on a textual or binary representa-
tion, is identical. A form module is the result of streaming the form and its components, and
the two libraries share the streaming code, so they produce a fairly similar effect.

So the reason for having two different extensions doesn’t lie in internal compiler tricks or
incompatible formats. It is merely an indication to programmers and to the IDE of the type
of components you should expect to find within that definition (as this indication is not
included in the file itself).

If you want to convert a DFM file into an XFM file, you can simply rename the file. How-
ever, expect to find some differences in the properties, events, and available components, so
that reopening the form definition for a different library will probably cause quite a few
warnings.

TIP Apparently Delphi’s IDE chooses the active library only by looking at the extension of the form
module, ignoring the references in the uses statements. For this reason, do change the exten-
sion if you plan using CLX. On Kylix, a different extension is pretty useless, because any form is
opened in the IDE as a CLX form, regardless of the extension. On Linux, there is only the Qt-
based CLX library, which is both the cross-platform and the native library.

VCL versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 199

http://www.sybex.com

200

As an example, I’ve built two simple identical applications, LibComp and QLibComp
(available on this book’s CD-ROM), with only a few components and a single event handler.
Listing 6.1 presents the textual form definitions for two applications, built using the same
steps in the Delphi 6 IDE, after choosing a CLX or VCL application. I’ve marked out differ-
ences in bold; as you can see, there are very few, most relating to the form and its font. The
OldCreateOrder is a legacy property, used for compatibility with Delphi 3 and older code;
standard colors have different names; and CLX saves the scrollbars’ ranges.

➲ Listing 6.1: An XFM file (left) and an equivalent DFM file (right)

object Form1: TForm1 object Form1: TForm1
Left = 192 Left = 192
Top = 107 Top = 107
Width = 350 Width = 350
Height = 210 Height = 210
Caption = ‘QLibComp’ Caption = ‘LibComp’
Color = clBackground Color = clBtnFace
VertScrollBar.Range = 161 Font.Charset = DEFAULT_CHARSET
HorzScrollBar.Range = 297 Font.Color = clWindowText

Font.Height = -11
Font.Name = ‘MS Sans Serif’
Font.Style = []

TextHeight = 13 TextHeight = 13
TextWidth = 6 OldCreateOrder = False
PixelsPerInch = 96 PixelsPerInch = 96
object Button1: TButton object Button1: TButton
Left = 56 Left = 56
Top = 64 Top = 64
Width = 75 Width = 75
Height = 25 Height = 25
Caption = ‘Add’ Caption = ‘Add’
TabOrder = 0 TabOrder = 0
OnClick = Button1Click OnClick = Button1Click

end end
object Edit1: TEdit object Edit1: TEdit
Left = 40 Left = 40
Top = 32 Top = 32
Width = 105 Width = 105
Height = 21 Height = 21
TabOrder = 1 TabOrder = 1
Text = ‘my name’ Text = ‘my name’

end end
object ListBox1: TListBox object ListBox1: TListBox
Left = 176 Left = 176
Top = 32 Top = 32
Width = 121 Width = 121
Height = 129 Height = 129
Rows = 3 ItemHeight = 13
Items.Strings = (Items.Strings = (

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 200

http://www.sybex.com

201

‘marco’ ‘marco’
‘john’ ‘john’
‘helen’) ‘helen’)

TabOrder = 2 TabOrder = 2
end end

end end

uses Statements
By looking at the source code of the two examples, the differences are even less relevant, as
they simply relate to the uses statements. The form of the CLX application has the follow-
ing initial code:

unit QLibCompForm;
interface
uses
SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs, QStdCtrls;

The form of the VCL program has the traditional uses statement:
unit LibCompForm;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

The code of the class and of the only event handler is absolutely identical. Of course, the
classic compiler directive {$R *.dfm} is replaced by {$R *.xfm} in the CLX version of the
program.

Disabling the Dual Library Help Support
In Delphi 6, when you press the F1 key in the editor asking for help on a routine, class, or
method of the Delphi library, you’ll usually get a choice between the VCL and CLX declara-
tions of the same feature. You’ll need to make a choice to proceed to the related help page,
which can be quite annoying after a while (especially as the two pages are often identical).

If you don’t care about CLX and are planning to use only VCL (or vice versa), you can dis-
able this alternative by choosing the Help ➢ Customize command, removing everything
with CLX in the name from Contents, Index, and Link, and saving the project. Then restart
the Delphi IDE, and the Help engine won’t bother asking you about CLX any more. Of
course, don’t forget to add those help files again in case you decide to start using CLX.

VCL versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 201

http://www.sybex.com

202

Choosing a Visual Library
Because you have two different user interface libraries available in Delphi 6, you’ll have to
choose one for each visual application. You must evaluate multiple criteria to come to the
proper decision, which isn’t always easy.

The first criterion is portability. If running your program on Windows and on Linux, with
the same user interface, is a major concern to you, using CLX will probably make your life
simpler and let you keep a single source code file with very limited IFDEFs. The same applies
if you consider Linux to be (or possibly become) your key platform. Instead, if most of your
users are on Windows and you just want to extend your offering with a Linux version, you
might want to keep a dual VCL/CLX system. This probably implies two different sets of
source code files, or too many for IFDEFs.

In fact, another criterion is the native look-and-feel. By using CLX on Windows, some of
the controls will behave slightly differently than users will expect—at least expert users. For a
simple user interface (edits, buttons, grids), this probably won’t matter much, but if you have
many tree view and list view controls, the differences will be quite clear. On the other hand,
with CLX you’ll be able to let your users select a look-and-feel of their choice, different from
the basic Windows look, and use it consistently across platforms.

Using native controls implies also that as soon as you get a new version of the Windows
operating system, your application will (probably) adapt to it. This is good for the user, but
might cause you a lot of headaches in case of incompatibilities. Differences in the Microsoft
common controls library over the last few years have been a major source of frustration for
Windows programmers in general, including Delphi programmers.

Another criterion is the deployment: If you use CLX, you’ll have to ship your Windows
program with the Qt libraries, which are not commonly available on Windows systems.

Finally, I’ve done a little testing, and it seems that the speed of VCL and CLX applications
is similar. I’ve tried creating a thousand components, showing them on screen, and the speed
differences are few, with a slight advantage for the VCL-based solution. You can try them out
with the LibSpeed and QLibSpeed applications on the companion CD.

Running It on Linux
So the real issue of choosing the library resolves to the importance of Linux for you and your
users. What is very important to notice is that, if you create a CLX application, you’ll be able
to recompile it unchanged (with the exact source code) with Kylix producing a native Linux
application.

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 202

http://www.sybex.com

203

As an example, I’ve recompiled the QLibComp example introduced earlier, and you can
see it running in Figure 6.2, where you can also see the Kylix IDE in action on a KDE 2
SuSE system.

Conditional Compilation for Libraries
If you want to keep a single source code file but compile with VCL on Windows and CXL
on Linux, you can use platform-specific symbols (such as $IFDEF LINUX) to distinguish the
two situations in case of conditional compilation. But what if you want to be able to compile
a portion of code for both libraries on Windows?

You can either define a symbol of your own, and use conditional compilation, or (at times)
test for the presence of identifiers that exist only in VCL or CLX only, as in:

{$IF Declared(QForms)}
...CLX-specific code

{$IFEND}

F I G U R E 6 . 2 :
An application written
with CLX can be directly
recompiled under Linux
with Kylix (displayed in
the background).

VCL versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 203

http://www.sybex.com

204

Converting Existing Applications
Besides starting with new CLX applications, you might want to convert some of your exist-
ing VCL applications to the new class library. There are a series of operations you have to
do, without any specific help from the Delphi IDE:

• You’ll have to rename the DFM file as XFM and update all of the {$R *.DFM} state-
ments as {$R *.XFM}.

• You’ll have to update all of the uses statements of your program (in the units and pro-
ject files) to refer to the CLX units instead of the VCL units. Notice that by missing
even a few, you’ll bump into trouble when running your application.

TIP To prevent a CLX application from compiling if it contains references to VCL units, you can
move the VCL units to a different directory under lib and avoid including this folder in your
search path. This way, eventual leftover references to VCL units will cause a “Unit not found”
error.

Table 6.1 is a comparison of the names of the visual VCL and CLX units, excluding the
database portion and some rarely referenced units:

TABLE 6.1: Names of Equivalent VCL and CLX Units

VCL CLX

ActnList QActnList

Buttons QButtons

Clipbrd QClipbrd

ComCtrls QComCtrls

Consts QConsts

Controls QControls

Dialogs QDialogs

ExtCtrls QExtCtrls

Forms QForms

Graphics QGraphics

Grids QGrids

ImgList QImgList

Menus QMenus

Printers QPrinters

Search QSearch

StdCtrls QStdCtrls

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 204

http://www.sybex.com

205

You might also convert references to Windows and Messages into references to the Qt
unit. Some Windows data structures are now also available in the Types unit (see Chapter 4,
“The Run-Time Library,” for details), so you might have to add it to your CLX programs.
Notice, however, that the QTypes unit is not the CLX version of VCL’s Types unit; these two
units are totally unrelated.

WARNING Watch out for your uses statements! If you happen to compile a project that includes a CLX
form, but fail to update the project unit, leaving a reference to the VCL Forms unit there, your
program will run but stop immediately. The reason is that no VCL form was created, so
the program terminated right away. In other cases, trying to create a CLX form within a VCL
application will cause run-time errors. Finally, the Delphi IDE might inappropriately add refer-
ences to uses statements of the wrong library, so you end up with a single uses statement refer-
ring to the same unit for both, but only the second of the two will be effective. This rarely
prevents the program from compiling, but you won’t be able to run it.

The VclToClx Helper Tool
As a helper in converting some of my own programs, I’ve written a simple unit-replacement
tool, called VclToClx and available with its complete source code in the Tools folder of the
book CD and on my Web site.

The program converts unit names, based on a configuration file, and fixes the DFM issue,
by renaming the DFM files to XFM and fixing the references in the source code. The pro-
gram is quite naive, as it doesn’t really parse the source code, but simply looks for the occur-
rences of the unit names followed by a comma or semicolon, as happens in a uses statement.
It also requires that the unit name is preceded by a space, but of course you can modify the
program to look for a comma. Don’t skip this extra test; otherwise the Forms unit will be
turned to QForms, but the QForms unit will be converted again to QQForms!

TControl and Derived Classes
In the preceding chapter, I discussed the base classes of the Delphi library, focusing particularly
on the TComponent class. One of the most important subclasses of TComponent is TControl, which
corresponds to visual components. This base class is available both in CLX and VCL and
defines general concepts, such as the position and the size of the control, the parent control
hosting it, and more. For an actual implementation, though, you have to refer to its two sub-
classes. In VCL these are TWinControl and TGraphicControl; in CLX they are TWidget-
Control and TGraphicControl. Here are their key features:

• Window-based controls (also called windowed controls) are visual components based on an
operating-system window. A TWinControl in VCL has a window handle, a number
referring to an internal Windows structure. A TWidgetControl in CLX has a Qt handle,

TControl and Derived Classes

2874c06.qxd 7/2/01 4:22 PM Page 205

http://www.sybex.com

206

a reference to the internal Qt object. From a user perspective, windowed controls can
receive the input focus, and some of them can contain other controls. This is the biggest
group of components in the Delphi library. We can further divide windowed controls in
two groups: wrappers of native controls of Windows or Qt, and custom controls, which
generally inherit from TCustomControl.

• Graphical controls (also called nonwindowed controls) are visual components that are not based
on an operating-system window. Therefore, they have no handle, cannot receive the focus,
and cannot contain other controls. These controls inherit from TGraphicControl and are
painted by their parent form, which sends them mouse-related and other events. Examples
of nonwindowed controls are the Label and SpeedButton components. There are just a
few controls in this group, which were critical to minimizing the use of system resources
in the early days of Delphi (on 16-bit Windows). Using graphical controls to save Win-
dows resources is still quite useful on Win9x/Me, which has pushed the system limits
higher but hasn’t fully gotten rid of them (unlike Windows NT/2000).

A Short History of Windows Controls
You might have asked yourself where the idea of using components for Windows program-
ming came from. The answer is simple: Windows itself has some components, usually called
controls. A control is technically a predefined window that has a specific behavior and some
styles and is capable of responding to specific messages. These controls were the first step in
the direction of component development. The second step was probably Visual Basic controls,
and the third step is Delphi components. (Actually, Microsoft’s third step was its ActiveX tech-
nology, which is now followed by the dotNet framework, which is more or less at the level of
the VCL controls.)

Windows 3.1 had six kinds of predefined controls, which were generally used in dialog boxes.
Still used in Win32, they are buttons (push buttons, check boxes, and radio buttons), static
labels, edit fields, list boxes, combo boxes, and scroll bars. Windows 95 added new predefined
components, such as the list view, the status bar, the spin button, the progress bar, the tab
control, and many others. Win32 developers can use the standard common controls provided
by the system, and Delphi developers have the further advantage of having corresponding
easy-to-use components.

As we have seen, Qt offers to CLX comparable basic and common controls, and even if there
are internal differences, the Delphi libraries exposing those controls provide wrappers that can
minimize those differences. VCL, in fact, literally wraps Windows predefined controls in some
of its basic components. A Delphi wrapper class—for example, TEdit—simply surfaces the
capabilities of the underlying Windows control, making it easier to use. However, Delphi adds
nothing to the capabilities of this control. In Windows 95/98, an edit or memo control has a
physical limit of 32 KB of text, and this limit is retained by the Delphi component.

Chapter 6 • Controls: VCL Versus VisualCLX

Continued on next page

2874c06.qxd 7/2/01 4:22 PM Page 206

http://www.sybex.com

207

Why hasn’t Borland overcome this limit? Why can’t we change the color of a button? Simply
because by replacing a Windows control with a custom version, we would lose the close con-
nection with the operating system. Suppose Microsoft improves some of the controls in the
next version of Windows. If we use our own version of the component, the application we
build won’t have the new features. By using controls that are based on the operating-system
capabilities, instead, our programs have the opportunity to migrate through different versions
of the OS and retain all the features provided by the specific version. This doesn’t apply to the
use of Qt, of course, but you have the advantage of being able to have an identical application
based on the same source code running on Linux.

Note that wrapping an existing Windows or Qt control is an effective way of reusing code and
also helps reduce the size of your compiled program. Implementing yet another button control
from scratch requires custom code in your application, while a wrapper around the OS-supplied
button control requires less code and makes use of system code shared by many applications.

Parent and Controls
The Parent property of a control indicates which other control is responsible for displaying
it. When you drop a component into a form in the Form Designer, the form will become
both parent and owner of the new control. But if you drop the component inside a Panel,
ScrollBox, or any other container component, this will become its parent, while the form will
still be the owner of the control.

When you create the control at run time, you’ll need to set the owner (using the Create
constructor parameter); but you must also set the Parent property, or the control won’t be
visible.

Like the Owner property, the Parent property has an inverse. The Controls array, in fact,
lists all of the controls parented by the current one, numbered from 0 to ControlsCount - 1.
You can scan this property to operate on all of the controls hosted by another one, eventually
using a recursive method that operates on the controls parented by each subcontrol.

Properties Related to Control Size and Position
Some of the properties introduced by TControl and common to all controls are those related
to size and position. The position of a control is determined by its Left and Top properties,
its size by the Height and Width properties. Technically, all components have a position,
because when you reopen an existing form at design time, you want to be able to see the
icons for the nonvisual components in exactly the position where you’ve placed them. This
position is visible in the form file.

TControl and Derived Classes

2874c06.qxd 7/2/01 4:22 PM Page 207

http://www.sybex.com

208

TIP As you change any of the positional or size properties, you end up calling the single Set-
Bounds method. So any time you need to change two or more of these properties at once,
calling SetBounds directly will speed up the program. Another method, BoundsRect, returns
the rectangle bounding of the control and corresponds to accessing those four properties.

An important feature of the position of a component is that, like any other coordinate, it
always relates to the client area of its parent component (indicated by its Parent property).
For a form, the client area is the surface included within its borders (excluding the borders
themselves). It would have been messy to work in screen coordinates, although there are
some ready-to-use methods that convert the coordinates between the form and the screen
and vice versa.

Note, however, that the coordinates of a control are always relative to the parent control,
such as a form or another container component. If you place a panel in a form, and a button in
a panel, the coordinates of the button relate to the panel and not to the form containing the
panel. In fact, in this case, the parent component of the button is the panel.

Activation and Visibility Properties
There are two basic properties you can use to let the user activate or hide a component. The
simpler is the Enabled property. When a component is disabled (when Enabled is set to False),
usually some visual hint indicates this state to the user. At design time, the “disabled” property
does not always have an effect, but at run time, disabled components are generally grayed.

For a more radical approach, you can completely hide a component, either by using the
corresponding Hide method or by setting its Visible property to False. Be aware, however,
that reading the status of the Visible property does not tell you whether the control is actu-
ally visible. In fact, if the container of a control is hidden, even if the control is set to
Visible, you cannot see it. For this reason, there is another property, Showing, which is a
run-time and read-only property. You can read the value of Showing to know whether the
control is really visible to the user; that is, if it is visible, its parent control is also visible, the
parent control of the parent control is also visible, and so on.

Fonts
Two properties often used to customize the user interface of a component are Color and
Font. Several properties are related to the color. The Color property itself usually refers to
the background color of the component. Also, there is a Color property for fonts and many
other graphic elements. Many components also have a ParentColor and a ParentFont prop-
erty, indicating whether the control should use the same font and color as its parent compo-
nent, which is usually the form. You can use these properties to change the font of each
control on a form by setting only the Font property of the form itself.

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 208

http://www.sybex.com

209

When you set a font, either by entering values for the attributes of the property in the
Object Inspector or by using the standard font selection dialog box, you can choose one of
the fonts installed in the system. The fact that Delphi allows you to use all the fonts installed
on your system has both advantages and drawbacks. The main advantage is that if you have a
number of nice fonts installed, your program can use any of them. The drawback is that if
you distribute your application, these fonts might not be available on your users’ computers.

If your program uses a font that your user doesn’t have, Windows will select some other
font to use in its place. A program’s carefully formatted output can be ruined by the font sub-
stitution. For this reason, you should probably rely only on standard Windows fonts (such as
MS Sans Serif, System, Arial, Times New Roman, and so on).

Colors
There are various ways to set the value of a color. The type of this property is TColor. For
properties of this type, you can choose a value from a series of predefined name constants or
enter a value directly. The constants for colors include clBlue, clSilver, clWhite, clGreen,
clRed, and many others.

TIP Delphi 6 adds four new standard colors: clMoneyGreen, clSkyBlue, clCream, and clMedGray.

As a better alternative, you can use one of the colors used by the system to denote the sta-
tus of given elements. These sets of colors are different in VCL and CLX. VCL includes pre-
defined Windows colors such as the background of a window (clWindow), the color of the text
of a highlighted menu (clHightlightText), the active caption (clActiveCaption), and the ubiqui-
tous button face color (clBtnFace).

CLX includes a different and incompatible set of system colors, including clBackground,
which is the standard color of a form; clBase, used by edit boxes and other visual controls;
clActiveForeground, the foreground color for active controls; and clDisabledBase, the back-
ground color for disabled text controls. All the color constants mentioned here are listed in
VCL and CLX Help files under the “TColor type” topic.

Another option is to specify a TColor as a number (a 4-byte hexadecimal value) instead of
using a predefined value. If you use this approach, you should know that the low three bytes
of this number represent RGB color intensities for blue, green, and red, respectively. For
example, the value $00FF0000 corresponds to a pure blue color, the value $0000FF00 to
green, the value $000000FF to red, the value $00000000 to black, and the value $00FFFFFF
to white. By specifying intermediate values, you can obtain any of 16 million possible colors.

Instead of specifying these hexadecimal values directly, you should use the Windows RGB
function, which has three parameters, all ranging from 0 to 255. The first indicates the
amount of red, the second the amount of green, and the last the amount of blue. Using the
RGB function makes programs generally more readable than using a single hexadecimal

TControl and Derived Classes

2874c06.qxd 7/2/01 4:22 PM Page 209

http://www.sybex.com

210

constant. Actually, RGB is almost a Windows API function. It is defined by the Windows-
related units and not by Delphi units, but a similar function does not exist in the Windows
API. In C, there is a macro that has the same name and effect, so this is a welcome addition
to the Pascal interface to Windows. RGB is not available on CLX, so I’ve written my own ver-
sion as:

function RGB (red, green, blue: Byte): Cardinal;
begin
Result := blue + green * 256 + red * 256 * 256;

end;

The highest-order byte of the TColor type is used to indicate which palette should be
searched for the closest matching color, but palettes are too advanced a topic to discuss here.
(Sophisticated imaging programs also use this byte to carry transparency information for
each display element on the screen.) Regarding palettes and color matching, note that Win-
dows sometimes replaces an arbitrary color with the closest available solid color, at least in
video modes that use a palette. This is always the case with fonts, lines, and so on. At other
times, Windows uses a dithering technique to mimic the requested color by drawing a tight
pattern of pixels with the available colors. In 16-color (VGA) adapters and at higher resolu-
tions, you often end up seeing strange patterns of pixels of different colors and not the color
you had in mind.

The TWinControl Class (VCL)
In Windows, most elements of the user interface are windows. From a user standpoint, a
window is a portion of the screen surrounded by a border, having a caption and usually a sys-
tem menu. But technically speaking, a window is an entry in an internal system table, often
corresponding to an element visible on the screen that has some associated code. Most of
these windows have the role of controls; others are temporarily created by the system (for
example, to show a pull-down menu). Still other windows are created by the application but
remain hidden from the user and are used only as a way to receive a message (for example,
nonblocking sockets use windows to communicate with the system).

The common denominator of all windows is that they are known by the Windows system
and refer to a function for their behavior; each time something happens in the system, a noti-
fication message is sent to the proper window, which responds by executing some code. Each
window of the system, in fact, has an associated function (generally called its window
procedure), which handles the various messages the window is interested in.

In Delphi, any TWinControl class can override the WndProc method or define a new value
for the WindowProc property. Interesting Windows messages, however, can be better tracked
by providing specific message handlers. Even better, VCL converts these lower-level mes-
sages into events. In short, Delphi allows us to work at a high level, making application
development easier, but still allows us to go low-level when this is required.

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 210

http://www.sybex.com

211

Notice also that creating a WinControl doesn’t automatically create its corresponding
Window handle. Delphi, in fact, uses a lazy initialization technique, so that the low control is
only created when this is required, generally as soon as a method accesses the Handle prop-
erty. The get method for this property the first time calls HandleNeeded, which eventually
calls CreateHandle… and so on reaching CreateWnd, CreateParams, and CreateWindowHandle
(the sequence is rather complex, and I don’t think it is necessary to know it in detail). At the
opposite end, you can keep an existing (perhaps invisible) control in memory but destroy its
window handle, to save system resources.

The TWidgetControl Class (CLX)
In CLX, every TWidgetControl has an internal Qt object, referenced using the Handle prop-
erty. This property has the same name as the corresponding Windows property, but it is
totally different behind the scenes.

The Qt object is generally owned by the TWidgetControl, which automatically frees the
object when it is destroyed. The class also uses delayed construction, as you can see in the
InitWidget method, similar to CreateWindow. However it is also possible to create a widget
around an existing Qt object: in this case, the widget won’t own the Qt object and won’t
destroy it. The behavior is indicated by the OwnHandle property.

Actually each VisualCLX component has two associated C++ objects, the Qt Handle and
the Qt Hook, which is the object receiving the system events. With the current Qt design, this
has to be a C++ object, which acts as an intermediary to the event handlers of the Object Pas-
cal control. The HookEvents method associates the hook object to the CLX control.

Differently from Windows, Qt defines two different types of events:

• Events are the translation of input or system events (such as key press, mouse move, and
paint).

• Signals are internal component events (corresponding to VCL internal or abstract
operations, such as OnClick and OnChange)

NOTE In CLX there is a seldom-used EventHandler method, which corresponds more or less to the
WndProc method of VCL.

Opening the Component Tool Box
So you want to write a Delphi application. You open a new Delphi project and find yourself
faced with a large number of components. The problem is that for every operation, there are
multiple alternatives. For example, you can show a list of values using a list box, a combo box,

Opening the Component Tool Box

2874c06.qxd 7/2/01 4:22 PM Page 211

http://www.sybex.com

212

a radio group, a string grid, a list view, or even a tree view if there is a hierarchical order.
Which should you use? That’s difficult to say. There are many considerations, depending on
what you want your application to do. For this reason, I’ve provided a highly condensed
summary of alternative options for a few common tasks.

NOTE For some of the controls described in the following sections, Delphi also includes a data-aware
version, usually indicated by the DB prefix. As you’ll see in Chapter 13, “Delphi’s Database
Architecture,” the DB version of a control typically serves a role similar to that of its “stan-
dard” equivalent; but the properties and the ways you use it are often quite different. For
example, in an Edit control you use the Text property, while in a DBEdit component you
access the Value of the related field object.

The Text Input Components
Although a form or component can handle keyboard input directly, using the OnKeyPress
event, this isn’t a common operation. Windows provides ready-to-use controls you can use to
get string input and even build a simple text editor. Delphi has several slightly different com-
ponents in this area.

The Edit Component
The Edit component allows the user to enter a single line of text. You can also display a single
line of text with a Label or a StaticText control, but these components are generally used
only for fixed text or program-generated output, not for input. In CLX, there is also a native
LCD digit control you can use to display numbers.

The Edit component uses the Text property, whereas many other controls use the Caption
property to refer to the text they display. The only condition you can impose on user input is
the number of characters to accept. If you want to accept only specific characters, you can
handle the OnKeyPress event of the edit box. For example, we can write a method that tests
whether the character is a number or the Backspace key (which has a numerical value of 8).
If it’s not, we change the value of the key to the null character (#0), so that it won’t be
processed by the edit control and will produce a warning beep:

procedure TForm1.Edit1KeyPress(
Sender: TObject; var Key: Char);

begin
// check if the key is a number or backspace
if not (Key in [‘0’..’9’, #8]) then
begin
Key := #0;
Beep;

end;
end;

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 212

http://www.sybex.com

213

NOTE A minor difference of CLX is that the Edit control has no Undo mechanism built in. Another is
that the PasswordChar property is replaced by the EchoMode property. You don’t determine
the character to display, but whether to echo the entered text or display an asterisk instead.

The New LabeledEdit Control
Delphi 6 adds a very nice control, called LabeledEdit, which is an Edit control with a label
attached to it. The Label appears as a property of the compound control, which inherits from
TCustomEdit.

I have to say this component is very handy, because it allows you to reduce the number of
components on your forms, move them around more easily, and have a more standard layout
for labels, particularly when they are placed above the edit box. The EditLabel property is
connected with the subcomponent, which has the usual properties and events. Two more
properties, LabelPosition and LabelSpacing, allow you to configure the relative positions of
the two controls.

NOTE This component has been added to the ExtCtrls unit to demonstrate the use of subcompo-
nents in the Object Inspector, which is a new feature of Delphi 6. I’ll discuss the development
of these components in Chapter 11, “Creating Components.” Notice also that this compo-
nent, along with all of the other new Delphi 6 components, is not (yet) available on CLX and
on the first release of Kylix. However, we can expect all non–Windows-specific additions to
VCL, including subcomponents in general and the LabeledEdit control in particular, to be avail-
able in the next release of Kylix.

The MaskEdit Component
To customize the input of an edit box further, you can use the MaskEdit component, which
has an EditMask property. This is a string indicating for each character whether it should be
uppercase, lowercase, or a number, and other similar conditions. You can see the editor of the
EditMask property in Figure 6.3.

F I G U R E 6 . 3 :
The MaskEdit component’s
EditMask property editor

Opening the Component Tool Box

2874c06.qxd 7/2/01 4:22 PM Page 213

http://www.sybex.com

214

TIP You can display any property’s editor by selecting the property in the Object Inspector and
clicking the ellipsis (…) button.

The Input Mask editor allows you to enter a mask, but it also asks you to indicate a charac-
ter to be used as a placeholder for the input and to decide whether to save the literals present
in the mask, together with the final string. For example, you can choose to display the paren-
theses around the area code of a phone number only as an input hint or to save them with the
string holding the resulting number. These two entries in the Input Mask editor correspond
to the last two fields of the mask (separated by semicolons).

TIP Clicking the Masks button of the Mask Editor lets you choose predefined input masks for dif-
ferent countries.

The Memo and RichEdit Components
Both of the controls discussed so far allow a single line of input. The Memo component, by
contrast, can host several lines of text but (on the Win95/98 platforms) still retains the 16-bit
Windows text limit (32 KB) and allows only a single font for the entire text. You can work on
the text of the memo line by line (using the Lines string list) or access the entire text at once
(using the Text property).

If you want to host a large amount of text or change fonts and paragraph alignments, in VCL
you should use the RichEdit control, a Win32 common control based on the RTF document
format. You can find an example of a complete editor based on the RichEdit component among
the sample programs that ship with Delphi. (The example is named RichEdit, too.)

The RichEdit component has a DefAttributes property indicating the default styles and a
SelAttributes property indicating the style of the current selection. These two properties
are not of the TFont type, but they are compatible with fonts, so we can use the Assign
method to copy the value, as in the following code fragment:

procedure TForm1.Button1Click(Sender: TObject);
begin
if RichEdit1.SelLength > 0 then
begin
FontDialog1.Font.Assign (RichEdit1.DefAttributes);
if FontDialog1.Execute then
RichEdit1.SelAttributes.Assign (FontDialog1.Font);

end;
end;

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 214

http://www.sybex.com

215

The TextViewer CLX Control
Among all of the common controls, CLX and Qt lack a RichEdit control. However, they
provide a full-blown HTML viewer, which is very powerful for displaying formatted text but
not for typing it. This HTML viewer is embedded in two different controls, the single-page
TextViewer control or the TextBrowser control with active links.

As a simple demo, I’ve added a memo and a text viewer to a CLX form and connected
them so that everything you type on the memo is immediately displayed in the viewer. I’ve
called the example HtmlEdit not because this is a real HTML editor, but because this is the
simplest way I know of to build an HTML preview inside a program. The form of the pro-
gram is visible at run time in Figure 6.4, while typing some text inside a cell of the table.

TIP I originally built this example with Kylix on Linux. To port it to Windows and Delphi 6, all I had
to do was to copy the files and recompile.

Selecting Options
There are two standard Windows controls that allow the user to choose different options, as
well as controls for grouping sets of options.

F I G U R E 6 . 4 :
The HtmlEdit example at
run time: when you add
new HTML text to the
memo, you get an
immediate preview.

Opening the Component Tool Box

2874c06.qxd 7/2/01 4:22 PM Page 215

http://www.sybex.com

216

The CheckBox and RadioButton Components
The first standard option-selecting control is the check box, which corresponds to an option
that can be selected regardless of the status of other check boxes. Setting the AllowGrayed
property of the check box allows you to display three different states (selected, not selected,
and grayed), which alternate as a user clicks the check box.

The second type of control is the radio button, which corresponds to an exclusive selection.
Two radio buttons on the same form or inside the same radio group container cannot be
selected at the same time, and one of them should always be selected (as programmer, you
are responsible for selecting one of the radio buttons at design time).

The GroupBox Components
To host several groups of radio buttons, you can use a GroupBox control to hold them
together, both functionally and visually. To build a group box with radio buttons, simply
place the GroupBox component on a form and then add the radio buttons to the group box.

You can handle the radio buttons individually, but it’s easier to navigate through the array
of controls owned by the group box, as discussed in the previous chapter. Here is a small
code excerpt used to get the text of the selected radio button of a group:

var
I: Integer;
Text: string;

begin
for I := 0 to GroupBox1.ControlCount - 1 do
if (GroupBox1.Controls[I] as TRadioButton).Checked then
Text := (GroupBox1.Controls[I] as TRadioButton).Caption;

The RadioGroup Component
Delphi has a similar component that can be used specifically for radio buttons: the RadioGroup
component. A RadioGroup is a group box with some radio button clones painted inside it.
The term clone in this context refers to the fact that the RadioGroup component is a single
control, a single window, with elements similar to radio buttons painted on its surface.

Using the radio group is generally easier than using the group box, since the various items
are part of a list, as in a list box. This is how you can get the text of the selected item:

Text := RadioGroup1.Items [RadioGroup1.ItemIndex];

Technically, a RadioGroup uses fewer resources and less memory, and it should be faster to
create and paint. Also, the RadioGroup component can automatically align its radio buttons
in one or more columns (as indicated by the Columns property), and you can easily add new
choices at run time, by adding strings to the Items string list. By contrast, adding new radio
buttons to a group box would be quite complex.

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 216

http://www.sybex.com

217

Lists
When you have many selections, radio buttons are not appropriate. The usual number of
radio buttons is no more than five or six, to avoid cluttering the user interface; when you
have more choices, you can use a list box or one of the other controls that display lists of
items and allow the selection of one of them.

The ListBox Component
The selection of an item in a list box uses the Items and ItemIndex properties as in the code
shown above for the RadioGroup control. If you need access to the text of selected list box
items often, you can write a small wrapper function like this:

function SelText (List: TListBox): string;
var
nItem: Integer;

begin
nItem := List.ItemIndex;
if nItem >= 0 then
Result := List.Items [nItem]

else
Result := ‘’;

end;

Another important feature is that by using the ListBox component, you can choose between
allowing only a single selection, as in a group of radio buttons, and allowing multiple selec-
tions, as in a group of check boxes. You make this choice by specifying the value of the
MultiSelect property. There are two kinds of multiple selections in Windows and in Delphi
list boxes: multiple selection and extended selection. In the first case, a user selects multiple items
simply by clicking them, while in the second case the user can use the Shift and Ctrl keys to
select multiple consecutive or nonconsecutive items, respectively. This second choice is
determined by the ExtendedSelect property.

For a multiple-selection list box, a program can retrieve information about the number of
selected items by using the SelCount property, and it can determine which items are selected
by examining the Selected array. This array of Boolean values has the same number of entries
as the list box. For example, to concatenate all the selected items into a string, you can scan
the Selected array as follows:

var
SelItems: string;
nItem: Integer;

begin
SelItems := ‘’;
for nItem := 0 to ListBox1.Items.Count - 1 do
if ListBox1.Selected [nItem] then
SelItems := SelItems + ListBox1.Items[nItem] + ‘ ‘;

Opening the Component Tool Box

2874c06.qxd 7/2/01 4:22 PM Page 217

http://www.sybex.com

218

In CLX the ListBox can be configured to use a fixed number of columns and rows, using
the Columns, Row, ColumnLayout and RowLayout properties. Of these, the VCL ListBox has
only the Columns property.

The ComboBox Component
List boxes take up a lot of screen space, and they offer a fixed selection—that is, a user can
choose only among the items in the list box and cannot enter any choice that the program-
mer did not specifically foresee.

You can solve both problems by using a ComboBox control, which combines an edit box
and a drop-down list. The behavior of a ComboBox component changes a lot depending on
the value of its Style property:

• The csDropDown style defines a typical combo box, which allows direct editing and
displays a list box on request.

• The csDropDownList style defines a combo box that does not allow editing (but uses
the keystrokes to select an item).

• The csSimple style defines a combo box that always displays the list box below it.

Note also that accessing the text of the selected value of a ComboBox is easier than doing
the same operation for a list box, since you can simply use the Text property. A useful and
common trick for combo boxes is to add a new element to the list when a user enters some
text and presses the Enter key. The following method first tests whether the user has pressed
that key, by looking for the character with the numeric (ASCII) value of 13. It then tests to
make sure the text of the combo box is not empty and is not already in the list—if its position
in the list is less than zero. Here is the code:

procedure TForm1.ComboBox1KeyPress(
Sender: TObject; var Key: Char);

begin
// if the user presses the Enter key
if Key = Chr (13) then
with ComboBox3 do
if (Text <> ‘’) and (Items.IndexOf (Text) < 0) then
Items.Add (Text);

end;

NOTE In CLX, the combo box can automatically add the text typed into the edit to the drop-down
list, when the user presses the Enter key. Also, some events fire at different times than in VCL.

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 218

http://www.sybex.com

219

Delphi 6 includes two new events for the combo box. The OnCloseUp event corresponds to
the closing of the drop-down list and complements the preexisting OnDropDown event. The
OnSelect event fires only when the user selects something in the drop-down list, as opposed
to typing in the edit portion.

Another very nice addition is the AutoComplete property. When it is set, the ComboBox
component (and the ListBox, as well) automatically locates the string nearest to the one the
user is entering, suggesting the final part of the text. The core of this feature, available also in
CLX, is implemented in the TCustomListBox.KeyPress method.

The CheckListBox Component
Another extension of the list box control is represented by the CheckListBox component, a
list box with each item preceded by a check box (as you can see in Figure 6.5). A user can
select a single item of the list, but can also click the check boxes to toggle their status. This
makes the CheckListBox a very good component for multiple selections or for highlighting
the status of a series of independent items (as in a series of check boxes).

To check the current status of each item, you can use the Checked and the State array
properties (use the latter if the check boxes can be grayed). Delphi 5 introduced the Item-
Enabled array property, which you can use to enable or disable each item of the list. We’ll use
the CheckListBox in the DragList example, later in this chapter.

F I G U R E 6 . 5 :
The user interface of the
CheckListBox control,
basically a list of check
boxes

Opening the Component Tool Box

2874c06.qxd 7/2/01 4:22 PM Page 219

http://www.sybex.com

220

TIP Most of the list-based controls share a common and important feature. Each item of the list
has an associated 32-bit value, usually indicated by the TObject type. This value can be used
as a tag for each list item, and it’s very useful for storing additional information along with
each item. This approach is connected to a specific feature of the native Windows list box con-
trol, which offers four bytes of extra storage for each list box item. We’ll use this feature in the
ODList example later on in this chapter.

New Combo Boxes: ComboBoxEx and ColorBox
The ComboBoxEx (where ex stands for extended) is the wrapper of a new Win32 common
controls, which extends the traditional combo box by allowing images to appear next to the
items in the list. You attach an image list to the combo, and then select an image index for
each item to display. The effect of this change is that the simple Items string list is replaced
by a more complex collection, the ItemsEx property.

The ColorBox control is a new version of the combo box specifically aimed at selecting col-
ors. You can use its Style property for choosing which groups of colors you want to see in
the list (standard color, extended colors, system colors, and so on).

The ListView and TreeView Components
If you want an even more sophisticated list, you can use the ListView common control, which
will make the user interface of your application look very modern. This component is slightly
more complex to use, as described at the beginning of the next chapter, “Advanced VCL Con-
trols.” Other alternatives for listing values are the TreeView common control, which shows
items in a hierarchical output, and the StringGrid control, which shows multiple elements for
each line. The string grid control is described in the “Graphics in Delphi” bonus chapter,
available on the companion CD.

If you use the common controls in your application, users will already know how to interact
with them, and they will regard the user interface of your program as up to date. TreeView
and ListView are the two key components of Windows Explorer, and you can assume that
many users will be familiar with them, even more than with the traditional Windows controls.
CLX adds also an IconView control, which parallels part of the features of the VCL ListView.

The New ValueListEditor Component
Delphi applications often use the name/value structure natively offered by string lists, which I
discussed in the last chapter. Delphi 6 introduces a version of the StringGrid component specif-
ically geared towards this type of string lists. The ValueListEditor has two columns where you
can display and let the user edit the contents of a string list with name/value pairs, as you can
see in Figure 6.6. This string list is indicated in the Strings property of the control.

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 220

http://www.sybex.com

221

The power of this control lies in the fact you can customize the editing options for each
position of the grid or for each key value, using the run-time-only ItemProps array property.
For each item, you can indicate:

• Whether it is read-only

• The maximum number of characters of the string

• An edit mask (eventually requested in the OnGetEditMask event)

• The items of a drop-down pick list (eventually requested in the OnGetPickList event)

• The display of a button for showing an editing dialog (in the OnEditButtonClick event)

Needless to say, this behavior resembles what is available generally for string grids and the
DBGrid control, but also the behavior of the Object Inspector.

The ItemProps property has to be set up at run time, by creating an object of the TItemProp
class and assigning it to an index or a key of the string list. To have a default editor for each
line, you can assign the same item property object multiple times. In the example, this shared
editor sets an edit mask for up to three numbers:

procedure TForm1.FormCreate(Sender: TObject);
var
I: Integer;

F I G U R E 6 . 6 :
The NameValues example
has the new ValueListEditor
component, which shows
the name/value or key/
value pairs of a string list,
visible also in a plain memo.

Opening the Component Tool Box

2874c06.qxd 7/2/01 4:22 PM Page 221

http://www.sybex.com

222

begin
SharedItemProp := TItemProp.Create (ValueListEditor1);
SharedItemProp.EditMask := ‘999;0; ‘;

Memo1.Lines := ValueListEditor1.Strings;
for I := 0 to ValueListEditor1.Strings.Count - 1 do
ValueListEditor1.ItemProps [I] := SharedItemProp;

end;

Similar code has to be repeated in case the number of lines changes—for example, by
adding new elements in the memo and copying them up to the value list:

procedure TForm1.ValueListEditor1StringsChange(Sender: TObject);
var
I: Integer;

begin
for I := 0 to ValueListEditor1.Strings.Count - 1 do
if not Assigned (ValueListEditor1.ItemProps [I]) then
ValueListEditor1.ItemProps [I] := SharedItemProp;

end;

NOTE Apparently reassigning the same editor twice causes some trouble, so I’ve assigned the editor
only to the lines not having already one.

Another property, KeyOptions, allows you to let the user also edit the keys (the names), add
new entries, delete existing ones, and allow for duplicated names in the first portion of the string.
Oddly enough, you cannot add new keys unless you also activate the edit options, which makes it
hard to let the user add extra entries while preserving the names of the basic ones.

Ranges
Finally, there are a few components you can use to select values in a range. Ranges can be
used for numeric input and for selecting an element in a list.

The ScrollBar Component
The stand-alone ScrollBar control is the original component of this group, but it is seldom
used by itself. Scroll bars are usually associated with other components, such as list boxes and
memo fields, or are associated directly with forms. In all these cases, the scroll bar can be
considered part of the surface of the other components. For example, a form with a scroll bar
is actually a form that has an area resembling a scroll bar painted on its border, a feature gov-
erned by a specific Windows style of the form window. By resembling, I mean that it is not
technically a separate window of the ScrollBar component type. These “fake” scroll bars are
usually controlled in Delphi using specific properties of the form and the other components
hosting them.

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 222

http://www.sybex.com

223

The TrackBar and ProgressBar Components
Direct use of the ScrollBar component is quite rare, especially with the TrackBar component
introduced with Windows 95, which is used to let a user select a value in a range. Among
Win32 common controls is the companion ProgressBar control, which allows the program
to output a value in a range, showing the progress of a lengthy operation.

The UpDown Component
Another related control is the UpDown component, which is usually connected to an edit box
so that the user can either type a number in it or increase and decrease the number using the
two small arrow buttons. To connect the two controls, you set the Associate property of the
UpDown component. Nothing prevents you from using the UpDown component as a stand-
alone control, displaying the current value in a label or in some other way.

NOTE In CLX there is no UpDown control, but a SpinEdit that bundles an Edit with the UpDown in a
single control.

The PageScroller Component
The Win32 PageScroller control is a container allowing you to scroll the internal control. For
example, if you place a toolbar in the page scroller and the toolbar is larger than the available
area, the PageScroller will display two small arrows on the side. Clicking these arrows will
scroll the internal area. This component can be used as a scrollbar, but it also partially replaces
the ScrollBox control.

The ScrollBox Component
The ScrollBox control represents a region of a form that can scroll independently from the
rest of the surface. For this reason, the ScrollBox has two scrollbars used to move the embed-
ded components. You can easily place other components inside a ScrollBox, as you do with a
panel. In fact, a ScrollBox is basically a panel with scroll bars to move its internal surface, an
interface element used in many Windows applications. When you have a form with many
controls and a toolbar or status bar, you might use a ScrollBox to cover the central area of the
form, leaving its toolbars and status bars outside of the scrolling region. By relying on the
scrollbars of the form, in fact, you might allow the user to move the toolbar or status bar out
of view, a very odd situation.

Handling the Input Focus
Using the TabStop and TabOrder properties available in most controls, you can specify the
order in which controls will receive the input focus when the user presses the Tab key.

Opening the Component Tool Box

2874c06.qxd 7/2/01 4:22 PM Page 223

http://www.sybex.com

224

Instead of setting the tab order property of each component of a form manually, you can use
the shortcut menu of the Form Designer to activate the Edit Tab Order dialog box, as shown
in Figure 6.7.

Besides these basics settings, it is important to know that each time a component receives
or loses the input focus, it receives a corresponding OnEnter or OnExit event. This allows you
to fine-tune and customize the order of the user operations. Some of these techniques are
demonstrated by the InFocus example, which creates a fairly typical password-login window.
Its form has three edit boxes with labels indicating their meaning, as shown in Figure 6.8. At
the bottom of the window is a status area with prompts guiding the user. Each item needs to
be entered in sequence.

For the output of the status information, I’ve used the StatusBar component, with a single
output area (obtained by setting its SimplePanel property to True). Here is a summary of the
properties for this example. Notice the & character in the labels, indicating a shortcut key,

F I G U R E 6 . 8 :
The InFocus example at
run time

F I G U R E 6 . 7 :
The Edit Tab Order
dialog box

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 224

http://www.sybex.com

225

and the connection of these labels with corresponding edit boxes (using the FocusControl
property):

object FocusForm: TFocusForm
ActiveControl = EditFirstName
Caption = ‘InFocus’
object Label1: TLabel
Caption = ‘&First name’
FocusControl = EditFirstName

end
object EditFirstName: TEdit
OnEnter = GlobalEnter
OnExit = EditFirstNameExit

end
object Label2: TLabel
Caption = ‘&Last name’
FocusControl = EditLastName

end
object EditLastName: TEdit
OnEnter = GlobalEnter

end
object Label3: TLabel
Caption = ‘&Password’
FocusControl = EditPassword

end
object EditPassword: TEdit
PasswordChar = ‘*’
OnEnter = GlobalEnter

end
object StatusBar1: TStatusBar
SimplePanel = True

end
end

The program is very simple and does only two operations. The first is to identify, in the
status bar, the edit control that has the focus. It does this by handling the controls’ OnEnter
event, possibly using a single generic event handler to avoid repetitive code. In the example,
instead of storing some extra information for each edit box, I’ve checked each control of the
form to determine which label is connected to the current edit box (indicated by the Sender
parameter):

procedure TFocusForm.GlobalEnter(Sender: TObject);
var
I: Integer;

begin
for I := 0 to ControlCount - 1 do
// if the control is a label

Opening the Component Tool Box

2874c06.qxd 7/2/01 4:22 PM Page 225

http://www.sybex.com

226

if (Controls [I] is TLabel) and
// and the label is connected to the current edit box
(TLabel(Controls[I]).FocusControl = Sender) then

// copy the text, leaving off the initial & character
StatusBar1.SimpleText := ‘Enter ‘ +
Copy (TLabel(Controls[I]).Caption, 2, 1000);

end;

The second event handler of the form relates to the OnExit event of the first edit box. If
the control is left empty, it refuses to release the input focus and sets it back before showing a
message to the user. The methods also look for a given input value, automatically filling the
second edit box and moving the focus directly to the third one:

procedure TFocusForm.EditFirstNameExit(Sender: TObject);
begin
if EditFirstName.Text = ‘’ then
begin
// don’t let the user get out
EditFirstName.SetFocus;
MessageDlg (‘First name is required’, mtError, [mbOK], 0);

end
else if EditFirstName.Text = ‘Admin’ then
begin
// fill the second edit and jump to the third
EditLastName.Text := ‘Admin’;
EditPassword.SetFocus;

end;
end;

TIP The CLX version of this example has exactly the same code and is available as the QInFocus
program. The same happens for most of the other examples of this chapter. Notice that some
of the examples are quite complex, but I rarely had to touch the code at all.

Working with Menus
Working with menus and menu items is generally quite simple. This section offers only some
very brief notes and a few more advanced examples. The first thing to keep in mind about
menu items is that they can serve different purposes:

Commands are menu items used to execute an action.

State-setters are menu items used to toggle an option on and off, to change the state of a
particular element. These commands usually have a check mark on the left to indicate they

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 226

http://www.sybex.com

227

are active. In Delphi 6 you can automatically obtain this behavior using the handy
AutoCheck property.

Radio items have a round check mark and are grouped to represent alternative selections,
like radio buttons. To obtain radio menu items, simply set the RadioItem property to True
and set the GroupIndex property for the alternative menu items to the same value.

Dialog menu items cause a dialog box to appear and are usually indicated by an ellipsis
(three dots) after the text.

As you enter new elements in the Menu Designer, Delphi creates a new component for each
menu item and lists it in the Object Inspector (although nothing is added to the form). To
name each component, Delphi uses the caption you enter and appends a number (so that Open
becomes Open1). Because Delphi removes spaces and other special characters in the caption
when it creates the name, and the menu item separators are set up using a hyphen as caption,
these items would have an empty name. For this reason Delphi adds the letter N to the name,
appending the number and generating items called N1, N2, and so on.

WARNING Do not use the Break property, which is used to lay out a pull-down menu on multiple
columns. The mbMenuBarBreak value indicates that this item will be displayed in a second or
subsequent line; the mbMenuBreak value that this item will be added to a second or subse-
quent column of the pull-down.

Accelerator Keys
Since Delphi 5, you don’t need to enter the & character in the Caption of a menu item; it pro-
vides an automatic accelerator key if you omit one. Delphi’s automatic accelerator-key system
can also figure out if you have entered conflicting accelerator keys and fix them on-the-fly.
This doesn’t mean you should stop adding custom accelerator keys with the & character,
because the automatic system simply uses the first available letter, and it doesn’t follow the
default standards. You might also find better mnemonic keys than those chosen by the auto-
matic system.

This feature is controlled by the AutoHotkeys property, which is available in the main
menu component and in each of the pull-down menus and menu items. In the main menu,
this property defaults to maAutomatic, while in the pull-downs and menu items it defaults to
maParent, so that the value you set for the main menu component will be used automatically
by all the subitems, unless they have a specific value of maAutomatic or maManual.

The engine behind this system is the RethinkHotkeys method of the TMenuItem class, and
the companion InternalRethinkHotkeys. There is also a RethinkLines method, which

Working with Menus

2874c06.qxd 7/2/01 4:22 PM Page 227

http://www.sybex.com

228

checks whether a pull-down has two consecutive separators or begins or ends with a separa-
tor. In all these cases, the separator is automatically removed.

One of the reasons Delphi includes this feature is the Integrated Translation Environment
(ITE). When you need to translate the menu of an application, it is convenient if you don’t
have to deal with the accelerator keys, or at least if you don’t have to worry about whether
two items on the same menu conflict. Having a system that can automatically resolve similar
problems is definitely an advantage. Another motivation was Delphi’s IDE itself. With all the
dynamically loaded packages that install menu items in the IDE main menu or in pop-up menus,
and with different packages loaded in different versions of the product, it’s next to impossible to
get nonconflicting accelerator-key selections in each menu. That is why this mechanism isn’t a
wizard that does static analysis of your menus at design time; it was created to deal with the real
problem of managing menus created dynamically at run time.

WARNING This feature is certainly very handy, but because it is active by default, it can break existing code.
I had to modify two of this chapter’s program examples, between the Delphi 4 and Delphi 5 edi-
tion of the book, just to avoid run-time errors caused by this change. The problem is that I use
the caption in the code, and the extra & broke my code. The change was quite simple, though:
All I had to do was to set the AutoHotkeys property of the main menu component to
maManual.

Pop-Up Menus and the OnContextPopup Event
Besides the MainMenu component, you can use the similar PopupMenu component. This is
typically displayed when the user right-clicks a component that uses the given pop-up menu
as the value for its PopupMenu property.

However, besides connecting the pop-up menu to a component with the corresponding
property, you can call its Popup method, which requires the position of the pop-up in screen
coordinates. The proper values can be obtained by converting a local point to a screen point
with the ClientToScreen method of the local component, in this code fragment a label:

procedure TForm1.Label3MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var
ScreenPoint: TPoint;

begin
// if some condition applies...
if Button = mbRight then
begin
ScreenPoint := Label3.ClientToScreen (Point (X, Y));
PopupMenu1.Popup (ScreenPoint.X, ScreenPoint.Y)

end;
end;

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 228

http://www.sybex.com

229

An alternative approach is the use of the OnContextMenu event. This event, introduced in
Delphi 5, fires when a user right-clicks a component—exactly what we’ve traced above with
the test if Button = mbRight. The advantage is that the same event is also fired in response
to a Shift+F10 key combination, as well as by any other user-input methods defined by Win-
dows Accessibility options or hardware (including the shortcut-menu key of some Windows-
compatible keyboards). We can use this event to fire a pop-up menu with little code:

procedure TFormPopup.Label1ContextPopup(Sender: TObject;
MousePos: TPoint; var Handled: Boolean);

var
ScreenPoint: TPoint;

begin
// add dynamic items
PopupMenu2.Items.Add (NewLine);
PopupMenu2.Items.Add (NewItem (TimeToStr (Now), 0, False, True, nil, 0, ‘’));
// show popup
ScreenPoint := ClientToScreen (MousePos);
PopupMenu2.Popup (ScreenPoint.X, ScreenPoint.Y);
Handled := True;
// remove dynamic items
PopupMenu2.Items [4].Free;
PopupMenu2.Items [3].Free;

end;

This example adds some dynamic behavior to the shortcut menu, adding a temporary item
indicating when the pop-up menu is displayed. This is not particularly useful, but I’ve done it
to highlight that if you need to display a plain pop-up menu, you can easily use the PopupMenu
property of the control in question or one of its parent controls. Handling the OnContextMenu
event makes sense only when you want to do some extra processing.

The Handled parameter is preinitialized to False, so that if you do nothing in the event handler,
the normal pop-up menu processing will occur. If you do something in your event handler to
replace the normal pop-up menu processing (such as popping up a dialog or a customized menu,
as in this case), you should set Handled to True and the system will stop processing the message.
Setting Handled to True should be fairly rare, as you’ll generally handle the OnContextPopup to
dynamically create or customize the pop-up menu, but then you can let the default handler
actually show the menu.

The handler of an OnContextPopup event isn’t limited to displaying a pop-up menu. It can
do any other operation, such as directly display a dialog box. Here is an example of a right-
click operation used to change the color of the control:

procedure TFormPopup.Label2ContextPopup(Sender: TObject;
MousePos: TPoint; var Handled: Boolean);

begin

Working with Menus

2874c06.qxd 7/2/01 4:22 PM Page 229

http://www.sybex.com

230

ColorDialog1.Color := Label2.Color;
if ColorDialog1.Execute then
Label2.Color := ColorDialog1.Color;

Handled := True;
end;

All the code snippets of this section are available in the simple CustPop example for VCL
and QCustPop for CLX, on the book’s companion CD.

Creating Menu Items Dynamically
Besides defining the structure of a menu with the Menu Designer and modifying the status of
the items using the Checked, Visible, and Caption properties, you can create an entire menu
or portions of one at run time. This makes sense, for example, when you have many repetitive
items, or when the menu items depend on some system configuration or user permissions.

The basic idea is that each object of the TMenuItem class—which Delphi uses for both
menu items and pull-down menus—contains a list of menu items. Each of these items has the
same structure, in a kind of recursive way. A pull-down menu has a list of submenus, and each
submenu has a list of submenus, each with its own list of submenus, and so on. The proper-
ties you can use to explore the structure of an existing menu are Items, which contains the
actual list of menu items, and Count, which contains the number of subitems. Adding new
menu items or entire pull-down menus to an existing menu is fairly easy, particularly if you
can write a single event handler for all of them.

This is demonstrated by the DynaMenu example (and its QDynaMenu counterpart),
which also illustrates the use of menu check marks, radio items, and many other features of
menus that aren’t described in detail in the text. As soon as you start this program, it creates a
new pull-down with menu items used to change the font size of a big label hosted by the
form. Instead of creating a bunch of menu items with captions indicating sizes ranging from
8 to 48, you can let the program do this repetitive work for you.

The new pull-down menu should be inserted in the Items property of the MainMenu1 com-
ponent. You can calculate the position by asking the MainMenu component for the previous
pull-down menu:

procedure TFormColorText.FormCreate(Sender: TObject);
var
PullDown, Item: TMenuItem;
Position, I: Integer;

begin
// create the new pull-down menu
PullDown := TMenuItem.Create (Self);
PullDown.AutoHotkeys := maManual;
PullDown.Caption := ‘&Size’;
PullDown.OnClick := SizeClick;
// compute the position and add it

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 230

http://www.sybex.com

231

Position := MainMenu1.Items.IndexOf (Options1);
MainMenu1.Items.Insert (Position + 1, PullDown);
// create menu items for various sizes
I := 8;
while I <= 48 do
begin
// create the new item
Item := TMenuItem.Create (Self);
Item.Caption := IntToStr (I);
// make it a radio item
Item.GroupIndex := 1;
Item.RadioItem := True;
// handle click and insert
Item.OnClick := SizeItemClick;
PullDown.Insert (PullDown.Count, Item);
I := I + 4;

end;
// add extra item at the end
Item := TMenuItem.Create (Self);
Item.Caption := ‘More...’;
// make it a radio item
Item.GroupIndex := 1;
Item.RadioItem := True;
// handle it by showing the font selection dialog
Item.OnClick := Font1Click;
PullDown.Insert (PullDown.Count, Item);

end;

As you can see in the preceding code, the menu items are created in a while loop, setting
the radio item style and calling the Insert method with the number of items as a parameter
to add each item at the end of the pull-down. At the end, the program adds one extra item,
which is used to set a different size than those listed. The OnClick event of this last menu
item is handled by the Font1Click method (also connected to a specific menu item), which
displays the font selection dialog box. You can see the dynamic menu in Figure 6.9.

F I G U R E 6 . 9 :
The Size pull-down menu of
the DynaMenu example is
created at run time, along
with all of its menu items.

Working with Menus

2874c06.qxd 7/2/01 4:22 PM Page 231

http://www.sybex.com

232

WARNING Because the program uses the Caption of the new items dynamically, we should either dis-
able the AutoHotkeys property of the main menu component, or disable this feature for the
pull-down menu we are going to add (and thus automatically disable it for the menu items).
This is what I’ve done in the code above by setting the AutoHotkeys property of the dynami-
cally created pull-down component to maManual. An alternative approach is to let the menu
display the automatic captions and then call the new StripHotkeys function before convert-
ing the caption to a number. There is also a new GetHotkey function, which returns the active
character of the caption.

The handler for the OnClick event of these dynamically created menu items uses the cap-
tion of the Sender menu item to set the size of the font:

procedure TFormColorText.SizeItemClick(Sender: TObject);
begin
with Sender as TMenuItem do
Label1.Font.Size := StrToInt (Caption);

end;

This code doesn’t set the proper radio-item mark next to the selected item, because the
user can select a new size also by changing the font. The proper radio item is checked in the
OnClick event handler of the entire pull-down menu, which is connected just after the pull-
down is created and activated just before showing the pull-down. The code scans the items of
the pull-down menu (the Sender object) and checks whether the caption matches the current
Size of the font. If no match is found, the program checks the last menu item, to indicate
that a different size is active:

procedure TFormColorText.SizeClick (Sender: TObject);
var
I: Integer;
Found: Boolean;

begin
Found := False;
with Sender as TMenuItem do
begin
// look for a match, skipping the last item
for I := 0 to Count - 2 do
if StrToInt (Items [I].Caption) = Label1.Font.Size then
begin
Items [I].Checked := True;
Found := True;
System.Break; // skip the rest of the loop

end;
if not Found then
Items [Count - 1].Checked := True;

end;
end;

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 232

http://www.sybex.com

233

When you want to create a menu or a menu item dynamically, you can use the correspond-
ing components, as I’ve done in the DynaMenu and QDynaMenu examples. As an alternative,
you can also use some global functions available in the Menus unit: NewMenu, NewPopupMenu,
NewSubMenu, NewItem, and NewLine.

Using Menu Images
In Delphi it is very easy to improve a program’s user interface by adding images to menu
items. This is becoming common in Windows applications, and it’s very nice that Borland
has added all the required support, making the development of graphical menu items trivial.

All you have to do is add an image list control to the form, add a series of bitmaps to the
image list, connect the image list to the menu using its Images property, and set the proper
ImageIndex property for the menu items. You can see the effect of these simple operations in
Figure 6.10. (You can also associate a bitmap with the menu item directly, using the Bitmap
property.)

TIP The definition of images for menus is quite flexible, as it allows you to associate an image list
with any specific pull-down menu (and even a specific menu item) using the SubMenuImages
property. Having a specific and smaller image list for each pull-down menu, instead of one single
huge image list for the entire menu, allows for more run-time customization of an application.

To create the image list, double-click the component, activating the corresponding editor
(shown in Figure 6.11), then import existing bitmap or icon files. You can actually prepare a
single large bitmap and let the image editor divide it according to the Height and Width
properties of the ImageList component, which refer to the size of the individual bitmaps in
the list.

F I G U R E 6 . 1 0 :
The simple graphical menu
of the MenuImg example

Working with Menus

2874c06.qxd 7/2/01 4:22 PM Page 233

http://www.sybex.com

234

TIP As an alternative, you can use the series of images that ship with Delphi and are stored by
default in the \Program Files\Common Files\Borland Shared\Images\Buttons direc-
tory. Each bitmap contains both an “enabled” and a “disabled” image. As you import them,
the Image List editor will ask you whether to split them in two, a suggestion you should
accept. This operation adds to the image list a normal image and a disabled one, which is not
generally used (as it can be built automatically when needed). For this reason I generally delete
the disabled part of the bitmap from the image list.

The program’s code is very simple. The only element I want to emphasize is that if you set
the Checked property of a menu item with an image instead of displaying a check mark, the
item paints its image as “sunken” or “recessed.” You can see this in the Large Font menu of
the MenuImg example in Figure 6.10. Here is the code for that menu item selection:

procedure TForm1.LargeFont1Click(Sender: TObject);
begin
if Memo1.Font.Size = 8 then
Memo1.Font.Size := 12

else
Memo1.Font.Size := 8;

// changes the image style near the item
LargeFont1.Checked := not LargeFont1.Checked;

end;

WARNING To make the CLX version of the program, QMenuImg, display the bitmaps properly, I had to
reimport them. Simply converting the Image List component data didn’t work.

F I G U R E 6 . 1 1 :
The Image List editor, with
the bitmaps of the
MenuImg example

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 234

http://www.sybex.com

235

Customizing the System Menu
In some circumstances, it is interesting to add menu commands to the system menu itself,
instead of (or besides) having a menu bar. This might be useful for secondary windows, tool-
boxes, windows requiring a large area on the screen, and “quick-and-dirty” applications.
Adding a single menu item to the system menu is straightforward:

AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, 0, ‘’);
AppendMenu (GetSystemMenu (Handle, FALSE), MF_STRING, idSysAbout, ‘&About...’);

This code fragment (extracted from the OnCreate event handler of the SysMenu example)
adds a separator and a new item to the system menu item. The GetSystemMenu API function,
which requires as a parameter the handle of the form, returns a handle to the system menu.
The AppendMenu API function is a general-purpose function you can use to add menu items
or complete pull-down menus to any menu (the menu bar, the system menu, or an existing
pull-down menu). When adding a menu item, you have to specify its text and a numeric
identifier. In the example I’ve defined this identifier as:

const idSysAbout = 100;

Adding a menu item to the system menu is easy, but how can we handle its selection?
Selecting a normal menu generates the wm_Command Windows message. This is handled inter-
nally by Delphi, which activates the OnClick event of the corresponding menu item compo-
nent. The selection of system menu commands, instead, generates a wm_SysCommand message,
which is passed by Delphi to the default handler. Windows usually needs to do something in
response to a system menu command.

We can intercept this command and check to see whether the command identifier (passed
in the CmdType field of the TWmSysCommand parameter) of the menu item is idSysAbout. Since
there isn’t a corresponding event in Delphi, we have to define a new message-response
method for the form class:

public
procedure WMSysCommand (var Msg: TMessage);
message wm_SysCommand;

The code of this procedure is not very complex. We just need to check whether the com-
mand is our own and call the default handler:

procedure TForm1.WMSysCommand (var Msg: TWMSysCommand);
begin
if Msg.CmdType = idSysAbout then
ShowMessage (‘Mastering Delphi: SysMenu example’);

inherited;
end;

To build a more complex system menu, instead of adding and handling each menu item as
we have just done, we can follow a different approach. Just add a MainMenu component to

Working with Menus

2874c06.qxd 7/2/01 4:22 PM Page 235

http://www.sybex.com

236

the form, create its structure (any structure will do), and write the proper event handlers.
Then reset the value of the Menu property of the form, removing the menu bar.

Now we can add some code to the SysMenu example to add each of the items from the
hidden menu to the system menu. This operation takes place when the button of the form is
clicked. The corresponding handler uses generic code that doesn’t depend on the structure of
the menu we are appending to the system menu:

procedure TForm1.Button1Click(Sender: TObject);
var
I: Integer;

begin
// add a separator
AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, 0, ‘’);
// add the main menu to the system menu
with MainMenu1 do
for I := 0 to Items.Count - 1 do
AppendMenu (GetSystemMenu (Self.Handle, FALSE),
mf_Popup, Items[I].Handle, PChar (Items[I].Caption));

// disable the button
Button1.Enabled := False;

end;

TIP This code uses the expression Self.Handle to access the handle of the form. This is required
because we are currently working on the MainMenu1 component, as specified by the with
statement.

The menu flag used in this case, mf_Popup, indicates that we are adding a pull-down menu.
In this function call, the fourth parameter is interpreted as the handle of the pull-down
menu we are adding (in the previous example, we passed the identifier of the menu, instead).
Since we are adding to the system menu items with submenus, the final structure of the sys-
tem menu will have two levels, as you can see in Figure 6.12.

F I G U R E 6 . 1 2 :
The second-level system
menu items of the SysMenu
example are the result of
copying a complete main
menu to the system menu.

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 236

http://www.sybex.com

237

WARNING The Windows API uses the terms pop-up menu and pull-down menu interchangeably. This is
really odd, because most of us use the terms to mean different things. Pop-up menus are
shortcut menus, and pull-down menus are the secondary menus of the menu bar. Apparently,
Microsoft uses the terms in this way because the two elements are implemented with the
same kind of internal windows; the fact that they are two distinct user-interface elements is
probably something that was later conceptually built over a single basic internal structure.

Once you have added the menu items to the system menu, you need to handle them. Of
course, you can check for each menu item in the WMSysCommand method, or you can try build-
ing a smarter approach. Since in Delphi it is easier to write a handler for the OnClick event of
each item, we can look for the item corresponding to the given identifier in the menu struc-
ture. Delphi helps us by providing a FindItem method.

When (and if) we have found a main menu item that corresponds to the item selected in the
system menu, we can call its Click method (which invokes the OnClick handler). Here is the
code I’ve added to the WMSysCommand method:

var
Item: TMenuItem;

begin
...
Item := MainMenu1.FindItem (Msg.CmdType, fkCommand);
if Item <> nil then
Item.Click;

In this code, the CmdType field of the message structure that is passed to the WMSysCommand
procedure holds the command of the menu item being called.

You can also use a simple if or case statement to handle one of the system menu’s prede-
fined menu items that have special codes for this identifier, such as sc_Close, sc_Minimize,
sc_Maximize, and so on. For more information, you can see the description of the
wm_SysCommand message in the Windows API Help file.

This application works but has one glitch. If you click the right mouse button over the
Taskbar icon representing the application, you get a plain system menu (actually different
from the default one). The reason is that this system menu belongs to a different window, the
window of the Application global object. I’ll discuss the Application object, and update this
example to make it work with the Taskbar button, in Chapter 9, “Working with Forms.”

NOTE Because this program uses low-level Windows features (API calls and messages), it is not possible
to compile it with CLX, so there is no Qt version of this example.

Working with Menus

2874c06.qxd 7/2/01 4:22 PM Page 237

http://www.sybex.com

238

Owner-Draw Controls and Styles
Let’s return briefly to menu graphics. Besides using an ImageList to add glyphs to the menu
items, you can turn a menu into a completely graphical element, using the owner-draw tech-
nique. The same technique also works for other controls, such as list boxes. In Windows, the
system is usually responsible for painting buttons, list boxes, edit boxes, menu items, and similar
elements. Basically, these controls know how to paint themselves. As an alternative, however, the
system allows the owner of these controls, generally a form, to paint them. This technique, avail-
able for buttons, list boxes, combo boxes, and menu items, is called owner-draw.

In VCL, the situation is slightly more complex. The components can take care of painting
themselves in this case (as in the TBitBtn class for bitmap buttons) and possibly activate cor-
responding events. The system sends the request for painting to the owner (usually the
form), and the form forwards the event back to the proper control, firing its event handlers.

In CLX, some of the controls, such as ListBoxes and ComboBoxes, surface events very
similar to Windows owner-draw, but menus lack them. The native approach of Qt is to use
styles to determine the graphical behavior of all of the controls in the system, of a specific
application, or of a given control. I’ll introduce styles shortly, later in this section.

NOTE Most of the Win32 common controls have support for the owner-draw technique, generally
called custom drawing. You can fully customize the appearance of a ListView, TreeView, Tab-
Control, PageControl, HeaderControl, StatusBar, and ToolBar. The ToolBar, ListView, and Tree-
View controls also support advanced custom drawing, a more fine-tuned drawing capability
introduced by Microsoft in the latest versions of the Win32 common controls library. The
downside to owner-draw is that when the Windows user interface style changes in the future
(and it always does), your owner-draw controls that fit in perfectly with the current user inter-
face styles will look outdated and out of place. Since you are creating a custom user interface,
you’ll need to keep it updated yourself. By contrast, if you use the standard output of the con-
trols, your applications will automatically adapt to a new version of such controls.

Owner-Draw Menu Items
VCL makes the development of graphical menu items quite simple compared to the tradi-
tional approach of the Windows API: You set the OwnerDraw property of a menu item compo-
nent to True and handle its OnMeasureItem and OnDrawItem events. This same feature is not
available on CLX.

In the OnMeasureItem event, you can determine the size of the menu items. This event
handler is activated once for each menu item when the pull-down menu is displayed and has
two reference parameters you can set:

procedure ColorMeasureItem (Sender: TObject; ACanvas: TCanvas;
var Width, Height: Integer);

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 238

http://www.sybex.com

239

The other parameter, ACanvas, is typically used to determine the height of the current font.

In the OnDrawItem event, you paint the actual image. This event handler is activated every
time the item has to be repainted. This happens when Windows first displays the items and
each time the status changes; for example, when the mouse moves over an item, it should
become highlighted. In fact, to paint the menu items, we have to consider all the possibilities,
including drawing the highlighted items with specific colors, drawing the check mark if
required, and so on. Luckily enough, the Delphi event passes to the handler the Canvas
where it should paint, the output rectangle, and the status of the item (selected or not):

procedure ColorDrawItem(Sender: TObject; ACanvas: TCanvas; ARect: TRect;
Selected: Boolean);

In the ODMenu example, I’ll handle the highlighted color, but skip other advanced aspects
(such as the check marks). I’ve set the OwnerDraw property of the menu and written handlers
for some of the menu items. To write a single handler for each event of the three color-
related menu items, I’ve set their Tag property to the value of the actual color in the OnCreate
event handler of the form. This makes the handler of the actual OnClick event of the items
quite straightforward:

procedure TForm1.ColorClick(Sender: TObject);
begin
ShapeDemo.Brush.Color := (Sender as TComponent).Tag

end;

The handler of the OnMeasureItem event doesn’t depend on the actual items, but uses fixed
values (different from the handler of the other pull-down). The most important portion of
the code is in the handlers of the OnDrawItem events. For the color, we use the value of the
tag to paint a rectangle of the given color, as you can see in Figure 6.13. Before doing this,
however, we have to fill the background of the menu items (the rectangular area passed as a
parameter) with the standard color for the menu (clMenu) or the selected menu items
(clHighlight):

procedure TForm1.ColorDrawItem(Sender: TObject; ACanvas: TCanvas;
ARect: TRect; Selected: Boolean);

begin
// set the background color and draw it
if Selected then
ACanvas.Brush.Color := clHighlight

else
ACanvas.Brush.Color := clMenu;

ACanvas.FillRect (ARect);
// show the color
ACanvas.Brush.Color := (Sender as TComponent).Tag;
InflateRect (ARect, -5, -5);
ACanvas.Rectangle (ARect.Left, ARect.Top, ARect.Right, ARect.Bottom);

end;

Owner-Draw Controls and Styles

2874c06.qxd 7/2/01 4:22 PM Page 239

http://www.sybex.com

240

The three handlers for this event of the Shape pull-down menu items are all different,
although they use similar code:

procedure TForm1.Ellipse1DrawItem(Sender: TObject; ACanvas: TCanvas;
ARect: TRect; Selected: Boolean);

begin
// set the background color and draw it
if Selected then
ACanvas.Brush.Color := clHighlight

else
ACanvas.Brush.Color := clMenu;

ACanvas.FillRect (ARect);
// draw the ellipse
ACanvas.Brush.Color := clWhite;
InflateRect (ARect, -5, -5);
ACanvas.Ellipse (ARect.Left, ARect.Top, ARect.Right, ARect.Bottom);

end;

NOTE To accommodate the increasing number of states in the Windows 2000 user interface style,
since version 5, Delphi has included the OnAdvancedDrawItem event for menus.

A ListBox of Colors
As we have just seen for menus, list boxes have an owner-draw capability, which means a pro-
gram can paint the items of a list box. The same support is provided for combo boxes and is
also available on CLX. To create an owner-draw list box, we set its Style property to lbOwn-
erDrawFixed or lbOwnerDrawVariable. The first value indicates that we are going to set the
height of the items of the list box by specifying the ItemHeight property and that this will be

F I G U R E 6 . 1 3 :
The owner-draw menu of
the ODMenu example

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 240

http://www.sybex.com

241

the height of each and every item. The second owner-draw style indicates a list box with
items of different heights; in this case, the component will trigger the OnMeasureItem event
for each item, to ask the program for their heights.

In the ODList example (and its QODList version), I’ll stick with the first, simpler,
approach. The example stores color information along with the items of the list box and then
draws the items in colors (instead of using a single color for the whole list).

The DFM or XFM file of every form, including this one, has a TextHeight attribute, which
indicates the number of pixels required to display text. This is the value we should use for the
ItemHeight property of the list box. An alternative solution is to compute this value at run
time, so that if we later change the font at design time, we don’t have to remember to set the
height of the items accordingly.

NOTE I’ve just described TextHeight as an attribute of the form, not a property. And in fact it isn’t a
property but a local value of the form. If it is not a property, you might ask, how does Delphi
save it in the DFM file? Well, the answer is that Delphi’s streaming mechanism is based on prop-
erties plus special property clones created by the DefineProperties method.

Since TextHeight is not a property, although it is listed in the form description, we cannot
access it directly. Studying the VCL source code, I found that this value is computed by call-
ing a private method of the form: GetTextHeight. Since it is private, we cannot call this func-
tion. What we can do is duplicate its code (which is actually quite simple) in the FormCreate
method of the form, after selecting the font of the list box:

Canvas.Font := ListBox1.Font;
ListBox1.ItemHeight := Canvas.TextHeight(‘0’);

The next thing we have to do is add some items to the list box. Since this is a list box of col-
ors, we want to add color names to the Items of the list box and the corresponding color values
to the Objects data storage related to each item of the list. Instead of adding the two values sep-
arately, I’ve written a procedure to add new items to the list:

procedure TODListForm.AddColors (Colors: array of TColor);
var
I: Integer;

begin
for I := Low (Colors) to High (Colors) do
ListBox1.Items.AddObject (ColorToString (Colors[I]), TObject(Colors[I]));

end;

This method uses an open-array parameter, an array of an undetermined number of elements
of the same type. For each item passed as a parameter, we add the name of the color to the list,
and we add its value to the related data, by calling the AddObject method. To obtain the string
corresponding to the color, we call the Delphi ColorToString function. This returns a string

Owner-Draw Controls and Styles

2874c06.qxd 7/2/01 4:22 PM Page 241

http://www.sybex.com

242

containing either the corresponding color constant, if any, or the hexadecimal value of the
color. The color data is added to the list box after casting its value to the TObject data type (a
four-byte reference), as required by the AddObject method.

TIP Besides ColorToString, which converts a color value into the corresponding string with the
identifier or the hexadecimal value, there is also a Delphi function to convert a properly for-
matted string into a color, StringToColor.

In the ODList example, this method is called in the OnCreate event handler of the form
(after previously setting the height of the items):

AddColors ([clRed, clBlue, clYellow, clGreen, clFuchsia, clLime, clPurple,
clGray, RGB (213, 23, 123), RGB (0, 0, 0), clAqua, clNavy, clOlive, clTeal]);

To compile the CLX version of this code, I’ve added to it the RGB function described earlier
in the section “Colors.” The code used to draw the items is not particularly complex. We
simply retrieve the color associated with the item, set it as the color of the font, and then
draw the text:

procedure TODListForm.ListBox1DrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

begin
with Control as TListbox do
begin
// erase
Canvas.FillRect(Rect);
// draw item
Canvas.Font.Color := TColor (Items.Objects [Index]);
Canvas.TextOut(Rect.Left, Rect.Top, Listbox1.Items[Index]);
end;

end;

The system already sets the proper background color, so the selected item is displayed
properly even without any extra code on our part. You can see an example of the output of
this program at startup in Figure 6.14.

The example also allows you to add new items, by double-clicking the list box:
procedure TODListForm.ListBox1DblClick(Sender: TObject);
begin
if ColorDialog1.Execute then
AddColors ([ColorDialog1.Color]);

end;

If you try using this capability, you’ll notice that some colors you add are turned into color
names (one of the Delphi color constants) while others are converted into hexadecimal numbers.

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 242

http://www.sybex.com

243

CLX Styles
In Windows, the system has full control of the user interface of the controls, unless the pro-
gram takes over using owner-draw or other advanced techniques. In Qt (and in Linux in gen-
eral), the user chooses the user interface style of the controls. A system will generally offer a
few basic styles, such as the Windows look-and-feel, the Motif one, and others. A user can
add also install new styles in the system and make them available to applications.

NOTE The styles I’m discussing here refer to the user interface of the controls, not of the forms and
their borders. This is generally configurable on Linux systems but is technically a separate ele-
ment of the user interface.

Because this technique is embedded in Qt, it is also available on the Windows version of
the library, and CLX makes it available to Delphi developers. The Application global object
of CLX has a Style property, which can be used to set a custom style or a default one, indi-
cated by the DefaultStyle subproperty. For example, you can select a Motif look-and-feel
with this code:

Application.Style.DefaultStyle := dsMotif;

F I G U R E 6 . 1 4 :
The output of the ODList
example, with a colored
owner-draw list box

Owner-Draw Controls and Styles

2874c06.qxd 7/2/01 4:22 PM Page 243

http://www.sybex.com

244

In the StylesDemo program, I’ve added, among various sample controls, a list box with the
names of the default styles, as indicated in the TDefaultStyle enumeration, and this code for
its OnDblClick event:

procedure TForm1.ListBox1DblClick(Sender: TObject);
begin
Application.Style.DefaultStyle := TDefaultStyle (ListBox1.ItemIndex);

end;

The effect is that, by double-clicking the list box, you can change the current application
style and immediately see its effect on screen, as demonstrated in Figure 6.15.

What’s Next?
In this chapter, we have explored the foundations of the libraries available in Delphi for
building user interfaces, the native-Windows VCL and the Qt-based CLX. We’ve discussed
the TControl class, its properties, and its most important derived classes.

Then we’ve started to explore some of the basic components available in Delphi, looking at
both libraries. These components correspond to the standard Windows controls and some of
the common controls, and they are extremely common in applications. You’ve also seen how to
create main menus and pop-up menus and how to add extra graphics to some of these controls.

The next step, however, is to explore in depth the elements of a complete user interface,
discussing other common controls, multipage forms, action lists, and the new Delphi 6
Action Manager, to end up discussing technical details of forms. All of these topics will be
covered in the next three chapters.

F I G U R E 6 . 1 5 :
The StylesDemo program, a
Windows application cur-
rently with an unusual
Motif layout

Chapter 6 • Controls: VCL Versus VisualCLX

2874c06.qxd 7/2/01 4:22 PM Page 244

http://www.sybex.com

7CH A P T E R

Advanced VCL Controls

� ListView and TreeView controls

� Multipage forms

� Pages and tabs

� Form-splitting techniques

� Control anchors

� A ToolBar and a StatusBar for the RichEdit
control

� Customizing hints

2874c07.qxd 7/2/01 2:38 PM Page 245

http://www.sybex.com

246

In the preceding chapter, I discussed the core concepts of the TControl class and its
derived classes in the VCL and VisualCLX libraries. After that, I provided a sort of rapid
tour of the key controls you can use to build a user interface, including editing components,
lists, range selectors, and more.

This chapter provides more details on some of these components (such as the ListView
and TreeView) and then discusses other controls used to define the overall design of a form,
such as the PageControl, TabControl, and Splitter. The chapter also presents examples of
splitting forms and resizing controls dynamically. These topics are not particularly complex,
but it is worth examining their key concepts briefly.

After these components, I’ll introduce toolbars and status bars, including the customiza-
tion of hints and other slightly more advanced features. This will give us all the foundation
material for the following chapter, which covers actions and the new action manager archi-
tecture of Delphi 6.

ListView and TreeView Controls
In Chapter 6, I introduced all the various visual controls you can use to display lists of values.
The standard list box and combo box components are still very common, but they are often
replaced by the more powerful ListView and TreeView controls. Again, these two controls are
part of the Win32 common controls, stored in the ComCtl32.DLL library. Similar controls
are available in Qt and VisualCLX.

A Graphical Reference List
When you use a ListView component, you can provide bitmaps both indicating the status of
the element (for example, the selected item) and describing the contents of the item in a
graphical way.

How do we connect the images to a list or tree? We need to refer to the ImageList compo-
nent we’ve already used for the images of the menu. A ListView can actually have three image
lists: one for the large icons (the LargeImages property), one for the small icons (the SmallIm-
ages property), and one used for the state of the items (the StateImages property). In the
RefList example on the companion CD, I’ve set the first two properties using two different
ImageList components.

Each of the items of the ListView has an ImageIndex, which refers to its image in the list.
For this to work properly, the elements in the two image lists should follow the same order.
When you have a fixed image list, you can add items to it using Delphi’s ListView Item Edi-
tor, which is connected to the Items property. In this editor, you can define items and so-
called subitems. The subitems are displayed only in the detailed view (when you set the

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 246

http://www.sybex.com

247

vsReport value of the ViewStyle property) and are connected with the titles set in the
Columns property.

In my RefList example (a simple list of references to books, magazines, CD-ROMs, and
Web sites), the items are stored to a file, since users of the program can edit the contents of
the list, which are automatically saved as the program exits. This way, edits made by the user
become persistent. Saving and loading the contents of a ListView is not trivial, since the
TListItems type doesn’t have an automatic mechanism to save the data. As an alternative
simple approach, I’ve copied the data to and from a string list, using a custom format. The
string list can then be saved to a file and reloaded with a single command.

The file format is simple, as you can see in the following saving code. For each item of the
list, the program saves the caption on one line, the image index on another line (prefixed by
the @ character), and the subitems on the following lines, indented with a tab character:

pprroocceedduurree TForm1.FormDestroy(Sender: TObject);
vvaarr
I, J: Integer;
List: TStringList;

bbeeggiinn
// store the items
List := TStringList.Create;
ttrryy
ffoorr I := 0 ttoo ListView1.Items.Count - 1 ddoo
bbeeggiinn
// save the caption
List.Add (ListView1.Items[I].Caption);
// save the index
List.Add (‘@’ + IntToStr (ListView1.Items[I].ImageIndex));
// save the subitems (indented)
ffoorr J := 0 ttoo ListView1.Items[I].SubItems.Count - 1 ddoo
List.Add (#9 + ListView1.Items[I].SubItems [J]);

eenndd;
List.SaveToFile (ExtractFilePath (Application.ExeName) + ‘Items.txt’);

ffiinnaallllyy

ListView and TreeView Controls

2874c07.qxd 7/2/01 2:38 PM Page 247

http://www.sybex.com

248

List.Free;
eenndd;

eenndd;

The items are then reloaded in the FormCreate method:
pprroocceedduurree TForm1.FormCreate(Sender: TObject);
vvaarr
List: TStringList;
NewItem: TListItem;
I: Integer;

bbeeggiinn
// stops warning message
NewItem := nniill;
// load the items
ListView1.Items.Clear;
List := TStringList.Create;
ttrryy
List.LoadFromFile (
ExtractFilePath (Application.ExeName) + ‘Items.txt’);

ffoorr I := 0 ttoo List.Count - 1 ddoo
iiff List [I][1] = #9 tthheenn
NewItem.SubItems.Add (Trim (List [I]))

eellssee iiff List [I][1] = ‘@’ tthheenn
NewItem.ImageIndex := StrToIntDef (List [I][2], 0)

eellssee
bbeeggiinn
// a new item
NewItem := ListView1.Items.Add;
NewItem.Caption := List [I];

eenndd;
ffiinnaallllyy
List.Free;

eenndd;
eenndd;

The program has a menu you can use to choose one of the different views supported by the
ListView control, and to add check boxes to the items, as in a CheckListBox. You can see
some of the various combinations of these styles in Figure 7.1.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 248

http://www.sybex.com

249

Another important feature, which is common in the detailed or report view of the control,
is to let a user sort the items on one of the columns. To accomplish this requires three opera-
tions. The first is to set the SortType property of the ListView to stBoth or stData. In this
way, the ListView will operate the sorting not based on the captions, but by calling the
OnCompare event for each two items it has to sort. Since we want to do the sorting on each of
the columns of the detailed view, we also handle the OnColumnClick event (which takes place
when the user clicks the column titles in the detailed view, but only if the ShowColumnHeaders
property is set to True). Each time a column is clicked, the program saves the number of that
column in the nSortCol private field of the form class:

pprroocceedduurree TForm1.ListView1ColumnClick(Sender: TObject;
Column: TListColumn);

bbeeggiinn
nSortCol := Column.Index;
ListView1.AlphaSort;

eenndd;

F I G U R E 7 . 1 :
Different examples of the
output of a ListView
component of the RefList
program, obtained
by changing the
ViewStyle property and
adding the check boxes

ListView and TreeView Controls

2874c07.qxd 7/2/01 2:38 PM Page 249

http://www.sybex.com

250

Then, in the third step, the sorting code uses either the caption or one of the subitems
according to the current sort column:

pprroocceedduurree TForm1.ListView1Compare(Sender: TObject;
Item1, Item2: TListItem;
Data: Integer; vvaarr Compare: Integer);

bbeeggiinn
iiff nSortCol = 0 tthheenn
Compare := CompareStr (Item1.Caption, Item2.Caption)

eellssee
Compare := CompareStr (Item1.SubItems [nSortCol - 1],
Item2.SubItems [nSortCol - 1]);

eenndd;

The final features I’ve added to the program relate to mouse operations. When the user
left-clicks an item, the RefList program shows a description of the selected item. Right-clicking
the selected item sets it in edit mode, and a user can change it (keep in mind that the changes
will automatically be saved when the program terminates). Here is the code for both opera-
tions, in the OnMouseDown event handler of the ListView control:

pprroocceedduurree TForm1.ListView1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

vvaarr
strDescr: string;
I: Integer;

bbeeggiinn
// if there is a selected item
iiff ListView1.Selected <> nniill tthheenn
iiff Button = mbLeft tthheenn
bbeeggiinn
// create and show a description
strDescr := ListView1.Columns [0].Caption + #9 +
ListView1.Selected.Caption + #13;

ffoorr I := 1 ttoo ListView1.Selected.SubItems.Count ddoo
strDescr := strDescr + ListView1.Columns [I].Caption + #9 +
ListView1.Selected.SubItems [I-1] + #13;

ShowMessage (strDescr);
eenndd
eellssee iiff Button = mbRight tthheenn
// edit the caption
ListView1.Selected.EditCaption;

eenndd;

Although it is not feature-complete, this example shows some of the potential of the ListView
control. I’ve also activated the “hot-tracking” feature, which lets the list view highlight and

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 250

http://www.sybex.com

251

underline the item under the mouse. The relevant properties of the ListView can be seen in
its textual description:

oobbjjeecctt ListView1: TListView
Align = alClient
Columns = <

iitteemm
Caption = ‘Reference’
Width = 230

eenndd
iitteemm
Caption = ‘Author’
Width = 180

eenndd
iitteemm
Caption = ‘Country’
Width = 80

eenndd>
Font.Height = -13
Font.Name = ‘MS Sans Serif’
Font.Style = [fsBold]
FullDrag = True
HideSelection = False
HotTrack = True
HotTrackStyles = [htHandPoint, htUnderlineHot]
SortType = stBoth
ViewStyle = vsList
OnColumnClick = ListView1ColumnClick
OnCompare = ListView1Compare
OnMouseDown = ListView1MouseDown

eenndd

This program is actually quite interesting, and I’ll further extend it in Chapter 9, adding a
dialog box to it.

To build its CLX version, QRefList, I had to use only one of the image lists, and disable
the small images and large images menus, as a ListView is limited to the list and report view
styles. Large and small icons are available in a different control, called IconView.

A Tree of Data
Now that we’ve seen an example based on the ListView, we can examine the TreeView con-
trol. The TreeView has a user interface that is flexible and powerful (with support for editing
and dragging elements). It is also standard, because it is the user interface of the Windows
Explorer. There are properties and various ways to customize the bitmap of each line or of
each type of line.

ListView and TreeView Controls

2874c07.qxd 7/2/01 2:38 PM Page 251

http://www.sybex.com

252

To define the structure of the nodes of the TreeView at design time, you can use the Tree-
View Items property editor. In this case, however, I’ve decided to load it in the TreeView
data at startup, in a way similar to the last example.

The Items property of the TreeView component has many member functions you can use
to alter the hierarchy of strings. For example, we can build a two-level tree with the follow-
ing lines:

vvaarr
Node: TTreeNode;

bbeeggiinn
Node := TreeView1.Items.Add (nniill, ‘First level’);
TreeView1.Items.AddChild (Node, ‘Second level’);

Using these two methods (Add and AddChild), we can build a complex structure at run
time. But how do we load the information? Again, you can use a StringList at run time, load
a text file with the information, and parse it.

However, since the TreeView control has a LoadFromFile method, the DragTree and
QDragTree examples use the following simpler code:

pprroocceedduurree TForm1.FormCreate(Sender: TObject);
bbeeggiinn
TreeView1.LoadFromFile (ExtractFilePath (Application.ExeName) +
‘TreeText.txt’);

eenndd;

The LoadFromFile method loads the data in a string list and checks the level of each item
by looking at the number of tab characters. (If you are curious, see the TTreeStrings.Get-
BufStart method, which you can find in the ComCtrls unit in the VCL source code included
in Delphi.) By the way, the data I’ve prepared for the TreeView is the organizational chart of
a multinational company.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 252

http://www.sybex.com

253

Besides loading the data, the program saves it when it terminates, making the changes per-
sistent. It also has a few menu items to customize the font of the TreeView control and
change some other simple settings. The specific feature I’ve implemented in this example is
support for dragging items and entire subtrees. I’ve set the DragMode property of the compo-
nent to dmAutomatic and written the event handlers for the OnDragOver and OnDragDrop
events.

In the first of the two handlers, the program makes sure the user is not trying to drag an
item over a child item (which would be moved along with the item, leading to an infinite
recursion):

pprroocceedduurree TForm1.TreeView1DragOver(Sender, Source: TObject;
X, Y: Integer; State: TDragState; vvaarr Accept: Boolean);

vvaarr
TargetNode, SourceNode: TTreeNode;

bbeeggiinn
TargetNode := TreeView1.GetNodeAt (X, Y);
// accept dragging from itself
iiff (Source = Sender) aanndd (TargetNode <> nniill) tthheenn
bbeeggiinn
Accept := True;
// determines source and target
SourceNode := TreeView1.Selected;
// look up the target parent chain
wwhhiillee (TargetNode.Parent <> nniill) aanndd (TargetNode <> SourceNode) ddoo
TargetNode := TargetNode.Parent;

// if source is found
iiff TargetNode = SourceNode tthheenn
// do not allow dragging over a child
Accept := False;

eenndd
eellssee
Accept := False;

eenndd;

The effect of this code is that (except for the particular case we need to disallow) a user can
drag an item of the TreeView over another one, as shown in Figure 7.2. Writing the actual
code for moving the items is simple, because the TreeView control provides the support for
this operation, through the MoveTo method of the TTreeNode class.

ListView and TreeView Controls

2874c07.qxd 7/2/01 2:38 PM Page 253

http://www.sybex.com

254

pprroocceedduurree TForm1.TreeView1DragDrop(Sender, Source: TObject; X, Y: Integer);
vvaarr
TargetNode, SourceNode: TTreeNode;

bbeeggiinn
TargetNode := TreeView1.GetNodeAt (X, Y);
iiff TargetNode <> nniill tthheenn
bbeeggiinn
SourceNode := TreeView1.Selected;
SourceNode.MoveTo (TargetNode, naAddChildFirst);
TargetNode.Expand (False);
TreeView1.Selected := TargetNode;

eenndd;
eenndd;

NOTE Among the demos shipping with Delphi is an interesting one showing a custom-draw Tree-
View control. The example is in the CustomDraw subdirectory.

Custom Tree Nodes
Delphi 6 adds a few new features to the TreeView controls, including multiple selection (see
the MultiSelect and MultiSelectStyle properties and the Selections array), improved
sorting, and several new events.

F I G U R E 7 . 2 :
The DragTree example
during a dragging opera-
tion

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 254

http://www.sybex.com

255

Another improved area relates to the creation of custom tree node items, which is useful to
add extra custom information to each node and possibly create nodes of different classes. To
support this technique, there is a new AddNode method for the TTreeItems class and a new
specific event, OnCreateNodesClass. In the handler of this event, you return the class of the
object to be created, which must inherit from TTreeNode.

As this is a very common technique, I’ve built an example to discuss it in detail. The
CustomNodes example on the CD doesn’t focus on a real-world case, but it shows a rather
complex situation, in which there are two different custom tree node classes, derived one
from the other. The base class adds an ExtraCode property, mapped to virtual methods, and
the subclass overrides one of these methods. For the base class the GetExtraCode function
simply returns the value, while for the derived class the value is multiplied to the parent node
value. Here are the classes and this second method:

ttyyppee
TMyNode = ccllaassss (TTreeNode)
pprriivvaattee
FExtraCode: Integer;

pprrootteecctteedd
pprroocceedduurree SetExtraCode(ccoonnsstt Value: Integer); vviirrttuuaall;
ffuunnccttiioonn GetExtraCode: Integer; vviirrttuuaall;

ppuubblliicc
pprrooppeerrttyy ExtraCode: Integer rreeaadd GetExtraCode wwrriittee SetExtraCode;

eenndd;

TMySubNode = ccllaassss (TMyNode)
pprrootteecctteedd
ffuunnccttiioonn GetExtraCode: Integer; oovveerrrriiddee;

eenndd;

ffuunnccttiioonn TMySubNode.GetExtraCode: Integer;
bbeeggiinn
Result := fExtraCode * (Parent aass TMyNode).ExtraCode;

eenndd;;

With these custom tree node classes available, the program creates a tree of items, using
the first type for the first-level nodes and the second class for the other nodes. As we have
only one OnCreateNodeClass event handler, it uses the class reference stored in a private field
of the form (CurrentNodeClass of type TTreeNodeClass):

pprroocceedduurree TForm1.TreeView1CreateNodeClass(Sender: TCustomTreeView;
vvaarr NodeClass: TTreeNodeClass);

bbeeggiinn
NodeClass := CurrentNodeClass;

eenndd;

ListView and TreeView Controls

2874c07.qxd 7/2/01 2:38 PM Page 255

http://www.sybex.com

256

The program sets this class reference before creating nodes of each type—for example,
with code like

vvaarr
MyNode: TMyNode;

bbeeggiinn
CurrentNodeClass := TMyNode;
MyNode := TreeView1.Items.AddChild (nniill, ‘item’ + IntToStr (nValue))
as TMyNode;

MyNode.ExtraCode := nValue;

Once the entire tree has been created, as the user selects an item, you can cast its type to
TMyNode and access to the extra properties (but also methods and data):

pprroocceedduurree TForm1.TreeView1Click(Sender: TObject);
vvaarr
MyNode: TMyNode;

bbeeggiinn
MyNode := TreeView1.Selected aass TMyNode;
Label1.Caption := MyNode.Text + ‘ [‘ + MyNode.ClassName + ‘] = ‘ +
IntToStr (MyNode.ExtraCode);

eenndd;

This is the code used by the CustomNodes example to display the description of the
selected node into a label, as you can see in Figure 7.3. Note that when you select an item
down into the tree, its value is multiplied for that of each of the parent nodes. Though there
are certainly easier ways to obtain this effect, having a tree view with item objects created
from different classes of a hierarchy provides an object-oriented structure upon which you
can base some very complex code.

F I G U R E 7 . 3 :
The CustomNodes
example has a tree view
with node objects based
on different custom
classes, thanks to the new
OnCreateNodesClass

event.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 256

http://www.sybex.com

257

Multiple-Page Forms
When you have a lot of information and controls to display in a dialog box or a form, you can
use multiple pages. The metaphor is that of a notebook: Using tabs, a user can select one of
the possible pages.

There are two controls you can use to build a multiple-page application in Delphi:

• You can use the PageControl component, which has tabs on one of the sides and multiple
pages (similar to panels) covering the rest of its surface. As there is one page per tab,
you can simply place components on each page to obtain the proper effect both at
design time and at run time.

• You can use the TabControl, which has only the tab portion but offers no pages to host
the information. In this case, you’ll want to use one or more components to mimic the
page change operation.

A third related class, the TabSheet, represents a single page of the PageControl. This is not
a stand-alone component and is not available on the Component Palette. You create a TabSheet
at design time by using the local menu of the PageControl or at run time by using methods of
the same control.

NOTE Delphi still includes the Notebook, TabSet, and TabbedNotebook components introduced in
early versions. Use these components only if you need to create a 16-bit version of an applica-
tion. For any other purpose, the PageControl and TabControl components, which encapsulate
Win32 common controls, provide a more modern user interface. Actually, in 32-bit versions of
Delphi, the TabbedNotebook component was reimplemented using the Win32 PageControl
internally, to reduce the code size and update the look.

PageControls and TabSheets
As usual, instead of duplicating the Help system’s list of properties and methods of the Page-
Control component, I’ve built an example that stretches its capabilities and allows you to
change its behavior at run time. The example, called Pages, has a PageControl with three
pages. The structure of the PageControl and of the other key components is listed here:

oobbjjeecctt Form1: TForm1
BorderIcons = [biSystemMenu, biMinimize]
BorderStyle = bsSingle
Caption = ‘Pages Test’
OnCreate = FormCreate
oobbjjeecctt PageControl1: TPageControl
ActivePage = TabSheet1
Align = alClient

Multiple-Page Forms

2874c07.qxd 7/2/01 2:38 PM Page 257

http://www.sybex.com

258

HotTrack = True
Images = ImageList1
MultiLine = True
oobbjjeecctt TabSheet1: TTabSheet
Caption = ‘Pages’
oobbjjeecctt Label3: TLabel
oobbjjeecctt ListBox1: TListBox

eenndd
oobbjjeecctt TabSheet2: TTabSheet
Caption = ‘Tabs Size’
ImageIndex = 1
oobbjjeecctt Label1: TLabel
// other controls

eenndd
oobbjjeecctt TabSheet3: TTabSheet
Caption = ‘Tabs Text’
ImageIndex = 2
oobbjjeecctt Memo1: TMemo
Anchors = [akLeft, akTop, akRight, akBottom]
OnChange = Memo1Change

eenndd
oobbjjeecctt BitBtnChange: TBitBtn
Anchors = [akTop, akRight]
Caption = ‘&Change’

eenndd
eenndd

eenndd
oobbjjeecctt BitBtnPrevious: TBitBtn
Anchors = [akRight, akBottom]
Caption = ‘&Previous’
OnClick = BitBtnPreviousClick

eenndd
oobbjjeecctt BitBtnNext: TBitBtn
Anchors = [akRight, akBottom]
Caption = ‘&Next’
OnClick = BitBtnNextClick

eenndd
oobbjjeecctt ImageList1: TImageList
Bitmap = {...}

eenndd
eenndd

Notice that the tabs are connected to the bitmaps provided by an ImageList control and
that some controls use the Anchors property to remain at a fixed distance from the right or
bottom borders of the form. Even if the form doesn’t support resizing (this would have been
far too complex to set up with so many controls), the positions can change when the tabs are
displayed on multiple lines (simply increase the length of the captions) or on the left side of
the form.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 258

http://www.sybex.com

259

Each TabSheet object has its own Caption, which is displayed as the sheet’s tab. At design
time, you can use the local menu to create new pages and to move between pages. You can
see the local menu of the PageControl component in Figure 7.4, together with the first page.
This page holds a list box and a small caption, and it shares two buttons with the other pages.

If you place a component on a page, it is available only in that page. How can you have the
same component (in this case, two bitmap buttons) in each of the pages, without duplicating
it? Simply place the component on the form, outside of the PageControl (or before aligning
it to the client area) and then move it in front of the pages, calling the Bring To Front com-
mand of the form’s local menu. The two buttons I’ve placed in each page can be used to
move back and forth between the pages and are an alternative to using the tabs. Here is the
code associated with one of them:

pprroocceedduurree TForm1.BitBtnNextClick(Sender: TObject);
bbeeggiinn
PageControl1.SelectNextPage (True);

eenndd;

The other button calls the same procedure, passing False as its parameter to select the pre-
vious page. Notice that there is no need to check whether we are on the first or last page,
because the SelectNextPage method considers the last page to be the one before the first and
will move you directly between those two pages.

Now we can focus on the first page again. It has a list box, which at run time will hold the
names of the tabs. If a user clicks an item of this list box, the current page changes. This is
the third method available to change pages (after the tabs and the Next and Previous but-
tons). The list box is filled in the FormCreate method, which is associated with the OnCreate

F I G U R E 7 . 4 :
The first sheet of the
PageControl of the
Pages example, with
its local menu

Multiple-Page Forms

2874c07.qxd 7/2/01 2:38 PM Page 259

http://www.sybex.com

260

event of the form and copies the caption of each page (the Page property stores a list of Tab-
Sheet objects):

ffoorr I := 0 ttoo PageControl1.PageCount - 1 ddoo
ListBox1.Items.Add (PageControl1.Pages.Caption);

When you click a list item, you can select the corresponding page:
pprroocceedduurree TForm1.ListBox1Click(Sender: TObject);
bbeeggiinn
PageControl1.ActivePage := PageControl1.Pages [ListBox1.ItemIndex];

eenndd;

The second page hosts two edit boxes (connected with two UpDown components), two
check boxes, and two radio buttons, as you can see in Figure 7.5. The user can input a number
(or choose it by clicking the up or down buttons with the mouse or pressing the Up or Down
arrow key while the corresponding edit box has the focus), check the boxes and the radio but-
tons, and then click the Apply button to make the changes:

pprroocceedduurree TForm1.BitBtnApplyClick(Sender: TObject);
bbeeggiinn
// set tab width, height, and lines
PageControl1.TabWidth := StrToInt (EditWidth.Text);
PageControl1.TabHeight := StrToInt (EditHeight.Text);
PageControl1.MultiLine := CheckBoxMultiLine.Checked;
// show or hide the last tab
TabSheet3.TabVisible := CheckBoxVisible.Checked;
// set the tab position
iiff RadioButton1.Checked tthheenn
PageControl1.TabPosition := tpTop

eellssee
PageControl1.TabPosition := tpLeft;

eenndd;

F I G U R E 7 . 5 :
The second page of the
example can be used to
size and position the tabs.
Here you can see the tabs
on the left of the page
control.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 260

http://www.sybex.com

261

With this code, we can change the width and height of each tab (remember that 0 means
the size is computed automatically from the space taken by each string). We can choose to
have either multiple lines of tabs or two small arrows to scroll the tab area, and move them to
the left side. The control also allows tabs to be placed on the bottom or on the right, but our
program doesn’t allow that, because it would make the placement of the other controls quite
complex.

You can also hide the last tab on the PageControl, which corresponds to the TabSheet3
component. If you hide one of the tabs by setting its TabVisible property to False, you can-
not reach that tab by clicking on the Next and Previous buttons, which are based on the
SelectNextPage method. Instead, you should use the FindNextPage function, as shown below
in this new version of the Next button’s OnClick event handler:

pprroocceedduurree TForm1.BitBtnNextClick(Sender: TObject);
bbeeggiinn
PageControl1.ActivePage := PageControl1.FindNextPage (
PageControl1.ActivePage, True, False);

eenndd;

The last page has a memo component, again with the names of the pages (added in the
FormCreate method). You can edit the names of the pages and click the Change button to
change the text of the tabs, but only if the number of strings matches the number of tabs:

pprroocceedduurree TForm1.BitBtnChangeClick(Sender: TObject);
vvaarr
I: Integer;

bbeeggiinn
iiff Memo1.Lines.Count <> PageControl1.PageCount tthheenn
MessageDlg (‘One line per tab, please’, mtError, [mbOK], 0)

eellssee
ffoorr I := 0 ttoo PageControl1.PageCount -1 ddoo
PageControl1.Pages [I].Caption := Memo1.Lines [I];

BitBtnChange.Enabled := False;
eenndd;

Finally the last button, Add Page, allows you to add a new tab sheet to the page control,
although the program doesn’t add any components to it. The (empty) tab sheet object is created
using the page control as its owner, but it won’t work unless you also set the PageControl prop-
erty. Before doing this, however, you should make the new tab sheet visible. Here is the code:

pprroocceedduurree TForm1.BitBtnAddClick(Sender: TObject);
vvaarr
strCaption: string;
NewTabSheet: TTabSheet;

bbeeggiinn
strCaption := ‘New Tab’;
iiff InputQuery (‘New Tab’, ‘Tab Caption’, strCaption) tthheenn

Multiple-Page Forms

2874c07.qxd 7/2/01 2:38 PM Page 261

http://www.sybex.com

262

bbeeggiinn
// add a new empty page to the control
NewTabSheet := TTabSheet.Create (PageControl1);
NewTabSheet.Visible := True;
NewTabSheet.Caption := strCaption;
NewTabSheet.PageControl := PageControl1;
PageControl1.ActivePage := NewTabSheet;
// add it to both lists
Memo1.Lines.Add (strCaption);
ListBox1.Items.Add (strCaption);

eenndd;
eenndd;

TIP Whenever you write a form based on a PageControl, remember that the first page displayed at
run time is the page you were in before the code was compiled. This means that if you are
working on the third page and then compile and run the program, it will start with that page.
A common way to solve this problem is to add a line of code in the FormCreate method to set
the PageControl or notebook to the first page. This way, the current page at design time doesn’t
determine the initial page at run time.

An Image Viewer with Owner-Draw Tabs
The use of the TabControl and of a dynamic approach, as described in the last example, can
also be applied in more general (and simpler) cases. Every time you need multiple pages that
all have the same type of content, instead of replicating the controls in each page, you can use
a TabControl and change its contents when a new tab is selected.

This is what I’ll do in the multiple-page bitmap viewer example, called BmpViewer. The
image that appears in the TabControl of this form, aligned to the whole client area, depends
on the selection in the tab above it (as you can see in Figure 7.6).

F I G U R E 7 . 6 :
The interface of the bitmap
viewer in the BmpViewer
example. Notice the owner-
draw tabs.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 262

http://www.sybex.com

263

At the beginning, the TabControl is empty. After selecting File ➢ Open, the user can
choose various files in the File Open dialog box, and the array of strings with the names of
the files (the Files property of the OpenDialog1 component) is added to the tabs (the Tabs
property of TabControl1):

pprroocceedduurree TFormBmpViewer.Open1Click(Sender: TObject);
bbeeggiinn
iiff OpenDialog1.Execute tthheenn
bbeeggiinn
TabControl1.Tabs.AddStrings (OpenDialog1.Files);
TabControl1.TabIndex := 0;
TabControl1Change (TabControl1);

eenndd;
eenndd;

After we display the new tabs, we have to update the image so that it matches the first tab.
To accomplish this, the program calls the method connected with the OnChange event of the
TabControl, which loads the file corresponding to the current tab in the image component:

pprroocceedduurree TFormBmpViewer.TabControl1Change(Sender: TObject);
bbeeggiinn
Image1.Picture.LoadFromFile (TabControl1.Tabs [TabControl1.TabIndex]);

eenndd;

This example works, unless you select a file that doesn’t contain a bitmap. The program
will warn the user with a standard exception, ignore the file, and continue its execution.

The program also allows pasting the bitmap on the clipboard (without actually copying it,
though) and copying the current bitmap to it. Clipboard support is available in Delphi via the
global Clipboard object defined in the ClipBrd unit. For copying or pasting bitmaps, you can
use the Assign method of the TClipboard and TBitmap classes. When you select the Edit ➢
Paste command of the example, a new tab named Clipboard is added to the tab set (unless it
is already present). Then the number of the new tab is used to change the active tab:

pprroocceedduurree TFormBmpViewer.Paste1Click(Sender: TObject);
vvaarr
TabNum: Integer;

bbeeggiinn
// try to locate the page
TabNum := TabControl1.Tabs.IndexOf (‘Clipboard’);
iiff TabNum < 0 tthheenn
// create a new page for the Clipboard
TabNum := TabControl1.Tabs.Add (‘Clipboard’);

// go to the Clipboard page and force repaint
TabControl1.TabIndex := TabNum;
TabControl1Change (SSeellff);

eenndd;

Multiple-Page Forms

2874c07.qxd 7/2/01 2:38 PM Page 263

http://www.sybex.com

264

The Edit ➢ Copy operation, instead, is as simple as copying the bitmap currently in the
image control:

Clipboard.Assign (Image1.Picture.Graphic);

To account for the possible presence of the Clipboard tab, the code of the
TabControl1Change method becomes:

pprroocceedduurree TFormBmpViewer.TabControl1Change(Sender: TObject);
vvaarr
TabText: string;

bbeeggiinn
Image1.Visible := True;
TabText := TabControl1.Tabs [TabControl1.TabIndex];
iiff TabText <> ‘Clipboard’ tthheenn
// load the file indicated in the tab
Image1.Picture.LoadFromFile (TabText)

eellssee
{if the tab is ‘Clipboard’ and a bitmap
is available in the clipboard}
iiff Clipboard.HasFormat (cf_Bitmap) tthheenn
Image1.Picture.Assign (Clipboard)

eellssee
bbeeggiinn
// else remove the clipboard tab
TabControl1.Tabs.Delete (TabControl1.TabIndex);
iiff TabControl1.Tabs.Count = 0 tthheenn
Image1.Visible := False;

eenndd;

This program pastes the bitmap from the Clipboard each time you change the tab. The
program stores only one image at a time, and it has no way to store the Clipboard bitmap.
However, if the Clipboard content changes and the bitmap format is no longer available, the
Clipboard tab is automatically deleted (as you can see in the listing above). If no more tabs
are left, the Image component is hidden.

An image can also be removed using either of two menu commands: Cut or Delete.
Cut removes the tab after making a copy of the bitmap to the Clipboard. In practice, the
Cut1Click method does nothing besides calling the Copy1Click and Delete1Click methods.
The Copy1Click method is responsible for copying the current image to the Clipboard,
Delete1Click simply removes the current tab. Here is their code:

pprroocceedduurree TFormBmpViewer.Copy1Click(Sender: TObject);
bbeeggiinn
Clipboard.Assign (Image1.Picture.Graphic);

eenndd;

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 264

http://www.sybex.com

265

pprroocceedduurree TFormBmpViewer.Delete1Click(Sender: TObject);
bbeeggiinn
wwiitthh TabControl1 ddoo
bbeeggiinn
iiff TabIndex >= 0 tthheenn
Tabs.Delete (TabIndex);

iiff Tabs.Count = 0 tthheenn
Image1.Visible := False;

eenndd;
eenndd;

One of the special features of the example is that the TabControl has the OwnerDraw prop-
erty set to True. This means that the control won’t paint the tabs (which will be empty at
design time) but will have the application do this, by calling the OnDrawTab event. In its code,
the program displays the text vertically centered, using the DrawText API function. The text
displayed is not the entire file path but only the filename. Then, if the text is not None, the
program reads the bitmap the tab refers to and paints a small version of it in the tab itself. To
accomplish this, the program uses the TabBmp object, which is of type TBitmap and is created
and destroyed along with the form. The program also uses the BmpSide constant to position
the bitmap and the text properly:

pprroocceedduurree TFormBmpViewer.TabControl1DrawTab(Control: TCustomTabControl;
TabIndex: Integer; ccoonnsstt Rect: TRect; Active: Boolean);

vvaarr
TabText: string;
OutRect: TRect;
bbeeggiinn
TabText := TabControl1.Tabs [TabIndex];
OutRect := Rect;
InflateRect (OutRect, -3, -3);
OutRect.Left := OutRect.Left + BmpSide + 3;
DrawText (Control.Canvas.Handle, PChar (ExtractFileName (TabText)),
Length (ExtractFileName (TabText)), OutRect,
dt_Left oorr dt_SingleLine oorr dt_VCenter);

iiff TabText = ‘Clipboard’ tthheenn
iiff Clipboard.HasFormat (cf_Bitmap) tthheenn
TabBmp.Assign (Clipboard)

eellssee
TabBmp.FreeImage

eellssee
TabBmp.LoadFromFile (TabText);

OutRect.Left := OutRect.Left - BmpSide - 3;
OutRect.Right := OutRect.Left + BmpSide;
Control.Canvas.StretchDraw (OutRect, TabBmp);

eenndd;

Multiple-Page Forms

2874c07.qxd 7/2/01 2:38 PM Page 265

http://www.sybex.com

266

The program has also support for printing the current bitmap, after showing a page pre-
view form in which the user can select the proper scaling. This extra portion of the program
I built for earlier editions of the book is not discussed in detail, but I’ve left the code in the
program so that you can have a look at its code anyway.

The User Interface of a Wizard
Just as you can use a TabControl without pages, you can also take the opposite approach and
use a PageControl without tabs. What I want to focus on now is the development of the user
interface of a wizard. In a wizard, you are directing the user through a sequence of steps, one
screen at a time, and at each step you typically want to offer the choice of proceeding to the
next step or going back to correct input entered in a previous step. So instead of tabs that can
be selected in any order, wizards typically offer Next and Back buttons to navigate. This
won’t be a complex example; its purpose is just to give you a few guidelines. The example is
called WizardUI.

The starting point is to create a series of pages in a PageControl and set the TabVisible
property of each TabSheet to False (while keeping the Visible property set to True). Unlike
past versions, since Delphi 5 you can also hide the tabs at design time. In this case, you’ll
need to use the shortcut menu of the page control or the combo box of the Object Inspector
to move to another page, instead of the tabs. But why don’t you want to see the tabs at design
time? You can place controls on the pages and then place extra controls in front of the pages
(as I’ve done in the example), without seeing their relative positions change at run time. You
might also want to remove the useless captions of the tabs, which take up space in memory
and in the resources of the application.

In the first page, I’ve placed on one side an image and a bevel control and on the other side
some text, a check box, and two buttons. Actually, the Next button is inside the page, while
the Back button is over it (and is shared by all the pages). You can see this first page at design
time in Figure 7.7. The following pages look similar, with a label, check boxes, and buttons
on the right side and nothing on the left.

When you click the Next button on the first page, the program looks at the status of the
check box and decides which page is the following one. I could have written the code like this:

pprroocceedduurree TForm1.btnNext1Click(Sender: TObject);
bbeeggiinn
BtnBack.Enabled := True;
iiff CheckInprise.Checked tthheenn
PageControl1.ActivePage := TabSheet2

eellssee
PageControl1.ActivePage := TabSheet3;

// move image and bevel
Bevel1.Parent := PageControl1.ActivePage;
Image1.Parent := PageControl1.ActivePage;

eenndd;

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 266

http://www.sybex.com

267

After enabling the common Back button, the program changes the active page and finally
moves the graphical portion to the new page. Because this code has to be repeated for each but-
ton, I’ve placed it in a method after adding a couple of extra features. This is the actual code:

pprroocceedduurree TForm1.btnNext1Click(Sender: TObject);
bbeeggiinn
iiff CheckInprise.Checked tthheenn
MoveTo (TabSheet2)

eellssee
MoveTo (TabSheet3);

eenndd;

pprroocceedduurree TForm1.MoveTo(TabSheet: TTabSheet);
bbeeggiinn
// add the last page to the list
BackPages.Add (PageControl1.ActivePage);
BtnBack.Enabled := True;
// change page
PageControl1.ActivePage := TabSheet;
// move image and bevel
Bevel1.Parent := PageControl1.ActivePage;
Image1.Parent := PageControl1.ActivePage;

eenndd;

Besides the code I’ve already explained, the MoveTo method adds the last page (the one before
the page change) to a list of visited pages, which behaves like a stack. In fact, the BackPages
object of the TList class is created as the program starts and the last page is always added to the
end. When the user clicks the Back button, which is not dependent on the page, the program
extracts the last page from the list, deletes its entry, and moves to that page:

pprroocceedduurree TForm1.btnBackClick(Sender: TObject);
vvaarr

F I G U R E 7 . 7 :
The first page of the
WizardUI example at
design time

Multiple-Page Forms

2874c07.qxd 7/2/01 2:38 PM Page 267

http://www.sybex.com

268

LastPage: TTabSheet;
bbeeggiinn
// get the last page and jump to it
LastPage := TTabSheet (BackPages [BackPages.Count - 1]);
PageControl1.ActivePage := LastPage;
// delete the last page from the list
BackPages.Delete (BackPages.Count - 1);
// eventually disable the back button
BtnBack.Enabled := nnoott (BackPages.Count = 0);
// move image and bevel
Bevel1.Parent := PageControl1.ActivePage;
Image1.Parent := PageControl1.ActivePage;

eenndd;

With this code, the user can move back several pages until the list is empty, at which point
we disable the Back button. The complication we need to deal with is that while moving
from a particular page, we know which pages are its “next” and “previous,” but we don’t
know which page we came from, because there can be multiple paths to reach a page. Only
by keeping track of the movements with a list can we reliably go back.

The rest of the code of the program, which simply shows some Web site addresses, is very
simple. The good news is that you can reuse the navigational structure of this example in
your own programs and modify only the graphical portion and the content of the pages.
Actually, as most of the labels of the programs show HTTP addresses, a user can click those
labels to open the default browser showing that page. This is accomplished by extracting the
HTTP address from the label and calling the ShellExecute function.

pprroocceedduurree TForm1.LabelLinkClick(Sender: TObject);
vvaarr
Caption, StrUrl: string;

bbeeggiinn
Caption := (Sender as TLabel).Caption;
StrUrl := Copy (Caption, Pos (‘http://’, Caption), 1000);
ShellExecute (Handle, ‘open’, PChar (StrUrl), ‘’, ‘’, sw_Show);

eenndd;

The method above is hooked to the OnClick event of many labels of the form, which have
been turned into links by setting its Cursor to a hand. This is one of the labels:

oobbjjeecctt Label2: TLabel
Cursor = crHandPoint
Caption = ‘Main site: http://www.borland.com’
OnClick = LabelLinkClick

eenndd

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 268

http://www.sybex.com
http://www.borland.com%E2%80%99

269

Form-Splitting Techniques
There are several ways to implement form-splitting techniques in Delphi, but the simplest
approach is to use the Splitter component, found in the Additional page of the Component
Palette. To make it more effective, the splitter can be used in combination with the Constraints
property of the controls it relates to. As we’ll see in the Split1 example, this allows us to
define maximum and minimum positions of the splitter and of the form.

To build this example, simply place a ListBox component in a form; then add a Splitter
component, a second ListBox, another Splitter, and finally a third ListBox component. The
form also has a simple toolbar based on a panel.

By simply placing these two splitter components, you give your form the complete func-
tionality of moving and sizing the controls it hosts at run time. The Width, Beveled, and
Color properties of the splitter components determine their appearance, and in the Split1
example you can use the toolbar controls to change them. Another relevant property is
MinSize, which determines the minimum size of the components of the form. During the
splitting operation (see Figure 7.8), a line marks the final position of the splitter, but you can-
not drag this line beyond a certain limit. The behavior of the Split1 program is not to let
controls become too small. An alternative technique is to set the new AutoSnap property of
the splitter to True. This property will make the splitter hide the control when its size goes
below the MinSize limit.

F I G U R E 7 . 8 :
The splitter component
of the Split1 example
determines the minimum
size for each control on
the form, even those not
adjacent to the splitter
itself.

Form-Splitting Techniques

2874c07.qxd 7/2/01 2:38 PM Page 269

http://www.sybex.com

270

I suggest you try using the Split1 program, so that you’ll fully understand how the splitter
affects its adjacent controls and the other controls of the form. Even if we set the MinSize
property, a user of this program can reduce the size of its entire form to a minimum, hiding
some of the list boxes. If you test the Split2 version of the example, instead, you’ll get better
behavior. In Split2, I’ve set some Constraints for the ListBox controls—for example,

oobbjjeecctt ListBox1: TListBox
Constraints.MaxHeight = 400
Constraints.MinHeight = 200
Constraints.MinWidth = 150

The size constraints are applied only as you actually resize the controls, so to make this
program work in a satisfactory way, you have to set the ResizeStyle property of the two
splitters to rsUpdate. This value indicates that the position of the controls is updated for
every movement of the splitter, not only at the end of the operation. If you select the rsLine
or the new rsPattern values, instead, the splitter simply draws a line in the required position,
checking the MinSize property but not the constraints of the controls.

TIP When you set the Splitter component’s AutoSnap property to True, the splitter will completely
hide the neighboring control when the size of that control is below the minimum set for it in
the Splitter component.

Horizontal Splitting
The Splitter component can also be used for horizontal splitting, instead of the default verti-
cal splitting. However, this approach is a little more complicated. Basically you can place a
component on a form, align it to the top, and then place the splitter on the form. By default,
it will be left aligned. Choose the alTop value for the Align property, and then resize the
component manually, by changing the Height property in the Object Inspector (or by resiz-
ing the component).

You can see a form with a horizontal splitter in the SplitH example. This program has two
memo components you can open a file into, and it has a splitter dividing them, defined as:

oobbjjeecctt Splitter1: TSplitter
Cursor = crVSplit
Align = alTop
OnMoved = Splitter1Moved

eenndd

When you double-click a memo, the program loads a text file into it (notice the structure of
the with statement):

pprroocceedduurree TForm1.MemoDblClick(Sender: TObject);
bbeeggiinn

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 270

http://www.sybex.com

271

wwiitthh Sender aass TMemo, OpenDialog1 ddoo
iiff Execute tthheenn
Lines.LoadFromFile (FileName);

eenndd;

The program features a status bar, which keeps track of the current height of the two
memo components. It handles the OnMoved event of the splitter (the only event of this com-
ponent) to update the text of the status bar. The same code is executed whenever the form is
resized:

pprroocceedduurree TForm1.Splitter1Moved(Sender: TObject);
bbeeggiinn
StatusBar1.Panels[0].Text := Format (‘Upper Memo: %d - Lower Memo: %d’,
[MemoUp.Height, MemoDown.Height]);

eenndd;

You can see the effect of this code by looking at Figure 7.9, or by running the SplitH example.

Splitting with a Header
An alternative to using splitters is to use the standard HeaderControl component. If you
place this control on a form, it will be automatically aligned with the top of the form. Then
you can add the three list boxes to the rest of the client area of the form. The first list box can
be aligned on the left, but this time you cannot align the second and third list box as well.
The problem is that the sections of the header can be dragged outside the visible surface of
the form. If the list boxes use automatic alignment, they cannot move outside the visible sur-
face of the form, as the program requires.

The solution is to define the sections of the header, using the specific editor of the Sections
property. This property editor allows you to access the various subobjects of the collection,
changing various settings. You can set the caption and alignment of the text; the current, mini-
mum, and maximum size of the header; and so on. Setting the limit values is a powerful tool,

F I G U R E 7 . 9 :
The status bar of the
SplitH example indicates
the position of the
horizontal splitter
component.

Form-Splitting Techniques

2874c07.qxd 7/2/01 2:38 PM Page 271

http://www.sybex.com

272

and it replaces the MinSize property of the splitter or the constraints of the list boxes we’ve
used in past examples. You can see the output of this program, named HdrSplit, in Figure 7.10.

We need to handle two events: OnSectionResize and OnSectionClick. The first handler
simply resizes the list box connected with the modified section (determined by associating
numbers with the ImageIndex property of each section and using it to determine the name of
the list box control):

pprroocceedduurree TForm1.HeaderControl1SectionResize(
HeaderControl: THeaderControl; Section: THeaderSection);

vvaarr
List: TListBox;

bbeeggiinn
List := FindComponent (‘ListBox’ + IntToStr (Section.ImageIndex))

aass TListBox;
List.Width := Section.Width;

eenndd;

Along with this event, we need to handle the resizing of the form, using it to synchronize
the list boxes with the sections, which are all resized by default:

pprroocceedduurree TForm1.FormResize(Sender: TObject);
vvaarr
I: Integer;
List: TListBox;

bbeeggiinn
ffoorr I := 0 ttoo 2 ddoo
bbeeggiinn
List := FindComponent (‘ListBox’ + IntToStr (
HeaderControl1.Sections[I].ImageIndex)) aass TListBox;

F I G U R E 7 . 1 0 :
The output of the HdrSplit
example

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 272

http://www.sybex.com

273

List.Left := HeaderControl1.Sections[I].Left;
List.Width := HeaderControl1.Sections[I].Width;

eenndd;
eenndd;

After setting the height of the list boxes, this method simply calls the previous one, passing
parameters that we won’t use in this example. The second method of the HeaderControl,
called in response to a click on one of the sections, is used to sort the contents of the corre-
sponding list box:

pprroocceedduurree TForm1.HeaderControl1SectionClick(
HeaderControl: THeaderControl; Section: THeaderSection);

vvaarr
List: TListBox;

bbeeggiinn
List := FindComponent (‘ListBox’ + IntToStr (Section.ImageIndex))

aass TListBox;
List.Sorted := nnoott List.Sorted;

eenndd;

Of course, this code doesn’t provide the common behavior of sorting the elements when
you click the header and then sorting them in the reverse order if you click again. To imple-
ment this, you should write your own sorting algorithm.

Finally, the HdrSplit example uses a new feature for the header control. It sets the DragRe-
order property to enable dragging operations to reorder the header sections. When this
operation is performed, the control fires the OnSectionDrag event, where you can exchange
the positions of the list boxes. This event fires before the sections are actually moved, so I
have to use the coordinates of the other section:

pprroocceedduurree TForm1.HeaderControl1SectionDrag(Sender: TObject; FromSection,
ToSection: THeaderSection; vvaarr AllowDrag: Boolean);

vvaarr
List: TListBox;

bbeeggiinn
List := FindComponent (‘ListBox’ + IntToStr (FromSection.ImageIndex))

aass TListBox;
List.Left := ToSection.Left;
List.Width := ToSection.Width;

List := FindComponent (‘ListBox’ + IntToStr (ToSection.ImageIndex))
aass TListBox;

List.Left := FromSection.Left;
List.Width :=fromSection.Width

eenndd;

Form-Splitting Techniques

2874c07.qxd 7/2/01 2:38 PM Page 273

http://www.sybex.com

274

Control Anchors
In this chapter, I’ve described how you can use alignment and splitters to create nice, flexible
user interfaces, that adapt to the current size of the form, giving users maximum freedom.
Delphi also supports right and bottom anchors. Before this feature was introduced in Delphi 4,
every control placed on a form had coordinates relative to the top and bottom, unless it was
aligned to the bottom or right sides. Aligning is good for some controls but not all of them,
particularly buttons.

By using anchors, you can make the position of a control relative to any side of the form.
For example, to have a button anchored to the bottom-right corner of the form, place the
button in the required position and set its Anchors property to [akRight, akBottom]. When
the form size changes, the distance of the button from the anchored sides is kept fixed. In
other words, if you set these two anchors and remove the two defaults, the button will remain
in the bottom-right corner.

On the other hand, if you place a large component such as a Memo or a ListBox in the
middle of a form, you can set its Anchors property to include all four sides. This way the con-
trol will behave as an aligned control, growing and shrinking with the size of the form, but
there will be some margin between it and the form sides.

TIP Anchors, like constraints, work both at design time and at run time, so you should set them up
as early as possible, to benefit from this feature while you’re designing the form as well as at
run time.

As an example of both approaches, you can try out the Anchors application, which has two
buttons on the bottom-right corner and a list box in the middle. As shown in Figure 7.11, the
controls automatically move and stretch as the form size changes. To make this form work
properly, you must also set its Constraints property; otherwise, as the form becomes too
small the controls can overlap or disappear.

TIP If you remove all of the anchors, or two opposite ones (for example, left and right), the resize
operations will cause the control to float. The control keeps its current size, and the system
adds or removes the same number of pixels on each side of it. This can be defined as a cen-
tered anchor, because if the component is initially in the middle of the form it will keep that
position. In any case, if you want a centered control, you should generally use both opposite
anchors, so that if the user makes the form larger, the control size will grow as well. In the case
just presented, in fact, making the form larger leaves a small control in its center.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 274

http://www.sybex.com

275

The ToolBar Control
In early versions of Delphi, toolbars had to be created using panels and speed buttons. Start-
ing with version 3, Delphi introduced a specific ToolBar component, which encapsulates the
corresponding Win32 common control or the corresponding Qt widget in VisualCLX. This
component provides a toolbar, with its own buttons, and it has many advanced capabilities.
To use this component, you place it on a form and then use the component editor (the short-
cut menu activated by a right mouse button click) to create a few buttons and separators.

Building a Toolbar with a Panel
Before the toolbar control was available in Delphi, the standard approach for building a toolbar
was to use a panel aligned to the top of the form and place SpeedButton components inside it.
A speed button is a lightweight graphical control (consuming no Windows resources); it can-
not receive the input focus, it has no tab order, and it is faster to create and paint than a
bitmap button.

Speed buttons can behave like push buttons, check boxes, or radio buttons, and they can have
different bitmaps depending on their status. To make a group of speed buttons work like radio
buttons, just place some speed buttons on the panel, select all of them, and give the same
value to each one’s GroupIndex property. All the buttons having the same GroupIndex
become mutually exclusive selections. One of these buttons should always be selected, so
remember to set the Down property to True for one of them at design time or as soon as the
program starts.

F I G U R E 7 . 1 1 :
The controls of the Anchors
example move and stretch
automatically as the user
changes the size of the
form. No code is needed to
move the controls, only a
proper use of the Anchors
property.

The ToolBar Control

Continued on next page

2874c07.qxd 7/2/01 2:38 PM Page 275

http://www.sybex.com

276

By setting the AllowAllUp property, you can create a group of mutually exclusive buttons,
each of which can be up—that is, a group from which the user can select one option or leave
them all unselected. As a special case, you can make a speed button work as a check box, sim-
ply by defining a group (the GroupIndex property) that has only one button and that allows it
to be deselected (the AllowAllUp property).

Finally, you can set the Flat property of all the SpeedButton components to True, obtaining a
more modern user interface. If you are interested in this approach, you can look at the Panel-
Bar example, illustrated here:

The use of SpeedButton controls is becoming less common. Besides the fact that the ToolBar
control is very handy and definitely more standard, speed buttons have two big problems. First,
each of them requires a specific bitmap and cannot use one from an image list (unless you
write some complex code). Second, speed buttons don’t work very well with actions, because
some properties, such as the Down state, do not map directly.

The toolbar is populated with objects of the TToolButton class. These objects have a funda-
mental property, Style, which determines their behavior:

• The tbsButton style indicates a standard push button.

• The tbsCheck style indicates a button with the behavior of a check box, or that of a
radio button if the button is Grouped with the others in its block (determined by the
presence of separators).

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 276

http://www.sybex.com

277

• The tbsDropDown style indicates a drop-down button, a sort of combo box. The
drop-down portion can be easily implemented in Delphi by connecting a PopupMenu
control to the DropdownMenu property of the control.

• The tbsSeparator and tbsDivider styles indicate separators with no or different vertical
lines (depending on the Flat property of the toolbar).

To create a graphic toolbar, you can add an ImageList component to the form, load some
bitmaps into it, and then connect the ImageList with the Images property of the toolbar. By
default, the images will be assigned to the buttons in the order they appear, but you can change
this quite easily by setting the ImageIndex property of each toolbar button. You can prepare
further ImageLists for special conditions of the buttons and assign them to the DisabledImages
and HotImages properties of the toolbar. The first group is used for the disabled buttons; the
second for the button currently under the mouse.

NOTE In a nontrivial application, you would generally create toolbars using an ActionList or the new
Action Manager architecture, both discussed in the next chapter. In this case, you’ll attach very
little behavior to the toolbar buttons, as their properties and events will be managed by the
action components.

The RichBar Example
As an example of the use of a toolbar, I’ve built the RichBar application, which has a
RichEdit component you can operate by using the toolbar. The program has buttons for
loading and saving files, for copy and paste operations, and to change some of the attributes
of the current font.

I don’t want to cover the details of the features of the RichEdit control, which are many,
nor discuss the details of this application, which has quite a lot of code. All I want to do is to
focus on features specific to the ToolBar used by the example and visible in Figure 7.12. This
toolbar has buttons, separators, and even a drop-down menu and two combo boxes discussed
in the next section.

The various buttons implement features, one of them being a complete scheme for open-
ing and saving the text files, including the ability to ask the user to save any modified file
before opening a new one, to avoid losing any changes. The file-handling portion of the pro-
gram is quite complex, but it is worth exploring, as many file-based applications will use simi-
lar code. I’ve made more details available in the bonus chapter “The RichBar Example” on
the companion CD.

The ToolBar Control

2874c07.qxd 7/2/01 2:38 PM Page 277

http://www.sybex.com

278

Besides file operations, the program supports copy and paste operations and font manage-
ment. The copy and paste operations don’t require an actual interaction with the clipboard,
as the component can handle them with simple commands, such as:

RichEdit.CutToClipboard;
RichEdit.CopyToClipboard;
RichEdit.PasteFromClipboard;
RichEdit.Undo;

It is a little more advanced to know when these operations (and the corresponding but-
tons) should be enabled. We can enable Copy and Cut buttons when some text is selected,
in the OnSelectionChange event of the RichEdit control:

pprroocceedduurree TFormRichNote.RichEditSelectionChange(Sender: TObject);
bbeeggiinn
tbtnCut.Enabled := RichEdit.SelLength > 0;
tbtnCopy.Enabled := tbtnCut.Enabled;

eenndd;

The Copy operation, instead, cannot be determined by an action of the user, as it depends
on the content of the Clipboard, influenced also by other applications. One approach is to
use a timer and check the clipboard content from time to time. A better approach is to use
the OnIdle event of the Application object (or the ApplicationEvents component). As the

F I G U R E 7 . 1 2 :
The toolbar of the RichBar
example. Notice the drop-
down menu.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 278

http://www.sybex.com

279

RichEdit supports multiple clipboard formats, the code cannot simply look at those, but
should ask the component itself, using a low-level feature not surfaced by the Delphi control:

pprroocceedduurree TFormRichNote.ApplicationEvents1Idle(Sender: TObject;
vvaarr Done: Boolean);

bbeeggiinn
// update toolbar buttons
tbtnPaste.Enabled := SendMessage (RichEdit.Handle, em_CanPaste, 0, 0) <> 0;

eenndd;

Basic font management is given by the Bold and Italic buttons, which have similar code.
The Bold button toggles the relative attribute from the selected text (or changes the style at
the current edit position):

pprroocceedduurree TFormRichNote.BoldExecute(Sender: TObject);
bbeeggiinn
wwiitthh RichEdit.SelAttributes ddoo
iiff fsBold iinn Style tthheenn
Style := Style - [fsBold]

eellssee
Style := Style + [fsBold];

eenndd;

Again, the current status of the button is determined by the current selection, so we’ll need
to add the following line to the RichEditSelectionChange method:

tbtnBold.Down := fsBold iinn RichEdit.SelAttributes.Style;

A Menu and a Combo Box in a Toolbar
Besides a series of buttons, the RichBar example has a drop-down menu and a couple of
combo boxes, a feature shared by many common applications. The drop-down button allows
selection of the font size, while the combo boxes allow rapid selection of the font family and
the font color. This second combo is actually built using a ColorBox control.

The Size button is connected to a PopupMenu component (called SizeMenu) using the
DropdownMenu property. A user can press the button, firing its OnClick event as usual, or
select the drop-down arrow, open the pop-up menu (see again Figure 7.12), and choose one
of its options. This case has three possible font sizes, per the menu definition:

oobbjjeecctt SizeMenu: TPopupMenu
oobbjjeecctt Small1: TMenuItem
Tag = 10
Caption = ‘Small’
OnClick = SetFontSize

eenndd
oobbjjeecctt Medium1: TMenuItem
Tag = 16

The ToolBar Control

2874c07.qxd 7/2/01 2:38 PM Page 279

http://www.sybex.com

280

Caption = ‘Medium’
OnClick = SetFontSize

eenndd
oobbjjeecctt Large1: TMenuItem
Tag = 32
Caption = ‘Large’
OnClick = SetFontSize

eenndd
eenndd

Each menu item has a tag indicating the actual size of the font, activated by a shared event
handler:

pprroocceedduurree TFormRichNote.SetFontSize(Sender: TObject);
bbeeggiinn
RichEdit.SelAttributes.Size := (Sender as TMenuItem).Tag;

eenndd;

As the ToolBar control is a full-featured control container, you can directly take an edit
box, a combo box, and other controls and place them inside the toolbar. The combo box in
the toolbar is initialized in the FormCreate method, which extracts the screen fonts available
in the system:

ComboFont.Items := Screen.Fonts;
ComboFont.ItemIndex := ComboFont.Items.IndexOf (RichEdit.Font.Name)

The combo box initially displays the name of the default font used in the RichEdit control,
which is set at design time. This value is recomputed each time the current selection changes,
using the font of the selected text, along with the current color for the ColorBox:

pprroocceedduurree TFormRichNote.RichEditSelectionChange(Sender: TObject);
bbeeggiinn
ComboFont.ItemIndex :=
ComboFont.Items.IndexOf (RichEdit.SelAttributes.Name);

ColorBox1.Selected := RichEdit.SelAttributes.Color;
eenndd;

When a new font is selected from the combo box, the reverse action takes place. The text
of the current combo box item is assigned as the name of the font for any text selected in the
RichEdit control:

RichEdit.SelAttributes.Name := ComboFont.Text;

The selection of a color in the ColorBox activates similar code.

Toolbar Hints
Another common element in toolbars is the fly-by hint, also called balloon help—some text that
briefly describes the button currently under the cursor. This text is usually displayed in a yel-

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 280

http://www.sybex.com

281

low box after the mouse cursor has remained steady over a button for a set amount of time.
To add hints to an application’s toolbar, simply set its ShowHints property to True and enter
some text for the Hint property of each button (more on hints text in the next section, “A
Simple Status Bar”).

If you want to have more control on how hints are displayed, you can use some of the
properties and events of the Application object. This global object has, among others, the
following properties:

Property Defines

HintColor The background color of the hint window

HintPause How long the cursor should remain on a component before hints
are displayed

HintHidePause How long the hint will be displayed

HintShortPause How long the system should wait to display a hint if another hint
has just been displayed

A program, for example, might allow a user to customize the hint background color by
selecting a specific with the following code:

ColorDialog.Color := Application.HintColor;
iiff ColorDialog.Execute tthheenn
Application.HintColor := ColorDialog.Color;

NOTE As an alternative, you can change the hint color by handling the OnShowHint property of the
Application object. This handler can change the color of the hint just for specific controls.
The OnShowHint event is used in the CustHint example described later in this chapter.

A Simple Status Bar
Building a status bar is even simpler than building a toolbar. Delphi includes a specific
StatusBar component, based on the corresponding Windows common control (a similar
control is available also in VisualCLX). This component can be used almost as a panel when
its SimplePanel property is set to True. In this case, you can use the SimpleText property to
output some text. The real advantage of this component, however, is that it allows you to
define a number of subpanels just by activating the editor of its Panels property. (You can
also display this property editor by double-clicking the status bar control.) Each subpanel has
its own graphical attributes, which you can customize using the editor. Another feature of the
status bar component is the “size grip” area added to the lower-right corner of the bar, which
is useful for resizing the form itself. This is a typical element of the Windows user interface,
and you can control it with the SizeGrip property.

The ToolBar Control

2874c07.qxd 7/2/01 2:38 PM Page 281

http://www.sybex.com

282

There are various uses for a status bar. The most common is to display information about
the menu item currently selected by the user. Besides this, a status bar often displays other
information about the status of a program: the position of the cursor in a graphical applica-
tion, the current line of text in a word processor, the status of the lock keys, the time and
date, and so on. To show information on a panel, you simply use its Text property, generally
using an expression like this:

StatusBar1.Panels[1].Text := ‘message’;

In the RichBar example, I’ve built a status bar with three panels, for command hints, the
status of the Caps Lock key, and the current editing position. The StatusBar component of
the example actually has four panels; we need to define the fourth in order to delimit the area
of the third panel. The last panel, in fact, is always large enough to cover the remaining sur-
face of the status bar.

TIP Again, for more detail on the RichBar program, see the bonus chapter “The RichBar Example”
on the companion CD.

The panels are not independent components, so you cannot access them by name, only by
position as in the preceding code snippet. A good solution to improve the readability of a
program is to define a constant for each panel you want to use, and then use these constants
when referring to the panels. This is my sample code:

ccoonnsstt
sbpMessage = 0;
sbpCaps = 1;
sbpPosition = 2;

In the first panel of the status bar, I want to display the hint message of the toolbar button.
The program obtains this effect by handling the application’s OnHint event, again using the
ApplicationEvents component, and copying the current value of the application’s Hint prop-
erty to the status bar:

pprroocceedduurree TFormRichNote.ApplicationEvents1Hint (Sender: TObject);
bbeeggiinn
StatusBar1.Panels[sbpMessage].Text := Application.Hint;

eenndd;

By default, this code displays in the status bar the same text of the fly-by hints. Actually, we
can use the Hint property to specify different strings for the two cases, by writing a string
divided into two portions by a separator, the pipe (|) character. For example, you might enter
the following as the value of the Hint property:

‘New|Create a new document’

The first portion of the string, New, is used by fly-by hints, and the second portion, Create a
new document, by the status bar. You can see an example in Figure 7.13.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 282

http://www.sybex.com

283

TIP When the hint for a control is made up of two strings, you can use the GetShortHint and
GetLongHint methods to extract the first (short) and second (long) substrings from the string
you pass as a parameter, which is usually the value of the Hint property.

The second panel displays the status of the Caps Lock key, obtained by calling the
GetKeyState API function, which returns a state number. If the low-order bit of this number
is set (that is, if the number is odd), then the key is pressed. When do we check this state?
I’ve decided to do this when the application is idle, so that this test is executed every time a
key is pressed, but also as soon as a message reaches the window (in case the user changes this
setting while working with another program). I’ve added to the ApplicationEvents1Idle
handler a call to the custom CheckCapslock method, implemented as follows:

pprroocceedduurree TFormRichNote.CheckCapslock;
bbeeggiinn
iiff Odd (GetKeyState (VK_CAPITAL)) tthheenn
StatusBar1.Panels[sbpCaps].Text := ‘CAPS’

eellssee
StatusBar1.Panels[sbpCaps].Text := ‘’;

eenndd;

Finally, the program uses the third panel to display the current cursor position (measured
in lines and characters per line) every time the selection changes. Because the CaretPos

F I G U R E 7 . 1 3 :
The StatusBar of the
RichBar example displays
a more detailed description
than the fly-by hint.

The ToolBar Control

2874c07.qxd 7/2/01 2:38 PM Page 283

http://www.sybex.com

284

values are zero-based (that is, the upper-left corner is line 0, character 0), I’ve decided to add
one to each value, to make them more reasonable for a casual user:

pprroocceedduurree TFormRichNote.RichEditSelectionChange(Sender: TObject);
bbeeggiinn
...
// update the position in the status bar
StatusBar.Panels[sbpPosition].Text := Format (‘%d/%d’,
[RichEdit.CaretPos.Y + 1, RichEdit.CaretPos.X + 1]);

eenndd;

Customizing the Hints
Just as we have added hints to an application’s toolbar, we can add hints to forms or to the com-
ponents of a form. For a large control, the hint will show up near the mouse cursor. In some
cases, it is important to know that a program can freely customize how hints are displayed.

The simplest thing you can do is, change the value of the properties of the Application
object as I mentioned at the end of the last section. To obtain more control over hints, you
can customize them even further by assigning a method to the application’s OnShowHint
event. You need to either hook them up manually or—better—add an ApplicationEvents
component to the form and handle its OnShowHint event.

The method you have to define has some interesting parameters, such as a string with the
text of the hint, a Boolean flag for its activation, and a THintInfo structure with further infor-
mation, including the control, the hint position, and its color. Each of the parameters is passed
by reference, so you have a chance to change them and also modify the values of the THintInfo
structure; for example, you can change the position of the hint window before it is displayed.

This is what I’ve done in the CustHint example, which shows the hint of the label at the
center of its area. Here is what you can write to show the hint for the big label in the center
of its surface:

pprroocceedduurree TForm1.ShowHint (vvaarr HintStr: string; vvaarr CanShow: Boolean;
vvaarr HintInfo: THintInfo);

bbeeggiinn
wwiitthh HintInfo ddoo
iiff HintControl = Label1 tthheenn
HintPos := HintControl.ClientToScreen (Point (
HintControl.Width ddiivv 2, HintControl.Height ddiivv 2));

eenndd;

The code has to retrieve the center of the generic control (the HintInfo.HintControl) and
then convert its coordinates to screen coordinates, applying the ClientToScreen method to the
control itself. We can further update the CustHint example in a different way. The RadioGroup

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 284

http://www.sybex.com

285

control in the form has three radio buttons. However, these are not stand-alone components,
but simply radio button clones painted on the surface of the radio group. What if we want to
add a hint for each of them?

The CursorRect field of the THintInfo record can be used for this purpose. It indicates the
area of the component that the cursor can move over without disabling the hint. When the
cursor moves outside this area, Delphi hides the hint window. If we specify a different text
for the hint and a different area for each of the radio buttons, we can in practice provide
three different hints. Because computing the actual position of each radio button isn’t easy,
I’ve simply divided the surface of the radio group into as many equal parts as there are radio
buttons. The text of the radio button (not the selected item, but the item under the cursor) is
then added to the text of the hint:

pprroocceedduurree TForm1.ShowHint (vvaarr HintStr: string;
vvaarr CanShow: Boolean; vvaarr HintInfo: THintInfo);

vvaarr
RadioItem, RadioHeight: Integer;
RadioRect: TRect;

bbeeggiinn
wwiitthh HintInfo ddoo
iiff HintControl = Label1 ... // as before
eellssee
iiff HintControl = RadioGroup1 tthheenn
bbeeggiinn
RadioHeight := (RadioGroup1.Height) ddiivv RadioGroup1.Items.Count;
RadioItem := CursorPos.Y ddiivv RadioHeight;
HintStr := ‘Choose the ‘ + RadioGroup1.Items [RadioItem] + ‘ button’;
RadioRect := RadioGroup1.ClientRect;
RadioRect.Top := RadioRect.Top + RadioHeight * RadioItem;
RadioRect.Bottom := RadioRect.Top + RadioHeight;
// assign the hints rect and pos
CursorRect := RadioRect;

eenndd;
eenndd;

The final part of the code builds the rectangle for the hint, starting with the rectangle cor-
responding to the client area of the component and moving its Top and Bottom values to the
proper section of the RadioGroup1 component. The resulting effect is that each radio button
of the radio group appears to have a specific hint, as shown in Figure 7.14.

Customizing the Hints

2874c07.qxd 7/2/01 2:38 PM Page 285

http://www.sybex.com

286

What’s Next?
In this chapter I’ve discussed the use of some Delphi common controls, including the
ListView, TreeView, PageControl, TabControl, ToolBar, StatusBar, and RichEdit. For each
of these controls, I’ve built one example, trying to discuss it in the context of an actual appli-
cation, even if most of the programs have been quite simple. I’ve also covered the Splitter
component and various form-splitting techniques, the anchors for control positioning, and
the customization of hints.

What is still missing is the development of an application with a complete user interface,
including a menu and one or more toolbars. The reason I haven’t covered this topic in the
current chapter is that Delphi 6 adds quite a lot to VCL in this respect, including a complete
architecture for letting the end users configure menus and toolbars based on a number of
predefined actions. As this topic and related ones, such as docking toolbars, are complex, I’ve
devoted the entire next chapter to them.

After this step, we’ll move to the development of applications with multiple forms, includ-
ing advanced dialog boxes, MDI, visual form inheritance, and the use of frames. All these
topics are covered in Chapters 9 and 10.

F I G U R E 7 . 1 4 :
The RadioGroup control of
the CustHint example
shows a different hint,
depending on which radio
button the mouse is over.

Chapter 7 • Advanced VCL Controls

2874c07.qxd 7/2/01 2:38 PM Page 286

http://www.sybex.com

8CH A P T E R

Building the User Interface

� Actions and ActionList

� Predefined actions in Delphi 6

� The ControlBar and CoolBar components

� Docking toolbars and other controls

� The Action Manager architecture

2874c08.qxd 7/2/01 4:27 PM Page 287

http://www.sybex.com

288

Modern Windows applications usually have multiple ways of giving a command, includ-
ing menu items, toolbar buttons, shortcut menus, and so on. To separate the actual com-
mands a user can give from their multiple representations in the user interface, Delphi has
the idea of actions. In Delphi 6 this architecture has been largely extended to make the con-
struction of the user interface on top of actions totally visual. You can now also easily let the
user of your programs customize this interface, as happens in many professional programs.

This chapter focuses on actions, action lists and action managers, and the related compo-
nents. It also covers a few related topics, such as toolbar container controls and toolbar dock-
ing, and docking in general.

The ActionList Component
Delphi’s event architecture is very open: You can write a single event handler and connect it
to the OnClick events of a toolbar button and a menu. You can also connect the same event
handler to different buttons or menu items, as the event handler can use the Sender parameter
to refer to the object that fired the event. It’s a little more difficult to synchronize the status
of toolbar buttons and menu items. If you have a menu item and a toolbar button that both
toggle the same option, every time the option is toggled, you must both add the check mark
to the menu item and change the status of the button to show it pressed.

To overcome this problem, Delphi 4 introduced an event-handling architecture based on
actions. An action (or command) both indicates the operation to do when a menu item or but-
ton is clicked and determines the status of all the elements connected to the action. The con-
nection of the action with the user interface of the linked controls is very important and
should not be underestimated, because it is where you can get the real advantages of this
architecture.

NOTE If you have ever written code using the MFC class library of Visual C++, you’ll recognize that a
Delphi action maps to both a command and a CCommandUpdateUI object. The Delphi archi-
tecture is more flexible, though, because it can be extended by subclassing the action classes.

There are many players in this event-handling architecture. The central role is certainly
played by the action objects. An action object has a name, like any other component, and other
properties that will be applied to the linked controls (called action clients). These properties
include the Caption, the graphical representation (ImageIndex), the status (Checked, Enabled,
and Visible), and the user feedback (Hint and HelpContext). There is also the ShortCut and a
list of SecondaryShortCuts, the AutoCheck property for two-state actions, the help support, and
a Category property used to arrange actions in logical groups.

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 288

http://www.sybex.com

289

The base class for an all action object is TBasicAction, which introduces the abstract core
behavior of an action, without any specific binding or correction (not even to menu items or
controls). The derived TContainedAction class introduces properties and methods that enable
actions to appear in an action list or action manager. The further-derived TCustomAction class
introduces support for the properties and methods of menu items and controls that are
linked to action objects. Finally, there is the derived ready-to-use TAction class.

Each action object is connected to one or more client objects through an ActionLink object.
Multiple controls, possibly of different types, can share the same action object, as indicated by
their Action property. Technically, the ActionLink objects maintain a bidirectional connection
between the client object and the action. The ActionLink object is required because the con-
nection works in both directions. An operation on the object (such as a click) is forwarded to
the action object and results in a call to its OnExecute event; an update to the status of the
action object is reflected in the connected client controls. In other words, one or more client
controls can create an ActionLink, which registers itself with the action object.

You should not set the properties of the client controls you connect with an action, because
the action will override the property values of the client controls. For this reason, you should
generally write the actions first and then create the menu items and buttons you want to con-
nect with them. Note also that when an action has no OnExecute handler, the client control is
automatically disabled (or grayed), unless the DisableIfNoHandler property is set to False.

The client controls connected to actions are usually menu items and various types of but-
tons (push buttons, check boxes, radio buttons, speed buttons, toolbar buttons, and the like),
but nothing prevents you from creating new components that hook into this architecture.
Component writers can even define new actions, as we’ll do in Chapter 11, and new link
action objects.

Besides a client control, some actions can also have a target component. Some predefined
actions hook to a specific target component (for examples, see the coverage of the DataSet
components in the Chapter 13 section “Looking for Records in a Table”). Other actions
automatically look for a target component in the form that supports the given action, starting
with the active control.

Finally, the action objects are held by an ActionList component, the only class of the basic
architecture that shows up on the Component Palette. The action list receives the execute
actions that aren’t handled by the specific action objects, firing the OnExecuteAction. If even
the action list doesn’t handle the action, Delphi calls the OnExecuteAction event of the
Application object. The ActionList component has a special editor you can use to create
several actions, as you can see in Figure 8.1.

The ActionList Component

2874c08.qxd 7/2/01 4:27 PM Page 289

http://www.sybex.com

290

In the editor, actions are displayed in groups, as indicated by their Category property. By
simply setting this property to a brand-new value, you instruct the editor to introduce a new
category. These categories are basically logical groups, although in some cases a group of
actions can work only on a specific type of target component. You might want to define a cat-
egory for every pull-down menu or group them in some other logical way.

Predefined Actions in Delphi 6
With the action list editor, you can create a brand new action or choose one of the existing
actions registered in the system. These are listed in a secondary dialog box, as shown in Fig-
ure 8.1. There are many predefined actions, which can be divided into logical groups:

File actions include open, save as, open with, run, print setup, and exit.

Edit actions are illustrated in the next example. They include cut, copy, paste, select all,
undo, and delete.

RichEdit actions complement the edit actions for RichEdit controls and include bold,
italic, underline, strikeout, bullets, and various alignment actions.

F I G U R E 8 . 1 :
The ActionList component
editor, with a list of pre-
defined actions you can use

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 290

http://www.sybex.com

291

MDI window actions will be demonstrated in Chapter 10, as we examine the Multiple
Document Interface approach. They include all the most common MDI operations:
arrange, cascade, close, tile (horizontally or vertically), and minimize all.

Dataset actions relate to database tables and queries and will be discussed in Chapter 13.
There are many dataset actions, representing all the main operations you can perform on a
dataset.

Help actions allow you to activate the contents page or index of the Help file attached to
the application.

Search actions include find, find first, find next, and replace.

Tab and Page control actions include previous page and next page navigation.

Dialog actions activate color, font, open, save, and print dialogs.

List actions include clear, copy, move, delete, and select all. These actions let you interact
with a list control. Another group of actions, including static list, virtual list, and some sup-
port classes, allow the definition of lists that can be connected to a user interface. More on
this topic is in the section “Using List Actions” toward the end of this chapter.

Web actions include browse URL, download URL, and send mail actions.

Tools actions include only the dialog to customize the action bars.

NOTE You can also define new custom actions and register them in Delphi’s IDE, as we’ll see in
Chapter 11.

Besides handling the OnExecute event of the action and changing the status of the action to
affect the user interface of the client controls, an action can also handle the OnUpdate event,
which is activated when the application is idle. This gives you the opportunity to check the
status of the application or the system and change the user interface of the controls accord-
ingly. For example, the standard PasteEdit action enables the client controls only when there
is some text in the Clipboard.

Actions in Practice
Now that you understand the main ideas behind this very important Delphi feature, let’s try
out an example from the companion CD. The program is called Actions and demonstrates a
number of features of the action architecture. I began building it by placing a new ActionList
component in its form and adding the three standard edit actions and a few custom ones.
The form also has a panel with some speed buttons, a main menu, and a Memo control (the
automatic target of the edit actions). Listing 8.1 is the list of the actions, extracted from the
DFM file.

The ActionList Component

2874c08.qxd 7/2/01 4:27 PM Page 291

http://www.sybex.com

292

➲ Listing 8.1: The actions of the Actions example

object ActionList1: TActionList
Images = ImageList1
object ActionCopy: TEditCopy
Category = ‘Edit’
Caption = ‘&Copy’
ShortCut = <Ctrl+C>

end
object ActionCut: TEditCut
Category = ‘Edit’
Caption = ‘Cu&t’
ShortCut = <Ctrl+X>

end
object ActionPaste: TEditPaste
Category = ‘Edit’
Caption = ‘&Paste’
ShortCut = <Ctrl+V>

end
object ActionNew: TAction
Category = ‘File’
Caption = ‘&New’
ShortCut = <Ctrl+N>
OnExecute = ActionNewExecute

end
object ActionExit: TAction
Category = ‘File’
Caption = ‘E&xit’
ShortCut = <Alt+F4>
OnExecute = ActionExitExecute

end
object NoAction: TAction
Category = ‘Test’
Caption = ‘&No Action’

end
object ActionCount: TAction
Category = ‘Test’
Caption = ‘&Count Chars’
OnExecute = ActionCountExecute
OnUpdate = ActionCountUpdate

end
object ActionBold: TAction
Category = ‘Edit’
Caption = ‘&Bold’
ShortCut = <Ctrl+B>
OnExecute = ActionBoldExecute

end
object ActionEnable: TAction
Category = ‘Test’
Caption = ‘&Enable NoAction’

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 292

http://www.sybex.com

293

OnExecute = ActionEnableExecute
end
object ActionSender: TAction
Category = ‘Test’
Caption = ‘Test &Sender’
OnExecute = ActionSenderExecute

end
end

NOTE The shortcut keys are stored in the DFM files using virtual key numbers, which also include
values for the Ctrl and Alt keys. In this and other listings throughout the book, I’ve replaced
the numbers with the literal values, enclosing them in angle brackets.

All of these actions are connected to the items of a MainMenu component and some of
them also to the buttons of a Toolbar control. Notice that the images selected in the Action-
List control affect the actions in the editor only, as you can see in Figure 8.2. For the images
of the ImageList to show up also in the menu items and in the toolbar buttons, you must also
select the image list in the MainMenu and in the Toolbar components.

The three predefined actions for the Edit menu don’t have associated handlers, but these
special objects have internal code to perform the related action on the active edit or memo
control. These actions also enable and disable themselves, depending on the content of the
Clipboard and on the existence of selected text in the active edit control. Most other actions
have custom code, except for the NoAction object. Having no code, the menu item and the
button connected with this command are disabled, even if the Enabled property of the action
is set to True.

F I G U R E 8 . 2 :
The ActionList editor of the
Actions example

The ActionList Component

2874c08.qxd 7/2/01 4:27 PM Page 293

http://www.sybex.com

294

I’ve added to the example, and to the Test menu, another action that enables the menu
item connected to the NoAction object:

procedure TForm1.ActionEnableExecute(Sender: TObject);
begin
NoAction.DisableIfNoHandler := False;
NoAction.Enabled := True;
ActionEnable.Enabled := False;

end;

Simply setting Enabled to True will produce the effect for only a very short time, unless
you set the DisableIfNoHandler property, as discussed in the previous section. Once this
operation is done, I disable the current action, since there is no need to issue the same com-
mand again.

This is different from an action you can toggle, such as the Edit ➢ Bold menu item and the
corresponding speed button. Here is the code of the Bold action:

procedure TForm1.ActionBoldExecute(Sender: TObject);
begin
with Memo1.Font do
if fsBold in Style then
Style := Style - [fsBold]

else
Style := Style + [fsBold];

// toggle status
ActionBold.Checked := not ActionBold.Checked;

end;

The ActionCount object has very simple code, but it demonstrates an OnUpdate handler;
when the memo control is empty, it is automatically disabled. We could have obtained the
same effect by handling the OnChange event of the memo control itself, but in general it
might not always be possible or easy to determine the status of a control simply by handling
one of its events. Here is the code of the two handlers of this action:

procedure TForm1.ActionCountExecute(Sender: TObject);
begin
ShowMessage (‘Characters: ‘ + IntToStr (Length (Memo1.Text)));

end;

procedure TForm1.ActionCountUpdate(Sender: TObject);
begin
ActionCount.Enabled := Memo1.Text <> ‘’;

end;

Finally, I’ve added a special action to test the sender object of the action event handler and
get some other system information. Besides showing the object class and name, I’ve added

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 294

http://www.sybex.com

295

code that accesses the action list object. I’ve done this mainly to show that you can access this
information and how to do it:

procedure TForm1.ActionSenderExecute(Sender: TObject);
begin
Memo1.Lines.Add (‘Sender class: ‘ + Sender.ClassName);
Memo1.Lines.Add (‘Sender name: ‘ + (Sender as TComponent).Name);
Memo1.Lines.Add (‘Category: ‘ + (Sender as TAction).Category);
Memo1.Lines.Add (
‘Action list name: ‘ + (Sender as TAction).ActionList.Name);

end;

You can see the output of this code in Figure 8.3, along with the user interface of the exam-
ple. Notice that the Sender is not the menu item you’ve selected, even if the event handler is
connected to it. The Sender object, which fires the event, is the action, which intercepts the
user operation.

Finally, keep in mind that you can also write handlers for the events of the ActionList
object itself, which play the role of global handlers for all the actions of the list, and for the
Application global object, which fires for all the actions of the application. Before calling the
action’s OnExecute event, in fact, Delphi activates the OnExecute event of the ActionList and
the OnActionExecute event of the Application global object. These events can have a look at the
action, eventually execute some shared code, and then stop the execution (using the Handled
parameter) or let it reach the next level.

If no event handler is assigned to respond to the action, either at the action list, applica-
tion, or action level, then the application tries to identify a target object to which the action
can apply itself.

NOTE When an action is executed, it searches for a control to play the role of the action target, by
looking at the active control, the active form, and other controls on the form. For example,
edit actions refer to the currently active control (if they inherit from TCustomEdit), while
dataset controls look for the dataset connected with the data source of the data-aware con-
trol having the input focus. Other actions follow different approaches to find a target compo-
nent, but the overall idea is shared by most standard actions.

F I G U R E 8 . 3 :
The Actions example, with
a detailed description of
the Sender of an Action
object’s OnExecute event

The ActionList Component

2874c08.qxd 7/2/01 4:27 PM Page 295

http://www.sybex.com

296

The Toolbar and the ActionList of an Editor
In the previous chapter, I built the RichBar example to demonstrate the development of an
editor with a toolbar and a status bar. Of course, I should have also added a menu bar to the
form, but this would have created quite a few troubles in synchronizing the status of the toolbar
buttons with those of the menu items. A very good solution to this problem is to use actions,
which is what I’ve done in the MdEdit example, discussed in this section and available on the CD.

The application is based on an ActionList component, which includes actions for file han-
dling and Clipboard support, with code similar to the RichBar version. The Font type and
color selection is still based on combo boxes, so this doesn’t involve action—same for the
drop-down menu of the Size button. The menu, however, has a few extra commands, includ-
ing one for character counting and one for changing the background color. These are based
on actions, and the same happens for the three new paragraph justification buttons (and
menu commands).

One of the key differences in this new version is that the code never refers to the status of
the toolbar buttons, but eventually modifies the status of the actions. In other cases I’ve
used the actions OnUpdate events. For example, the RichEditSelectionChange method doesn’t
update the status of the bold button, which is connected to an action with the following
OnUpdate handler:

procedure TFormRichNote.acBoldUpdate(Sender: TObject);
begin
acBold.Checked := fsBold in RichEdit.SelAttributes.Style;

end;

Similar OnUpdate event handlers are available for most actions, including the counting
operations (available only if there is some text in the RichEdit control), the Save operation
(available if the text has been modified), and the Cut and Copy operations (available only if
some text is selected):

procedure TFormRichNote.acCountcharsUpdate(Sender: TObject);
begin
acCountChars.Enabled := RichEdit.GetTextLen > 0;

end;

procedure TFormRichNote.acSaveUpdate(Sender: TObject);
begin
acSave.Enabled := Modified;

end;

procedure TFormRichNote.acCutUpdate(Sender: TObject);
begin
acCut.Enabled := RichEdit.SelLength > 0;
acCopy.Enabled := acCut.Enabled;

end;

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 296

http://www.sybex.com

297

In the older example, the status of the Paste button was updated in the OnIdle event of the
Application object. Now that we use actions we can convert it into yet another OnUpdate
handler (see the preceding chapter for details on this code):

procedure TFormRichNote.acPasteUpdate(Sender: TObject);
begin
acPaste.Enabled := SendMessage (RichEdit.Handle, em_CanPaste, 0, 0) <> 0;

end;

Finally, the program has an addition compared to the last version: the three paragraph-
alignment buttons. These toolbar buttons and the related menu items should work like
radio buttons, being mutually exclusive with one of the three options always selected. For
this reason the actions have the GroupIndex set to 1, the corresponding menu items have the
RadioItem property set to True, and the three toolbar buttons have their Grouped property
set to True and the AllowAllUp property set to False. (They are also visually enclosed
between two separators.)

This is required so that the program can set the Checked property for the action corre-
sponding to the current style, which avoids unchecking the other two actions directly. This
code is part of the OnUpdate event of the action list, as it applies to multiple actions:

procedure TFormRichNote.ActionListUpdate(Action: TBasicAction;
var Handled: Boolean);

begin
// check the proper paragraph alignment
case RichEdit.Paragraph.Alignment of
taLeftJustify: acLeftAligned.Checked := True;
taRightJustify: acRightAligned.Checked := True;
taCenter: acCentered.Checked := True;

end;
// checks the caps lock status
CheckCapslock;

end;

Finally, when one of these buttons is selected, the shared event handler uses the value of
the Tag, set to the corresponding value of the TAlignment enumeration, to determine the
proper alignment:

procedure TFormRichNote.ChangeAlignment(Sender: TObject);
begin
RichEdit.Paragraph.Alignment := TAlignment ((Sender as TAction).Tag);

end;

The ActionList Component

2874c08.qxd 7/2/01 4:27 PM Page 297

http://www.sybex.com

298

Toolbar Containers
Most modern applications have multiple toolbars, generally hosted by a specific container.
Microsoft Internet Explorer, the various standard business applications, and the Delphi IDE
all use this general approach. However, they each implement this differently. Delphi has two
ready-to-use toolbar containers, the CoolBar and the ControlBar components. They have
differences in their user interface, but the biggest one is that the CoolBar is a Win32 com-
mon control, part of the operating system, while the ControlBar is a VCL-based component.

Both components can host toolbar controls as well as some extra elements such as combo
boxes and other controls. Actually, a toolbar can also replace the menu of an application, as
we’ll see later on.

We’ll investigate the two components in the next two sections, but I want to emphasize here
(without getting too far ahead of myself) that I generally favor the use of the ControlBar. It
is based on VCL (and not subject to upgrade along with each minor release of Microsoft
Internet Explorer), and its user interface is nicer and more similar to that of common office
applications.

A Really Cool Toolbar
The CoolBar component is basically a collection of TCoolBand objects that you can activate
by selecting the Band Editor item of the CoolBar shortcut menu, the Bands property, or the
Object TreeView. You can customize the CoolBar component in many ways: You can set a
bitmap for its background, add some bands to the Bands collection, and then assign to each
band an existing component or component container. You can use any window-based control
(not graphic controls), but only some of them will show up properly. If you want to have a
bitmap on the background of the CoolBar, for example, you need to use partially transparent
controls.

The typical component used in a CoolBar is the Toolbar (which can be made completely
transparent), but combo boxes, edit boxes, and animation controls are also quite common.
This is often inspired by the user interface of Internet Explorer, the first Microsoft applica-
tion featuring the CoolBar component.

You can place one band on each line or all of them on the same line. Each would use a part of
the available surface, and it would be automatically enlarged when the user clicks on its title. It
is easier to use this new component than to explain it. Try it yourself or follow the description
below, in which we build a new version of our continuing toolbar example based on a CoolBar
control. You can see the form displayed by this application at run time in Figure 8.4.

The CoolBar example has a TCoolBar component with four bands, two for each of the two
lines. The first band includes a subset of the toolbar of the previous example, this time
adding an ImageList for the highlighted images. The second has an edit box used to set the

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 298

http://www.sybex.com

299

font of the text; the third has a ColorGrid component, used to choose the font color and that
of the background. The last band has a ComboBox control with the available fonts.

The user interface of the CoolBar component is really very nice, and Microsoft is increas-
ingly using it in its applications. However, the Windows CoolBar control has had many dif-
ferent and incompatible versions, as Microsoft has released different versions of the common
control library with different versions of the Internet Explorer. Some of these versions
“broke” existing programs built with Delphi.

NOTE It is interesting to note that Microsoft applications generally don’t use the common control
libraries. Word and Excel use their own internal versions of the common controls, and VB uses an
OCX, not the common controls directly. Part of the reason that Borland had so much trouble with
the common controls is that it uses them more (and in more ways) than even Microsoft does.

For this reason, Borland introduced (in Delphi 4) a toolbar container called the Control-
Bar. A control bar hosts several controls, as a CoolBar does, and offers a similar user interface
that lets a user drag items and reorganize the toolbar at run time. A good example of the use of
the ControlBar control is Delphi’s own toolbar, but Microsoft applications use a very similar
user interface.

The ControlBar
The ControlBar is a control container, and you build it just by placing other controls inside
it, as you do with a panel (there is no list of Bands in it). Every control placed in the bar gets its
own dragging area (a small panel with two vertical lines, on the left of the control), as you can

F I G U R E 8 . 4 :
The form of the CoolBar
example at run time

Toolbar Containers

2874c08.qxd 7/2/01 4:27 PM Page 299

http://www.sybex.com

300

see in Figure 8.5. For this reason, you should generally avoid placing specific buttons inside
the ControlBar, but rather add containers with buttons inside them. Rather than using a
panel, you should generally use one ToolBar control for every section of the ControlBar.

The MdEdit2 example is another version of the demo we’ve developed throughout the last
and this chapter. I’ve basically grouped the buttons into three toolbars (instead of a single
one) and left the two combo boxes as stand-alone controls. All these components are inside a
ControlBar, so that a user can arrange them at runtime, as you can see in Figure 8.6.

F I G U R E 8 . 6 :
The MdEdit2 example at
run time, while a user is
rearranging the toolbars in
the control bar

F I G U R E 8 . 5 :
The ControlBar is a con-
tainer that allows a user to
drag all the elements, using
the special drag bar on the
side. Notice that each but-
ton gets a separate drag
bar, something you’ll gen-
erally try to avoid.

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 300

http://www.sybex.com

301

The following snippet of the DFM listing of the MdEdit2 example shows how the various
toolbars and controls are embedded in the ControlBar component:

object ControlBar1: TControlBar
Align = alTop
AutoSize = True
ShowHint = True
PopupMenu = BarMenu
object ToolBarFile: TToolBar
Flat = True
Images = Images
Wrapable = False
object ToolButton1: TToolButton
Action = acNew

end
// more buttons...

end
object ToolBarEdit: TToolBar...
object ToolBarFont: TToolBar...
object ToolBarMenu: TToolBar
AutoSize = True
Flat = True
Menu = MainMenu

end
object ComboFont: TComboBox
Hint = ‘Font Family’
Style = csDropDownList
OnClick = ComboFontClick

end
object ColorBox1: TColorBox...

end

To obtain the standard effect, you have to disable the edges of the toolbar controls and set
their style to flat. Sizing all the controls alike, so that you obtain one or two rows of elements
of the same height, is not as easy as it might seem at first. Some controls have automatic siz-
ing or various constraints. In particular, to make the combo box the same height as the tool-
bars, you have to tweak the type and size of its font. Resizing the control itself has no effect.

The ControlBar also has a shortcut menu that allows you to show or hide each of the con-
trols currently inside it. Instead of writing code specific to this example, I’ve implemented a
more generic (and reusable) solution. The shortcut menu, called BarMenu, is empty at design
time and is populated when the program starts:

procedure TFormRichNote.FormCreate(Sender: TObject);
var
I: Integer;
mItem: TMenuItem;

Toolbar Containers

2874c08.qxd 7/2/01 4:27 PM Page 301

http://www.sybex.com

302

begin
...
// populate the control bar menu
for I := 0 to ControlBar.ControlCount - 1 do
begin
mItem := TMenuItem.Create (Self);
mItem.Caption := ControlBar.Controls [I].Name;
mItem.Tag := Integer (ControlBar.Controls [I]);
mItem.OnClick := BarMenuClick;
BarMenu.Items.Add (mItem);

end;

The BarMenuClick procedure is a single event handler that is used by all of the items of
the menu and uses the Tag property of the Sender menu item to refer to the element of the
ControlBar associated with the item in the FormCreate method:

procedure TFormRichNote.BarMenuClick(Sender: TObject);
var
aCtrl: TControl;

begin
aCtrl := TControl ((Sender as TComponent).Tag);
aCtrl.Visible := not aCtrl.Visible;

end;

Finally, the OnPopup event of the menu is used to refresh the check mark of the menu
items:

procedure TFormRichNote.BarMenuPopup(Sender: TObject);
var
I: Integer;

begin
// update the menu checkmarks
for I := 0 to BarMenu.Items.Count - 1 do
BarMenu.Items [I].Checked := TControl (BarMenu.Items [I].Tag).Visible;

end;

A Menu in a Control Bar
If you look at the user interface of the MdEdit2 application, in Figure 8.6, you’ll notice that the
menu of the form actually shows up inside a toolbar, hosted by the control bar, and below the
application caption. In prior versions of Delphi, this required writing some custom code. In
Delphi 6, instead, all you have to do is to set the Menu property of the toolbar. You must also
remove the main menu from the Menu property of the form, to avoid having two menus.

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 302

http://www.sybex.com

303

Delphi’s Docking Support
Another feature added in Delphi 4 was support for dockable toolbars and controls. In other
words, you can create a toolbar and move it to any of the sides of a form, or even move it
freely on the screen, undocking it. However, setting up a program properly to obtain this
effect is not as easy as it sounds.

First of all, Delphi’s docking support is connected with container controls, not with forms.
A panel, a ControlBar, and other containers (technically, any control derived from TWinControl)
can be set up as dock targets by enabling their DockSite property. You can also set the Auto-
Size property of these containers, so that they’ll show up only if they actually hold a control.

To be able to drag a control (an object of any TControl-derived class) into the dock site,
simply set its DragKind property to dkDock and its DragMode property to dmAutomatic. This
way, the control can be dragged away from its current position into a new docking container.
To undock a component and move it to a special form, you can set its FloatingDockSiteClass
property to TCustomDockForm (to use a predefined stand-alone form with a small caption).

All the docking and undocking operations can be tracked by using special events of the com-
ponent being dragged (OnStartDock and OnEndDock) and the component that will receive the
docked control (OnDragOver and OnDragDrop). These docking events are very similar to the
dragging events available in earlier versions of Delphi.

There are also commands you can use to accomplish docking operations in code and to
explore the status of a docking container. Every control can be moved to a different location
using the Dock, ManualDock, and ManualFloat methods. A container has a DockClientCount
property, indicating the number of docked controls, and a DockClients property, with the
array of these controls.

Moreover, if the dock container has the UseDockManager property set to True, you’ll be
able to use the DockManager property, which implements the IDockManager interface. This
interface has many features you can use to customize the behavior of a dock container, even
including support for streaming its status.

As you can see from this brief description, docking support in Delphi is based on a large
number of properties, events, methods and objects (such as dock zones and dock trees)—
more features than we have room to explore in detail. The next example introduces the main
features you’ll generally need.

NOTE Docking support in not currently available in VisualCLX on either platform.

Delphi’s Docking Support

2874c08.qxd 7/2/01 4:27 PM Page 303

http://www.sybex.com

304

Docking Toolbars in ControlBars
In the MdEdit2 example, already discussed, I’ve included docking support. The program has
a second ControlBar at the bottom of the form, which accepts dragging one of the toolbars
in the ControlBar at the top. Since both toolbar containers have the AutoSize property set to
True, they are automatically removed when the host contains no controls. I’ve also set to True
the AutoDrag and AutoDock properties of both ControlBars.

Actually, I had to place the bottom ControlBar inside a panel, together with the RichEdit
control. Without this trick, the ControlBar, when activated and automatically resized, kept
moving below the status bar, which I don’t think is the correct behavior. Because, in the
example, the ControlBar is the only control of the panel aligned to the bottom, there is no
possible confusion.

To let users drag the toolbars out of the original container, all you have to do is, once again
(as stated previously), set their DragKind property to dkDock and their DragMode property to
dmAutomatic. The only two exceptions are the menu toolbar, which I decided to keep close
to the typical position of a menu bar, and the ColorBox control, as unlike the combo box this
component doesn’t expose the DragMode and DragKind properties. (Actually, in the FormCreate
method of the example, you’ll find code you can use to activate docking for the component,
based on the “protected hack” discussed in Chapter 3.) The Fonts combo box can be dragged,
but I don’t want to let a user dock it in the lower control bar. To implement this constraint,
I’ve used the control bar’s OnDockOver event handler, by accepting the docking operation only
for toolbars:

procedure TFormRichNote.ControlBarLowerDockOver(Sender: TObject;
Source: TDragDockObject; X, Y: Integer; State: TDragState;
var Accept: Boolean);

begin
Accept := Source.Control is TToolbar;

end;

When you move one of the toolbars outside of any container, Delphi automatically creates a
floating form; you might be tempted to set it back by closing the floating form. This doesn’t
work, as the floating form is removed along with the toolbar it contains. However, you can
use the shortcut menu of the topmost ControlBar, attached also to the other ControlBar, to
show this hidden toolbar.

The floating form created by Delphi to host undocked controls has a thin caption, the so-
called toolbar caption, which by default has no text. For this reason, I’ve added some code to
the OnEndDock event of each dockable control, to set the caption of the newly created form
into which the control is docked. To avoid a custom data structure for this information, I’ve

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 304

http://www.sybex.com

305

used the text of the Hint property of these controls, which is basically not used, to provide a
suitable caption:

procedure TFormRichNote.EndDock(Sender, Target: TObject; X, Y: Integer);
begin
if Target is TCustomForm then
TCustomForm(Target).Caption := GetShortHint((Sender as TControl).Hint);

end;

You can see an example of this effect in the MdEdit2 program in Figure 8.7. Another
extension of the example, one which I haven’t done, could be the addition of dock areas on
the two sides of the form. The only extra effort this requires would be a routine to turn the
toolbars vertically, instead of horizontally. This basically implies switching the Left and Top
properties of each button, after disabling the automatic sizing.

Controlling Docking Operations
Delphi provides many events and methods that give you a lot of control over docking opera-
tions, including a dock manager. To explore some of these features, try out the DockTest
example, a test bed for docking operations. The program assigns the FloatingDockSiteClass
property of a Memo component to TForm2, so that you can design specific features and add
them to the floating frame that will host the control when it is floating, instead of using an
instance of the default TCustomDockForm class.

F I G U R E 8 . 7 :
The MdEdit2 example
allows you to dock the
toolbars (but not the
menu) at the top or bottom
of the form or to leave
them floating.

Delphi’s Docking Support

2874c08.qxd 7/2/01 4:27 PM Page 305

http://www.sybex.com

306

Another feature of the program is that it handles the OnDockOver and OnDockDrop events of
a dock host panel to display messages to the user, such as the number of controls currently
docked:

procedure TForm1.Panel1DockDrop(Sender: TObject; Source: TDragDockObject;
X, Y: Integer);

begin
Caption := ‘Docked: ‘ + IntToStr (Panel1.DockClientCount);

end;

In the same way, the program also handles the main form’s docking events. Another con-
trol, a list box, has a shortcut menu you can invoke to perform docking and undocking opera-
tions in code, without the usual mouse dragging:

procedure TForm1.DocktoPanel1Click(Sender: TObject);
begin
// dock to the panel
ListBox1.ManualDock (Panel1, Panel1, alBottom);

end;

procedure TForm1.DocktoForm1Click(Sender: TObject);
begin
// dock to the current form
ListBox1.Dock (Self, Rect (200, 100, 100, 100));

end;

procedure TForm1.Floating1Click(Sender: TObject);
begin
// toggle the floating status
if ListBox1.Floating then
ListBox1.ManualDock (Panel1, Panel1, alBottom)

else
ListBox1.ManualFloat (Rect (100, 100, 200, 300));

Floating1.Checked := ListBox1.Floating;
end;

The final feature of the example is probably the most interesting one: Every time the pro-
gram closes, it saves the current docking status of the panel, using the dock manager support.
When the program is reopened, it reapplies the docking information, restoring the previous
configuration of the windows. The program does this only with the panel, so the other float-
ing windows will be displayed in their original positions. Here is the code for saving and
loading:

procedure TForm1.FormDestroy(Sender: TObject);
var
FileStr: TFileStream;

begin

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 306

http://www.sybex.com

307

if Panel1.DockClientCount > 0 then
begin
FileStr := TFileStream.Create (DockFileName, fmCreate or fmOpenWrite);
try
Panel1.DockManager.SaveToStream (FileStr);

finally
FileStr.Free;

end;
end
else
// remove the file
DeleteFile (DockFileName);

end;

procedure TForm1.FormCreate(Sender: TObject);
var
FileStr: TFileStream;

begin
// reload the settings
DockFileName := ExtractFilePath (Application.Exename) + ‘dock.dck’;
if FileExists (DockFileName) then
begin
FileStr := TFileStream.Create (DockFileName, fmOpenRead);
try
Panel1.DockManager.LoadFromStream (FileStr);

finally
FileStr.Free;

end;
end;
Panel1.DockManager.ResetBounds (True);

end;

There are more features one might theoretically add to a docking program, but to add
those you should remove other features, as some of them might conflict. For example, auto-
matic alignments don’t work terribly well with the docking manager’s code for restoring. I
suggest you take this program and explore its behavior, extending it to support the type of
user interface you prefer.

NOTE Remember that although docking panels make an application look nice, some users get con-
fused by the fact that their toolbars might disappear or be in a different position than they are
used to. Don’t overuse the docking features, or some of your inexperienced users may get lost.

Delphi’s Docking Support

2874c08.qxd 7/2/01 4:27 PM Page 307

http://www.sybex.com

308

Docking to a PageControl
Another interesting feature of page controls is the specific support for docking. As you dock
a new control over a PageControl, a new page is automatically added to host it, as you can
easily see in the Delphi environment. To accomplish this, you simply set the PageControl as
a dock host and activate docking for the client controls. This works best when you have sec-
ondary forms you want to host. Moreover, if you want to be able to move the entire Page-
Control into a floating window and then dock it back, you’ll need a docking panel in the
main form.

This is exactly what I’ve done in the DockPage example, which has a main form with the
following settings:

object Form1: TForm1
Caption = ‘Docking Pages’
object Panel1: TPanel
Align = alLeft
DockSite = True
OnMouseDown = Panel1MouseDown
object PageControl1: TPageControl
ActivePage = TabSheet1
Align = alClient
DockSite = True
DragKind = dkDock
object TabSheet1: TTabSheet
Caption = ‘List’
object ListBox1: TListBox
Align = alClient

end
end

end
end
object Splitter1: TSplitter
Cursor = crHSplit

end
object Memo1: TMemo
Align = alClient

end
end

Notice that the Panel has the UseDockManager property set to True and that the PageControl
invariably hosts a page with a list box, as when you remove all of the pages, the code used for
automatic sizing of dock containers might cause you some trouble. Now the program has
two other forms, with similar settings (although they host different controls):

object Form2: TForm2
Caption = ‘Small Editor’

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 308

http://www.sybex.com

309

DragKind = dkDock
DragMode = dmAutomatic
object Memo1: TMemo
Align = alClient

end
end

You can drag these forms onto the page control to add new pages to it, with captions corre-
sponding with the form titles. You can also undock each of these controls and even the entire
PageControl. To do this, the program doesn’t enable automatic dragging, which would make
it impossible to switch pages anymore. Instead, the feature is activated when the user clicks
on the area of the PageControl that has no tabs—that is, on the underlying panel:

procedure TForm1.Panel1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
PageControl1.BeginDrag (False, 10);

end;

You can test this behavior by running the DockPage example, although Figure 8.8 tries to
depict it. Notice that when you remove the PageControl from the main form, you can
directly dock the other forms to the panel and then split the area with other controls. This is
the situation captured by the figure.

F I G U R E 8 . 8 :
The main form of the Dock-
Page example after a form
has been docked to the
page control on the left.
Notice that another form
uses part of the area of a
hosting panel.

Delphi’s Docking Support

2874c08.qxd 7/2/01 4:27 PM Page 309

http://www.sybex.com

310

The ActionManager Architecture
We have seen that actions and the ActionManager component can play a central role in the
development of Delphi applications, since they allow a much better separation of the user
interface from the actual code of the application. The user interface, in fact, can now easily
change without impacting the code too much. The drawback of this approach is that a pro-
grammer has more work to do. To have a new menu item, you need to add the corresponding
action first, than move to the menu, add the menu item, and connect it to the action.

To solve this issue, and to provider developers and end users with some advanced features,
Delphi 6 introduces a brand new architecture, based on the ActionManager component,
which largely extends the role of actions. The ActionManager, in fact, has a collection of
actions but also a collection of toolbars and menus tied to them. The development of these
toolbars and menus is completely visual: you drag actions from a special component editor of
the ActionManager to the toolbars to have the buttons you need. Moreover, you can let the
end user of your programs do the same operation, and rearrange their own toolbars and
menus starting with the actions you provide them.

In other words, using this architecture allows you to build applications with a modern user
interface, customizable by the user. The menu can show only the recently used items (as
many Microsoft programs do, nowadays), allows for animation, and more.

This architecture is centered on the ActionManager component, but includes also a few
others components found at the end of the Additional page of the palette:

• The ActionManager component is a replacement of the ActionList (but can also use
one or more existing ActionLists) adding to the architecture visual containers of
actions.

• The ActionMainMenuBar control is a toolbar used to display the menu of an applica-
tion based on the actions of an ActionManager component.

• The ActionToolBar control is a toolbar used to host buttons based on the actions of an
ActionManager component.

• The CustomizeDlg component includes the dialog box you can use to let users cus-
tomize the user interface of an application based on the ActionManager component.

Building a Simple Demo
As this architecture is mostly a visual architecture, a demo is probably worth more than a
general discussion (although a printed book is not the best way to discuss a highly visual
series of operations). To create a sample program based on this architecture, first drop an
ActionManager component on a form, then double click it to open its component editor,

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 310

http://www.sybex.com

311

shown in Figure 8.9. Notice that this editor is not modal, so you can keep it open while
doing other operations in Delphi. Consider also that this same dialog box is displayed by the
CustomizeDlg component, although with some limited features (for example, adding new
actions is disabled).

• The first page of this editor provides a list of visual containers of actions (toolbars or
menus). You add new toolbars by clicking the New button. To add new menus, you
have to add the corresponding component to the form, then open the ActionBars
collection of the ActionManager, select an action bar or add a new one, and hook the
menu to it using the ActionBar property. These are the same steps you could follow to
connect a new toolbar to this architecture at run time.

• The second page of the ActionManager editor is very similar to the ActionList editor,
providing a way to add new standard or custom action, arrange them in categories, and
change their order. The new feature of this page, though, is that fact you can drag a
category or a single action from it and drop it onto an action bar control. If you drag
a category to a menu, you obtain a pull-down menu with all of the items of the cate-
gory; if you drag it to a toolbar, each of the actions of the category gets a button on the
toolbar. If you drag a single action to a toolbar, you get the corresponding button; if
you drag it to the menu, you get a direct menu command, which is something you
should generally avoid.

• The last page of the ActionManager editor allows you (and optionally an end user) to
activate the display of recently used menu items and to modify some of the visual prop-
erties of the toolbars.

The AcManTest program is an example that uses some of the standard actions and a
RichEdit control to showcase the use of this architecture (I haven’t actually written any cus-
tom code to make the actions work better, as I wanted to focus only on the action manager
for this example). You can experiment with it at design time or run it, click the Customize
button, and see what an end user can do to customize the application (see Figure 8.10).

F I G U R E 8 . 9 :
The three pages of the
ActionManager editor
dialog box

The ActionManager Architecture

2874c08.qxd 7/2/01 4:27 PM Page 311

http://www.sybex.com

312

Actually, in the program you can prevent the user from doing some operations on actions.
Any specific element of the user interface (a TActionClient object) has a ChangedAllowed
property that you can use to disable modify, move, and delete operations. Any action client
container (the visual bars) has a property to disable hiding itself (AllowHiding by default is set
to True). Each ActionBar Items collection has a Customizable option you can turn off to dis-
able all user changes to the entire bar.

TIP When I say “ActionBar” I don’t mean the visual toolbars containing action items, but the items
of the ActionBars collection of the ActionManager component, which in turn has an Items
collection. The best way to understand this structure is to look at the sub-tree displayed by the
Object TreeView for an ActionManager component. Each TActionBar collection item has an
actual TCustomActionBar visual component connected, but not the reverse (so, for example,
you cannot reach this Customizable property if you start by selecting the visual toolbar). Due
to the similarity of the two names, it can take a while to understand what the Delphi help
actually means.

To make user settings persistent, I’ve connected a file (called settings) to the FileName
property of the ActionManager component. When you assign this property, you should enter

F I G U R E 8 . 1 0 :
Using the CustomizeDlg
component, you can let a
user customize the toolbars
and the menu of an appli-
cation, simply by dragging
items from the dialog box
or moving them around in
the actions bars
themselves.

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 312

http://www.sybex.com

313

a name of the file you want to use; when you start the program, the file will be created for
you by the ActionManager.

The persistency is accomplished by streaming each ActionClientItem connected with the
action manager. As these action client items are based on the user settings and maintain state
information, a single file collects both user changes to the interface and usage data.

Since Delphi stores user setting and status information in a file you provide, you can make
your application support multiple users on a single computer. Simply use a file of settings for
each of them and connect it to the action manager as the program starts (using the current
user of the computer or after some custom login). Another possibility is to store these set-
tings over the network, so that even when a user moves to a different computer, the current
personal settings will move along.

Least-Recently Used Menu Items
Once a file for the user settings is available, the ActionManager will save into it the user pref-
erences and also use it to track the user activity. This is essential to let the system remove
menu items which haven’t been used for some time, making them available in an extended
menu, using the same user interface adopted by Microsoft (see Figure 8.11 for an actual
example).

The ActionManager doesn’t simply show the least recently used items: it allows you to cus-
tomize this behavior in a very precise way. Each action bar has a SessionCount property that
keeps track of the number of times the application has been executed. Each ActionClientItem
has a LastSession property and a UsageCount property used to track user operations. Notice,
by the way, that a user can reset all this dynamic information by using the Reset Usage Data
button of the customization dialog.

F I G U R E 8 . 1 1 :
The ActionManager dis-
ables least recently used
menu items that you can
still see by selecting the
menu extension command.

The ActionManager Architecture

2874c08.qxd 7/2/01 4:27 PM Page 313

http://www.sybex.com

314

The system calculates the number of sessions the action has gone unused, by computing the
difference between the number of times the application has been executed (SessionCount) and
the last session in which the action has been used (LastSession). The value of UsageCount is
used to look up in the PrioritySchedule how many sessions the items can go unused before it
is removed. In other words, the PrioritySchedule maps each the usage count with a number
of unused sessions. By modifying the PrioritySchedule, you can determine how fast the
items are removed in case they are not used.

You can also prevent this system to be activated for specific actions or groups of actions.
The Items property of the ActionBars of the ActionManager has a HideUnused property you
can toggle to disable this feature for an entire menu. To make a specific item always visible,
regardless of the actual usage, you can also set its UsageCount property to –1. However, the
user settings might override this value.

To understand a little better how this system works, I’ve added a custom action (Action-
ShowStatus) to the AcManTest example. The action has the following code that saves the
current action manager settings to a memory stream, converts it to text, and shows it inside
the memo (refer to Chapter 5 for more information about streaming):

procedure TForm1.ActionShowStatusExecute(Sender: TObject);
var
memStr, memStr2: TMemoryStream;

begin
memStr := TMemoryStream.Create;
try
memStr2 := TMemoryStream.Create;
try
ActionManager1.SaveToStream(memStr);
memStr.Position := 0;
ObjectBinaryToText(memStr, memStr2);
memStr2.Position := 0;
RichEdit1.Lines.LoadFromStream(memStr2);

finally
memStr2.Free;

end;
finally
memStr.Free;

end;
end;

The output you obtain is the textual version of the settings file automatically updated at
each execution of the program. Here a small portion of this file, with the details of one of
pull-down menus and plenty of extra comments:

item // File pulldown of the main menu action bar
Items = <

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 314

http://www.sybex.com

315

item
Action = Form1.FileOpen1
LastSession = 19 // was used in the last session
UsageCount = 4 // was used four times

end
item
Action = Form1.FileSaveAs1 // never used

end
item
Action = Form1.FilePrintSetup1
LastSession = 7 // used some time ago
UsageCount = 1 // only once

end
item
Action = Form1.FileRun1 // never used

end
item
Action = Form1.FileExit1 // never used

end>
Caption = ‘&File’
LastSession = 19
UsageCount = 5 // the sum of the usage count of the items

end

Porting an Existing Program
If this architecture is nice, you’ll probably need to redo most of your applications to take advan-
tage of it. However, if you’re already using actions (with the ActionList component), this con-
version will be much simpler. In fact, the ActionManager has its own set of actions but can also
use actions from another ActionManager or ActionList. The LinkedActionLists property of
the ActionManager is a collection of other containers of actions (ActionLists or ActionMan-
agers), which can be associated with the current one. Associating all the various groups of
action is useful to let a user customize the entire user interface with a single dialog box.

If you hook external actions and open the ActionManager editor, you’ll see in the Actions
page a combo box listing the current ActionManager plus the other action containers linked
to it. You can choose one of these containers to see its set of actions and change their proper-
ties. The All Action option of this combo box allows you to work on all of the actions from
the various containers at once, but I’ve noticed that at startup it is selected but not always
effective. Reselect it to actually see all of the actions.

As an example of porting an existing application, I’ve extended the program built through-
out this chapter, into the MdEdit3 example. This example uses the same action list of the
previous version hooked to an ActionManager that has the extra customize property, to let

The ActionManager Architecture

2874c08.qxd 7/2/01 4:27 PM Page 315

http://www.sybex.com

316

users rearrange the user interface. Differently from the earlier AcManDemo program, the
MdEdit3 example uses a ControlBar as a container for the action bars (a menu, three tool-
bars, and the usual combo boxes) and has full support for dragging them outside of the con-
tainer as floating bars and dropping them into the lower ControlBar.

To accomplish this, I only had to modify the source code slightly to refer to the new classes
for the containers (that is, TCustomActionToolBar instead of TToolBar) in the ControlBar-
LowerDockOver method. I also found out that the OnEndDock event of the ActionToolBar com-
ponent passes as parameter an empty target when the system creates a floating form to host
the control, so that I couldn’t easily give to this forms a new custom caption (see the EndDock
method of the form).

Using List Actions
We’ll see more examples of the use of this architecture in the chapters devoted to MDI and
database programming. For the moment, I just want to add an extra example showing how to
use a rather complex group of standard actions introduced in Delphi 6, the list actions. List
actions, in fact, comprise two different groups. Some of them (such as the Move, Copy,
Delete, Clear, and Select All) actions are normal actions working on list boxes or other lists.
The VirtualListAction and StaticListAction elements, instead, define actions based multiple
choices, which are going to be displayed in a toolbar as a combo box.

The ListActions demo highlights both groups of list actions, as its ActionManager has five
of them, displayed on two separate toolbars. This is a summary of the actions of the actions
manager (I’ve omitted the action bars portion of the component’s DFM file):

object ActionManager1: TActionManager
ActionBars.SessionCount = 1
ActionBars = <...>
object StaticListAction1: TStaticListAction
Caption = ‘Numbers’
Items.CaseSensitive = False
Items.SortType = stNone
Items = <
item
Caption = ‘one’

end
item
Caption = ‘two’

end
...>

OnItemSelected = ListActionItemSelected
end
object VirtualListAction1: TVirtualListAction
Caption = ‘Items’

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 316

http://www.sybex.com

317

OnGetItem = VirtualListAction1GetItem
OnGetItemCount = VirtualListAction1GetItemCount
OnItemSelected = ListActionItemSelected

end
object ListControlCopySelection1: TListControlCopySelection
Caption = ‘Copy’
Destination = ListBox2
ListControl = ListBox1

end
object ListControlDeleteSelection1: TListControlDeleteSelection
Caption = ‘Delete’

end
object ListControlMoveSelection2: TListControlMoveSelection
Caption = ‘Move’
Destination = ListBox2
ListControl = ListBox1

end
end

The program has also two list boxes in its form, used as action targets. The Copy and Move
actions are tied to these two list boxes by their ListControl and Destination properties. The
Delete action, instead, automatically works with the list box having the input focus.

The StaticListAction defines a series of alternative items, in its Items collection. This is
not a plain string list, as any item has also an ImageIndex, which allows turning the combo
box in graphical selection. You can, of course, add more items to this list programmatically.
However, in case of a highly dynamic list, you can also use the VirtualListAction. This com-
ponent doesn’t define a list of items but has two events you can use to provide strings and
images for the list. The OnGetItemCount event allows you to indicate the number of items to
display; the OnGetItem event is then called for each specific item.

In the ListActions demo, the VirtualListAction has the following event handlers for its def-
inition, producing the list you can see in the active combo box of Figure 8.12:

procedure TForm1.VirtualListAction1GetItemCount(Sender: TCustomListAction;
var Count: Integer);

begin
Count := 100;

end;

procedure TForm1.VirtualListAction1GetItem(Sender: TCustomListAction;
const Index: Integer; var Value: String;
var ImageIndex: Integer; var Data: Pointer);

begin
Value := ‘Item’ + IntToStr (Index);

end;

The ActionManager Architecture

2874c08.qxd 7/2/01 4:27 PM Page 317

http://www.sybex.com

318

NOTE I thought that the virtual action items were actually requested only when needed to display
them, making this actually a virtual list. Instead, all the items are created right away, as you can
prove by enabling the commented code of the VirtualListAction1GetItem method (not in
the listing above), which adds to each item the time its string is requested.

Both the static and the virtual list have an OnItemSelected event. In the shared event handler,
I’ve written the following code, to add the current item to the first list box of the form:

procedure TForm1.ListActionItemSelected(Sender: TCustomListAction;
Control: TControl);

begin
ListBox1.Items.Add ((Control as TCustomActionCombo).SelText);

end;

In this case, the sender is the custom action list, but the ItemIndex property of this list is
not updated with the selected item. However, accessing the visual control that displays the
list, we can obtain the value of the selected item.

F I G U R E 8 . 1 2 :
The ListActions application
has a toolbar hosting a
static list and a virtual one.

Chapter8 • Building the User Interface

2874c08.qxd 7/2/01 4:27 PM Page 318

http://www.sybex.com

319

What’s Next?
In this chapter, I’ve introduced the use of actions, the actions list, and action manager archi-
tectures. As you’ve seen, this is an extremely powerful architecture to separate the user inter-
face from the actual code of your applications, which uses and refers to the actions and not
the menu items or toolbar button related to them. The Delphi 6 extension of this architec-
ture allows users of your programs to have a lot of control, and makes your applications
resemble high-end programs without much effort on your part. The same architecture is also
very handy to let you design the user interface of your program, regardless of whether you
give this ability to users.

I’ve also covered other user-interface techniques, such as docking toolbars and other con-
trols. You can consider this chapter the first step toward building professional applications.
We will take other steps in the following chapters; but you already know enough to make
your programs similar to some best-selling Windows applications, which may be very impor-
tant for your clients.

Now that the elements of the main form of our programs are properly set up, we can con-
sider adding secondary forms and dialog boxes. This is the topic of the next chapter, along
with a general introduction to forms. The following chapter will then cover the overall struc-
ture of a Delphi application.

What’s Next?

2874c08.qxd 7/2/01 4:27 PM Page 319

http://www.sybex.com

9CH A P T E R

Working with Forms

� Form styles, border styles, and border icons

� Mouse and keyboard input

� Painting and special effects

� Positioning, scaling, and scrolling forms

� Creating and closing forms

� Modal and modeless dialog boxes and forms

� Creating secondary forms dynamically

� Predefined dialog boxes

� Building a splash screen

2874c09.qxd 7/2/01 4:25 PM Page 321

http://www.sybex.com

322

If you’ve read the previous chapters, you should now be able to use Delphi’s visual compo-
nents to create the user interface of your applications. So let’s turn our attention to another
central element of development in Delphi: forms. We have used forms since the initial chap-
ters, but I’ve never described in detail what you can do with a form, which properties you can
use, or which methods of the TForm class are particularly interesting.

This chapter looks at some of the properties and styles of forms and at sizing and position-
ing them. I’ll also introduce applications with multiple forms, the use of dialog boxes (custom
and predefined ones), frames, and visual form inheritance. I’ll also devote some time to input
on a form, both from the keyboard and the mouse.

The TForm Class
Forms in Delphi are defined by the TForm class, included in the Forms unit of VCL. Of course,
there is now a second definition of forms inside VisualCLX. Although I’ll mainly refer to the
VCL class in this chapter, I’ll also try to highlight differences with the cross-platform version
provided in CLX.

The TForm class is part of the windowed-controls hierarchy, which starts with the TWinControl
(or TWidgetControl) class. Actually, TForm inherits from the almost complete TCustomForm,
which in turn inherits from TScrollingWinControl (or TScrollingWidget). Having all of the
features of their many base classes, forms have a long series of methods, properties, and
events. For this reason, I won’t try to list them here, but I’d rather present some interesting
techniques related to forms throughout this chapter. I’ll start by presenting a technique for
not defining the form of a program at design time, using the TForm class directly, and then
explore a few interesting properties of the form class.

Throughout the chapter, I’ll point out a few differences between VCL forms and CLX
forms. I’ve actually built a CLX version for most of the examples of this chapter, so you can
immediately start experimenting with forms and dialog boxes in CLX, as well as VCL. As in
past chapters, the CLX version of each example is prefixed by the letter Q.

Using Plain Forms
Generally, Delphi developers tend to create forms at design time, which implies deriving a
new class from the base one, and build the content of the form visually. This is certainly a
reasonable standard practice, but it is not compulsory to create a descendant of the TForm
class to show a form, particularly if it is a simple one.

Consider this case: you have to show a rather long message (based on a string) to a user,
and you don’t want to use the simple predefined message box, as it will show up too large and

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 322

http://www.sybex.com

323

not provide scroll bars. You can create a form with a memo component in it, and display the
string inside it. Nothing prevents you from creating this form in the standard visual way, but
you might consider doing this in code, particularly if you need a large degree of flexibility.

The DynaForm and QDynaForm examples (both on the companion CD), which are
somewhat extreme, have no form defined at design time but include a unit with this function:

procedure ShowStringForm (str: string);
var
form: TForm;

begin
Application.CreateForm (TForm, form);
form.caption := ‘DynaForm’;
form.Position := poScreenCenter;
with TMemo.Create (form) do
begin
Parent := form;
Align := alClient;
Scrollbars := ssVertical;
ReadOnly := True;
Color := form.Color;
BorderStyle := bsNone;
WordWrap := True;
Text := str;

end;
form.Show;

end;

Besides the fact I had to create the form using the Application global object, a feature
required by Delphi applications and discussed in the next chapter, this code simply does
dynamically what you generally do with the form designer. Writing this code is undoubtedly
more tedious, but it allows also a greater deal of flexibility, because any parameter can depend
on external settings.

The ShowStringForm function above is not executed by an event of another form, as there
are no traditional forms in this program. Instead, I’ve modified the project’s source code to
the following:

program DynaForm;

uses
Forms,
DynaMemo in ‘DynaMemo.pas’;

{$R *.RES}

var

The TForm Class

2874c09.qxd 7/2/01 4:25 PM Page 323

http://www.sybex.com

324

str: string;

begin
str := ‘’;
Randomize;
while Length (str) < 2000 do
str := str + Char (32 + Random (94));

ShowStringForm (str);

Application.Run;
end.

The effect of running the DynaForm program is a strange-looking form filled with ran-
dom characters (as you can see in Figure 9.1), not terribly useful in itself but for the idea it
underscores.

TIP An indirect advantage of this approach, compared to the use of DFM files for design-time forms,
is that it would be much more difficult for an external programmer to grab information about
the structure of the application. In Chapter 5 we saw that you can extract the DFM from the cur-
rent Delphi executable file, but the same can be easily accomplished for any executable file com-
piled with Delphi for which you don’t have the source code. If it is really important for you to
keep to yourself a specific set of components you are using (maybe those in a specific form), and
the default values of their properties, writing the extra code might be worth the effort.

The Form Style
The FormStyle property allows you to choose between a normal form (fsNormal) and the
windows that make up a Multiple Document Interface (MDI) application. In this case, you’ll
use the fsMDIForm style for the MDI parent window—that is, the frame window of the
MDI application—and the fsMDIChild style for the MDI child window. To know more
about the development of an MDI application, look at Chapter 10.

F I G U R E 9 . 1 :
The dynamic form
generated by the
DynaForm example
is completely created
at run time, with no
design-time support.

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 324

http://www.sybex.com

325

A fourth option is the fsStayOnTop style, which determines whether the form has to
always remain on top of all other windows, except for any that also happen to be “stay-on-
top” windows.

To create a top-most form (a form whose window is always on top), you need only set the
FormStyle property, as indicated above. This property has two different effects, depending
on the kind of form you apply it to:

• The main form of an application will remain in front of every other application (unless
other applications have the same top-most style, too). At times, this generates a rather
ugly visual effect, so this makes sense only for special-purpose alert programs.

• A secondary form will remain in front of any other form of the application it belongs
to. The windows of other applications are not affected, though. This is often used for
floating toolbars and other forms that should stay in front of the main window.

The Border Style
Another important property of a form is its BorderStyle. This property refers to a visual ele-
ment of the form, but it has a much more profound influence on the behavior of the window,
as you can see in Figure 9.2.

At design time, the form is always shown using the default value of the BorderStyle prop-
erty, bsSizeable. This corresponds to a Windows style known as thick frame. When a main
window has a thick frame around it, a user can resize it by dragging its border. This is made
clear by the special resize cursors (with the shape of a double-pointer arrow) displayed when
the user moves the mouse onto this thick window border.

F I G U R E 9 . 2 :
Sample forms with the
various border styles,
created by the Borders
example

The TForm Class

2874c09.qxd 7/2/01 4:25 PM Page 325

http://www.sybex.com

326

A second important choice for this property is bsDialog. If you select it, the form uses as its
border the typical dialog-box frame—a thick frame that doesn’t allow resizing. In addition to
this graphical element, note that if you select the bsDialog value, the form becomes a dialog
box. This involves several changes. For example, the items on its system menu are different,
and the form will ignore some of the elements of the BorderIcons set property.

WARNING Setting the BorderStyle property at design time produces no visible effect. In fact, several
component properties do not take effect at design time, because they would prevent you
from working on the component while developing the program. For example, how could you
resize the form with the mouse if it were turned into a dialog box? When you run the applica-
tion, though, the form will have the border you requested.

There are four more values we can assign to the BorderStyle property. The style bsSingle
can be used to create a main window that’s not resizable. Many games and applications based
on windows with controls (such as data-entry forms) use this value, simply because resizing
these forms makes no sense. Enlarging a form to see an empty area or reducing its size to
make some components less visible often doesn’t help a program’s user (although Delphi’s
automatic scroll bars partially solve the last problem). The value bsNone is used only in very
special situations and inside other forms. You’ll never see an application with a main window
that has no border or caption (except maybe as an example in a programming book to show
you that it makes no sense).

The last two values, bsToolWindow and bsSizeToolWin, are related to the specific Win32
extended style ws_ex_ToolWindow. This style turns the window into a floating toolbox, with a
small title font and close button. This style should not be used for the main window of an
application.

To test the effect and behavior of the different values of the BorderStyle property, I’ve
written a simple program called Borders, available also as QBorders in the CLX version.
You’ve already seen its output, in Figure 9.2. However, I suggest you run this example and
experiment with it for a while to understand all the differences in the forms.

WARNING In CLX, the enumeration for the BorderStyle property uses slightly different values, prefixed
by the letters fbs (form border style). So we have fbsSingle, fbsDialog, and so on.

The main form of this program contains only a radio group and a button. There is also a
secondary form, with no components and the Position property set to poDefaultPosOnly.
This affects the initial position of the secondary form we’ll create by clicking the button. (I’ll
discuss the Position property later in this chapter.)

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 326

http://www.sybex.com

327

The code of the program is very simple. When you click the button, a new form is dynami-
cally created, depending on the selected item of the radio group:

procedure TForm1.BtnNewFormClick(Sender: TObject);
var
NewForm: TForm2;

begin
NewForm := TForm2.Create (Application);
NewForm.BorderStyle := TFormBorderStyle (BorderRadioGroup.ItemIndex);
NewForm.Caption := BorderRadioGroup.Items[BorderRadioGroup.ItemIndex];
NewForm.Show;

end;

This code actually uses a trick: it casts the number of the selected item into the TFormBorder-
Style enumeration. This works because I’ve given the radio buttons the same order as the values
of this enumeration:

type
TFormBorderStyle = (bsNone, bsSingle, bsSizeable, bsDialog, bsTolWindow,
bsSizeToolWin);

The BtnNewFormClick method then copies the text of the radio button to the caption of the
secondary form. This program refers to TForm2, the secondary form defined in a secondary
unit of the program, saved as SECOND.PAS. For this reason, to compile the example, you must
add the following lines to the implementation section of the unit of the main form:

uses
Second;

TIP Whenever you need to refer to another unit of a program, place the corresponding uses
statement in the implementation portion instead of the interface portion if possible. This
speeds up the compilation process, results in cleaner code (because the units you include are
separate from those included by Delphi), and prevents circular unit compilation errors. To
accomplish this, you can also use the File ➢ Use Unit menu command.

The Border Icons
Another important element of a form is the presence of icons on its border. By default, a win-
dow has a small icon connected to the system menu, a Minimize button, a Maximize button,
and a Close button on the far right. You can set different options using the BorderIcons prop-
erty, a set with four possible values: biSystemMenu, biMinimize, biMaximize, and biHelp.

The TForm Class

2874c09.qxd 7/2/01 4:25 PM Page 327

http://www.sybex.com

328

NOTE The biHelp border icon enables the “What’s this?” Help. When this style is included and the
biMinimize and biMaximize styles are excluded, a question mark appears in the form’s title bar.
If you click this question mark and then click a component inside the form (but not the form
itself!), Delphi activates the Help about that object inside a pop-up window. This is demon-
strated by the BIcons example, which has a simple Help file with a page connected to the
HelpContext property of the button in the middle of the form.

The BIcons example demonstrates the behavior of a form with different border icons and
shows how to change this property at run time. The form of this example is very simple: It has
only a menu, with a pull-down containing four menu items, one for each of the possible ele-
ments of the set of border icons. I’ve written a single method, connected with the four com-
mands, that reads the check marks on the menu items to determine the value of the BorderIcons
property. This code is therefore also a good exercise in working with sets:

procedure TForm1.SetIcons(Sender: TObject);
var
BorIco: TBorderIcons;

begin
(Sender as TMenuItem).Checked := not (Sender as TMenuItem).Checked;
if SystemMenu1.Checked then
BorIco := [biSystemMenu]

else
BorIco := [];

if MaximizeBox1.Checked then
Include (BorIco, biMaximize);

if MinimizeBox1.Checked then
Include (BorIco, biMinimize);

if Help1.Checked then
Include (BorIco, biHelp);

BorderIcons := BorIco;
end;

While running the BIcons example, you can easily set and remove the various visual ele-
ments of the form’s border. You’ll immediately see that some of these elements are closely
related: if you remove the system menu, all of the border icons will disappear; if you remove
either the Minimize or Maximize button, it will be grayed; if you remove both these buttons,
they will disappear. Notice also that in these last two cases, the corresponding items of the
system menu are automatically disabled. This is the standard behavior for any Windows
application. When the Maximize and Minimize buttons have been disabled, you can activate
the Help button. As a shortcut to obtain this effect, you can click the button inside the form.
Also, you can click the button after clicking the Help Menu icon to see a Help message, as
you can see in Figure 9.3.

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 328

http://www.sybex.com

329

As an extra feature, the program also displays the time that the Help was invoked in the
caption, by handling the OnHelp event of the form. This effect is visible in the figure.

WARNING By looking at the QBIcons version, built with CLX, you can clearly notice that a bug in the
library prevents you from changing the border icons at run time, while the different design-
time settings fully work.

Setting More Window Styles
The border style and border icons are indicated by two different Delphi properties, which
can be used to set the initial value of the corresponding user interface elements. We have
seen that besides changing the user interface, these properties affect the behavior of a win-
dow. It is important to know that in VCL (and obviously not in CLX), these border-related
properties and the FormStyle property mainly correspond to different settings in the style and
extended style of a window. These two terms reflect two parameters of the CreateWindowEx
API function Delphi uses to create forms.

It is important to acknowledge this, because Delphi allows you to modify these two para-
meters freely by overriding the CreateParams virtual method:

public
procedure CreateParams (var Params: TCreateParams); override;

This is the only way to use some of the peculiar window styles that are not directly avail-
able through form properties. For a list of window styles and extended styles, see the API
Help under the topics “CreateWindow” and “CreateWindowEx.” You’ll notice that the
Win32 API has styles for these functions, including those related to tool windows.

F I G U R E 9 . 3 :
The BIcons example. By
selecting the help border
icon and clicking over the
button, you get the help
displayed in the figure.

The TForm Class

2874c09.qxd 7/2/01 4:25 PM Page 329

http://www.sybex.com

330

To show how to use this approach, I’ve written the NoTitle example on the companion
CD, which lets you create a program with a custom caption. First we have to remove the
standard caption but keep the resizing frame by setting the corresponding styles:

procedure TForm1.CreateParams (var Params: TCreateParams);
begin
inherited CreateParams (Params);
Params.Style := (Params.Style or ws_Popup) and not ws_Caption;

end;

NOTE Besides changing the style and other features of a window when it is created, you can change
them at run time, although some of the settings do not take effect. To change most of the cre-
ation parameters at run time, you can use the SetWindowLong API function, which allows you
to change the internal information of a window. The companion GetWindowLong function can
be used to read the current status. Two more functions, GetClassLong and SetClassLong,
can be used to read and modify class styles (the information of the WindowClass structure of
TCreateParams). You’ll seldom need to use these low-level Windows API functions in Delphi,
unless you write advanced components.

To remove the caption, we need to change the overlapped style to a pop-up style; other-
wise, the caption will simply stick. Now how do we add a custom caption? I’ve placed a label
aligned to the upper border of the form and a small button on the far end. You can see this
effect at run time in Figure 9.4.

To make the fake caption work, we have to tell the system that a mouse operation on this
area corresponds to a mouse operation on the caption. This can be done by intercepting the
wm_NCHitTest Windows message, which is frequently sent to Windows to determine where

F I G U R E 9 . 4 :
The NoTitle example has no
real caption but a fake one
made with a label.

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 330

http://www.sybex.com

331

the mouse currently is. When the hit is in the client area and on the label, we can pretend the
mouse is on the caption by setting the proper result:

procedure TForm1.HitTest (var Msg: TWmNCHitTest);
// message wm_NcHitTest

begin
inherited;
if (Msg.Result = htClient) and
(Msg.YPos < Label1.Height + Top + GetSystemMetrics (sm_cyFrame)) then
Msg.Result := htCaption;

end;

The GetSystemMetrics API function used in the listing above is used to query the operating
system about the size of the various visual elements. It is important to make this request every
time (and not cache the result) because users can customize most of these elements by using
the Appearance page of the Desktop options (in Control Panel) and other Windows settings.
The small button, instead, has a call to the Close method in its OnClick event handler. The
button is kept in its position even when the window is resized by using the [akTop,akRight]
value for the Anchors property. The form also has size constraints, so that a user cannot make
it too small, as described in the “Form Constraints” section later in this chapter.

Direct Form Input
Having discussed some special capabilities of forms, I’ll now move to a very important topic:
user input in a form. If you decide to make limited use of components, you might write com-
plex programs as well, receiving input from the mouse and the keyboard. In this chapter, I’ll
only introduce this topic.

Supervising Keyboard Input
Generally, forms don’t handle keyboard input directly. If a user has to type something, your
form should include an edit component or one of the other input components. If you want to
handle keyboard shortcuts, you can use those connected with menus (possibly using a hidden
pop-up menu).

At other times, however, you might want to handle keyboard input in particular ways for a
specific purpose. What you can do in these cases is turn on the KeyPreview property of the
form. Then, even if you have some input controls, the form’s OnKeyPress event will always be
activated for any keyboard-input operation. The keyboard input will then reach the destina-
tion component, unless you stop it in the form by setting the character value to zero (not the
character 0, but the value 0 of the character set, indicated as #0).

Direct Form Input

2874c09.qxd 7/2/01 4:25 PM Page 331

http://www.sybex.com

332

The example I’ve built to demonstrate this, KPreview, has a form with no special proper-
ties (not even KeyPreview), a radio group with four options, and some edit boxes, as you can
see in Figure 9.5.

By default the program does nothing special, except when the various radio buttons are
used to enable the key preview:

procedure TForm1.RadioPreviewClick(Sender: TObject);
begin
KeyPreview := RadioPreview.ItemIndex <> 0;

end;

Now we’ll start receiving the OnKeyPress events, and we can do one of the three actions
requested by the three special buttons of the radio group. The action depends on the value of
the ItemIndex property of the radio group component. This is the reason the event handler
is based on a case statement:

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
begin
case RadioPreview.ItemIndex of
...

In the first case, if the value of the Key parameter is #13, which corresponds to the Enter key,
we disable the operation (setting Key to zero) and then mimic the activation of the Tab key.
There are many ways to accomplish this, but the one I’ve chosen is quite particular. I send the
CM_DialogKey message to the form, passing the code for the Tab key (VK_TAB):

1: // Enter = Tab
if Key = #13 then
begin
Key := #0;
Perform (CM_DialogKey, VK_TAB, 0);

end;

F I G U R E 9 . 5 :
The KPreview program
allows you to type into the
caption of the form (among
other things).

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 332

http://www.sybex.com

333

NOTE The CM_DialogKey message is an internal, undocumented Delphi message. There are a few
of them, actually quite interesting to build advanced components for and for some special
coding, but Borland never described those. For more information on this topic, refer to the
sidebar “Component Messages and Notifications” in Chapter 11. Notice also that this exact
message-based coding style is not available under CLX.

To type in the caption of the form, the program simply adds the character to the current
Caption. There are two special cases. When the Backspace key is pressed, the last character
of the string is removed (by copying to the Caption all the characters of the current Caption
but the last one). When the Enter key is pressed, the program stops the operation, by reset-
ting the ItemIndex property of the radio group control. Here is the code:

2: // type in caption
begin
if Key = #8 then // backspace: remove last char
Caption := Copy (Caption, 1, Length (Caption) - 1)

else if Key = #13 then // enter: stop operation
RadioPreview.ItemIndex := 0

else // anything else: add character
Caption := Caption + Key;

Key := #0;
end;

Finally, if the last radio item is selected, the code checks whether the character is a vowel
(by testing for its inclusion in a constant “vowel set”). In this case, the character is skipped
altogether:

3: // skip vowels
if Key in [‘a’, ‘e’, ‘i’, ‘o’, ‘u’, ‘A’, ‘E’, ‘I’, ‘O’, ‘U’] then
Key := #0;

Getting Mouse Input
When a user clicks one of the mouse buttons over a form (or over a component, by the way),
Windows sends the application some messages. Delphi defines some events you can use to
write code that responds to these messages. The two basic events are OnMouseDown, received
when a mouse button is clicked, and OnMouseUp, received when the button is released. Another
fundamental system message is related to mouse movement; the event is OnMouseMove. Although
it should be easy to understand the meaning of the three messages—down, up, and move—
the question that might arise is, how do they relate to the OnClick event we have often used
up to now?

We have used the OnClick event for components, but it is also available for the form. Its gen-
eral meaning is that the left mouse button has been clicked and released on the same window or

Direct Form Input

2874c09.qxd 7/2/01 4:25 PM Page 333

http://www.sybex.com

334

component. However, between these two actions, the cursor might have been moved outside
the area of the window or component, while the left mouse button was held down.

Another difference between the OnMouseXX and OnClick events is that the latter relates only
to the left mouse button. Most of the mouse types connected to a Windows PC have two mouse
buttons, and some even have three. Usually we refer to these buttons as the left mouse button,
generally used for selection; the right mouse button, for local menus; and the middle mouse
button, seldom used. Nowadays most new mouse devices have a “button wheel” instead of the
middle button. Users typically use the wheel for scrolling (causing an OnMouseWheel event), but
they can also press it (generating the OnMouseWheelDown and OnMouseWheelUp events). Mouse
wheel events are automatically converted into scrolling events.

Using Windows without a Mouse
A user should always be able to use any Windows application without the mouse. This is not
an option; it is a Windows programming rule. Of course, an application might be easier to use
with a mouse, but that should never be mandatory. In fact, there are users who for various rea-
sons might not have a mouse connected, such as travelers with a small laptop and no space,
workers in industrial environments, and bank clerks with other peripherals around.

There is another reason to support the keyboard: Using the mouse is nice, but it tends to be
slower. If you are a skilled touch typist, you won’t use the mouse to drag a word of text; you’ll
use shortcut keys to copy and paste it, without moving your hands from the keyboard.

For all these reasons, you should always set up a proper tab order for a form’s components,
remember to add keys for buttons and menu items for keyboard selection, use shortcut keys
on menu commands, and so on.

The Parameters of the Mouse Events
All of the lower-level mouse events have the same parameters: the usual Sender parameter; a
Button parameter indicating which of the three mouse buttons has been clicked (mbRight,
mbLeft, or mbCenter); the Shift parameter indicating which of the mouse-related keys (Alt,
Ctrl, and Shift, plus the three mouse buttons themselves) were pressed when the event
occurred; and the x and y coordinates of the position of the mouse, in client area coordinates
of the current window.

Using this information, it is very simple to draw a small circle in the position of a left
mouse button–down event:

procedure TForm1.FormMouseDown(
Sender: TObject; Button: TMouseButton;

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 334

http://www.sybex.com

335

Shift: TShiftState; X, Y: Integer);
begin
if Button = mbLeft then
Canvas.Ellipse (X-10, Y-10, X+10, Y+10);

end;

NOTE To draw on the form, we use a very special property: Canvas. A TCanvas object has two dis-
tinctive features: it holds a collection of drawing tools (such as a pen, a brush, and a font) and
it has some drawing methods, which use the current tools. The kind of direct drawing code in
this example is not correct, because the on-screen image is not persistent: moving another
window over the current one will clear its output. The next example demonstrates the Win-
dows “store-and-draw” approach.

Dragging and Drawing with the Mouse
To demonstrate a few of the mouse techniques discussed so far, I’ve built a simple example
based on a form without any component and called MouseOne in the VCL version and
QMouseOne in the CLX version. The first feature of this program is that it displays in the
Caption of the form the current position of the mouse:

procedure TMouseForm.FormMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
// display the position of the mouse in the caption
Caption := Format (‘Mouse in x=%d, y=%d’, [X, Y]);

end;

You can use this simple feature of the program to better understand how the mouse works.
Make this test: run the program (this simple version or the complete one) and resize the win-
dows on the desktop so that the form of the MouseOne or QMouseOne program is behind
another window and inactive but with the title visible. Now move the mouse over the form,
and you’ll see that the coordinates change. This means that the OnMouseMove event is sent to
the application even if its window is not active, and it proves what I have already mentioned:
Mouse messages are always directed to the window under the mouse. The only exception is
the mouse capture operation I’ll discuss in this same example.

Besides showing the position in the title of the window, the MouseOne/QMouseOne
example can track mouse movements by painting small pixels on the form if the user keeps
the Shift key pressed. (Again this direct painting code produces non-persistent output.)

procedure TMouseForm.FormMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
// display the position of the mouse in the caption
Caption := Format (‘Mouse in x=%d, y=%d’, [X, Y]);

Direct Form Input

2874c09.qxd 7/2/01 4:25 PM Page 335

http://www.sybex.com

336

if ssShift in Shift then
// mark points in yellow
Canvas.Pixels [X, Y] := clYellow;

end;

TIP The TCanvas class of the CLX library doesn’t include a Pixels array. Instead, you can call the
DrawPoint method after setting a proper color for the pen, as I’ve done in the QMouseOne
example.

The real feature of this example, however, is the direct mouse-dragging support. Contrary
to what you might think, Windows has no system support for dragging, which is implemented
in VCL by means of lower-level mouse events and operations. (An example of dragging from
one control to another was discussed in the last chapter.) In VCL, forms cannot originate
dragging operations, so in this case we are obliged to use the low-level approach. The aim of
this example is to draw a rectangle from the initial position of the dragging operation to the
final one, giving the users some visual clue of the operation they are doing.

The idea behind dragging is quite simple. The program receives a sequence of button-
down, mouse-move, and button-up messages. When the button is clicked, dragging begins,
although the real actions take place only when the user moves the mouse (without releasing
the mouse button) and when dragging terminates (when the button-up message arrives). The
problem with this basic approach is that it is not reliable. A window usually receives mouse
events only when the mouse is over its client area; so if the user clicks the mouse button, moves
the mouse onto another window, and then releases the button, the second window will
receive the button-up message.

There are two solutions to this problem. One (seldom used) is mouse clipping. Using a
Windows API function (namely ClipCursor), you can force the mouse not to leave a certain
area of the screen. When you try to move it outside the specified area, it stumbles against an
invisible barrier. The second and more common solution is to capture the mouse. When a
window captures the mouse, all the subsequent mouse input is sent to that window. This is
the approach we will use for the MouseOne/QMouseOne example.

The code of the example is built around three methods: FormMouseDown, FormMouseMove,
and FormMouseUp. Clicking the left mouse button over the form starts the process, setting the
fDragging Boolean field of the form (which indicates that dragging is in action in the other
two methods). The method also uses a TRect variable used to keep track of the initial and
current position of the dragging. Here is the code:

procedure TMouseForm.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
if Button = mbLeft then

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 336

http://www.sybex.com

337

begin
fDragging := True;
Mouse.Capture := Handle;
fRect.Left := X;
fRect.Top := Y;
fRect.BottomRight := fRect.TopLeft;
Canvas.DrawFocusRect (fRect);

end;
end;

An important action of this method is the call to the SetCapture API function, obtained by
setting the Capture property of the global object Mouse. Now even if a user moves the mouse
outside of the client area, the form still receives all mouse-related messages. You can see that
for yourself by moving the mouse toward the upper-left corner of the screen; the program
shows negative coordinates in the caption.

TIP The global Mouse object allows you to get global information about the mouse, such as its
presence, its type, and the current position, as well as set some of its global features. This
global object hides a few API functions, making your code simpler and more portable.

When dragging is active and the user moves the mouse, the program draws a dotted rec-
tangle corresponding to the actual position. Actually, the program calls the DrawFocusRect
method twice. The first time this method is called, it deletes the current image, thanks to the
fact that two consecutive calls to DrawFocusRect simply reset the original situation. After
updating the position of the rectangle, the program calls the method a second time:

procedure TMouseForm.FormMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
// display the position of the mouse in the caption
Caption := Format (‘Mouse in x=%d, y=%d’, [X, Y]);
if fDragging then
begin
// remove and redraw the dragging rectangle
Canvas.DrawFocusRect (fRect);
fRect.Right := X;
fRect.Bottom := Y;
Canvas.DrawFocusRect (fRect);

end
else
if ssShift in Shift then
// mark points in yellow
Canvas.Pixels [X, Y] := clYellow;

end;

Direct Form Input

2874c09.qxd 7/2/01 4:25 PM Page 337

http://www.sybex.com

338

When the mouse button is released, the program terminates the dragging operation by
resetting the Capture property of the Mouse object, which internally calls the ReleaseCapture
API function, and by setting the value of the fDragging field to False:

procedure TMouseForm.FormMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
if fDragging then
begin
Mouse.Capture := 0; // calls ReleaseCapture
fDragging := False;
Invalidate;

end;
end;

The final call, Invalidate, triggers a painting operation and executes the following
OnPaint event handler:

procedure TMouseForm.FormPaint(Sender: TObject);
begin
Canvas.Rectangle (fRect.Left, fRect.Top, fRect.Right, fRect.Bottom);

end;

This makes the output of the form persistent, even if you hide it behind another form.
Figure 9.6 shows a previous version of the rectangle and a dragging operation in action.

TIP Under Qt, there are no Windows handles, but the Capture property of the mouse is still avail-
able. You assign to it, however, the object of the component that has to capture the mouse
(for example, Self to indicate the form), or set the property to nil to release it. You can see
this code in the QMouseOne example.

F I G U R E 9 . 6 :
The MouseOne example
uses a dotted line to
indicate, during a dragging
operation, the final area of
a rectangle.

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 338

http://www.sybex.com

339

Painting in Windows
Why do we need to handle the OnPaint event to produce a proper output, and why can’t we
paint directly over the form canvas? It depends on Windows’ default behavior. As you draw
on a window, Windows does not store the resulting image. When the window is covered, its
contents are usually lost.

The reason for this behavior is simple: to save memory. Windows assumes it’s “cheaper” in
the long run to redraw the screen using code than to dedicate system memory to preserving
the display state of a window. It’s a classic memory-versus-CPU-cycles trade-off. A color
bitmap for a 300×400 image at 256 colors requires about 120 KB. By increasing the color
count or the number of pixels, you can easily have full-screen bitmaps of about 1 MB and
reach 4 MB of memory for a 1280×1024 resolution at 16 million colors. If storing the bitmap
was the default choice, running half a dozen simple applications would require at least 8 MB
of memory, if not 16 MB, just for remembering their current output.

In the event that you want to have a consistent output for your applications, there are two
techniques you can use. The general solution is to store enough data about the output to be
able to reproduce it when the system sends a painting requested. An alternative approach is to
save the output of the form in a bitmap while you produce it, by placing an Image compo-
nent over the form and drawing on the canvas of this image component.

The first technique, painting, is the common approach to handling output in Windows, aside
from particular graphics-oriented programs that store the form’s whole image in a bitmap. The
approach used to implement painting has a very descriptive name: store and paint. In fact, when
the user clicks a mouse button or performs any other operation, we need to store the position
and other elements; then, in the painting method, we use this information to actually paint the
corresponding image.

The idea of this approach is to let the application repaint its whole surface under any of
the possible conditions. If we provide a method to redraw the contents of the form, and if
this method is automatically called when a portion of the form has been hidden and needs
repainting, we will be able to re-create the output properly.

Since this approach takes two steps, we must be able to execute these two operations in a
row, asking the system to repaint the window—without waiting for the system to ask for this.
You can use several methods to invoke repainting: Invalidate, Update, Repaint, and Refresh.
The first two correspond to the Windows API functions, while the latter two have been intro-
duced by Delphi.

• The Invalidate method informs Windows that the entire surface of the form should
be repainted. The most important thing is that Invalidate does not enforce a painting
operation immediately. Windows simply stores the request and will respond to it only

Painting in Windows

2874c09.qxd 7/2/01 4:25 PM Page 339

http://www.sybex.com

340

after the current procedure has been completely executed and as soon as there are no
other events pending in the system. Windows deliberately delays the painting opera-
tion because it is one of the most time-consuming operations. At times, with this delay,
it is possible to paint the form only after multiple changes have taken place, avoiding
multiple consecutive calls to the (slow) paint method.

• The Update method asks Windows to update the contents of the form, repainting it
immediately. However, remember that this operation will take place only if there is an
invalid area. This happens if the Invalidate method has just been called or as the result
of an operation by the user. If there is no invalid area, a call to Update has no effect at
all. For this reason, it is common to see a call to Update just after a call to Invalidate.
This is exactly what is done by the two Delphi methods, Repaint and Refresh.

• The Repaint method calls Invalidate and Update in sequence. As a result, it activates
the OnPaint event immediately. There is a slightly different version of this method
called Refresh. For a form the effect is the same; for components it might be slightly
different.

When you need to ask the form for a repaint operation, you should generally call Invalidate,
following the standard Windows approach. This is particularly important when you need to
request this operation frequently, because if Windows takes too much time to update the
screen, the requests for repainting can be accumulated into a simple repaint action. The
wm_Paint message in Windows is a sort of low-priority message. To be more precise, if a
request for repainting is pending but other messages are waiting, the other messages are
handled before the system actually performs the paint action.

On the other hand, if you call Repaint several times, the screen must be repainted each
time before Windows can process other messages, and because paint operations are compu-
tationally intensive, this can actually make your application less responsive. There are times,
however, when you want the application to repaint a surface as quickly as possible. In these
less-frequent cases, calling Repaint is the way to go.

NOTE Another important consideration is that during a paint operation Windows redraws only the
so-called update region, to speed up the operation. For this reason if you invalidate only a
portion of a window, only that area will be repainted. To accomplish this you can use the
InvalidateRect and InvalidateRegion functions. Actually, this feature is a double-edged
sword. It is a very powerful technique, which can improve speed and reduce the flickering
caused by frequent repaint operations. On the other hand, it can also produce incorrect out-
put. A typical problem is when only some of the areas affected by the user operations are
actually modified, while others remain as they were even if the system executes the source
code that is supposed to update them. In fact, if a painting operation falls outside the update
region, the system ignores it, as if it were outside the visible area of a window.

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:25 PM Page 340

http://www.sybex.com

341

Unusual Techniques: Alpha Blending, Color Key,
and the Animate API

One of the few new features of Delphi 6 related to forms is support for some new Windows
APIs regarding the way forms are displayed (not available under Qt/CLX). For a form, alpha
blending allows you to merge the content of a form with what’s behind it on the screen, some-
thing you’ll rarely need, at least in a business application. The technique is certainly more
interesting when applied to bitmap (with the new AlphaBlend and AlphaDIBBlend API func-
tions) than to a form itself. In any case, by setting the AlphaBlend property of a form to True
and giving to the AlphaBlendValue property a value lower than 255, you’ll be able to see, in
transparency, what’s behind the form. The lower the AlphaBlendValue, the more the form
will fade. You can see an example of alpha blending in Figure 9.7, taken from the CkKeyHole
example

This is not the only new Delphi feature in the area of what I can only call unusual. The sec-
ond is the new TransparentColor property, which allows you to indicate a transparent color,
which will be replaced by the background, creating a sort of hole in a form. The transparent
color is indicated by the TransparentColorValue property. Again, you can see an example of
this effect in Figure 9.7.

F I G U R E 9 . 7 :
The output of the
CkKeyHole, showing the
effect of the new
TransparentColor
and AlphaBlend
properties, and also the
AnimateWindow API.

Unusual Techniques: Alpha Blending, Color Key, and the Animate API

2874c09.qxd 7/2/01 4:26 PM Page 341

http://www.sybex.com

342

Finally, you can use a native Windows technique, animated display, which is not directly
supported by Delphi (beyond the display of hints). For example, instead of calling the Show
method of a form, you can write:

Form3.Hide;
AnimateWindow (Form3.Handle, 2000, AW_BLEND);
Form3.Show;

Notice you have to call the Show method at the end for the form to behave properly. A simi-
lar animation effect can also be obtained by changing the AlphaBlendValue in a loop. The
AnimateWindow API can also be used to obtain the display of the form starting from the center
(with the AW_CENTER flag) or from one of its sides (AW_HOR_POSITIVE, AW_HOR_NEGATIVE,
AW_VER_POSITIVE, or AW_VER_NEGATIVE), as is common for slide shows.

This same function can also be applied to windowed controls, obtaining a fade-in effect
instead of the usual direct appearance. I keep having serious doubts about the waste of CPU
cycles these animations cause, but I have to say that if they are applied properly and in the
right program, they can improve the user interface.

Position, Size, Scrolling, and Scaling
Once you have designed a form in Delphi, you run the program, and you expect the form to
show up exactly as you prepared it. However, a user of your application might have a differ-
ent screen resolution or might want to resize the form (if this is possible, depending on
the border style), eventually affecting the user interface. We’ve already discussed (mainly
in Chapter 7) some techniques related to controls, such as alignment and anchors. Here I
want to specifically address elements related to the form as a whole.

Besides differences in the user system, there are many reasons to change Delphi defaults in
this area. For example, you might want to run two copies of the program and avoid having all
the forms show up in exactly the same place. I’ve collected many other related elements,
including form scrolling, in this portion of the chapter.

The Form Position
There are a few properties you can use to set the position of a form. The Position property
indicates how Delphi determines the initial position of the form. The default poDesigned
value indicates that the form will appear where you designed it and where you use the posi-
tional (Left and Top) and size (Width and Height) properties of the form.

Some of the other choices (poDefault, poDefaultPosOnly, and poDefaultSizeOnly) depend
on a feature of the operating system: using a specific flag, Windows can position and/or size
new windows using a cascade layout. In this way, the positional and size properties you set at

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 342

http://www.sybex.com

343

design time will be ignored, but running the application twice you won’t get overlapping
windows. The default positions are ignored when the form has a dialog border style.

Finally, with the poScreenCenter value, the form is displayed in the center of the screen,
with the size you set at design time. This is a very common setting for dialog boxes and other
secondary forms.

Another property that affects the initial size and position of a window is its state. You can
use the WindowState property at design time to display a maximized or minimized window at
startup. This property, in fact, can have only three values: wsNormal, wsMinimized, and
wsMaximized. The meaning of this property is intuitive. If you set a minimized window
state, at startup the form will be displayed in the Windows Taskbar. For the main form of an
application, this property can be automatically set by specifying the corresponding attributes
in a shortcut referring to the application.

Of course, you can maximize or minimize a window at run time, too. Simply changing the
value of the WindowState property to wsMaximized or to wsNormal produces the expected
effect. Setting the property to wsMinimized, however, creates a minimized window that is
placed over the Taskbar, not within it. This is not the expected action for a main form, but
for a secondary form! The simple solution to this problem is to call the Minimize method of
the Application object. There is also a Restore method in the TApplication class that you
can use when you need to restore a form, although most often the user will do this operation
using the Restore command of the system menu.

The Size of a Form and Its Client Area
At design time, there are two ways to set the size of a form: by setting the value of the Width
and Height properties or by dragging its borders. At run time, if the form has a resizable bor-
der, the user can resize it (producing the OnResize event, where you can perform custom
actions to adapt the user interface to the new size of the form).

However, if you look at a form’s properties in source code or in the online Help, you can see
that there are two properties referring to its width and two referring to its height. Height and
Width refer to the size of the form, including the borders; ClientHeight and ClientWidth
refer to the size of the internal area of the form, excluding the borders, caption, scroll bars (if
any), and menu bar. The client area of the form is the surface you can use to place components
on the form, to create output, and to receive user input.

Since you might be interested in having a certain available area for your components, it
often makes more sense to set the client size of a form instead of its global size. This is
straightforward, because as you set one of the two client properties, the corresponding form
property changes accordingly.

Position, Size, Scrolling, and Scaling

2874c09.qxd 7/2/01 4:26 PM Page 343

http://www.sybex.com

344

TIP In Windows, it is also possible to create output and receive input from the nonclient area of the
form—that is, its border. Painting on the border and getting input when you click it are complex
issues. If you are interested, look in the Help file at the description of such Windows messages as
wm_NCPaint, wm_NCCalcSize, and wm_NCHitTest and the series of nonclient messages related
to the mouse input, such as wm_NCLButtonDown. The difficulty of this approach is in combining
your code with the default Windows behavior.

Form Constraints
When you choose a resizable border for a form, users can generally resize the form as they
like and also maximize it to full screen. Windows informs you that the form’s size has changed
with the wm_Size message, which generates the OnResize event. OnResize takes place after the
size of the form has already been changed. Modifying the size again in this event (if the user
has reduced or enlarged the form too much) would be silly. A preventive approach is better
suited to this problem.

Delphi provides a specific property for forms and also for all controls: the Constraints
property. Simply setting the subproperties of the Constraints property to the proper maxi-
mum and minimum values creates a form that cannot be resized beyond those limits. Here is
an example:

object Form1: TForm1
Constraints.MaxHeight = 300
Constraints.MaxWidth = 300
Constraints.MinHeight = 150
Constraints.MinWidth = 150

end

Notice that as you set up the Constraints property, it has an immediate effect even at design
time, changing the size of the form if it is outside the permitted area.

Delphi also uses the maximum constraints for maximized windows, producing an awkward
effect. For this reason, you should generally disable the Maximize button of a window that has a
maximum size. There are cases in which maximized windows with a limited size make sense—
this is the behavior of Delphi’s main window. In case you need to change constraints at run
time, you can also consider using two specific events, OnCanResize and OnConstrainedResize.
The first of the two can also be used to disable resizing a form or control in given circumstances.

Scrolling a Form
When you build a simple application, a single form might hold all of the components you need.
As the application grows, however, you may need to squeeze in the components, increase the
size of the form, or add new forms. If you reduce the space occupied by the components, you

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 344

http://www.sybex.com

345

might add some capability to resize them at run time, possibly splitting the form into differ-
ent areas. If you choose to increase the size of the form, you might use scroll bars to let the
user move around in a form that is bigger than the screen (or at least bigger than its visible
portion on the screen).

Adding a scroll bar to a form is simple. In fact, you don’t need to do anything. If you place
several components in a big form and then reduce its size, a scroll bar will be added to the
form automatically, as long as you haven’t changed the value of the AutoScroll property from
its default of True.

Along with AutoScroll, forms have two properties, HorzScrollBar and VertScrollBar,
which can be used to set several properties of the two TFormScrollBar objects associated with
the form. The Visible property indicates whether the scroll bar is present, the Position
property determines the initial status of the scroll thumb, and the Increment property deter-
mines the effect of clicking one of the arrows at the ends of the scroll bar. The most impor-
tant property, however, is Range.

The Range property of a scroll bar determines the virtual size of the form, not the actual
range of values of the scroll bar. Suppose you need a form that will host several components
and will therefore need to be 1000 pixels wide. We can use this value to set the “virtual range”
of the form, changing the Range of the horizontal scroll bar.

The Position property of the scroll bar will range from 0 to 1000 minus the current size of
the client area. For example, if the client area of the form is 300 pixels wide, you can scroll
700 pixels to see the far end of the form (the thousandth pixel).

A Scroll Testing Example
To demonstrate the specific case I’ve just discussed, I’ve built the Scroll1 example, which has
a virtual form 1000 pixels wide. To accomplish this, I’ve set the range of the horizontal scroll
bar to 1000:

object Form1: TForm1
Width = 458
Height = 368
HorzScrollBar.Range = 1000
VertScrollBar.Range = 305
AutoScroll = False
Caption = ‘Scrolling Form’
OnResize = FormResize
...

The form of this example has been filled with meaningless list boxes, and I could have
obtained the same scroll-bar range by placing the right-most list box so that its position
(Left) plus its size (Width) would equal 1000.

Position, Size, Scrolling, and Scaling

2874c09.qxd 7/2/01 4:26 PM Page 345

http://www.sybex.com

346

The interesting part of the example is the presence of a toolbox window displaying the
status of the form and of its horizontal scroll bar. This second form has four labels; two with
fixed text and two with the actual output. Besides this, the secondary form (called Status) has
a bsToolWindow border style and is a top-most window. You should also set its Visible
property to True, to have its window automatically displayed at startup:

object Status: TStatus
BorderIcons = [biSystemMenu]
BorderStyle = bsToolWindow
Caption = ‘Status’
FormStyle = fsStayOnTop
Visible = True
object Label1: TLabel...
...

There isn’t much code in this program. Its aim is to update the values in the toolbox each
time the form is resized or scrolled (as you can see in Figure 9.8). The first part is extremely
simple. You can handle the OnResize event of the form and simply copy a couple of values to
the two labels. The labels are part of another form, so you need to prefix them with the name
of the form instance, Status:

procedure TForm1.FormResize(Sender: TObject);
begin
Status.Label3.Caption := IntToStr(ClientWidth);
Status.Label4.Caption := IntToStr(HorzScrollBar.Position);

end;

F I G U R E 9 . 8 :
The output of the Scroll1
example

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 346

http://www.sybex.com

347

If we wanted to change the output each time the user scrolls the contents of the form, we
could not use a Delphi event handler, because there isn’t an OnScroll event for forms (although
there is one for stand-alone ScrollBar components). Omitting this event makes sense, because
Delphi forms handle scroll bars automatically in a powerful way. In Windows, by contrast,
scroll bars are extremely low-level elements, requiring a lot of coding. Handling the scroll
event makes sense only in special cases, such as when you want to keep track precisely of the
scrolling operations made by a user.

Here is the code we need to write. First, add a method declaration to the class and associ-
ate it with the Windows horizontal scroll message (wm_HScroll):

public
procedure FormScroll (var ScrollData: TWMScroll);
message wm_HScroll;

Then write the code of this procedure, which is almost the same as the code of the FormResize
method we’ve seen before:

procedure TForm1.FormScroll (var ScrollData: TWMScroll);
begin
inherited;
Status.Label3.Caption := IntToStr(ClientWidth);
Status.Label4.Caption := IntToStr(HorzScrollBar.Position);

end;

It’s important to add the call to inherited, which activates the method related to the same
message in the base class form. The inherited keyword in Windows message handlers calls
the method of the base class we are overriding, which is the one associated with the corre-
sponding Windows message (even if the procedure name is different). Without this call, the
form won’t have its default scrolling behavior; that is, it won’t scroll at all.

NOTE Because in CLX you cannot handle the low-level scroll messages, there seems to be no easy
way to create a program similar to Scroll1. This isn’t terribly important in real-world applica-
tions, as the scrolling system is automatic, and can probably be accomplished by hooking in
the CLX library at a lower level.

Automatic Scrolling
The scroll bar’s Range property can seem strange until you start to use it consistently. When
you think about it a little, you’ll start to understand the advantages of the “virtual range”
approach. First of all, the scroll bar is automatically removed from the form when the client
area of the form is big enough to accommodate the virtual size; and when you reduce the size
of the form, the scroll bar is added again.

Position, Size, Scrolling, and Scaling

2874c09.qxd 7/2/01 4:26 PM Page 347

http://www.sybex.com

348

This feature becomes particularly interesting when the AutoScroll property of the form is
set to True. In this case, the extreme positions of the right-most and lower controls are auto-
matically copied into the Range properties of the form’s two scroll bars. Automatic scrolling
works well in Delphi. In the last example, the virtual size of the form would be set to the
right border of the last list box. This was defined with the following attributes:

object ListBox6: TListBox
Left = 832
Width = 145

end

Therefore, the horizontal virtual size of the form would be 977 (the sum of the two preced-
ing values). This number is automatically copied into the Range field of the HorzScrollBar
property of the form, unless you change it manually to have a bigger form (as I’ve done for
the Scroll1 example, setting it to 1000 to leave some space between the last list box and the
border of the form). You can see this value in the Object Inspector, or make the following
test: run the program, size the form as you like, and move the scroll thumb to the right-most
position. When you add the size of the form and the position of the thumb, you’ll always get
1000, the virtual coordinate of the right-most pixel of the form, whatever the size.

Scrolling and Form Coordinates
We have just seen that forms can automatically scroll their components. But what happens if
you paint directly on the surface of the form? Some problems arise, but their solution is at
hand. Suppose that we want to draw some lines on the virtual surface of a form, as shown in
Figure 9.9.

Since you probably do not own a monitor capable of displaying 2000 pixels on each axis,
you can create a smaller form, add two scroll bars, and set their Range property, as I’ve done
in the Scroll2 example. Here is the textual description of the form:

object Form1: TForm1
HorzScrollBar.Range = 2000
VertScrollBar.Range = 2000
ClientHeight = 336
ClientWidth = 472
OnPaint = FormPaint

end

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 348

http://www.sybex.com

349

If we simply draw the lines using the virtual coordinates of the form, the image won’t display
properly. In fact, in the OnPaint response method, we need to compute the virtual coordinates
ourselves. Fortunately, this is easy, since we know that the virtual X1 and Y1 coordinates of the
upper-left corner of the client area correspond to the current positions of the two scroll bars:

procedure TForm1.FormPaint(Sender: TObject);
var
X1, Y1: Integer;

begin
X1 := HorzScrollBar.Position;
Y1 := VertScrollBar.Position;

// draw a yellow line
Canvas.Pen.Width := 30;
Canvas.Pen.Color := clYellow;
Canvas.MoveTo (30-X1, 30-Y1);
Canvas.LineTo (1970-X1, 1970-Y1);

// and so on ...

F I G U R E 9 . 9 :
The lines to draw on the
virtual surface of the form

Position, Size, Scrolling, and Scaling

2874c09.qxd 7/2/01 4:26 PM Page 349

http://www.sybex.com

350

As a better alternative, instead of computing the proper coordinate for each output opera-
tion, we can call the SetWindowOrgEx API to move the origin of the coordinates of the Canvas
itself. This way, our drawing code will directly refer to virtual coordinates but will be dis-
played properly:

procedure TForm2.FormPaint(Sender: TObject);
begin
SetWindowOrgEx (Canvas.Handle, HorzScrollbar.Position,
VertScrollbar.Position, nil);

// draw a yellow line
Canvas.Pen.Width := 30;
Canvas.Pen.Color := clYellow;
Canvas.MoveTo (30, 30);
Canvas.LineTo (1970, 1970);

// and so on ...

This is the version of the program you’ll find in the source code on the CD. Try using the
program and commenting out the SetWindowOrgEx call to see what happens if you don’t use
virtual coordinates: You’ll find that the output of the program is not correct—it won’t scroll,
and the same image will always remain in the same position, regardless of scrolling opera-
tions. Notice also that the Qt/CLX version of the program, called QScroll2, doesn’t use vir-
tual coordinates but simply subtracts the scroll positions from each of the hard-coded
coordinates.

Scaling Forms
When you create a form with multiple components, you can select a fixed size border or let
the user resize the form and automatically add scroll bars to reach the components falling
outside the visible portion of the form, as we’ve just seen. This might also happen because a
user of your application has a display driver with a much smaller number of pixels than yours.

Instead of simply reducing the form size and scrolling the content, you might want to
reduce the size of each of the components at the same time. This automatically happens also
if the user has a system font with a different pixel-per-inch ratio than the one you used for
development. To address these problems, Delphi has some nice scaling features, but they
aren’t fully intuitive.

The form’s ScaleBy method allows you to scale the form and each of its components. The
PixelsPerInch and Scaled properties allow Delphi to resize an application automatically
when the application is run with a different system font size, often because of a different
screen resolution. In both cases, to make the form scale its window, be sure to also set the

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 350

http://www.sybex.com

351

AutoScroll property to False. Otherwise, the contents of the form will be scaled, but the
form border itself will not. These two approaches are discussed in the next two sections.

NOTE Form scaling is calculated based on the difference between the font height at run time and the
font height at design time. Scaling ensures that edit and other controls are large enough to
display their text using the user’s font preferences without clipping the text. The form scales as
well, as we will see later on, but the main point is to make edit and other controls readable.

Manual Form Scaling
Any time you want to scale a form, including its components, you can use the ScaleBy
method, which has two integer parameters, a multiplier and a divisor—it’s a fraction. For
example, with this statement the size of the current form is reduced to three-quarters of its
original size:

ScaleBy (3, 4);

Generally, it is easier to use percentage values. The same effect can be obtained by using:
ScaleBy (75, 100);

When you scale a form, all the proportions are maintained, but if you go below or above
certain limits, the text strings can alter their proportions slightly. The problem is that in
Windows, components can be placed and sized only in whole pixels, while scaling almost
always involves multiplying by fractional numbers. So any fractional portion of a compo-
nent’s origin or size will be truncated.

I’ve built a simple example, Scale or QScale, to show how you can scale a form manually,
responding to a request by the user. The form of this application (see Figure 9.10) has two
buttons, a label, an edit box, and an UpDown control connected to it (via its Associate prop-
erty). With this setting, a user can type numbers in the edit box or click the two small arrows
to increase or decrease the value (by the amount indicated by the Increment property). To
extract the input value, you can use the Text property of the edit box or the Position of the
UpDown control.

When you click the Do Scale button, the current input value is used to determine the scal-
ing percentage of the form:

procedure TForm1.ScaleButtonClick(Sender: TObject);
begin
AmountScaled := UpDown1.Position;
ScaleBy (AmountScaled, 100);
UpDown1.Height := Edit1.Height;
ScaleButton.Enabled := False;
RestoreButton.Enabled := True;

end;

Position, Size, Scrolling, and Scaling

2874c09.qxd 7/2/01 4:26 PM Page 351

http://www.sybex.com

352

This method stores the current input value in the form’s AmountScaled private field and
enables the Restore button, disabling the one that was clicked. Later, when the user clicks the
Restore button, the opposite scaling takes place. By having to restore the form before
another scaling operation takes place, I avoid an accumulation of round-off errors. I’ve added
also a line to set the Height of the UpDown component to the same Height as the edit box it
is attached to. This prevents small differences between the two, due to scaling problems of
the UpDown control.

NOTE If you want to scale the text of the form properly, including the captions of components, the
items in list boxes, and so on, you should use TrueType fonts exclusively. The system font (MS
Sans Serif) doesn’t scale well. The font issue is important because the size of many components
depends on the text height of their captions, and if the caption does not scale well, the compo-
nent might not work properly. For this reason, in the Scale example I’ve used an Arial font.

Exactly the same scaling technique also works in CLX, as you can see by running the
QScale example. The only real difference is that I have to replace the UpDown component
(and the related Edit box) with a SpinEdit control, as the former is not available in Qt.

Automatic Form Scaling
Instead of playing with the ScaleBy method, you can ask Delphi to do the work for you.
When Delphi starts, it asks the system for the display configuration and stores the value in
the PixelsPerInch property of the Screen object, a special global object of VCL, available in
any application.

F I G U R E 9 . 1 0 :
The form of the Scale
example after a scaling
with 50 and 200

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 352

http://www.sybex.com

353

PixelsPerInch sounds like it has something to do with the pixel resolution of the screen,
but unfortunately, it doesn’t. If you change your screen resolution from 640×480 to 800×600
to 1024×768 or even 1600×1280, you will find that Windows reports the same PixelsPerInch
value in all cases, unless you change the system font. What PixelsPerInch really refers to is
the screen pixel resolution that the currently installed system font was designed for. When a
user changes the system font scale, usually to make menus and other text easier to read, the user
will expect all applications to honor those settings. An application that does not reflect user desk-
top preferences will look out of place and, in extreme cases, may be unusable to visually impaired
users who rely on very large fonts and high-contrast color schemes.

The most common PixelPerInch values are 96 (small fonts) and 120 (large fonts), but
other values are possible. Newer versions of Windows even allow the user to set the system
font size to an arbitrary scale. At design time, the PixelsPerInch value of the screen, which is
a read-only property, is copied to every form of the application. Delphi then uses the value of
PixelsPerInch, if the Scaled property is set to True, to resize the form when the application
starts.

As I’ve already mentioned, both automatic scaling and the scaling performed by the
ScaleBy method operate on components by changing the size of the font. The size of each
control, in fact, depends on the font it uses. With automatic scaling, the value of the form’s
PixelsPerInch property (the design-time value) is compared to the current system value
(indicated by the corresponding property of the Screen object), and the result is used to
change the font of the components on the form. Actually, to improve the accuracy of this
code, the final height of the text is compared to the design-time height of the text, and its
size is adjusted if they do not match.

Thanks to Delphi automatic support, the same application running on a system with a dif-
ferent system font size automatically scales itself, without any specific code. The application’s
edit controls will be the correct size to display their text in the user’s preferred font size, and
the form will be the correct size to contain those controls. Although automatic scaling has
problems in some special cases, if you comply with the following rules, you should get good
results:

• Set the Scaled property of forms to True. (This is the default.)

• Use only TrueType fonts.

• Use Windows small fonts (96 dpi) on the computer you use to develop the forms.

• Set the AutoScroll property to False, if you want to scale the form and not just the
controls inside it. (AutoScroll defaults to True, so don’t forget to do this step.)

• Set the form position either near the upper-left corner or in the center of the screen
(with the poScreenCenter value) to avoid having an out-of-screen form. Form position
is discussed in the next section.

Position, Size, Scrolling, and Scaling

2874c09.qxd 7/2/01 4:26 PM Page 353

http://www.sybex.com

354

Creating and Closing Forms
Up to now we have ignored the issue of form creation. We know that when the form is created,
we receive the OnCreate event and can change or test some of the initial form’s properties or
fields. The statement responsible for creating the form is in this project’s source file:

begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

To skip the automatic form creation, you can either modify this code or use the Forms
page of the Project Options dialog box (see Figure 9.11). In this dialog box, you can decide
whether the form should be automatically created. If you disable the automatic creation, the
project’s initialization code becomes the following:

begin
Applications.Initialize;
Application.Run;

end.

If you now run this program, nothing happens. It terminates immediately because no main
window is created. So what is the effect of the call to the application’s CreateForm method? It
creates a new instance of the form class passed as the first parameter and assigns it to the
variable passed as the second parameter.

F I G U R E 9 . 1 1 :
The Forms page of the
Delphi Project Options
dialog box

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 354

http://www.sybex.com

355

Something else happens behind the scenes. When CreateForm is called, if there is currently
no main form, the current form is assigned to the application’s MainForm property. For this
reason, the form indicated as Main Form in the dialog box shown in Figure 9.11 corresponds
to the first call to the application’s CreateForm method (that is, when several forms are created
at start-up).

The same holds for closing the application. Closing the main form terminates the applica-
tion, regardless of the other forms. If you want to perform this operation from the program’s
code, simply call the Close method of the main form, as we’ve done several times in past
examples.

TIP You can control the automatic creation of secondary forms by using the Auto Create Forms
check box on the Preferences page of the Environment Options dialog box.

Form Creation Events
Regardless of the manual or automatic creation of forms, when a form is created, there are
many events you can intercept. Form-creation events are fired in the following order:

1. OnCreate indicates that the form is being created.

2. OnShow indicates that the form is being displayed. Besides main forms, this event happens
after you set the Visible property of the form to True or call the Show or ShowModal
methods. This event is fired again if the form is hidden and then displayed again.

3. OnActivate indicates that the form becomes the active form within the application.
This event is fired every time you move from another form of the application to the
current one.

4. Other events, including OnResize and OnPaint, indicate operations always done at
start-up but then repeated many times.

As you can see in the list above, every event has a specific role apart from form initializa-
tion, except for the OnCreate event, which is guaranteed to be called only once as the form is
created.

However, there is an alternative approach to adding initialization code to a form: overrid-
ing the constructor. This is usually done as follows:

constructor TForm1.Create(AOwner: TComponent);
begin
inherited Create (AOwner);
// extra initialization code

end;

Creating and Closing Forms

2874c09.qxd 7/2/01 4:26 PM Page 355

http://www.sybex.com

356

Before the call to the Create method of the base class, the properties of the form are still not
loaded and the internal components are not available. For this reason the standard approach
is to call the base class constructor first and then do the custom operations.

Old and New Creation Orders
Now the question is whether these custom operations are executed before or after the OnCreate
event is fired. The answer depends on the value of the OldCreateOrder property of the form,
introduced in Delphi 4 for backward compatibility with earlier versions of Delphi. By default,
for a new project, all of the code in the constructor is executed before the OnCreate event
handler. In fact, this event handler is not activated by the base class constructor but by its
AfterConstruction method, a sort of constructor introduced for compatibility with
C++Builder.

To study the creation order and the potential problems, you can examine the CreatOrd pro-
gram. This program has an OnCreate event handler, which creates a list box control dynami-
cally. The constructor of the form can access this list box or not, depending on the value of the
OldCreateOrder property.

Closing a Form
When you close the form using the Close method or by the usual means (Alt+F4, the system
menu, or the Close button), the OnCloseQuery event is called. In this event, you can ask the
user to confirm the action, particularly if there is unsaved data in the form. Here is a simple
scheme of the code you can write:

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
if MessageDlg (‘Are you sure you want to exit?’, mtConfirmation,

[mbYes, mbNo], 0) = idNo then
CanClose := False;

end;

If OnCloseQuery indicates that the form should still be closed, the OnClose event is called.
The third step is to call the OnDestroy event, which is the opposite of the OnCreate event and
is generally used to de-allocate objects related to the form and free the corresponding memory.

NOTE To be more precise, the BeforeDestruction method generates an OnDestroy event before
the Destroy destructor is called. That is, unless you have set the OldCreateOrder property to
True, in which case Delphi uses a different closing sequence.

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 356

http://www.sybex.com

357

So what is the use of the intermediate OnClose event? In this method, you have another
chance to avoid closing the application, or you can specify alternative “close actions.” The
method, in fact, has an Action parameter passed by reference. You can assign the following
values to this parameter:

caNone The form is not allowed to close. This corresponds to setting the CanClose para-
meter of the OnCloseQuery method to False.

caHide The form is not closed, just hidden. This makes sense if there are other forms in
the application; otherwise, the program terminates. This is the default for secondary
forms, and it’s the reason I had to handle the OnClose event in the previous example to
actually close the secondary forms.

caFree The form is closed, freeing its memory, and the application eventually terminates
if this was the main form. This is the default action for the main form and the action you
should use when you create multiple forms dynamically (if you want to remove the Win-
dows and destroy the corresponding Delphi object as the form closes).

caMinimize The form is not closed but only minimized. This is the default action for
MDI child forms.

NOTE When a user shuts down Windows, the OnCloseQuery event is activated, and a program can
use it to stop the shut-down process. In this case, the OnClose event is not called even if
OnCloseQuery sets the CanClose parameter to True.

Dialog Boxes and Other Secondary Forms
When you write a program, there is really no big difference between a dialog box and
another secondary form, aside from the border, the border icons, and similar user-interface
elements you can customize.

What users associate with a dialog box is the concept of a modal window—a window that
takes the focus and must be closed before the user can move back to the main window. This is
true for message boxes and usually for dialog boxes, as well. However, you can also have non-
modal—or modeless—dialog boxes. So if you think that dialog boxes are just modal forms, you
are on the right track, but your description is not precise. In Delphi (as in Windows), you can
have modeless dialog boxes and modal forms. We have to consider two different elements:

• The form’s border and its user interface determine whether it looks like a dialog box.

• The use of two different methods (Show or ShowModal) to display the secondary form
determines its behavior (modeless or modal).

Dialog Boxes and Other Secondary Forms

2874c09.qxd 7/2/01 4:26 PM Page 357

http://www.sybex.com

358

Adding a Second Form to a Program
To add a second form to an application, you simply click on the New Form button on the
Delphi toolbar or use the File ➢ New Form menu command. As an alternative you can select
File ➢ New, move to the Forms or Dialogs page, and choose one of the available form tem-
plates or form wizards.

If you have two forms in a project, you can use the Select Form or Select Unit button of
the Delphi toolbar to navigate through them at design time. You can also choose which form
is the main one and which forms should be automatically created at start-up using the Forms
page of the Project Options dialog box. This information is reflected in the source code of
the project file.

TIP Secondary forms are automatically created in the project source-code file depending on a new
Delphi 5 setting, which is the Auto Create Forms check box of the Preferences page of the
Environment Options dialog box. Although automatic creation is the simplest and most reli-
able approach for novice developers and quick-and-dirty projects, I suggest that you disable
this check box for any serious development. When your application contains hundreds of
forms, you really shouldn’t have them all created at application start-up. Create instances
of secondary forms when and where you need them, and free them when you’re done.

Once you have prepared the secondary form, you can simply set its Visible property to
True, and both forms will show up as the program starts. In general, the secondary forms of
an application are left “invisible” and are then displayed by calling the Show method (or set-
ting the Visible property at run time). If you use the Show function, the second form will be
displayed as modeless, so you can move back to the first one while the second is still visible.
To close the second form, you might use its system menu or click a button or menu item that
calls the Close method. As we’ve just seen, the default close action (see the OnClose event) for
a secondary form is simply to hide it, so the secondary form is not destroyed when it is closed.
It is kept in memory (again, not always the best approach) and is available if you want to show
it again.

Creating Secondary Forms at Run Time
Unless you create all the forms when the program starts, you’ll need to check whether a form
exists and create it if necessary. The simplest case is when you want to create multiple copies
of the same form at run time. In the MultiWin/QMultiWin example, I’ve done this by writ-
ing the following code:

procedure TForm1.btnMultipleClick(Sender: TObject);
begin
with TForm3.Create (Application) do
Show;

end;

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 358

http://www.sybex.com

359

Every time you click the button, a new copy of the form is created. Notice that I don’t use
the Form3 global variable, because it doesn’t make much sense to assign this variable a new
value every time you create a new form object. The important thing, however, is not to refer
to the global Form3 object in the code of the form itself or in other portions of the applica-
tion. The Form3 variable, in fact, will invariably be a pointer to nil. My suggestion, in such a
case, is to actually remove it from the unit to avoid any confusion.

TIP In the code of a form, you should never explicitly refer to the form by using the global variable
that Delphi sets up for it. For example, suppose that in the code of TForm3 you refer to
Form3.Caption. If you create a second object of the same type (the class TForm3), the expres-
sion Form3.Caption will invariably refer to the caption of the form object referenced by the
Form3 variable, which might not be the current object executing the code. To avoid this prob-
lem, refer to the Caption property in the form’s method to indicate the caption of the current
form object, and use the Self keyword when you need a specific reference to the object of
the current form. To avoid any problem when creating multiple copies of a form, I suggest
removing the global form object from the interface portion of the unit declaring the form. This
global variable is required only for the automatic form creation.

When you create multiple copies of a form dynamically, remember to destroy each form
object as is it closed, by handling the corresponding event:

procedure TForm3.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;

end;

Failing to do so will result in a lot of memory consumption, because all the forms you create
(both the windows and the Delphi objects) will be kept in memory and simply hidden from view.

Creating Single-Instance Secondary Forms
Now let us focus on the dynamic creation of a form, in a program that accounts for only one
copy of the form at a time. Creating a modal form is quite simple, because the dialog box can
be destroyed when it is closed, with code like this:

procedure TForm1.btnModalClick(Sender: TObject);
var
Modal: TForm4;

begin
Modal := TForm4.Create (Application);
try
Modal.ShowModal;

finally
Modal.Free;

end;
end;

Dialog Boxes and Other Secondary Forms

2874c09.qxd 7/2/01 4:26 PM Page 359

http://www.sybex.com

360

Because the ShowModal call can raise an exception, you should write it in a finally block to
make sure the object will be de-allocated. Usually this block also includes code that initializes
the dialog box before displaying it and code that extracts the values set by the user before
destroying the form. The final values are read-only if the result of the ShowModal function is
mrOK, as we’ll see in the next example.

The situation is a little more complex when you want to display only one copy of a mode-
less form. In fact, you have to create the form, if it is not already available, and then show it:

procedure TForm1.btnSingleClick(Sender: TObject);
begin
if not Assigned (Form2) then
Form2 := TForm2.Create (Application);

Form2.Show;
end;

With this code, the form is created the first time it is required and then is kept in memory,
visible on the screen or hidden from view. To avoid using up memory and system resources
unnecessarily, you’ll want to destroy the secondary form when it is closed. You can do that by
writing a handler for the OnClose event:

procedure TForm2.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;
// important: set pointer to nil!
Form2 := nil;

end;

Notice that after we destroy the form, the global Form2 variable is set to nil. Without
this code, closing the form would destroy its object, but the Form2 variable would still
refer to the original memory location. At this point, if you try to show the form once more
with the btnSingleClick method shown earlier, the if not Assigned test will succeed, as it
simply checks whether the Form2 variable is nil. The code fails to create a new object, and
the Show method, invoked on a nonexistent object, will result in a system memory error.

As an experiment, you can generate this error by removing the last line of the listing above.
As we have seen, the solution is to set the Form2 object to nil when the object is destroyed, so
that properly written code will “see” that a new form has to be created before using it. Again,
experimenting with the MultiWin/QMultiWin example can prove useful to test various con-
ditions. I haven’t illustrated any screens from this example because the forms it displays are
quite bare (totally empty except for the main form, which has three buttons).

NOTE Setting the form variable to nil makes sense—and works—if there is to be only one instance
of the form present at any given instant. If you want to create multiple copies of a form, you’ll
have to use other techniques to keep track of them. Also keep in mind that in this case we
cannot use the FreeAndNil procedure, because we cannot call Free on Form2. The reason is
that we cannot destroy the form before its event handlers have finished executing.

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 360

http://www.sybex.com

361

Creating a Dialog Box
I stated earlier in this chapter that a dialog box is not very different from other forms. To
build a dialog box instead of a form, you just select the bsDialog value for the BorderStyle
property. With this simple change, the interface of the form becomes like that of a dialog
box, with no system icon, and no Minimize or Maximize boxes. Of course, such a form has
the typical thick dialog box border, which is non-resizable.

Once you have built a dialog box form, you can display it as a modal or modeless window
using the two usual show methods (Show and ShowModal). Modal dialog boxes, however, are
more common than modeless ones. This is exactly the reverse of forms; modal forms should
generally be avoided, because a user won’t expect them.

The Dialog Box of the RefList Example
In Chapter 6 we explored the RefList/QRefList program, which used a ListView control to
display references to books, magazines, Web sites, and more. In the RefList2 version on the
CD (and its QRefLsit2 CLX counterpart), I’ll simply add to the basic version of that pro-
gram a dialog box, used in two different circumstances: adding new items to the list and edit-
ing existing items. You can see the form of the dialog box in Figure 9.12 and its textual
description in the following listing (detailed because it has many interesting features, so I
suggest you read this code with care).

object FormItem: TFormItem
Caption = ‘Item’
Color = clBtnFace
Position = poScreenCenter
object Label1: TLabel
Caption = ‘&Reference:’
FocusControl = EditReference

end
object EditReference: TEdit...
object Label2: TLabel

F I G U R E 9 . 1 2 :
The form of the dialog box
of the RefList2 example at
design time

Creating a Dialog Box

2874c09.qxd 7/2/01 4:26 PM Page 361

http://www.sybex.com

362

Caption = ‘&Type:’
FocusControl = ComboType

end
object ComboType: TComboBox
Style = csDropDownList
Items.Strings = (
‘Book’
‘CD’
‘Magazine’
‘Mail Address’
‘Web Site’)

end
object Label3: TLabel
Caption = ‘&Author:’
FocusControl = EditAuthor

end
object EditAuthor: TEdit...
object Label4: TLabel
Caption = ‘&Country:’
FocusControl = EditCountry

end
object EditCountry: TEdit...
object BitBtn1: TBitBtn
Kind = bkOK

end
object BitBtn2: TBitBtn
Kind = bkCancel

end
end

TIP The items of the combo box in this dialog describe the available images of the image list so
that a user can select the type of the item and the system will show the corresponding glyph.
An even better option would have been to show those glyphs in a graphical combo box, along
with their descriptions.

As I mentioned, this dialog box is used in two different cases. The first takes place as the
user selects File ➢ Add Items from the menu:

procedure TForm1.AddItems1Click(Sender: TObject);
var
NewItem: TListItem;

begin
FormItem.Caption := ‘New Item’;
FormItem.Clear;
if FormItem.ShowModal = mrOK then
begin

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 362

http://www.sybex.com

363

NewItem := ListView1.Items.Add;
NewItem.Caption := FormItem.EditReference.Text;
NewItem.ImageIndex := FormItem.ComboType.ItemIndex;
NewItem.SubItems.Add (FormItem.EditAuthor.Text);
NewItem.SubItems.Add (FormItem.EditCountry.Text);

end;
end;

Besides setting the proper caption of the form, this procedure needs to initialize the dialog
box, as we are entering a brand-new value. If the user clicks OK, however, the program adds
a new item to the list view and sets all its values. To empty the edit boxes of the dialog, the
program calls the custom Clear method, which resets the text of each edit box control:

procedure TFormItem.Clear;
var
I: Integer;

begin
// clear each edit box
for I := 0 to ControlCount - 1 do
if Controls [I] is TEdit then
TEdit (Controls[I]).Text := ‘’;

end;

Editing an existing item requires a slightly different approach. First, the current values are
moved to the dialog box before it is displayed. Second, if the user clicks OK, the program
modifies the current list item instead of creating a new one. Here is the code:

procedure TForm1.ListView1DblClick(Sender: TObject);
begin
if ListView1.Selected <> nil then
begin
// dialog initialization
FormItem.Caption := ‘Edit Item’;
FormItem.EditReference.Text := ListView1.Selected.Caption;
FormItem.ComboType.ItemIndex := ListView1.Selected.ImageIndex;
FormItem.EditAuthor.Text := ListView1.Selected.SubItems [0];
FormItem.EditCountry.Text := ListView1.Selected.SubItems [1];

// show it
if FormItem.ShowModal = mrOK then
begin
// read the new values
ListView1.Selected.Caption := FormItem.EditReference.Text;
ListView1.Selected.ImageIndex := FormItem.ComboType.ItemIndex;
ListView1.Selected.SubItems [0] := FormItem.EditAuthor.Text;
ListView1.Selected.SubItems [1] := FormItem.EditCountry.Text;

end;
end;

end;

Creating a Dialog Box

2874c09.qxd 7/2/01 4:26 PM Page 363

http://www.sybex.com

364

You can see the effect of this code in Figure 9.13. Notice that the code used to read the
value of a new item or modified one is similar. In general, you should try to avoid this type of
duplicated code and possibly place the shared code statements in a method added to the dia-
log box. In this case, the method could receive as parameter a TListItem object and copy the
proper values into it.

NOTE What happens internally when the user clicks the OK or Cancel button of the dialog box? A
modal dialog box is closed by setting its ModalResult property, and it returns the value of this
property. You can indicate the return value by setting the ModalResult property of the but-
ton. When the user clicks on the button, its ModalResult value is copied to the form, which
closes the form and returns the value as the result of the ShowModal function.

A Modeless Dialog Box
The second example of dialog boxes shows a more complex modal dialog box that uses the
standard approach as well as a modeless dialog box. The main form of the DlgApply example
(and of the identical CLX-based QDlgApply demo) has five labels with names, as you can see
in Figure 9.14 and by viewing the source code on the companion CD.

F I G U R E 9 . 1 3 :
The dialog box of the
RefList2 example used in
edit mode

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 364

http://www.sybex.com

365

If the user clicks a name, its color turns to red; if the user double-clicks it, the program
displays a modal dialog box with a list of names to choose from. If the user clicks the Style
button, a modeless dialog box appears, allowing the user to change the font style of the main
form’s labels. The five labels of the main form are connected to two methods, one for the
OnClick event and the second for the OnDoubleClick event. The first method turns the last
label a user has clicked to red, resetting to black all the others (which have the Tag property
set to 1, as a sort of group index). Notice that the same method is associated with all of the
labels:

procedure TForm1.LabelClick(Sender: TObject);
var
I: Integer;

begin
for I := 0 to ComponentCount - 1 do
if (Components[I] is TLabel) and (Components[I].Tag = 1) then
TLabel (Components[I]).Font.Color := clBlack;

// set the color of the clicked label to red
(Sender as TLabel).Font.Color := clRed;

end;

The second method common to all of the labels is the handler of the OnDoubleClick event.
The LabelDoubleClick method selects the Caption of the current label (indicated by the
Sender parameter) in the list box of the dialog and then shows the modal dialog box. If the
user closes the dialog box by clicking OK and an item of the list is selected, the selection is
copied back to the label’s caption:

procedure TForm1.LabelDoubleClick(Sender: TObject);
begin
with ListDial.Listbox1 do

F I G U R E 9 . 1 4 :
The three forms (a main
form and two dialog boxes)
of the DlgApply example at
run time

Creating a Dialog Box

2874c09.qxd 7/2/01 4:26 PM Page 365

http://www.sybex.com

366

begin
// select the current name in the list box
ItemIndex := Items.IndexOf (Sender as TLabel).Caption);
// show the modal dialog box, checking the return value
if (ListDial.ShowModal = mrOk) and (ItemIndex >= 0) then
// copy the selected item to the label
(Sender as TLabel).Caption := Items [ItemIndex];

end;
end;

TIP Notice that all the code used to customize the modal dialog box is in the LabelDoubleClick
method of the main form. The form of this dialog box has no added code.

The modeless dialog box, by contrast, has a lot of coding behind it. The main form simply
displays the dialog box when the Style button is clicked (notice that the button caption ends
with three dots to indicate that it leads to a dialog box), by calling its Show method. You can
see the dialog box running in Figure 9.14 above.

Two buttons, Apply and Close, replace the OK and Cancel buttons in a modeless dialog
box. (The fastest way to obtain these buttons is to select the bkOK or bkCancel value for the
Kind property and then edit the Caption.) At times, you may see a Cancel button that works
as a Close button, but the OK button in a modeless dialog box usually has no meaning. Instead,
there might be one or more buttons that perform specific actions on the main window, such as
Apply, Change Style, Replace, Delete, and so on.

If the user clicks one of the check boxes of this modeless dialog box, the style of the sample
label’s text at the bottom changes accordingly. You accomplish this by adding or removing
the specific flag that indicates the style, as in the following OnClick event handler:

procedure TStyleDial.ItalicCheckBoxClick(Sender: TObject);
begin
if ItalicCheckBox.Checked then
LabelSample.Font.Style := LabelSample.Font.Style + [fsItalic]

else
LabelSample.Font.Style := LabelSample.Font.Style - [fsItalic];

end;

When the user selects the Apply button, the program copies the style of the sample label to
each of the form’s labels, rather than considering the values of the check boxes:

procedure TStyleDial.ApplyBitBtnClick(Sender: TObject);
begin
Form1.Label1.Font.Style := LabelSample.Font.Style;
Form1.Label2.Font.Style := LabelSample.Font.Style;
...

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 366

http://www.sybex.com

367

As an alternative, instead of referring to each label directly, you can look for it by calling
the FindComponent method of the form, passing the label name as a parameter, and then cast-
ing the result to the TLabel type. The advantage of this approach is that we can create the
names of the various labels with a for loop:

procedure TStyleDial.ApplyBitBtnClick(Sender: TObject);
var
I: Integer;

begin
for I := 1 to 5 do
(Form1.FindComponent (‘Label’ + IntToStr (I)) as TLabel).Font.Style :=
LabelSample.Font.Style;

end;

TIP The ApplyBitBtnClick method could also be written by scanning the Controls array in a
loop, as I’ve already done in other examples. I decided to use the FindComponent method,
instead, to demonstrate a different technique.

This second version of the code is certainly slower, because it has more operations to do,
but you won’t notice the difference, because it is very fast anyway. Of course, this second
approach is also more flexible; if you add a new label, you only need to fix the higher limit of
the for loop, provided all the labels have consecutive numbers. Notice that when the user
clicks the Apply button, the dialog box does not close. Only the Close button has this effect.
Consider also that this dialog box needs no initialization code because the form is not
destroyed, and its components maintain their status each time the dialog box is displayed.

Predefined Dialog Boxes
Besides building your own dialog boxes, Delphi allows you to use some default dialog boxes
of various kinds. Some are predefined by Windows; others are simple dialog boxes (such as
message boxes) displayed by a Delphi routine. The Delphi Component Palette contains a
page of dialog box components. Each of these dialog boxes—known as Windows common
dialogs—is defined in the system library ComDlg32.DLL.

Windows Common Dialogs
I have already used some of these dialog boxes in several examples in the previous chapters,
so you are probably familiar with them. Basically, you need to put the corresponding compo-
nent on a form, set some of its properties, run the dialog box (with the Execute method,
returning a Boolean value), and retrieve the properties that have been set while running it.
To help you experiment with these dialog boxes, I’ve built the CommDlg test program.

Predefined Dialog Boxes

2874c09.qxd 7/2/01 4:26 PM Page 367

http://www.sybex.com

368

What I want to do is simply highlight some key and nonobvious features of the common
dialog boxes, and let you study the source code of the example for the details:

• The Open Dialog Component can be customized by setting different file extensions
filters, using the Filter property, which has a handy editor and can be assigned directly
with a string like Text File (*.txt)|*.txt. Another handy feature is to let the dialog
check whether the extension of the selected file matches the default extension, by
checking the ofExtensionDifferent flag of the Options property after executing the dia-
log. Finally, this dialog allows multiple selections by setting its ofAllowMultiSelect
option. In this case you can get the list of the selected files by looking at the Files
string list property.

• The SaveDialog component is used in similar ways and has similar properties, although
you cannot select multiple files, of course.

• The OpenPictureDialog and SavePictureDialog components provide similar features
but have a customized form, which shows a preview of an image. Of course, it makes
sense to use them only for opening or saving graphical files.

• The FontDialog component can be used to show and select from all types of fonts, fonts
useable on both the screen and a selected printer (WYSIWYG), or only TrueType fonts.
You can show or hide the portion related to the special effects, and obtain other differ-
ent versions by setting its Options property. You can also activate an Apply button sim-
ply by providing an event handler for its OnApply event and using the fdApplyButton
option. A Font dialog box with an Apply button (see Figure 9.15) behaves almost like a
modeless dialog box (but isn’t one).

F I G U R E 9 . 1 5 :
The Font selection dialog
box with an Apply button

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 368

http://www.sybex.com

369

• The ColorDialog component is used with different options, to show the dialog fully
open at first or to prevent it from opening fully. These settings are the cdFullOpen or
cdPreventFullOpen values of the Options property.

• The Find and Replace dialog boxes are truly modeless dialogs, but you have to imple-
ment the find and replace functionality yourself, as I’ve partially done in the CommDlg
example. The custom code is connected to the buttons of the two dialog boxes by pro-
viding the OnFind and OnReplace events.

NOTE Qt offers a similar set of predefined dialog boxes, only the set of options is often more limited.
I’ve created the QCommDlg version of the example you can use to experiment with these set-
tings. The CLX program has fewer menu items, as some of the options are not available and
there are other minimal changes in the source code.

A Parade of Message Boxes
The Delphi message boxes and input boxes are another set of predefined dialog boxes. There
are many Delphi procedures and functions you can use to display simple dialog boxes:

• The MessageDlg function shows a customizable message box, with one or more buttons
and usually a bitmap. The MessageDlgPos function is similar to the MessageDlg function,
but the message box is displayed in a given position, not in the center of the screen.

• The ShowMessage procedure displays a simpler message box, with the application name
as the caption and just an OK button. The ShowMessagePos procedure does the same,
but you also indicate the position of the message box. The ShowMessageFmt procedure
is a variation of ShowMessage, which has the same parameters as the Format function. It
corresponds to calling Format inside a call to ShowMessage.

• The MessageBox method of the Application object allows you to specify both the mes-
sage and the caption; you can also provide various buttons and features. This is a simple
and direct encapsulation of the MessageBox function of the Windows API, which passes
as a main window parameter the handle of the Application object. This handle is
required to make the message box behave like a modal window.

• The InputBox function asks the user to input a string. You provide the caption, the
query, and a default string. The InputQuery function asks the user to input a string,
too. The only difference between this and the InputBox function is in the syntax. The
InputQuery function has a Boolean return value that indicates whether the user has
clicked OK or Cancel.

Predefined Dialog Boxes

2874c09.qxd 7/2/01 4:26 PM Page 369

http://www.sybex.com

370

To demonstrate some of the message boxes available in Delphi, I’ve written another sample
program, with a similar approach to the preceding CommDlg example. In the MBParade
example, you have a high number of choices (radio buttons, check boxes, edit boxes, and spin
edit controls) to set before you click one of the buttons that displays a message box. The sim-
ilar QMbParade example misses only the possibility of the help button, not available in the
CLX message boxes.

About Boxes and Splash Screens
Applications usually have an About box, where you can display information, such as the ver-
sion of the product, a copyright notice, and so on. The simplest way to build an About box is
to use the MessageDlg function. With this method, you can show only a limited amount of
text and no special graphics.

Therefore, the usual method for creating an About box is to use a dialog box, such as the
one generated with one of the Delphi default templates. In this about box you might want to
add some code to display system information, such as the version of Windows or the amount
of free memory, or some user information, such as the registered user name.

Building a Splash Screen
Another typical technique used in applications is to display an initial screen before the main
form is shown. This makes the application seem more responsive, because you show something
to the user while the program is loading, but it also makes a nice visual effect. Sometimes, this
same window is displayed as the application’s About box.

For an example in which a splash screen is particularly useful, I’ve built a program display-
ing a list box filled with prime numbers. The prime numbers are computed on program
startup, so that they are displayed as soon as the form becomes visible:

procedure TForm1.FormCreate(Sender: TObject);
var
I: Integer;

begin
for I := 1 to 30000 do
if IsPrime (I) then
ListBox1.Items.Add (IntToStr (I));

end;

This method calls an IsPrime function I’ve added to the program. This function, which
you can find in the source code, computes prime numbers in a terribly slow way; but I
needed a slow form creation to demonstrate my point. The numbers are added to a list box

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 370

http://www.sybex.com

371

that covers the full client area of the form and allows multiple columns to be displayed, as
you can see in Figure 9.16.

There are three versions of the Splash program (plus the three corresponding CLX ver-
sions). As you can see by running the Splash0 example, the problem with this program is that
the initial operation, which takes place in the FormCreate method, takes a lot of time. When
you start the program, it takes several seconds to display the main form. If your computer is
very fast or very slow, you can change the upper limit of the for loop of the FormCreate
method to make the program faster or slower.

This program has a simple dialog box with an image component, a simple caption, and a
bitmap button, all placed inside a panel taking up the whole surface of the About box. This
form is displayed when you select the Help ➢ About menu item. But what we really want is
to display this About box while the program starts. You can see this effect by running the
Splash1 and Splash2 examples, which show a splash screen using two different techniques.

First of all, I’ve added a method to the TAboutBox class. This method, called MakeSplash,
changes some properties of the form to make it suitable for a splash form. Basically it
removes the border and caption, hides the OK button, makes the border of the panel thick
(to replace the border of the form), and then shows the form, repainting it immediately:

procedure TAboutBox.MakeSplash;
begin
BorderStyle := bsNone;
BitBtn1.Visible := False;
Panel1.BorderWidth := 3;

F I G U R E 9 . 1 6 :
The main form of the
Splash example, with the
About box activated from
the menu

About Boxes and Splash Screens

2874c09.qxd 7/2/01 4:26 PM Page 371

http://www.sybex.com

372

Show;
Update;

end;

This method is called after creating the form in the project file of the Splash1 example.
This code is executed before creating the other forms (in this case only the main form), and
the splash screen is then removed before running the application. These operations take
place within a try/finally block. Here is the source code of the main block of the project
file for the Splash2 example:

var
SplashAbout: TAboutBox;

begin
Application.Initialize;

// create and show the splash form
SplashAbout := TAboutBox.Create (Application);
try
SplashAbout.MakeSplash;
// standard code...
Application.CreateForm(TForm1, Form1);
// get rid of the splash form
SplashAbout.Close;

finally
SplashAbout.Free;

end;

Application.Run;
end.

This approach makes sense only if your application’s main form takes a while to create, to
execute its startup code (as in this case), or to open database tables. Notice that the splash
screen is the first form created, but because the program doesn’t use the CreateForm method
of the Application object, this doesn’t become the main form of the application. In this case,
in fact, closing the splash screen would terminate the program!

An alternative approach is to keep the splash form on the screen a little longer and use a timer
to get rid of it after a while. I’ve implemented this second technique in the Splash2 example.
This example also uses a different approach for creating the splash form: instead of creating it
in the project source code, it creates the form at the very beginning of the FormCreate
method of the main form.

procedure TForm1.FormCreate(Sender: TObject);
var
I: Integer;
SplashAbout: TAboutBox;

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 372

http://www.sybex.com

373

begin
// create and show the splash form
SplashAbout := TAboutBox.Create (Application);
SplashAbout.MakeSplash;
// standard code...
for I := 1 to 30000 do
if IsPrime (I) then
ListBox1.Items.Add (IntToStr (I));

// get rid of the splash form, after a while
SplashAbout.Timer1.Enabled := True;

end;

The timer is enabled just before terminating the method. After its interval has elapsed (in
the example, 3 seconds) the OnTimer event is activated, and the splash form handles it by clos-
ing and destroying itself:

procedure TAboutBox.Timer1Timer(Sender: TObject);
begin
Close;
Release;

end;

NOTE The Release method of a form is similar to the Free method of objects, only the destruction
of the form is delayed until all event handlers have completed execution. Using Free inside a
form might cause an access violation, as the internal code, which fired the event handler,
might refer again to the form object.

There is one more thing to fix. The main form will be displayed later and in front of the
splash form, unless you make this a top-most form. For this reason I’ve added one line to the
MakeSplash method of the About box in the Splash2 example:

FormStyle := fsStayOnTop;

What’s Next?
In this chapter we’ve explored some important form properties. Now you know how to han-
dle the size and position of a form, how to resize it, and how to get mouse input and paint
over it. You know more about dialog boxes, modal forms, predefined dialogs, splash screens,
and many other techniques, including the funny effect of alpha blending. Understanding the
details of working with forms is critical to a proper use of Delphi, particularly for building
complex applications (unless, of course, you’re building services or Web applications with no
user interface).

What’s Next?

2874c09.qxd 7/2/01 4:26 PM Page 373

http://www.sybex.com

374

In the next chapter we’ll continue by exploring the overall structure of a Delphi applica-
tion, with coverage of the role of two global objects, Application and Screen. I’ll also discuss
MDI development as you learn some more advanced features of forms, such as visual form
inheritance. I’ll also discuss frames, visual component containers similar to forms.

In this chapter, I’ve also provided a short introduction to direct painting and to the use of
the TCanvas class. More about graphics in Delphi forms can also be found in the bonus chap-
ter “Graphics in Delphi” on the companion CD.

Chapter 9 • Working with Forms

2874c09.qxd 7/2/01 4:26 PM Page 374

http://www.sybex.com

10CH A P T E R

The Architecture of Delphi
Applications

� The Application and Screen global objects

� Messages and multitasking in Windows

� Finding the previous instance of an application

� MDI applications

� Visual form inheritance

� Frames

� Base forms and interfaces

2874c10.qxd 7/2/01 4:28 PM Page 375

http://www.sybex.com

376

Although together we’ve built Delphi applications since the beginning of the book, we’ve
never really focused on the structure and the architecture of an application built with Delphi’s
class library. For example, there hasn’t been much coverage about the global Application
object, about techniques for keeping tracks of the forms we’ve created, about the flow of mes-
sages in the system, and other such elements.

In the last chapter you saw how to create applications with multiple forms and dialog boxes,
but we haven’t discussed how these forms can be related one to the other, how can you share
similar features of forms, and how you can operate on multiple similar forms in a coherent
way. All of this is the ambitious goal of this chapter, which covers both basic and advanced
techniques, including visual form inheritance, the use of frames, and MDI development, but
also the use of interfaces for building complex hierarchies of form classes.

The Application Object
I’ve already mentioned the Application global object on multiple occasions, but as in this
chapter we are focusing on the structure of Delphi applications, it is time to delve into some
more details of this global object and its corresponding class. Application is a global object
of the TApplication class, defined in the Forms unit and created in the Controls unit.

The TApplication class is a component, but you cannot use it at design time. Some of its
properties can be directly set in the Application page of the Project Options dialog box; others
must be assigned in code.

To handle its events, instead, Delphi includes a handy ApplicationEvents component. Besides
allowing you to assign handlers at design time, the advantage of this component is that it allows
for multiple handlers. If you simply place two instances of the ApplicationEvents component in
two different forms, each of them can handle the same event, and both event handlers will be
executed. In other words, multiple ApplicationEvents components can chain the handlers.

Some of these application-wide events, including OnActivate, OnDeactivate, OnMinimize,
and OnRestore, allow you to keep track of the status of the application. Other events are for-
warded to the application by the controls receiving them, as in OnActionExecute, OnAction-
Update, OnHelp, OnHint, OnShortCut, and OnShowHint. Finally, there is the OnException global
exception handler we used in Chapter 3, the OnIdle event used for background computing, and
the OnMessage event, which fires whenever a message is posted to any of the windows or win-
dowed controls of the application.

Although its class inherits directly from TComponent, the Application object has a window
associated with it. The application window is hidden from sight but appears on the Taskbar.
This is why Delphi names the window Form1 and the corresponding Taskbar icon Project1.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 376

http://www.sybex.com

377

The window related to the Application object—the application window—serves to keep
together all the windows of an application. The fact that all the top-level forms of a program
have this invisible owner window, for example, is fundamental when the application is acti-
vated. In fact, when the windows of your program are behind those of other programs, click-
ing one window in your application will bring all of that application’s windows to the front.
In other words, the unseen application window is used to connect the various forms of the
application. Actually the application window is not hidden, because that would affect its
behavior; it simply has zero height and width, and therefore it is not visible.

TIP In Windows, the Minimize and Maximize operations are associated by default with system
sounds and a visual animated effect. Applications built with Delphi (starting with version 5)
produce the sound and display the visual effect by default.

When you create a new, blank application, Delphi generates a code for the project file,
which includes the following:

bbeeggiinn
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

eenndd.

As you can see in this standard code, the Application object can create forms, setting the
first one as the MainForm (one of the Application properties) and closing the entire applica-
tion when this main form is destroyed. Moreover, it contains the Windows message loop
(started by the Run method) that delivers the system messages to the proper windows of the
application. A message loop is required by any Windows application, but you don’t need to
write one in Delphi because the Application object provides a default one.

If this is the main role of the Application object, it manages few other interesting areas as well:

• Hints (discussed at the end of Chapter 7)

• The help system, which in Delphi 6 includes the ability to define the type of help
viewer (something not covered in detail in this book)

• Application activation, minimize, and restore

• A global exceptions handler, as discussed in Chapter 3 in the ErrorLog example

• General application information, including the MainForm, executable file name and
path (ExeName), the Icon, and the Title displayed in the Windows taskbar and when
you scan the running applications with the Alt+Tab keys

The Application Object

2874c10.qxd 7/2/01 4:28 PM Page 377

http://www.sybex.com

378

TIP To avoid a discrepancy between the two titles, you can change the application’s title at design
time. As an alternative, at run time, you can copy the form’s caption to the title of the applica-
tion with this code: Application.Title := Form1.Caption.

In most applications, you don’t care about the application window, apart from setting its
Title and icon and handling some of its events. There are some simple operations you can
do anyway. Setting the ShowMainForm property to False in the project source code indicates
that the main form should not be displayed at startup. Inside a program, instead, you can use
the MainForm property of the Application object to access the main form, which is the first
form created in the program.

Displaying the Application Window
There is no better proof that a window indeed exists for the Application object than to
display it. Actually, we don’t need to show it—we just need to resize it and set a couple of
window attributes, such as the presence of a caption and a border. We can perform these
operations by using Windows API functions on the window indicated by the Handle prop-
erty of the Application object:

pprroocceedduurree TForm1.Button1Click(Sender: TObject);
vvaarr
OldStyle: Integer;

bbeeggiinn
// add border and caption to the app window
OldStyle := GetWindowLong (Application.Handle, gwl_Style);
SetWindowLong (Application.Handle, gwl_Style,
OldStyle oorr ws_ThickFrame oorr ws_Caption);

// set the size of the app window
SetWindowPos (Application.Handle, 0, 0, 0, 200, 100,
swp_NoMove oorr swp_NoZOrder);

eenndd;

The two GetWindowLong and SetWindowLong API functions are used to access the system
information related to the window. In this case, we are using the gwl_Style parameter to read
or write the styles of the window, which include its border, title, system menu, border icons,
and so on. The code above gets the current styles and adds (using an or statement) a standard
border and a caption to the form. As we’ll see later in this chapter, you seldom need to use
these low-level API functions in Delphi, because there are properties of the TForm class that
have the same effect. We need this code here because the application window is not a form.

Executing this code displays the project window, as you can see in Figure 10.1. Although
there’s no need to implement something like this in your own programs, running this program
will reveal the relation between the application window and the main window of a Delphi pro-
gram. This is a very important starting point if you want to understand the internal structure
of Delphi applications.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 378

http://www.sybex.com

379

The Application System Menu
Unless you write a very odd program like the example we’ve just looked at, users will only see
the application window in the Taskbar. There, they can activate the window’s system menu by
right-clicking it. As I mentioned in the SysMenu example in Chapter 6, when discussing the
system menu, an application’s menu is not the same as that of the main form. In that example,
I added custom items to the system menu of the main form. Now in the SysMenu2 example, I
want to customize the system menu of the application window in the Taskbar.

First we have to add the new items to the system menu of the application window when the
program starts. Here is the updated code of the FormCreate method:

pprroocceedduurree TForm1.FormCreate(Sender: TObject);
bbeeggiinn
// add a separator and a menu item to the system menu
AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, 0, ‘’);
AppendMenu (GetSystemMenu (Handle, FALSE), MF_STRING, idSysAbout,
‘&About...’);

// add the same items to the application system menu
AppendMenu (GetSystemMenu (Application.Handle, FALSE), MF_SEPARATOR, 0, ‘’);
AppendMenu (GetSystemMenu (Application.Handle, FALSE), MF_STRING, idSysAbout,
‘&About...’);

eenndd;

The first part of the code adds the new separator and item to the system menu of the main
form. The other two calls add the same two items to the application’s system menu, simply
by referring to Application.Handle. This is enough to display the updated system menu, as
you can see by running this program. The next step is to handle the selection of the new
menu item.

To handle form messages, we can simply write new event handlers or message-handling
methods. We cannot do the same with the application window, simply because inheriting
from the TApplication class is quite a complex issue. Most of the time we can just handle

F I G U R E 1 0 . 1 :
The hidden application win-
dow revealed by the
ShowApp program

The Application Object

2874c10.qxd 7/2/01 4:28 PM Page 379

http://www.sybex.com

380

the OnMessage event of this class, which is activated for every message the application
retrieves from the message queue.

To handle the OnMessage event of the global Application object, simply add an Application-
Events component to the main form, and define a handler for the OnMessage event of this com-
ponent. In this case, we only need to handle the wm_SysCommand message, and we only need to
do that if the wParam parameter indicates that the user has selected the menu item we’ve just
added, idSysAbout:

pprroocceedduurree TForm1.ApplicationEvents1Message(vvaarr Msg: tagMSG;
vvaarr Handled: Boolean);

bbeeggiinn
iiff (Msg.Message = wm_SysCommand) aanndd (Msg.wParam = idSysAbout) tthheenn
bbeeggiinn
ShowMessage (‘Mastering Delphi: SysMenu2 example’);
Handled := True;

eenndd;
eenndd;

This method is very similar to the one used to handle the corresponding system menu item
of the main form:

pprroocceedduurree WMSysCommand (vvaarr Msg: TWMSysCommand);
mmeessssaaggee wm_SysCommand;

...
pprroocceedduurree TForm1.WMSysCommand (vvaarr Msg: TWMSysCommand);
bbeeggiinn
// handle a specific command
iiff Msg.CmdType = idSysAbout tthheenn
ShowMessage (‘Mastering Delphi: SysMenu2 example’);

iinnhheerriitteedd;
eenndd;

Activating Applications and Forms
To show how the activation of forms and applications works, I’ve written a simple, self-
explanatory example, available on the companion CD, called ActivApp. This example has
two forms. Each form has a Label component (LabelForm) used to display the status of the
form. The program uses text and color for this, as the handlers of the OnActivate and
OnDeactivate events of the first form demonstrate:

pprroocceedduurree TForm1.FormActivate(Sender: TObject);
bbeeggiinn
LabelForm.Caption := ‘Form2 Active’;
LabelForm.Color := clRed;

eenndd;

pprroocceedduurree TForm1.FormDeactivate(Sender: TObject);
bbeeggiinn
LabelForm.Caption := ‘Form2 Not Active’;

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 380

http://www.sybex.com

381

LabelForm.Color := clBtnFace;
eenndd;

The second form has a similar label and similar code. The main form also displays the
status of the entire application. It uses an ApplicationEvents component to handle the
OnActivate and OnDeactivate events of the Application object. These two event handlers
are similar to the two listed previously, with the only difference being that they modify the
text and color of a second label of the form.

If you try running this program, you’ll see whether this application is the active one and, if
so, which of its forms is the active one. By looking at the output (see Figure 10.2) and listening
for the beep, you can understand how each of the activation events is triggered by Delphi.
Run this program and play with it for a while to understand how it works. We’ll get back to
other events related to the activation of forms in a while.

Tracking Forms with the Screen Object
We have already explored some of the properties and events of the Application object.
Other interesting global information about an application is available through the Screen
object, whose base class is TScreen. This object holds information about the system display
(the screen size and the screen fonts) and also about the current set of forms in a running
application. For example, you can display the screen size and the list of fonts by writing:

Label1.Caption := IntToStr (Screen.Width) + ‘x’ + IntToStr (Screen.Height);
ListBox1.Items := Screen.Fonts;

TScreen also reports the number and resolution of monitors in a multimonitor system.
What I want to focus on now, however, is the list of forms held by the Forms property of the
Screen object, the top-most form indicated by the ActiveForm property, and the related
OnActiveFormChange event. Note that the forms the Screen object references are the forms of
the application and not those of the system.

These features are demonstrated by the Screen example on the CD, which maintains a list
of the current forms in a list box. This list must be updated each time a new form is created,

F I G U R E 1 0 . 2 :
The ActivApp example
shows whether the
application is active and
which of the application’s
forms is active.

The Application Object

2874c10.qxd 7/2/01 4:28 PM Page 381

http://www.sybex.com

382

an existing form is destroyed, or the active form of the program changes. To see how this
works, you can create secondary forms by clicking the button labeled New:

pprroocceedduurree TMainForm.NewButtonClick(Sender: TObject);
vvaarr
NewForm: TSecondForm;

bbeeggiinn
// create a new form, set its caption, and run it
NewForm := TSecondForm.Create (SSeellff);
Inc (nForms);
NewForm.Caption := ‘Second ‘ + IntToStr (nForms);
NewForm.Show;

eenndd;

One of the key portions of the program is the OnCreate event handler of the form, which
fills the list a first time and then connects a handler to the OnActiveFormChange event:

pprroocceedduurree TMainForm.FormCreate(Sender: TObject);
bbeeggiinn
FillFormsList (SSeellff);
// set the secondary forms counter to 0
nForms := 0;
// set an event handler on the screen object
Screen.OnActiveFormChange := FillFormsList;

eenndd;

The code used to fill the Forms list box is inside a second procedure, FillFormsList,
which is also installed as an event handler for the OnActiveFormChange event of the Screen
object:

pprroocceedduurree TMainForm.FillFormsList (Sender: TObject);
vvaarr
I: Integer;

bbeeggiinn
// skip code in destruction phase
iiff Assigned (FormsListBox) tthheenn
bbeeggiinn
FormsLabel.Caption := ‘Forms: ‘ + IntToStr (Screen.FormCount);
FormsListBox.Clear;
// write class name and form title to the list box
ffoorr I := 0 ttoo Screen.FormCount - 1 ddoo
FormsListBox.Items.Add (Screen.Forms[I].ClassName + ‘ - ‘ +
Screen.Forms[I].Caption);

ActiveLabel.Caption := ‘Active Form : ‘ + Screen.ActiveForm.Caption;
eenndd;

eenndd;

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 382

http://www.sybex.com

383

WARNING It is very important not to execute this code while the main form is being destroyed. As an
alternative to testing for the listbox not to be set to nil, you could as well test the form’s
ComponentState for the csDestroying flag. Another approach would be to remove the
OnActiveFormChange event handler before exiting the application; that is, handle the
OnClose event of the main form and assign nil to Screen.OnActiveFormChange.

The FillFormsList method fills the list box and sets a value for the two labels above it to
show the number of forms and the name of the active one. When you click the New button,
the program creates an instance of the secondary form, gives it a new title, and displays it.
The Forms list box is updated automatically because of the handler we have installed for the
OnActiveFormChange event. Figure 10.3 shows the output of this program when some sec-
ondary windows have been created.

TIP The program always updates the text of the ActiveLabel above the list box to show the cur-
rently active form, which is always the same as the first one in the list box.

The secondary forms each have a Close button you can click to remove them. The pro-
gram handles the OnClose event, setting the Action parameter to caFree, so that the form is
actually destroyed when it is closed. This code closes the form, but it doesn’t update the list
of the windows properly. The system moves the focus to another window first, firing the
event that updates the list, and destroys the old form only after this operation.

The first idea I had to update the windows list properly is to introduce a delay, posting a
user-defined Windows message. Because the posted message is queued and not handled

F I G U R E 1 0 . 3 :
The output of the Screen
example with some sec-
ondary forms

The Application Object

2874c10.qxd 7/2/01 4:28 PM Page 383

http://www.sybex.com

384

immediately, if we send it at the last possible moment of life of the secondary form, the main
form will receive it when the other form is destroyed.

The trick is to post the message in the OnDestroy event handler of the secondary form. To
accomplish this, we need to refer to the MainForm object, by adding a uses statement in the
implementation portion of this unit. I’ve posted a wm_User message, which is handled by a
specific message method of the main form, as shown here:

ppuubblliicc
pprroocceedduurree ChildClosed (vvaarr MMeessssaaggee: TMessage);
mmeessssaaggee wm_User;

Here is the code for this method:
pprroocceedduurree TMainForm.ChildClosed (vvaarr MMeessssaaggee: TMessage);
bbeeggiinn
FillFormsList (SSeellff);

eenndd;

The problem here is that if you close the main window before closing the secondary forms,
the main form exists, but its code cannot be executed anymore. To avoid another system
error (an Access Violation Fault), you need to post the message only if the main form is not
closing. But how do you know that? One way is to add a flag to the TMainForm class and
change its value when the main form is closing, so that you can test the flag from the code
of the secondary window.

This is a good solution—so good that the VCL already provides something similar. There
is a barely documented ComponentState property. It is a Pascal set that includes (among other
flags) a csDestroying flag, which is set when the form is closing. Therefore, we can write the
following code:

pprroocceedduurree TSecondForm.FormDestroy(Sender: TObject);
bbeeggiinn
iiff nnoott (csDestroying iinn MainForm.ComponentState) tthheenn
PostMessage (MainForm.Handle, wm_User, 0, 0);

eenndd;

With this code, the list box always lists all of the forms in the application. Note that you need
to disable the automatic creation of the secondary form by using the Forms page of the Project
Options dialog box.

After giving it some thought, however, I found an alternative and much more Delphi-oriented
solution. Every time a component is destroyed, it tells its owner about the event by calling
the Notification method defined in the TComponent class. Because the secondary forms are
owned by the main one, as specified in the code of the NewButtonClick method, we can over-
ride this method and simplify the code. In the form class, simply write

pprrootteecctteedd
pprroocceedduurree Notification(AComponent: TComponent;
Operation: TOperation); oovveerrrriiddee;

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 384

http://www.sybex.com

385

Here is the code of the method:
pprroocceedduurree TMainForm.Notification(AComponent: TComponent;
Operation: TOperation);

bbeeggiinn
iinnhheerriitteedd Notification(AComponent, Operation);
iiff (Operation = opRemove) aanndd Showing aanndd (AComponent iiss TForm) tthheenn
FillFormsList;

eenndd;

You’ll find the complete code of this version in the Screen2 directory on the CD.

NOTE In case the secondary forms were not owned by the main one, we could have used the
FreeNotification method to get the secondary form to notify the main form when they are
destroyed. FreeNotification receives as parameter the component to notify when the cur-
rent component is destroyed. The effect is a call to the Notification method coming from a
component other than the owned ones. FreeNotification is generally used by component
writers to safely connect components on different forms or data modules.

The last feature I’ve added to both versions of the program is a simple one. When you
click an item in the list box, the corresponding form is activated, using the BringToFront
method:

pprroocceedduurree TMainForm.FormsListBoxClick(Sender: TObject);
bbeeggiinn
Screen.Forms [FormsListBox.ItemIndex].BringToFront;

eenndd;

Nice—well, almost nice. If you click the list box of an inactive form, the main form is acti-
vated first, and the list box is rearranged, so you might end up selecting a different form than
you were expecting. If you experiment with the program, you’ll soon realize what I mean.
This minor glitch in the program is an example of the risks you face when you dynamically
update some information and let the user work on it at the same time.

Events, Messages, and Multitasking in Windows
To understand how Windows applications work internally, we need to spend a minute dis-
cussing how multitasking is supported in this environment. We also need to understand the
role of timers (and the Timer component) and of background (or idle) computing.

In short, we need to delve deeper into the event-driven structure of Windows and its
multitasking support. Because this is a book about Delphi programming, I won’t discuss this
topic in detail, but I will provide an overview for readers who have limited experience with
Windows API programming.

Events, Messages, and Multitasking in Windows

2874c10.qxd 7/2/01 4:28 PM Page 385

http://www.sybex.com

386

Event-Driven Programming
The basic idea behind event-driven programming is that specific events determine the con-
trol flow of the application. A program spends most of its time waiting for these events and
provides code to respond to them. For example, when a user clicks one of the mouse buttons,
an event occurs. A message describing this event is sent to the window currently under the
mouse cursor. The program code that responds to events for that window will receive the event,
process it, and respond accordingly. When the program has finished responding to the event, it
returns to a waiting or “idle” state.

As this explanation shows, events are serialized; each event is handled only after the previ-
ous one is completed. When an application is executing event-handling code (that is, when it
is not waiting for an event), other events for that application have to wait in a message queue
reserved for that application (unless the application uses multiple threads). When an applica-
tion has responded to a message and returned to a waiting state, it becomes the last in the list
of programs waiting to handle additional messages. In every version of Win32 (9x, NT, Me,
and 2000), after a fixed amount of time has elapsed, the system interrupts the current appli-
cation and immediately gives control to the next one in the list. The first program is resumed
only after each application has had a turn. This is called preemptive multitasking.

So, an application performing a time-consuming operation in an event handler doesn’t
prevent the system from working properly, but is generally unable even to repaint its own
windows properly, with a very nasty effect. If you’ve never experienced this problem, try for
yourself: Write a time-consuming loop executed when a button is pressed, and try to move
the form or move another window on top of it. The effect is really annoying. Now try adding the
call Application.ProcessMessages within the loop, and you’ll see that the operation
becomes much slower, but the form will be immediately refreshed.

If an application has responded to its events and is waiting for its turn to process messages,
it has no chance to regain control until it receives another message (unless it uses multi-
threading). This is a reason to use timers, a system component that will send a message to
your application every time a time interval elapses.

One final note—when you think about events, remember that input events (using the
mouse or the keyboard) account for only a small percentage of the total message flow in a
Windows application. Most of the messages are the system’s internal messages or messages
exchanged between different controls and windows. Even a familiar input operation such as
clicking a mouse button can result in a huge number of messages, most of which are internal
Windows messages. You can test this yourself by using the WinSight utility included in Del-
phi. In WinSight, choose to view the Message Trace, and select the messages for all of the
windows. Select Start, and then perform some normal operations with the mouse. You’ll see
hundreds of messages in a few seconds.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 386

http://www.sybex.com

387

Windows Message Delivery
Before looking at some real examples, we need to consider another key element of message
handling. Windows has two different ways to send a message to a window:

• The PostMessage API function is used to place a message in the application’s message
queue. The message will be handled only when the application has a chance to access
its message queue (that is, when it receives control from the system), and only after
earlier messages have been processed. This is an asynchronous call, since you do not
know when the message will actually be received.

• The SendMessage API function is used to execute message-handler code immediately.
SendMessage bypasses the application’s message queue and sends the message directly
to a target window or control. This is a synchronous call. This function even has a
return value, which is passed back by the message-handling code. Calling SendMessage
is no different than directly calling another method or function of the program.

The difference between these two ways of sending messages is similar to that between
mailing a letter, which will reach its destination sooner or later, and sending a fax, which goes
immediately to the recipient. Although you will rarely need to use these low-level functions
in Delphi, this description should help you determine which one to use if you do need to
write this type of code.

Background Processing and Multitasking
Suppose that you need to implement a time-consuming algorithm. If you write the algorithm
as a response to an event, your application will be stopped completely during all the time it
takes to process that algorithm. To let the user know that something is being processed, you
can display the hourglass cursor, but this is not a user-friendly solution. Win32 allows other
programs to continue their execution, but the program in question will freeze; it won’t even
update its own user interface if a repaint is requested. In fact, while the algorithm is execut-
ing, the application won’t be able to receive and process any other messages, including the
paint messages.

The simplest solution to this problem is to call the ProcessMessages method of the
Application object many times within the algorithm, usually inside an internal loop. This
call stops the execution, allows the program to receive and handle a message, and then
resumes execution. The problem with this approach, however, is that while the program is
paused to accept messages, the user is free to do any operation and might again click the but-
ton or press the keystrokes that started the algorithm. To fix this, you can disable the buttons
and commands you don’t want the user to select, and you can display the hourglass cursor
(which technically doesn’t prevent a mouse click event, but it does suggest that the user

Events, Messages, and Multitasking in Windows

2874c10.qxd 7/2/01 4:28 PM Page 387

http://www.sybex.com

388

should wait before doing any other operation). An alternative solution is to split the algorithm
into smaller pieces and execute each of them in turn, letting the application respond to pend-
ing messages in between processing the pieces. We can use a timer to let the system notify us
once a time interval has elapsed. Although you can use timers to implement some form of
background computing, this is far from a good solution. A slightly better technique would be
to execute each step of the program when the Application object receives the OnIdle event.

The difference between calling ProcessMessages and using the OnIdle events is that by
calling ProcessMessages, you will give your code more processing time than with the OnIdle
approach. Calling ProcessMessages is a way to let the system perform other operations while
your program is computing; using the OnIdle event is a way to let your application perform
background tasks when it doesn’t have pending requests from the user.

NOTE All these techniques for background computing were necessary in 16-bit Windows days. In
Win32, you should generally use secondary threads to perform lengthy or background operations.

Checking for a Previous Instance of an Application
One form of multitasking is the execution of two or more instances of the same application.
Any application can generally be executed by a user in more than one instance, and it needs to
be able to check for a previous instance already running, in order to disable this default behav-
ior and allow for one instance at most. This section demonstrates several ways of implementing
such a check, allowing me to discuss some interesting Windows programming techniques.

Looking for a Copy of the Main Window
To find a copy of the main window of a previous instance, use the FindWindow API function
and pass it the name of the window class (the name used to register the form’s window type,
or WNDCLASS, in the system) and the caption of the window for which you are looking. In a
Delphi application, the name of the WNDCLASS window class is the same as the Object Pascal
name for the form’s class (for example, TForm1). The result of the FindWindow function is
either a handle to the window or zero (if no matching window was found).

The main code of your Delphi application should be written so that it will execute only if
the FindWindow result is zero:

vvaarr
Hwnd: THandle;

bbeeggiinn
Hwnd := FindWindow (‘TForm1’, nil);
iiff Hwnd = 0 tthheenn

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 388

http://www.sybex.com

389

bbeeggiinn
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

eenndd
eellssee
SetForegroundWindow (Hwnd)

eenndd.

To activate the window of the previous instance of the application, you can use the
SetForegroundWindow function, which works for windows owned by other processes. This
call produces its effect only if the window passed as parameter hasn’t been minimized. When
the main form of a Delphi application is minimized, in fact, it is hidden, and for this reason
the activation code has no effect.

Unfortunately, if you run a program that uses the FindWindow call just shown from within
the Delphi IDE, a window with that caption and class may already exist: the design-time
form. Thus, the program won’t start even once. However, it will run if you close the form
and its corresponding source code file (closing only the form, in fact, simply hides the win-
dow), or if you close the project and run the program from the Windows Explorer.

Using a Mutex
A completely different approach is to use a mutex, or mutual exclusion object. This is a typi-
cal Win32 approach, commonly used for synchronizing threads, as we’ll see later in this
chapter. Here we are going to use a mutex for synchronizing two different applications, or
(to be more precise) two instances of the same application.

Once an application has created a mutex with a given name, it can test whether this object
is already owned by another application, calling the WaitForSingleObject Windows API
function. If the mutex has no owner, the application calling this function becomes the owner.
If the mutex is already owned, the application waits until the time-out (the second parameter
of the function) elapses. It then returns an error code.

To implement this technique, you can use the following project source code, which you’ll
find in the OneCopy example:

vvaarr
hMutex: THandle;

bbeeggiinn
HMutex := CreateMutex (nil, False, ‘OneCopyMutex’);
iiff WaitForSingleObject (hMutex, 0) <> wait_TimeOut tthheenn
bbeeggiinn
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

Checking for a Previous Instance of an Application

2874c10.qxd 7/2/01 4:28 PM Page 389

http://www.sybex.com

390

eenndd;;
eenndd..

If you run this example twice, you’ll see that it creates a new, temporary copy of the appli-
cation (the icon appears in the Taskbar) and then destroys it when the time-out elapses. This
approach is certainly more robust than the previous one, but it lacks a feature: how do we
enable the existing instance of the application? We still need to find its form, but we can use
a better approach.

Searching the Window List
When you want to search for a specific main window in the system, you can use the EnumWindows
API functions. Enumeration functions are quite peculiar in Windows, because they usually
require another function as a parameter. These enumeration functions require a pointer to a
function (often described as a callback function) as parameter. The idea is that this function is
applied to each element of the list (in this case, the list of main windows), until the list ends
or the function returns False. Here is the enumeration function from the OneCopy example:

ffuunnccttiioonn EnumWndProc (hwnd: THandle;
Param: Cardinal): Bool; ssttddccaallll;

vvaarr
ClassName, WinModuleName: string;
WinInstance: THandle;

bbeeggiinn
Result := True;
SetLength (ClassName, 100);
GetClassName (hwnd, PChar (ClassName), Length (ClassName));
ClassName := PChar (ClassName);
iiff ClassName = TForm1.ClassName tthheenn
bbeeggiinn
// get the module name of the target window
SetLength (WinModuleName, 200);
WinInstance := GetWindowLong (hwnd, GWL_HINSTANCE);
GetModuleFileName (WinInstance,
PChar (WinModuleName), Length (WinModuleName));

WinModuleName := PChar(WinModuleName); // adjust length
// compare module names
iiff WinModuleName = ModuleName tthheenn
bbeeggiinn
FoundWnd := Hwnd;
Result := False; // stop enumeration

eenndd;
eenndd;

eenndd;

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 390

http://www.sybex.com

391

This function, called for each nonchild window of the system, checks the name of each
window’s class, looking for the name of the TForm1 class. When it finds a window with this
string in its class name, it uses GetModuleFilename to extract the name of the executable file
of the application that owns the matching form. If the module name matches that of the cur-
rent program (which was extracted previously with similar code), you can be quite sure that
you have found a previous instance of the same program. Here is how you can call the enu-
merated function:

vvaarr
FoundWnd: THandle;
ModuleName: string;

bbeeggiinn
iiff WaitForSingleObject (hMutex, 0) <> wait_TimeOut tthheenn
...

eellssee
bbeeggiinn
// get the current module name
SetLength (ModuleName, 200);
GetModuleFileName (HInstance, PChar (ModuleName), Length (ModuleName));
ModuleName := PChar (ModuleName); // adjust length
// find window of previous instance
EnumWindows (@EnumWndProc, 0);

Handling User-Defined Window Messages
I’ve mentioned earlier that the SetForegroundWindow call doesn’t work if the main form of the
program has been minimized. Now we can solve this problem. You can ask the form of another
application—the previous instance of the same program in this case—to restore its main form
by sending it a user-defined window message. You can then test whether the form is mini-
mized and post a new user-defined message to the old window. Here is the code; in the
OneCopy program, it follows the last fragment shown in the preceding section:

iiff FoundWnd <> 0 tthheenn
bbeeggiinn
// show the window, eventually
iiff nnoott IsWindowVisible (FoundWnd) tthheenn
PostMessage (FoundWnd, wm_User, 0, 0);

SetForegroundWindow (FoundWnd);
eenndd;

Again, the PostMessage API function sends a message to the message queue of the applica-
tion that owns the destination window. In the code of the form, you can add a special func-
tion to handle this message:

ppuubblliicc
pprroocceedduurree WMUser (vvaarr msg: TMessage);
mmeessssaaggee wm_User;

Checking for a Previous Instance of an Application

2874c10.qxd 7/2/01 4:28 PM Page 391

http://www.sybex.com

392

Now you can write the code of this method, which is simple:
pprroocceedduurree TForm1.WMUser (vvaarr msg: TMessage);
bbeeggiinn
Application.Restore;

eenndd;

Creating MDI Applications
A common approach for the structure of an application is MDI (Multiple Document Inter-
face). An MDI application is made up of several forms that appear inside a single main form.
If you use Windows Notepad, you can open only one text document, because Notepad isn’t
an MDI application. But with your favorite word processor, you can probably open several
different documents, each in its own child window, because they are MDI applications. All
these document windows are usually held by a frame, or application, window.

NOTE Microsoft is departing more and more from the MDI model stressed in Windows 3 days. Start-
ing with Resource Explorer in Windows 95 and even more with Office 2000, Microsoft tends
to use a specific main window for every document, the classic SDI (Single Document Interface)
approach. In any case, MDI isn’t dead and can sometimes be a useful structure.

MDI in Windows: A Technical Overview
The MDI structure gives programmers several benefits automatically. For example, Windows
handles a list of the child windows in one of the pull-down menus of an MDI application, and
there are specific Delphi methods that activate the corresponding MDI functionality, to tile or
cascade the child windows. The following is the technical structure of an MDI application in
Windows:

• The main window of the application acts as a frame or a container.

• A special window, known as the MDI client, covers the whole client area of the frame
window. This MDI client is one of the Windows predefined controls, just like an edit
box or a list box. The MDI client window lacks any specific user-interface element, but
it is visible. In fact, you can change the standard system color of the MDI work area
(called the Application Background) in the Appearance page of the Display Properties
dialog box in Windows.

• There are multiple child windows, of the same kind or of different kinds. These child
windows are not placed in the frame window directly, but each is defined as a child of
the MDI client window, which in turn is a child of the frame window.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 392

http://www.sybex.com

393

Frame and Child Windows in Delphi
Delphi makes the development of MDI applications easy, even without using the MDI Appli-
cation template available in Delphi (see the Applications page of the File ➢ New dialog box).
You only need to build at least two forms, one with the FormStyle property set to fsMDIForm
and the other with the same property set to fsMDIChild. Set these two properties in a simple
program and run it, and you’ll see the two forms nested in the typical MDI style.

Generally, however, the child form is not created at startup, and you need to provide a way
to create one or more child windows. This can be done by adding a menu with a New menu
item and writing the following code:

vvaarr
ChildForm: TChildForm;

bbeeggiinn
ChildForm := TChildForm.Create (Application);
ChildForm.Show;

Another important feature is to add a “Window” pull-down menu and use it as the value of
the WindowMenu property of the form. This pull-down menu will automatically list all the
available child windows. Of course, you can choose any other name for the pull-down menu,
but Window is the standard.

To make this program work properly, we can add a number to the title of any child window
when it is created:

pprroocceedduurree TMainForm.New1Click(Sender: TObject);
vvaarr
ChildForm: TChildForm;

bbeeggiinn
WindowMenu := Window1;
Inc (Counter);
ChildForm := TChildForm.Create (SSeellff);
ChildForm.Caption := ChildForm.Caption + ‘ ‘ + IntToStr (Counter);
ChildForm.Show;

eenndd;

You can also open child windows, minimize or maximize each of them, close them, and use
the Window pull-down menu to navigate among them. Now suppose that we want to close
some of these child windows, to unclutter the client area of our program. Click the Close boxes
of some of the child windows and they are minimized! What is happening here? Remember
that when you close a window, you generally hide it from view. The closed forms in Delphi still
exist, although they are not visible. In the case of child windows, hiding them won’t work,
because the MDI Window menu and the list of windows will still list existing child windows,
even if they are hidden. For this reason, Delphi minimizes the MDI child windows when you

Frame and Child Windows in Delphi

2874c10.qxd 7/2/01 4:28 PM Page 393

http://www.sybex.com

394

try to close them. To solve this problem, we need to delete the child windows when they are
closed, setting the Action reference parameter of the OnClose event to caFree.

Building a Complete Window Menu
Our first task is to define a better menu structure for the example. Typically the Window
pull-down menu has at least three items, titled Cascade, Tile, and Arrange Icons. To handle
the menu commands, we can use some of the predefined methods of TForm that can be used
only for MDI frames:

• The Cascade method cascades the open MDI child windows. The windows overlap
each other. Iconized child windows are also arranged (see ArrangeIcons below).

• The Tile method tiles the open MDI child windows; the child forms are arranged so
that they do not overlap. The default behavior is horizontal tiling, although if you have
several child windows, they will be arranged in several columns. This default can be
changed by using the TileMode property (either tbHorizontal or tbVertical).

• The ArrangeIcons procedure arranges all the iconized child windows. Open forms are
not moved.

As a better alternative to calling these methods, you can place an ActionList in the form
and add to it a series of predefined MDI actions. The related classes are TWindowArrange,
TWindowCascade, TWindowClose, TWindowTileHorizontal, TWindowTileVertical, and
TWindowMinimizeAll. The connected menu items will perform the corresponding actions
and will be disabled if no child window is available. The MdiDemo example, which we’ll look
at next, demonstrates the use of the MDI actions, among other things.

There are also some other interesting methods and properties related strictly to MDI in
Delphi:

• ActiveMDIChild is a run-time and read-only property of the MDI frame form, and it
holds the active child window. The user can change this value by selecting a new child
window, or the program can change it using the Next and Previous procedures, which
activate the child window following or preceding the currently active one.

• The ClientHandle property holds the Windows handle of the MDI client window,
which covers the client area of the main form.

• The MDIChildren property is an array of child windows. You can use this and the
MDIChildCount property to cycle among all of the child windows. This can be useful for
finding a particular child window or to operate on each of them.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 394

http://www.sybex.com

395

NOTE Note that the internal order of the child windows is the reverse order of activation. This means
that the last child window selected is the active window (the first in the internal list), the second-
to-last child window selected is the second, and the first child window selected is the last. This
order determines how the windows are arranged on the screen. The first window in the list is
the one above all others, while the last window is below all others, and probably hidden away.
You can imagine an axis (the z axis) coming out of the screen toward you. The active window
has a higher value for the z coordinate and, thus, covers other windows. For this reason, the
Windows ordering schema is known as the z-order.

The MdiDemo Example
I’ve built a first example to demonstrate most of the features of a simple MDI application.
MdiDemo is actually a full-blown MDI text editor, because each child window hosts a Memo
component and can open and save text files. The child form has a Modified property used to
indicate whether the text of the memo has changed (it is set to True in the handler of the
memo’s OnChange event). Modified is set to False in the Save and Load custom methods and
checked when the form is closed (prompting to save the file).

As I’ve already mentioned, the main form of this example is based on an ActionList com-
ponent. The actions are available through some menu items and a toolbar, as you can see in
Figure 10.4. You can see the details of the ActionList in the source code of the example.
Next, I want to focus on the code of the custom actions. Once more, this example demon-
strates that using actions makes it very simple to modify the user interface of the program,
without writing any extra code. In fact, there is no code directly tied to the user interface.

One of the simplest actions is the ActionFont object, which has both an OnExecute handler,
which uses a FontDialog component, and an OnUpdate handler, which disables the action
(and hence the associated menu item and toolbar button) when there are no child forms:

pprroocceedduurree TMainForm.ActionFontExecute(Sender: TObject);
bbeeggiinn
iiff FontDialog1.Execute tthheenn
(ActiveMDIChild aass TChildForm).Memo1.Font := FontDialog1.Font;

eenndd;

pprroocceedduurree TMainForm.ActionFontUpdate(Sender: TObject);
bbeeggiinn
ActionFont.Enabled := MDIChildCount > 0;

eenndd;

Frame and Child Windows in Delphi

2874c10.qxd 7/2/01 4:28 PM Page 395

http://www.sybex.com

396

The action named New creates the child form and sets a default filename. The Open
action calls the ActionNewExcecute method prior to loading the file:

pprroocceedduurree TMainForm.ActionNewExecute(Sender: TObject);
vvaarr
ChildForm: TChildForm;

bbeeggiinn
Inc (Counter);
ChildForm := TChildForm.Create (SSeellff);
ChildForm.Caption :=
LowerCase (ExtractFilePath (Application.Exename)) + ‘text’ +
IntToStr (Counter) + ‘.txt’;

ChildForm.Show;
eenndd;

pprroocceedduurree TMainForm.ActionOpenExecute(Sender: TObject);
bbeeggiinn
iiff OpenDialog1.Execute tthheenn
bbeeggiinn
ActionNewExecute (SSeellff);
(ActiveMDIChild aass TChildForm).Load (OpenDialog1.FileName);

eenndd;
eenndd;

F I G U R E 1 0 . 4 :
The MdiDemo program
uses a series of predefined
Delphi actions connected to
a menu and a toolbar.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 396

http://www.sybex.com

397

The actual file loading is performed by the Load method of the form. Likewise, the Save
method of the child form is used by the Save and Save As actions. Notice the OnUpdate handler
of the Save action, which enables the action only if the user has changed the text of the memo:

pprroocceedduurree TMainForm.ActionSaveAsExecute(Sender: TObject);
bbeeggiinn
// suggest the current file name
SaveDialog1.FileName := ActiveMDIChild.Caption;
iiff SaveDialog1.Execute tthheenn
bbeeggiinn
// modify the file name and save
ActiveMDIChild.Caption := SaveDialog1.FileName;
(ActiveMDIChild aass TChildForm).Save;

eenndd;
eenndd;

pprroocceedduurree TMainForm.ActionSaveUpdate(Sender: TObject);
bbeeggiinn
ActionSave.Enabled := (MDIChildCount > 0) aanndd
(ActiveMDIChild aass TChildForm).Modified;

eenndd;

pprroocceedduurree TMainForm.ActionSaveExecute(Sender: TObject);
bbeeggiinn
(ActiveMDIChild aass TChildForm).Save;

eenndd;

MDI Applications with Different Child Windows
A common approach in complex MDI applications is to include child windows of different
kinds (that is, based on different child forms). I will build a new example, called MdiMulti, to
highlight some problems you may encounter with this approach. This example has two dif-
ferent types of child forms. The first type will host a circle drawn in the position of the last
mouse click, while the second will contain a bouncing square. Another feature I’ll add to the
main form is a custom background obtained by painting a tiled image in it.

Child Forms and Merging Menus
The first type of child form can display a circle in the position where the user clicked one of
the mouse buttons. Figure 10.5 shows an example of the output of the MdiMulti program.
The program includes a Circle menu, which allows the user to change the color of the sur-
face of the circle as well as the color and size of its border. What is interesting here is that to
program the child form, we do not need to consider the existence of other forms or of the

MDI Applications with Different Child Windows

2874c10.qxd 7/2/01 4:28 PM Page 397

http://www.sybex.com

398

frame window. We simply write the code of the form, and that’s all. The only special care
required is for the menus of the two forms.

If we prepare a main menu for the child form, it will replace the main menu of the frame
window when the child form is activated. An MDI child window, in fact, cannot have a menu
of its own. But the fact that a child window can’t have any menus should not bother you,
because this is the standard behavior of MDI applications. You can use the menu bar of the
frame window to display the menus of the child window. Even better, you can merge the menu
bar of the frame window and that of the child form. For example, in this program, the menu of
the child form can be placed between the frame window’s File and Window pull-down menus.
You can accomplish this using the following GroupIndex values:

• File pull-down menu, main form: 1

• Window pull-down menu, main form: 3

• Circle pull-down menu, child form: 2

Using these settings for the menu group indexes, the menu bar of the frame window will
have either two or three pull-down menus. At startup, the menu bar has two menus. As soon
as you create a child window, there are three menus, and when the last child window is closed
(destroyed), the Circle pull-down menu disappears. You should also spend some time testing
this behavior by running the program.

The second type of child form shows a moving image. The square, a Shape component,
moves around the client area of the form at fixed time intervals, using a Timer component,

F I G U R E 1 0 . 5 :
The output of the MdiMulti
example, with a child win-
dow that displays circles

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 398

http://www.sybex.com

399

and bounces on the edges of the form, changing its direction. This turning process is deter-
mined by a fairly complex algorithm, which we don’t have space to examine. The main point
of the example, instead, is to show you how menu merging behaves when you have an MDI
frame with child forms of different types. (You can study the source code on the companion
CD to see how it works.)

The Main Form
Now we need to integrate the two child forms into an MDI application. The File pull-down
menu here has two separate New menu items, which are used to create a child window of
either kind. The code uses a single child window counter. As an alternative, you could use
two different counters for the two kinds of child windows. The Window menu uses the pre-
defined MDI actions.

As soon as a form of this kind is displayed on the screen, its menu bar is automatically
merged with the main menu bar. When you select a child form of one of the two kinds, the
menu bar changes accordingly. Once all the child windows are closed, the original menu bar
of the main form is reset. By using the proper menu group indexes, we let Delphi accomplish
everything automatically, as you can see in Figure 10.6.

F I G U R E 1 0 . 6 :
The menu bar of the Mdi-
Multi Demo4 application
changes automatically to
reflect the currently
selected child window, as
you can see by comparing
the menu bar with that of
Figure 10.5.

MDI Applications with Different Child Windows

2874c10.qxd 7/2/01 4:28 PM Page 399

http://www.sybex.com

400

I’ve added a few other menu items in the main form, to close every child window and show
some statistics about them. The method related to the Count command scans the MDIChildren
array property to count the number of child windows of each kind (using the RTTI operator is):

ffoorr I := 0 ttoo MDIChildCount - 1 ddoo
iiff MDIChildren iiss TBounceChildForm tthheenn
Inc (NBounce)

eellssee
Inc (NCircle);

Subclassing the MdiClient Window
Finally, the program includes support for a background-tiled image. The bitmap is taken
from an Image component and should be painted on the form in the wm_EraseBkgnd Win-
dows message’s handler. The problem is that we cannot simply connect the code to the main
form, as a separate window, the MdiClient, covers its surface.

We have no corresponding Delphi form for this window, so how can we handle its mes-
sages? We have to resort to a low-level Windows programming technique known as subclass-
ing. (In spite of the name, this has little to do with OOP inheritance.) The basic idea is that
we can replace the window procedure, which receives all the messages of the window, with a
new one we provide. This can be done by calling the SetWindowLong API function and pro-
viding the memory address of the procedure, the function pointer.

NOTE A window procedure is a function receiving all the messages for a window. Every window must
have a window procedure and can have only one. Even Delphi forms have a window procedure;
although this is hidden in the system, it calls the WndProc virtual function, which you can use. But
the VCL has a predefined handling of the messages, which are then forwarded to the message-
handling methods of a form after some preprocessing. With all this support, you need to handle
window procedures explicitly only when working with non-Delphi windows, as in this case.

Unless we have some reason to change the default behavior of this system window, we can
simply store the original procedure and call it to obtain a default processing. The two func-
tion pointers referring to the two procedures (the old and the new one) are stored in two
local fields of the form:

pprriivvaattee
OldWinProc, NewWinProc: Pointer;
pprroocceedduurree NewWinProcedure (vvaarr Msg: TMessage);

The form also has a method we’ll use as a new window procedure, with the actual code
used to paint on the background of the window. Because this is a method and not a plain win-
dow procedure, the program has to call the MakeObjectInstance method to add a prefix to

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 400

http://www.sybex.com

401

the method and let the system use it as if it were a function. All this description is summa-
rized by just two complex statements:

pprroocceedduurree TMainForm.FormCreate(Sender: TObject);
bbeeggiinn
NewWinProc := MakeObjectInstance (NewWinProcedure);
OldWinProc := Pointer (SetWindowLong (ClientHandle, gwl_WndProc, Cardinal
(NewWinProc)));

OutCanvas := TCanvas.Create;
eenndd;

The window procedure we install calls the default one. Then, if the message is wm_EraseBkgnd
and the image is not empty, we draw it on the screen many times using the Draw method of a
temporary canvas. This canvas object is created when the program starts (see the code above)
and connected to the handle passed as wParam parameter by the message. With this approach,
we don’t have to create a new TCanvas object for every background painting operation requested,
thus saving a little time in the frequent operation. Here is the code, which produces the output
already seen in Figure 10.6:

pprroocceedduurree TMainForm.NewWinProcedure (vvaarr Msg: TMessage);
vvaarr
BmpWidth, BmpHeight: Integer;
I, J: Integer;

bbeeggiinn
// default processing first
Msg.Result := CallWindowProc (OldWinProc, ClientHandle, Msg.Msg, Msg.wParam,
Msg.lParam);

// handle background repaint
iiff Msg.Msg = wm_EraseBkgnd tthheenn
bbeeggiinn
BmpWidth := MainForm.Image1.Width;
BmpHeight := MainForm.Image1.Height;
iiff (BmpWidth <> 0) aanndd (BmpHeight <> 0) tthheenn
bbeeggiinn
OutCanvas.Handle := Msg.wParam;
ffoorr I := 0 ttoo MainForm.ClientWidth ddiivv BmpWidth ddoo
ffoorr J := 0 ttoo MainForm.ClientHeight ddiivv BmpHeight ddoo
OutCanvas.Draw (I * BmpWidth, J * BmpHeight,
MainForm.Image1.Picture.Graphic);

eenndd;
eenndd;

eenndd;

MDI Applications with Different Child Windows

2874c10.qxd 7/2/01 4:28 PM Page 401

http://www.sybex.com

402

Visual Form Inheritance
When you need to build two or more similar forms, possibly with different event handlers,
you can use dynamic techniques, hide or create new components at run time, change event han-
dlers, and use if or case statements. Or you can apply the object-oriented techniques, thanks to
visual form inheritance. In short, instead of creating a form based on TForm, you can inherit a
form from an existing one, adding new components or altering the properties of the existing
ones. But what is the real advantage of visual form inheritance?

Well, this mostly depends on the kind of application you are building. If it has multiple forms,
some of which are very similar to each other or simply include common elements, then you can
place the common components and the common event handlers in the base form and add the
specific behavior and components to the subclasses. For example, if you prepare a standard par-
ent form with a toolbar, a logo, default sizing and closing code, and the handlers of some Win-
dows messages, you can then use it as the parent class for each of the forms of an application.

You can also use visual form inheritance to customize an application for different clients,
without duplicating any source code or form definition code; just inherit the specific versions
for a client from the standard forms. Remember that the main advantage of visual inheri-
tance is that you can later change the original form and automatically update all the derived
forms. This is a well-known advantage of inheritance in object-oriented programming lan-
guages. But there is a beneficial side effect: polymorphism. You can add a virtual method in a
base form and override it in a subclassed form. Then you can refer to both forms and call this
method for each of them.

NOTE Delphi includes another feature, frames, which resembles visual form inheritance. In both
cases, you can work at design time on two versions of a form/frame. However, in visual form
inheritance, you are defining two different classes (parent and derived), whereas with frames,
you work on a class and an instance. Frames will be discussed in detail later in this chapter.

Inheriting from a Base Form
The rules governing visual form inheritance are quite simple, once you have a clear idea of
what inheritance is. Basically, a subclass form has the same components as the parent form as
well as some new components. You cannot remove a component of the base class, although
(if it is a visual control) you can make it invisible. What’s important is that you can easily
change properties of the components you inherit.

Notice that if you change a property of a component in the inherited form, any modifica-
tion of the same property in the parent form will have no effect. Changing other properties
of the component will affect the inherited versions, as well. You can resynchronize the two

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 402

http://www.sybex.com

403

property values by using the Revert to Inherited local menu command of the Object Inspector.
The same thing is accomplished by setting the two properties to the same value and recompil-
ing the code. After modifying multiple properties, you can resynchronize them all to the base
version by applying the Revert to Inherited command of the component’s local menu.

Besides inheriting components, the new form inherits all the methods of the base form,
including the event handlers. You can add new handlers in the inherited form and also over-
ride existing handlers.

To describe how visual form inheritance works, I’ve built a very simple example, called
VFI. I’ll describe step-by-step how to build it. First, start a new project, and add four buttons
to its main form. Then select File ➢ New ➢ Other, and choose the page with the name of the
project in the New Items dialog box (see Figure 10.7).

In the New Items dialog, you can choose the form from which you want to inherit. The
new form has the same four buttons. Here is the initial textual description of the new form:

iinnhheerriitteedd Form2: TForm2
Caption = ‘Form2’

eenndd

And here is its initial class declaration, where you can see that the base class is not the usual
TForm but the actual base class form:

ttyyppee
TForm2 = ccllaassss(TForm1)
pprriivvaattee
{ Private declarations }

F I G U R E 1 0 . 7 :
The New Items dialog box
allows you to create an
inherited form.

Visual Form Inheritance

2874c10.qxd 7/2/01 4:28 PM Page 403

http://www.sybex.com

404

ppuubblliicc
{ Public declarations }

eenndd;

Notice the presence of the inherited keyword in the textual description; also notice that
the form indeed has some components, although they are defined in the base class form. If
you move the form and add the caption of one of the buttons, the textual description will
change accordingly:

iinnhheerriitteedd Form2: TForm2
Left = 313
Top = 202
Caption = ‘Form2’
iinnhheerriitteedd Button2: TButton
Caption = ‘Beep...’

eenndd
eenndd

Only the properties with a different value are listed (and by removing these properties
from the textual description of the inherited form, you can reset them to the value of the base
form, as I mentioned before). I’ve actually changed the captions of most buttons, as you can
see in Figure 10.8.

Each of the buttons of the first form has an OnClick handler, with simple code. The first
button shows the inherited form calling its Show method; the second and the third buttons
call the Beep procedure; and the last button displays a simple message.

What happens in the inherited form? First we should remove the Show button, because the
secondary form is already visible. However, we cannot delete a component from an inherited
form. An alternative solution is to leave the component there but set its Visible property to
False. The button will still be there but not visible (as you can guess from Figure 10.8). The
other three buttons will be visible but with different handlers. This is simple to accomplish. If
you select the OnClick event of a button in the inherited form (by double-clicking it), you’ll
get an empty method slightly different from the default one:

pprroocceedduurree TForm2.Button2Click(Sender: TObject);
bbeeggiinn
iinnhheerriitteedd;;

eenndd;;

F I G U R E 1 0 . 8 :
The two forms of the VFI
example at run time

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 404

http://www.sybex.com

405

The inherited keyword stands for a call to the corresponding event handler of the base
form. This keyword is always added by Delphi, even if the handler is not defined in the par-
ent class (and this is reasonable, because it might be defined later) or if the component is not
present in the parent class (which doesn’t seem like a great idea to me). It is very simple to
execute the code of the base form and perform some other operations:

pprroocceedduurree TForm2.Button2Click(Sender: TObject);
bbeeggiinn
iinnhheerriitteedd;;
ShowMessage (‘Hi’);

eenndd;

This is not the only choice. An alternative approach is to write a brand-new event handler
and not execute the code of the base class, as I’ve done for the third button of the VFI example:
To accomplish this, simply remove the inherited keyword. Still another choice includes call-
ing a base-class method after some custom code has been executed, calling it when a condi-
tion is met, or calling the handler of a different event of the base class, as I’ve done for the
fourth button:

pprroocceedduurree TForm2.Button4Click(Sender: TObject);
bbeeggiinn
iinnhheerriitteedd Button3Click (Sender);
iinnhheerriitteedd;

eenndd;

You probably won’t do this very often, but you must be aware that you can. Of course, you
can consider each method of the base form as a method of your form, and call it freely. This
example allows you to explore some features of visual form inheritance, but to see its true
power you’ll need to look at real-world examples more complex than this book has room to
explore. There is something else I want to show you here: visual form polymorphism.

Polymorphic Forms
The problem is simple. If you add an event handler to a form and then change it in an inher-
ited form, there is no way to refer to the two methods using a common variable of the base
class, because the event handlers use static binding by default.

Confusing? Here is an example, which is intended for experienced Delphi programmers.
Suppose you want to build a bitmap viewer form and a text viewer form in the same program.
The two forms have similar elements, a similar toolbar, a similar menu, an OpenDialog com-
ponent, and different components for viewing the data. So you decide to build a base-class
form containing the common elements and inherit the two forms from it. You can see the
three forms at design time in Figure 10.9.

Visual Form Inheritance

2874c10.qxd 7/2/01 4:28 PM Page 405

http://www.sybex.com

406

The main form contains a toolbar panel with a few buttons (real toolbars apparently have a
few problems with visual form inheritance), a menu, and an open dialog component. The
two inherited forms have only minor differences, but they feature a new component, either
an image viewer (TImage) or a text viewer (TMemo). They also modify the settings of the
OpenDialog component, to refer to different types of files.

The main form includes some common code. The Close button and the File ➢ Close com-
mand call the Close method of the form. The Help ➢ About command shows a simple mes-
sage box. The Load button of the base form has the following code:

pprroocceedduurree TViewerForm.ButtonLoadClick(Sender: TObject);
bbeeggiinn
ShowMessage (‘Error: File-loading code missing’);

eenndd;

The File ➢ Load command, instead, calls another method:
pprroocceedduurree TViewerForm.Load1Click(Sender: TObject);
bbeeggiinn
LoadFile;

eenndd;

This method is defined in the TViewerForm class as a virtual abstract method (so that the
class of the base form is actually an abstract class). Because this is an abstract method, we will
need to redefine it (and override it) in the inherited forms. The code of this LoadFile method
simply uses the OpenDialog1 component to ask the user to select an input file and loads it into
the image component:

pprroocceedduurree TImageViewerForm.LoadFile;
bbeeggiinn

F I G U R E 1 0 . 9 :
The base-class form and
the two inherited forms of
the PoliForm example at
design time

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 406

http://www.sybex.com

407

iiff OpenDialog1.Execute tthheenn
Image1.Picture.LoadFromFile (OpenDialog1.Filename);

eenndd;

The other inherited class has similar code, loading the text into the memo component.
The project has one more form, a main form with two buttons, used to reload the files in
each of the viewer forms. The main form is the only form created by the project when it
starts. The generic viewer form is never created: it is only a generic base class, containing
common code and components of the two subclasses. The forms of the two subclasses are
created in the OnCreate event handler of the main form:

pprroocceedduurree TMainForm.FormCreate(Sender: TObject);
vvaarr
I: Integer;

bbeeggiinn
FormList [1] := TTextViewerForm.Create (Application);
FormList [2] := TImageViewerForm.Create (Application);
ffoorr I := 1 ttoo 2 ddoo
FormList[I].Show;

eenndd;

See Figure 10.10 for the resulting forms (with text and image already loaded in the viewers).
FormList is a polymorphic array of generic TViewerForm objects, declared in the TMainForm class.

Note that to make this declaration in the class, you need to add the Viewer unit (but not
the specific forms) in the uses clause of the interface portion of the main form. The array of

F I G U R E 1 0 . 1 0 :
The PoliForm example at
run time

Visual Form Inheritance

2874c10.qxd 7/2/01 4:28 PM Page 407

http://www.sybex.com

408

forms is used to load a new file in each viewer form when one of the two buttons is pressed.
The handlers of the two buttons’ OnClick events use different approaches:

pprroocceedduurree TMainForm.ReloadButton1Click(Sender: TObject);
vvaarr
I: Integer;

bbeeggiinn
ffoorr I := 1 ttoo 2 ddoo
FormList [I].ButtonLoadClick (SSeellff);

eenndd;

pprroocceedduurree TMainForm.ReloadButton2Click(Sender: TObject);
vvaarr
I: Integer;

bbeeggiinn
ffoorr I := 1 ttoo 2 ddoo
FormList [I].LoadFile;

eenndd;

The second button simply calls a virtual method, and it will work without any problem.
The first button calls an event handler and will always reach the generic TFormView class
(displaying the error message of its ButtonLoadClick method). This happens because the
method is static, not virtual.

Is there a way to make this approach work? Sure. Declare the ButtonLoadClick method of
the TFormView class as virtual, and declare it as overridden in each of the inherited form
classes, as we do for any other virtual method:

ttyyppee
TViewerForm = ccllaassss(TForm)
// components and plain methods...
pprroocceedduurree ButtonLoadClick(Sender: TObject); vviirrttuuaall;

ppuubblliicc
pprroocceedduurree LoadFile; vviirrttuuaall; aabbssttrraacctt;

eenndd;
...
ttyyppee
TImageViewerForm = ccllaassss(TViewerForm)
Image1: TImage;
pprroocceedduurree ButtonLoadClick(Sender: TObject); oovveerrrriiddee;

ppuubblliicc
pprroocceedduurree LoadFile; oovveerrrriiddee;

eenndd;

This trick really works, although it is never mentioned in the Delphi documentation. This
ability to use virtual event handlers is what I actually mean by visual form polymorphism. In
other (more technical) words, you can assign a virtual method to an event property, which
will take the address of the method according to the instance available at run time.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 408

http://www.sybex.com

409

Understanding Frames
Chapter 1 briefly discussed frames, which were introduced in Delphi 5. We’ve seen that you
can create a new frame, place some components in it, write some event handlers for the com-
ponents, and then add the frame to a form. In other words, a frame is similar to a form, but it
defines only a portion of a window, not a complete window. This is certainly not a feature
worth a new construct. The totally new element of frames is that you can create multiple
instances of a frame at design time, and you can modify the class and the instance at the same
time. This makes frames an effective tool for creating customizable composite controls at
design time, something close to a visual component-building tool.

In visual form inheritance you can work on both a base form and a derived form at design
time, and any changes you make to the base form are propagated to the derived one, unless
this overrides some property or event. With frames, you work on a class (as usual in Delphi),
but the difference is that you can also customize one or more instances of the class at design
time. When you work on a form, you cannot change a property of the TForm1 class for the
Form1 object at design time. With frames, you can.

Once you realize you are working with a class and one or more of its instances at design
time, there is nothing more to understand about frames. In practice, frames are useful when
you want to use the same group of components in multiple forms within an application. In
this case, in fact, you can customize each of the instances at design time. Wasn’t this already
possible with component templates? It was, but component templates were based on the con-
cept of copying and pasting some components and their code. There was no way to change
the original definition of the template and see the effect in every place it was used. That is
what happens with frames (and in a different way with visual form inheritance); changes to
the original version (the class) are reflected in the copies (the instances).

Let’s discuss a few more elements of frames with an example from the CD, called Frames2.
This program has a frame with a list box, an edit box, and three buttons with simple code
operating on the components. The frame also has a bevel aligned to its client area, because
frames have no border. Of course, the frame has also a corresponding class, which looks like a
form class:

ttyyppee
TFrameList = ccllaassss(TFrame)
ListBox: TListBox;
Edit: TEdit;
btnAdd: TButton;
btnRemove: TButton;
btnClear: TButton;
Bevel: TBevel;
procedure btnAddClick(Sender: TObject);

Understanding Frames

2874c10.qxd 7/2/01 4:28 PM Page 409

http://www.sybex.com

410

procedure btnRemoveClick(Sender: TObject);
procedure btnClearClick(Sender: TObject);

pprriivvaattee
{ Private declarations }

ppuubblliicc
{ Public declarations }

eenndd;

What is different is that you can add the frame to a form. I’ve used two instances of the
frame in the example (as you can see in Figure 10.11) and modified the behavior slightly.
The first instance of the frame has the list box items sorted. When you change a property of
a component of a frame, the DFM file of the hosting form will list the differences, as it does
with visual form inheritance:

oobbjjeecctt FormFrames: TFormFrames
Caption = ‘Frames2’
iinnlliinnee FrameList1: TFrameList
Left = 8
Top = 8
iinnhheerriitteedd ListBox: TListBox
Sorted = True

eenndd
eenndd
iinnlliinnee FrameList2: TFrameList
Left = 232
Top = 8
iinnhheerriitteedd btnClear: TButton
OnClick = FrameList2btnClearClick

eenndd
eenndd

eenndd

F I G U R E 1 0 . 1 1 :
A frame and two instances
of it at design time, in the
Frames2 example

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 410

http://www.sybex.com

411

As you can see from the listing, the DFM file for a form that has frames uses a new DFM
keyword, inline. The references to the modified components of the frame, instead, use the
inherited keyword, although this term is used with an extended meaning. inherited here
doesn’t refer to a base class we are inheriting from, but to the class we are instancing (or
inheriting) an object from. It was probably a good idea, though, to use an existing feature of
visual form inheritance and apply it to the new context. The effect of this approach, in fact, is
that you can use the Revert to Inherited command of the Object Inspector or of the form to
cancel the changes and get back to the default value of properties.

Notice also that unmodified components of the frame class are not listed in the DFM file
of the form using the frame, and that the form has two frames with different names, but the
components on the two frames have the same name. In fact, these components are not owned
by the form, but are owned by the frame. This implies that the form has to reference those
components through the frame, as you can see in the code for the buttons that copy items
from one list box to the other:

pprroocceedduurree TFormFrames.btnLeftClick(Sender: TObject);
bbeeggiinn
FrameList1.ListBox.Items.AddStrings (FrameList2.ListBox.Items);

eenndd;

Finally, besides modifying properties of any instance of a frame, you can change the code
of any of its event handlers. If you double-click one of the buttons of a frame while working
on the form (not on the stand-alone frame), Delphi will generate this code for you:

pprroocceedduurree TFormFrames.FrameList2btnClearClick(Sender: TObject);
bbeeggiinn
FrameList2.btnClearClick(Sender);

eenndd;

The line of code automatically added by Delphi corresponds to a call to the inherited event
handler of the base class in visual form inheritance. This time, however, to get the default
behavior of the frame we need to call an event handler and apply it to a specific instance—the
frame object itself. The current form, in fact, doesn’t include this event handler and knows
nothing about it.

Whether you leave this call in place or remove it depends on the effect you are looking for.
In the example I’ve decided to conditionally execute the default code, depending on the user
confirmation:

pprroocceedduurree TFormFrames.FrameList2btnClearClick(Sender: TObject);
bbeeggiinn
iiff MessageDlg (‘OK to empty the list box?’, mtConfirmation,

[mbYes, mbNo], 0) = idYes tthheenn
// execute standard frame code
FrameList2.btnClearClick(Sender);

eenndd;

Understanding Frames

2874c10.qxd 7/2/01 4:28 PM Page 411

http://www.sybex.com

412

TIP By the way, note that because the event handler has some code, leaving it empty and saving
the form won’t remove it as usual: in fact, it isn’t empty! Instead, if you simply want to omit
the default code for an event, you need to add at least a comment to it, to avoid it being auto-
matically removed by the system!

Frames and Pages
When you have a dialog box with many pages full of controls, the code underlying the form
becomes very complex because all the controls and methods are declared in a single form.
Also, creating all these components (and initializing them) might result in a delay in the dis-
play of the dialog box. Frames actually don’t reduce the construction and initialization time
of equivalently loaded forms; quite the contrary, as loading frames is more complicated for
the streaming system than loading simple components. However, using frames you can load
only the visible pages of a multipage dialog box, reducing the initial load time, which is what
the user perceives.

Frames can solve both of these issues. First, you can easily divide the code of a single complex
form into one frame per page. The form will simply host all of the frames in a PageControl.
This certainly helps you to have simpler and more focused units and makes it simpler to
reuse a specific page in a different dialog box or application. Reusing a single page of a Page-
Control without using a frame or an embedded form, in fact, is far from simple.

As an example of this approach I’ve built the FramePag example, which has some frames
placed inside the three pages of a PageControl, as you can see in Figure 10.12. All of the
frames are aligned to the client area, using the entire surface of the tab sheet (the page) host-
ing them. Actually two of the pages have the same frame, but the two instances of the frame
have some differences at design time. The frame, called Frame3 in the example, has a list box
that is populated with a text file at startup, and has buttons to modify the items in the list and
saves them to a file. The filename is placed inside a label, so that you can easily select a file
for the frame at design time by changing the Caption of the label.

TIP Being able to use multiple instances of a frame is one of the reasons this technique was intro-
duced, and customizing the frame at design time is even more important. Because adding
properties to a frame and making them available at design time requires some customized and
complex code, it is nice to use a component to host these custom values. You have the option
of hiding these components (such as the label in our example) if they don’t pertain to the user
interface.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 412

http://www.sybex.com

413

In the example, we need to load the file when the frame instance is created. Because frames
have no OnCreate event, our best choice is probably to override the CreateWnd method. Writ-
ing a custom constructor, in fact, doesn’t work as it is executed too early—before the specific
label text is available. Here is the frame class code:

ttyyppee
TFrame3 = ccllaassss(TFrame)
...

ppuubblliicc
pprroocceedduurree CreateWnd; oovveerrrriiddee;

Within the CreateWnd method, we simply load the list box content from a file.

Multiple Frames with No Pages
Another approach is to avoid creating all of the pages along with the form hosting them. This
can be accomplished by leaving the PageControl empty and creating the frames only when a
page is displayed. Actually, when you have frames on multiple pages of a PageControl, the
windows for the frames are created only when they are first displayed, as you can find out by
placing a breakpoint in the creation code of the last example.

As an even more radical approach, you can get rid of the page controls and use a TabControl.
Used this way, the tab has no connected tab sheets (or pages) but can display only one set of
information at a time. For this reason, we’ll need to create the current frame and destroy
the previous one or simply hide it by setting its Visible property to False or by calling the
BringToFront of the new frame. Although this sounds like a lot of work, in a large application
this technique can be worth it for the reduced resource and memory usage you can obtain by
applying it.

F I G U R E 1 0 . 1 2 :
Each page of the FramePag
example contains a frame,
thus separating the code of
this complex form into
more manageable chunks.

Understanding Frames

2874c10.qxd 7/2/01 4:28 PM Page 413

http://www.sybex.com

414

To demonstrate this approach, I’ve built an example similar to the previous one, this time
based on a TabControl and dynamically created frames. The main form, visible at run time in
Figure 10.13, has only a TabControl with one page for each frame:

oobbjjeecctt Form1: TForm1
Caption = ‘Frame Pages’
OnCreate = FormCreate
oobbjjeecctt Button1: TButton...
oobbjjeecctt Button2: TButton...
oobbjjeecctt Tab: TTabControl
Anchors = [akLeft, akTop, akRight, akBottom]
Tabs.Strings = (‘Frame2’ ‘Frame3’)
OnChange = TabChange

eenndd
eenndd

I’ve given each tab a caption corresponding to the name of the frame, because I’m going to
use this information to create the new pages. When the form is created, and whenever the
user changes the active tab, the program gets the current caption of the tab and passes it to
the custom ShowFrame method. The code of this method, listed below, checks whether the
requested frame already exists (frame names in this example follow the Delphi standard of
having a number appended to the class name), and then brings it to the front. If the frame
doesn’t exist, it uses the frame name to find the related frame class, creates an object of that

F I G U R E 1 0 . 1 3 :
The first page of the Frame-
Tab example at run time.
The frame inside the tab is
created at run time.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 414

http://www.sybex.com

415

class, and assigns a few properties to it. The code makes extensive use of class references and
dynamic creation techniques:

ttyyppee
TFrameClass = ccllaassss of TFrame;

pprroocceedduurree TForm1.ShowFrame(FrameName: string);
vvaarr
Frame: TFrame;
FrameClass: TFrameClass;

begin
Frame := FindComponent (FrameName + ‘1’) as TFrame;
iiff nnoott Assigned (Frame) tthheenn
bbeeggiinn
FrameClass := TFrameClass (FindClass (‘T’ + FrameName));
Frame := FrameClass.Create (Self);
Frame.Parent := Tab;
Frame.Visible := True;
Frame.Name := FrameName + ‘1’;

end;
Frame.BringToFront;

eenndd;

To make this code work, you have to remember to add a call to RegisterClass in the ini-
tialization section of each unit defining a frame.

Base Forms and Interfaces
We have seen that when you need two similar forms inside an application, you can use visual
form inheritance to inherit one from the other or both of them from a common ancestor.
The advantage of visual form inheritance is that you can use it to inherit the visual definition,
the DFM. However, this is not always requested.

At times, you might want several forms to exhibit a common behavior, or respond to the
same commands, without having any shared component or user interface elements. Using
visual form inheritance with a base form that has no extra components makes little sense to
me. I rather prefer defining my own custom form class, inherited from TForm, and then man-
ually editing the form class declarations to inherit from this custom base form class instead of
the standard one. If all you need is to define some shared methods, or override TForm virtual
methods in a consistent way, defining custom form classes can be a very good idea.

Base Forms and Interfaces

2874c10.qxd 7/2/01 4:28 PM Page 415

http://www.sybex.com

416

Using a Base Form Class
A simple demonstration of this technique is available in the FormIntf demo, showcasing also
the use of interfaces for forms. In a new unit, called SaveStatusForm, I’ve defined the follow-
ing form class (with no related DFM file—don’t use the New Form command, but create a
new unit and type the code in it):

ttyyppee
TSaveStatusForm = ccllaassss (TForm)
pprrootteecctteedd
pprroocceedduurree DoCreate; oovveerrrriiddee;
pprroocceedduurree DoDestroy; oovveerrrriiddee;

eenndd;

The two overridden methods are called at the same time of the event handler, so that I can
attach extra code (allowing the event handler to be defined as usual). Inside the two methods
I simply load or save the form position inside an INI file of the application, in a section
marked with the form caption. Here is the code of the two methods:

pprroocceedduurree TSaveStatusForm.DoCreate;
vvaarr
Ini: TIniFile;

bbeeggiinn
iinnhheerriitteedd;
Ini := TIniFile.Create (ExtractFileName (Application.ExeName));
Left := Ini.ReadInteger(Caption, ‘Left’, Left);
Top := Ini.ReadInteger(Caption, ‘Top’, Top);
Width := Ini.ReadInteger(Caption, ‘Width’, Width);
Height := Ini.ReadInteger(Caption, ‘Height’, Height);
Ini.Free;

eenndd;

pprroocceedduurree TSaveStatusForm.DoDestroy;
vvaarr
Ini: TIniFile;

bbeeggiinn
Ini := TIniFile.Create (ExtractFileName (Application.ExeName));
Ini.WriteInteger(Caption, ‘Left’, Left);
Ini.WriteInteger(Caption, ‘Top’, Top);
Ini.WriteInteger(Caption, ‘Width’, Width);
Ini.WriteInteger(Caption, ‘Height’, Height);
Ini.Free;
iinnhheerriitteedd;

eenndd;

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 416

http://www.sybex.com

417

Again, this is a simple common behavior for your forms, but you can define a very complex
class here. To use this as a base class of the forms you create, simply let Delphi create the
forms as usual (with no inheritance) and then update the form declaration to something like:

ttyyppee
TFormBitmap = ccllaassss(TSaveStatusForm)
Image1: TImage;
OpenPictureDialog1: TOpenPictureDialog;
...

Simple as it seems, this is a very powerful technique, as all you need to do is change the
definition of the forms of your application to refer to this base class. If even this is too
tedious, as you might want to change this base class in the life of your program, you can use
an extra trick, “interposer” classes.

INI Files and the Registry in Delphi
If you want to save information about the status of an application in order to restore it the next
time the program is executed, you can use the explicit support that Windows provides for stor-
ing this kind of information. INI files, the old Windows standard, are once again the preferred
way to save application data. The alternative is the Registry, which is still quite popular. Delphi
provides ready-to-use classes to manipulate both.

The TIniFile Class
For INI files, Delphi has a TIniFile class. Once you have created an object of this class and
connected it to a file, you can read and write information to it. To create the object, you need
to call the constructor, passing a filename to it, as in the following code:

vvaarr

IniFile: TIniFile;

bbeeggiinn

IniFile := TIniFile.Create (‘myprogram.ini’);

There are two choices for the location of the INI file. The code just listed will store the file in the
Windows directory or a user folder for settings in Windows 2000. To store data locally to the appli-
cation (as opposed to local to the current user), you should provide a full path to the constructor.

INI files are divided into sections, each indicated by a name enclosed in square brackets. Each
section can contain multiple items of three possible kinds: strings, integers, or Booleans. The
TIniFile class has three Read methods, one for each kind of data: ReadBool, ReadInteger,
and ReadString. There are also three corresponding methods to write the data: WriteBool,
WriteInteger, and WriteString. Other methods allow you to read or erase a whole section.
In the Read methods, you can also specify a default value to be used if the corresponding entry
doesn’t exist in the INI file.

Base Forms and Interfaces

Continued on next page

2874c10.qxd 7/2/01 4:28 PM Page 417

http://www.sybex.com

418

By the way, notice that Delphi uses INI files quite often, but they are disguised with different
names. For example, the desktop (.dsk) and options (.dof) files are structured as INI files.

The TRegistry and TRegIniFile classes
The Registry is a hierarchical database of information about the computer, the software config-
uration, and the user preferences. Windows has a set of API functions to interact with the Reg-
istry; you basically open a key (or folder) and then work with subkeys (or subfolders) and with
values (or items), but you must be aware of the structure and the details of the Registry.

Delphi provides basically two approaches to the use of the Registry. The TRegistry class pro-
vides a generic encapsulation of the Registry API, while the TRegIniFile class provides the
interface of the TIniFile class but saves the data in the Registry. This class is the natural
choice for portability between INI-based and Registry-based versions of the same program.
When you create a TRegIniFile object, your data ends up in the current user information, so
you’ll generally use a constructor like this:

IniFile := TRegIniFile.Create (‘Software\MyCompany\MyProgram’);

By using the TIniFile and the TRegistryIniFile classes offered by the VCL, you can move
from one model of local and per-user storage to the other. Not that I think you should use the
Registry a lot, as the idea of having a centralized repository for the settings of each application
was a architectural error. Even Microsoft acknowledges this (without really admitting the error)
by suggesting, in the Windows 2000 Compatibility Requirements, that you not use the Reg-
istry anymore for applications settings, but go back to the use of INI files.

An Extra Trick: Interposer Classes
In contrast with Delphi VCL components, which must have unique names, Delphi classes in
general must be unique only within their unit. This means you can have two different units
defining a class with the same name. This looks really weird, at first sight, but can be useful.
For example, Borland is using this technique to provide compatibility between VCL and
VisualCLX classes. Both have a TForm class, one defined in the Forms unit and the other in
the QForms unit. How can this be interesting for the topic discussed here?

NOTE This technique is actually much older than CLX/VCL. For example, the service and control
panel applet units define their own TApplication object, which is not related to the
TApplication used by VCL visual GUI applications and defined in the Forms unit.

There is a technique that I’ve seen mentioned with the name “interposer classes” in an old
issue of The Delphi Magazine, which suggested replacing standard Delphi class names with
your own versions, having the same class name. This way you can use Delphi designer refer-
ring to Delphi standard components at design time, but using your own classes at run time.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 418

http://www.sybex.com

419

The idea is simple. In the SaveStatusForm unit, I could have defined the new form class as
follows:

ttyyppee
TForm = ccllaassss (Forms.TForm)
pprrootteecctteedd
pprroocceedduurree DoCreate; oovveerrrriiddee;
pprroocceedduurree DoDestroy; oovveerrrriiddee;

eenndd;

This class is called TForm, and inherits from TForm of the Forms unit (this last reference is
compulsory to avoid a kind of recursive definition). In the rest of the program, at this point,
you don’t need to change the class definition for your form, but simply add the unit defining
the interposer class (the SaveStatusForm unit in this case) in the uses statement after the unit
defining the Delphi class. The order of the unit in the uses statement is important here, and
the reason some people criticize this technique, as it is hard to know what is going on. I have
to agree: I find interposer classes handy at times (more for components than for forms, I have
to say), but their use makes programs less readable and at times even harder to debug.

Using Interfaces
Another technique, which is slightly more complex but even more powerful than the defini-
tion of a common base form class, is to have forms that implement specific interfaces. This
way you can have forms implementing one or more of these interfaces, query each form for
the interfaces it implements, and call the supported methods.

As an example (available in the same FormIntf program I began discussing in the last sec-
tion), I’ve defined a simple interface for loading and storing:

ttyyppee
IFormOperations = iinntteerrffaaccee
[‘{DACFDB76-0703-4A40-A951-10D140B4A2A0}’]
pprroocceedduurree Load;
pprroocceedduurree Save;

eenndd;

Each form can optionally implement this interface, as the following TFormBitmap class:
ttyyppee
TFormBitmap = ccllaassss(TForm, IFormOperations)
Image1: TImage;
OpenPictureDialog1: TOpenPictureDialog;
SavePictureDialog1: TSavePictureDialog;

ppuubblliicc
pprroocceedduurree Load;
pprroocceedduurree Save;

eenndd;

Base Forms and Interfaces

2874c10.qxd 7/2/01 4:28 PM Page 419

http://www.sybex.com

420

You can see the actual code of the example for the code of the Load and Save methods,
which use the standard dialog boxes to load or save the image. (In the example’s code, the
form also inherits from the TSaveStatusForm class.)

When an application has one or more forms implementing interfaces, you can apply a
given interface method to all the forms supporting it, with code like this (extracted from the
main form of the IntfForm example):

pprroocceedduurree TFormMain.btnLoadClick(Sender: TObject);
vvaarr
i: Integer;

bbeeggiinn
ffoorr i := 0 ttoo Screen.FormCount - 1 ddoo
iiff Supports (Screen.Forms [i], IFormOperations) tthheenn
(Screen.Forms [i] aass IFormOperations).Load;

eenndd;

Consider a business application when you can synchronize all of the forms to the data of a
specific company, or a specific business event. And consider also that, unlike inheritance, you
can have several forms each implementing multiple interfaces, with unlimited combinations.
This is why using an architecture like this can improve a complex Delphi application a great
deal, making it much more flexible and easier to adapt to implementation changes.

What’s Next?
After the detailed description of forms and secondary forms in the previous chapters, I have
focused on the architecture of applications, discussing both how Delphi’s Application object
works and how we can structure applications with multiple forms.

In particular, I’ve discussed MDI, visual form inheritance, and frames. Toward the end I
also discussed custom architectures, with form inheritance and interfaces. Now we can move
forward to another key element of non-trivial Delphi applications: building custom compo-
nents to use within your programs. It is possible to write a specific book about this, so the
description won’t be exhaustive, but you should be able to get a comprehensive overview.

Another element related to the architecture of Delphi applications is the use of packages,
which I’ll introduce as a technology related to components but which really goes beyond
this. In fact, you can structure the code of a large application in multiple packages, contain-
ing forms and other units. The development of programs based on multiple executable files,
libraries, and packages, is discussed in Chapter 12.

After this further step, I will start delving into Delphi database programming, certainly
another key element of the Borland development environment.

Chapter 10 • The Architecture of Delphi Applications

2874c10.qxd 7/2/01 4:28 PM Page 420

http://www.sybex.com

11CH A P T E R

Creating Components

� Extending the Delphi library

� Writing packages

� Customizing existing components

� Building graphical components

� Defining custom events

� Using array properties

� Placing a dialog box in a component

� Writing property and component editors

2874c11.qxd 7/2/01 4:30 PM Page 421

http://www.sybex.com

422

While most Delphi programmers are probably familiar with using existing components,
at times it can also be useful to write our own components or to customize existing ones. One
of the most interesting aspects of Delphi is that creating components is simple. For this reason,
even though this book is intended for Delphi application programmers and not Delphi tool
writers, this chapter will cover the topic of creating components and introduce Delphi add-ins,
such as component and property editors.

This chapter gives an overview of writing Delphi components and presents some simple
examples. There is not enough space to present very complex components, but the ideas in
this chapter will cover all the basics to get you started.

NOTE You’ll find a more information about writing components in Chapter 18, “Writing Database
Components,” including how to build data-aware components.

Extending the Delphi Library
Delphi components are classes, and the Visual Components Library (VCL) is the collection
of all the classes defining Delphi components. Each time you add a new package with some
components to Delphi, you actually extend VCL with a new class. This new class will be
derived from one of the existing component-related classes or the generic TComponent class,
adding new capabilities to those it inherits.

You can derive a new component from an existing component or from an abstract component
class—one that does not correspond to a usable component. The VCL hierarchy includes
many of these intermediate classes (often indicated with the TCustom prefix in their name) to
let you choose a default behavior for your new component and to change its properties.

Component Packages
Components are added to component packages. Each component package is basically a DLL
(a dynamic link library) with a BPL extension (which stands for Borland Package Library).

Packages come in two flavors: design-time packages used by the Delphi IDE and run-time
packages optionally used by applications. The design-only or run-only package option deter-
mines the package’s type. When you attempt to install a package, the IDE checks whether it
has the design-only or run-only flags, and decides whether to let the user install the package
and whether it should be added to the list of run-time packages. Since there are two

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 422

http://www.sybex.com

423

nonexclusive options, each with two possible states, there are four different kinds of compo-
nent packages—two main variations and two special cases:

• Design-only component packages can be installed in the Delphi environment. These
packages usually contain the design-time parts of a component, such as its property edi-
tors and the registration code. Often they can also contain the components themselves,
although this is not the most professional approach. The code of the components of a
design-only package is usually statically linked into the executable file, using the code of
the corresponding Delphi Compiled Unit (DCU) files. Keep in mind, however, that it is
also technically possible to use a design-only package as a run-time package.

• Run-only component packages are used by Delphi applications at run time. They can-
not be installed in the Delphi environment, but they are automatically added to the list
of run-time packages when they are required by a design-only package you install. Run-
only packages usually contain the code of the component classes, but no design-time
support (this is done to minimize the size of the component libraries you ship along
with your executable file). Run-only packages are important because they can be freely
distributed along with applications, but other Delphi programmers won’t be able to
install them in the environment to build new programs.

• Plain component packages (having neither the design-only nor the run-only option set)
cannot be installed and will not be added to the list of run-time packages automatically.
This might make sense for utility packages used by other packages, but they are cer-
tainly rare.

• Packages with both flags set can be installed and are automatically added to the list of
run-time packages. Usually these packages contain components requiring little or no
design-time support (apart from the limited component registration code). Keep in
mind, however, that users of applications built with these packages can use them for
their own development.

TIP The filenames of Delphi’s own design-only packages start with the letters DCL (for
example, DCLSTD60.BPL); filenames of run-only packages start with the letters VCL (for example,
VCL60.BPL). You can follow the same approach for your own packages, if you want.

In Chapter 1, “The Delphi 6 IDE,” we discussed the effect of packages on the size of a
program’s executable file. Now we’ll focus on building packages, since this is a required step
in creating or installing components in Delphi.

When you compile a run-time package, you produce both a dynamic link library with the
compiled code (the BPL file) and a file with only symbol information (a DCP file), including
no compiled machine code. The latter file is used by the Delphi compiler to gather symbol

Extending the Delphi Library

2874c11.qxd 7/2/01 4:30 PM Page 423

http://www.sybex.com

424

information about the units that are part of the package without having access to the unit
(DCU) files, which contain both the symbol information and the compiled machine code.
This reduces compilation time and allows you to distribute just the packages without the pre-
compiled unit files. The precompiled units are still required to statically link the components
into an application. Distribution of precompiled DCU files (or source code) may make sense
depending on the kind of components you develop. We’ll see how to create a package after
we’ve discussed some general guidelines and built our very first component.

NOTE DLLs are executable files containing collections of functions and classes, which can be used by
an application or another DLL at run time. The typical advantage is that if many applications
use the same DLL, only one copy needs to be on the disk or loaded in memory, and the size of
each executable file will be much smaller. This is what happens with Delphi packages, as well.
Chapter 12, “Libraries and Packages,” looks at DLLs and packages in more detail.

Rules for Writing Components
Some general rules govern the writing of components. You can find a detailed description of
most of them in the Delphi Component Writer’s Guide Help file, which is required reading for
Delphi component writers.

Here is my own summary of the rules for component writers:

• Study the Object Pascal language with care. Particularly important concepts are inheri-
tance, method overriding and overloading, the difference between public and published
sections of a class, and the definition of properties and events. If you don’t feel confident
with the Object Pascal language or the basic ideas about VCL, you can refer to the over-
all description of the language and library presented in Part I of the book, particularly
Chapters 3 (“The Object Pascal Language: Inheritance and Polymorphism”) and 5
(“Core Library Classes”).

• Study the structure of the VCL class hierarchy and keep a graph of the classes at hand
(such as the one included with Delphi).

• Follow the standard Delphi naming conventions. There are several of them for com-
ponents, as we will see, and following these rules makes it easier for other program-
mers to interact with your components and further extend them.

• Keep components simple, mimic other components, and avoid dependencies. These
three rules basically mean that a programmer using your components should be able to
use them as easily as preinstalled Delphi components. Use similar property, method,
and event names whenever possible. If users don’t need to learn complex rules about
the use of your component (that is, if the dependencies between methods or properties
are limited) and can simply access properties with meaningful names, they’ll be happy.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 424

http://www.sybex.com

425

• Use exceptions. When something goes wrong, the component should raise an excep-
tion. When you are allocating resources of any kind, you must protect them with
try/finally blocks and destructor calls.

• To complete a component, add a bitmap to it, to be used by Delphi’s Component
Palette. If you intend your component to be used by more than a few people, consider
adding a Help file as well.

• Be ready to write real code and forget about the visual aspects of Delphi. Writing com-
ponents generally means writing code without visual support (although Class Comple-
tion can speed up the coding of plain classes quite a lot). The exception to this rule is
that you can use frames to write components visually.

NOTE You can also use a third-party component writing tool to build your component or to speed up
its development. The most powerful third-party tool for creating Delphi components I know of
is the Component Development Kit (CDK) from Eagle Software (www.eagle-software.com),
but many others are available.

The Base Component Classes
To build a new component you generally start from an existing one, or from one of the base
classes of VCL. In both cases your component is in one of three broad categories of compo-
nents (introduced in Chapter 5), set by the three basic classes of the component hierarchy:

• TWinControl is the parent class of any component based on a window. Components
that descend from this class can receive the input focus and get Windows messages
from the system. You can also use their window handle when calling API functions.
When creating a brand-new window control, you’ll generally inherit from the derived
class TCustomControl, which has a few extra useful features (particularly some support
for painting the control).

• TGraphicControl is the parent class of visible components that have no Windows
handle (which saves some Windows resources). These components cannot receive the
input focus or respond to Windows messages directly. When creating a brand-new
graphical control, you’ll inherit directly from this class (which has a set of features very
similar to TCustomControl).

• TComponent is the parent class of all components (including the controls) and can be
used as a direct parent class for nonvisual components.

In the rest of the chapter, we will build some components using various parent classes, and
we’ll look at the differences among them. We’ll start with components inheriting from exist-
ing components or classes at a low level of the hierarchy, and then we’ll see examples of
classes inheriting directly from the ancestor classes mentioned above.

Extending the Delphi Library

2874c11.qxd 7/2/01 4:30 PM Page 425

http://www.sybex.com

426

Building Your First Component
Building components is an important activity for Delphi programmers. The basic idea is that
any time you need the same behavior in two different places in an application, or in two differ-
ent applications, you can place the shared code inside a class—or, even better, a component.

In this section I’ll just introduce a couple of simple components, to give you an idea of the
steps required to build one and to show you different things you can do to customize an
existing component with a limited amount of code.

The Fonts Combo Box
Many applications have a toolbar with a combo box you can use to select a font. If you often
use a customized combo box like this, why not turn it into a component? It would probably
take less than a minute. To begin, close any active projects in the Delphi environment and
start the Component Wizard, either by choosing Component ➢ New Component or by
selecting File ➢ New to open the Object Repository and then choosing the Component in
the New page. As you can see in Figure 11.1, the Component Wizard requires the following
information:

• The name of the ancestor type: the component class you want to inherit from. In this
case we can use TComboBox.

• The name of the class of the new component you are building; we can use
TMdFontCombo.

• The page of the Component Palette where you want to display the new component,
which can be a new or an existing page. We can create a new page, called Md.

F I G U R E 1 1 . 1 :
Defining the new TMdFont-
Combo component with
the Component Wizard

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 426

http://www.sybex.com

427

• The filename of the Pascal unit where Delphi will place the source code of the new
component; we can type MdFontBox.

• The current search path (which should be set up automatically).

Click the OK button, and the Component Wizard will generate the following simple Pas-
cal source file with the structure of your component. The Install button can be used to install
the component in a package immediately. Let’s look at the code first, Listing 11.1, and then
discuss the installation.

➲ Listing 11.1: Code of the TMdFontCombo, generated by the Component Wizard

unit MdFontBox;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TMdFontCombo = class (TComboBox)
private
{ Private declarations }

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }

end;

procedure Register;

implementation

procedure Register;
begin
RegisterComponents(‘Md’, [TMdFontCombo]);

end;

end.

One of the key elements of this listing is the class definition, which begins by indicating
the parent class. The only other relevant portion is the Register procedure. In fact, you can
see that the Component Wizard does very little work.

Building Your First Component

2874c11.qxd 7/2/01 4:30 PM Page 427

http://www.sybex.com

428

WARNING Starting with Delphi 4, the Register procedure must be written with an uppercase R. This
requirement is apparently imposed for C++Builder compatibility (identifiers in C++ are
case-sensitive).

TIP Use a naming convention when building components. All the components installed in Delphi
should have different class names. For this reason most Delphi component developers have
chosen to add a two- or three-letter signature prefix to the names of their components. I’ve
done the same, using Md (for Mastering Delphi) to identify components built in this book. The
advantage of this approach is that you can install my TMdFontCombo component even if
you’ve already installed a component named TFontCombo. Notice that the unit names must
also be unique for all the components installed in the system, so I’ve applied the same prefix to
the unit names.

That’s all it takes to build a component. Of course, in this example there isn’t a lot of code.
We need only copy all the system fonts to the Items property of the combo box at startup. To
accomplish this, we might try to override the Create method in the class declaration, adding
the statement Items := Screen.Fonts. However, this is not the correct approach. The prob-
lem is that we cannot access the combo box’s Items property before the window handle of the
component is available; the component cannot have a window handle until its Parent prop-
erty is set; and that property isn’t set in the constructor, but later on.

For this reason, instead of assigning the new strings in the Create constructor, we must
perform this operation in the CreateWnd procedure, which is called to create the window
control after the component is constructed, its Parent property is set, and its window handle
is available. Again, we execute the default behavior, and then we can write our custom code. I
could have skipped the Create constructor and written all the code in CreateWnd, but I
decided to use both startup methods to demonstrate the difference between them. Here is
the declaration of the component class:

type
TMdFontCombo = class (TComboBox)
private
FChangeFormFont: Boolean;
procedure SetChangeFormFont(const Value: Boolean);

public
constructor Create (AOwner: TComponent); override;
procedure CreateWnd; override;
procedure Change; override;

published
property Style default csDropDownList;
property Items stored False;

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 428

http://www.sybex.com

429

property ChangeFormFont: Boolean
read FChangeFormFont write SetChangeFormFont default True;

end;

And here is the source code of its two methods executed at startup:
constructor TMdFontCombo.Create (AOwner: TComponent);
begin
inherited Create (AOwner);
Style := csDropDownList;
FChangeFormFont := True;

end;

procedure TMdFontCombo.CreateWnd;
begin
inherited CreateWnd;
Items.Assign (Screen.Fonts);

// grab the default font of the owner form
if FChangeFormFont and Assigned (Owner) and (Owner is TForm) then
ItemIndex := Items.IndexOf ((Owner as TForm).Font.Name);

end;

Notice that besides giving a new value to the component’s Style property, in the Create
method, I’ve redefined this property by setting a value with the default keyword. We have to
do both operations because adding the default keyword to a property declaration has no direct
effect on the property’s initial value. Why specify a property’s default value then? Because prop-
erties that have a value equal to the default are not streamed with the form definition (and they
don’t appear in the textual description of the form, the DFM file). The default keyword tells
the streaming code that the component initialization code will set the value of that property.

TIP Why is it important to specify a default value for a published property? To reduce the size of
the DFM files and, ultimately, the size of the executable files (which include the DFM files).

The other redefined property, Items, is set as a property that should not be saved to the
DFM file at all, regardless of the actual value. This is obtained with the stored directive fol-
lowed by the value False. The component and its window are going to be created again when
the program starts, so it doesn’t make any sense to save in the DFM file information that will
be discarded later on (to be replaced with the new list of fonts).

NOTE We could have even written the code of the CreateWnd method to copy the fonts to the
combo box items only at run time. This can be done by using statements such as if not
(csDesigning in ComponentState) then…. But for this first component we are building,
the less efficient but more straightforward method described above offers a clearer illustration
of the basic procedure.

Building Your First Component

2874c11.qxd 7/2/01 4:30 PM Page 429

http://www.sybex.com

430

The third property, ChangeFormFont, is not inherited but introduced by the component. It
is used to determine whether the current font selection of the combo box should determine
the font of the form hosting the component. Again this property is declared with a default value,
set in the constructor. The ChangeFormFont property is used in the code of the CreateWnd
method, shown before, to set up the initial selection of the combo depending on the font of the
form hosting the component. This is generally the Owner of the component, although I could
have also walked the Parent tree looking for a form component. This code isn’t perfect, but the
Assigned and is tests provide some extra safety.

The ChangeFormFont property and the same if test play a key role in the Changed method,
which in the base class triggers the OnChange event. By overriding this method we provide a
default behavior, which can be disabled by toggling the value of the property, but also allow
the execution of the OnChange event, so that users of this class can fully customize its behavior.
The final method, SetChangeFormFont, has been modified to refresh the form’s font in case
the property is being turned on. This is the complete code:

procedure TMdFontCombo.Change;
begin
// assign the font to the owner form
if FChangeFormFont and Assigned (Owner) and (Owner is TForm) then
TForm (Owner).Font.Name := Text;

inherited;
end;

procedure TMdFontCombo.SetChangeFormFont(const Value: Boolean);
begin
FChangeFormFont := Value;
// refresh font
if FChangeFormFont then
Change;

end;

Creating a Package
Now we have to install the component in the environment, using a package. For this example,
we can either create a new package or use an existing one, like the default user’s package.

In each case, choose the Component ➢ Install Component menu command. The resulting
dialog box has a page to install the component into an existing package, and a page to create
a new package. In this last case, simply type in a filename and a description for the package.
Clicking OK opens the Package Editor (see Figure 11.2), which has two parts:

• The Contains list indicates the components included in the package (or, to be more
precise, the units defining those components).

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 430

http://www.sybex.com

431

• The Requires list indicates the packages required by this package. Your package will
generally require the rtl and vcl packages (the main run-time library package and core
VCL package), but it might also need the vcldb package (which includes most of the
database-related classes) if the components of the new package do any database-related
operations.

NOTE Package names in Delphi 6 aren’t version specific any more, even if the compiled packages still
have a version number in the filename. See the section “Project and Library Names in Delphi 6”
in Chapter 12, “Libraries and Packages,” for more details on how this is technically achieved.

If you add the component to the new package we’ve just defined, and then simply compile
the package and install it (using the two corresponding toolbar buttons of the package edi-
tor), you’ll immediately see the new component show up in the Md page of the Component
Palette. The Register procedure of the component unit file told Delphi where to install the
new component. By default, the bitmap used will be the same as the parent class, because we
haven’t provided a custom bitmap (we will do this in later examples). Notice also that if you
move the mouse over the new component, Delphi will display as a hint the name of the class
without the initial letter T.

What’s Behind a Package?
What is behind the package we’ve just built? The Package Editor basically generates the
source code for the package project: a special kind of DLL built in Delphi. The package pro-
ject is saved in a file with the DPK (for Delphi PacKage) extension. A typical package project
looks like this:

package MdPack;

{$R *.RES}

F I G U R E 1 1 . 2 :
The Package Editor

Building Your First Component

2874c11.qxd 7/2/01 4:30 PM Page 431

http://www.sybex.com

432

{$ALIGN ON}
{$BOOLEVAL OFF}
{$DEBUGINFO ON}
...
{$DESCRIPTION ‘Mastering Delphi Package’}
{$IMPLICITBUILD ON}

requires
vcl;

contains
MdFontBox in ‘MdFontBox.pas’;

end.

As you can see, Delphi uses specific language keywords for packages: the first is the pack-
age keyword (which is similar to the library keyword I’ll discuss in the next chapter). This
keyword introduces a new package project. Then comes a list with all the compiler options,
some of which I’ve omitted from the listing. Usually the options for a Delphi project are stored
in a separate file; packages, by contrast, include all the compiler options directly in their source
code. Among the compiler options there is a DESCRIPTION compiler directive, used to make
the package description available to the Delphi environment. In fact, after you’ve installed a
new package, its description will be shown in the Packages page of the Project Options dialog
box, a page you can also activate by selecting the Component ➢ Install Packages menu item.
This dialog box is shown in Figure 11.3.

F I G U R E 1 1 . 3 :
The Project Options for
packages. You can see the
new package we’ve just
created.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 432

http://www.sybex.com

433

Besides common directives like the DESCRIPTION one, there are other compiler directives
specific to packages. The most common of these options are easily accessible through the
Options button of the Package Editor. After this list of options come the requires and contains
keywords, which list the items displayed visually in the two pages of the Package Editor. Again,
the first is the list of packages required by the current one, and the second is a list of the units
installed by this package.

What is the technical effect of building a package? Besides the DPK file with the source
code, Delphi generates a BPL file with the dynamic link version of the package and a DCP
file with the symbol information. In practice, this DCP file is the sum of the symbol informa-
tion of the DCU files of the units contained in the package.

At design time, Delphi requires both the BPL and DCP files, because the first has the actual
code of the components created on the design form and the symbol information required by
the code insight technology. If you link the package dynamically (using it as a run-time pack-
age), the DCP file will also be used by the linker, and the BPL file should be shipped along
with the main executable file of the application. If you instead link the package statically, the
linker refers to the DCU files, and you’ll need to distribute only the final executable file.

For this reason, as a component designer, you should generally distribute at least the BPL
file, the DCP file, and the DCU files of the units contained in the package and any correspond-
ing DFM files, plus a Help file. As an option, of course, you might also make available the
source code files of the package units (the PAS files) and of the package itself (the DPK file).

WARNING Delphi, by default, will place all the compiled package files (BPL and DCP) not in the folder of
the package source code but under the \Projects\BPL folder. This is done so that the IDE
can easily locate them, and creates no particular problem. When you have to compile a project
using components declared on those packages, though, Delphi might complain that it cannot
find the corresponding DCU files, which are stored in the package source code folder. This
problem can be solved by indicating the package source code folder in the Library Path (in the
Environment Options, which affect all projects) or by indicating it in the Search Path of the current
project (in the Project Options). If you choose the first approach, placing different components and
packages in a single folder might result in a real time-saver.

Installing the Components of This Chapter
Having built our first package, we can now start using the component we’ve added to it. Before
we do so, however, I should mention that I’ve extended the MdPack package to include all of
the components we are going to build in this chapter, including different versions of the same
component. I suggest you install this package. The best approach is to copy it into a directory
of your path, so that it will be available both to the Delphi environment and to the programs
you build with it. I’ve collected all the component source code files and the package definition

Building Your First Component

2874c11.qxd 7/2/01 4:30 PM Page 433

http://www.sybex.com

434

in a single subdirectory, called MdPack. This allows the Delphi environment, or a specific pro-
ject, to refer only to one directory when looking for the DCU files of this package. As sug-
gested in the warning above, I could have collected all of the components presented in the
book in a single folder on the companion CD, but I decided that keeping the chapter-based
organization was actually more understandable for readers.

Remember, anyway, that if you compile an application using the packages as run-time
DLLs, you’ll need to install these new libraries on your clients’ computers. If you instead
compile the programs by statically linking the package, the DLL will be required only by the
development environment and not by the users of your applications.

Using the Font Combo Box
Now you can create a new Delphi program to test the Font combo box. Move to the Com-
ponent Palette, select the new component, and add it to a new form. A traditional-looking
combo box will appear. However, if you open the Items property editor, you’ll see a list of the
fonts installed on your computer. To build a simple example, I’ve added a Memo component
to the form with some text inside it. By leaving the ChangeFormFont property on, you don’t
need to write any other code to the program, as you’ll see in the example. As an alternative I
could have turned off the property and handled the OnChange event of the component, with
code like this:

Memo1.Font.Name := MdFontCombo1.Text;

The aim of this simple program is only to test the behavior of the new component we have
built. The component is still not very useful—we could have added a couple of lines of code
to a form to obtain the same effect—but looking at a couple of simple components should
help you get an idea of what is involved in component building.

Creating Compound Components
The next component I want to focus on is a digital clock. This example has some interesting
features. First, it embeds a component (a Timer) in another component; second, it shows the
live-data approach.

NOTE The first feature has become even more relevant in Delphi 6, as the Object Inspector of the latest
version of Delphi allows you to expose properties of subcomponents directly. As an effect, the
example presented in this section has been modified (and simplified) compared to the previous
edition of the book. I’ll actually mention the differences, when relevant.

Since the digital clock will provide some text output, I considered inheriting from the TLabel
class. However, this would allow a user to change the label’s caption—that is, the text of the
clock. To avoid this problem, I simply used the TCustomLabel component as the parent class.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 434

http://www.sybex.com

435

A TCustomLabel object has the same capabilities as a TLabel object, but few published proper-
ties. In other words, a TCustomLabel subclass can decide which properties should be available
and which should remain hidden.

NOTE Most of the Delphi components, particularly the Windows-based ones, have a TCustomXxx
base class, which implements the entire functionality but exposes only a limited set of properties.
Inheriting from these base classes is the standard way to expose only some of the properties of
a component in a customized version. In fact, you cannot hide public or published properties
of a base class.

With past versions of Delphi, the component had to define a new property, Active, wrap-
ping the Enabled property of the Timer. A wrapper property means that the get and set meth-
ods of this property read and write the value of the wrapped property, which belongs to an
internal component (a wrapper property generally has no local data). In this specific case, the
code looked like this:

function TMdClock.GetActive: Boolean;
begin
Result := FTimer.Enabled;

end;

procedure TMdClock.SetActive (Value: Boolean);
begin
FTimer.Enabled := Value;

end;

Publishing Subcomponents in Delphi 6
With Delphi 6 we can simply expose the entire subcomponent, the timer, in a property of its
own, that will be regularly expanded by the Object Inspector, allowing a user to set each and
every of its subproperties, and even to handle its events.

Here is the full type declaration for the TMdClock component, with the subcomponent
declared in the private data and exposed as a published property (in the last line):

type
TMdClock = class (TCustomLabel)
private
FTimer: TTimer;

protected
procedure UpdateClock (Sender: TObject);

public
constructor Create (AOwner: TComponent); override;

published
property Align;

Creating Compound Components

2874c11.qxd 7/2/01 4:30 PM Page 435

http://www.sybex.com

436

property Alignment;
property Color;
property Font;
property ParentColor;
property ParentFont;
property ParentShowHint;
property PopupMenu;
property ShowHint;
property Transparent;
property Visible;
property Timer: TTimer read FTimer;

end;

The Timer property is read-only, as I don’t want users to select another value for this com-
ponent in the Object Inspector (or detach the component by clearing the value of this prop-
erty). Developing sets of subcomponents that can be used alternately is certainly possible, but
adding write support for this property in a safe way is far from trivial (considering that the
users of your component might not be very expert Delphi programmers). So I suggest you to
stick with read-only properties for subcomponents.

To create the Timer, we must override the constructor of the clock component. The Create
method calls the corresponding method of the base class and creates the Timer object, installing
a handler for its OnTimer event:

constructor TMdClock.Create (AOwner: TComponent);
begin
inherited Create (AOwner);
// create the internal timer object
FTimer := TTimer.Create (Self);

FTimer.Name := ‘ClockTimer’;
FTimer.OnTimer := UpdateClock;
FTimer.Enabled := True;
FTimer.SetSubComponent (True);

end;

The code gives the component a name, for display in the Object Inspector (see Figure 11.4),
and calls the specific SetSubComponent method. We don’t need a destructor, simply because
the FTimer object has our TMDClock component as owner (as indicated by the parameter of its
Create constructor), so it will be destroyed automatically when the clock component is
destroyed.

NOTE What is the actual effect of the call to the SetSubComponent method in the code above? This
call sets an internal flag, saved in the ComponentStyle property set. The flag (csSubComponent)
affects the streaming system, allowing the subcomponent and its properties to be saved in the
DFM file. In fact, the streaming system by default ignores components that are not owned by
the form.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 436

http://www.sybex.com

437

The key piece of the component’s code is the UpdateClock procedure, which is just one
statement:

procedure TMdLabelClock.UpdateClock (Sender: TObject);
begin
// set the current time as caption
Caption := TimeToStr (Time);

end;

This method uses Caption, which is an unpublished property, so that a user of the compo-
nent cannot modify it in the Object Inspector. The result of this statement is to display the
current time. This happens continuously, because the method is connected to the Timer’s
OnTimer event.

The Component Palette Bitmaps
Before installing this second component, we can take one further step: define a bitmap for
the Component Palette. If we fail to do so, the Palette uses the bitmap of the parent class, or
a default object’s bitmap if the parent class is not an installed component (as is the case of the
TCustomLabel). Defining a new bitmap for the component is easy, once you know the rules.
You can create one with the Image Editor (as shown in Figure 11.5), starting a new project
and selecting the Delphi Component Resource (DCR) project type.

TIP DCR files are simply standard RES files with a different extension. If you prefer, you can create
them with any resource editor, including the Borland Resource Workshop, which is certainly a
more powerful tool than the Delphi Image editor. When you finish creating the resource file,
simply rename the RES file to use a DCR extension.

F I G U R E 1 1 . 4 :
In Delphi 6, the Object
Inspector can automatically
expand subcomponents,
showing their properties,
as in the case of the Timer
property of the MdLabel-
Clock component.

Creating Compound Components

2874c11.qxd 7/2/01 4:30 PM Page 437

http://www.sybex.com

438

Now we can add a new bitmap to the resource, choosing a size of 24×24 pixels, and we are
ready to draw the bitmap. The other important rules refer to naming. In this case, the nam-
ing rule is not just a convention; it is a requirement so that the IDE can find the image for a
given component class:

• The name of the bitmap resource must match the name of the component, including the
initial T. In this case, the name of the bitmap resource should be TMDCLOCK. The
name of the bitmap resource must be uppercase—this is mandatory.

• If you want the Package Editor to recognize and include the resource file, the name of
the DCR file must match the name of the compiled unit that defines the component.
In this case, the filename should be MdClock.DCR. If you manually include the resource
file, via a $R directive, you can give it the name you like, and also use a RES or DCR file
with multiple palette icons.

When the bitmap for the component is ready, you can install the component in Delphi, by
using the Package Editor’s Install Package toolbar button. After this operation, the Contains
section of the editor should list both the PAS file of the component and the corresponding
DCR file. In Figure 11.6 you can see all the files (including the DCR files) of the final ver-
sion of the MdPack package. If the DCR installation doesn’t work properly, you can manu-
ally add the {$R unitname.dcr} statement in the package source code.

F I G U R E 1 1 . 5 :
The definition of a
Component Palette
bitmap in Delphi’s
Image Editor

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 438

http://www.sybex.com

439

Building Compound Components with Frames
Instead of building the compound component in code and hooking up the timer event manu-
ally, we could have obtained a similar effect by using a frame. Frames make the development
of compound components with custom event handlers a visual operation, and thus simpler.
You can share this frame by adding it to the Repository or by creating a template using the Add
to Palette command of the frame’s shortcut menu.

As an alternative, you might want to share the frame by placing it in a package and registering it
as a component. Technically, this is not difficult. You add a Register procedure to the frame’s
unit, add the unit to a package, and build it. The new component/frame will be in the Compo-
nent Palette, like any other component. In Delphi 6, when you place this component/frame on a
form, you’ll see its subcomponents. You cannot select these subcomponents with a mouse click
in the Form Designer, but can do it in the Object TreeView. However, any change you make to
these components at design time will inevitably get lost when you run the program or save and
reload the form, because the changes to those subcomponents won’t be streamed, contrary to
what happened with standard frames you place inside a form.

If this is not what you might expect, I’ve found a reasonable way to use frames in packages,
demonstrated by the MdFramedClock component, part of the examples on the CD for this
chapter. The idea is to turn the components owned by the form into actual subcomponents, by
calling the new SetSubComponent method. As I was up to it, I’ve also exposed the internal
components with properties, even if this isn’t compulsory as they can be selected in the Object
TreeView anyway. This is the declaration of the component and the code of its methods:

type

TMdFramedClock = class(TFrame)

Label1: TLabel;

Timer1: TTimer;

Bevel1: TBevel;

F I G U R E 1 1 . 6 :
The Contains section of the
Package Editor shows both
the units that are included
in the package and the
component resource files.

Creating Compound Components

Continued on next page

2874c11.qxd 7/2/01 4:30 PM Page 439

http://www.sybex.com

440

procedure Timer1Timer(Sender: TObject);

public

constructor Create(AOnwer: TComponent); override;

published

property SubLabel: TLabel read Label1;

property SubTimer: TTimer read Timer1;

end;

constructor TMdFramedClock.Create(AOnwer: TComponent);

begin

inherited;

Timer1.SetSubComponent (true);

Label1.SetSubComponent (true);

end;

procedure TMdFramedClock.Timer1Timer(Sender: TObject);

begin

Label1.Caption := TimeToStr (Time);

end;

In contrast to the clock component built earlier, there is no need to set up the properties of the
timer, or to connect the timer event to its handler function manually, as this is done visually and
saved in the DFM file of the frame. Notice also that I haven’t exposed the Bevel component—I
haven’t called SetSubComponent on it—so that you can try editing it at design time and see
that all the changes get lost, as I mentioned above.

After you install this frame/component, you can use it inside any application. In this particular
case, as soon as you drop the frame on the form, the timer will start to update the label with
the current time. However, you can still handle its OnTimer event, and the Delphi IDE (recog-
nizing that the component is inside a frame) will define a method with this predefined code:

procedure TForm1.MdFramedClock1Timer1Timer(Sender: TObject);

begin

MdFramedClock1.Timer1Timer(Sender);

end;

As soon as this timer is connected, even at design time, the live clock will stop, as its original event
handler is disconnected. After compiling and running the program, however, the original behavior
will be restored (at least if you don’t delete the line above) and your extra custom code will be exe-
cuted as well. This is exactly what you’ll expect from frames. You can find a complete demo of the
use of this frame/component in the FrameClock example.

Chapter 11 • Creating Components

Continued on next page

2874c11.qxd 7/2/01 4:30 PM Page 440

http://www.sybex.com

441

As a short conclusion of this digression on frames compiled inside packages, I can certainly say
that this approach is still far from linear. It is certainly much better than in Delphi 5, where
frames inside packages were really unusable. The question is, is it worth the effort? In short, I’d
say no. If you work alone or with a small team, it’s better to use plain frames stored in the
Repository. In larger organizations and for distributing your frames to a larger audience, I bet
most people will rather build their components in the traditional way, without trying to use
frames. In other words, I’m still hoping that Borland will address more complete support to the
visual development of packaged components based on frames.

A Complex Graphical Component
The graphical component I want to build is an arrow component. You can use such a compo-
nent to indicate a flow of information, or an action, for example. This component is quite
complex, so I’ll show you the various steps instead of looking directly at the complete source
code. The component I’ve added to the MdPack package on the CD is only the final version
of this process, which will demonstrate several important concepts:

• The definition of new enumerated properties, based on custom enumerated data types.

• The use of properties of TPersistent-derived classes, such as TPen and TBrush, and the
issues related to their creation and destruction, and to handling their OnChange events
internally in our component.

• The implementation of the Paint method of the component, which provides its user
interface and should be generic enough to accommodate all the possible values of the
various properties, including its Width and Height. The Paint method plays a substan-
tial role in this graphical component.

• The definition of a custom event handler for the component, responding to user input
(in this case, a double-click on the point of the arrow). This will require direct handling
of Windows messages and the use of the Windows API for graphic regions.

• The registration of properties in Object Inspector categories and the definition of a
custom category.

Defining an Enumerated Property
After generating the new component with the Component Wizard and choosing TGraphicControl
as the parent class, we can start to customize the component. The arrow can point in any of
four directions: up, down, left, or right. An enumerated type expresses these choices:

type
TMdArrowDir = (adUp, adRight, adDown, adLeft);

A Complex Graphical Component

2874c11.qxd 7/2/01 4:30 PM Page 441

http://www.sybex.com

442

This enumerated type defines a private data member of the component, a parameter of the
procedure used to change it, and the type of the corresponding property. Two more simple
properties are ArrowHeight and Filled, the first determining the size of the arrowhead and
the second whether to fill the arrowhead with color:

type
TMdArrow = class (TGraphicControl)
private
fDirection: TMdArrowDir;
fArrowHeight: Integer;
fFilled: Boolean;
procedure SetDirection (Value: TMd4ArrowDir);
procedure SetArrowHeight (Value: Integer);
procedure SetFilled (Value: Boolean);

published
property Width default 50;
property Height default 20;
property Direction: TMd4ArrowDir
read fDirection write SetDirection default adRight;

property ArrowHeight: Integer
read fArrowHeight write SetArrowHeight default 10;

property Filled: Boolean read fFilled write SetFilled default False;

NOTE A graphic control has no default size, so when you place it in a form, its size will be a single
pixel. For this reason it is important to add a default value for the Width and Height proper-
ties and set the class fields to the default property values in the constructor of the class.

The three custom properties are read directly from the corresponding field and are written
using three Set methods, all having the same standard structure:

procedure TMdArrow.SetDirection (Value: TMdArrowDir);
begin
if fDirection <> Value then
begin
fDirection := Value;
ComputePoints;
Invalidate;

end;
end;

Notice that we ask the system to repaint the component (by calling Invalidate) only if the
property is really changing its value and after calling the ComputePoints method, which com-
putes the triangle delimiting the arrowhead. Otherwise, the code is skipped and the method
ends immediately. This code structure is very common, and we will use it for most of the Set
procedures of properties.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 442

http://www.sybex.com

443

We must also remember to set the default values of the properties in the component’s
constructor:

constructor TMdArrow.Create (AOwner: TComponent);
begin
// call the parent constructor
inherited Create (AOwner);
// set the default values
fDirection := adRight;
Width := 50;
Height := 20;
fArrowHeight := 10;
fFilled := False;

In fact, as mentioned before, the default value specified in the property declaration is used
only to determine whether to save the property’s value to disk. The Create constructor is
defined in the public section of the type definition of the new component, and it is indicated
by the override keyword. It is fundamental to remember this keyword; otherwise, when
Delphi creates a new component of this class, it will call the constructor of the base class,
rather than the one you’ve written for your derived class.

Property-Naming Conventions
In the definition of the Arrow component, notice the use of several naming conventions for
properties, access methods, and fields. Here is a summary:

• A property should have a meaningful and readable name.

• When a private data field is used to hold the value of a property, the field should be
named with an f (field) at the beginning, followed by the name of the corresponding
property.

• When a function is used to change the value of the property, the function should have the
word Set at the beginning, followed by the name of the corresponding property.

• A corresponding function used to read the property should have the word Get at the
beginning, again followed by the property name.

These are just guidelines to make programs more readable. The compiler doesn’t enforce
them. These conventions are described in the Delphi Component Writers’ Guide and are fol-
lowed by the Delphi’s class completion mechanism.

A Complex Graphical Component

2874c11.qxd 7/2/01 4:30 PM Page 443

http://www.sybex.com

444

Writing the Paint Method
Drawing the arrow in the various directions and with the various styles requires a fair
amount of code. To perform custom painting, you override the Paint method and use the
protected Canvas property.

Instead of computing the position of the arrowhead points in drawing code that will be
executed often, I’ve written a separate function to compute the arrowhead area and store it in
an array of points defined among the private fields of the component as:

fArrowPoints: array [0..3] of TPoint;

These points are determined by the ComputePoints private method, which is called every
time some of the component properties change. Here is an excerpt of its code:

procedure TMdArrow.ComputePoints;
var
XCenter, YCenter: Integer;

begin
// compute the points of the arrowhead
YCenter := (Height - 1) div 2;
XCenter := (Width - 1) div 2;
case FDirection of
adUp: begin
fArrowPoints [0] := Point (0, FArrowHeight);
fArrowPoints [1] := Point (XCenter, 0);
fArrowPoints [2] := Point (Width-1, FArrowHeight);

end;
// and so on for the other directions

The code computes the center of the component area (simply dividing the Height and
Width properties by two) and then uses it to determine the position of the arrowhead. Besides
changing the direction or other properties, we need to refresh the position of the arrowhead
when the size of the component changes. What we can do is to override the SetBounds method
of the component, which is called by VCL every time the Left, Top, Width, and Height proper-
ties of a component change:

procedure TMdArrow.SetBounds(ALeft, ATop, AWidth, AHeight: Integer);
begin
inherited SetBounds (ALeft, ATop, AWidth, AHeight);
ComputePoints;

end;

Once the component knows the position of the arrowhead, its painting code becomes simpler.
Here is an excerpt of the Paint method:

procedure TMdArrow.Paint;
var
XCenter, YCenter: Integer;

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 444

http://www.sybex.com

445

begin
// compute the center
YCenter := (Height - 1) div 2;
XCenter := (Width - 1) div 2;

// draw the arrow line
case FDirection of
adUp: begin
Canvas.MoveTo (XCenter, Height-1);
Canvas.LineTo (XCenter, FArrowHeight);

end;
// and so on for the other directions

end;

// draw the arrow point, eventually filling it
if FFilled then
Canvas.Polygon (fArrowPoints)

else
Canvas.PolyLine (fArrowPoints);

end;

You can see an example of the output of this component in Figure 11.7.

Adding TPersistent Properties
To make the output of the component more flexible, I’ve added to it two new properties,
defined with a class type (specifically, a TPersistent data type, which defines objects that can
be automatically streamed by Delphi). These properties are a little more complex to handle,
because the component now has to create and destroy these internal objects (as we did with
the internal Timer of the clock component). This time, however, we also export the internal
objects using some properties, so that users can directly change them from the Object Inspec-
tor. To update the component when these subobjects change, we’ll also need to handle their

F I G U R E 1 1 . 7 :
The output of the Arrow
component

A Complex Graphical Component

2874c11.qxd 7/2/01 4:30 PM Page 445

http://www.sybex.com

446

internal OnChange property. Here is the definition of the two new TPersistent-type properties
and the other changes to the definition of the component class:

type
TMdArrow = class (TGraphicControl)
private
FPen: TPen;
FBrush: TBrush;
...
procedure SetPen (Value: TPen);
procedure SetBrush (Value: TBrush);
procedure RepaintRequest (Sender: TObject);

published
property Pen: TPen read FPen write SetPen;
property Brush: TBrush read FBrush write SetBrush;

end;

The first thing to do is to create the objects in the constructor and set their OnChange event
handler:

constructor TMdArrow.Create (AOwner: TComponent);
begin
...
// create the pen and the brush
FPen := TPen.Create;
FBrush := TBrush.Create;
// set a handler for the OnChange event
FPen.OnChange := RepaintRequest;
FBrush.OnChange := RepaintRequest;

end;

These OnChange events are fired when one of the properties of these subobjects changes; all
we have to do is to ask the system to repaint our component:

procedure TMdArrow.RepaintRequest (Sender: TObject);
begin
Invalidate;

end;

You must also add to the component a destructor, to remove the two graphical objects
from memory (and free their system resources):

destructor TMdArrow.Destroy;
begin
FPen.Free;
FBrush.Free;
inherited Destroy;

end;

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 446

http://www.sybex.com

447

The properties related to these two components require some special handling: instead of
copying the pointer to the objects, we should copy the internal data of the object passed as
parameter. The standard := operation copies the pointers, so in this case we have to use the
Assign method instead. Here is one of the two Set procedures:

procedure TMdArrow.SetPen (Value: TPen);
begin
FPen.Assign(Value);
Invalidate;

end;

Many TPersistent classes have an Assign method that should be used when we need to
update the data of these objects. Now, to actually use the pen and brush for the drawing, you
have to modify the Paint method, setting the Pen and the Brush properties of the component
Canvas to the value of the internal objects before drawing any line:

procedure TMdArrow.Paint;
begin
// use the current pen and brush
Canvas.Pen := FPen;
Canvas.Brush := FBrush;

You can see an example of the new output of the component in Figure 11.8.

Defining a New Custom Event
To complete the development of the Arrow component, let’s add a custom event. Most of the
time, new components use the events of their parent classes. For example, in this component,
I’ve made some standard events available simply by redeclaring them in the published section
of the class:

type
TMdArrow = class (TGraphicControl)
published
property OnClick;

F I G U R E 1 1 . 8 :
The output of the Arrow
component with a thick
pen and a special hatch
brush

A Complex Graphical Component

2874c11.qxd 7/2/01 4:30 PM Page 447

http://www.sybex.com

448

property OnDragDrop;
property OnDragOver;
property OnEndDrag;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;

Thanks to this declaration, the above events (originally declared in a parent class) will now be
available in the Object Inspector when the component is installed.

Sometimes, however, a component requires a custom event. To define a brand-new event,
you first need to add to the class a field of the type of the event. This type is actually a method
pointer type (see Chapter 5 for details). Here is the definition I’ve added in the private section
of the TMdArrow class:

fArrowDblClick: TNotifyEvent;

In this case I’ve used the TNotifyEvent type, which has only a Sender parameter and is used
by Delphi for many events, including OnClick and OnDblClick events. Using this field I’ve
defined a very simple published property, with direct access to the field:

property OnArrowDblClick: TNotifyEvent
read fArrowDblClick write fArrowDblClick;

Notice again the standard naming convention, with event names starting with On. The
fArrowDblClick method pointer is activated (executing the corresponding function) inside
the specific ArrowDblClick dynamic method. This happens only if an event handler has been
specified in the program that uses the component:

procedure TMdArrow.ArrowDblClick;
begin
if Assigned (FArrowDblClick) then
FArrowDblClick (Self);

end;

This method is defined in the protected section of the type definition to allow future sub-
classes to both call and change it. Basically, the ArrowDblClick method is called by the han-
dler of the wm_LButtonDblClk Windows message, but only if the double-click took place
inside the arrow’s point. To test this condition, we can use some of the Windows API’s region
functions.

NOTE A region is an area of the screen enclosed by any shape. For example, we can build a polygonal
region using the three vertices of the arrow-point triangle. The only problem is that to fill the
surface properly, we must define an array of TPoints in a clockwise direction (see the descrip-
tion of the CreatePolygonalRgn in the Windows API Help for the details of this strange
approach). That’s what I did in the ComputePoints method.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 448

http://www.sybex.com

449

Once we have defined a region, we can test whether the point where the double-click
occurred is inside the region by using the PtInRegion API call. You can see the complete
source code of this procedure in the following listing:

procedure TMdArrow.WMLButtonDblClk (
var Msg: TWMLButtonDblClk); // message wm_LButtonDblClk;

var
HRegion: HRgn;

begin
// perform default handling
inherited;

// compute the arrowhead region
HRegion := CreatePolygonRgn (fArrowPoints, 3, WINDING);
try // check whether the click took place in the region
if PtInRegion (HRegion, Msg.XPos, Msg.YPos) then
ArrowDblClick;

finally
DeleteObject (HRegion);

end;
end;

Registering Property Categories
We’ve added to this component some custom properties and a new event. If you arrange the
properties in the Object Inspector by category (a feature available since Delphi 5), all the
new elements will show up in the generic Miscellaneous category. Of course, this is far from
ideal, but we can easily register the new properties in one of the available categories.

We can register a property (or an event) in a category by calling one of the four overloaded
versions of the RegisterPropertyInCategory function, defined in the new DesignIntf unit.
When calling this function, you indicate the name of the category, and you can specify the prop-
erty name, its type, or the property name and the component it belongs to. For example, we can
add the following lines to the Register procedure of the unit to register the OnArrowDblClick
event in the Input category and the Filled property in the Visual category:

uses
DesignIntf;

procedure Register;
begin
RegisterComponents(‘Md’, [TMdArrow]);
RegisterPropertyInCategory (‘Input’, TMdArrow, ‘OnArrowDblClick’);
RegisterPropertyInCategory (‘Visual’, TMdArrow, ‘Filled’);

end;

A Complex Graphical Component

2874c11.qxd 7/2/01 4:30 PM Page 449

http://www.sybex.com

450

In Delphi 5, the first parameter was a class indicating the category type; now the parameter is
simply a string, a much simpler solution. This change also makes it straightforward to define new
categories: you simply pass its name as the first parameter of the RegisterPropertyInCategory
function, as in:

RegisterPropertyInCategory (‘Arrow’, TMdArrow, ‘Direction’);
RegisterPropertyInCategory (‘Arrow’, TMdArrow, ‘ArrowHeight’);

Creating a brand new category for the specific properties of our component can make it much
simpler for a user to locate its specific features. Notice, though, that since we rely on the Design-
Intf unit, you should compile the unit containing these registrations in a design-time package,
not a run-time one (in fact, the required DesignIde unit cannot be distributed). For this reason,
I’ve written this code in a separate unit than the one defining the component and added the new
unit (MdArrReg) to the package MdDesPk, including all of the design-time-only units; this is
discussed later, in the section “Installing the Property Editor.”

WARNING It’s debatable whether using a category for the specific properties of a component is a good
idea. On one side, a user of the component can easily spot specific properties. At the same
time, some of the new properties might not pertain to any of the existing categories. On the
other side, however, categories can be overused. If every component introduces new cate-
gories, users may get confused. You also face the risk of having as many categories as there
are properties.

Notice that my code registers the Filled property in two different categories. This is not a
problem, because the same property can show up multiple times in the Object Inspector
under different groups, as you can see in Figure 11.9.

To test the arrow component I’ve written a very simple example program, ArrowDemo,
which allows you to modify most of its properties at run time. This type of test, after you
have written a component or while you are writing it, is very important.

NOTE The Localizable property category has a special role, related to the use of the ITE (Integrated
Translation Environment). When a property is part of this category, its value will be listed in the
ITE as a property that can be translated into another language. (A complete discussion of the ITE
is beyond the scope of this book.)

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 450

http://www.sybex.com

451

Customizing Windows Controls
One of the most common ways of customizing existing components is to add some prede-
fined behavior to their event handlers. Every time you need to attach the same event handler
to components of different forms, you should consider adding the code of the event right
into a subclass of the component. An obvious example is that of edit boxes accepting only
numeric input. Instead of attaching to each of them a common OnChar event handler, we can
define a simple new component. This component, however, won’t handle the event; events
are for component users only. Instead, the component can either handle the Windows mes-
sage directly or override a method, as described in the next two sections.

Overriding Message Handlers: The Numeric Edit Box
To customize an edit box component to restrict the input it will accept, all you need to do is
handle the wm_Char Windows messages that occur when the user presses any but a few spe-
cific keys (namely, the numeric characters).

One way to respond to a message for a given window (whether it’s a form or a component) is
to create a new message-response method that you declare using the message keyword. Delphi’s
message-handling system makes sure that your message-response method has a chance to

F I G U R E 1 1 . 9 :
The Arrow component
defines a custom property
category, Arrow, as you
can see in the Object
Inspector.

Customizing Windows Controls

2874c11.qxd 7/2/01 4:30 PM Page 451

http://www.sybex.com

452

respond to a given message before the form or component’s default message handler does.
You’ll see in the next section that, instead of creating a new method (as we do here), you can
override an existing virtual method that responds to a given message. Below is the code of
the TMdNumEdit class:

type
TMdNumEdit = class (TCustomEdit)
private
fInputError: TNotifyEvent;

protected
function GetValue: Integer;
procedure SetValue (Value: Integer);

public
procedure WmChar (var Msg: TWmChar); message wm_Char;
constructor Create (Owner: TComponent); override;

published
property OnInputError: TNotifyEvent read fInputError write fInputError;
property Value: Integer read GetValue write SetValue default 0;
property AutoSelect;
property AutoSize;
property BorderStyle;
// and so on...

This component inherits from TCustomEdit instead of TEdit so that it can hide the Text
property and surface the Integer Value property instead. Notice that I don’t create a new field
to store this value, because we can use the existing (but now unpublished) Text property. To
do this, we’ll simply convert the numeric value to and from a text string. The TCustomEdit
class (or actually the Windows control it wraps) automatically paints the information from the
Text property on the surface of the component:

function TMdNumEdit.GetValue: Integer;
begin
// set to 0 in case of error
Result := StrToIntDef (Text, 0);

end;

procedure TMdNumEdit.SetValue (Value: Integer);
begin
Text := IntToStr (Value);

end;

The most important method is the response for the wm_Char message. In the body of this
method, the component filters out all the nonnumeric characters and raises a specific event
in case of an error:

procedure TMdNumEdit.WmChar (var Msg: TWmChar);
begin

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 452

http://www.sybex.com

453

if not (Char (Msg.CharCode) in [‘0’..’9’]) and not (Msg.CharCode = 8) then
begin
if Assigned (fInputError) then
fInputError (Self);

end
else
inherited;

end;

This method checks each character as the user enters it, testing for numerals and the Back-
space key (which has an ASCII value of 8). The user should be able to use Backspace in addi-
tion to the system keys (the arrow keys and Del), so we need to check for that value. We don’t
have to check for the system keys, because they are surfaced by a different Windows message,
wm_SysChar.

That’s it. Now if you place this component on a form, you can type something in the edit
box and see how it behaves. You might also want to attach a method to the OnInputError
event to provide feedback to the user when a wrong key is typed.

A Numeric Edit with Thousands Separators
As a further extension to the example, when typing large numbers it would be nice for the
thousands separators to automatically appear and update themselves as required by the user
input. You can do this by overriding the internal Change method and formatting the number
properly. There are only a couple of small problems to consider. The first is that to format
the number you need to have one, but the text of the edit with the thousands separators (pos-
sibly misplaced) cannot be converted to a number directly. I’ve written a modified version of
the StringToFloat function, called StringToFloatSkipping, to accomplish this.

The second small problem is that if you modify the text of the edit box the current position
of the cursor will get lost. So you need to save the original cursor position, reformat the
number, and then reapply the cursor position considering that if a separator has been added
or removed, it should change accordingly. All these considerations are summarized by the
following complete code of the TMdThousandEdit class:

type
TMdThousandEdit = class (TMdNumEdit)
public
procedure Change; override;

end;

function StringToFloatSkipping (s: string): Extended;
var
s1: string;
I: Integer;

Customizing Windows Controls

2874c11.qxd 7/2/01 4:30 PM Page 453

http://www.sybex.com

454

begin
// remove non-numbers, but keep the decimal separator
s1 := ‘’;
for i := 1 to length (s) do
if s[i] in [‘0’..’9’] then
s1 := s1 + s[i];

Result := StrToFloat (s1);
end;

procedure TMdThousandEdit.Change;
var
CursorPos, // original position of the cursor
LengthDiff: Integer; // number of new separators (+ or -)

begin
if Assigned (Parent) then
begin
CursorPos := SelStart;
LengthDiff := Length (Text);
Text := FormatFloat (‘#,###’,
StringToFloatSkipping (Text));

LengthDiff := Length (Text) - LengthDiff;
// move the cursor to the proper position
SelStart := CursorPos + LengthDiff;

end;
inherited;

end;

Overriding Dynamic Methods: The Sound Button
Our next component, TMdSoundButton, plays one sound when you press the button and
another sound when you release it. The user specifies each sound by modifying two String
properties that name the appropriate WAV files for the respective sounds. Once again, we
need to intercept and modify some system messages (wm_LButtonDown and wm_LButtonUp),
but instead of handling the messages by writing a new message-response method, we’ll over-
ride the appropriate second-level handlers.

NOTE When most VCL components handle a Windows message, they call a second-level message
handler (usually a dynamic method), instead of executing code directly in the message-
response method. This makes it simpler for you to customize the component in a derived class.
Typically, a second-level handler will do its own work and then call any event handler that the
component user has assigned.

Here is the code of the TMdSoundButton class, with the two protected methods that over-
ride the second-level handlers, and the two string properties that identify the sound files.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 454

http://www.sybex.com

455

You’ll notice that in the property declarations, we read and write the corresponding private
fields without calling a get or set method, simply because we don’t need to do anything spe-
cial when the user makes changes to those properties.

type
TMdSoundButton = class(TButton)
private
FSoundUp, FSoundDown: string;

protected
procedure MouseDown(Button: TMouseButton;
Shift: TShiftState; X, Y: Integer); override;

procedure MouseUp(Button: TMouseButton;
Shift: TShiftState; X, Y: Integer); override;

published
property SoundUp: string read FSoundUp write FSoundUp;
property SoundDown: string read FSoundDown write FSoundDown;

end;

There are several reasons why overriding existing second-level handlers is generally a bet-
ter approach than handling straight Windows messages. First, this technique is more sound
from an object-oriented perspective. Instead of duplicating the message-response code from
the base class and then customizing it, you’re overriding a virtual method call that the VCL
designers planned for you to override. Second, if someone needs to derive another class from
one of your component classes, you’ll want to make it as easy for them to customize as possible,
and overriding second-level handlers is less likely to induce strange errors (if only because
you’re writing less code). Finally, this will make your component classes more consistent with
VCL—and therefore easier for someone else to figure out. Here is the code of the two second-
level handlers:

uses
MMSystem;

procedure TMdSoundButton.MouseDown(Button: TMouseButton; Shift: TShiftState;
X, Y: Integer);

begin
inherited MouseDown (Button, Shift, X, Y);
PlaySound (PChar (FSoundDown), 0, snd_Async);

end;

procedure TMdSoundButton.MouseUp(Button: TMouseButton; Shift: TShiftState;
X, Y: Integer);

begin
inherited MouseUp (Button, Shift, X, Y);
PlaySound (PChar (FSoundUp), 0, snd_Async);

end;

Customizing Windows Controls

2874c11.qxd 7/2/01 4:30 PM Page 455

http://www.sybex.com

456

In both cases, you’ll notice that we call the inherited version of the methods before we do
anything else. For most second-level handlers, this is a good practice, since it ensures that we
execute the standard behavior before we execute any custom behavior.

Next, you’ll notice that we call the PlaySound Win32 API function to play the sound. You
can use this function (which is defined in the MmSystem unit to play either WAV files or sys-
tem sounds, as the SoundB example demonstrates. Here is a textual description of the form
of this sample program (from the DFM file):

object MdSoundButton1: TMdSoundButton
Caption = ‘Press’
SoundUp = ‘RestoreUp’
SoundDown = ‘RestoreDown’

end

NOTE Selecting a proper value for these sound properties is far from simple. Later in this chapter, I’ll
show you how to add a property editor to the component to simplify the operation.

Handling Internal Messages: The Active Button
The Windows interface is evolving toward a new standard, including components that
become highlighted as the mouse cursor moves over them. Delphi provides similar support
in many of its built-in components, but what does it take to mimic this behavior for a simple
button? This might seem a complex task to accomplish, but it is not.

The development of a component can become much simpler once you know which virtual
function to override or which message to hook onto. The next component, the TMdActiveButton
class, demonstrates this by handling some internal Delphi messages to accomplish its task in a
very simple way. (For information about where these internal Delphi messages come from, see
the sidebar “Component Messages and Notifications.”)

The ActiveButton component handles the cm_MouseEnter and cm_MouseExit internal Delphi
messages, which are received when the mouse cursor enters or leaves the area corresponding
to the component:

type
TMdActiveButton = class (TButton)
protected
procedure MouseEnter (var Msg: TMessage);
message cm_mouseEnter;

procedure MouseLeave (var Msg: TMessage);
message cm_mouseLeave;

end;

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 456

http://www.sybex.com

457

The code you write for these two methods can do whatever you want. For this example,
I’ve decided to simply toggle the bold style of the font of the button itself. You can see the
effect of moving the mouse over one of these components in Figure 11.10.

procedure TMdActiveButton.MouseEnter (var Msg: TMessage);
begin
Font.Style := Font.Style + [fsBold];

end;

procedure TMdActiveButton.MouseLeave (var Msg: TMessage);
begin
Font.Style := Font.Style - [fsBold];

end;

You can add other effects at will, including enlarging the font itself, making the button the
default, or increasing its size a little. The best effects usually involve colors, but you should
inherit from the TBitBtn class to have this support (TButton controls have a fixed color).

Component Messages and Notifications
To build the ActiveButton component, I’ve used two internal Delphi component messages,
as indicated by their cm prefix. These messages can be quite interesting, as the example high-
lights, but they are almost completely undocumented by Borland. There is also a second
group of internal Delphi messages, indicated as component notifications and distinguished
by their cn prefix. I don’t have enough space here to discuss each of them or provide a
detailed analysis; browse the VCL source code if you want to learn more.

F I G U R E 1 1 . 1 0 :
An example of the
use of the ActiveButton
component

Customizing Windows Controls

2874c11.qxd 7/2/01 4:30 PM Page 457

http://www.sybex.com

458

WARNING As this is a rather advanced topic, feel free to skip this section if you are new to writing Delphi
components. But component messages are not documented in the Delphi help file, so I felt it
was important to at least list them here.

Component Messages
A Delphi component passes component messages to other components to indicate any change
in its state that might affect those components. Most of these messages start as Windows
messages, but some of them are more complex, higher-level translations and not simple
remappings. Also, components send their own messages as well as forwarding those received
from Windows. For example, changing a property value or some other characteristic of the
component may necessitate telling one or more other components about the change.

We can group these messages into categories:

• Activation and input focus messages are sent to the component being activated or deac-
tivated, receiving or losing the input focus:

cm_Activate Corresponds to the OnActivate event of forms and of
the application

cm_Deactivate Corresponds to OnDeactivate

cm_Enter Corresponds to OnEnter

cm_Exit Corresponds to OnExit

cm_FocusChanged Sent whenever the focus changes between compo-
nents of the same form (later, we’ll see an example
using this message)

cm_GotFocus Declared but not used

cm_LostFocus Declared but not used

• Messages sent to child components when a property changes:

cm_BiDiModeChanged cm_IconChanged

cm_BorderChanged cm_ShowHintChanged

cm_ColorChanged cm_ShowingChanged

cm_Ctl3DChanged cm_SysFontChanged

cm_CursorChanged cm_TabStopChanged

cm_EnabledChanged cm_TextChanged

cm_FontChanged cm_VisibleChanged

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 458

http://www.sybex.com

459

Monitoring these messages can help track changes in a property. You might need to
respond to these messages in a new component, but it’s not likely.

• Messages related to ParentXxx properties: cm_ParentFontChanged, cm_ParentColor-
Changed, cm_ParentCtl3DChanged, cm_ParentBiDiModeChanged, and cm_Parent-
ShowHintChanged. These are very similar to the messages of the previous group.

• Notifications of changes in the Windows system: cm_SysColorChange, cm_WinIniChange,
cm_TimeChange, and cm_FontChange. Handling these messages is useful only in special
components that need to keep track of system colors or fonts.

• Mouse messages: cm_Drag is sent many times during dragging operations. cm_MouseEnter
and cm_MouseLeave are sent to the control when the cursor enters or leaves its surface,
but these are sent by the Application object as low-priority messages. cm_MouseWheel
corresponds to wheel-based operations.

cm_Drag has a DragMessage parameter that indicates a sort of submessage, and the
address of the TDragRec record that indicates the mouse position and the components
involved in the dragging operation. The cm_Drag message isn’t that important, because
Delphi defines many drag events and drag methods you can override. However, you
can respond to cm_Drag for a few things that don’t generate an event or method call.
This message is sent to find the target component (when the DragMessage field is
dmFindTarget); to indicate that the cursor has reached a component (the dmDragEnter
submessage), is being moved over it (dmDragMove), or has left it (dmDragLeave); when
the drop operation is accepted (dmDragDrop); and when it is aborted (dmDragCancel).

• Application messages:

cm_AppKeyDown Sent to the Application object to let it determine whether
a key corresponds to a menu shortcut

cm_AppSysCommand Corresponds to the wm_SysCommand message

cm_DialogHandle Sent in a DLL to retrieve the value of the DialogHandle
property (used by some dialog boxes not built with Delphi)

cm_InvokeHelp Sent by code in a DLL to call the InvokeHelp method

cm_WindowHook Sent in a DLL to call the HookMainWindow and
UnhookMainWindow methods

You’ll rarely need to use these messages yourself. There is also a cm_HintShowPause
message, which is apparently never handled in VCL.

Customizing Windows Controls

2874c11.qxd 7/2/01 4:30 PM Page 459

http://www.sybex.com

460

• Delphi internal messages:

cm_CancelMode Terminates special operations, such as showing the
pull-down list of a combo box

cm_ControlChange Sent to each control before adding or removing a
child control (handled by some common controls)

cm_ControlListChange Sent to each control before adding or removing a child
control (handled by the DBCtrlGrid component)

cm_DesignHitTest Determines whether a mouse operation should go to
the component or to the form designer

cm_HintShow Sent to a control just before displaying its hint (only if
the ShowHint property is True)

cm_HitTest Sent to a control when a parent control is trying to
locate a child control at a given mouse position (if any)

cm_MenuChanged Sent after MDI or OLE menu-merging operations

• Messages related to special keys:

cm_ChildKey Sent to the parent control to handle some special
keys (in Delphi, this message is handled only by
DBCtrlGrid components)

cm_DialogChar Sent to a control to determine whether a given input
key is its accelerator character

cm_DialogKey Handled by modal forms and controls that need to
perform special actions

cm_IsShortCut I haven’t yet figured out the exact role of this new
message.

cm_WantSpecialKey Handled by controls that interpret special keys in an
unusual way (for example, using the Tab key for navi-
gation, as some Grid components do)

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 460

http://www.sybex.com

461

• Messages for specific components:

cm_GetDataLink Used by DBCtrlGrid controls (and discussed in
Chapter 18)

cm_TabFontChanged Used by the TabbedNotebook components

cm_ButtonPressed Used by SpeedButtons to notify other sibling Speed-
Button components (to enforce radio-button behavior)

cm_DeferLayout Used by DBGrid components

• OLE container messages: cm_DocWindowActivate, cm_IsToolControl, cm_Release,
cm_UIActivate, and cm_UIDeactivate.

• Dock-related messages, including cm_DockClient, cm_DockNotification, cmFloat, and
cm_UndockClient.

• Method-implementation messages, such as cm_RecreateWnd, called inside the RecreateWnd
method of TControl; cm_Invalidate, called inside TControl.Invalidate; cm_Changed,
called inside TControl.Changed; and cm_AllChildrenFlipped, called in the DoFlipChildren
methods of TWinControl and TScrollingWinControl. In the similar group fall two action
list–related messages, cm_ActionUpdate and cm_ActionExecute.

Finally, there are messages defined and handled by specific components and declared in the
respective units, such as cm_DeferLayout for DBGrid controls and a group of almost 10 mes-
sages for action bar components.

Component Notifications
Component notification messages are those sent from a parent form or component to its
children. These notifications correspond to messages sent by Windows to the parent con-
trol’s window, but logically intended for the control. For example, interaction with controls
such as buttons, edit, or list boxes, causes Windows to send a wm_Command message to the par-
ent of the control. When a Delphi program receives these messages, it forwards the message
to the control itself, as a notification. The Delphi control can handle the message and even-
tually fire an event. Similar dispatching operations take place for many other commands.

The connection between Windows messages and component notification ones is so tight
that you’ll often recognize the name of the Windows message from the name of the notifica-
tion message, simply replacing the initial cn with wm. There are several distinct groups of
component notification messages:

• General keyboard messages: cn_Char, cn_KeyUp, cn_KeyDown, cn_SysChar, and
cn_SysKeyDown.

Customizing Windows Controls

2874c11.qxd 7/2/01 4:30 PM Page 461

http://www.sybex.com

462

• Special keyboard messages used only by list boxes with the lbs_WantKeyboardInput
style: cn_CharToItem and cn_VKeyToItem.

• Messages related to the owner-draw technique: cn_CompareItem, cn_DeleteItem,
cn_DrawItem, and cn_MeasureItem.

• Messages for scrolling, used only by scroll bar and track bar controls: cn_HScroll and
cn_VScroll.

• General notification messages, used by most controls: cn_Command, cn_Notify, and
cn_ParentNotify.

• Control color messages: cn_CtlColorBtn, cn_CtlColorDlg, cn_CtlColorEdit, cn_Ctl-
ColorListbox, cn_CtlColorMsgbox, cn_CtlColorScrollbar, and cn_CtlColorStatic.

Some more control notifications are defined for common controls support (in the
ComCtrls unit).

An Example of Component Messages
As a very simple example of the use of some component messages, I’ve written the CMNTest
program. This program has a form with three edit boxes, and associated labels. The first mes-
sage it handles, cm_DialogKey, allows it to treat the Enter key as if it were a Tab key. The code
of this method checks for the Enter key’s code and sends the same message, but passes the vk_Tab key
code. To halt further processing of the Enter key, we set the result of the message to 1:

procedure TForm1.CMDialogKey(var Message: TCMDialogKey);
begin
if (Message.CharCode = VK_RETURN) then
begin
Perform (CM_DialogKey, VK_TAB, 0);
Message.Result := 1;

end
else
inherited;

end;

The second message, cm_DialogChar, monitors accelerator keys. This can be useful to pro-
vide custom shortcuts without defining an extra menu for them. In this case, I’m simply log-
ging the special keys in a label:

procedure TForm1.CMDialogChar(var Msg: TCMDialogChar);
begin
Label1.Caption := Label1.Caption + Char (Msg.CharCode);
inherited;

end;

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 462

http://www.sybex.com

463

Finally, the form handles the cm_FocusChanged message, to respond to focus changes with-
out having to handle the OnEnter event of each of its components. Again, the simple action is
to display a description of the focused component:

procedure TForm1.CmFocusChanged(var Msg: TCmFocusChanged);
begin
Label5.Caption := ‘Focus on ‘ + Msg.Sender.Name;

end;

The advantage of this approach is that it works independently of the type and number of
components you add to the form, and it does so without any special action on your part.
Again, this is a trivial example for such an advanced topic, but if you add to this the code of
the ActiveButton component, you have at least a few reasons to look into these special,
undocumented messages. At times, writing the same code without their support can become
extremely complex.

A Nonvisual Dialog Component
The next component we’ll examine is completely different from the ones we have seen up to
now. After building window-based controls and simple graphic components, I’m now going
to build a nonvisual component.

The basic idea is that forms are components. When you have built a form that might be
particularly useful in multiple projects, you can add it to the Object Repository or make a
component out of it. The second approach is more complex than the first, but it makes using
the new form easier and allows you to distribute the form without its source code. As an
example, I’ll build a component based on a custom dialog box, trying to mimic as much as
possible the behavior of standard Delphi dialog box components.

The first step in building a dialog box in a component is to write the code of the dialog box
itself, using the standard Delphi approach. Just define a new form and work on it as usual.
When a component is based on a form, you can almost visually design the component. Of
course, once the dialog box has been built, you have to define a component around it in a
nonvisual way.

The standard dialog box I want to build is based on a list box, because it is common to let a
user choose a value from a list of strings. I’ve customized this common behavior in a dialog
box and then used it to build a component. The simple ListBoxForm form I’ve built has a
list box and the typical OK and Cancel buttons, as shown in its textual description:

object MdListBoxForm: TMdListBoxForm
BorderStyle = bsDialog
Caption = ‘ListBoxForm’
object ListBox1: TListBox

A Nonvisual Dialog Component

2874c11.qxd 7/2/01 4:30 PM Page 463

http://www.sybex.com

464

OnDblClick = ListBox1DblClick
end
object BitBtn1: TBitBtn
Kind = bkOK

end
object BitBtn2: TBitBtn
Kind = bkCancel

end
end

The only method of this dialog box form relates to the double-click event of the list box, which
closes the dialog box as though the user clicked the OK button, by setting the ModalResult prop-
erty of the form to mrOk. Once the form works, we can start changing its source code, adding the
definition of a component and removing the declaration of the global variable for the form.

NOTE For components based on a form, you can use two Pascal source code files: one for the form
and the other for the component encapsulating it. It is also possible to place both the compo-
nent and the form in a single unit, as I’ve done for this example. In theory it would be even
nicer to declare the form class in the implementation portion of this unit, hiding it from the
users of the component. In practice this is not a good idea. To manipulate the form visually in
the Form Designer, the form class declaration must appear in the interface section of the unit. The
rationale behind this behavior of the Delphi IDE is that, among other things, this constraint
minimizes the amount of code the module manager has to scan to find the form declaration—
an operation that must be performed often to maintain the synchronization of the visual form
with the form class definition.

The most important of these operations is the definition of the TMdListBoxDialog com-
ponent. This component is defined as “nonvisual” because its immediate ancestor class is
TComponent. The component has one public property and these three published properties:

• Lines is a TStrings object, which is accessed via two methods, GetLines and SetLines.
This second method uses the Assign procedure to copy the new values to the private
field corresponding to this property. This internal object is initialized in the Create
constructor and destroyed in the Destroy method.

• Selected is an integer that directly accesses the corresponding private field. It stores
the selected element of the list of strings.

• Title is a string used to change the title of the dialog box.

The public property is SelItem, a read-only property that automatically retrieves the
selected element of the list of strings. Notice that this property has no storage and no data: it
simply accesses other properties, providing a virtual representation of data:

type
TMdListBoxDialog = class (TComponent)

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 464

http://www.sybex.com

465

private
FLines: TStrings;
FSelected: Integer;
FTitle: string;
function GetSelItem: string;
procedure SetLines (Value: TStrings);
function GetLines: TStrings;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
function Execute: Boolean;
property SelItem: string read GetSelItem;

published
property Lines: TStrings read GetLines write SetLines;
property Selected: Integer read FSelected write FSelected;
property Title: string read FTitle write FTitle;

end;

Most of the code of this example is in the Execute method, a function that returns True or
False depending on the modal result of the dialog box. This is consistent with the Execute
method of most standard Delphi dialog box components. The Execute function creates the
form dynamically, sets some of its values using the component’s properties, shows the dialog
box, and if the result is correct, updates the current selection:

function TMdListBoxDialog.Execute: Boolean;
var
ListBoxForm: TListBoxForm;

begin
if FLines.Count = 0 then
raise EStringListError.Create (‘No items in the list’);

ListBoxForm := TListBoxForm.Create (Self);
try
ListBoxForm.ListBox1.Items := FLines;
ListBoxForm.ListBox1.ItemIndex := FSelected;
ListBoxForm.Caption := FTitle;
if ListBoxForm.ShowModal = mrOk then
begin
Result := True;
Selected := ListBoxForm.ListBox1.ItemIndex;

end
else
Result := False;

finally
ListBoxForm.Free;

end;
end;

A Nonvisual Dialog Component

2874c11.qxd 7/2/01 4:30 PM Page 465

http://www.sybex.com

466

Notice that the code is contained within a try/finally block, so if a run-time error occurs
when the dialog box is displayed, the form will be destroyed anyway. I’ve also used exceptions
to raise an error if the list is empty when a user runs it. This error is by design, and using an
exception is a good technique to enforce it. The other methods of the component are quite
straightforward. The constructor creates the FLines string list, which is deleted by the
destructor; the GetLines and SetLines methods operate on the string list as a whole; and
the GetSelItem function (listed below) returns the text of the selected item:

function TMdListBoxDialog.GetSelItem: string;
begin
if (Selected >= 0) and (Selected < FLines.Count) then
Result := FLines [Selected]

else
Result := ‘’;

end;

Of course, since we are manually writing the code of the component and adding it to the
source code of the original form, we have to remember to write the Register procedure.

Using the Nonvisual Component
Once you’ve done that and the component is ready, you must provide a bitmap. For nonvisual
components, bitmaps are very important because they are used not only for the Component
Palette, but also when you place the component on a form. After preparing the bitmap and
installing the component, I’ve written a simple project to test it. The form of this test pro-
gram has a button, an edit box, and the MdListDialog component. In the program, I’ve
added only a few lines of code, corresponding to the OnClick event of the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
// select the text of the edit, if corresponding to one of the strings
MdListDialog1.Selected := MdListDialog1.Lines.IndexOf (Edit1.Text);
// run the dialog and get the result
if MdListDialog1.Execute then
Edit1.Text := MdListDialog1.SelItem;

end;

That’s all you need to run the dialog box we have placed in the component, as you can see
in Figure 11.11. As you’ve seen, this is an interesting approach to the development of some
common dialog boxes.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 466

http://www.sybex.com

467

Defining Custom Actions
Besides defining custom components, you can define and register new standard actions,
which will be made available in the Action Editor of the Action List component. Creating
new actions is not complex. You have to inherit from the TAction class and override some of
the methods of the base class.

There are basically three methods to override. The HandlesTarget function returns whether
the action object wants to handle the operation for the current target, which is by default the
control with the focus. The UpdateTarget procedure can set the user interface of the controls
connected with the action, eventually disabling the action if the operation is currently not avail-
able. Finally, you can implement the ExecuteTarget method to determine the actual code to
execute, so that the user can simply select the action and doesn’t have to implement it.

To show you this approach in practice, I’ve implemented the three cut, copy, and paste
actions for a list box, in a way similar to what VCL does for an edit box (although I’ve actu-
ally simplified the code a little). I’ve written a base class, which inherits from the generic
TListControlAction class of the new ExtActns unit. This base class, TMdCustomListAction,
adds some common code, shared by all the specific actions, and publishes a few action prop-
erties. The three derived classes have their own ExecuteTarget code, plus little more. Here
are the four classes:

type
TMdCustomListAction = class (TListControlAction)
protected
function TargetList (Target: TObject): TCustomListBox;
function GetControl (Target: TObject): TCustomListControl;

public

F I G U R E 1 1 . 1 1 :
The ListDialDemo example
shows the dialog box I’ve
encapsulated in the ListDial
component.

Defining Custom Actions

2874c11.qxd 7/2/01 4:30 PM Page 467

http://www.sybex.com

468

procedure UpdateTarget (Target: TObject); override;
published
property Caption;
property Enabled;
property HelpContext;
property Hint;
property ImageIndex;
property ListControl;
property ShortCut;
property SecondaryShortCuts;
property Visible;
property OnHint;

end;

TMdListCutAction = class (TMdCustomListAction)
public
procedure ExecuteTarget(Target: TObject); override;

end;

TMdListCopyAction = class (TMdCustomListAction)
public
procedure ExecuteTarget(Target: TObject); override;

end;

TMdListPasteAction = class (TMdCustomListAction)
public
procedure UpdateTarget (Target: TObject); override;
procedure ExecuteTarget (Target: TObject); override;

end;

The HandlesTarget method, one of the three key methods of actions, is provided by the
TListControlAction class, with this code:

function TListControlAction.HandlesTarget(Target: TObject): Boolean;
begin
Result := ((ListControl <> nil) or
(ListControl = nil) and (Target is TCustomListControl)) and
TCustomListControl(Target).Focused;

end;

The UpdateTarget method, instead, has two different implementations. The default one is
provided by the base class and used by the copy and cut actions. These actions are enabled
only if the target list box has at least one item and an item is currently selected. The status of
the paste action depends instead on the Clipboard status:

procedure TMdCustomListAction.UpdateTarget (Target: TObject);
begin
Enabled := (TargetList (Target).Items.Count > 0)

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 468

http://www.sybex.com

469

and (TargetList (Target).ItemIndex >= 0);
end;

function TMdCustomListAction.TargetList (Target: TObject): TCustomListBox;
begin
Result := GetControl (Target) as TCustomListBox;

end;

function TMdCustomListAction.GetControl(Target: TObject): TCustomListControl;
begin
Result := Target as TCustomListControl;

end;

procedure TMdListPasteAction.UpdateTarget (Target: TObject);
begin
Enabled := Clipboard.HasFormat (CF_TEXT);

end;

The TargetList function uses the GetControl function of the TListControlAction class,
which returns either the list box connected to the action at design time or the target control,
the list box control with the input focus.

Finally, the three ExecuteTarget methods simply perform the corresponding actions on
the target list box:

procedure TMdListCopyAction.ExecuteTarget (Target: TObject);
begin
with TargetList (Target) do
Clipboard.AsText := Items [ItemIndex];

end;

procedure TMdListCutAction.ExecuteTarget(Target: TObject);
begin
with TargetList (Target) do
begin
Clipboard.AsText := Items [ItemIndex];
Items.Delete (ItemIndex);

end;
end;

procedure TMdListPasteAction.ExecuteTarget(Target: TObject);
begin
(TargetList (Target)).Items.Add (Clipboard.AsText);

end;

Defining Custom Actions

2874c11.qxd 7/2/01 4:30 PM Page 469

http://www.sybex.com

470

Once you’ve written this code in a unit and added it to a package (in this case, the MdPack
package), the final step is to register the new custom actions in a given category. This is indi-
cated as the first parameter of the RegisterActions procedure, while the second is the list of
action classes to register:

procedure Register;
begin
RegisterActions (‘List’,
[TMdListCutAction, TMdListCopyAction, TMdListPasteAction], nil);

end;

To test the use of these three custom actions, I’ve written the ListTest example on the com-
panion CD. This program has two list boxes plus a toolbar that contains three buttons con-
nected with the three custom actions and an edit box for entering new values. The program
allows a user to cut, copy, and paste list box items. Nothing special, you might think, but the
strange fact is that the program has absolutely no code!

Writing Property Editors
Writing components is certainly an effective way to customize Delphi, helping developers to
build applications faster without requiring a detailed knowledge of low-level techniques. The
Delphi environment is also quite open to extensions. In particular, you can extend the Object
Inspector by writing custom property editors and to extend the Form Designer by adding
component editors.

NOTE Along with these techniques, Delphi offers some internal interfaces to add-on tool developers.
Using these interfaces, known as OpenTools API, requires an advanced understanding of how
the Delphi environment works and a fairly good knowledge of many advanced techniques
that are not discussed in this book. You can find technical information and some examples of
these techniques on my Web site, www.marcocantu.com, along with links to other sites
where these techniques are presented.

Every property editor must be a subclass of the abstract TPropertyEditor class, which is
defined in the DesignEditors unit of the ToolsApi and provides a standard implementation
for the IProperty interface.

NOTE The Tools API in Delphi 6 has changed considerably, also for consistency with Kylix. For example,
the DsgnIntf unit of Delphi 5 has been split into the units DesignIntf, DesignEditors, and other
specific units. Borland has also introduced interfaces to define the sets of methods of each
kind of editor. However, most of the simpler examples, such as those presented in this book,
compile almost unchanged. As this is not an in-depth analysis of the Tools API, I’m not providing
a list of changes from Delphi 5 to Delphi 6, although they are substantial. For more information,
you can study the extensive source code in the \Source\ToolsApi directory of Delphi 6.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 470

http://www.sybex.com

471

Delphi already defines some specific property editors for strings (the TStringProperty
class), integers (the TIntegerProperty class), characters (the TCharProperty class), enumera-
tions (the TEnumProperty class), sets (the TSetProperty class), so you can actually inherit your
property editor from the one of the type of property you are working with.

In any custom property editor, you have to redefine the GetAttributes function so it
returns a set of values indicating the capabilities of the editor. The most important attributes
are paValueList and paDialog. The paValueList attribute indicates that the Object Inspector
will show a combo box with a list of values (eventually sorted if the paSortList attribute is set)
provided by overriding the GetValues method. The paDialog attribute style activates an
ellipsis button in the Object Inspector, which executes the Edit method of the editor.

An Editor for the Sound Properties
The sound button we built earlier had two sound-related properties: SoundUp and SoundDown.
These were actually strings, so we were able to display them in the Object Inspector using a
default property editor. However, requiring the user to type the name of a system sound or
an external file is not very friendly, and it’s a bit error-prone.

When you need to select a file for a string property, you can reuse an existing property editor,
the TMPFilenameProperty class. All you have to do is register this editor for the property
using the special RegisterPropertyEditor procedure, as in:

RegisterPropertyEditor (TypeInfo (string), TDdhSoundButton, ‘SoundUp’,
TMPFileNameProperty);

This editor allows you to select a file for the sound, but we want to be able to choose the
name of a system sound as well. (As described earlier, system sounds are predefined names of
sounds connected with user operations, associated with actual sound files in the Sounds applet
of the Windows Control Panel.) For this reason, instead of using this simple approach I’ll
build a more complex property editor. My editor for sound strings allows a user to either
choose a value from a drop-down list or display a dialog box from which to load and test a
sound (from a sound file or a system sound). For this reason, the property editor provides
both Edit and GetValues methods:

type
TSoundProperty = class (TStringProperty)
public
function GetAttributes: TPropertyAttributes; override;
procedure GetValues(Proc: TGetStrProc); override;
procedure Edit; override;

end;

TIP The default Delphi convention is to name a property editor class with a name ending with
Property and all component editors with a name ending with Editor.

Writing Property Editors

2874c11.qxd 7/2/01 4:30 PM Page 471

http://www.sybex.com

472

The GetAttributes function combines both the paValueList (for the drop-down list) and
the paDialog attributes (for the custom edit box), and also sorts the lists and allows the selec-
tion of the property for multiple components:

function TSoundProperty.GetAttributes: TPropertyAttributes;
begin
// editor, sorted list, multiple selection
Result := [paDialog, paMultiSelect, paValueList, paSortList];

end;

The GetValues method simply calls the procedure it receives as parameter many times,
once for each string it wants to add to the drop-down list (as you can see in Figure 11.12):

procedure TSoundProperty.GetValues(Proc: TGetStrProc);
begin
// provide a list of system sounds
Proc (‘Maximize’);
Proc (‘Minimize’);
Proc (‘MenuCommand’);
Proc (‘MenuPopup’);
Proc (‘RestoreDown’);
Proc (‘RestoreUp’);
Proc (‘SystemAsterisk’);
Proc (‘SystemDefault’);
Proc (‘SystemExclamation’);
Proc (‘SystemExit’);
Proc (‘SystemHand’);
Proc (‘SystemQuestion’);
Proc (‘SystemStart’);
Proc (‘AppGPFault’);

end;

F I G U R E 1 1 . 1 2 :
The list of sounds provides
a hint for the user, who can
also type in the property
value or double-click to
activate the editor (shown
later, in Figure 11.13).

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 472

http://www.sybex.com

473

A better approach would be to extract these values from the Windows Registry, where all
these names are listed. The Edit method is very straightforward, as it simply creates and dis-
plays a dialog box. You’ll notice that we could have just displayed the Open dialog box directly,
but we decided to add an intermediate step to allow the user to test the sound. This is similar
to what Delphi does with graphic properties. You open the preview first, and load the file only
after you’ve confirmed that it’s correct. The most important step is to load the file and test it
before you apply it to the property. Here is the code of the Edit method:

procedure TSoundProperty.Edit;
begin
SoundForm := TSoundForm.Create (Application);
try
SoundForm.ComboBox1.Text := GetValue;
// show the dialog box
if SoundForm.ShowModal = mrOK then
SetValue (SoundForm.ComboBox1.Text);

finally
SoundForm.Free;

end;
end;

The GetValue and SetValue methods called above are defined by the base class, the string
property editor. They simply read and write the value of the current component’s property
that we are editing. As an alternative, you can access the component you’re editing by using
the GetComponent method (which requires a parameter indicating which of the selected com-
ponents you are working on—0 indicates the first component). When you access the compo-
nent directly, you also need to call the Modified method of the Designer object (a property of
the base class property editor). We don’t need this Modified call in the example, as the base
class SetValue method does this automatically for us.

The Edit method above displays a dialog box, a standard Delphi form that is built visually,
as always, and added to the package hosting the design-time components. The form is quite
simple; a ComboBox displays the values returned by the GetValues method, and four buttons
allow you to open a file, test the sound, and terminate the dialog box by accepting the values
or canceling. You can see an example of the dialog box in Figure 11.13. Providing a drop-
down list of values and a dialog box for editing a property causes the Object Inspector to dis-
play only the arrow button that indicates a drop-down list and to omit the ellipsis button to
indicate that a dialog box editor is available.

Writing Property Editors

2874c11.qxd 7/2/01 4:30 PM Page 473

http://www.sybex.com

474

The first two buttons of the form each have a simple method assigned to their OnClick
event:

procedure TSoundForm.btnLoadClick(Sender: TObject);
begin
if OpenDialog1.Execute then
ComboBox1.Text := OpenDialog1.FileName;

end;

procedure TSoundForm.btnPlayClick(Sender: TObject);
begin
PlaySound (PChar (ComboBox1.Text), 0, snd_Async);

end;

Unfortunately, I haven’t found a simple way to determine whether a sound is properly
defined and is available. (Checking the file is possible, but the system sounds create a few
issues.) The PlaySound function returns an error code when played synchronously, but only if
it can’t find the default system sound it attempts to play if it can’t find the sound you asked
for. If the requested sound is not available, it plays the default system sound and doesn’t
return the error code. PlaySound looks for the sound in the Registry first and, if it doesn’t
find the sound there, checks to see whether the specified sound file exists.

TIP If you want to further extend this example, you might add graphics to the drop-down list dis-
played in the Object Inspector—if you can decide which graphics to attach to particular
sounds.

F I G U R E 1 1 . 1 3 :
The Sound Property Editor’s
form displays a list of
available sounds and lets
you load a file and hear
the selected sound.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 474

http://www.sybex.com

475

Installing the Property Editor
After you’ve written this code, you can install the component and its property editor in Delphi.
To accomplish this, you have to add the following statement to the Register procedure of
the unit:

procedure Register;
begin
RegisterPropertyEditor (TypeInfo(string), TMdSoundButton, ‘SoundUp’,
TSoundProperty);

RegisterPropertyEditor (TypeInfo(string), TMdSoundButton, ‘SoundDown’,
TSoundProperty);

end;

This call registers the editor specified in the last parameter for use with properties of type
string (the first parameter), but only for a specific component and for a property with a spe-
cific name. These last two values can be omitted to provide more general editors. Registering
this editor allows the Object Inspector to show a list of values and the dialog box called by
the Edit method.

To install this component we can simply add its source code file into an existing or new
package. Instead of adding this unit and the others of this chapter to the MdPack package, I
built a second package, containing all the add-ins built in this chapter. The package is named
MdDesPk (which stands for “Mastering Delphi design package”). What’s new about this pack-
age is that I’ve compiled it using the {$DESIGNONLY} compiler directive. This directive is used
to mark packages that interact with the Delphi environment, installing components and edi-
tors, but are not required at run time by applications you’ve built.

NOTE The source code of all of the add-on tools is in the MdDesPk subdirectory, along with the code
of the package used to install them. There are no examples demonstrating how to use these
design-time tools, because all you have to do is select the corresponding components in the
Delphi environment and see how they behave.

The property editor’s unit uses the SoundB unit, which defines the TMdSoundButton com-
ponent. For this reason the new package should refer to the existing package. Here is its ini-
tial code (I’ll add other units to it later in this chapter):

package MdDesPk;

{$R *.RES}
{$ALIGN ON}
...
{$DESCRIPTION ‘Mastering Delphi DesignTime Package’}
{$DESIGNONLY}

Writing Property Editors

2874c11.qxd 7/2/01 4:30 PM Page 475

http://www.sybex.com

476

requires
vcl,
Mdpack;

contains
PeSound in ‘PeSound.pas’,
PeFSound in ‘PeFSound.pas’ {SoundForm};

Writing a Component Editor
Using property editors allows the developer to make a component more user-friendly. In
fact, the Object Inspector represents one of the key pieces of the user interface of the Delphi
environment, and Delphi developers use it quite often. However, there is a second approach
you can adopt to customize how a component interacts with Delphi: write a custom compo-
nent editor.

Just as property editors extend the Object Inspector, component editors extend the Form
Designer. In fact, when you right-click within a form at design time, you see some default menu
items, plus the items added by the component editor of the selected component. Examples of
these menu items are those used to activate the Menu Designer, the Fields Editor, the Visual
Query Builder, and other editors of the environment. At times, displaying these special editors
becomes the default action of a component when it is double-clicked.

Common uses of component editors include adding an About box with information about
the developer of the component, adding the component name, and providing specific wizards
to set up its properties.

Subclassing the TComponentEditor Class
A component editor should generally inherit from the TComponentEditor class, which pro-
vides the base implementation of the IComponentEditor interface. The most important
methods of this interface are:

• GetVerbCount returns the number of menu items to add to the local menu of the Form
Designer when the component is selected.

• GetVerb is called once for each new menu item and should return the text that will go
in the local menu for each.

• ExecuteVerb is called when one of the new menu items is selected. The number of the
item is passed as the method’s parameter.

• Edit is called when the user double-clicks the component in the Form Designer to
activate the default action.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 476

http://www.sybex.com

477

Once you get used to the idea that a “verb” is nothing but a new menu item with a corre-
sponding action to execute, the names of the methods of this interface become quite intu-
itive. This interface is actually much simpler than those of property editors we’ve seen
before.

NOTE Like property editors, component editors were modified extensively from Delphi 5 to Delphi 6,
and are now defined in the DesignEditors and DesignIntf units. But, again, the simpler examples
like this one keep compiling almost unchanged, so I won’t delve into the differences.

A Component Editor for the ListDialog
Now that I’ve introduced the key ideas about writing component editors, we can look at an
example, an editor for the ListDialog component built earlier. In my component editor, I
simply want to be able to show an About box, add a copyright notice to the menu (an improper
but very common use of component editors), and allow users to perform a special action—pre-
viewing the dialog box connected with the dialog component. I also want to change the default
action to simply show the About box after a beep (which is not particularly useful but demon-
strates the technique).

To implement this property editor, the program must override the four methods listed
above:

uses
DesignIntf;

type
TMdListCompEditor = class (TComponentEditor)
function GetVerbCount: Integer; override;
function GetVerb(Index: Integer): string; override;
procedure ExecuteVerb(Index: Integer); override;
procedure Edit; override;

end;

The first method simply returns the number of menu items I want to add to the local
menu:

function TMdListCompEditor.GetVerbCount: Integer;
begin
Result := 3;

end;

This method is called only once, before displaying the menu. The second method, instead, is
called once for each menu item, so in this case it is called three times:

function TMdListCompEditor.GetVerb (Index: Integer): string;
begin

Writing a Component Editor

2874c11.qxd 7/2/01 4:30 PM Page 477

http://www.sybex.com

478

case Index of
0: Result := ‘ MdListDialog (©Cantù)’;
1: Result := ‘&About this component...’;
2: Result := ‘&Preview...’;

end;
end;

The effect of this code is to add the menu items to the local menu of the form, as you can
see in Figure 11.14. Selecting any of these menu items just activates the ExecuteVerb method
of the component editor:

procedure TMdListCompEditor.ExecuteVerb (Index: Integer);
begin
case Index of
0..1: MessageDlg (‘This is a simple component editor’#13 +
‘built by Marco Cantù’#13 +
‘for the book “Mastering Delphi”’, mtInformation, [mbOK], 0);

2: with Component as TMdListDialog do
Execute;

end;
end;

I decided to handle the first two items in a single branch of the case statement, although I
could have skipped the code for the copyright notice item. The other command changes calls
the Execute method of the component we are editing, determined using the Component prop-
erty of the TComponentEditor class. Knowing the type of the component, we can easily access
its methods after a dynamic type cast.

F I G U R E 1 1 . 1 4 :
The custom menu items
added by the property
editor of the ListDialog
component

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 478

http://www.sybex.com

479

The last method refers to the default action of the component and is activated by double-
clicking it in the Form Designer:

procedure.Edit;
begin
x
Beep;
ExecuteVerb (0);

end;

Registering the Component Editor
To make this editor available to the Delphi environment, we need to register it. Once more
we can add to its unit a Register procedure and call a specific registration procedure for
component editors:

procedure TMdListCompEditor.Edit;
begin
// produce a beep and show the about box
Beep;
ExecuteVerb (0);

end;

I’ve added this unit to the MdDesPk package, which includes all of the design-time exten-
sions of this chapter. After installing and activating this package you can create a new project,
place a tabbed list component in it, and experiment with it.

What’s Next?
In this chapter we have seen how to define various types of properties, how to add events,
and how to define and override component methods. We have seen various examples of com-
ponents, including simple changes to existing ones, new graphical components, and, in the
final section, a dialog box inside a component. While building these components, we have
faced some new Windows programming challenges. In general, programmers often need to
use the Windows API directly when writing new Delphi components.

Writing components is a very handy technique for reusing software, but to make your
components easier to use, you should try to integrate them as much as possible within the
Delphi environment, writing property editors and component editors.

There are many more extensions of the Delphi IDE you can write, including custom wiz-
ards. I’ve personally built many Delphi extensions, some of which are available (with source
code) on my Web site, www.marcocantu.com.

What’s Next?

2874c11.qxd 7/2/01 4:30 PM Page 479

http://www.sybex.com

480

After discussing components and delving a little into the Delphi environment, the next
chapter focuses on Delphi DLLs. We have already met DLLs in many previous chapters, and
it is time for a detailed discussion of their role and how to build them. In the same chapter,
I’ll also further discuss the use of Delphi packages, which are a special type of DLL.

Chapter 11 • Creating Components

2874c11.qxd 7/2/01 4:30 PM Page 480

http://www.sybex.com

12CH A P T E R

Libraries and Packages

� DLLs in Windows 95, 98, and NT

� Building and using DLLs in Delphi

� Calling DLL functions at run time

� Sharing data in DLLs

� The structure of Delphi packages

� Placing forms in packages and DLLs

2874c12.qxd 7/2/01 2:37 PM Page 481

http://www.sybex.com

482

Windows executable files come in two flavors: programs and dynamic link libraries
(DLLs). When you write a Delphi application, you typically generate a program file, an
EXE. However, Delphi applications often use calls to functions stored in DLLs. Each time
you call a Windows API function directly, you actually access a DLL. Delphi also allows pro-
grammers to use run-time DLLs for the component library. When you create a package, you
basically create a DLL. Delphi can also generate plain dynamic link libraries. The New page
of the Object Repository includes a DLL skeleton generator, which generates very few lines of
source code.

It is very simple to generate a DLL in the Delphi environment. However, some problems
arise from the nature of DLLs. Writing a DLL in Windows is not always as simple as it seems,
because the DLL and the calling program need to agree on calling conventions, parameter
types, and other details. This chapter covers the basics of DLL programming from the Delphi
point of view and provides some simple examples of what you can place in a Delphi DLL.
While discussing the examples, I’ll also refer to other programming languages and environ-
ments, simply because one of the key reasons for writing a procedure in a DLL is to be able to
call it from a program written in a different language.

The second part of the chapter will focus on a specific type of dynamic link library, the
Delphi package. These packages are not as easy to use as they first seem, and it took Delphi
programmers some time to figure out how to take advantage of them effectively. Here I’m
going to share with you some of these interesting tips and techniques.

The Role of DLLs in Windows
Before delving into the development of DLLs in Delphi and other programming languages,
I’ll give you a short technical overview of DLLs in Windows, highlighting the key elements.
We will start by looking at dynamic linking, then see how Windows uses DLLs, explore the
differences between DLLs and executable files, and end with some general rules to follow
when writing DLLs.

What Is Dynamic Linking?
First of all, you need to understand the difference between static and dynamic linking of
functions or procedures. When a subroutine is not directly available in a source file, the com-
piler adds the subroutine to an internal table, which includes all external symbols. Of course,
the compiler must have seen the declaration of the subroutine and know about its parameters
and type, or it will issue an error.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 482

http://www.sybex.com

483

After compilation of a normal—static—subroutine, the linker fetches the subroutine’s com-
piled code from a Delphi compiled unit (or static library) and adds it to the executable. The
resulting EXE file includes all the code of the program and of the units involved. The Delphi
linker is smart enough to include only the minimum amount of code of the units used by the
program and to link only the functions and methods that are actually used.

NOTE A notable exception to this rule is the inclusion of virtual methods. The compiler cannot deter-
mine in advance which virtual methods the program is going to call, so it has to include them
all. For this reason, programs and libraries with too many virtual functions tend to generate
larger executable files. While developing the VCL, the Borland developers had to balance the
flexibility obtained with virtual functions against the reduced size of the executable files
achieved by limiting the virtual functions.

In the case of dynamic linking, which occurs when your code calls a DLL-based function,
the linker simply uses the information in the external declaration of the subroutine to set up
some tables in the executable file. When Windows loads the executable file in memory, first
it loads all the required DLLs, and then the program starts. During this loading process,
Windows fills the program’s internal tables with the addresses of the functions of the DLLs
in memory. If for some reason the DLL is not found, the program won’t even start, often
complaining with nonsense error messages (such as the notorious “a device attached to your
system is not functioning”).

Each time the program calls an external function, it uses this internal table to forward the
call to the DLL code (which is now located in the program’s address space). Note that this
scheme does not involve two different applications. The DLL becomes part of the running
program and is loaded in the same address space. All the parameter passing takes place on the
application’s stack (because the DLL doesn’t have a separate stack).

You can see a sketch of how the program calls statically or dynamically linked functions in
Figure 12.1. Notice that I haven’t yet discussed compilation of the DLL—because I wanted
to focus on the two different linking mechanisms first.

NOTE The term dynamic linking, when referring to DLLs, has nothing to do with the late-binding fea-
ture of object-oriented programming languages. Virtual and dynamic methods in Object Pascal
have nothing to do with DLLs. Unfortunately, the same term is used for both kinds of proce-
dures and functions, which causes a lot of confusion. When I speak of dynamic linking in this
chapter, I am referring not to polymorphism but to DLL functions.

The Role of DLLs in Windows

2874c12.qxd 7/2/01 2:37 PM Page 483

http://www.sybex.com

484

There is another approach to using DLLs, which is even more dynamic than the one we
have just discussed. In fact, at run time, you can load a DLL in memory, search for a function
(provided you know its name), and call the function by name. This approach requires more
complex code and takes some extra time to locate the function. The execution of the func-
tion, however, has the same speed of the call of an implicitly loaded DLL. On the positive
side, you don’t need to have the DLL available to start the program. We will use this
approach in the DynaCall example later in the chapter.

For the most part, the internal structure of a normal executable file (an EXE file) and a
dynamic link library (a DLL, whatever its extension) is the same. They are both executable
files. An important difference between programs and DLLs is that a DLL, even when loaded
in memory, is not a running program. It is only a collection of procedures and functions that
other programs can call. These procedures and functions use the stack of the calling program
(the calling thread, to be precise). So another difference between a program and a library is
that a library doesn’t create its own stack—it uses the stack of the program calling it. In
Win32, because a DLL is loaded into the application’s address space, any memory allocations
of the DLL or any global data it creates reside in the address space of the main process.

What Are DLLs For?
Now that you have a general idea of how DLLs work, we can focus on the reasons for using
them in Windows:

• If different programs use the same DLL, the DLL is loaded in memory only once, thus
saving system memory. DLLs are mapped into the private address space of each
process (each running application), but their code is loaded in memory only once.

F I G U R E 1 2 . 1 :
Static and dynamic linking
in Windows

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 484

http://www.sybex.com

485

NOTE The operating system will try to load the DLL at the same address in each application’s address
space (using the preferred base address specified by the DLL). If that address is not available in
a particular application’s virtual address space, the DLL code image for that process will have to
be relocated, an operation that is expensive in both performance and memory use. The reason
is that the relocation happens on a per-process basis, not system-wide.

• You can provide a different version of a DLL, replacing the current one. If the subrou-
tines in the DLL have the same parameters, you can run the program with the new
version of the DLL without having to recompile it. If the DLL has new subroutines, it
doesn’t matter at all. Problems might arise only if a routine in the older version of the
DLL is missing in the new one. Problems also arise if the new DLL does not imple-
ment the functions in a manner that is compatible with the operation of the old DLL.

These generic advantages apply in several cases. If you have a complex algorithm, or some
complex forms required by several applications, you can store them in a DLL. This will let
you reduce the executable’s size and save some memory when you run several programs using
those DLLs at the same time.

The second advantage is particularly applicable to complex applications. If you have a very
big program that requires frequent updates and bug fixes, dividing it into several executables
and DLLs allows you to distribute only the changed portions instead of one single large exe-
cutable. This makes sense for Windows system libraries in particular: You generally don’t
need to recompile your code if Microsoft provides you an updated version of Windows sys-
tem libraries—for example, in a new version of the operating system.

Another common technique is to use DLLs to store nothing except resources. You can
build different versions of a DLL containing strings for different languages and then change
the language at run time, or you can prepare a library of icons and bitmaps and then use
them in different applications. The development of language-specific versions of a program
is particularly important, and Delphi includes support for it through the Integrated Transla-
tion Environment (ITE) and the external environment, which are more advanced topics than
I have room to go into.

Another key advantage is that DLLs are independent of the programming language. Most
Windows programming environments, including most macro languages in end-user applica-
tions, allow a programmer to call a subroutine stored in a DLL. This means you can build a
DLL in Delphi and call it from Visual Basic, Excel, and many other Windows applications.

The Role of DLLs in Windows

2874c12.qxd 7/2/01 2:37 PM Page 485

http://www.sybex.com

486

Understanding System DLLs
The Windows system DLLs take advantage of all the key benefits of DLLs I’ve just highlighted.
For this reason, it is worth examining them. First of all, Windows has many system DLLs. The
three central portions of Windows—Kernel, User, and GDI—are implemented using DLLs (with
32-bit or 16-bit code depending on the OS version). Other system DLLs are operating-system
extensions, such as the DLLs for common dialog boxes and controls, OLE, device drivers, fonts,
ActiveX controls, and hundreds of others.

Dynamic system libraries are one of the technical foundations of the Windows operating sys-
tems. Since each application uses the system DLLs for anything from creating a window to pro-
ducing output, every program is linked to those DLLs. When you change your printer, you do
not need to rebuild your application or get a new version of the Windows GDI library, which
manages the printer output. You only need to provide a specific driver, which is a DLL called by
GDI to access your printer. Each printer type has its own driver DLL, which makes the system
extremely flexible.

From a different point of view, version handling is important for the system itself. If you have
an application compiled for Windows 95, you should be able to run it on Windows Me,
Windows 2000, and (possibly) future versions of Windows, but the application might behave
differently, as each version of Windows has different system code.

The system DLLs are also used as system-information archives. For example, the User DLL main-
tains a list of all the active windows in the system, and the GDI DLL holds the list of active pens,
brushes, icons, bitmaps, and the like. The free memory area of these two system DLLs is usually
called “free system resources,” and the fact that it is limited plays a very important role in
Windows versions still relying on 16-bit code, such as the Windows 9x family. On NT platforms,
GDI and User resources are limited only by available system memory.

Rules for Delphi DLL Writers
In short, there are some rules for Delphi DLL programmers. A DLL function or procedure
to be called by external programs must follow these guidelines:

• It has to be listed in the DLL’s exports clause. This makes the routine visible to the
outside world.

• Exported functions should also be declared as stdcall, to use the standard Win32
parameter-passing technique instead of the optimized register parameter-passing
technique (which is the default in Delphi). The exception to this rule is if you want to
use these libraries only from other Delphi applications.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 486

http://www.sybex.com

487

• The types of the parameters of a DLL should be the default Windows types, at least if
you want to be able to use the DLL within other development environments. There
are further rules for exporting strings, as we’ll see in the FirstDll example.

• A DLL can use global data that won’t be shared by calling applications. Each time an
application loads a DLL, it stores the DLL’s global data in its own address space, as we
will see in the DllMem example.

Using Existing DLLs
We have already used existing DLLs in examples in this book, when calling Windows API
functions. As you might remember, all the API functions are declared in the system Windows
unit. Functions are declared in the interface portion of the unit, as shown here:

function PlayMetaFile(DC: HDC; MF: HMETAFILE): BOOL; stdcall;
function PaintRgn(DC: HDC; RGN: HRGN): BOOL; stdcall;
function PolyPolygon(DC: HDC; var Points; var nPoints; p4: Integer):
BOOL; stdcall;

function PtInRegion(RGN: HRGN; p2, p3: Integer): BOOL; stdcall;

Then, in the implementation portion, instead of providing each function’s code, the unit
refers to the external definition in a DLL:

const
gdi32 = ‘gdi32.dll’;

function PlayMetaFile; external gdi32 name ‘PlayMetaFile’;
function PaintRgn; external gdi32 name ‘PaintRgn’;
function PolyPolygon; external gdi32 name ‘PolyPolygon’;
function PtInRegion; external gdi32 name ‘PtInRegion’;

NOTE In Windows.PAS there is a heavy use of the {$EXTERNALSYM identifier} directive. This has
little to do with Delphi itself; it applies to C++Builder. This symbol prevents the corresponding
Pascal symbol from appearing in the C++ translated header file. This helps keep the Delphi
and C++ identifiers in synch, so that code can be shared between the two languages.

The external definition of these functions refers to the name of the DLL they use. The
name of the DLL must include the .DLL extension, or the program will not work under
Windows 2000 (even though it will work under Windows 9x). The other element is the
name of the DLL function itself. The name directive is not necessary if the Pascal function
(or procedure) name matches the DLL function name (which is case-sensitive).

To call a function that resides in a DLL, you can provide its declaration and external defin-
ition, as shown above, or you can merge the two in a single declaration. Once the function is
properly defined, you can call it in the code of your Delphi application just like any other
function.

The Role of DLLs in Windows

2874c12.qxd 7/2/01 2:37 PM Page 487

http://www.sybex.com

488

Using a C++ DLL
As an example, I’ve written a very simple DLL in C++, with some trivial functions, just to show
you how to call DLLs from a Delphi application. I won’t explain the C++ code in detail (it’s
basically C code, anyway) but will focus instead on the calls between the Delphi application and
the C++ DLL. In Delphi programming it is common to use DLLs written in C or C++.

Suppose you are given a DLL built in C or C++. You’ll generally have in your hands a
.DLL file (the compiled library itself), an .H file (the declaration of the functions inside the
library), and a .LIB file (another version of the list of the exported functions for the C/C++
linker). This LIB file is totally useless in Delphi, while the DLL file is used as-is, and the H
file has to be translated into a Pascal unit with the corresponding declarations.

In the following listing, you can see the declaration of the C++ functions I’ve used to build
the CppDll library example. The complete source code and the compiled version of the C++
DLL and of the source code of the Delphi application using it are in the CppDll directory on
the CD. You should be able to compile this code with any C++ compiler; I’ve tested it only
with recent Borland C++ compilers. Here are the C++ declarations of the functions:

extern “C” __declspec(dllexport)
int WINAPI Double (int n);
extern “C” __declspec(dllexport)
int WINAPI Triple (int n);
__declspec(dllexport)
int WINAPI Add (int a, int b);

The three functions perform some basic calculations on the parameters and return the
result. Notice that all the functions are defined with the WINAPI modifier, which sets the
proper parameter-calling convention; and they are preceded by the __declspec(dllexport)
declaration, which makes the functions available to the outside world.

Two of these C++ functions also use the C naming convention (indicated by the extern
“C” statement), but the third one, Add, doesn’t. This affects the way we call these functions in
Delphi. In fact, the internal names of the three functions correspond to their names in the
C++ source code file, except for the Add function. Since we didn’t use the extern “C” clause
for this function, the C++ compiler used name mangling. This is a technique used to include
information about the number and type of parameters in the function name, which the C++
language requires in order to implement function overloading. The result when using the
Borland C++ compiler is a funny function name: @Add$qqsii. This is actually the name we
have to use in our Delphi example to call the Add DLL function (which explains why you’ll
generally avoid C++ name mangling in exported functions, and why you’ll generally declare
them all as extern “C”). The following are the declarations of the three functions in the Delphi
CallCpp example:

function Add (A, B: Integer): Integer;
stdcall; external ‘CPPDLL.DLL’ name ‘@Add$qqsii’;

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 488

http://www.sybex.com

489

function Double (N: Integer): Integer;
stdcall; external ‘CPPDLL.DLL’ name ‘Double’;

function Triple (N: Integer): Integer;
stdcall; external ‘CPPDLL.DLL’;

As you can see, you can either provide or omit an alias for an external function. I’ve pro-
vided one for the first function (there was no alternative, because the exported DLL function
name @Add$qqsii is not a valid Pascal identifier) and for the second, although in the second
case it was unnecessary. If the two names match, in fact, you can omit the name directive, as I
did for the third function above. If you are not sure of the actual names of the functions
exported by the DLL, you can use the optional Windows viewer for executable files, with the
QuickView command of Windows Explorer or Borland’s TDump32 command-line program,
available in the Delphi BIN folder.

Remember to add the stdcall directive to each definition, so that the caller module (the
application) and the module being called (the DLL) use the same parameter-passing conven-
tion. If you fail to do so, you will get random values passed as parameters, a bug that is very
hard to trace.

NOTE When you have to convert a large C/C++ header file to the corresponding Pascal declarations,
instead of doing a manual conversion you can use a tool to partially automate the process.
One of these tools is HeadConv, written by Bob Swart. You’ll find a copy on his Web site,
www.drbob42.com. Notice, though, that automatic header translation from C/C++ to Pascal is
not possible, because Pascal is more strongly typed than C/C++, so you have to use types more
precisely.

To use this C++ DLL, I’ve built a Delphi example, named CallCpp. Its simple form has
buttons to call the functions of the DLL and some visual components for input and output
parameters (see Figure 12.2). The code of the button event handlers looks like:

procedure TForm1.BtnDoubleClick(Sender: TObject);
begin
SpinEdit1.Value := Double (SpinEdit1.Value);

end;

F I G U R E 1 2 . 2 :
The output of the CallCpp
example when you have
pressed each of the buttons

The Role of DLLs in Windows

2874c12.qxd 7/2/01 2:37 PM Page 489

http://www.sybex.com

490

Notice that to run this application, you should have the DLL in the same directory as the
project, in one of the directories on the path, or in the Windows or System directories. If you
move the executable file to a new directory and try to run it, you’ll get a run-time error indi-
cating that the DLL is missing.

Creating a DLL in Delphi
Besides using DLLs written in other environments, you can use Delphi to build DLLs that
can be used by Delphi programs or with any other development tool that supports DLLs.
Building DLLs in Delphi is so easy that you might overuse this feature. In general, I suggest
you try to build components and packages instead of plain DLLs. As I’ll discuss later in this
chapter, packages often contain components, but they can also include plain noncomponent
classes, allowing you to write object-oriented code and to reuse it effectively.

Placing a collection of functions in a DLL is a more traditional approach to programming:
DLLs cannot export classes and objects, at least unless you use Microsoft’s COM technology
or some other advanced techniques.

As I’ve already mentioned, building a DLL is useful when a portion of the code of a pro-
gram is subject to frequent changes. In this case you can frequently replace the DLL, keep-
ing the rest of the program unchanged. Similarly, when you need to write a program that
provides different features to different groups of users, you can distribute different versions
of a DLL to those users.

A Simple Delphi DLL
As a starting point in exploring the development of DLLs in Delphi, I’ll show you a very
simple library built in Delphi. The primary focus of this example will be to show the syntax
you use to define a DLL in Delphi, but it will also illustrate a few considerations involved in
passing string parameters. To start, select the File > New > Other command and choose the DLL
option in the New page of the Object Repository. This creates a very simple source file that
starts with the following definition:

library Project1;

The library statement indicates that we want to build a DLL instead of an executable file.
Now we can add routines to the library and list them in an exports statement:

function Triple (N: Integer): Integer; stdcall;
begin
Result := N * 3;

end;

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 490

http://www.sybex.com

491

function Double (N: Integer): Integer; stdcall;
begin
Result := N * 2;

end;

exports
Triple, Double;

In this basic version of the DLL, we don’t need a uses statement; but in general, the main
project file includes only the exports statement, while the function declarations are placed in
a separate unit. In the final source code of the FirstDll example on the CD, I’ve actually
changed the code slightly from the version listed above, to show a message each time a func-
tion is called. There are two ways to accomplish this. The simplest is to use the Dialogs unit
and call the ShowMessage function.

The code requires Delphi to link a lot of VCL code into the application. If you statically
link the VCL into this DLL, the resulting size will be about 375 KB. The reason is that the
ShowMessage function displays a VCL form that contains VCL controls and uses VCL graph-
ics classes; and those indirectly refer to things like the VCL streaming system and the VCL
application and screen objects. For this simple case, a better alternative is to show the mes-
sages using direct API calls, using the Windows unit and calling the MessageBox function, so
that the VCL code is not required. This change in code brings the size of the application
down to only about 40 KB.

NOTE This huge difference in size underlines the fact that you should not overuse DLLs in Delphi, to
avoid compiling the code of the VCL in multiple executable files. Of course, you can reduce
the size of a Delphi DLL by using run-time packages, as detailed later in this chapter.

If you run a test program like the CallFrst example (described later) using the API-based
version of the DLL, its behavior won’t be correct. In fact, you can click the buttons that call
the DLL functions several times without first closing the message boxes displayed by the
DLL. This happens because the first parameter of the MessageBox API call above is zero. Its
value should instead be the handle of the program’s main form or the application form, infor-
mation I don’t have at hand in the DLL itself.

Overloaded Functions in Delphi DLLs
When you create a DLL in C++, overloaded functions use name mangling to generate a dif-
ferent name for each function, including the type of the parameters right in the name, as
we’ve seen in the CppDll example.

Creating a DLL in Delphi

2874c12.qxd 7/2/01 2:37 PM Page 491

http://www.sybex.com

492

When you create a DLL in Delphi and use overloaded functions (that is, multiple func-
tions using the same name and marked with the overload directive), Delphi allows you to
export only one of the overloaded functions with the original name, indicating its parameters
list in the exports clause. If you want to export multiple overloaded functions, you should
specify different names in the exports clause to distinguish the overloads. This is demon-
strated by this portion of the FirstDLL code:

function Triple (C: Char): Integer; stdcall; overload;
function Triple (N: Integer): Integer; stdcall; overload;

exports
Triple (N: Integer),
Triple (C: Char) name ‘TripleChar’;

NOTE The reverse is possible as well: You can import a series of similar functions from a DLL and
define them all as overloaded functions in the Pascal declaration. Delphi’s OpenGL.PAS unit
contains a series of examples of this technique.

Exporting Strings from a DLL
In general, functions in a DLL can use any type of parameter and return any type of value.
There are two exceptions to this rule:

• If you plan to call the DLL from other programming languages, you should probably
try using Windows native data types instead of Delphi-specific types. For example, to
express color values, you should use integers or the Windows ColorRef type instead of
the Delphi native TColor type, doing the appropriate conversions (as in the FormDLL
example, described in the next section). Other Delphi types that, for compatibility, you
should avoid using include objects, which cannot be used by other languages at all, and
Pascal strings, which can be replaced by PChar strings. In other words, every Windows
development environment must support the basic types of the API, and if you stick to
them, your DLL will be usable with other development environments. Also, Pascal file
variables (text files and binary file of record) should not be passed out of DLLs, but you
can use Win32 file handles.

• Even if you plan to use the DLL only from a Delphi application, you cannot pass Delphi
strings (and dynamic arrays) across the DLL boundary without taking some precau-
tions. This is because of the way Delphi manages strings in memory—allocating, real-
locating, and freeing them automatically. The solution to the problem is to include the
ShareMem system unit both in the DLL and in the program using it. This unit must
be included as the first unit of each of the projects.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 492

http://www.sybex.com

493

NOTE Objects actually can be passed out of a DLL, if the objects are designed to be used like inter-
faces or pure abstract classes. All methods of these objects must be virtual, and objects must
be created by the DLL. This is more or less what happens with COM objects, the approach you
should use for multilanguage applications. For Delphi-only projects with libraries exporting
objects, you should rather use packages, as we’ll see later in this chapter.

In the FirstDLL example, I’ve actually included both approaches: One function receives
and returns a Pascal string, and another one receives as parameter a PChar pointer, which is
then filled by the function itself. The first function is very simple:

function DoubleString (S: string; Separator: Char): string; stdcall;
begin
Result := S + Separator + S;

end;

The second one is quite complex because PChar strings don’t have a simple + operator, and
they are not directly compatible with characters; the separator must be turned into a string
before adding it. Here is the complete code; it uses input and output PChar buffers, which are
compatible with any Windows development environment:

function DoublePChar (BufferIn, BufferOut: PChar;
BufferOutLen: Cardinal; Separator: Char): LongBool; stdcall;

var
SepStr: array [0..1] of Char;

begin
// if the buffer is large enough
if BufferOutLen > StrLen (BufferIn) * 2 + 2 then
begin
// copy the input buffer in the output buffer
StrCopy (BufferOut, BufferIn);
// build the separator string (value plus null terminator)
SepStr [0] := Separator;
SepStr [1] := #0;
// append the separator
StrCat (BufferOut, SepStr);
// append the input buffer once more
StrCat (BufferOut, BufferIn);
Result := True;

end
else
// not enough space
Result := False;

end;

This second version of the code is certainly more complex, but the first can be used only
from Delphi. Moreover, the first version requires us to include the ShareMem unit in the
DLL (and in the programs using it) and to deploy the file BorlndMM.DLL (the name stands for
Borland Memory Manager) along with the program and the specific library.

Creating a DLL in Delphi

2874c12.qxd 7/2/01 2:37 PM Page 493

http://www.sybex.com

494

Calling the Delphi DLL
How can we use the library we’ve just built? We can call it from within another Delphi project
or from other environments. As an example, I’ve built the CallFrst project (stored in the
FirstDLL directory).

To access the DLL functions, we must declare them as external, as we’ve done with the
C++ DLL. This time, however, we can simply copy and paste the definition of the functions
from the source code of the Delphi DLL, adding the external clause, as in:

function Double (N: Integer): Integer;
stdcall; external ‘FIRSTDLL.DLL’;

This declaration is similar to those used to call the C++ DLL. This time, however, we have
no problems with function names. The source code of the example is actually quite simple.
Once they are redeclared as external, the functions of the DLL can simply be used as if they
were local functions. Here are two examples, with calls to the string-related functions:

procedure TForm1.BtnDoubleStringClick(Sender: TObject);
begin
// call the DLL function directly
EditDouble.Text := DoubleString (EditSource.Text, ‘;’);

end;

procedure TForm1.BtnDoublePCharClick(Sender: TObject);
var
Buffer: string;

begin
// make the buffer large enough
SetLength (Buffer, 1000);
// call the DLL function
if DoublePChar (PChar (EditSource.Text), PChar (Buffer), 1000, ‘/’) then
EditDouble.Text := Buffer;

end;

Figure 12.3 shows the effect of this program’s calls to the DLL.

F I G U R E 1 2 . 3 :
The output of the CallFrst
example, which calls the
DLL we’ve built in Delphi

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 494

http://www.sybex.com

495

Project and Library Names in Delphi 6
For a library, as for a standard application, you end up with a library name matching a Delphi
project filename. Following a similar technique introduced in Kylix for compatibility with
standard Linux naming conventions for shared object libraries (the Linux equivalent of
Windows DLLs), Delphi 6 introduced special compiler directives you can use in libraries to
determine their executable filename. Some of these directives make more sense in the Linux
world than on Windows, but they’ve all been added anyway.

• $LIBPREFIX is used to add something in front of the library name. Paralleling the Linux
technique of adding lib in front of library names, this directive is used by Kylix to add
bpl at the beginning of package names. This is due to the fact that Linux uses a single
extension (.so) for libraries, while in Windows you can have different library exten-
sions, something Borland uses for packages (.bpl).

• $LIBSUFFIX is used to add text after the library name and before the extension. This
can be used to specify versioning information or other variations on the library name
and can be quite useful also on Windows.

• $LIBVERSION is used to add a version number after the extension—something very
common in Linux, but you should generally avoid this on Windows.

As an example, consider the following directives, which generate a library called
MarcoNameTest60.dll:

library NameTest;
{$LIBPREFIX ‘Marco’}
{$LIBSUFFIX ‘60’}

NOTE Unlike past versions, Delphi 6 packages use the $LIBSUFFIX directive extensively. For this reason,
the VCL package generates the VCL.DCP file and the VCL60.BPL file. The advantage of this
approach is that you won’t need to change the requires portions of your packages for every new
version of Delphi. Of course, this will become handy to maintain Delphi 7– and Delphi 6–compati-
ble packages, but isn’t helpful now for Delphi 5 compatibility.

A Delphi Form in a DLL
Besides writing simple DLLs with functions and procedures, you can place a complete form
built with Delphi into a DLL. This can be a dialog box or any other kind of form, and it can
be used not only by other Delphi programs, but also by other development environments or
macro languages.

A Delphi Form in a DLL

2874c12.qxd 7/2/01 2:37 PM Page 495

http://www.sybex.com

496

To build the FormDLL example, I’ve built a simple form with three scroll bars you can use
to select a color and two preview areas for the resulting pen and brush colors. The form also
contains two bitmap buttons and has its BorderStyle property set to bsDialog. Aside from
developing a form as usual, I’ve only added two new subroutines to the unit that defines the
form. In the interface portion of the unit, I’ve added the following declarations:

function GetColor (Col: LongInt): LongInt; stdcall;
procedure ShowColor (Col: LongInt;
FormHandle: THandle; MsgBack: Integer); stdcall;

In both subroutines the Col parameter is the initial color. Notice that I’ve passed it as a
long integer, which corresponds to the Windows ColorRef data type. As mentioned before,
using the TColor Delphi type might have caused problems with non-Delphi applications:
Even though a TColor is very similar to a ColorRef, these types don’t always correspond.
When you write a DLL, I suggest you use only the Windows native data types (unless you
are sure only Delphi programs will use the DLL).

The GetColor function returns the final color (which is the same as the initial color if the
user clicks the Cancel button). The value is returned immediately because the function shows
the form as a modal form. The ShowColor procedure, instead, simply displays the form (as a
modeless form) and returns immediately. For this reason the form needs a way to communi-
cate back to the calling form. In this case I’ve decided to pass as parameters the handle for the
window of the calling form and the ID of the message to use to communicate back with it.

In the next sections, you’ll see how to write the code of the two subroutines; and you’ll also
see what problems arise, particularly when you place a modeless form in a DLL. Of course,
I’ll also provide a few alternative fixes.

Using the DLL Form as Modal
When you want to place a Delphi component (such as a form) in a DLL, you can only pro-
vide functions that create, initialize, or run the component or access its properties and data.
The simplest approach is to have a single function that sets the data, runs the component,
and returns the result, as in the modal version. Here is the code of the function, added to the
implementation portion of the unit that defines the form:

function GetColor (Col: LongInt): LongInt; stdcall;
var
FormScroll: TFormScroll;

begin
// default value
Result := Col;
try
FormScroll := TFormScroll.Create (Application);
try

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 496

http://www.sybex.com

497

// initialize the data
FormScroll.SelectedColor := Col;
// show the form
if FormScroll.ShowModal = mrOK then
Result := FormScroll.SelectedColor;

finally
FormScroll.Free;

end;
except
on E: Exception do
MessageDlg (‘Error in FormDLL: ‘ + E.Message, mtError, [mbOK], 0);

end;
end;

An important element is the structure of the GetColor function. The code creates the form
at the beginning, sets some initial values, and then runs the form, eventually extracting the
final data. What makes this different from the code we generally write in a program is the use
of exception handling:

• A try/except block protects the whole function, so that any exception generated by the
function will be trapped, displaying a proper message. The reason for handling every
possible exception is that the calling application might be written in any language, in
particular one that doesn’t know how to handle exceptions. Even when the caller is a
Delphi program, it is sometimes useful to use the same protective approach.

• A try/finally block protects the operations on the form, ensuring that the form object
will be properly destroyed, even when an exception is raised.

By checking the return value of the ShowModal method, the program determines the result
of the function. I’ve set the default value before entering the try block to ensure that it will
always be executed (and also to avoid the compiler warning indicating that the result of the
function might be undefined).

Now that we have updated the form and written the code of the unit, we can move to the
project source code, which (temporarily) becomes the following:

library FormDLL;

uses
ScrollF in ‘SCROLLF.PAS’ {FormScroll};

exports
GetColor;

end.

We can now use a Delphi program to test the form we have placed in the DLL. The
UseCol example is in the same directory as the previous DLL, FormDLL (and both projects

A Delphi Form in a DLL

2874c12.qxd 7/2/01 2:37 PM Page 497

http://www.sybex.com

498

are part of the FormDLL project group, the file FormDll.BPG). The form of the UseCol
example contains a button to call the GetColor function of the DLL. Here is the definition
of this function and the code of the Button1Click method:

function GetColor (Col: LongInt): LongInt; stdcall; external ‘FormDLL.DLL’;

procedure TForm1.Button1Click(Sender: TObject);
var
Col: LongInt;

begin
Col := ColorToRGB (Color);
Color := GetColor (Col)

end;

Running this program (see Figure 12.4) displays the dialog box, using the current back-
ground color of the main form. If you change the color and click OK, the program uses the
new color as the background color for the main form.

If you execute this as a modal dialog box, almost all the features of the form work fine. You
can see the tooltips, the flat speed buttons in the toolbar behave properly, and you get no
extra entry in the task bar. This might be obvious, but is not what will happen when we use
the form inside the DLL as a modeless form. Even with modal forms, however, I recommend
synchronizing the application objects of the DLL and the executable file, as described in the
next section.

F I G U R E 1 2 . 4 :
The execution of the
UseCol test program when
it calls the dialog box we
have placed in the FormDLL

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 498

http://www.sybex.com

499

A Modeless Form in a DLL
The second subroutine of the FormDLL example uses a different approach. As mentioned, it
receives three parameters: the color, the handle of the main form, and the message number for
notification when the color changes. These values are stored in the private data of the form:

procedure ShowColor (Col: LongInt;
FormHandle: THandle; MsgBack: Integer); stdcall;

var
FormScroll: TFormScroll;

begin
FormScroll := TFormScroll.Create (Application);
try
// initialize the data
FormScroll.FormHandle := FormHandle;
FormScroll.MsgBack := MsgBack;
FormScroll.SelectedColor := Col;
// show the form
FormScroll.Show;

except
on E: Exception do
begin
MessageDlg (‘Error in FormDLL: ‘ + E.Message, mtError, [mbOK], 0);
FormScroll.Free;

end;
end;

end;

When the form is activated, it checks to see if it was created as a modal form (simply test-
ing the FormHandle field). In this case, the form changes the caption and the behavior of the
OK button, as well as the overall style of the Cancel button (you can see the modified but-
tons in Figure 12.5):

procedure TFormScroll.FormActivate(Sender: TObject);
begin
// change buttons for modeless form
if FormHandle <> 0 then
begin
BitBtn1.Caption := ‘Apply’;
BitBtn1.OnClick := ApplyClick;
BitBtn2.Kind := bkClose;

end;
end;

A Delphi Form in a DLL

2874c12.qxd 7/2/01 2:37 PM Page 499

http://www.sybex.com

500

The ApplyClick method I’ve manually added to the form simply sends the notification
message to the main form, using one of the parameters to send back the selected color:

SendMessage (FormHandle, MsgBack, SelectedColor, 0);

Finally, the form’s OnClose event destroys the form object, by setting the Action parameter
to caFree. Now let’s move back to the demo program. The second button of the UseForm
example’s form has the following code:

procedure TForm1.BtnSelectClick(Sender: TObject);
var
Col: LongInt;

begin
Col := ColorToRGB (Color);
ShowColor (Col, Handle, wm_user);

end;

The form also has a message-handling method, connected with the wm_user message. This
method reads the value of the parameter corresponding to the color and sets it:

procedure TForm1.UserMessage(var Msg: TMessage);
begin
Color := Msg.WParam;

end;

Running this program produces some strange effects. Basically, the modeless form and the
main form are not synchronized, so they both show up in the Windows Taskbar; and when
you minimize the main form, the other one remains on the screen. The two forms behave as
if they were part of separate applications, because two Delphi programs (the DLL and the
EXE) have two separate global Application objects, and only the Application object of the
executable file has an associated window.

F I G U R E 1 2 . 5 :
When the DLL-based form
is used as a modeless form,
its buttons are slightly
modified (as you can see
comparing this image with
that of Figure 12.4).

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 500

http://www.sybex.com

501

To test this situation, I’ve added a button to both the main form and the DLL form, show-
ing the numeric value of the Application object’s handle. Here is the code for one of them:

ShowMessage (‘Application Handle: ‘ + IntToStr (Application.Handle));

For the form in the DLL, you’ll invariably get the value 0, while for the form in the executable
you get a numeric value determined each time by Windows.

To fix the problem we can add to the DLL an initialization function that passes the handle
of the application window to the library. In practice, we copy the Handle of the executable’s
Application object to the same property of the DLL’s Application object. This is enough to
synchronize the two Application objects and make the two forms behave as in a simple
Delphi program. Here is the code of the function in the DLL:

procedure SyncApp (AppHandle: THandle); stdcall;
begin
Application.Handle := AppHandle;

end;

And here is the call to it in the executable file:
procedure TForm1.BtnSyncClick(Sender: TObject);
begin
SyncApp (Application.Handle);
BtnSync.Enabled := False;

end;

NOTE Assigning the handle of the application object of the DLL is not a work-around for a bug but a
documented operation required by the VCL. The VCL Application object supports assign-
ment to its Handle property (unlike most other Handle properties of the VCL) specifically to
allow programmers to tie DLL-based forms into the environment of a host application.

I’ve connected this code to a button, instead of executing it automatically at startup, to let
you test the behavior in the two different cases. Before you click the Sync App button, the
secondary modeless form behaves oddly. If you close it, synchronize the applications, and
then create another instance of the modeless form, it will behave almost correctly. The only
visible problem is that the flat speed buttons of the modeless form won’t be highlighted when
the mouse moves over them. We’ll see how to fix this problem using run-time packages at the
end of the chapter.

NOTE Technically this behavior of the speed buttons depends on the fact that the controls in the DLL
form don’t receive the cm_MouseEnter and cm_MouseLeave messages, because the DLL’s
Application.Idle method is never called. The DLL’s Application object, in fact, is not run-
ning the application’s message loop. You can activate it by exporting from the DLL a function
that calls the internal Application.Idle routine, and call that function from the host appli-
cation when its message loop goes idle. As I’ve mentioned, however, all these problems (and a
few others) can be better solved by using run-time packages.

A Delphi Form in a DLL

2874c12.qxd 7/2/01 2:37 PM Page 501

http://www.sybex.com

502

Calling a Delphi DLL from Visual Basic for Applications
We can also display this color dialog box from other programming languages. Calling this
DLL from C or C++ is easy. To link the application, you need to generate an import library
(using the IMPLIB command-line utility) and add the resulting LIB file to the project. Since
I’ve already used a C++ compiler in this chapter, this time I will write a similar example using
Microsoft Word for Windows and Visual Basic for Applications instead.

To start, open Microsoft Word. Then open its Macro dialog box (with the Tools ➢ Macro
menu item or a similar command, depending on your version of Word), type a new macro
name, such as DelphiColor, and click the Create button. You can now write the BASIC
code, which declares the function of our DLL and calls it. The BASIC macro uses the result
of the DLL function in two ways. By calling Insert, it adds to the current document a descrip-
tion of the color with the amount of red, green, and blue; and by calling Print it displays the
numeric value in the status bar:

Declare Function GetColor Lib “FormDLL”(Col As Long) As Long
Sub MAIN
NewColor = GetColor(0)
Print “The code of the color is “ + Str$(NewColor)
Insert “Red:” + Str$(NewColor Mod 256) + Chr$(13)
Insert “Green:” + Str$(Int(NewColor / 256) Mod 256) + Chr$(13)
Insert “Blue:” + Str$(Int(NewColor / (256 * 256))) + Chr$(13)

End Sub

Unfortunately, there is no easy way to use RGB colors in Word, since Word’s color
schemes are based on fixed color codes. Here is an example of the output of this macro:

Red: 141
Green: 109
Blue: 179

You can find the text of this macro in the file WORDCALL.TXT, in the directory containing this
DLL. If you want to test it, remember to first copy the DLL file into one of the directories
of the path or into the Windows system directory.

NOTE A better way to integrate Delphi code with Office applications is to use OLE Automation,
instead of writing custom DLLs and calling them from the macro language. We’ll see examples
of OLE Automation in Chapter 20.

Calling a DLL Function at Run Time
Up to now, we’ve always referenced in our code the functions exported by the libraries, so
that the DLLs will be loaded along with the program. I mentioned earlier that we can also
delay the loading of a DLL until the moment it is actually needed, so we’d be able to use the
rest of the program in case the DLL is not available.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 502

http://www.sybex.com

503

Dynamic loading of a DLL in Windows is accomplished by calling the LoadLibrary API
function, which searches the DLL in the program folder, in the folders on the path, and in
some system folders. If the DLL is not found, Windows will show an error message, some-
thing you can skip by calling Delphi’s SafeLoadLibrary function. This function has the same
effect as the API it encapsulates, but it suppresses the standard Windows error message and
should be the preferred way to load libraries dynamically in Delphi.

If the library is found and loaded (something you know by checking the return value of
LoadLibrary or SafeLoadLibrary), a program can call the GetProcAddress API function,
which searches the DLL’s exports table, looking for the name of the function passed as a
parameter. If GetProcAddress finds a match, it returns a pointer to the requested procedure.
Now we can simply cast this function pointer to the proper data type and call it.

Whichever loading functions you’ve used, don’t forget to call FreeLibrary at the end, so
that the DLL can be properly released from memory. In fact, the system uses a reference-
counting technique for libraries, releasing them when each loading request has been fol-
lowed by a freeing request.

The example I’ve built to show dynamic DLL loading is named DynaCall and uses the
FirstDLL library we built earlier in this chapter (to make the program work, I’ve copied the
DLL into the same folder as the DynaCall example). Instead of declaring the Double and
Triple functions and using them directly, this example obtains the same effect with some-
what more complex code. The advantage, however, is that the program will run even without
the DLL. Also, if new compatible functions are added to the DLL, we won’t have to revise the
program’s source code and recompile it to access those new functions. Here is the core code
of the program:

type
TIntFunction = function (I: Integer): Integer; stdcall;

const
DllName = ‘Firstdll.dll’;

procedure TForm1.Button1Click(Sender: TObject);
var
HInst: THandle;
FPointer: TFarProc;
MyFunct: TIntFunction;

begin
HInst := SafeLoadLibrary (DllName);
if HInst > 0 then
try
FPointer := GetProcAddress (HInst,
PChar (Edit1.Text));

A Delphi Form in a DLL

2874c12.qxd 7/2/01 2:37 PM Page 503

http://www.sybex.com

504

if FPointer <> nil then
begin
MyFunct := TIntFunction (FPointer);
SpinEdit1.Value := MyFunct (SpinEdit1.Value);

end
else
ShowMessage (Edit1.Text + ‘ DLL function not found’);

finally
FreeLibrary (HInst);

end
else
ShowMessage (DllName + ‘ library not found’);

end;

How do you call a procedure in Delphi, once you have a pointer to it? One solution is to
convert the pointer to a procedural type and then call the procedure using the procedural-
type variable, as in the listing above. Notice that the procedural type you define must be
compatible with the definition of the procedure in the DLL. This is the Achilles’ heel of this
method—there is no check of the parameter types.

What is the advantage of this approach? In theory, you can use it to access any function of
any DLL at any time. In practice, it is useful when you have different DLLs with compatible
functions or a single DLL with several compatible functions, as in our case. What we can do
is to call the Double and Triple methods simply by entering their names in the edit box. Now,
if someone gives us a DLL with a new function receiving an integer as a parameter and return-
ing an integer, we can call it simply by entering its name in the edit box. We don’t even need to
recompile the application.

With this code, the compiler and the linker ignore the existence of the DLL. When the
program is loaded, the DLL is not loaded immediately. We might make the program even
more flexible and let the user enter the name of the DLL to use. In some cases, this is a great
advantage. A program may switch DLLs at run time, something the direct approach does not
allow. Note that this approach to loading DLL functions is common in macro languages and
is used by many visual programming environments. Also, the code of the Word macro we
saw earlier in this chapter uses this approach to load the DLL and to call the external func-
tion. Well, you don’t want to recompile Word, do you?

Only a system based on a compiler and a linker, such as Delphi, can use the direct
approach, which is generally more reliable and also a little bit faster. I think the indirect load-
ing approach of the DynaCall example is useful only in special cases, but it can be extremely
powerful.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 504

http://www.sybex.com

505

A DLL in Memory: Code and Data
We can use this technique, based on the GetProcAddress API function, to test which memory
address of the current process a function has been mapped to, with the following code:

procedure TForm1.Button3Click(Sender: TObject);
var
HDLLInst: THandle;

begin
HDLLInst := SafeLoadLibrary (‘dllmem’);
Label1.Caption := Format (‘Address: %p’, [
GetProcAddress (HDLLInst, ‘SetData’)]);

FreeLibrary (HDLLInst);
end;

This code displays, in a label, the memory address of the function, within the address
space of the calling application. If you run two programs using this code, they’ll generally
both show the same address. This demonstrates that the code is loaded only once at a com-
mon memory address.

NOTE The memory address will be different if the DLL had to be relocated in one of the processes, or
if each process has relocated the DLL to a different base address. In these cases, the code is
generally not shared in memory but actually loaded multiple times, because absolute address
references in the code must be rewritten to refer to the proper new addresses. As the code is
modified by the loader, it cannot be shared.

If the code of the DLL is loaded only once, what about the global data? Basically, each
copy of the DLL has its own copy of the data, in the address space of the calling application.
However, it is indeed possible to share global data between applications using a DLL. The
most common technique for sharing data is to use memory-mapped files. I’ll use this tech-
nique for a DLL, but it can also be used to share data directly among applications.

This example is called DllMem and uses a project group with the same name, as in the pre-
vious examples of this chapter. The DllMem project group includes the DllMem project (the
DLL itself) and the UseMem project (the demo application). The DLL code has a simple
project file, which exports four subroutines:

library dllmem;

uses
SysUtils,
DllMemU in ‘DllMemU.pas’;

exports
SetData, GetData,
GetShareData, SetShareData;

end.

A DLL in Memory: Code and Data

2874c12.qxd 7/2/01 2:37 PM Page 505

http://www.sybex.com

506

The actual code is in the secondary unit (DllMemU.PAS), which has the code of the four rou-
tines that read or write two global memory locations. These hold an integer and a pointer to
an integer. Here are the variable declarations and the two Set routines:

var
PlainData: Integer = 0; // not shared
ShareData: ^Integer; // shared

procedure SetData (I: Integer); stdcall;
begin
PlainData := I;

end;

procedure SetShareData (I: Integer); stdcall;
begin
ShareData^ := I;

end;

Sharing Data with Memory-Mapped Files
For the data that isn’t shared, there isn’t anything else to do. To access the shared data, how-
ever, the DLL has to create a memory-mapped file and then get a pointer to this memory
area. These two operations require two Windows API calls:

• CreateFileMapping requires as parameters the filename (or $FFFFFFFF to use a virtual
file in memory), some security and protection attributes, the size of the data, and an
internal name (which must be the same to share the mapped file from multiple calling
applications).

• MapViewOfFile requires as parameters the handle of the memory mapped file, some
attributes and offsets, and the size of the data (again).

Here is the source code of the initialization section, executed every time the DLL is
loaded into a new process space (that is, once for each application that uses the DLL):

var
hMapFile: THandle;

const
VirtualFileName = ‘ShareDllData’;
DataSize = sizeof (Integer);

initialization
// create memory mapped file
hMapFile := CreateFileMapping ($FFFFFFFF, nil,
Page_ReadWrite, 0, DataSize, VirtualFileName);

if hMapFile = 0 then
raise Exception.Create (‘Error creating memory-mapped file’);

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 506

http://www.sybex.com

507

// get the pointer to the actual data
ShareData := MapViewOfFile (
hMapFile, File_Map_Write, 0, 0, DataSize);

When the application terminates and the DLL is released, it has to free the pointer to the
mapped file and the file mapping itself:

finalization
UnmapViewOfFile (ShareData);
CloseHandle (hMapFile);

The code of the program using this DLL, UseMem, is very simple. The form of this appli-
cation has four edit boxes (two with an UpDown control connected), five buttons, and a label.
The first button saves the value of the first edit box in the DLL data, getting the value from
the connected UpDown control:

SetData (UpDown1.Position);

If you click the second button, the program copies the DLL data to the second edit box:
Edit2.Text := IntToStr(GetData);

The third button is used to display the memory address of a function, with the source code
shown at the beginning of this section, and the last two buttons have basically the same code as
the first two, but they call the SetShareData procedure and GetShareData function.

If you run two copies of this program, you can see that each copy has its own value for the
plain global data of the DLL, while the value of the shared data is common. Set different val-
ues in the two programs and then get them in both, and you’ll see what I mean. This situa-
tion is illustrated in Figure 12.6.

F I G U R E 1 2 . 6 :
If you run two copies of the
UseMem program, you’ll
see that the global data in
its DLL is not shared.

A DLL in Memory: Code and Data

2874c12.qxd 7/2/01 2:37 PM Page 507

http://www.sybex.com

508

WARNING Memory-mapped files reserve a minimum of a 64 KB range of virtual addresses and consume
physical memory in 4 KB pages. The example’s use of 4-byte Integer data in shared memory is
rather expensive, especially if you use the same approach for sharing multiple values. If you
need to share several variables, you should place them all in a single shared memory area
(accessing the different variables using pointers or building a record structure for all of them).

Using Delphi Packages
In Delphi, component packages are an important type of DLL. Packages allow you to bundle
a group of components and then link the components either statically (adding their compiled
code to the executable file of your application) or dynamically (keeping the component code
in a DLL, the run-time package that you’ll distribute along with your program). In the last
chapter, you saw how to build a package. Now I want to underline some advantages and disad-
vantages of the two forms of linking for a package. There are many elements to keep in mind:

• Using a package as a DLL makes the executable files much smaller.

• Linking the package units into the program allows you to distribute only part of the
package code. Generally, the size of the executable file of an application plus the size of
the required package DLLs that it requires is much bigger than the size of the statically
linked program. The linker includes only the code actually used by the program, whereas
a package must link in all the functions and classes declared in the interface sections of all
the units contained in the package.

• If you distribute several Delphi applications based on the same packages, you might
end up distributing less code, because the run-time packages are shared. In other
words, once the users of your application have the standard Delphi run-time packages,
you can ship them very small programs.

• If you run several Delphi applications based on the same packages, you can save some
memory space at run time; the code of the run-time packages is loaded in memory only
once between the multiple Delphi applications.

• Don’t worry too much about distributing a large executable file. Keep in mind that
when you make minor changes to a program, you can use any of various tools to create
a patch file, so that you distribute only a file containing the differences, not a complete
copy of the files.

• If you place a few of your program’s forms in a run-time package, you can share them
among programs. When you modify these forms, however, you’ll generally need to
recompile the main program as well, and distribute both of them again to your users.
The next section discusses this complex topic in detail.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 508

http://www.sybex.com

509

Package Versioning
A very important and often misunderstood element is the distribution of updated packages.
When you update a DLL, you can ship the new version, and the executable programs requir-
ing this DLL will generally still work (unless you’ve removed existing exported functions or
changed some of their parameters).

When you distribute a Delphi package, however, if you update the package and modify the
interface portion of any unit of the package, you might need to recompile all the applications
that use the package. This is required if you add methods or properties to a class, but not if
you add new global symbols (or modify anything not used by client applications). There is no
problem at all for changes affecting only the implementation section of the package’s units.

A DCU file in Delphi has a version tag based on its timestamp and a checksum computed
from the interface portion of the unit. When you change the interface portion of a unit,
every other unit based on it should be recompiled. The compiler compares the timestamp
and checksum of the unit of previous compilations with the new timestamp and checksum,
and decides whether the dependent unit must be recompiled. This is why you have to recom-
pile each unit when you get a new version of Delphi, which has modified system units.

A package is a collection of units. In Delphi 3, a checksum of the package, obtained from
the checksum of the units it contains and the checksum of the packages it requires, was added
as an extra entry function to the package library, so that any executable based on an older ver-
sion of the package would fail at startup.

Delphi 4 and following versions have relaxed the run-time constraints of the package. The
design-time constraints on DCU files remain identical, though. The checksum of the pack-
ages is not checked anymore, so you can directly modify the units that are part of a package
and deploy a new version of the package to be used with the existing executable file. Since
methods are referenced by name, you cannot remove any existing method. You cannot even
change its parameters, because of name-mangling techniques specifically added to the pack-
ages to protect against changes in parameters.

Removing a method referenced from the calling program will stop the program during the
loading process. If you make other changes, however, the program might fail unexpectedly
during its execution. For example, if you replace a component placed on a form compiled in a
package with a similar component, the calling program might still able to access the one in
that memory location, although it is now a different component!

If you decide to follow this treacherous road of changing the interface of units in a package
without recompiling all the programs that use it, you should at least limit your changes. When
you add new properties or nonvirtual methods to the form, you should be able to maintain full
compatibility with existing programs already using the package. Also, adding fields and virtual

Using Delphi Packages

2874c12.qxd 7/2/01 2:37 PM Page 509

http://www.sybex.com

510

methods might affect the internal structure of the class, leading to problems with existing
programs that expect a different class data and virtual method table (VMT) layout. Of
course, this applies to the binary compatibility between the EXE and the BPL (Borland
Package Library).

WARNING Here I’m referring to the distribution on compiled programs divided between EXE and pack-
ages, not to the distribution of components to other Delphi developers. In this latter case the
versioning rules are more stringent, and you must take extra care in package versioning.

Having said this, I recommend never changing the interface of any unit exported by your
packages. To accomplish this, you can add to your package a unit with form-creation func-
tions (as in the DLL with forms presented earlier) and use it to access another unit, which
defines the form. Although there is no way to hide a unit that is linked into a package, if you
never directly use the class defined in a unit, but use it only through other routines, you’ll
have more flexibility in modifying it. You can also use form inheritance to modify a form
within a package without really affecting the original version.

The most stringent rule for packages is the following one used by component writers: For
long-term deployment and maintenance of code in packages, plan on having a major release
with minor maintenance releases. A major release of your package will require all client pro-
grams to be recompiled from source; the package file itself should be renamed with a new
version number, and the interface sections of units can be modified. Maintenance releases of
that package should be restricted to implementation changes to preserve full compatibility
with existing executables and units.

Forms Inside Packages
We’ve already discussed (in Chapter 11, “Creating Components”) the use of component
packages in Delphi applications. As I’m discussing the use of packages and DLLs for parti-
tioning an application, here I’ll start discussing the development of packages holding forms.
We’ve seen earlier in this chapter that you can use forms inside DLLs, but this sometimes
causes a few problems. If you are building both the library and the executable file in Delphi,
using packages results in a much better and cleaner solution.

At first sight, you might believe that Delphi packages are a way to distribute components to
be installed in the environment. Instead, you can use packages as a way to structure your code
but, unlike DLLs, retain the full power of Delphi’s OOP. Consider this: A package is a collec-
tion of compiled units and your program uses several units. The units the program refers to will
be compiled inside the executable file, unless you ask Delphi to place them inside a package.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 510

http://www.sybex.com

511

So how do you set up an application so that its code is split among one or more packages
and a main executable file? You only need to compile some of the units in a package and then
set up the options of the main program to dynamically link this package. For example, I’ve
made a copy of the “usual” color selection form and renamed its unit as PackScrollF, then
I’ve created a new package and added the unit to it, as you can see in Figure 12.7.

Before compiling this package, you should change its default output directories to refer to
the current folder, not the standard /Projects/Bpl subfolder of Delphi. To do this, go to the
Directories/Conditional page of the package Project Options, and set the current directory
(a single dot, for short) for the Output directory (for the BPL) and DCP output directory.
Then compile the package and do not install it in Delphi—there’s no need to.

At this point, you can create a normal application and write the standard code you’ll use in
a program to show a secondary form, as in the following listing:

uses
PackScrollF;

procedure TForm1.BtnChangeClick(Sender: TObject);
var
FormScroll: TFormScroll;

begin
FormScroll := TFormScroll.Create (Application);
try
// initialize the data
FormScroll.SelectedColor := Color;
// show the form
if FormScroll.ShowModal = mrOK then
Color := FormScroll.SelectedColor;

finally
FormScroll.Free;

end;
end;

F I G U R E 1 2 . 7 :
The structure of the pack-
age hosting a form in
Delphi’s Package Editor

Forms Inside Packages

2874c12.qxd 7/2/01 2:37 PM Page 511

http://www.sybex.com

512

procedure TForm1.BtnSelectClick(Sender: TObject);
var
FormScroll: TFormScroll;

begin
FormScroll := TFormScroll.Create (Application);
// initialize the data and UI
FormScroll.SelectedColor := Color;
FormScroll.BitBtn1.Caption := ‘Apply’;
FormScroll.BitBtn1.OnClick := FormScroll.ApplyClick;
FormScroll.BitBtn2.Kind := bkClose;
// show the form
FormScroll.Show;

end;

One of the advantages of this approach is that you can refer to a form compiled into a
package with the exact same code you’ll use for a form compiled in the program. In fact, if
you simply compile this program, the unit of the form will actually be bound to it. To keep it
in the package, you’ll have to use run-time packages for the application and manually add the
PackWithForm package to the list of run-time packages (this is not suggested by the Delphi
IDE as we have not installed the package in the development environment).

Once you’ve done this step, compile the program and it will behave exactly as usual. But
now the form is in a DLL package, and you can even modify the form in the package, recom-
pile it, and simply run the application to see the effects. Notice, though, that for most changes
affecting the interface portion of the units of the package (for example, adding a component or a
method to the form), you should also recompile the executable program calling the package.

NOTE You can find the package and the program testing it in the PackForm folder of the source
code related to the current chapter. The code of the next example is in the same folder.

Loading Packages at Run Time
In the example above, I indicated that the PackWithForm package is a run-time package to
be used by the application. This means that the package is required to run the application
and is loaded when the program starts. Both aspects can be avoided by loading the package
dynamically, as we’ve done with DLLs. The resulting program will be more flexible, start
more quickly, and use less memory.

An important element to keep in mind is that you’ll need to call the LoadPackage and
UnloadPackage Delphi functions rather than the LoadLibrary and FreeLibrary Windows
API functions. The difference is that the functions provided by Delphi load the packages, but
also call their proper initialization and finalization code.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 512

http://www.sybex.com

513

Besides this important element—easy to accomplish once you know about it—the program
will require some extra code, as we cannot refer from the main program to the unit hosting
the form. We cannot use the form class directly, nor access to its properties or components.
At least not with the standard Delphi code. Both issues, however, can be solved using class
references, class registration, and RTTI (run-time type information). Let me start with the
first one. In the form unit, in the package, I’ve added this initialization code:

initialization
RegisterClass (TFormScroll);

As the package is loaded, the main program can use Delphi’s GetClass function to get the class
reference of the registered class and then call the Create constructor for this class reference.

To solve the second problem, I’ve made the SelectedColor property of the form in the
package a published property, so that it is accessible via RTTI. Then I’ve replaced the code
accessing this property (FormScroll.Color) with the following:

SetPropValue (FormScroll, ‘SelectedColor’, Color);

Summing up all of these changes, here is the code used by the main program (the Dyna-
PackForm application) to show the modal form from the dynamically loaded package:

procedure TForm1.BtnChangeClick(Sender: TObject);
var
FormScroll: TForm;
FormClass: TFormClass;
HandlePack: HModule;

begin
// try to load the package
HandlePack := LoadPackage (‘PackWithForm.bpl’);
if HandlePack > 0 then
begin
FormClass := TFormClass(GetClass (‘TFormScroll’));
if Assigned (FormClass) then
begin
FormScroll := FormClass.Create (Application);
try
// initialize the data
SetPropValue (FormScroll, ‘SelectedColor’, Color);
// show the form
if FormScroll.ShowModal = mrOK then
Color := GetPropValue (FormScroll, ‘SelectedColor’);

finally
FormScroll.Free;

end;
end
else
ShowMessage (‘Form class not found’);

Forms Inside Packages

2874c12.qxd 7/2/01 2:37 PM Page 513

http://www.sybex.com

514

UnloadPackage (HandlePack);
end
else
ShowMessage (‘Package not found’);

end;

Notice that the program unloads the package as soon as it is done with it. This is not com-
pulsory. I could have moved the UnloadPackage call in the OnDestroy handler of the form,
and avoided reloading the package after the first time.

Now you can try running this program without the package available, and you’ll see that it
will start properly, only to complain it cannot find the package as you click the Change button.
In this program, you don’t need to use run-time packages to keep the unit outside of your exe-
cutable file, as you are not referring to the unit in your code. Also, the PackWithForm package
doesn’t need to be listed in the run-time packages. However, you must use run-time packages,
or else your program will include the VCL global variables (as the Application object) and the
dynamically loaded package will include another version, because it will refer to the VCL pack-
ages anyway.

Using Interfaces in Packages
Accessing the classes of the forms by means of methods and properties is much simpler than
using RTTI all over the place. To build a larger application, I definitely try to use interfaces
and to have multiple forms, each implementing a few standard interfaces defined by the pro-
gram. An example cannot really do justice to this type of architecture, which becomes rele-
vant for a large program, but I’ve tried nonetheless to build a program to show how this idea
can be applied in practice.

NOTE If you don’t know much about interfaces, I suggest you to refer to the related portion of
Chapter 3 before reading this section.

To architect the IntfPack project, I’ve used three packages plus a demo application. Two of
the three packages (called IntfFormPack and IntfFormPack2) define alternative forms used
to select a color. The third package (called IntfPack) hosts a shared unit, used by both other
packages. This unit basically includes the definition of the interface. I couldn’t add it to both
other packages because you cannot load two packages with a unit having the same name
(even by run-time loading).

The only file of the IntfPack package is the IntfColSel unit, displayed in Listing 12.1. This
unit defines the common interface (and you’ll probably have a number of them in real-world
application) plus a list of registered classes, which mimics Delphi’s RegisterClass approach,
but makes available the complete list so that you can easily scan it.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 514

http://www.sybex.com

515

➲ Listing 12.1: The IntfColSel unit of the IntfPack package

unit IntfColSel;

interface

uses
Graphics, Contnrs;

type
IColorSelect = interface
[‘{3F961395-71F6-4822-BD02-3B475FF516D4}’]
function Display (Modal: Boolean = True): Boolean;
procedure SetSelColor (Col: TColor);
function GetSelColor: TColor;
property SelColor: TColor
read GetSelColor write SetSelColor;

end;

procedure RegisterColorSelect (AClass: TClass);

var
ClassesColorSelect: TClassList;

implementation

procedure RegisterColorSelect (AClass: TClass);
begin
if ClassesColorSelect.IndexOf (AClass) < 0 then
ClassesColorSelect.Add (AClass);

end;

initialization
ClassesColorSelect := TClassList.Create;

finalization
ClassesColorSelect.Free;

end.

Once we have this interface available, we can define forms that implement it, as in the fol-
lowing example, taken form the IntfFormPack:

type
TFormSimpleColor = class(TForm, IColorSelect)
...

private
procedure SetSelColor (Col: TColor);
function GetSelColor: TColor;

public
function Display (Modal: Boolean = True): Boolean;

Forms Inside Packages

2874c12.qxd 7/2/01 2:37 PM Page 515

http://www.sybex.com

516

The two access methods simply read and write the value of the color from some compo-
nents of the form (a simple ColorGrid in this specific case), while the Display method inter-
nally calls either Show or ShoModal, depending on the parameter:

function TFormSimpleColor.Display(Modal: Boolean): Boolean;
begin
Result := True; // default
if Modal then
Result := (ShowModal = mrOK)

else
begin
BitBtn1.Caption := ‘Apply’;
BitBtn1.OnClick := ApplyClick;
BitBtn2.Kind := bkClose;
Show;

end;
end;

The form is structured like that of the last example, still available in the second package,
and has an OK button that is turned into an Apply button. Finally, the unit has the registra-
tion code in the initialization section, so that it is executed when the package is dynami-
cally loaded:

RegisterColorSelect (TFormSimpleColor);

With this architecture in place, we can build a rather elegant and flexible main program,
which is based on a single form. When the form is created, it defines a list of packages (called
HandlesPackages) and loads them all. I’ve hard-coded the package in the code of the example,
but of course you can as well search for the packages of the current folder or use a configura-
tion file to make the application structure more flexible. Finally, after loading the packages,
the program shows the registered classes in a list box. This is the code of the LoadDynaPackage
and FormCreate methods:

procedure TFormUseIntf.FormCreate(Sender: TObject);
var
I: Integer;

begin
// loads all runtime packages
HandlesPackages := TList.Create;
LoadDynaPackage (‘IntfFormPack.bpl’);
LoadDynaPackage (‘IntfFormPack2.bpl’);

// add class names and select the first
for I := 0 to ClassesColorSelect.Count - 1 do
lbClasses.Items.Add (ClassesColorSelect [I].ClassName);

lbClasses.ItemIndex := 0;
end;

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 516

http://www.sybex.com

517

procedure TFormUseIntf.LoadDynaPackage(PackageName: string);
var
Handle: HModule;

begin
// try to load the package
Handle := LoadPackage (PackageName);
if Handle > 0 then
// add to the list for later removal
HandlesPackages.Add (Pointer(Handle))

else
ShowMessage (‘Package ‘ + PackageName + ‘ not found’);

end;

The main reason for keeping the list of package handles is to be able to unload them all
when the program ends. In fact, we don’t need these handles to access the forms defined in
those packages. The run-time code used to create and show a form simply uses the corre-
sponding component classes. This is a snippet of code used to display a modeless form (an
option controlled by a check box):

var
AComponent: TComponent;
ColorSelect: IColorSelect;

begin
AComponent := TComponentClass
(ClassesColorSelect[LbClasses.ItemIndex]).Create (Application);

ColorSelect := AComponent as IColorSelect;
ColorSelect.SelColor := Color;
ColorSelect.Display (False);

The program actually uses the Supports function to check that the form really does sup-
port the interface before using it, and also accounts for the modal version of the form, but its
essence is properly depicted in the four statements above. By the way, notice that the code
doesn’t actually require a form. A nice exercise would be to add to the architecture a package
with a component encapsulating the color selection dialog box or inheriting from it.

WARNING The main program refers to the unit hosting the interface definition but should not link this file
in. Rather, it should use the run-time package containing this unit, as the dynamically loaded
packages do. Otherwise the main program will use a different copy of the same code, includ-
ing a different list of global classes. It is this list of global classes, not the use of the same inter-
face, that should not be duplicated in memory.

Forms Inside Packages

2874c12.qxd 7/2/01 2:37 PM Page 517

http://www.sybex.com

518

Packages Versus DLLs
In the preceding section, we’ve seen that using packages is a fine alternative to using DLLs
for sharing compiled code among multiple Delphi applications or splitting a large executable
into multiple (and partially independent) modules. As a summary, here are a few of the differ-
ences between the two approaches:

• DLLs are collections of functions; packages can easily “export” classes and objects.

• Dynamically loading a DLL implies losing any safety in the function call, in case you
pass the wrong parameters. Dynamically loading packages requires some extra coding
as well, but is definitely simpler and safer, particularly if you use interfaces.

• Packages force you to use the VCL run-time package for the application, although
even when using DLLs, run-time packages help solve quite a few difficulties (as we’ll
discuss shortly).

• DLLs can be used across programming languages and development environments, but
packages are limited to Delphi and C++Builder. If you need libraries in a Delphi-only
environment, packages are the native solution and should generally be preferred.

Using DLLs also accounts for a few extra troubles that you can partially solve by letting
the DLLs share run-time packages. The following sections discuss the problem briefly, as
this is not the recommended approach anyway.

Executables and DLLs Sharing the VCL Packages
In the FormDLL example, we faced a problem: When you place forms inside a DLL, you
don’t get the proper behavior for the flat buttons even if you synchronize the two application
objects. Moreover, both the executable file and the DLL contain the compiled code of the
VCL library, leading to useless duplication. As discussed earlier, the simplest solution to this
issue is to use a package instead of a DLL.

Another solution is to keep the DLL in its format, but let it use run-time packages, so that
no global objects will be duplicated between the executable and the library. In this case there
will be only one Application object, shared by the program and the DLL, instead of two
separate objects, so we don’t need the synchronization code any more.

Another simplification to the program comes from the fact that the modeless form inside
the DLL can communicate back to the main form by accessing the list of the forms (available
to the shared global Screen object) or simply using the Application.MainForm property. This
is what I’ve done in the FormDllP example on the CD.

With this approach, you face the risk of having the main form and the form in the DLL
not synchronized at all, with two entries in the Taskbar; also, this code still has all the other

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 518

http://www.sybex.com

519

problems of the first version of the FormDLL example. The problem lies in the fact that
when you run the program, the DLL is initialized before the application, so it is the DLL
that initializes the Forms unit of the VCL. Within a DLL, the VCL creates the Application
object but doesn’t create the corresponding window.

There are two radically different approaches to this initialization issue: One is to change
the initialization order by loading the DLL dynamically after the application has started; the
second is to add some extra initialization code in the program. None of these techniques pro-
vides a better solution than using packages altogether!

Dynamically Loading the DLL with Packages
The first solution is demonstrated by the FirstDLLD library and the UseDyna example, which
dynamically loads the DLL built with run-time packages. The main program loads the DLL at
startup, in the OnCreate event handler of the form:

procedure TForm1.FormCreate(Sender: TObject);
begin
hInstDll := SafeLoadLibrary (‘FormDllD.dll’);
if hInstDll <= 0 then
raise Exception.Create (‘FormDllD library not found’);

end;

In the program I haven’t declared the functions exported by the DLL, to avoid the implicit
link of the library. Instead I’ve declared two procedure types:

type
TGetColorProc = function (Col: LongInt): LongInt; stdcall;
TShowColorProc = procedure (Col: LongInt); stdcall;

These types are used for converting the generic pointer returned by the GetProcAddress
function, as we’ve already seen in the DynaCall example:

procedure TForm1.BtnChangeClick(Sender: TObject);
var
Col: LongInt;
GetColorProc: TGetColorProc;
FPointer: TFarProc;

begin
FPointer := GetProcAddress (hInstDll, ‘GetColor’);
if FPointer = nil then
raise Exception.Create (‘GetColor DLL function not found’);

GetColorProc := TGetColorProc (FPointer);
// original code
Col := ColorToRGB (Color);
Color := GetColorProc (Col);

end;

Packages Versus DLLs

2874c12.qxd 7/2/01 2:37 PM Page 519

http://www.sybex.com

520

Using dynamic loading is the correct approach, officially supported by Delphi. Still, you
have to call the functions dynamically, which requires a little extra coding.

Fixing the Initialization Code
An alternate solution is to keep the external functions defined in the main program, let the
DLL start first and initialize the VCL, and let the VCL create the Application object with-
out the connected window. In fact, we can add one line of code to the library to ask for the
creation of the window of the Application object during the library initialization process
(before the executable creates its own main objects). We accomplish this by writing the code
in the initialization section of one of the units of the DLL:

initialization
Application.CreateHandle;

Because this code is in the DLL, the application fails to load its icon. The solution is actu-
ally very simple. In the OnCreate event handler of the main form (in the main program), sim-
ply reload the current icon:

Application.Icon.Handle := LoadIcon (HInstance, ‘MAINICON’);

Exploring the Structure of a Package
You might wonder: is it possible to know whether a unit has been linked in the executable file or
if it’s part of a run-time package? Not only is this possible in Delphi, but you can also explore the
overall structure of an application. A component can use the undocumented ModuleIsPackage
global variable, declared in the SysInit unit. You should never need this, but it is technically pos-
sible for a component to have different code depending on whether it is packaged or not. The
following code extracts the name of the run-time package hosting the component, if any:

var
fPackName: string;

begin
// get package name
SetLength (fPackName, 100);
if ModuleIsPackage then
begin
GetModuleFileName (HInstance, PChar (fPackName), Length (fPackName));
fPackName := PChar (fPackName) // string length fixup

end
else
fPackName := ‘Not packaged’;

Besides accessing package information from within a component (as in the code above), you
can also do so from a special entry point of the package libraries, the GetPackageInfoTable

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 520

http://www.sybex.com

521

function. This function returns some specific package information that Delphi stores as
resources and includes in the package DLL. Fortunately, we don’t need to use low-level tech-
niques to access this information, since Delphi provides some high-level functions to manip-
ulate it.

You can use two functions to access package information:

• GetPackageDescription returns a string that contains a description of the package. To
call this function, you must supply the name of the module (the package library) as the
only parameter.

• GetPackageInfo doesn’t directly return information about the package. Instead, you
pass it a function that it calls for every entry in the package’s internal data structure. In
practice, GetPackageInfo will call your function for every one of the package’s contained
units and required packages. In addition, GetPackageInfo sets several flags in an Integer
variable.

These two function calls allow us to access internal information about a package, but how
do we know which packages our application is using? You could determine this by looking at
an executable file using low-level functions, but Delphi helps you again by supplying a sim-
pler approach. The EnumModules function doesn’t directly return information about an appli-
cation’s modules but allows you to pass it a function, which it calls for each module of the
application, the main executable file, and for each of the packages the application relies on.

To demonstrate this approach, I’ve built a simple example program that displays the mod-
ule and package information in a TreeView component. Each first-level node corresponds to
a module, and within each module I’ve built a subtree that displays the contained and
required packages for that module, as well as the package description and compiler flags
(RunOnly and DesignOnly). You can see the output of this example in Figure 12.8.

In addition to the TreeView component, I’ve added several other components to the main
form, but hidden them from view: a DBEdit, a Chart, and a FilterComboBox. I added these
components simply to include more run-time packages in the application, beyond the ubiq-
uitous VCL60.BPL. The only method of the form class is FormCreate, which calls the module
enumeration function:

procedure TForm1.FormCreate(Sender: TObject);
begin
EnumModules(ForEachModule, nil);

end;

Exploring the Structure of a Package

2874c12.qxd 7/2/01 2:37 PM Page 521

http://www.sybex.com

522

The EnumModules function accepts two parameters. The first is the callback function (in our
case, ForEachModule), and the second is a pointer to a data structure that the callback function
will use (in our case, nil, since we didn’t need this). The callback function must accept two
parameters—an HInstance value and an untyped pointer—and must return a Boolean value.
The EnumModules function will, in turn, call our callback function for each module, passing the
instance handle of each module as the first parameter and the data structure pointer (nil in
our example) as the second.

function ForEachModule (HInstance: Longint;
Data: Pointer): Boolean;

var
Flags: Integer;

F I G U R E 1 2 . 8 :
The output of the PackInfo
example, with the details of
the packages it uses

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 522

http://www.sybex.com

523

ModuleName, ModuleDesc: string;
ModuleNode: TTreeNode;

begin
with Form1.TreeView1.Items do
begin
SetLength (ModuleName, 200);
GetModuleFileName (HInstance,
PChar (ModuleName), Length (ModuleName));

ModuleName := PChar (ModuleName); // fixup
ModuleNode := Add (nil, ModuleName);

// get description and add fixed nodes
ModuleDesc := GetPackageDescription (PChar (ModuleName));
ContNode := AddChild (ModuleNode, ‘Contains’);
ReqNode := AddChild (ModuleNode, ‘Requires’);

// add information if the module is a package
GetPackageInfo (HInstance, nil, Flags, ShowInfoProc);
if ModuleDesc <> ‘’ then
begin
AddChild (ModuleNode, ‘Description: ‘ + ModuleDesc);
if Flags and pfDesignOnly = pfDesignOnly then
AddChild (ModuleNode, ‘Design Only’);

if Flags and pfRunOnly = pfRunOnly then
AddChild (ModuleNode, ‘Run Only’);

end;
end;
Result := True;

end;

As you can see in the preceding code, the ForEachModule function begins by adding the mod-
ule name as the main node of the tree (by calling the Add method of the TreeView1.Items object
and passing nil as the first parameter). It then adds two fixed child nodes, which are stored in
the ContNode and ReqNode variables declared in the implementation section of this unit.

Next, the program calls the GetPackageInfo function and passes it another callback func-
tion, ShowInfoProc, which I’ll discuss shortly. The program adds the details for the main
module (see Figure 12.9), simply because this will provide a list of the application’s units. At
the end of this function, we add more information if the module is a package, such as its
description and compiler flags (we know it’s a package if its description isn’t an empty string).

Exploring the Structure of a Package

2874c12.qxd 7/2/01 2:37 PM Page 523

http://www.sybex.com

524

Earlier, I mentioned passing another callback function, the ShowInfoProc procedure, to the
GetPackageInfo function, which in turn calls our callback function for each contained or
required package of a module. This procedure creates a string that describes the package and
its main flags (added within parentheses), and then inserts that string under one of the two
nodes (ContNode and ReqNode), depending on the type of the module. We can determine the
module type by examining the NameType parameter. Here is the complete code of our second
callback function:

procedure ShowInfoProc (const Name: string; NameType: TNameType; Flags: Byte;
Param: Pointer);

var
FlagStr: string;

begin
FlagStr := ‘ ‘;
if Flags and ufMainUnit <> 0 then
FlagStr := FlagStr + ‘Main Unit ‘;

if Flags and ufPackageUnit <> 0 then
FlagStr := FlagStr + ‘Package Unit ‘;

if Flags and ufWeakUnit <> 0 then
FlagStr := FlagStr + ‘Weak Unit ‘;

if FlagStr <> ‘ ‘ then
FlagStr := ‘ (‘ + FlagStr + ‘)’;

with Form1.TreeView1.Items do
case NameType of
ntContainsUnit: AddChild (ContNode, Name + FlagStr);
ntRequiresPackage: AddChild (ReqNode, Name);

end;
end;

Here, you’ll notice that the Flags parameter doesn’t contain flag style information, as the
online help seems to imply. If you want to investigate this topic further, examine the SysUtils unit.

F I G U R E 1 2 . 9 :
The PackInfo example also
lists the units that are part
of the current application.

Chapter 12 • Libraries and Packages

2874c12.qxd 7/2/01 2:37 PM Page 524

http://www.sybex.com

525

What’s Next?
In this chapter we have seen how you can call functions that reside in DLLs, how to create
DLLs using Delphi, and how to use strings and place Delphi forms inside a library. Another
technique for placing Delphi forms and other classes in libraries is to use packages, special
DLLs that the IDE uses for installing components, but that you can use for dividing an
application into multiple executable files.

I will get back to the topics of libraries that expose objects and classes when I discuss COM
and OLE in Chapters 19 and 20. For the moment, instead, we’ll move to a totally different
topic, the development of database-oriented and client/server applications with Delphi.

What’s Next?

2874c12.qxd 7/2/01 2:37 PM Page 525

http://www.sybex.com

Database Programming
� Chapter 13: Delphi’s Database Architecture

� Chapter 14: Client/Server Programming

� Chapter 15: InterBase and IBX

� Chapter 16: ActiveX Data Objects

� Chapter 17: Multitier Database Applications with DataSnap

� Chapter 18: Writing Database Components

PART I I I

2874c13.qxd 7/2/01 4:31 PM Page 527

http://www.sybex.com

13CH A P T E R

Delphi’s Database
Architecture

� Delphi’s database components

� Database access alternatives

� Using data-aware controls

� The DBGrid and multirecord objects

� Manipulating table fields

� Database applications with standard controls

2874c13.qxd 7/2/01 4:32 PM Page 529

http://www.sybex.com

530

Delphi’s support for database applications is one of the key features of the programming
environment. Many programmers spend most of their time writing data-access code, which
needs to be the most robust portion of a database application. This chapter provides an
overview of Delphi’s extensive support for database programming.

What you won’t find here is a discussion of the theory of database design. I’m assuming
that you already know the fundamentals of database design and have already designed the
structure of a database. I won’t delve into database-specific problems; my goal is to help you
understand how Delphi supports database access.

I’ll begin with an explanation of the alternatives Delphi offers in terms of data access, and
then I’ll provide an overview of the database components that are available in Delphi. This
chapter includes an overview of the TDataSet class, an in-depth analysis of the TField com-
ponents, and the use of data-aware controls. The following chapters will provide information
on more advanced database programming topics, such as client/server programming, the use
of dbGo, dbExpress, and InterBase Express.

Accessing a Database: BDE, dbExpress, and Other
Alternatives

In the first few versions of Delphi, the only available technology to access database data was to
use the Borland Database Engine (BDE). Starting with Delphi 3, the portion of VCL related
to Database access has been restructured to open it up to multiple database access solutions.
Delphi 5 saw the introduction of specific sets of components supporting Microsoft’s ActiveX
Data Objects (ADO) and InterBase Express (IBX). Delphi 6 adds to the picture dbExpress,
which is a brand-new cross-platform and database-independent data-access technology pro-
vided by Borland with Kylix on Linux and Delphi 6 on Windows.

With all these alternatives, it is easy to get confused on which approach to use. In the fol-
lowing sections I’ve provided a short description of the key elements of these data-access tech-
nologies available in Delphi, trying to suggest in which case you’ll want to use each of them.

Borland Database Engine (BDE)
The BDE originated with Paradox, well before Delphi existed, and was extended by Borland
to support other local databases and many SQL servers. The BDE has direct access to dBASE,
Paradox, ASCII, FoxPro, and Access tables. A series of drivers (called SQL Links and available
only in Delphi Enterprise) allows access to some SQL servers, including Oracle, Sybase,
Microsoft, Informix, InterBase, and DB2 servers. If you need access to a different database,
the BDE can also interface with ODBC drivers.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 530

http://www.sybex.com

531

The advantage of using a common database engine is that your application will be portable
among different servers of the same category (porting from a local database to an SQL server
is generally much more complex). The specific advantages of using the BDE are that this
technology is very well integrated in Delphi; its elements are very well documented; and it is
the only viable solution for accessing local files such as Paradox and dBase tables.

The disadvantages of this solution: Borland has stopped developing it (there will be no fur-
ther updates); you’ll have to install and configure it on the client computers; it is quite a
“heavyweight” engine, with large installation files and memory requirements; and it is avail-
able only on Windows. If you have existing Delphi BDE applications accessing local files,
there is no hurry to convert them and get rid of the BDE, unless you want to move your
applications to Linux. If you are using an SQL server, migrating to another data-access tech-
nology will probably be easier.

BDE is still a good solution, if you balance advantages and disadvantages, but its long-term
viability is certainly in doubt. I’ll keep using the BDE for the simpler examples of this chap-
ter, but only for the sake of simplicity. In any case, I’ll try to stress the elements common to
all the dataset components rather than focus on specific features of BDE or Paradox.

The Delphi components related to the BDE are all hosted in the Data Access page of the
Components palette. There are three dataset components, Table, Query, and StoredProc,
plus the UpdateSQL used in connection with the Query component. The Database and Ses-
sion components are used to set up the database connection. The BatchMove component is
for copying data; the rarely used NestedTable component allows you to nest master-detail
data in a sub-table; and the BDEClientDataSet component, introduced in Delphi 6, merges a
ClientDataSet with a BDE-related data-access component.

ActiveX Data Objects (ADO)
ADO, which stands for ActiveX Data Objects, is Microsoft’s high-level interface for database
access. ADO is implemented on Microsoft’s data-access OLE DB technology, which pro-
vides access to relational and non-relational databases as well as e-mail and file systems and
custom business objects. ADO is an engine with features comparable to the BDE: database
server independence supporting local and SQL servers alike, a really heavyweight engine,
and a simplified configuration (because it is not centralized). Installation should in theory
not be an issue, as the engine is part of recent versions of Windows. However, the limited
compatibility among versions of ADO will force you to upgrade your users’ computers to
the same version you’ve used for developing the program—and the sheer size of the MDAC
(Microsoft Data Access Components) installation, which updates large portions of the oper-
ating system, makes this operation far from simple.

Accessing a Database: BDE, dbExpress, and Other Alternatives

2874c13.qxd 7/2/01 4:32 PM Page 531

http://www.sybex.com

532

ADO offers some definite advantages if you plan on using Access or SQL Server, as
Microsoft’s drivers for their own databases are of better quality than the average OLE DB
providers. For Access databases, specifically, using Delphi’s ADO components is a good solu-
tion. But if you plan using other SQL servers, first check the availability of a good quality
driver, as you might have some surprises. ADO is very powerful, but you have to learn living
with it, as it really stands in the way between your program and the database, providing ser-
vices but occasionally also issuing different commands than you are expecting. On the nega-
tive side, do not even think of using ADO if you plan future cross-platform development: this
Microsoft-specific technology is not available on Linux or other operating systems.

In short, use ADO if you plan working only on Windows, want to use Access or other
Microsoft databases, or you find a good OLE DB provider for each of the database servers
you plan working with (at the moment, for example, this excludes InterBase and many other
SQL servers).

ADO components (part of a package Borland called ADO Express in Delphi 5 and now calls
dbGo in Delphi 6) are all grouped in the ADO page of the Components palette. The three core
components are ADOConnection (for database connection), ADOCommand (for executing
SQL commands), and ADODataSet (for executing requests that return a result set). There are
also three compatibility components—ADOTable, ADOQuery, and ADOStoredProc—which
you can use for porting BDE-based applications to ADO. Finally, there is the RDSConnection
component, for accessing data in remote multitier applications.

NOTE Chapter 16, “ActiveX Data Objects,” covers ADO and related technologies in great detail.

The dbExpress Library
One of the relevant new features of Delphi 6 is the introduction of the dbExpress database
library for the Windows platform. I say “library” because, unlike BDE and ADO, dbExpress
uses a lightweight approach; and I underline “Windows” because the same library is available
also for Linux in Borland Kylix.

Being light and portable are actually the two key characteristics of dbExpress and the rea-
sons it has been introduced by Borland, along with the development of the Kylix project.
There are certainly other database libraries you could use in the past and can still use with
Delphi, but this new offering is worth a thought. Consider also it requires basically no con-
figuration on the user machines.

Compared to other powerhouses, dbExpress is really limited in its capabilities. It can
access only SQL servers (no local files); it has no caching capabilities and provides only uni-
directional access to the data; it can natively work only with SQL queries and is unable of
generating the corresponding SQL update statements.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 532

http://www.sybex.com

533

At first sight, you might think that these limitations make the library pretty useless. On the
contrary, these are features that make it interesting. Unidirectional datasets with no direct update
are the norm if you need to produce reporting, including generating HTML pages showing the
content of a database. If you want to build a user interface to edit the data, instead, consider that
Delphi includes specific components (the ClientDataSet and Provider, in particular) that provide
caching and query resolution. These components allow your dbExpress-based application to
have much more control than you can have with a separate (and monolithic) database engine,
which does extra things for you but often does it the way it wants, not the way you would like.

Considering that Borland is pushing this library, and it is the only viable database-independent
solution on Linux, I really urge you to consider it for new applications, and even to think about
updating existing Delphi applications to this new architecture.

InterBase Express (IBX)
Delphi includes components for native access to Borland’s own open-source (and free) Inter-
Base server. Unlike BDE, ADO, and dbExpress, this is not a server-independent database
engine, but a technology for accessing a specific database server. If you plan using only Inter-
Base as your back-end RDBMS, using a specific set of components can give you more con-
trol of the server, provide the best performance, and allow you also to configure and maintain
the server from within a custom client application.

NOTE The use of InterBase Express highlights the case of database-specific custom datasets, which
are available from third-party vendors for many servers (there are other dataset components
for InterBase, as there are for Oracle, Access, dBase files, and many others).

In short, you can consider using InterBase Express (or other comparable sets of compo-
nents) if you are sure you won’t change your database and want to achieve best performance
and control at the expense of flexibility and portability. The down side is that the extra per-
formance and control you gain might be limited, and you’ll have to learn how to use another
set of components with a specific behavior, compared to learning how to use a generic engine
and applying your knowledge to different situations.

The ClientDataSet Component
Finally, there is a component derived from TDataSet that has a peculiar behavior and can be
combined with other data-access components. The ClientDataSet component, in fact, is a
dataset accessing data kept in memory. The in-memory data can be totally temporary (lost as
you exit the program), saved to a local file as a snapshot, and imported by another dataset
using a Provider component. This last situation is certainly the most common: You can hook
a ClientDataSet to any other local dataset, or use Borland’s multitier support (discussed in

Accessing a Database: BDE, dbExpress, and Other Alternatives

2874c13.qxd 7/2/01 4:32 PM Page 533

http://www.sybex.com

534

Chapter 17, “Multitier Database Applications with DataSnap”) to retrieve data from a
dataset hosted by a different application, possibly running on a separate computer.

The ClientDataSet component becomes particularly useful if the data-access components
you are using provide limited or no caching. This is particularly true of the new dbExpress
engine, but can equally help you when using the BDE or other native components. On the
other hand, ADO already provides most of the services of the ClientDataSet component and
using these two at the same time can be useful only in limited situations.

Classic BDE Components
Each of the database-access solutions discussed above has its own set of data-access, database
connection, and extra utility components on a specific page of the Component palette. In
Delphi 6, the classic BDE components have been moved to the new BDE page and include
the Table, Query, and StoredProc components. The ADO, dbExpress, and InterBase Express
components are each in specific pages, and all include specific dataset components and others
that tend to mimic the BDE components, simplifying the porting of existing applications.
The Data Access page of the Component palette in Delphi 6 includes only the Data Source
component and others not specifically related with any single data access technology.

Besides the data-access component of your choice, a Delphi visual application generally
uses some data-aware controls (in the Data Controls page) and the DataSource component.
Data-aware controls are visual components used to view and edit the data in a form and are
extensions of standard components such as edit and list boxes, radio buttons, images, and the
grid. The DataSource component has the role of connector between the data-aware controls
and a dataset component.

Tables and Queries
The simplest traditional way to specify data access in Delphi was to use the BDE Table com-
ponent. A Table object simply refers to a database table. When you use a Table component, you
need to indicate the name of the database you want to use in its DatabaseName property. You can
enter an alias or the path of the directory with the table files. The Object Inspector lists the
available names, which depend on the aliases installed in the BDE.

You also need to indicate a proper value in the TableName property. The Object Inspector
lists the available tables of the current database (or directory), so you should generally select
the DatabaseName property first.

Another classic dataset is the BDE Query component. A query requires a SQL language
command. You can customize a query using SQL more easily than you can customize a table
(as long as you know at least the basic elements of SQL, of course). The Query component

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 534

http://www.sybex.com

535

has a DatabaseName property like the Table component, but it does not have a TableName
property. The table is indicated in the SQL statement, stored in the SQL property.

For example, you can write a simple SQL statement like this:
select * from Country

where Country is the name of a table and the asterisk (*) indicates that you want to use all of
the fields in the table.

The efficiency of a table or a query varies depending on the database you are using. In gen-
eral, we can say that the Table component tends to be faster on local tables, while the Query
component tends to be faster on SQL servers, although this is just a very general rule, and in
many cases you might have the opposite effect. We’ll see some efficiency issues while dis-
cussing client/server development in Chapter 14, “Client/Server Programming.”

The third BDE dataset component is StoredProc, which refers to stored procedures of a
SQL server database. You can run these procedures and get the results in the form of a data-
base table. Stored procedures can only be used with SQL servers.

Specific Table Features
The BDE Table component has specific features not shared by all datasets. For example, it
has filters, ranges, and specific techniques for locating records. A filter, set in the Filter
property and activated by toggling the Filtered property, is available in each dataset, although
its role changes depending on the underlying implementation. A range, instead, is specific to a
Table and allows you to specify the two extreme values and consider only the record falling
within that interval.

When using a Table, and particularly a local one, there are specific methods you can use to
find a record, such as GotoKey, FindKey, GotoNearest, FindNearest, and Locate. The Locate
method is shared by all datasets, and I’ll discuss it later along with other general features of
the TDataSet class. The other methods are specific of the TTable class and work in conjunc-
tion with the index set in the ndexFieldNames property of the component.

The simplest approach is to use the FindNearest method for the approximate search and
the FindKey method to look for an exact match:

// goto
Table1.FindNearest ([EditName.Text]);

// go near
if not Table1.FindKey ([EditName.Text]) then
MessageDlg (‘Name not found’, mtError, [mbOk], 0);

Classic BDE Components

2874c13.qxd 7/2/01 4:32 PM Page 535

http://www.sybex.com

536

Both find methods use as parameters an array of constants. Each array element corre-
sponds to one of the fields of the current index. You can also pass only the value for the initial
field or fields of the index, so the following fields will not be considered.

NOTE I won’t discuss these features in details, showing complete examples, because some of them
are limited to the BDE and makes sense only for local tables, not for SQL server–based tables.
Actually if you set a filter or a range over a Table connected with a SQL server, the BDE will try
to generate a proper select statement, avoiding fetching all the data and filtering it locally. The
problem is that this isn’t always possible and you lose most of your control, two good reasons
to use the Query component when working with SQL servers.

A Query with Parameters
When you need slightly different versions of the same SQL query, instead of modifying the
text of the Query (stored in the SQL property) each time, you can write a query with a parame-
ter and simply change the value of the parameter. For example, if you decide to have a user
choose the countries of a continent (using the Country table of the DBDEMOS database),
you can write the following parametric query:

select *
from Country
where Continent = :Continent

In this SQL clause, :Continent is a parameter. We can set its data type and startup value, using
the editor of the Params property collection of the Query component. When the Parameters
collection editor is open, as shown in Figure 13.1, you see a list of the parameters defined in
the SQL statement and set the data type and the initial value of these parameters.

The form displayed by this program, called ParQuery and available on the companion CD,
uses a list box to provide all the available values for the parameters. Instead of preparing the
items of the list box at design time, we can extract the available continents from the same

F I G U R E 1 3 . 1 :
Editing the collection of
parameters of a Query
component

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 536

http://www.sybex.com

537

database table as the program starts. This is accomplished using a second query component,
with this SQL statement:

select distinct Continent
from Country

After activating this query, the program scans its result set, extracting all the values and
adding them to the list box:

procedure TQueryForm.FormCreate(Sender: TObject);
begin
// get the list of continents
Query2.Open;
while not Query2.EOF do
begin
ListBox1.Items.Add (Query2.Fields [0].AsString);
Query2.Next;

end;
ListBox1.ItemIndex := 0;

// open the first query
Query1.Params[0].Value := ListBox1.Items [0];
Query1.Open;

end;

Before opening the query, the program selects as its parameter the first item of the list box,
which is also activated by setting the ItemIndex property to 0. When the list box is selected,
the program closes the query and changes the parameter:

procedure TQueryForm.ListBox1Click(Sender: TObject);
begin
Query1.Close;
Query1.Params[0].Value := ListBox1.Items [Listbox1.ItemIndex];
Query1.Open;

end;

This displays the countries of the selected continent in the list box, as you can see in
Figure 13.2. The final refinement is that when the user enters a record with a new continent,
it is added automatically to the list box. Instead of refreshing the entire list, with the same
code executed in the FormCreate method, we can do this by handling the BeforePost event
and adding the continent to the list if it is not already there:

procedure TQueryForm.Query1BeforePost(DataSet: TDataSet);
var
StrNewCont: string;

begin
// add the continent, if not already in the list
StrNewCont := Query1.FieldByName (‘Continent’).AsString;
if ListBox1.Items.IndexOf (StrNewCont) < 0 then
ListBox1.Items.Add (StrNewCont);

end;

Classic BDE Components

2874c13.qxd 7/2/01 4:32 PM Page 537

http://www.sybex.com

538

We can add a little extra code to this program to take advantage of a specific feature of
parameterized queries. To react faster to a change in the parameters, these queries can be
optimized, or prepared. Simply call the Prepare method before the program first opens the
query (after setting the Active property of the Query component to False at design time)
and call Unprepare once the query won’t be used anymore:

procedure TQueryForm.FormCreate(Sender: TObject);
begin
...
// prepare and open the first query
Query1.Prepare;
Query1.Params[0].Value := ListBox1.Items [0];
Query1.Open;

end;

procedure TQueryForm.FormDestroy(Sender: TObject);
begin
Query1.Close;
Query1.Unprepare;

end;

Prepared parameterized queries are very important when you work on a complex query. In
fact, the BDE or the SQL server must read the text of the query and determine how to process
it. If you use the same query (even if a parametric one) over and over, the engine doesn’t need
to reprocess the query but already knows how to handle it.

Master/Detail Structures
Often you need to relate tables, which have a one-to-many relationship. This means that for
a single record of the master table, there are many detailed records in a secondary table. A
classic example is that of an invoice and the items of the invoice; another is a list of customers

F I G U R E 1 3 . 2 :
The ParQuery example at
run time

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 538

http://www.sybex.com

539

and the orders each customer has made. This is very common situation in database program-
ming, and Delphi provides explicit support for it with the master/detail structure. We’ll see
this structure for BDE Table and Query components, but the same technique applies to
almost all of the datasets available in Delphi.

NOTE The TDataSet class has a generic DataSource property for setting up a master data source,
but the Table component, for example, uses a different property (MasterSource) to express
the same concept.

Master/Detail with Tables
The simplest ways to create a master/detail structure in Delphi is to use the Database Form
Wizard, selecting a master/detail form in the first page. To accomplish the same effect manu-
ally, place two table components in a form or data module, connect them with the same data-
base, and connect each with a table. In the MastDet example, I’ve used the customer and orders
tables of the DBDEMOS database, and I’ve used a data module. Now add a DataSource com-
ponent for each table, and for the secondary table set a master source to the data source con-
nected to the first table. Finally relate the secondary table to a field (called MasterField) of the
main table, using the special property editor provided.

A Data Module for Data-Access Components
To build a Delphi database application, you can place data-access components and the data-
aware controls in a form. This is handy for a simple program, but having the user interface and
the data access and data model in a single, often large, unit is far from a good idea. For this
reason, Delphi implements the idea of data module, a container of nonvisual components I
already introduced in Chapter 1, “The Delphi 6 IDE.”

At design time, a data module is similar to a form, but at run time it exists only in memory. The
TDataModule class derives directly from TComponent, so it is completely unrelated to the Win-
dows concept of a window (and is fully portable among different operating systems). Unlike a
form, a data module has just a few properties and events. For this reason, it’s useful to think of
data modules as components and method containers.

Like a form or a frame, a data module has a designer. This means Delphi creates for a data
module a specific Object Pascal unit for the definition of its class and a form definition file that
lists its components and their properties.

There are several reasons to use data modules. The simplest one is to share data-access com-
ponents among multiple forms, as I’ll demonstrate at the beginning of the next chapter. This
technique works in conjunction with visual form linking, the ability to access components of
another form or data module at design time (with the File ➢Use Unit command). The second

Classic BDE Components

Continued on next page

2874c13.qxd 7/2/01 4:32 PM Page 539

http://www.sybex.com

540

reason is to separate the data from the user interface, improving the structure of an applica-
tion. Data modules in Delphi even exist in versions specific for multitier applications (remote
data modules) and server-side HTTP applications (Web data modules).

Finally, remember that you can use the Diagram page of the editor, introduced in Chapter 1, to
see a graphical representation of the connections among the components of a data module, as
you can see in this example for the MastDet application:

The following is the complete listing (only without the irrelevant positional properties) of
the Data Module used by the MastDet program on the CD:

object DataModule1: TDataModule1
OnCreate = DataModule1Create
object TableCust: TTable
DatabaseName = ‘DBDEMOS’
TableName = ‘customer.db’

end
object TableOrd: TTable
DatabaseName = ‘DBDEMOS’
IndexName = ‘CustNo’
MasterFields = ‘CustNo’

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 540

http://www.sybex.com

541

MasterSource = dsCust
TableName = ‘orders.db’

end
object dsCust: TDataSource
DataSet = TableCust

end
object dsOrd: TDataSource
DataSet = TableOrd

end
end

TIP Starting with Delphi 5, you can also create a master/detail structure using the Data Diagram
view of a data module.

In Figure 13.3 you can see an example of the main form of the MastDet program at run
time. I’ve placed data-aware controls related to the master table in the upper portion, and
I’ve placed a grid connected with the detail table in the lower portion of the form. This way,
for every master record, you immediately see the list of the connected detail record, in this
case all the orders by the current client. Each time you select a new customer, the grid below
displays only the orders pertaining to that customer.

A Master/Detail Structure with Queries
The previous example used two tables to build a master/detail form. As an alternative, you
can define this type of join using a SQL statement. After setting the master DataSource for

F I G U R E 1 3 . 3 :
The MastDet example at
run time

Classic BDE Components

2874c13.qxd 7/2/01 4:32 PM Page 541

http://www.sybex.com

542

the detailed query, you simply set up its SQL statement with a parameter having the same
name of the field of the master dataset this data source refers to.

For this example (called Orders), I’ve joined the ORDERS.DB table with ITEMS.DB,
which describes the items of each order. The two tables can be joined using the OrderNo
field. When you generate the code, the program behaves exactly like the previous one, Mast-
Det. This time, however, the trick is in the SQL statements of the second query object:

select OrderNo, ItemNo, PartNo, Qty
from items
where OrderNo = :OrderNo

As you can see, this SQL statement uses a parameter, OrderNo. This parameter is con-
nected directly to the first query, because the DataSource property of QueryItems is set to
dsOrders, which is connected to QueryOrders. In other words, the second query is considered
to be a data control connected to the first data source. Each time the current record in the
first data source changes, the QueryItems component is updated, just like any other compo-
nent connected to dsOrders. The field used for the connection, in this case, is the field hav-
ing the same name as the query parameter.

Other BDE Related Components
Along with Table, Query, StoredProc, and DataSource, other components are on the Data
Access page of the Component palette, the BDE page. I’ll cover these components in the
next chapter, but here is a short summary:

• The Database component is used for transaction control, security, and connection con-
trol. It is generally used only to connect to remote databases in client/server applica-
tions or to avoid the overhead of connecting to the same database in several forms. The
Database component is also used to set a local alias, one used only inside a program.
Once this local alias is set to a given path, the Table and Query components of the
application can refer to the local database alias. This is much better than replicating the
hard-coded path in each DataSet component of the program.

TIP The Borland Database Engine (BDE) uses an alias to refer to a database file or directory. You
can define new aliases for databases by using the Database Explorer or the Database Engine
Configuration utility. It is also possible to define them by writing code in Delphi that calls the
AddStandardAlias and AddAlias methods of the Session global object, followed by a call
to SaveConfigFile to make the alias persistent. The alternative is the low-level DbiAddAlias
BDE function. In some of the program of this chapter I’ll use the DBDEMOS database alias,
which refers to Delphi’s demo database, installed by default in the C:\Program Files\Common
Files\Borland Shared\Data directory.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 542

http://www.sybex.com

543

• The Session component provides global control over database connections for an
application, including a list of existing databases and aliases and an event to customize
database login.

• The BatchMove component is used to perform batch operations, such as copying,
appending, updating, or deleting values, on one or more databases.

• The UpdateSQL component allows you to write SQL statements to perform various
update operations on the dataset, when using a read-only query (that is, when working
with a complex query). This component is used as the value of the UpdateObject prop-
erty of tables or queries.

Using Data-Aware Controls
Once you’ve set up the proper data-access components, you can build a user interface to let
a user view the data and eventually edit it. Delphi provides many components that resemble
the usual Windows controls but are data-aware. For example, the DBEdit component is sim-
ilar to the Edit component, and the DBCheckBox component corresponds to the CheckBox
component. You can find all of these components in the Data Controls page of the Delphi
Component palette.

All of these components are connected to a data source using the corresponding property,
DataSource. Some of them relate to the entire dataset, such as the DBGrid and DBNavigator
components, while the others refer to a specific field of the data source, as indicated by the
DataField property. Once you select the DataSource property, the DataField property will
have a list of values available in the drop-down combo box of the Object Inspector.

NOTE In Chapter 18, “Writing Database Components,” we’ll discuss the technical details of these
controls, as we’ll see how to write custom data-aware components.

Notice that all the data-aware components are totally unrelated to the data-access technol-
ogy, provided the data-access component inherits from TDataSet. This means that your
investment on the user interface is totally preserved when you change the data-access tech-
nology. What is true, however, is that some of the lookup components and an extended use
of the DBGrid, displaying a lot of data, only make more sense when working with local data,
and should generally be avoided in a client/server situation, as we’ll see in the next chapter.

Data in a Grid
The DBGrid is a grid capable of displaying a whole table at once. It allows scrolling and navi-
gation, and you can edit the grid’s contents. It is an extension of the other Delphi grid controls.

Using Data-Aware Controls

2874c13.qxd 7/2/01 4:32 PM Page 543

http://www.sybex.com

544

You can customize the DBGrid by setting the various flags of its Options property and
modifying its Columns collection. The grid allows a user to navigate the data, using the scroll-
bars, and perform all the mayor actions. A user can edit the data directly, insert a new record
in a given position by pressing the Insert key, append a new record at the end by going to the
last record and pressing the Down arrow key, and delete the current record by pressing
Ctrl+Del.

The Columns property is a collection where you can choose the fields of the table you want
to see in the grid and set column and title properties (color, font, width, alignment, caption,
and so on) for each field. Some of the more advanced properties, such as ButtonStyle and
DropDownRows, can be used to provide custom editors for the cells of a grid or a drop-down
list of values (indicated in the PickList property of the column).

An alternative to the DBGrid is the DBCtrlGrid component, a multirecord grid that can
host panels with other data-aware controls. These controls are duplicated in each panel for
each record of the dataset. I’ll discuss the DBCtrlGrid control at the end of this chapter.

DBNavigator and Dataset Actions
DBNavigator is a collection of buttons used to navigate and perform actions on the database.
You can disable some of the buttons of the DBNavigator control, by removing some of the
elements of the VisibleButtons set.

The buttons perform basic actions on the connected dataset, so you can easily replace them
with your own toolbar, particularly if you use an ActionList component with the predefined
database actions provided by Delphi. In this case, in fact, you get all the standard behaviors,
but you’ll also see the various buttons enabled only when their action is legitimate.

TIP If you use the standard actions, you can avoid connecting them to a specific DataSource com-
ponent, and the actions will be applied to the dataset connected to the visual control that cur-
rently has the input focus. This way a single toolbar can be used for multiple datasets
displayed by a form.

Text-Based Data-Aware Controls
There are multiple text-oriented components:

• DBText displays the contents of a field that cannot be modified by the user. It is a data-
aware Label graphical control. It can be very useful, but users might confuse this con-
trol with the plain labels that indicate the content of each field-based control.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 544

http://www.sybex.com

545

• DBEdit lets the user edit a field (change the current value) using an Edit control. At
times, you might want to disable editing and use a DBEdit as if it were a DBText, but
highlighting the fact that this is data coming from the database.

• DBMemo lets the user see and modify a large text field, eventually stored in a memo or
BLOB (binary large object) field. It resembles the Memo component and has full edit-
ing capabilities, but all the text is rendered in a single font.

• DBRichEdit is a component that lets the user edit a formatted text file; it is based on a
RichEdit Windows common control and, in contrast to DBMemo, it allows text with
multiple fonts and paragraph styles.

List-Based Data-Aware Controls
For letting a user choose a value in a predefined list (which reduces input errors), you can use
many different components. DBListBox, DBComboBox, and DBRadioGroup are similar,
providing a list of strings in the Items property, but they do have some differences:

• The DBListBox component allows selection of predefined items (“closed selection”),
but not text input, and can be used to list many elements. Generally it’s best to show
only about six or seven items, to avoid using up too much space on the screen.

• The DBComboBox component can be used both for closed selection and for user
input. The csDropDown style of the DBComboBox, in fact, allows a user to enter a new
value, besides selecting one of the available ones. The component also uses a smaller
area of the form because the drop-down list is usually displayed only on request.

• The DBRadioGroup component presents radio buttons (which permit only one selec-
tion), allows only closed selection, and should be used only for a limited number of
alternatives. A nice features of this component is that the values displayed can be
exactly those you want to insert in the database, but you can also choose to provide
some sort of mapping. The values of the user interface (some descriptive strings stored
in the Items property) will map to corresponding values stored in the database (some
numeric or character-based codes listed in the Values property). For example, you can
map some numeric codes indicating departments to a few descriptive strings:

object DBRadioGroup1: TDBRadioGroup
Caption = ‘Department’
DataField = ‘Department’
DataSource = DataSource1
Items.Strings = (
‘Sales’
‘Accounting’
‘Production’
‘Management’)

Using Data-Aware Controls

2874c13.qxd 7/2/01 4:32 PM Page 545

http://www.sybex.com

546

Values.Strings = (
‘1’
‘2’
‘3’
‘4’)

end

A slightly different component is the DBCheckBox, used to show and toggle an option,
corresponding to a Boolean field. It is a limited list, because it has only two possible values,
plus the undetermined state for fields with null values. You can determine which are the val-
ues to send back to the database by setting the ValueChecked and ValueUnchecked properties
of this component.

The usage of a DBRadioGroup control, with the settings discussed above, and a
DBCheckBox control is highlighted by the DbAware example.

Creating Local Tables with FieldDefs
The DbAware example would be a rather simple program if it didn’t have an extra feature: It
can create a new table for the DBDEMOS database. Delphi allows you to set the definition of
the fields of a table—its internal structure—at design time, using the collection editor of the
FieldDefs property. Once you’ve defined the fields, you can then right-click the table compo-
nent at design time and select the Create Table command.

This list of field definitions is generally extracted from the database, but if you set the Store-
Defs property of the table to True, it will be saved in the DFM file along with the other table
properties. The effect of the StoreDefs property is more complex than it seems at first. If you
right-click the form, you’ll notice that its local menu offers an Update Table Definition option,
along with the expected Delete Table and Rename Table. That is, you can store the field defini-
tions locally, but if the structure of the physical table changes, you should update this definition
as well. Until Delphi 4, the field definitions were invariably loaded from the database table at
run time; now you can preload them, speeding up the table opening. However, if the local and
the actual table definitions do not match, you can get in trouble.

In the DbAware example, I’ve used this technique to create a new database table, called Work-
ers, which stores data about the employees of a company. This is the definition of the fields of
the table, along with the other key properties:

object Table1: TTable

DatabaseName = ‘DBDEMOS’

FieldDefs = <

item

Name = ‘LastName’

DataType = ftString

Chapter 13 • Delphi’s Database Architecture

Continued on next page

2874c13.qxd 7/2/01 4:32 PM Page 546

http://www.sybex.com

547

Size = 20

end

item

Name = ‘FirstName’

DataType = ftString

Size = 20

end

item

Name = ‘Department’

DataType = ftSmallint

end

item

Name = ‘Branch’

DataType = ftString

Size = 20

end

item

Name = ‘Senior’

DataType = ftBoolean

end

item

Name = ‘HireDate’

DataType = ftDate

end>

StoreDefs = True

TableName = ‘Workers’

end

Regardless of the fact you might have created the table at design time, the program must do
so the first time it is executed on a different computer. In practice, when the program starts, it
checks whether the table already exists and creates one if it doesn’t:

procedure TForm1.FormCreate(Sender: TObject);

begin

if not Table1.Exists then

Table1.CreateTable;

Table1.Open;

end;

Finally, the program has some code to fill in the table with random values. As this is kind of
tedious but not too complex, I won’t discuss the details here, but let you look at the source
code of the DbAware example if you are interested. I’ll use the table produced by this program
in other examples in this book, so you might want to run it once and create the table anyway.

Using Data-Aware Controls

2874c13.qxd 7/2/01 4:32 PM Page 547

http://www.sybex.com

548

Using Lookup Controls
If the list of values is extracted from another dataset, then instead of the DBListBox and
DBComboBox controls you should use the specific DBLookupListBox or DBLookupCombo-
Box components. These components are used every time you want to select for a field a
record of another dataset.

For example, if you build a standard form for taking orders, the orders dataset will gener-
ally have a field hosting a number indicating the customer who made the order. Working
directly with the customer number is not the most natural way; most users will prefer to
work with customer names. However, in the database, the names of the customers are stored
in a different table, to avoid duplicating the customer data for each order by the same cus-
tomer. To get around such a situation, with local databases or small lookup tables, you can
use a DBLookupComboBox control. (This technique doesn’t port very well to client/server
architecture with large lookup tables, as discussed in the next chapter.)

The DBLookupComboBox component can be connected to two data sources at the same
time, one source containing the actual data and a second containing the display data. Basically,
I’ve built a standard form using the ORDERS.DB tables of the DBDEMOS database, with
several DBEdit controls (you can as well use the Database Form Wizard to build this plain
form). The example actually uses a Query component selecting most fields of the orders table.

At this point we want to remove the standard DBEdit component connected to the cus-
tomer number and replace it with a DBLookupComboBox component (and a DBText com-
ponent for understanding what exactly is going on). The lookup component (and the
DBText) is connected with the DataSource for the order and with the CustNo field. To let
the lookup component show the information extracted from another table,
CUSTOMER.DB, we need to add another table component referring to it, and new data
source connected to the table.

For the program to work, you need to set several properties of the DBLookupComboBox1
component. Here is a list of the relevant values:

object DBLookupComboBox1: TDBLookupComboBox
DataField = ‘CustNo’
DataSource = DataSourceOrders
KeyField = ‘CustNo’
ListField = ‘Company;CustNo’
ListSource = DataSourceCustomer
DropDownWidth = 300

end

The first two properties determine the main connection, as usual. The other three proper-
ties determine the secondary source (ListSource), the field used for the join (KeyField), and
the information to display (ListField). Besides entering the name of a single field, you can

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 548

http://www.sybex.com

549

provide multiple fields, as I’ve done in the example. Only the first field is displayed as combo
box text, but if you set a large value for the DropDownWidth property, the pull-down list of the
combo box will include multiple columns of data. You can see this output in Figure 13.4.

TIP If you set the index of the table connected with the DBLookupComboBox to the Company
field, the drop-down list will show the companies in alphabetical order instead of customer-
number order. This is what I’ve done in the example.

What about the code of this program? Well, there is none. Everything works just by set-
ting the correct properties. The three joined data sources do not need custom code. This
demonstrates that using master/detail and lookup connections can be very fast to set up and
very efficient. The only real drawback is that these techniques, particularly the lookup, can-
not be used when the number of records becomes too large, particularly in a networked or
client/server environment. Moving hundreds of thousands of records just to make a nice-
looking lookup combo box probably won’t be very effective.

NOTE In Delphi 6, both the TDBLookupComboBox and TDBLookupListBox controls have a Null-
ValueKey property, which indicates the shortcut that can be used to set the value to null, by
calling the Clear method of the corresponding field.

Graphical Data-Aware Controls
Finally, Delphi includes two graphical data-aware controls:

• DBImage is an extension of an Image component that shows a picture stored in a
BLOB field (provided the database uses a graphic format that the Image component
supports, such as BMP and JPEG).

F I G U R E 1 3 . 4 :
The output of the Cust-
Lookup example, with the
DBLookupComboBox
showing multiple fields in
its drop-down list

Using Data-Aware Controls

2874c13.qxd 7/2/01 4:32 PM Page 549

http://www.sybex.com

550

• DBChart is a data-aware business graphic component or the data-aware version of the
TeeChart control built by David Berneda.

To demonstrate the use of the DBChart control, I’ve added this component to a simple
example showing a data grid. The application, called ChartDB, shows a pie chart with the
surface of each country of the COUNTRY.DB table, as you can see in Figure 13.5.

The program has almost no code, as all the settings can be done using the specific compo-
nent editor, which has several options but is quite easy to use. Here are some of the key prop-
erties of the component, taken from the form description:

object DBChart1: TDBChart
Legend.Visible = False
Align = alClient
object Series1: TPieSeries
Marks.ArrowLength = 8
Marks.Visible = True
DataSource = Table1
XLabelsSource = ‘Name’
ExplodeBiggest = 3
OtherSlice.Style = poBelowPercent
OtherSlice.Text = ‘Others’
OtherSlice.Value = 2
PieValues.ValueSource = ‘Area’

end
end

F I G U R E 1 3 . 5 :
The output of the ChartDB
example, which is based on
the TDbChart control

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 550

http://www.sybex.com

551

What I’ve done is show the area field as the data source for the pie chart (the PieValues
.ValueSource property of the series), use the name field for the labels (the XLabelsSource
property of the series), and condense all the countries with a value below 2 percent in a single
section indicated as Others (the OtherSlide subproperties).

As a minor addition to the code, I’ve added two radio buttons you can use to toggle
between the area and the population. The code of the two radio buttons simply sets the
source of the series, after casting it to the proper series type, as in:

procedure TForm1.RadioPopulationClick(Sender: TObject);
begin
DBChart1.Title.Text [0] := ‘Population of Countries’;
(DBChart1.Series [0] as TPieSeries).PieValues.ValueSource := ‘Population’;

end;

The DataSet Component
Instead of focusing right away on the use of a specific dataset, I prefer starting with a generic
introduction of the features of the TDataSet class, which are shared by all inherited data-access
classes. The DataSet component is a very complex one, so I won’t list all of its capabilities but
only discuss its core elements.

The idea behind this component is to provide access to a series of records that are read
from some source of data, kept in internal buffers (for performance reasons), and eventually
modified by a user, with the possibility of writing back changes to the persistent storage. This
approach is generic enough to be applied to different types of data (even non-database data)
but has a few rules. First, there can be only one active record at a time, so if you need to
access data in multiple records, you must move to each of them, read the data, then move
again, and so on. You’ll find an example of this and related techniques in the section about
navigation.

Second, you can edit only the active record: you cannot modify a set of records at the same
time, as you can in a relational database. Moreover, you can modify data in the active buffer
only after you explicitly declare you want to do so, by giving the Edit command to the dataset.
You can also use the Insert command to create a new blank record, and close both operations
(insert or edit) by giving a Post command.

Other interesting elements of a dataset I will explore in the following sections are its status
(and the status change events), navigation and record positions, and the role of the field objects.
As a summary of the capabilities of the DataSet component, I’ve included the public methods
of its class in Listing 13.1 (the code has been edited and commented for clarity). Not all of
these methods are directly used everyday, but I decided to keep them all in the listing. In

The DataSet Component

2874c13.qxd 7/2/01 4:32 PM Page 551

http://www.sybex.com

552

Chapter 18, I’ll also discuss the virtual methods of the protected portion of the class, which
we’ll need to override to build custom dataset components.

➲ Listing 13.1: The public interface of the TDataSet class (excerpted)

TDataSet = class(TComponent, IProviderSupport)
...
public
// create and destroy, open and close
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure Open;
procedure Close;
property BeforeOpen: TDataSetNotifyEvent read FBeforeOpen write FBeforeOpen;
property AfterOpen: TDataSetNotifyEvent read FAfterOpen write FAfterOpen;
property BeforeClose: TDataSetNotifyEvent
read FBeforeClose write FBeforeClose;

property AfterClose: TDataSetNotifyEvent read FAfterClose write FAfterClose;

// status information
function IsEmpty: Boolean;
property Active: Boolean read GetActive write SetActive default False;
property State: TDataSetState read FState;
function ActiveBuffer: PChar;
property IsUniDirectional: Boolean
read FIsUniDirectional write FIsUniDirectional default False;

function UpdateStatus: TUpdateStatus; virtual;
property RecordSize: Word read GetRecordSize;
property ObjectView: Boolean read FObjectView write SetObjectView;
property RecordCount: Integer read GetRecordCount;
function IsSequenced: Boolean; virtual;
function IsLinkedTo(DataSource: TDataSource): Boolean;

// datasource
property DataSource: TDataSource read GetDataSource;
procedure DisableControls;
procedure EnableControls;
function ControlsDisabled: Boolean;

// fields, including blobs, details, calculated, and more
function FieldByName(const FieldName: string): TField;
function FindField(const FieldName: string): TField;
procedure GetFieldList(List: TList; const FieldNames: string);
procedure GetFieldNames(List: TStrings);
property FieldCount: Integer read GetFieldCount;
property FieldDefs: TFieldDefs read FFieldDefs write SetFieldDefs;
property FieldDefList: TFieldDefList read FFieldDefList;
property Fields: TFields read FFields;
property FieldList: TFieldList read FFieldList;
property FieldValues[const FieldName: string]: Variant

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 552

http://www.sybex.com

553

read GetFieldValue write SetFieldValue; default;
property AggFields: TFields read FAggFields;
property DataSetField: TDataSetField
read FDataSetField write SetDataSetField;

property DefaultFields: Boolean read FDefaultFields;
procedure ClearFields;
function GetBlobFieldData(FieldNo: Integer;
var Buffer: TBlobByteData): Integer; virtual;

function CreateBlobStream(Field: TField;
Mode: TBlobStreamMode): TStream; virtual;

function GetFieldData(Field: TField;
Buffer: Pointer): Boolean; overload; virtual;

procedure GetDetailDataSets(List: TList); virtual;
procedure GetDetailLinkFields(MasterFields, DetailFields: TList); virtual;
function GetFieldData(FieldNo: Integer;
Buffer: Pointer): Boolean; overload; virtual;

function GetFieldData(Field: TField; Buffer: Pointer; NativeFormat: Boolean):
Boolean; overload; virtual;

property AutoCalcFields: Boolean
read FAutoCalcFields write FAutoCalcFields default True;

property OnCalcFields: TDataSetNotifyEvent
read FOnCalcFields write FOnCalcFields;

// position, movement
procedure CheckBrowseMode;
procedure First;
procedure Last;
procedure Next;
procedure Prior;
function MoveBy(Distance: Integer): Integer;
property RecNo: Integer read GetRecNo write SetRecNo;
property Bof: Boolean read FBOF;
property Eof: Boolean read FEOF;
procedure CursorPosChanged;
property BeforeScroll: TDataSetNotifyEvent
read FBeforeScroll write FBeforeScroll;

property AfterScroll: TDataSetNotifyEvent
read FAfterScroll write FAfterScroll;

// bookmarks
procedure FreeBookmark(Bookmark: TBookmark); virtual;
function GetBookmark: TBookmark; virtual;
function BookmarkValid(Bookmark: TBookmark): Boolean; virtual;
procedure GotoBookmark(Bookmark: TBookmark);
function CompareBookmarks(Bookmark1, Bookmark2: TBookmark): Integer; virtual;
property Bookmark: TBookmarkStr read GetBookmarkStr write SetBookmarkStr;

// find, locate
function FindFirst: Boolean;
function FindLast: Boolean;
function FindNext: Boolean;

The DataSet Component

2874c13.qxd 7/2/01 4:32 PM Page 553

http://www.sybex.com

554

function FindPrior: Boolean;
property Found: Boolean read GetFound;
function Locate(const KeyFields: string; const KeyValues: Variant;
Options: TLocateOptions): Boolean; virtual;

function Lookup(const KeyFields: string; const KeyValues: Variant;
const ResultFields: string): Variant; virtual;

// filtering
property Filter: string read FFilterText write SetFilterText;
property Filtered: Boolean read FFiltered write SetFiltered default False;
property FilterOptions: TFilterOptions
read FFilterOptions write SetFilterOptions default [];

property OnFilterRecord: TFilterRecordEvent
read FOnFilterRecord write SetOnFilterRecord;

// refreshing, updating
procedure Refresh;
property BeforeRefresh: TDataSetNotifyEvent
read FBeforeRefresh write FBeforeRefresh;

property AfterRefresh: TDataSetNotifyEvent
read FAfterRefresh write FAfterRefresh;

procedure UpdateCursorPos;
procedure UpdateRecord;
function GetCurrentRecord(Buffer: PChar): Boolean; virtual;
procedure Resync(Mode: TResyncMode); virtual;

// editing, inserting, posting, and deleting
property CanModify: Boolean read GetCanModify;
property Modified: Boolean read FModified;
procedure Append;
procedure Edit;
procedure Insert;
procedure Cancel; virtual;
procedure Delete;
procedure Post; virtual;
procedure AppendRecord(const Values: array of const);
procedure InsertRecord(const Values: array of const);
procedure SetFields(const Values: array of const);

// events related to editing, inserting, posting, and deleting
property BeforeInsert: TDataSetNotifyEvent
read FBeforeInsert write FBeforeInsert;

property AfterInsert: TDataSetNotifyEvent
read FAfterInsert write FAfterInsert;

property BeforeEdit: TDataSetNotifyEvent read FBeforeEdit write FBeforeEdit;
property AfterEdit: TDataSetNotifyEvent read FAfterEdit write FAfterEdit;
property BeforePost: TDataSetNotifyEvent read FBeforePost write FBeforePost;
property AfterPost: TDataSetNotifyEvent read FAfterPost write FAfterPost;
property BeforeCancel: TDataSetNotifyEvent
read FBeforeCancel write FBeforeCancel;

property AfterCancel: TDataSetNotifyEvent

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 554

http://www.sybex.com

555

read FAfterCancel write FAfterCancel;
property BeforeDelete: TDataSetNotifyEvent
read FBeforeDelete write FBeforeDelete;

property AfterDelete: TDataSetNotifyEvent
read FAfterDelete write FAfterDelete;

property OnDeleteError: TDataSetErrorEvent
read FOnDeleteError write FOnDeleteError;

property OnEditError: TDataSetErrorEvent
read FOnEditError write FOnEditError;

property OnNewRecord: TDataSetNotifyEvent
read FOnNewRecord write FOnNewRecord;

property OnPostError: TDataSetErrorEvent
read FOnPostError write FOnPostError;

// support, utilities
function Translate(Src, Dest: PChar;
ToOem: Boolean): Integer; virtual;

property Designer: TDataSetDesigner read FDesigner;
property BlockReadSize: Integer read FBlockReadSize write SetBlockReadSize;
property SparseArrays: Boolean read FSparseArrays write SetSparseArrays;

end;

The Status of a Dataset
When you operate on a dataset in Delphi, you can work in different states, indicated by a
specific State property, which can assume several different values:

dsBrowse indicates that the dataset is in normal browse mode, used to look at the data
and scan the records.

dsEdit indicates that the dataset is in edit mode. A dataset enters this state when the pro-
gram calls the Edit method or the DataSource has the AutoEdit property set to True, and
the user starts editing a data-aware control, such as a DBGrid or DBEdit. When the
changed record is posted, the dataset exits the dsEdit state.

dsInsert indicates that a new record is being added to the dataset. Again, this might hap-
pen when calling the Insert method, moving to the last line of a DBGrid, or using the
corresponding command of the DBNavigator component.

dsInactive is the state of a closed dataset.

dsSetKey indicates that we are preparing a search on the dataset. This is the state between
a call to the SetKey method and a call to the GotoKey or GotoNearest methods (see the
Search example later in this chapter).

dsCalcFields is the state of a dataset while a field calculation is taking place; that is, dur-
ing a call to an OnCalcFields event handler. Again, I’ll show this in an example.

The DataSet Component

2874c13.qxd 7/2/01 4:32 PM Page 555

http://www.sybex.com

556

dsNewValue, dsOldValue, and dsCurValue are the states of a dataset when an update of
the cache is in progress.

dsFilter is the state of a dataset while setting a filter; that is, during a call to an OnFilter-
Record event handler.

In simple examples, the transitions between these states are handled automatically, but it is
important to understand them because there are many events referring to the state transitions.
For example, every dataset fires events before and after any state change. When a program
requests an Edit operation, the component fires the BeforeEdit event just before entering in
edit mode (an operation you can stop by raising an exception). Immediately after entering edit
mode, the dataset receives the AfterEdit event. After the user has finished editing and requests
to store the data, executing the Post command, the dataset fires a BeforePost event, which can
be used to check the input before sending the data to the database, and an AfterPost event
after the operation has been successfully completed.

Another more general state-change tracking technique is to handle the OnStateChange
event of the DataSource component. As a very simple example you can show the current sta-
tus with code like this:

procedure TForm1.DataSource1StateChange(Sender: TObject);
var
strStatus: string;

begin
case Table1.State of
dsBrowse: strStatus := ‘Browse’;
dsEdit: strStatus := ‘Edit’;
dsInsert: strStatus := ‘Insert’;

else
strStatus := ‘Other state’;

end;
StatusBar.Panels[0].Text := strStatus;

end;

The code considers only the three most common states a dataset component, ignoring the
inactive state and other special cases.

The Fields of a Dataset
I mentioned earlier that a dataset has only one record that is the current, or active, one. The
record is stored in a buffer, and you can operate on it with some generic methods, but to
access the data of the record you need to use the field objects of the dataset. This explains
why field components (technically instances of class derived from the TField class) play a

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 556

http://www.sybex.com

557

fundamental role in every Delphi database application. Data-aware controls are directly con-
nected to these field objects, which correspond to database fields.

By default, Delphi automatically creates the TField components at run time, each time the
program opens a dataset component. This is done after reading the metadata associated with
the table or the query the dataset refers to. These field components are stored in the Fields
array property of a dataset. You can access these values by number (accessing the array directly)
or by name (using the FieldByName method). Each field can be used for reading or modifying
the data of the current record, using its Value property or type-specific properties, like AsDate,
AsString, AsInteger, and so on:

var
strName: string;

begin
strName := Table1.Fields[0].AsString
strName := Table1.FieldByName(‘LastName’).AsString

Value is a variant type property, so using the type-specific access properties is a little more
efficient. The dataset component has also a shortcut property for accessing the variant-type
value of a field, the default FieldValues property. Being a default property means you can
omit it from the code by applying the square brackets directly to the dataset:

strName := Table1.FieldValues [‘LastName’];
strName := Table1 [‘LastName’];

Creating the field components each time a dataset is opened is only a default behavior. As
an alternative, you can create the field components at design time, using the Fields editor
(double-click a dataset to see the Fields editor in action, or activate its local menu and choose
the Fields Editor command). After creating a field for the LastName column of a table, for
example, you can refer to its value by applying one of the AsXxx methods to the proper field
object:

strName := Table1LastName.AsString;

Besides being used to access the value of a field, each field object also has properties for
controlling visualization and editing of its value, including range of values, edit masks, dis-
play format, constraints, and many others. These properties, of course, depend on the type of
the field—that it is, on the specific class of the field object. If you create persistent fields you
can set some properties at design time, instead of writing code at run time, maybe in the
AfterOpen event of the dataset.

NOTE Although the Fields editor is similar to the editors of the collections used by Delphi, fields are
not part of a collection. They are components created at design time, listed in its published
section of the form class, and available in the drop-down combo box at the top of the Object
Inspector.

The Fields of a Dataset

2874c13.qxd 7/2/01 4:32 PM Page 557

http://www.sybex.com

558

As you open the Fields editor for a dataset, it appears empty. You have to activate the local
menu of this editor to access its capabilities. The simplest operation you can do is to select
the Add command, which allows you to add any other fields in the dataset to the list of fields.
Figure 13.6 shows the Add Fields dialog box, which lists all the fields that are available in a
table. These are the database table fields that are not already present in the list of fields in the
editor.

The Define command of the Fields editor, instead, lets you define a new calculated field,
lookup field, or field with a modified type. In this dialog box, you can enter a descriptive field
name, which might include blank spaces. Delphi generates an internal name—the name of
the field component—which you can further customize. Next, select a data type for the field.
If this is a calculated field or a lookup field, and not just a copy of a field redefined to use a
new data type, simply check the proper radio button. We’ll see how to define a calculated
field in the section “Adding a Calculated Field” and a lookup field in two following sections.

NOTE A TField component has both a Name property and a FieldName property. The Name property
is the usual component name. The FieldName property is either the name of the column in the
database table or the name you define for the calculated field. It can be more descriptive than
the Name, and it allows blank spaces. The FieldName property of the TField component is
copied to the DisplayLabel property by default, but this field name can be changed to any
suitable text. It is used, among other things, to search a field in the FieldByName method of
the TDataSet class and when using the array notation.

All of the fields that you add or define are included in the Fields editor and can be used by
data-aware controls or displayed in a database grid. If a field of the original database table is
not in this list, it won’t be accessible. When you use the Fields editor, Delphi adds the decla-
ration of the available fields to the class of the form, as new components (much as the Menu
Designer adds TMenuItem components to the form). The components of the TField class, or
more specifically its subclasses, are fields of the form, and you can refer to these components

F I G U R E 1 3 . 6 :
The Fields editor with the
Add Fields dialog box

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 558

http://www.sybex.com

559

directly in the code of your program to change their properties at run time or to get or set
their value.

In the Fields editor, you can also drag the fields to change their order. Proper field ordering
is particularly important when you define a grid, which arranges its columns using this order.

TIP An even better feature of the Fields editor is that you can drag fields from this editor to the
surface of a form and have Delphi automatically create a corresponding data-aware control
(such as a DBEdit, a DBMemo, or a DBImage). The type of control created depends on the data
type of the field. This is a very fast way to generate custom forms, and I suggest you try it out
if you’ve never used it before. This is my preferred way to build database-related forms, much
better than using the Database Form Wizard.

Using Field Objects
Before we look at an example, let’s go over the use of the TField class. The importance of
this component should not be underestimated. Although it is often used behind the scenes,
its role in database applications is fundamental. As I already mentioned, even if you do not
define specific objects of this kind, you can always access the fields of a table or a query using
their Fields array property, the FieldValues indexed property, or the FieldByName method.
Both the Fields property and the FieldByName function return an object of type TField, so
you sometimes have to use the as operator to downcast their result to its actual type (like
TFloatField or TDateField) before accessing specific properties of these subclasses.

The FieldAcc example is a simple extension of a form generated by the Database Form
Wizard. I’ve added to it three speed buttons in the toolbar panel, accessing various field
properties at run time. The first button changes the formatting of the population column of
the grid. To do this, we have to access the DisplayFormat property, a specific property of the
TFloatField class. For this reason we have to write:

procedure TForm2.SpeedButton1Click(Sender: TObject);
begin
(Table1.FieldByName (‘Population’) as
TFloatField).DisplayFormat := ‘###,###,###’;

end;

When you set field properties related to data input or output, the change applies to every
record in the table. When you set properties related to the value of the field, instead, you
always refer to the current record only. For example, we can output the population of the
current country in a message box by writing:

procedure TForm2.SpeedButton2Click(Sender: TObject);
begin
ShowMessage (string (Table1 [‘Name’]) +’: ‘+ string (Table1 [‘Population’]));

end;

The Fields of a Dataset

2874c13.qxd 7/2/01 4:32 PM Page 559

http://www.sybex.com

560

When you access the value of a field, you can use a series of As properties to handle the
current field value using a specific data type (if this is available; otherwise, an exception is
raised):

AsBoolean: Boolean;
AsDateTime: TDateTime;
AsFloat: Double;
AsInteger: LongInt;
AsString: string;
AsVariant: Variant;

These properties can be used to read or change the value of the field. Changing the value
of a field is possible only if the dataset is in edit mode. As an alternative to the As properties
indicated above, you can access the value of a field by using its Value property, which is
defined as a variant.

Most of the other properties of the TField component, such as Alignment, DisplayLabel,
DisplayWidth, and Visible, reflect elements of the field’s user interface and are used by the
various data-aware controls, particularly DBGrid. In the FieldAcc example, clicking the third
speed button changes the Alignment of every field:

procedure TForm2.SpeedButton3Click(Sender: TObject);
var
I: Integer;

begin
for I := 0 t7 Table1.FieldCount - 1 do
Table1.Fields[I].Alignment := taCenter;

end;

This affects the output of the DBGrid, and of the DBEdit control I’ve added to the tool-
bar, which shows the name of the country. You can see this effect, along with the new display
format, in Figure 13.7.

F I G U R E 1 3 . 7 :
The output of the FieldAcc
example after the Center
and Format buttons have
been pressed

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 560

http://www.sybex.com

561

A Hierarchy of Field Classes
There are several field class types in VCL. Delphi automatically uses one of them depending
on the data definition in the database, when you open a table at run time or when you use the
Fields editor at design time. Table 13.1 shows the complete list of subclasses of the TField class.

TABLE 13.1: The Subclasses of TField

Subclass Base Class Definition

TADTField TObjectField An ADT (Abstract Data Type) field, corresponding to an object
field in an object relational database.

TAggregateField TField An aggregate field represents a maintained aggregate. It is used
in the ClientDataSet component and discussed in Chapter 14,
“Client/Server Programming.”

TArrayField TObjectField An array of objects in an object relational database.

TAutoIncField TIntegerField Whole positive number connected with a Paradox auto-incre-
ment field of a table, a special field automatically assigned a
different value for each record. Note that Paradox AutoInc
fields do not always work perfectly, as discussed in the next
chapter.

TBCDField TNumericField Real numbers, with a fixed number of digits after the decimal
point.

TBinaryField TField Generally not used directly. This is the base class of the next
two classes.

TBlobField TField Binary data and no size limit (BLOB stands for binary large
object). The theoretical maximum limit is 2 GB.

TBooleanField TField Boolean value.

TBytesField TBinaryField Arbitrary data with a large (up to 64 KB characters) but
fixed size.

TCurrencyField TFloatField Currency values, with the same range as the new Real
data type.

TDataSetField TObjectField An object corresponding to a separate table in an object rela-
tional database.

TDateField TDateTimeField Date value.

TDateTimeField TField Date and time value.

TFloatField TNumericField Floating-point numbers (8 byte).

TFMTBCDField TNumericField (New field type in Delphi 6) A true binary-coded decimal (BCD),
as opposed to the existing TBCDField type, which converted
BCD values to the Currency type. This field type is used auto-
matically only by dbExpress datasets.

TGraphicField TBlobField Graphic of arbitrary length.

TGuidField TStringField A field representing a COM Globally Unique Identifier, part of
the ADO support.

The Fields of a Dataset

Continued on next page

2874c13.qxd 7/2/01 4:32 PM Page 561

http://www.sybex.com

562

TABLE 13.1 continued: The Subclasses of TField

Subclass Base Class Definition

TIDispatchField TInterfaceField A field representing pointers to IDispatch COM interfaces,
part of the ADO support.

TIntegerField TNumericField Whole numbers in the range of long integers (32 bits).

TInterfacedField TField Generally not used directly. This is the base class of fields that
contain pointers to interfaces (IUnknown) as data.

TLargeIntField TIntegerField Very large integers (64 bit).

TMemoField TBlobField Text of arbitrary length.

TNumericField TField Generally not used directly. This is the base class of all the
numeric field classes.

TObjectField TField Generally not used directly. The base class for the fields provid-
ing support for object relational databases.

TReferenceField TObjectField A pointer to an object in an object relational database.

TSmallIntField TIntegerField Whole numbers in the range of integers (16 bits).

TSQLTimeStampField TField (New field type in Delphi 6) Supports the date/time representa-
tion used in dbExpress drivers

TStringField TField Text data of a fixed length (up to 8192 bytes).

TTimeField TDateTimeField Time value.

TVarBytesField TBytesField Arbitrary data, up to 64 KB characters. Very similar to the
TBytes-Field base class.

TVariantField TField A field representing a variant data type, part of the ADO
support.

TWideStringField TStringField A field representing a Unicode (16 bits per character) string.

TWordField TIntegerField Whole positive numbers in the range of words or unsigned
integers (16 bits).

The availability of any particular field type, and the correspondence with the data defini-
tion, depends on the database in use. This is particularly true for the new field types that pro-
vide support for object relational databases.

Adding a Calculated Field
Now that you’ve been introduced to TField objects and seen an example of their run-time
use, it is time to build a simple example based on the declaration of field objects at design
time using the Fields editor. We can start again from the first example we built, GridDemo,
and add a calculated field. The COUNTRY.DB database table we are accessing has both the
population and the area of each country, so we can use this data to compute the population
density.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 562

http://www.sybex.com

563

To build the new example, named Calc, select the Table component in the form, and open
the Fields editor. In this editor, choose the Add Fields command, and select some of the fields. (I’ve
decided to include them all.) Now select the New Field command, and enter a proper name and
data type (TFloatField) for the new calculated field, as you can see in Figure 13.8.

WARNING It is obvious that as you create some field components at design time using the Fields editor,
the fields you skip won’t get a corresponding object. What might not be obvious is that the
fields you skip will not be available even at run time, with Fields or FieldByName. When a pro-
gram opens a table at run time, if there are no design-time field components, Delphi creates
field objects corresponding to the table definition. If there are some design-time fields, how-
ever, Delphi uses those fields without adding any extra ones.

Of course, we also need to provide a way to calculate the new field. This is accomplished in
the OnCalcFields event of the Table component, which has the following code (at least in a
first version):

procedure TForm2.Table1CalcFields(DataSet: TDataSet);
begin
Table1PopulationDensity.Value := Table1Population.Value / Table1Area.Value;

end;

NOTE Calculated fields are computed for each record and recalculated each time the record is loaded
in an internal buffer, invoking the OnCalcFields event over and over again. For this reason, a
handler of this event should be extremely fast to execute, and cannot alter the status of the
dataset, by accessing different records. A more time-efficient (but less memory-efficient) ver-
sion of a calculated field is provided by the ClientDataSet component with “internally calcu-
lated” fields, which are evaluated only once, when they are loaded, with the result stored in
memory for future requests.

F I G U R E 1 3 . 8 :
The definition of a
calculated field in the
Calc example

The Fields of a Dataset

2874c13.qxd 7/2/01 4:32 PM Page 563

http://www.sybex.com

564

Everything fine? Not at all! If you enter a new record and do not set the value of the popu-
lation and area, or if you accidentally set the area to zero, the division will raise an exception,
making it quite problematic to continue using the program. As an alternative, we could have
handled every exception of the division expression and simply set the resulting value to zero:

try
Table1PopulationDensity.Value := Table1Population.Value / Table1Area.Value;

except
on Exception do
Table1PopulationDensity.Value := 0;

end;

However, we can do even better. We can check if the value of the area is defined—if it is
not null—and if it is not zero. It is better to avoid using exceptions when you can anticipate
the possible error conditions:

if not Table1Area.IsNull and
(Table1Area.Value <> 0) then

Table1PopulationDensity.Value := Table1Population.Value / Table1Area.Value
else

Table1PopulationDensity.Value := 0;

The code of the Table1CalcFields method above (in each of the three versions) accesses
some fields directly. This is possible because I used the Fields editor, and it automatically
created the corresponding field declarations, as you can see in this excerpt of the interface
declaration of the form:

type
TCalcForm = class(TForm)
Table1: TTable;
Table1PopulationDensity: TFloatField;
Table1Area: TFloatField;
Table1Population: TFloatField;
Table1Name: TStringField;
Table1Capital: TStringField;
Table1Continent: TStringField;
procedure Table1CalcFields(DataSet: TDataset);
...

Each time you add or remove fields in the Fields editor, you can see the effect of your
action immediately in the grid present in the form. Of course, you won’t see the values of a
calculated field at design time; they are available only at run time, because they result from
the execution of compiled Pascal code.

Since we have defined some components for the fields, we can use them to customize some
of the visual elements of the grid. For example, to set a display format that adds a comma to
separate thousands, we can use the Object Inspector to change the DisplayFormat property
of some field components to “###,###,###”. This change has an immediate effect on the grid
at design time.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 564

http://www.sybex.com

565

NOTE The display format I’ve just mentioned (and used in the previous example) uses the Windows
International Settings to format the output. When Delphi translates the numeric value of this
field to text, the comma in the format string is replaced by the proper ThousandSeparator
character. For this reason, the output of the program will automatically adapt itself to different
International Settings. On computers that have the Italian configuration, for example, the
comma is replaced by a period.

After working on the table components and the fields, I’ve customized the DBGrid using
its Columns property editor. I’ve set the Population Density column to read-only and set its
ButtonStyle property to cbsEllipsis, to provide a custom editor. When you set this value, a
small button with an ellipsis is displayed when the user tries to edit the grid cell. Pressing the
button invokes the OnEditButtonClick event of the DBGrid:

procedure TCalcForm.DBGrid1EditButtonClick(Sender: TObject);
begin
MessageDlg (Format (
‘The population density (%.2n)’#13 +
‘is the Population (%.0n)’#13 +
‘divided by the Area (%.0n).’#13#13 +
‘Edit these two fields to change it.’,
[Table1PopulationDensity.AsFloat,
Table1Population.AsFloat,
Table1Area.AsFloat]),
mtInformation, [mbOK], 0);

end;

Actually, I haven’t provided a real editor, but rather a message describing the situation, as
you can see in Figure 13.9, which shows the values of the calculated fields. To create an edi-
tor, you might build a secondary form to handle special data entries.

F I G U R E 1 3 . 9 :
The output of the Calc
example. Notice the
Population Density
calculated column, the
ellipsis button, and the
message displayed when
you select it.

The Fields of a Dataset

2874c13.qxd 7/2/01 4:32 PM Page 565

http://www.sybex.com

566

Lookup Fields
As an alternative to placing a DBLookupComboBox component in a form (discussed earlier
in this chapter under “Using Lookup Controls”), we can also define a lookup field, which can
be displayed with a drop-down lookup list inside a DBGrid component. We’ve seen that to
add a fixed selection to a DBGrid, we can simply edit the PickList subproperty of the Columns
property. To customize the grid with a live lookup, instead, we have to define a lookup field
using the Fields editor.

As an example, I’ve built the FieldLookup program, which has a grid displaying orders with
a lookup field to display the name of the employee who took the order, instead of the code
number of this employee. To accomplish this, I added to the data module a Table component
referring to the EMPLOYEE.DB table. Then I opened the Fields editor for the ORDERS
table and added all the fields. I selected the EmpNo field and set its Visible property to False, to
remove it from the grid (we cannot remove it altogether, because it is used to build the cross-
reference with the corresponding field of the EMPLOYEE table).

Now it is time to define the lookup field. If you’ve followed the preceding steps, you can use
the Fields editor of the ORDERS table and select the New Field command, obtaining the New
Field dialog box. (As an alternative in Delphi 5, it’s possible to use the Diagram page of the
editor, drop the two tables there, and drag a lookup relation from the ORDERS table to the
EMPLOYEE table, connecting the two in the resulting New Field dialog box. In Delphi 6,
though, the lookup relation button is still part of the Diagram page but doesn’t seem to be
working at all.)

The values you specify in the New Lookup Field dialog box will affect the properties of a
new TField added to the table, as demonstrated by the DFM description of the field:

object Table2Employee: TStringField
FieldKind = fkLookup
FieldName = ‘Employee’
LookupDataSet = Table2
LookupKeyFields = ‘EmpNo’
LookupResultField = ‘LastName’
KeyFields = ‘EmpNo’
Size = 30
Lookup = True

end

This is all that is needed to make the drop-down list work (see Figure 13.10) and to view
the value of the cross-references field at design time, too. Notice that there is no need to cus-
tomize the Columns property of the grid, because the drop-down button and the value of
seven rows are taken by default. This doesn’t mean you cannot use this property to further
customize these and other visual elements of the grid.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 566

http://www.sybex.com

567

Handling Null Values with Field Events
Beyond a few interesting properties, the field objects have a few key events. The OnValidate
event can be used to provide extended validation of the value of a field, and should be used
whenever you need a complex rule that the ranges and constraints provided by the field can-
not express. This event is triggered before the data is written to the record buffer, whereas
the OnChange event is fired soon after the data has been written.

Two more events, OnGetText and OnSetText, can be used to customize the output of a field.
These two events are extremely powerful: they allow you to use data-aware controls even
when the representation of a field you want to display is different from the one Delphi will
provide by default.

An example of the use of these events is the handling of null value. On SQL servers, stor-
ing an empty value or a null value for a field are two separate operations. The latter tends to
be more correct, but Delphi by default uses empty values and displays the same output for an
empty or a null field. Although this can be useful in general for strings and numbers, it becomes
extremely important for dates, where it is hard to set a reasonable default value and where if the
user blanks out the field you might have an invalid input.

The NullDates program displays a specific text for dates that have a null value and clears
the field (setting it to the null value) when the user uses an empty string in input. Here is the
relevant code of the two event handlers for the field:

procedure TForm1.Table1ShipDateGetText(Sender: TField;
var Text: String; DisplayText: Boolean);

begin

F I G U R E 1 3 . 1 0 :
The output of the Field-
Lookup example, with the
drop-down list inside the
grid displaying values taken
from another database
table

The Fields of a Dataset

2874c13.qxd 7/2/01 4:32 PM Page 567

http://www.sybex.com

568

if Sender.IsNull then
Text := ‘<undefined>’

else
Text := Sender.AsString;

end;

procedure TForm1.Table1ShipDateSetText(Sender: TField; const Text: String);
begin
if Text = ‘’ then
Sender.Clear

else
Sender.AsString := Text;

end;

In Figure 13.11 you can see an example of the output of this program, with undefined (or
null) values for some shipping dates.

.

Navigating a Dataset
We’ve seen that a dataset has only one active record, and you can imagine that the active
record changes often, in response of user actions or because of internal commands given to
the dataset. To move around the dataset and change the active record, there are methods of
the TDataSet class, as you can see in Listing 13.1, particularly in the section commented as
“position, movement.” You can move to the next or previous record, jump back and forth by
a given number of records (with MoveBy), or go directly to the first or last record of the dataset.
These operations of the dataset are generally available in the DBNavigator component or in
the standard dataset actions, and they are not particularly complex to understand.

F I G U R E 1 3 . 1 1 :
By handling the OnGet-
Text and OnSetText
events of a date field, the
NullDates example displays
a specific output for null
values

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 568

http://www.sybex.com

569

What is not obvious, though, is how a dataset handles the extreme positions. If you open
any dataset with a navigator attached, you can see that as you move on record by record, the
Next button remains enabled even when you’ve reached the last record. It’s only when you
try to move forward after the last record that the current record apparently doesn’t change
and the button is disabled. This is because the Eof test (end of file) succeeds only when the
cursor has been moved to a special position after the last record. If you jump to the end with
the Last button, instead, you’ll immediately be at the very end. You’ll see exactly the same
behavior for the first record (and the Bof test). As we’ll see in a while, this approach is very
handy, as we can scan a dataset testing for Eof to be True and, at this point, we know we’ve
also already processed the last record of the dataset.

NOTE Handling this special record positions before the beginning and after the end of the dataset,
which are called cracks, is very important (and quite confusing) when you write a custom
dataset, as we’ll see in Chapter 18.

Besides moving around record by record or by a given number of records, programs might
need to jump to specific records or positions. Some datasets support the RecordCount property
and allow movement to a record at a given position in the dataset using the RecNo property.
These properties can be used only for datasets that support positions natively, which basically
excludes all client/server architectures, unless you grab all of the records in a local cache
(something you’ll generally want to avoid) and then navigate on the cache. As we’ll see in the
next chapter, when you open a query on a SQL server you fetch only the records you are
using, so Delphi doesn’t know the record count, at least not in advance.

There are two alternatives you can use to refer to a record in a dataset, regardless of its type:

• You can save a reference to the current record and then jump back to it after moving
around. This is accomplished by using bookmarks, either in the TBookmark or the more
modern TBookmarkStr form. This approach is discussed in the upcoming section
“Using Bookmarks.”

• You can locate a record of the dataset matching given criteria, using the Locate
method. This even works after you close and reopen the dataset, because you’re work-
ing at a logical (and not physical) level. This approach is presented in the next section.

Locating Records in a Table
To show you an example of the use of the Locate method, I’ve built the Search example,
which has a table connected to EMPLOYEE.DB. The form I’ve prepared has the data-aware
edit boxes inside a scroll box aligned to the client area, so that a user can freely resize the form
without any problems. When the form becomes too small, scroll bars will appear automati-
cally in the area holding the edit boxes. Another feature is a toolbar with buttons connected to

Navigating a Dataset

2874c13.qxd 7/2/01 4:32 PM Page 569

http://www.sybex.com

570

some of the predefined dataset actions available in the ActionList component plus two cus-
tom actions to host the search code.

The searching capabilities are activated by the two buttons connected to custom actions.
The first button is connected to ActionGoto, used for an exact match, and the second to
ActionGoNear, for a partial match. In both cases, we want to compare the text in the edit box
with the LastName fields of the EMPLOYEE table. If the local table has an index on the field
(as in the specific case) Locate will use it, but the method will work with or without indexes
(only at a different speed).

If you’ve never used Locate, at first sight the help file won’t be terribly clear. The idea is
that you must provide a list of fields you want to search, and a list of values, one for each
field. If you pass only one field, the value is passed directly, as in the case of the example:

procedure TSearchForm.ActionGotoExecute(Sender: TObject);
begin
if not Table1.Locate (‘LastName’, EditName.Text, []) then
MessageDlg (‘“‘ + EditName.Text + ‘“ not found’, mtError, [mbOk], 0);

end;

If you search for multiple fields, you have to pass a variant array with the list of the values you
want to match. The variant array can be created from a constant array with the VarArrayOf func-
tion or from scratch using the VarArrayCreate call. This is a code snippet from the example:

Table1.Locate (‘LastName;FirstName’, VarArrayOf ([‘Cook’, ‘Kevin’]), [])

Finally, we can use the same method to look for a record even if we know only the initial
portion of the field we are looking for. Simply add the loPartialKey flag to the Options
parameter (the third) of the Locate call.

NOTE Using Locate makes sense specifically for local tables, but doesn’t port very well to
client/server applications. In fact, on local tables this technique is rather optimized by letting
the dataset read in only the records it is looking for, using local indexes. On a SQL server,
instead, similar client-side techniques imply moving all the data to the client application first,
which is generally a bad idea. Locating the data should be performed with restricted SQL
statements. You can still call Locate after you’re retrieved a limited dataset. For example, you
can search a customer by name after you’ve selected all the customer of a given town or area,
obtaining a result set of a limited size. There’s more on this topic in the next chapter, which is
devoted to client/server development.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 570

http://www.sybex.com

571

The Total of a Table Column
So far in our examples, the user can view the current contents of a database table and manually
edit the data or insert new records. Now we will see how we can change some data in the table
through the program code. The idea behind this example is quite simple. The EMPLOYEE
table we have been using has a Salary field. A manager of the company could indeed browse
through the table and change the salary of a single employee. But what will be the total salary
expense for the company? And what if the manager wants to give a 10 percent salary increase
(or decrease) to everyone?

These are the two aims of the Total example, which is an extension of the previous program.
The toolbar of this new example has some more buttons and actions. There are a few other
minor changes from the previous example. I opened the Fields editor of the table and removed
the Table1Salary field, which was defined as a TFloatField. Then I selected the New Field
command and added the same field, with the same name, but using the TCurrencyField data type.
This is not a calculated field; it’s simply a field converted into a new (but equivalent) data type.
Using this new field type the program will default to a new output format, suitable for currency
values.

Now we can turn our attention to the code of this new program. First, let’s look at the code
of the total action. This action lets you calculate the sum of the salaries of all the employees,
then edit some of the values, and compute a new total. Basically, we need to scan the table,
reading the value of the Table1Salary field for each record:

var
Total: Real;

begin
Total := 0;
Table1.First;
while not Table1.EOF do
begin
Total := Total + Table1Salary.Value;
Table1.Next;

end;
MessageDlg (‘Sum of new salaries is ‘ +
Format (‘%m’, [Total]), mtInformation, [mbOk], 0);

end

This code works, as you can see from the output in Figure 13.12, but it has some problems.
One problem is that the record pointer is moved to the last record, so the previous position in
the table is lost. Another is that the user interface is refreshed many times during the operation.

Navigating a Dataset

2874c13.qxd 7/2/01 4:32 PM Page 571

http://www.sybex.com

572

Using Bookmarks
To avoid these two problems, we need to disable updates and to store the current position of
the record pointer in the table and restore it at the end. This can be accomplished using a
table bookmark, a special variable storing the position of a record in a database table. Delphi’s
traditional approach is to declare a variable of the TBookmark data type, and initialize it while
getting the current position from the table:

var
Bookmark: TBookmark;

begin
Bookmark := Table1.GetBookmark;

At the end of the ActionTotalExecute method, we can restore the position and delete the
bookmark with the following two statements:

Table1.GotoBookmark (Bookmark);
Table1.FreeBookmark (Bookmark);

As a better (and more up-to-date) alternative, we can use the Bookmark property of the
TDataset class, which refers to a bookmark that is disposed of automatically. (This is techni-
cally implemented as an opaque string, a structure subject to string lifetime management, but
it is not a string, so you’re not supposed to look at what’s inside it.) This is how you can mod-
ify the code above:

var
Bookmark: TBookmarkStr;

begin
Bookmark := Table1.Bookmark;
...
Table1.Bookmark := Bookmark;

F I G U R E 1 3 . 1 2 :
The output of the Total
program, showing the total
salaries of the employees

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 572

http://www.sybex.com

573

To avoid the other side effect of the program (we see the records scrolling while the rou-
tine browses through the data), we can temporarily disable the visual controls connected with
the table. The table has a DisableControls method we can call before the while loop starts
and an EnableControls method we can call at the end, after the record pointer is restored.

TIP Disabling the data-aware controls connected with a table during long operations not only
improves the user interface (since the output is not changing constantly), it also speeds up the
program considerably. In fact, the time spent to update the user interface is much greater than the
time spent performing the calculations. To test this, try commenting out the DisableControls
and EnableControls methods of the Total example, and see the speed difference.

Finally, we face some dangers from errors in reading the table data, particularly if the pro-
gram is reading the data from a server using a network. If any problem occurs while retriev-
ing the data, an exception takes place, the controls remain disabled, and the program cannot
resume its normal behavior. So we should use a try/finally block. Actually, if you want to
make the program 100 percent error-proof, you should use two nested try/finally blocks.
Including this change and the two discussed above, here is the resulting code:

procedure TSearchForm.ActionTotalExecute(Sender: TObject);
var
Bookmark: TBookmarkStr;
Total: Real;

begin
Bookmark := Table1.Bookmark;
try
Table1.DisableControls;
Total := 0;
try
Table1.First;
while not Table1.EOF do
begin
Total := Total + Table1Salary.Value;
Table1.Next;

end;
finally
Table1.EnableControls;

end
finally
Table1.Bookmark := Bookmark;

end;
MessageDlg (‘Sum of new salaries is ‘ +
Format (‘%m’, [Total]), mtInformation, [mbOK], 0);

end;

Navigating a Dataset

2874c13.qxd 7/2/01 4:32 PM Page 573

http://www.sybex.com

574

NOTE I’ve written this code to show you an example of a loop to browse the contents of a table, but
keep in mind that there is an alternative approach based on the use of a SQL query returning
the sum of the values of a field. When you use a SQL server, the speed advantage of a SQL call
to compute the total can be very large, since you don’t need to move all the data of each field
from the server to the client computer. The server sends the client only the final result.

Editing a Table Column
The code of the increase action is similar to the one we have just seen. The ActionIncrease-
Execute method also scans the table, computing the total of the salaries, as the previous
method did. Although it has just two more statements, there is a key difference. When you
increase the salary, you actually change the data in the table. The two key statements are
within the while loop:

while not Table1.EOF do
begin
Table1.Edit;
Table1Salary.Value := Round (Table1Salary.Value * SpinEdit1.Value) / 100;
Total := Total + Table1Salary.Value;
Table1.Next;

end;

The first statement brings the table into edit mode, so that changes to the fields will have
an immediate effect. The second statement computes the new salary, multiplying the old one
by the value of the SpinEdit component (by default, 105) and dividing it by 100. That’s a 5
percent increase, although the values are rounded to the nearest dollar. With this program,
you can change salaries by any amount—even double the salary of each employee—with the
click of a button.

WARNING Notice that the table enters the edit mode every time the while loop is executed. This is
because in a dataset, edit operations can take place only one record at a time. You must finish
the edit operation, calling Post or moving to a different record as in the code above. At that
time, if you want to change another record, you have to enter edit mode once more.

Customizing a Database Grid
Unlike most other data-aware controls, which are quite simple to use, the DBGrid control
has many options and is more powerful than you might think. The following sections explore
some of the advanced operations you can do using a DBGrid control. A first example shows
how to draw in a grid, a second one shows how to clone the behavior of a check box for a

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 574

http://www.sybex.com

575

Boolean selection inside a grid, and the final example shows how to use the multiple-selec-
tion feature of the grid.

Painting a DBGrid
There are many reasons you might want to customize the output of a grid. A good example is
to highlight specific fields or records. Another is to provide some form of output for fields
that usually don’t show up in the grid, such as BLOB, graphic, and memo fields.

To thoroughly customize the drawing of a DBGrid control, you have to set its Default-
Drawing property to False and handle its OnDrawColumnCell event. In fact, if you leave the
value of DefaultDrawing set to True, the grid will display the default output before the
method is called. This way, all you can do is add something to the default output of the grid,
unless you decide to draw over it, which will take extra time and cause flickering.

The alternative approach is to call the DefaultDrawColumnCell method of the grid, perhaps
after changing the current font or restricting the output rectangle. In this last case you can
provide an extra drawing in a cell and let the grid fill the remaining area with the standard
output. This is what I’ve done in the DrawData program.

The DBGrid control in this example, which is connected to the commonly used BIOLIFE
table of the DBDEMOS database, has the following properties:

object DBGrid1: TDBGrid
Align = alClient
DataSource = DataSource1
DefaultDrawing = False
Font.Height = -16
Font.Name = ‘MS Sans Serif’
Font.Style = [fsBold]
TitleFont.Height = -11
TitleFont.Name = ‘MS Sans Serif’
TitleFont.Style = []
OnDrawColumnCell = DBGrid1DrawColumnCell

end

The OnDrawColumnCell event handler is called once for every cell of the grid and has sev-
eral parameters, including the rectangle corresponding to the cell, the index of the column
we have to draw, the column itself (with the field, its alignment, and other subproperties),
and the status of the cell. How can we set the color of specific cells to red? We can simply
change it in the special cases:

procedure TForm1.DBGrid1DrawColumnCell(Sender: TObject;
const Rect: TRect; DataCol: Integer; Column: TColumn;
State: TGridDrawState);

begin

Customizing a Database Grid

2874c13.qxd 7/2/01 4:32 PM Page 575

http://www.sybex.com

576

// red font color if length > 100
if (Column.Field = Table1Lengthcm) and (Table1Lengthcm.AsInteger > 100) then
DBGrid1.Canvas.Font.Color := clRed;

// default drawing
DBGrid1.DefaultDrawDataCell (Rect, Column.Field, State);

end;

The next step is to draw the memo and the graphic fields. For the memo we can simply
implement the memo field’s OnGetText and OnSetText events. In fact, the grid will even allow
editing on a memo field if its OnSetText event is not nil. Here is the code of the two event
handlers. I’ve used Trim to remove trailing nonprinting characters, which make the text
appear to be empty when editing:

procedure TForm1.Table1NotesGetText(Sender: TField;
var Text: String; DisplayText: Boolean);

begin
Text := Trim (Sender.AsString);

end;

procedure TForm1.Table1NotesSetText(Sender: TField; const Text: String);
begin
Sender.AsString := Text;

end;

For the image, the simplest approach is to create a temporary TBitmap object, assign the
graphics field to it, and paint the bitmap to the Canvas of the grid. As an alternative, I’ve
removed the graphic field from the grid, by setting its Visible property to False, and added
the image to the fish name, with the following extra code in the OnDrawColumnCell event
handler:

var
Bmp: TBitmap;
OutRect: TRect;
BmpWidth: Integer;

begin
// default output rectangle
OutRect := Rect;

if Column.Field = Table1Common_Name then
begin
// draw the image
Bmp := TBitmap.Create;
try
Bmp.Assign (Table1Graphic);
BmpWidth := (Rect.Bottom - Rect.Top) * 2;
OutRect.Right := Rect.Left + BmpWidth;

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 576

http://www.sybex.com

577

DBGrid1.Canvas.StretchDraw (OutRect, Bmp);
finally
Bmp.Free;

end;
// reset output rectangle, leaving space for the graphic
OutRect := Rect;
OutRect.Left := OutRect.Left + BmpWidth;

end;

// red font color if length > 100 (omitted — see above)

// default drawing
DBGrid1.DefaultDrawDataCell (OutRect, Column.Field, State);

As you can see in the code above, the program shows the image in a small rectangle on the
left of the grid cell and then changes the output rectangle to the remaining area before acti-
vating the default drawing. You can see the effect in Figure 13.13.

A Check Box Cell
Another common extension of the DBGrid control, found in many third-party components,
is the use of check boxes to select the status of Boolean field values. A simple way to do this is
to place a DBCheckBox control in front of the grid when the user selects the corresponding
item. I’ve done this in the CheckDbg example, which uses the Workers table created in the
DbAware example discussed earlier in this chapter.

The form displayed by the program contains only the grid and the check box. This is a
summary of the textual description of the form:

object DbaForm: TDbaForm
OnCreate = FormCreate
object DBGrid1: TDBGrid

F I G U R E 1 3 . 1 3 :
The DrawData program
displays a grid that includes
the text of a memo field
and the ubiquitous Borland
fishes.

Customizing a Database Grid

2874c13.qxd 7/2/01 4:32 PM Page 577

http://www.sybex.com

578

Align = alClient
DataSource = DataSource1
OnColEnter = DBGrid1ColEnter
OnDrawColumnCell = DBGrid1DrawColumnCell
OnKeyPress = DBGrid1KeyPress

end
object DBCheckBox1: TDBCheckBox
Caption = ‘Senior’
DataField = ‘Senior’
DataSource = DataSource1
ValueChecked = ‘True’
ValueUnchecked = ‘False’
Visible = False

end
object Table1: TTable
DatabaseName = ‘DBDEMOS’
TableName = ‘Workers’

end
end

Notice that the check box is initially hidden and that the program handles several events
of the DBGrid control. The first is the OnDrawColumnCell event, which is not used to cus-
tomize the drawing (the DefaultDrawing property is set to True), but only to compute the
position of the check box when a cell of the corresponding field is selected:

procedure TDbaForm.DBGrid1DrawColumnCell(Sender: TObject;
const Rect: TRect; DataCol: Integer; Column: TColumn;
State: TGridDrawState);

begin
if (gdFocused in State) and (Column.Field = Table1Senior) then
begin
DBCheckBox1.SetBounds (
Rect.Left + DBGrid1.Left + 1,
Rect.Top + DBGrid1.Top + 1,
Rect.Right - Rect.Left + 1,
Rect.Bottom - Rect.Top + 1);

end;
end;

The check box itself is displayed or hidden as the user enters or exits the corresponding
column, by the handler of the OnColEnter event. Note that we cannot refer to the column by
position, since a user can move the columns:

procedure TDbaForm.DBGrid1ColEnter(Sender: TObject);
begin
if DBGrid1.Columns [DBGrid1.SelectedIndex].Field = Table1Senior then
DBCheckBox1.Visible := True

else
DBCheckBox1.Visible := False;

end;

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 578

http://www.sybex.com

579

Finally, as an extra extension, when the check box is visible (that is, when the user has acti-
vated the corresponding field), the program intercepts the keyboard input in the grid, tog-
gling the selection of the check box instead of accepting the input:

procedure TDbaForm.DBGrid1KeyPress(Sender: TObject; var Key: Char);
begin
if DBCheckBox1.Visible and (Ord (Key) > 31) then
begin
Key := #0;
Table1.Edit;
DBCheckBox1.Checked := not DBCheckBox1.Checked;
DBCheckBox1.Field.AsBoolean := DBCheckBox1.Checked;

end;
end;

To make this work we must not only toggle the status of the check box, but also go into
edit mode and update the data of the field. You can see an example of the output of this pro-
gram in Figure 13.14.

A Grid Allowing Multiple Selection
The third and last example of customizing the DBGrid control relates to multiple selection.
You can set up the DBGrid so that a user can select multiple rows (that is, multiple records).
This is very easy, since all you have to do is toggle the dgMultiSelect element of the Options
property of the grid. Once you’ve selected this option, a user can keep the Ctrl key pressed
and click with the mouse to select multiple rows of the grid, with the effect you can see in
Figure 13.15.

F I G U R E 1 3 . 1 4 :
The grid of the CheckDbg
example uses a check box
for selecting the value of a
Boolean field.

Customizing a Database Grid

2874c13.qxd 7/2/01 4:32 PM Page 579

http://www.sybex.com

580

Since the database table can have only one active record, what information is stored in the
grid for the selected items? The grid simply keeps a list of bookmarks to the selected records.
This list is available in the SelectedRows property, which is of type TBookmarkList. Besides
accessing the number of objects in the list with the Count property, you can get to each book-
mark with the Items property, which is the default array property. Each item of the list is on a
TBookmarkStr type, which represents a bookmark pointer you can assign to the Bookmark
property of the table.

NOTE The TBookmarkStr is a string type for convenience, but its data should be considered
“opaque” and volatile. You shouldn’t rely on any particular structure to the data you may find
if you peek at a bookmark’s value, and you shouldn’t hold on to the data too long or store it in
a separate file. Bookmark data will vary with database driver and index configuration, and it
may be rendered unusable when rows are added to or deleted from the dataset (by you or by
other users of the database).

To summarize the steps, here is the code of the MltGrid example, activated by pressing the
button to move the Name field of the selected records to the list box:

procedure TForm1.Button1Click(Sender: TObject);
var
I: Integer;
BookmarkList: TBookmarkList;
Bookmark: TBookmarkStr;

begin
// store the current position
Bookmark := Table1.Bookmark;
try
// empty the list box
ListBox1.Items.Clear;

F I G U R E 1 3 . 1 5 :
The MltGrid example has
a DBGrid control that
allows the selection of
multiple rows.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 580

http://www.sybex.com

581

// get the selected rows of the grid
BookmarkList := DbGrid1.SelectedRows;
for I := 0 to BookmarkList.Count - 1 do
begin
// for each, move the table to that record
Table1.Bookmark := BookmarkList[I];
// add the name field to the listbox
ListBox1.Items.Add (Table1.FieldByName (‘Name’).AsString);

end;
finally
// go back to the initial record
Table1.Bookmark := Bookmark;

end;
end;

Dragging to a Grid
Another interesting technique is to use dragging with grids. Dragging from a grid is not par-
ticularly difficult, as you know which are the current record and the column the user has
selected. Dragging to a grid, instead, is apparently hard to program. You might remember
that in Chapter 3, “The Object Pascal Language: Inheritance and Polymorphism,” I men-
tioned the “protected hack;” this is the technique I’m going to use to implement dragging to
a grid.

The example, called DragToGrid, has a grid connected to the COUNTRY.DB demo
table, an edit where you can type the new value for a field, and a label you can drag over a cell
of the grid to modify the related field. The real problem is how to determine this field. The
code is only a few lines, as you can see below, but it is certainly cryptic, and requires some
explanation:

type
TDBGHack = class (TDbGrid)
end;

procedure TFormDrag.DBGrid1DragDrop(Sender, Source: TObject; X, Y: Integer);
var
gc: TGridCoord;

begin
gc := TDBGHack (DbGrid1).MouseCoord (x, y);
if (gc.y > 0) and (gc.x > 0) then
begin
DbGrid1.DataSource.DataSet.MoveBy (gc.y - TDBGHack(DbGrid1).Row);
DbGrid1.DataSource.DataSet.Edit;
DBGrid1.Columns.Items [gc.X - 1].Field.AsString := EditDrag.Text;

end;
DBGrid1.SetFocus;

end;

Customizing a Database Grid

2874c13.qxd 7/2/01 4:32 PM Page 581

http://www.sybex.com

582

The first operation is to determine the cell over which the mouse was released. Starting
with the X and Y mouse coordinates, we can call the protected MouseCoord method to access
the row and column of the cell. Unless the drag target is the very first row (usually hosting the
titles) or the first column (usually hosting the indicator), the program moves the current
record by the difference between the requested row (gc.y) and the current active row (the
protected Row property of the grid). The next step is to put the dataset into edit mode, grab
the field of the target column (Columns.Items [gc.X - 1].Field), and change its text.

Database Applications with Standard Controls
Although it is generally faster to write Delphi applications based on data-aware controls, this
is certainly not required. When you need to have very precise control over the user interface
of a database application, you might want to customize the transfer of the data from the field
objects to the visual controls. My personal view is that this is necessary only in very specific
cases, as you can customize the data-aware controls extensively by setting the properties and
handling the events of the field objects. However, trying to work without the data-aware
controls should help you understand the default behavior of Delphi, and it will help me
introduce some more database-related events (discussed in the sections “Database Events”
and “Field Events”).

The development of an application not based on data-aware controls can follow two differ-
ent approaches. You can mimic the standard Delphi behavior in code, possibly departing
from it in specific cases, or you can go for a much more customized approach. I’ll demon-
strate the first technique in the NonAware example and the latter in the SendToDb example.

Mimicking Delphi Data-Aware Controls
If you want to build an application that doesn’t use data-aware controls but behaves like a stan-
dard Delphi application, you can simply write event handlers for the operations that would be
performed automatically by data-aware controls. Basically you need to place the dataset in edit
mode as the user changes the content of the visual controls, and update the field objects of the
dataset as the user exits from the controls, moving the focus to another element.

TIP This approach can be handy for integrating a control that’s not data-aware into a standard
application. A good example is the use of the DateTimePicker control for selecting a date, as
demonstrated later in the section “Editing Dates with a Calendar.”

The other element of the NonAware example is a list of buttons corresponding to some of
those in the DBNavigator control and connected to five custom actions. I cannot use the
standard dataset actions for this example simply because they automatically hook to the data

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 582

http://www.sybex.com

583

source associated with the control having the focus, a mechanism that fails with the
non–data-aware edit boxes of this example.

The program has several event handlers we’ve not used for past applications using data-
aware controls. First of all, we have to show the data of the current record in the visual con-
trols (as in Figure 13.16), by handling the OnDataChange event of the DataSource1
component:

procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
EditName.Text := Table1Name.AsString;
EditCapital.Text := Table1Capital.AsString;
ComboContinent.Text := Table1Continent.AsString;
EditArea.Text := Table1Area.AsString;
EditPopulation.Text := Table1Population.AsString;

end;

The handler of the OnStateChange event of the control displays the status of the table in a
status bar control. As the user starts typing in one of the edit boxes or drops down the combo
box list, the program sets the table in edit mode:

procedure TForm1.EditKeyPress(Sender: TObject; var Key: Char);
begin
if not (Table1.State in [dsEdit, dsInsert]) then
Table1.Edit;

end;

This method is connected with the OnKeyPress event of the five components and is simi-
lar to the OnDropDown event handler of the combo box. As the user leaves one of the visual

F I G U R E 1 3 . 1 6 :
The output of the Non-
Aware example in Browse
mode. The program
manually fetches the
data every time the
current record changes.

Database Applications with Standard Controls

2874c13.qxd 7/2/01 4:32 PM Page 583

http://www.sybex.com

584

controls, the handler of the OnExit event copies the data to the corresponding field, as in
this case:

procedure TForm1.EditCapitalExit(Sender: TObject);
begin
if (Table1.State in [dsEdit, dsInsert]) then
Table1Capital.AsString := EditCapital.Text;

end;

The operation takes place only if the table is in edit mode; that is, only if the user has typed
in this or another control. This is not really ideal, because extra operations are done even if
the text of the edit box didn’t change, but the extra steps happen fast enough not to be a con-
cern. For the first edit box, we check the text before copying it, raising an exception if the
edit box is empty:

procedure TForm1.EditNameExit(Sender: TObject);
begin
if (Table1.State in [dsEdit, dsInsert])then
if EditName.Text <> ‘’ then
Table1Name.AsString := EditName.Text

else
begin
EditName.SetFocus;
raise Exception.Create (‘Undefined Country’);

end;
end;

An alternative approach for testing the value of a field is to handle the BeforePost event of
the dataset. Keep in mind that in this example, the posting operation is not handled by a spe-
cific button but takes place as soon as a user moves to a new record or inserts a new one:

procedure TForm1.Table1BeforePost(DataSet: TDataSet);
begin
if Table1Area.Value < 100 then
raise Exception.Create (‘Area too small’);

end;

In each of these cases, an alternative to raising an exception is to set a default value. How-
ever, if a field has a default value it is better to set it up front, so that a user can see which
value will be sent to the database. To accomplish this, you can handle the AfterInsert event
of a dataset, which is fired immediately after a new record has been created (we could have
used the OnNewRecord event, as well):

procedure TForm1.Table1AfterInsert(DataSet: TDataSet);
begin
Table1Continent.Value := ‘Asia’;

end;

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 584

http://www.sybex.com

585

Sending Requests to the Database
You can further customize the user interface of your application if you decide not to handle
the same sequence of editing operations as in standard Delphi data-aware controls. This
allows you complete freedom, although there might be some side effects (such as limited
ability to handle concurrency, something I’ll discuss in the next chapter).

For this new example, I’ve replaced the first edit box with another combo box, and replaced
all the buttons related to table operations (which corresponded to DBNavigator buttons) with
two custom ones, used to get the data from the database and send an update to it. To underline
the difference of this example, I’ve even removed the DataSource component.

The GetData method, connected with the corresponding button, simply gets the fields cor-
responding to the record indicated in the first combo box:

procedure TForm1.GetData;
begin
Table1.FindNearest ([ComboName.Text]);
ComboName.Text := Table1Name.AsString;
EditCapital.Text := Table1Capital.AsString;
ComboContinent.Text := Table1Continent.AsString;
EditArea.Text := Table1Area.AsString;
EditPopulation.Text := Table1Population.AsString;

end;

This method is called whenever the user presses the button, selects an item of the combo
box, or presses the Enter key while in the combo box:

procedure TForm1.ComboNameClick(Sender: TObject);
begin
GetData;

end;

procedure TForm1.ComboNameKeyPress(Sender: TObject; var Key: Char);
begin
if Key = #13 then
GetData;

end;

To make this example work smoothly, at start-up the combo box is filled with all the names
of the countries of the table:

procedure TForm1.FormCreate(Sender: TObject);
begin
// fill the list of names
Table1.Open;
while not Table1.Eof do
begin

Database Applications with Standard Controls

2874c13.qxd 7/2/01 4:32 PM Page 585

http://www.sybex.com

586

ComboName.Items.Add (Table1Name.AsString);
Table1.Next;

end;
end;

With this approach, the combo box becomes a sort of selector of the record, as you can see
in Figure 13.17. Notice that thanks to this selection, the program doesn’t need navigational
buttons.

Finally, the user can change the values of the controls and click the Send button. The code
to be executed depends on whether the operation is an update or an insert. We can deter-
mine this by looking at the name (although with this code, a wrong name cannot be modified
any more):

procedure TForm1.SendData;
begin
// raise an exception if there is no name
if ComboName.Text = ‘’ then
raise Exception.Create (‘Insert the name’);

// check if the record is already in the table
if Table1.FindKey ([ComboName.Text]) then
begin
// modify found record
Table1.Edit;
Table1Capital.AsString := EditCapital.Text;
Table1Continent.AsString := ComboContinent.Text;
Table1Area.AsString := EditArea.Text;
Table1Population.AsString := EditPopulation.Text;
Table1.Post;

end
else

F I G U R E 1 3 . 1 7 :
In the SendToDb example,
you can select the record
you want to see in a
combo box.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 586

http://www.sybex.com

587

begin
// insert new record
Table1.InsertRecord ([ComboName.Text, EditCapital.Text,
ComboContinent.Text, EditArea.Text, EditPopulation.Text]);

// add to list
ComboName.Items.Add (ComboName.Text)

end;

Before sending the data to the table, you can do any sort of validation test on the values. In
this case, it doesn’t make much sense to handle the events of the database components,
because we have full control on when the update or insert operation is done.

Database Events
To further illustrate how you can use the events of a database application, I’ve written a simple
program that logs all the events being fired. This program handles all of the events of a table
and a data source component (although some of these events won’t actually be executed, unless
you add some extra code, as described later). For each event, I simply send its description to a
list box, with the effect you can see in Figure 13.18.

F I G U R E 1 3 . 1 8 :
The output of the DbEvts
program, which logs all the
events related to database
components

Database Applications with Standard Controls

2874c13.qxd 7/2/01 4:32 PM Page 587

http://www.sybex.com

588

Most of the event handlers simply display the name of the component and that of the
event, as in

procedure TForm1.Table1AfterEdit(DataSet: TDataset);
begin
AddToList (‘Table: AfterEdit’);

end;

The field events are slightly more complex, but they use a single handler for the various
field components:

procedure TForm1.FieldChange(Sender: TField);
begin
AddToList (‘Field ‘ + Sender.FieldName + ‘: OnChange’);

end;

The form’s AddToList method adds a new item to the list box and selects it, automatically
scrolling the list if required:

procedure TForm1.AddToList(Str: string);
begin
// add item and select it
Listbox1.ItemIndex := Listbox1.Items.Add (Str);

end;

Finally, the program has a pop-up menu connected to the list box to clear the list or save
the items to a file. The menu also has a command you can use to add a blank line, thus sepa-
rating blocks of events. This operation is also done automatically by a timer, which adds a
blank line to the list box unless the last item is already an empty string. This makes the out-
put more readable, as you can see in Figure 13.18.

It is very important to study the output of this program as well as its code. You can try
doing all the various operations on the table using the DBGrid, such as inserting, editing,
and deleting records, and see the corresponding effect in terms of events fired by the VCL
components. To see even more events, you can set the Filtered property of the table to
True, define a calculated field, try to cause errors (for example, by duplicating the value of
the name field), add a check box to open or close the table, and so forth.

Field Events
The DbEvts program shows the calls to the OnChange and OnValidate events of the field
objects. Two other events, OnSetText and OnGetText, are not shown, because the handlers of
these events are not simply called to indicate that an operation occurred. On the contrary,
their event handlers must perform the operation of getting data from or setting it to the cor-
responding field objects.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 588

http://www.sybex.com

589

These two events are quite special, and their use is not as simple as it might seem at first sight.
For this reason, they require a separate example, named FldText. This is only a slight revision of
the DbAware example described earlier in this chapter, replacing the DBRadioGroup control
with a DBListbox control. The problem is that a DBListBox control directly connects with a
string field, while I want to connect it with an integer field, with each value indicating an option.
Of course, I don’t want a user to see or select a number, so I have to map the numbers stored in
the database to the strings visible on the screen. In the earlier example, the DBRadioGroup con-
trol provided that mapping. Now I have to use an alternative approach.

In the FldText example, the Department field has two handlers for the OnGetText and
OnSetText events. In the OnGetText event handler, you can extract the numeric value of the
Sender field and set the value of the Text reference parameter:

procedure TDbaForm.Table1DepartmentGetText(Sender: TField;
var Text: String; DisplayText: Boolean);

begin
case Sender.AsInteger of
1: Text := ‘Sales’;
2: Text := ‘Accounting’;
3: Text := ‘Production’;
4: Text := ‘Management’;

else
Text := ‘[Error]’;

end;
end;

WARNING In the code of the OnGetText event handler you cannot refer to the text of the field, for example,
using the DisplayText property or the GetData method, since they would call the OnGetText
event, in an infinite recursion.

In the OnSetText event handler, you can examine the string and decide the value of the
field according to the conversion rule, in this case a simple mapping of values done with an
if/then/else statement:

procedure TDbaForm.Table1DepartmentSetText(Sender: TField; const Text: String);
begin
if Text = ‘Sales’ then
Sender.Value := 1

else if Text = ‘Accounting’ then
Sender.Value := 2

else if Text = ‘Production’ then
Sender.Value := 3

else if Text = ‘Management’ then
Sender.Value := 4

else
raise Exception.Create (‘Error in Department field conversion’);

end;

Database Applications with Standard Controls

2874c13.qxd 7/2/01 4:32 PM Page 589

http://www.sybex.com

590

The effect is that not only is the value visible in the DBListBox (as you can see in Fig-
ure 13.19), it also shows up in the DBGrid. By contrast, in the DbAware example, the grid
displayed the numeric value.

Editing Dates with a Calendar
As a final example of the use of non–data-aware controls, the DbDates application shows
how to use a MonthCalendar component to handle dates with a nice graphical component
instead of a plain edit box. This example is based on the Events table from the DBDEMOS
database, which lists Olympic events. The example uses (for the first time) a DBImage con-
trol, with the following settings (whose effect is illustrated in Figure 13.20):

object DBImage1: TDBImage
DataField = ‘Event_Photo’
DataSource = DataSource1
Stretch = True

end

NOTE Graphic, memo, and BLOB fields in Delphi are handled exactly like other fields. Just connect
the proper editor or viewer, and most of the work is done behind the scenes by the system.

F I G U R E 1 3 . 1 9 :
The output of the FldText
example, which
demonstrates the
use of the
OnGetText and
OnSetText events
of the field objects

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 590

http://www.sybex.com

591

Although the DBImage control works with no extra effort on our part, we must connect
the MonthCalendar control with the corresponding field by handling two events of the
DataSource control:

procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
MonthCalendar1.Date := Table1Event_Date.Value;

end;

procedure TForm1.DataSource1UpdateData(Sender: TObject);
begin
Table1Event_Date.Value := MonthCalendar1.Date;

end;

Besides copying the data back and forth, with the code listed above, the program must also
put the table into edit mode as the user clicks the calendar control. The most obvious approach
is to write a handler for the OnClick event of the control:

procedure TForm1.MonthCalendar1Click(Sender: TObject);
begin
Table1.Edit;

end;

F I G U R E 1 3 . 2 0 :
The selection of a date with
the monthly calendar

Database Applications with Standard Controls

2874c13.qxd 7/2/01 4:32 PM Page 591

http://www.sybex.com

592

However, this code doesn’t work properly. As you set the table in edit mode, the OnDataChange
event is executed once more, resetting the selection in the calendar. The overall effect is that the
user’s first click doesn’t change the selection. To avoid this problem we can set a flag in the
OnClick event handler and test it in the OnDataChange event handler, or we can temporarily
disconnect the second event handler. In the following code, I’ve taken the second approach:

procedure TForm1.MonthCalendar1Click(Sender: TObject);
begin
// disconnect handler
DataSource1.OnDataChange := nil;
// set table in edit mode
Table1.Edit;
// reconnect handler
DataSource1.OnDataChange := DataSource1DataChange;

end;

A Multirecord Grid
So far we have seen that you can either use a grid to display records of a database table or
build a form with specific data-aware controls for the various fields, accessing the records one
by one. There is a third alternative: use a multirecord object (a DBCtrlGrid), which allows
you to place many data-aware controls in a small area of a form and automatically duplicate
these controls for multiple records.

Here is what we can do to build the Multi1 example. Create a new blank form, place a Table
component and a DataSource component in it, and connect them to the COUNTRY.DB
table. Now place a DBCtrlGrid on the form, set its size and the number of rows and columns,
and place two edit components connected with the Name and Capital fields of the table. To
place these DBEdit components, you can also open the Fields editor and drag the two fields to
the control grid. At design time, you simply work on the active portion of the grid (see
Figure 13.21, on the right), and at run time, you can see these controls replicated multiple
times (see Figure 13.21, on the left).

F I G U R E 1 3 . 2 1 :
The DBCtrlGrid of the
Multi1 example at design
time (on the right) and at
run time (on the left)

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 592

http://www.sybex.com

593

You can simply set the number of columns and rows. Then each time you resize the con-
trol, the width and height of each panel are set accordingly. What is not available is a way to
align the grid automatically to the client area of the form.

Moving Control Grid Panels
To improve the last example, we might resize the grid using the FormResize method. We
could simply write the following code (in the Multi2 example):

procedure TForm1.FormResize(Sender: TObject);
begin
DBCtrlGrid1.Height := ClientHeight - Panel1.Height;
DBCtrlGrid1.Width := ClientWidth;

end;

This works, but it is not what I want. I’d like to increase the number of panels, not enlarge
them. To accomplish this, we can define a minimum height for the panels and compute how
many panels can fit in the available area each time the form is resized. For example, in Multi2,
I’ve added one more statement to the FormResize method above, which now becomes

procedure TForm1.FormResize(Sender: TObject);
begin
DBCtrlGrid1.RowCount := (ClientHeight - Panel1.Height) div 100;
DBCtrlGrid1.Height := ClientHeight - Panel1.Height;
DBCtrlGrid1.Width := ClientWidth;

end;

Instead of doing the same for the columns of the control grid component, I’ve added a
TrackBar component to a panel. When the position of the trackbar changes (the range is
from 2 to 10), the program sets the number of columns of the control grid and resizes it. In
fact, if you simply set the number of columns, they’ll have the same width as before. Here is
the code of the trackbar’s OnChange event handler:

procedure TForm1.TrackBar1Change(Sender: TObject);
begin
LabelCols.Caption := Format (‘%d Columns’, [TrackBar1.Position]);
DBCtrlGrid1.ColCount := TrackBar1.Position;
DBCtrlGrid1.Width := ClientWidth;

end;

This code and the FormResize method above allow you to change the configuration of the
control grid at run time in various ways. You can see an example of a crammed version of the
form in Figure 13.22.

A Multirecord Grid

2874c13.qxd 7/2/01 4:32 PM Page 593

http://www.sybex.com

594

Handling Database Errors
Another important element of database programming is handling database errors in custom
ways. Of course, you can let Delphi show an exception message each time a database error
occurs, but you might want to try to correct the errors or simply show more details. There
are basically three approaches you can use to handle database-related errors:

• You can wrap a try/except block around risky database operations, such as a call to the
Open method of a Query or to the Post method of a dataset. This is not possible when
the operation is generated by the interaction with a data-aware control.

• You can install a handler for the OnException event of the global Application object or
use the ApplicationEvents component, as described in the next example.

• You can handle specific events of the datasets related to errors, as OnPostError,
OnEditError, OnDeleteError, and OnUpdateError. These events will be discussed
later in the example.

F I G U R E 1 3 . 2 2 :
The output of the Multi2
example, with an excessive
number of columns

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 594

http://www.sybex.com

595

While most of the exception classes in Delphi simply deliver an error message, with data-
base exceptions you see a list of errors, showing local BDE error codes and also the native
error codes of the SQL server you are connected to. Besides the Message property, the
EDBEngineError class has two more properties, ErrorCount and Errors. This last property is
a list of errors:

property Errors[Index: Integer]: TDBError;

Each item within this list is an object of the class TDBError, which has the following properties:
type
TDBError = class
...

public
property Category: Byte read GetCategory;
property ErrorCode: DBIResult read FErrorCode;
property SubCode: Byte read GetSubCode;
property Message: string read FMessage;
property NativeError: Longint read FNativeError;

end;

I’ve used this information to build a simple database program showing the details of the
errors in a memo component. To handle all of the errors, the DBError example installs a
handler for the OnException event of an ApplicationEvents component. The event handler
simply calls a specific method used to show the details of the database error, in case it is an
EDBEngineError:

procedure TForm1.ApplicationEvents1Exception (Sender: TObject; E: Exception);
begin
Beep;
if E is EDBEngineError then
ShowError (EDBEngineError (E))

else
ShowMessage (E.Message);

end;

I decided to separate the code used to show the error to make it easier for you to copy this
code and use it in different contexts. Here is the code of the ShowError method, which out-
puts all of the available information to the Memo1 component that I’ve added to the form:

procedure TForm1.ShowError(E: EDBEngineError);
var
I: Integer;

begin

Handling Database Errors

2874c13.qxd 7/2/01 4:32 PM Page 595

http://www.sybex.com

596

Memo1.Lines.Add(‘’);
Memo1.Lines.Add(‘Error: ‘ + (E.Message));
Memo1.Lines.Add(‘Number of errors: ‘ + IntToStr(E.ErrorCount));
// iterate through the Errors records
for I := 0 to E.ErrorCount - 1 do
begin
Memo1.Lines.Add(‘Message: ‘ + E.Errors[I].Message);
Memo1.Lines.Add(‘ Category: ‘ + IntToStr(E.Errors[I].Category));
Memo1.Lines.Add(‘ Error Code: ‘ + IntToStr(E.Errors[I].ErrorCode));
Memo1.Lines.Add(‘ SubCode: ‘ + IntToStr(E.Errors[I].SubCode));
Memo1.Lines.Add(‘ Native Error: ‘ + IntToStr(E.Errors[I].NativeError));
Memo1.Lines.Add(‘’);

end;
end;

Besides this error-handling code, the program has a table and a query, along with the error-
related event handlers. As already mentioned, you can install an event handler related to spe-
cific errors of a dataset. The three events OnPostError, OnDeleteError, and OnEditError have
the same structure. Their handlers receive as parameters the dataset, the error itself, and an
action you can request from the system; this can be set to daFail, daAbort, or daRetry:

procedure TForm1.Table1PostError(DataSet: TDataSet; E: EDatabaseError;
var Action: TDataAction);

begin
Memo1.Lines.Add (‘ -> Post Error: ‘ + E.Message);

end;

If you don’t specify an action, as in the code above, the default daFail is used, and the
exception reaches the global handler. Using daAbort stops the exception and can be used if
your event handler already displays a message. Finally, if you have a way to determine the
cause of the error and fix it, you can use the daRetry action.

NOTE The fourth error event, OnUpdateError, has a different structure and is used along with cached
updates as the information is sent back from the local cache to the database. This handler is
important for handling update conflicts among different users as described in the next example.

The example has also a DBGrid connected with the table. You can use the DBGrid to per-
form some illegal operations, such as adding a new record with the same key as an existing
one or trying to execute illegal SQL queries. Pressing the four buttons on the left of the
memo generate errors, as you can see in Figure 13.23.

Chapter 13 • Delphi’s Database Architecture

2874c13.qxd 7/2/01 4:32 PM Page 596

http://www.sybex.com

597

What’s Next?
In this chapter, we have seen examples of database access from Delphi programs. I have covered
the basic data-aware components as well as the development of database applications based on
standard controls. We’ve explored the internal architecture of the TDataSet class and of field
objects, and discussed many of the events and properties shared by all datasets and used by all
database applications. Even though most of the demonstrations used BDE tables and queries,
in the entire text there was little or no code specific to those components. Most of what I’ve
described equally applies to client/server applications, built with BDE, dbExpress, IBX,
ADO or other dataset components.

We’ve discussed calculated fields, lookup fields, customizations of the DBGrid control, and
many rather advanced techniques. What we really haven’t delved into is the database and data-
access side of the picture, which depends on the actual type of database engine and server you
plan using. The next chapter will start focusing in this topic, with an in-depth overview of
client/server development. Following chapters will put the accent on specific data-access tech-
nologies and provide even more advanced information.

F I G U R E 1 3 . 2 3 :
The third button of the
DBError form generates an
exception with 17 database
errors!

What’s Next?

2874c13.qxd 7/2/01 4:32 PM Page 597

http://www.sybex.com

14CH A P T E R

Client/Server Programming

� Overview of client/server

� Porting local applications

� Elements of database design

� Client/server with BDE

� The dbExpress library

� Using the ClientDataSet component

� Local databases with MyBase

2874c14.qxd 7/2/01 4:33 PM Page 599

http://www.sybex.com

600

In the last chapter, we examined Delphi’s support for database programming, using local
files (particularly Paradox) in most of examples but not focusing on any specific database tech-
nology. This chapter moves on to the use of SQL server databases, focusing on client/server
development with the BDE and the new dbExpress technology. A single chapter cannot cover
this complex topic in detail, so I’ll simply introduce it from the perspective of the Delphi devel-
oper and add some tips and hints. The next chapter extends our discussion of client/server pro-
gramming, providing some real-world examples. I’ll use InterBase in both chapters, because
this is the RDBMS (relational database management system), or SQL server, that is included
in the Enterprise edition of Delphi and because it is a free and open-source server.

In a rapid application development tool such as Delphi, you can indeed take the same com-
ponents and code developed for a local database application and use them in a client/server
environment. However, this handy feature may prove to be dangerous to beginners, as a
standard technique that works well for local access might become extremely inefficient in a
client/server application.

An Overview of Client/Server Programming
The database applications in previous chapters used the BDE to access data stored in files
either on the local machine or on a networked computer. In both cases we used a file server,
whose only role was to store the file on a hard disk, because the database engine (the BDE)
was running exclusively on the computer that also hosted the application. In this configura-
tion, when we query one of the tables, its data is first copied into a local cache of the BDE
and then processed.

As an example, consider taking a table like EMPLOYEE (part of the InterBase sample
database, which ships with Delphi), adding thousands of records to it, and placing it on a net-
worked computer working as a file server. If we want to know the highest salary paid by the
company, we can open a Table component (EmpTable) connected with the database table and
run this code:

EmpTable.Open;
EmpTable.First;
MaxSalary := 0;
while not EmpTable.Eof do
begin
if EmpTable.FieldByName (‘Salary’).AsCurrency > MaxSalary then
MaxSalary := EmpTable.FieldByName (‘Salary’).AsCurrency;

EmpTable.Next;
end;

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 600

http://www.sybex.com

601

The effect of this approach is to move all the data of the (large) table from the networked
computer to the local machine, an operation that might take minutes. Because Delphi includes
a Query component, you might think of using the following SQL code to compute this maxi-
mum value:

select Max(Salary) from Employee

In case of a local table, this query would be processed by the local SQL engine of the BDE,
and the entire dataset of the table would still have to be moved from the networked com-
puter to the local one, with similarly poor performance. But if you use InterBase and let the
server execute the SQL code, only the result set—a single number—will need to be trans-
ferred to the local computer.

NOTE The two code excerpts above are part of the GetMax example, which includes some code to
time the two approaches. Using the Table component on the small EMPLOYEE table takes
about ten times longer than using the query, even if the InterBase server is installed on the
client computer.

If you want to store a large amount of data on a central computer and avoid moving the data
to client computers for processing, the only solution is to let the central computer manipulate
the data and send back to the client only a limited amount of information. This is the founda-
tion of client/server programming.

In general, you’ll use an existing program on the server (an RDBMS) and write a custom
client application that connects to it. Sometimes, however, you might even want to write both
a custom client and a custom server, as in three-tier applications. Delphi support for this type
of program—what has been called the MIDAS architecture—is covered in Chapter 17,
“Multitier Database Applications with DataSnap.”

The upsizing of an application—that is, the transfer of data from local files to a SQL server
database engine—is generally done for performance reasons and to allow for larger amounts
of data. Going back to the previous example, in a client/server environment, the query used
to select the maximum salary would be computed by the RDBMS, which would send back to
the client computer only the final result, a single number! With a powerful server computer
(such as a multiprocessor Sun SparcStation), the total time required to compute the result
might be minimal.

However, there are also other reasons to choose a client/server architecture:

The amount of data A Paradox table cannot exceed 2 GB, but even around 300 MB you
might start having serious speed problems, and errors in the indexes become more frequent.

The need for concurrent access to the data Paradox uses the Paradox.NET file to keep
track of which user is accessing the various tables and records. The Paradox approach to

An Overview of Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 601

http://www.sybex.com

602

handling multiple users is based on pessimistic locking. When a user starts an editing opera-
tion on a record, none of the other users can do the same (to avoid any update conflict), as
we saw in the last chapter. In a system with tens of users, this might lead to serious prob-
lems, because a single user might block the work of many others. SQL server databases, by
contrast, generally use optimistic locking, an approach that allows multiple users to work on
the same data and delays the concurrency control until the time the users send back some
updates.

Protection and security An RDBMS usually has many more protection mechanisms than
the simple password you can add to a Paradox table. When your application is based on
files, a malicious or careless user might simply delete those vital files. When SQL servers
are based on robust operating systems, instead, they provide multiple levels of protection,
make backup easier, and often allow only the database administrator to modify the struc-
ture of the tables.

Programmability An RDBMS database can host business rules, in the form of stored pro-
cedures, triggers, table views, and other techniques we’ll discuss in this and the next chap-
ter. Choosing how to divide the application code between the client and the server is one
of the main issues of client/server programming.

Transaction control Local files offer some support for transactions, but the transaction
support provided by an RDBMS database is generally much greater. This is another
important aspect of the overall robustness of the system.

From Local to Client/Server
Now we can start focusing on particular techniques useful for client/server programming. Keep
in mind that the general goal is to distribute the workload properly between the client and the
server and reduce the network bandwidth required to move information back and forth.

The foundation of this approach is good database design, which involves both table struc-
ture and appropriate data validation and constraints, or business rules. Enforcing the valida-
tion of the data on the server is important, as the integrity of the database is one of the key aims
of any program. However, the client side should include data validation as well, to improve the
user interface and make the input and the processing of the data more user-friendly. It makes
little sense to let the user enter invalid data and then receive an error message from the server,
when we can prevent the wrong input in the first place.

NOTE If you use a CASE tool for the definition of the database, or import the definition in such a tool
afterward, you can use Delphi’s Case Wizard to generate a corresponding data dictionary and
have the field objects created at design time automatically import the constraints specified on
the server.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 602

http://www.sybex.com

603

Unidirectional Cursors
In local databases, tables are sequential files whose order is either the physical order or is
defined by an index. By contrast, SQL servers work on logical sets of data, not related to a
physical order. A relational database server handles data according to the relational model, a
mathematical model based on set theory.

What is important for the present discussion is that in a relational database, the records
(sometimes called tuples) of a table are identified not by position but exclusively through a
primary key, based on one or more fields. Once you’ve obtained a set of records, the server
adds to each of them a reference to the following one, which makes it fast to move from a
record to the following one but terribly slow to move back to the previous record. For this
reason, it is common to say that an RDBMS uses a unidirectional cursor. Connecting such a
table or query to a DBGrid control is practically impossible, as this would make it terribly
slow when browsing the grid backward.

The BDE helps a lot to handle unidirectional cursors, as it keeps in a local cache the
records already loaded in the table. Thus, when we move to following records, they are
requested from the SQL server; but when we go back, the BDE jumps in and provides the
data. In other words, the BDE makes these cursors fully bidirectional, although this might
use quite a lot of memory. When using dbExpress, which doesn’t provide a similar caching
system, a program needs to keep in memory the records it has already accessed. This can be
easily accomplished by means of the ClientDataSet component.

NOTE The simple case of a DBGrid used to browse an entire table is common in local programs but
should generally be avoided in a client/server environment. It’s better to filter out only part of
the records and only the fields you are interested in. Do you need to see a list of names?
Return all those starting with the letter A, then those with B, and so on, or ask the user for the
initial letter of the name.

If proceeding backward might result in problems, keep in mind that jumping to the last
record of a table is even worse; usually this operation implies fetching all the records! A simi-
lar situation applies to the RecordCount property of datasets. Computing the number of records
often implies moving them all to the client computer. This is the reason why the thumb of the
vertical scrollbar of the DBGrid works for a local table but not for a remote one. If you need to
know the number of records, run a separate query to let the server (and not the client) compute
it. For example, you can see how many records will be selected from the EMPLOYEE table if
you are interested in those records having a salary field higher than 50,000:

select count(*)
from Employee
where Salary > 50000

From Local to Client/Server

2874c14.qxd 7/2/01 4:33 PM Page 603

http://www.sybex.com

604

TIP Using the SQL instruction count(*) is a handy way to compute the number of records
returned by a query. Instead of the * wildcard, we could have used the name of a specific field,
as in count(First_Name), possibly combined with either distinct or all, to count only
records with different values for the field or all the records having a non-null value.

Parametric Queries and Null Values
Parametric queries are a very useful technique. Essentially, they allow you to run multiple
queries with different result sets while the server only needs to work out the access strategy
for solving the query once.

You can force this initial preparation of the query access strategy by calling the Prepare
method of a Query component. With this operation, the server receives the query, checks its
syntax, and while compiling it determines how to use indexes and other access techniques.
Multiple executions of the query will be faster because these initial operations have already
been executed once for all. Of course, you should call Prepare again if you change the SQL
text of the query. Also, remember to call Unprepare at the end, to free some BDE resources.

Note that some powerful SQL servers can do the same operation by caching the requests
and automatically determining that you are sending the same request twice. If the server is
smart enough, preparing the query might result in little or no performance gain.

NOTE When you write parametric queries against a SQL server, you should consider null values with
care. In fact, to test for a null value, you should not write a field = null test, but use the
specific expression field is null instead.

Elements of Database Design
Although this is a book on Delphi programming and not on databases, I feel it’s quite impor-
tant to discuss a few elements of good (and modern) database design. The reason is simple: if
your database design is incorrect or convoluted, you’ll either have to write terribly complex
SQL statements and server-side code, or write a lot of Delphi code to access your data, possi-
bly even fighting against the design of the TDataSet class.

Entities and Relations
The classic relational database design approach, based on the entity–relation (E-R) model,
involves having one table for every entity you need to represent in your database, with one
field for each data element you need plus one field for every one-to-one or one-to-many

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 604

http://www.sybex.com

605

relation to another entity (or table). For many-to-many relations, instead, you’ll need a sepa-
rate table.

As an example of a one-to-one relation, consider a table representing a university course.
This would have a field for each relevant data element (name and description, room where it
is held, and so on) plus a single field indicating the teacher. The data of the teacher, in fact,
should not be stored within the course data, but in a separate table, as it might be referenced
from elsewhere.

The schedule of each course can include an undefined number of hours in different days,
so they cannot be added inside the same table describing the course. Instead, this informa-
tion must be placed on a separate table, including all of the schedules, with a field referring
to the class each schedule is for. In a one-to-many relation, such as this, “many” records of
the schedule table point back to the same “one” record of the course table.

A more complex situation is required to store which student is taking which class. Students
cannot be listed directly in the course table, as their number is not fixed, and the classes can-
not be stored within the student’s data for the same reason. In a similar many-to-many rela-
tion, the only approach is to have an extra table representing the relation, which lists
references to students and courses.

Normalization Rules
The classic design principles include a series of so-called normalization rules. The goal of
these rules is to avoid duplicating data in your database (not only for saving space, but mainly
to avoid ending up with incongruous data). For example, you don’t repeat all of the customer
details in each order, but refer to a separate customer entity. This way you save memory, but
when the customer details change (for example, because of a change of address) all of the
orders of this customer will reflect the new data. Other tables that relate to the same cus-
tomer will probably be automatically updated as well.

Normalization rules imply using codes for commonly repeated values. For example, if you
have a few different shipment options, you won’t use a string-based description for these
options within the orders table, but would rather use a short numeric code, mapped to a
description in a separate lookup table.

This last rule, which should not be taken to the extreme, is to avoid having to join a large
number or table for every query. You can either account for some de-normalization (leaving a
short shipment description within the orders table) or use the client program to provide the
description, again ending up with a formally incorrect database design. This last option is
practical only when you use a single development environment (let’s say, Delphi) to access
this database.

Elements of Database Design

2874c14.qxd 7/2/01 4:33 PM Page 605

http://www.sybex.com

606

From Primary Keys to OIDs
In a relational database, records are not identified by a physical position (as in Paradox and
other local databases) but only by the data within the record itself. Typically, you don’t need
the data of all of the fields to identify a record, but only a subset of the data, forming the so-
called primary key. If the fields that are part of the primary key must identify an individual
record, their value must be different for each possible record of the table.

NOTE Technically, many database servers add internal record identifiers to the tables, but this hap-
pens only for internal optimizations and has little to do with the logical design of a relational
database. Also, these internal identifiers work differently in different SQL servers and might
even change among versions, a good reason not to rely on them.

The early incarnations of the relational theory dictated the use of logical keys, which means
selecting one or more records that indicate an entity without risk of any confusion. This is
often easier to say than to accomplish. For example, company names are not generally unique,
and even the company name and its location don’t provide a complete guarantee. Moreover, if
a company changes its name (not an unlikely event, as Borland can teach us) or its location,
and you have references to the company within other tables, you must change all those refer-
ences as well, with the risk of ending up with dangling references.

For this reason, and also for efficiency (using strings for references implies using a lot of
space in secondary tables, where references often occurs), logical keys have been invariably
phased out for physical or surrogate keys. Physical keys refer to a single field of the table iden-
tifying an element in a unique way. For example, each person in the U.S. has a Social Security
number (SSN), but almost every country has a tax ID or other government-assigned number
that identifies each person. The same typically exists for companies. Although these ID numbers
are guaranteed to be unique, they might change depending on the country (creating troubles
for the database of a company also selling its goods abroad) or even within a single country (to
account for new tax laws). They are also often inefficient, as they might be quite large (Italy, for
example, uses a 16-character code, letters and numbers, to identify people).

Another common approach is to use surrogate keys, which are basically numbers identifying
each record, in the form of client codes, order numbers, and so on. These surrogate keys are
commonly used in database design. However, in many cases, these end up being some sort of
logical identifiers, with client codes showing up all over the places, not a great idea overall.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 606

http://www.sybex.com

607

WARNING The situation becomes particularly troublesome when these surrogate keys also have a mean-
ing and must follow specific rules. For example, companies must number invoices with unique
and consecutive numbers, without leaving holes in the numbering sequence. This situation is
extremely complex to handle programmatically, if you consider that only the database can
determine these unique consecutive numbers when we send new data to it. At the same time,
we need to identify the record before we send it to the database, otherwise we won’t be able
to fetch it again. Practical examples of how to solve this situation are discussed in the next
chapter.

OIDs to the Extreme
An extension to the use of surrogate keys is the use of a unique identifier, also called object
identifier (OID). An OID is a number, or a string with sequence of numbers and digits, added
to each record of each table representing an entity (and at times even to records of tables rep-
resenting relations). Differently from client codes, invoice numbers, SSN, or purchase order
numbers, OIDs are totally random, without any sequencing rule, and never visible to the end
user. This means you can still use surrogate keys (if your company is used to them) along
with OIDs, but all the external references to the table will be based on OIDs.

Another common rules suggested by the promoters of this approach (which is part of the
theories supporting object-relational mapping) is the use of system-wide unique identifiers.
If you have a table of client companies and a table of employees, you might wonder why you
should use a unique ID for such diverse data. The reason is that, if you do so, you’ll be able
to sell goods to an employee without having to duplicate the employee information into the
customers table, but simply referring to the employee in your order and invoice. An order is
placed by someone identified by an OID, and this OID can refer to many different tables
(but of course not all of them).

NOTE Using OIDs and the object-relational mapping is an advanced element of the design of Delphi
database applications. My personal suggestion is to investigate this topic before embracing
medium or large-size Delphi projects, as the benefit can be relevant (after some investment in
studying this approach and building some basic support code).

External Keys and Referential Integrity
Getting back to the standard database design, the keys identifying a record (whichever their
type) can be used as external keys in other tables, for example to represent the various types
of relations discussed earlier. All SQL servers are capable of verifying these external refer-
ences, so that you cannot refer to a nonexistent record of another table. These referential
integrity constraints are expressed when you create a table.

Elements of Database Design

2874c14.qxd 7/2/01 4:33 PM Page 607

http://www.sybex.com

608

Besides not being allowed to add references to nonexistent records, you’re generally pre-
vented from deleting a record if there are external references to it. Some SQL servers go one
step further: As you delete a record, instead of simply denying the operation, they can auto-
matically delete all records that refer to it from other tables.

More Constraints
Besides the uniqueness of primary keys and the referential constraints, you can generally use
the database to impose more validity rules on the data. You can ask for specific columns (such
as those referring to a tax ID or a purchase order number) to include only unique values. You
can impose uniqueness of the values of multiple columns—for example, to indicate you can-
not run two classes in the same room at the same time.

In general, simple rules can be expressed imposing constraints on a table, while more com-
plex rules generally imply the execution of stored procedures activated by triggers (every
time the data changes, for instance, or there is new data).

Again, there is much more to proper database design, but the simple elements discussed in
this section can provide a starting point, or a good refresher.

NOTE For more on the Data Definition Language and Data Manipulation Language of SQL, see the
bonus chapter “Essential SQL” on the Mastering Delphi CD.

Client/Server with the BDE
Now let’s consider how Delphi fits into the client/server picture. How does it help us build
client/server applications? As I’ve mentioned, you can still use all the components and tech-
niques discussed in the Chapter 13, “Delphi’s Database Architecture,” although in some
cases alternate approaches will help you leverage the power of the RDBMS your application
is dealing with.

As a starting point, let’s cover a few considerations on Delphi client/server development
using the BDE and its components. After this I’ll move to dbExpress, which in Delphi 6 is
the recommended general solution for client/server development.

NOTE For a list of the alternative approaches Delphi 6 offers for database access, see the initial part
of the preceding chapter.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 608

http://www.sybex.com

609

SQL Links
The BDE doesn’t know how to handle the RDBMS; it uses some further drivers, called SQL
Links, to perform this operation. As an alternative, the BDE can also interact with ODBC
drivers. Borland provides native BDE drivers for InterBase, Oracle, Informix, Microsoft
SQL Server, Sybase, and DB2.

If the BDE is still required on the local machines, it can actually be very efficient. For
example, when you use the pass-through mode for queries, the BDE doesn’t try to interpret
the SQL code but passes it directly to the RDBMS server. This allows you to use a server’s
specific SQL commands and also to speed up the execution. The pass-through mode is
activated using the BDE Administrator utility.

Having the BDE between the client and the server can also help in building applications
designed to work with multiple servers. In practice, however, it’s not easy to do this and still
obtain the best performance, because of differences in the SQL dialects understood by each
SQL server. In particular, data types are handled differently by the various servers. If the
same table were placed on two servers that have data type differences, Delphi would need to
use two different TField objects (which creates a few headaches if you want to define the
fields at design time).

The Database Component
In local BDE applications, programmers usually refer to the database by indicating the alias
of the file path in the DatabaseName property of the Table and Query components. A better
approach is to use the Database component to define a local alias and then let all the DataSet
components refer to this local alias.

As an example, consider the components of the GetMax application mentioned at the
beginning of this chapter:

object Database1: TDatabase
AliasName = ‘IBLOCAL’
Connected = True
DatabaseName = ‘IB’
LoginPrompt = False
Params.Strings = (
‘USER NAME=SYSDBA’
‘PASSWORD=masterkey’)

SessionName = ‘Default’
end
object EmpTable: TTable
DatabaseName = ‘IB’
TableName = ‘EMPLOYEE’

end

Client/Server with the BDE

2874c14.qxd 7/2/01 4:33 PM Page 609

http://www.sybex.com

610

object EmpQuery: TQuery
DatabaseName = ‘IB’
SQL.Strings = (
‘select Max(Salary) from Employee ‘)

end

In a client/server application, using the Database component is almost mandatory, as it is
required to define connectivity and login parameters (the user name and password, as you
can see in the Params property above) and to handle transactions.

Keep in mind that the Database component establishes a connection with the RDBMS,
representing one of the clients of the system. As such, on most servers it requires a license,
and your organization is typically paying for a fixed number of licenses. If the same applica-
tion or the same computer uses multiple connections to the server, it can count as multiple
clients! Fortunately, by setting the KeepConnection property of the Database component,
you can specify whether to keep the database connection active even when there is no active
DataSet component using the connection. If your program can fetch some data and then
operate on it locally, disconnecting from the server might help you conserve licenses.

BDE Table and Query Components in Client/Server
In Delphi there are two BDE components you use to access an existing database table: Table
and Query. When building client/server applications, programmers tend to use the Query
component exclusively, but that is certainly not mandatory, and there are cases in which
using the simpler Table component has no drawback. Here’s a quick look at the pros and
cons of both components:

• While the Table component should not be used to access a large table, it can work per-
fectly well with a small lookup table. By opening a Table component, you don’t transfer
the entire content of the table to the local machine; the data is moved only when you
access specific records.

• Consider also that with the Table component, the BDE asks the server first for the
table structure and then for the table data. These two steps are necessary for setting up
the proper internal structures of the BDE, and they are not executed by the Query
component. If you activate the BDE’s Schema Caching feature, the logical structure of
the table will be kept locally, saving this extra step. Of course, this might create prob-
lems if the logical structure of the table changes on the server.

• One problem with the Table component is that the BDE mimics a bidirectional cursor
by caching the data locally. With a Query component, instead, you can specify whether
you want this caching or not with the Unidirectional property.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 610

http://www.sybex.com

611

• Another point to consider is that you can generally edit the result of a simple query, send-
ing the data back to the SQL server. This is accomplished by setting the RequestLive
property to True. For more complex queries, however, you’ll need to use an UpdateSQL
component, something we’ll discuss later in this chapter.

• When trying to minimize the data moved between the server and the client, you need
to consider the size of each record as well as the total number of them. When you select
only a few fields with a query, only part of the data is considered. A Table component,
instead, always entails transferring the entire record to the local machine, even if you’ve
filtered out some fields using the Fields editor. The same problem takes place when you
ask for a live query (by setting the RequestLive property). In this case, the BDE needs to
see the entire record in order to send back the proper update commands. This means
that selecting all the records of a table with a live query is equivalent to using the Table
component.

• The Query component is not limited to select SQL statements; you can also use it to
insert or delete records. When the Query component returns a dataset, you generally
activate it with the Open method (or with the equivalent operation, setting the Active
property to True). When the Query component is used to perform an operation on the
server, you activate it by calling the ExecSQL method.

Using Table and Query Filters
One way to limit the amount of data returned by a table is to filter it. Using the Filter prop-
erty of the Table component, you can specify a condition similar to the where clause of a
query. When you work with local databases, the filter is applied by the BDE, but with a SQL
server, the BDE passes the condition to the server in the query generated for the table. This
makes filtered tables very portable between local and client/server applications.

WARNING The situation is different if you filter the records in the Pascal code, using the OnFilterRecord
event. In this case, all the records are sent to the client application, which does its own custom
filtering.

If you use a filter with a Query component, the filtering operation will always be performed
locally by the BDE, even when you are working with a SQL server. In this case, the BDE asks
the server for the entire result set of the query. This would be reasonable only when the user
of the application changes the filtering condition often. For a query, only the local filter will
be modified, and the data in the local cache will be used. For a table, the BDE will generate an
updated query to be executed.

Client/Server with the BDE

2874c14.qxd 7/2/01 4:33 PM Page 611

http://www.sybex.com

612

Live Queries and Cached Updates
When working with local data, it is very common to use grids and other visual controls, edit
the data, and send it back to the database. We’ve already seen that using a DBGrid might
cause problems when working with an RDBMS, as moving on the grid might send numerous
data requests to the server, creating a huge amount of network traffic.

When you use the Query component to connect to some data, you cannot edit the data
unless its RequestLive property is set to True. If you are working with local tables, the query
is always elaborated by the BDE with the Local SQL engine. The BDE will allow for a live
query only if it is quite simple: All joins should be outer joins; there cannot be a distinct
key; there can be no aggregation, no group by or having clause, no subqueries, and no order
by unless supported by an index; and there are other rules you can find in Delphi’s Help.

If you are working with a SQL server, setting a live query will put the BDE in control of
the query, instead of the server. When connected to a SQL server, a live query behaves like a
Table component. (So it makes sense to use the table anyway, in these cases.)

TIP Most SQL servers, including InterBase, allow you to define updateable views based on the
result of a select statement that the Local SQL engine of the BDE won’t consider updateable.
Then you can simply hook a Table component to the view, letting the SQL server do the work
and bypassing the Local SQL engine of the BDE.

If the BDE determines that the dataset cannot be updated, it sets the CanModify property
to False. The DataSource component checks this value before allowing an editing operation.
A solution to this problem is to avoid the use of data-aware controls, as discussed in the last
chapter, and use specific SQL queries to update, insert, and delete records.

A better approach is to automate this process (retaining the capabilities of the data-aware
controls) by using the UpdateSQL component together with the Query component. The
UpdateSQL can be used only in conjunction with cached updates, a topic discussed in the last
chapter. The basic idea is that the update operations are kept in a local cache until the program
calls the ApplyUpdates method of the Query component. This operation corresponds to the exe-
cution of a series of update, insert, and delete SQL operations on the server, using the data in
the cache. The required SQL commands are held by the UpdateSQL component, which has a
design-time editor you can use to generate these SQL commands almost automatically.

Cached updates solve the live queries issue, reduce network traffic, define a standard way
to solve updates conflicts, and reduce the server load, but they require more memory on the
client computer.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 612

http://www.sybex.com

613

TIP A much better approach than using cached updates is to rely on the ClientDataSet compo-
nent, which is extremely powerful and allows you to do similar things yet leaving you a lot
more programmatic control.

The UpdateSQL Component
The role of the UpdateSQL component is to provide a query with the update statements
required to make its result set editable. Its key properties are DeleteSQL, InsertSQL, and
ModifySQL, but the most important element is the UpdateObject property of the related
Query component. The update SQL statements are executed when you apply the cached
updates, sending the changes to the server. Because cached updates maintain the information
on the original records, the updates usually indicate which record to update by passing the
original data. This is the only way we have to identify a record on a SQL server, and this
technique also helps the server to track any updates on the same record done by other users.

All this setup might seem to imply a lot of work, but it is actually very simple. After you’ve
written a query, you can connect the UpdateSQL component to it and activate the compo-
nent editor, as shown in Figure 14.1.

This component editor has two tabs. The first indicates the criteria used to generate the SQL
statements for adding, deleting, or modifying records. With a join, you can select the table to
update and the fields involved. When you’ve completed this step, click the Generate SQL
button and the editor will move to the second tab, where you can inspect the generated SQL
code for the three operations.

F I G U R E 1 4 . 1 :
The UpdateSQL component
editor in action

Client/Server with the BDE

2874c14.qxd 7/2/01 4:33 PM Page 613

http://www.sybex.com

614

The UpdateSQL Example
To demonstrate the real power of the UpdateSQL component, I’ve built a complex example
called UpdateSQL, based on the Employee, Department, and Job tables of the IBLocal data-
base we’ve used in the past. Here is the textual description of the UpdateSQL component of
the example:

object EmpUpdate: TUpdateSQL
ModifySQL.Strings = (
‘update EMPLOYEE’
‘set’
‘ FIRST_NAME = :FIRST_NAME,’
‘ LAST_NAME = :LAST_NAME,’
‘ SALARY = :SALARY,’
‘ DEPT_NO = :DEPT_NO,’
‘ JOB_CODE = :JOB_CODE,’
‘ JOB_GRADE = :JOB_GRADE,’
‘ JOB_COUNTRY = :JOB_COUNTRY’
‘where’
‘ EMP_NO = :OLD_EMP_NO’)

InsertSQL.Strings = (
‘insert into EMPLOYEE’
‘ (FIRST_NAME, LAST_NAME, SALARY, DEPT_NO, JOB_CODE,
‘ JOB_GRADE, JOB_COUNTRY)’
‘values’
‘ (:FIRST_NAME, :LAST_NAME, :SALARY, :DEPT_NO, :JOB_CODE, ‘
‘ :JOB_GRADE, :JOB_COUNTRY)’)

DeleteSQL.Strings = (
‘delete from EMPLOYEE’
‘where’
‘ EMP_NO = :OLD_EMP_NO’)

end

To delete the employee records, the program uses a stored procedure, which is already
available in the sample database and is connected to the following component:

object spDelEmployee: TStoredProc
DatabaseName = ‘AppDB’
StoredProcName = ‘DELETE_EMPLOYEE’
ParamData = <
item
DataType = ftInteger
Name = ‘EMP_NUM’
ParamType = ptInput

end>
end

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 614

http://www.sybex.com

615

The OnUpdateRecord event of the Query component uses the stored procedure instead of
the default UpdateSQL component for deleting records. Here is the code of the event handler:

procedure TdmData.qryEmployeeUpdateRecord(DataSet: TDataSet;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
// when deleting the record, use the stored procedure
if UpdateKind = ukDelete then
begin
// assign emp_no value
with dmData do
spDelEmployee.Params[0].Value := qryEmployeeEMP_NO.OldValue;

try
// invoke stored procedure that tries to delete employee
dmData.spDelEmployee.ExecProc;
UpdateAction := uaApplied; // success

except
UpdateAction := uaFail;

end;
end
else
try
// apply updates
dmData.EmpUpdate.Apply(UpdateKind);
UpdateAction := uaApplied;

except
UpdateAction := uaFail;

end;
end;

Notice that because we perform the update operation directly, we must indicate in the
UpdateAction parameter whether it succeeds or not. This code is part of the data module.
The main form, visible at run time in Figure 14.2, has a couple of extra features. If the user
closes the form with any updates pending, the OnCloseQuery event of the form displays a
warning message, allowing the user to apply the updates or skip them:

procedure TMainForm.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

var
Res: Integer;

begin
with dmData do
if qryEmployee.UpdatesPending then
begin
Res := MessageDlg (CloseMsg, mtInformation, mbYesNoCancel, 0);
if Res = mrYes then
AppDB.ApplyUpdates ([qryEmployee]);

CanClose := Res <> mrCancel;
end;

end;

Client/Server with the BDE

2874c14.qxd 7/2/01 4:33 PM Page 615

http://www.sybex.com

616

The second feature is the use of a secondary form to update the fields that are related to
other tables—the fields involved in the joins. The program uses two secondary dialog boxes,
which get the data from other two Query components. The dialog boxes are displayed when
the user clicks the ellipsis button of the DBGrid control, in the OnEditButtonClick event.
Here is the first part of this event handler, related to the selection of the department:

procedure TMainForm.DBGrid1EditButtonClick(Sender: TObject);
begin
// check whether this is the department field
if DBGrid1.SelectedField = dmData.qryEmployeeDEPARTMENT then
with TfrmDepartments.Create(self) do
try
dmData.qryDepartment.Locate(‘DEPT_NO’,
dmData.qryEmployeeDEPT_NO.Value, []);

if ShowModal = mrOk then
with dmData do
begin
if not (qryEmployee.State in [dsEdit, dsInsert]) then
qryEmployee.Edit;

qryEmployeeDEPT_NO.Value := qryDepartment.Fields[0].Value;
qryEmployeeDEPARTMENT.Value := qryDepartment.Fields[1].Value;

end;
finally
Free;

end
else // similar code for the job fields...

F I G U R E 1 4 . 2 :
The main form of the
UpdateSql example along
with a secondary form

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 616

http://www.sybex.com

617

Finally, the Apply button simply calls the ApplyUpdates method if there are pending
updates and then refreshes the data of the query:

procedure TMainForm.btnApplyClick(Sender: TObject);
begin
with dmData do
if qryEmployee.UpdatesPending then
begin
AppDB.ApplyUpdates([qryEmployee]);
// refresh the data
qryEmployee.Close;
qryEmployee.Open;
btnApply.Enabled := False;

end;
end;

If you run this program, you’ll notice that even if the underlying query is read-only, you
can change data directly in the DBGrid, as you would do with a regular Table component.
The visual operations you do are temporarily stored in the cache; then, when you issue the
update operation, the UpdateSQL and the StoredProc components provide the actual code.
Also keep in mind that the Salary field has some constraints (defined in the sample database),
so you have to change it carefully to avoid errors on the server when the changes are applied.

Update Conflicts
When you are working with local tables, using cached updates might cause concurrency
problems. A plain edit operation usually places a lock on the table, so that the other users
cannot modify the same record until the first user has posted the updates. The previous
chapter covered locking and concurrency issues in detail.

When working with SQL servers, however, the default locking behavior is optimistic.
Multiple users can update the same records, and only when the data is sent back does the
server verify the original data of the record before updating it, potentially raising an error.
More precisely, the update statement uses one or more original fields to locate the record
you want to update. If you use all fields and another user has changed the record, then the
server will not find the original record and will cause an update error.

You can manually control this behavior either in the code of the UpdateSQL component
(indicating to include all the fields read in the query) or by using the UpdateMode property of
the Table and Query components. The default value, upWhereAll, indicates that the update
query will have a where clause with all the original fields of the record. In many cases, the fact
that another user has modified a field different from those we have modified is not an error.
We can set the upWhereChanged mode to let Delphi generate an exception and show an
error message only if the current and the other user have both modified the same fields. The

Client/Server with the BDE

2874c14.qxd 7/2/01 4:33 PM Page 617

http://www.sybex.com

618

third alternative is to use the key field only to identify the record, which means that update
conflicts will be ignored and that the last user posting the data will simply override any previ-
ous change. As you can imagine, this is generally an option to avoid in a client/server, multi-
user environment.

Using Transactions
Whether you are working with a SQL server, you should use transactions to make your appli-
cations more robust. The idea of a transaction can be described as a series of operations to be
considered as a single, “atomic” whole that cannot be split.

An example may help to clarify the concept. Suppose you have to raise the salary of each
employee of a company by a fixed rate, as we did in the Total example of the preceding chap-
ter. Now if during the operation an error occurs, you might want to undo the previous changes.
If you consider the operation “raise the salary of each employee” as a single transaction, it
should either be completely done or completely ignored. Or consider the analogy with finan-
cial transactions—if only part of the operation is performed, because of an error, you might end
up with a missed credit or with some extra money!

Working with database operations as transactions serves a useful purpose. You can start a
transaction and do several operations that should all be considered parts of a single larger
operation; then, at the end, you can either commit the changes or roll back the transaction,
discarding all the operations done up to now. Typically, you might want to roll back a trans-
action if an error occurred during its operations.

Handling transactions in Delphi is quite simple. By default, each edit/post operation is
considered a single implicit transaction, but you can alter this behavior by handling them
explicitly. Simply use the following three methods of the BDE Database component (other
database connection components have similar methods):

StartTransaction marks the beginning of a transaction.

Commit confirms all the updates to the database done during the transaction.

Rollback returns the database to its state prior to starting the transaction.

The Database component determines the transaction isolation level using the Trans-
Isolation property. When one user starts a transaction and modifies data, should such
changes be visible to other users? And what happens if the user rolls back the transaction? To
such questions there isn’t a universal answer; every programmer should try to answer them
according to the requirements or business rules of the application. There are three alterna-
tive values for transaction isolation in the BDE:

tiDirtyRead makes the updates of a transaction immediately visible to other transactions
and users even before they are committed. This is the only possibility for local databases,
which have very limited transaction support.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 618

http://www.sybex.com

619

tiReadCommitted makes available to other transactions only the updates already committed.

tiRepeatableRead hides every other transaction started by other users after the current
one. Following repeat calls within a transaction will always produce the same result, as if
the database took a snapshot of the data when the current transaction started.

Most but not all SQL servers support only the most advanced levels. The default choice
should be tiReadCommitted, which is quite powerful but not too heavy on the SQL server
(as it adds very few internal locks).

As a general suggestion, transactions should involve only a minimal number of updates
(only those strictly related and part of a single atomic operation) and should be kept short in
time. You should avoid transactions that wait for user input to complete them, as the user
might be temporarily gone and the transaction might remain active for a long time. Using
update statements on multiple records and using cached updates can help us make the trans-
actions small and fast.

To further inspect transactions and experiment with the update mode of the Table compo-
nent, you can use the TranSample application. As you can see in Figure 14.3, you can simply
use the radio buttons to choose the alternatives, and click the push buttons on the right of
the toolbar to manually start, commit, and roll back a transaction. To get a real idea of the
different effects, you should run multiple copies of the program (provided you have enough
licenses on your InterBase server).

F I G U R E 1 4 . 3 :
The TranSample application
allows you to test the
transaction isolation of a
database and the update
modes of a table.

Client/Server with the BDE

2874c14.qxd 7/2/01 4:33 PM Page 619

http://www.sybex.com

620

Using SQL Monitor
Just as you need a debugger to test a Delphi application, you need some tools to test how a
client/server application behaves and to speed it up if possible. In particular, it is very impor-
tant to look at the information moving from the client to the server (the explicit SQL requests
our program does and those added by the BDE) and from the server to the client (the actual
data). This is what the SQL Monitor tool included in Delphi Enterprise is for.

NOTE Notice that the SQL Monitor tool is specific to the BDE. The dbExpress and InterBase Express com-
ponent sets have similar monitoring capabilities, directly embedded inside specific components.

As you can see in Figure 14.4, the central window of SQL Monitor shows a list of the low-
level commands sent to the server. The bottom portion of the window shows the selected
line of the above list on multiple rows, which helps when the line is too long.

To use SQL Monitor, simply select the client program you want to inspect. Then set the
proper trace options (by using the corresponding speed button or the Options ➢ Trace
Options command). The available options are listed in Table 14.1.

F I G U R E 1 4 . 4 :
The SQL Monitor running

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 620

http://www.sybex.com

621

TABLE 14.1: The Trace Options of the SQL Monitor

Trace Option Meaning

Prepared Query Statement Enables tracing of the SQL statements every time they are prepared.

Executed Query Statement Traces all the SQL statements sent to the server.

Input Parameters Shows input parameters as they become available. This is important for testing
whether the parameters are correct.

Fetched Data Shows the data sent by the server (a very slow operation).

Statement Operations Shows the requests preceding the execution of a SQL statement, such as the allo-
cation, preparation, and parsing of the input.

Connect/Disconnect Shows the connection and disconnection events. This is an important test when
the KeepConnection of the Database component is set to False, as the client
won’t maintain the connection with the server but will establish it only as needed
(with the side effect of reducing the number of licenses required, in some cases).
Looking at the frequency of these events might help you understand whether it is
better to keep the connection active or not.

Transactions Traces the transactions, including those activated automatically by the BDE if you
don’t use transactions directly.

Blob I/O Shows the data about BLOB fields.

Miscellaneous Traces other operations that don’t fit any of the above categories.

Vendor Errors Shows server error messages.

Vendor Calls Shows client API calls.

SQL Monitor is useful for seeing if the SQL statements sent by the BDE to the server are
correct, but it also helps you see how many operations are done behind the scenes. Along
with the time-stamp information for each operation, the number of operations can give some
clue about your application’s speed (although you should remember that the presence of
SQL Monitor slows down the connection quite a lot).

In other words, SQL Monitor should be your guide in determining how to speed up your
client/server application, using some of the tricks described in this chapter. At the same time,
however, it takes a lot of experience and a good understanding of SQL to interpret its output
properly.

As an example of the use of SQL Monitor, we can test what happens when we use the Filter
property of a Table component. In a new project, simply place a Table, a DataSource, and a
DBGrid. Select a database and a table (for example, the EMPLOYEE table of IBLocal) and
set the Filtered property to True and the Filter property to EmpNo>20. If you now run the
program, SQL Monitor will show you that the select statement generated by the BDE has a
where clause corresponding to the filter. You can see this situation in Figure 14.5.

Client/Server with the BDE

2874c14.qxd 7/2/01 4:33 PM Page 621

http://www.sybex.com

622

Performance Tuning
Besides using the SQL Monitor (or another monitoring technique) to determine the potential
bottlenecks in your applications, you can do several things to speed up your client/server pro-
grams. The key element to keep in mind—as I’ve stressed many times in this chapter—is to
reduce the network traffic, by reducing the result sets returned by the server both in the num-
ber of records and in the size of each.

Besides a good overall database design and a good Delphi implementation of it, there are
many settings you can check. The following tips might come in handy, but they won’t help as
much as a better design!

• In InterBase, you can set an automatic sweep (or “garbage collection”) interval. The oper-
ation is also automatically performed when you do a backup. Because a sweep slows
down the database, it should not be done too frequently. However, if you never do it, the
database will keep track of many leftover deleted records, reducing the overall perfor-
mance and using extra memory.

• Use indexes on the fields used more often, particularly if you sort the result set on them.
Keep in mind, though, that a good RDBMS will add at least temporary indexes for you.
Using indexes can speed up queries quite a lot, particularly if the indexed fields are used to
join two tables.

F I G U R E 1 4 . 5 :
SQL Monitor showing SQL
statements generated by a
Table component

Chapter 14 • Client/Server Programming

Continued on next page

2874c14.qxd 7/2/01 4:33 PM Page 622

http://www.sybex.com

623

• If you sort a field in descending order, a corresponding descending index might help.

• If you’re an expert user, you might examine the query plan, the approach used by the server
to perform a query, which is displayed (for example) when you use WISQL. The query plan
will show you whether the SQL server is using indexes. In some cases, you might need to
modify some complex queries to help the query optimizer built into the RDBMS.

• Check the server settings, including its cache, to obtain the best overall performance. The
operating system cache on the server computer might help as well. In InterBase, if you
want to perform all the updates physically, you can set the Forced Writes option in the
Maintenance ➢ Database Properties menu of the InterBase Server Manager.

• Whenever possible, avoid an excessive use of transactions and try to keep them short and
focused. Use a local cache instead of transactions (or together with them) to let the client
computer do some more work for you, and skip some costly server operations.

• Handle transactions directly, disabling the auto-commit feature of the BDE; to do this, set
SQLPASSTHRU MODE to SHARED NOAUTOCOMMIT. (You can set this and other BDE features
described in this list with the BDE Administrator program.)

• If you have no licensing problems, set the KeepConnection property of the BDE Database
component to True.

• With the BDE, set TRACE MODE to 0 when you are not debugging, to avoid having the drivers
send trace strings to the debugger and slowing down the operations. Also the other mon-
itoring services should be disabled when you’re not debugging the application.

• In the BDE, enable schema caching (set ENABLE SCHEMA CACHE to TRUE). This setting
reduces the time required to open a table, as the client doesn’t need to ask for the meta-
data. You can also use the Delphi FieldDefs and StoreDefs properties of the Table com-
ponent to store the metadata directly in the client program.

• With Microsoft and Sybase SQL Servers, try to set the PACKETSIZE parameter to a mini-
mum of 4 KB, also modifying the corresponding value on the server. With these servers,
also check that the DRIVER FLAGS parameter is set to 0. If it is 2048, queries will be exe-
cuted in asynchronous mode and will be much slower.

• With ORACLE, DB/2, and ODBC drivers, try to fine-tune the ROWSET SIZE parameter until
you obtain the best performance.

• With the InterBase driver, if you don’t use explicit transactions, set the DRIVER FLAGS
parameter to 4096. This value enables soft commits, meaning that after each commit or
rollback operation the open cursors won’t have to be refreshed.

Client/Server with the BDE

2874c14.qxd 7/2/01 4:33 PM Page 623

http://www.sybex.com

624

The dbExpress Library
As I mentioned in Chapter 13, one of the most notable new features of Delphi 6 is the adop-
tion of the dbExpress database access library, a new SQL server access layer introduced by
Borland in its Kylix product for Linux, and now with Delphi 6 also for Windows. As I’ve
already provided a general overview of dbExpress in the preceding chapter, let’s focus right
away on the technical details.

Working with Unidirectional Cursors
The motto of dbExpress could be “fetch but don’t cache.” The key difference between this
library and BDE or ADO is that dbExpress can only execute SQL queries and fetch the results
in a unidirectional cursor. In “unidirectional” database access, you can move from one record to
the next, but you cannot get back to a previous record of the dataset. This is because the library
doesn’t store the data is has retrieved in a local cache, but only passes it from the database server
to the calling application.

Using a unidirectional cursor might sound like a limitation, and it really is! Besides having
problems with the navigation, you cannot connect a database grid to a dataset like this. So
what is a unidirectional dataset good for?

• You can use a unidirectional dataset for reporting purposes. In a printed report, but also
an HTML page or an XML transformation, you move from record to record, produce
the output, and that’s it. No need to get back to past records and, in general, no interac-
tion of the user with the data. Unidirectional datasets are probably the best option for
Web and multitier architectures.

• You can use a unidirectional dataset to feed a local cache, such as the one provided by a
ClientDataSet component. At this point, you can connect visual components to the in-
memory dataset and operate on it with all the standard techniques, including the use of
visual grids. You can freely navigate and edit the data in the in-memory cache, but also
control it far better than with the BDE or ADO.

The important thing to notice is that, in these circumstances, avoiding the caching of the
database engine actually saves time and memory. The library doesn’t have to use extra memory
for the cache and doesn’t need to waste time storing data, duplicating information. Over
the last couple of years, many programmers moved from BDE-based cached updates to the
ClientDataSet component, which provides more flexibility in managing the content of the
data and update information they keep in memory. However, using a ClientDataSet on top of
the BDE (or ADO) exposes you to the risk of having two separate caches, actually wasting a
lot of memory.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 624

http://www.sybex.com

625

Another advantage of using the ClientDataSet component is that its cache supports editing
operations, and the updates stored in this cache can be applied to the original database server
by the DatasetProvider component. This component can generate the proper SQL update
statements, and can do so in a more flexible way than the BDE (although ADO is quite
powerful in this respect). In general, the provider can also use a dataset for the updates, but
this isn’t directly possible with the dbExpress dataset components.

Platforms and Databases
A key element of the dbExpress library is its availability for both Windows and Linux, in
contrast to all the other database engines available for Delphi (BDE and ADO), which are
available only for Windows. Notice, though, that some of the database-specific components,
such as InterBase Express, are also available on multiple platforms.

When you use dbExpress, you are provided with a common framework, which is indepen-
dent from the actual SQL database server you are planning to use. dbExpress comes with
drivers for MySQL, InterBase, Oracle, and IBM DB2. These drivers are available as separate
DLLs you have to deploy along with your program or as compiled units you can link into
the executable file.

NOTE It is actually possible to write custom drivers for the dbExpress architecture. This is documented
in details in the paper dbExpress Draft Specification, published on the Borland Community Web
site. At the time of this writing, this document is at http://community.borland.com/
article/0,1410,22495,00.html. You’ll probably be able to find third-party drivers. For
example, there is a free one (available also in Kylix), which bridges dbExpress and ODBC.

The dbExpress Components
The VCL components used to interface the dbExpress library encompass a group of dataset
components plus a few ancillary ones. To differentiate these components from other database-
access families, the components are prefixed with the letters SQL, underlining the fact that
they are used for accessing RDBMS servers.

These components include a database connection component, a few dataset components
(a generic one, three specific versions for tables, queries, and stored procedures, and one
encapsulating a ClientDataSet component), and a monitor utility.

The SQLConnection Component
The TSQLConnection class inherits from the TCustomConnection component, and handles
database connections, the same as its sibling classes (the Database, ADOConnection, and
IBConnection components).

The dbExpress Library

2874c14.qxd 7/2/01 4:33 PM Page 625

http://www.sybex.com
http://community.borland.com/

626

TIP Unlike other component families, in dbExpress the connection is compulsory. In each of the
dataset components, you cannot specify directly which database to use, but can only refer to a
SQLConnection.

The connection component uses the information available in the drivers.ini and connec-
tions.ini files, which are the only two configuration files of dbExpress (these files are saved
by default under \Program Files\Common Files\Borland Shared\DBExpress). The first,
drivers.ini, lists the available dbExpress drivers, one for each supported database. For each
driver, there is a set of default connection parameters. For example, the InterBase section
reads as follows:

[Interbase]
GetDriverFunc=getSQLDriverINTERBASE
LibraryName=dbexpint.dll
VendorLib=GDS32.DLL
BlobSize=32
CommitRetain=True
Database=database.gdb
Password=masterkey
RoleName=RoleName
TransIsolation=ReadCommited
User_Name=sysdba
WaitOnLocks=True

The parameters indicate the dbExpress driver DLL (the LibraryName value), the entry
function to use (GetDriverFunc), the vendor client library, and some more specific parame-
ters that depend on the database. If you read the entire drivers.ini file, you’ll see that the
parameters are really database-specific. I have to say that some of these parameters don’t
make a lot of sense at the driver level, such as the database to connect to, but the list includes
all the available parameters, regardless of their actual usage.

The connections.ini file provides the database specific description. This list resembles the
aliases of the BDE, and you can enter multiple connection details for every database driver.
The connection describes the physical database you want to connect to. As an example, this
is the portion for the default IBLocal definition:

[IBLocal]
BlobSize=32
CommitRetain=True
Database=database.gdb
DriverName=Interbase
Password=masterkey
RoleName=RoleName
TransIsolation=ReadCommited
User_Name=sysdba
WaitOnLocks=True

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:33 PM Page 626

http://www.sybex.com

627

As you can see by comparing the two listings, this is a subset of the parameters of the driver.
When you create a new connection, the system will copy the default parameters from the
driver; you can then edit them for the specific connection—for example, providing a proper
database name. Each connection relates to the driver for its key attributes, as indicated by the
DriverName property.

The important thing to notice is that these initialization files are used only at design time.
In fact, when you select a driver or a connection at design time, the values of these files are
copied to corresponding properties of the SQLConnection component, as in this example:

object SQLConnection1: TSQLConnection
ConnectionName = ‘IBLocal’
DriverName = ‘Interbase’
GetDriverFunc = ‘getSQLDriverINTERBASE’
LibraryName = ‘dbexpint.dll’
LoginPrompt = False
Params.Strings = (
‘BlobSize=-1’
‘CommitRetain=False’
‘Database=c:\program files\interbase corp\interbase6\examples\’ +
‘database\employee.gdb’

‘DriverName=Interbase’
‘LocaleCode=0x0000’
‘Password=masterkey’
‘RoleName=RoleName’
‘ServerCharSet=ASCII’
‘SQLDialect=1’
‘Interbase TransIsolation=ReadCommited’
‘User_Name=sysdba’
‘WaitOnLocks=True’)

VendorLib = ‘GDS32.DLL’
end

At run time, your program will rely on the properties to have all the required information,
so you don’t need to deploy the two INI files along with your programs. In theory, the files
will be required if you want to change the DriverName or ConnectionName properties at run
time. However, in case you want to connect your program to a new database, you can set
directly the relevant properties.

When you add a new SQLConnection component to an application, you can proceed in
different ways. You can set up a driver, using the list of values available for the DriverName
property, and then select a predefined connection, by selecting one of the values available in
the ConnectionName property. This second list is filtered according with the driver you’ve
already selected. As an alternative, you can start by selecting directly the ConnectionName
property, which in this case includes the entire list.

The dbExpress Library

2874c14.qxd 7/2/01 4:33 PM Page 627

http://www.sybex.com

628

Instead of hooking up an existing connection, you can define a new one (or see the details
of the existing connections) by double-clicking the SQLConnection component and launch-
ing the dbExpress Connection Editor (Figure 14.6). This editor lists, on the left side, all of
the predefined connections, for a specific driver or all of them, and allows you to edit the
connection properties using the grid on the right. You can use the toolbar buttons to add,
delete, rename, and test connections, and to open the read-only dbExpress Drivers Settings
window, shown in Figure 14.7.

F I G U R E 1 4 . 7 :
The dbExpress Drivers
Settings window of the
dbExpress Connection
Editor

F I G U R E 1 4 . 6 :
The dbExpress Connection
Editor

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 628

http://www.sybex.com

629

Besides editing the predefined connection settings, the dbExpress Connection Editor
allows you also to select a connection for the SQLConnection component. This is what the
OK button is for. Notice, in fact, that if you change some of the settings, the data is immedi-
ately written to the INI files: clicking the Cancel button doesn’t revert your editing!

If you want to define access to a database, editing the connection properties is certainly the
suggested approach. This way when you need to access the same database from another
application, or another connection within the same application, all you need to do is to select
the connection. However, since this operation copies the connection data, notice that updat-
ing the connection doesn’t automatically refresh the values within other SQLConnection
components referring to the same named connection: you have to reselect the connection
these other components refer to. In this respect, the predefined connections are very differ-
ent from the BDE aliases.

What really matters for the SQLConnection component is the value of its properties. Driver
and vendor libraries are listed in properties you can freely change at design time (although
you’ll rarely want to do this), while the database and other database-specific connection settings
are specified in the Params properties. This is a string list including information such as the
database name, the user name and password, and so on. In practice, you could set up a SQL-
Connection component by setting up the driver and then assigning the database name directly
in the Params property, forgetting about the predefined connection. I’m not suggesting this
as the best option, but it is certainly a possibility; the predefined connections are handy, but
when the data changes, you still have to manually refresh every SQLConnection component.

Actually, to be complete, I have to mention that there is an alternative. You can set the
LoadParamsOnConnect property to indicate that you want to refresh the component param-
eters from the initialization files every time you open the connection. In this case, a change
in the predefined connections will be reloaded when you open the connection, at either
design time or run time. At design time, this provides a handy technique (which has the
same effect as reselecting the connection), but using it at run time means you’ll also have
to deploy the connections.ini file, which can be a good idea or an inconvenient one,
depending on your deployment environment.

The only property of the SQLConnection component that is not related to the driver and
database settings is LoginPrompt. Setting it to False allows you to provide a password skip-
ping the login request, both at design time and run time. If this is very handy for develop-
ment, it can reduce the security of your system. Of course this is also the option you’ll want
to use for unattended connections, for example on a Web server.

The dbExpress Library

2874c14.qxd 7/2/01 4:34 PM Page 629

http://www.sybex.com

630

The dbExpress Dataset Components
The dbExpress component’s family provides four different dataset components: a generic
dataset, a table, a query, and a stored procedure. The latter three components are provided
for compatibility with the equivalent BDE components and have similarly named properties.
If you don’t have to port existing code, you should tend to use the general SQLDataSet com-
ponent, which can be used to execute a query but also to access a table or a stored procedure.

The first important thing to notice is that all of these datasets inherit from a new special
base class, TCustomSQLDataSet. This class and its derived classes represent unidirectional
datasets, with the key features I’ve already described. In practice, this means that the browse
operations are limited to calling First and Next, while Prior, Last, Locate, the use of book-
marks, and all other navigational features are disabled.

NOTE Technically, some of the moving operations call the CheckBiDirectional internal function and
eventually raise an exception. CheckBiDirectional refers to the public IsUnidirectional
property of the TDataSet class, which you can eventually use in your own code to disable oper-
ations that are illegal on unidirectional datasets.

Besides having limited navigational capabilities, these datasets have no editing support, so a
lot of methods and events common to other datasets are not available. For example, there is
no AfterEdit or BeforePost event.

As I mentioned earlier, of the four dataset components for dbExpress, the fundamental one
is TSQLDataSet, which can be used both to retrieve a dataset and to execute a command. The
two alternatives are activated by calling the Open method (or setting the Active property to
True) and by calling the ExecSQL method.

The SQLDataSet component can retrieve an entire table, or use a SQL query or a stored
procedure for reading a dataset or issuing a command. The CommandType property deter-
mines one of the three access modes. The possible values are ctQuery, ctStoredProc, and
ctTable, which determine the value of the CommandText property (and also the behavior of the
related property editor in the Object Inspector). For a table or stored procedure, the Com-
mandText property indicates the name of the related element of the database, and the editor
provides a drop-down list with the possible values. For a query, the CommandText property
stores the text of the SQL command, and the editor provides a little help in building the
SQL query (in case it is a select statement). You can see the editor in Figure 14.8.

When you use a table, the component will generate a SQL query for you, as dbExpress
targets only SQL databases. The generated query will include all the fields of the table, and if
you specify the SortFieldNames property, it will include a sort by directive.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 630

http://www.sybex.com

631

The three specific dataset components offer a similar behavior, but you specify the SQL
query in the SQL string list property, the stored procedure in the StoredProcName property, and
the table name in the TableName property, as in the three corresponding BDE components.

The SQLClientDataSet Component
The SQLClientDataSet is a combination of three components: the SQLDataSet component,
a (hidden) provider, and the ClientDataSet. The idea is to be a helper, as you need only one
component instead of three, which must also be connected. However, it doesn’t surface all of
the properties and events of the underlying components, so in complex situations, it’s better to
use the various components it stands for. I’ll cover this and other variations of the Client-
DataSet component later in this chapter, after I discuss the ClientDataSet itself in detail.

The SQLMonitor Component
The final component of the dbExpress group is the SQLMonitor, used to log the requests
sent from dbExpress to the database server. This monitor provides capabilities similar to the
stand-alone SQL Monitor application, which is bound to the BDE and cannot be used with
the dbExpress library (and the analogous IBXMonitor component of the InterBase Express
family, as we’ll see in the next chapter).

F I G U R E 1 4 . 8 :
The CommandText Editor
used by the SQLDataSet
component for queries

The dbExpress Library

2874c14.qxd 7/2/01 4:34 PM Page 631

http://www.sybex.com

632

The TimeStamp Field Type
Along with dbExpress, Delphi 6 introduces the TSQLTimeStampField field type, mapped to
the timestamp data type that many SQL servers have (InterBase included). This data type is now
available also in Delphi and is called TSQLTimeStamp. A time stamp is a simple record-based
representation of a date or time, quite different from the floating-point representation used by
the TDateTime data type. A time stamp is defined as:

TSQLTimeStamp = packed record

Year : SmallInt;

Month : Word;

Day : Word;

Hour : Word;

Minute : Word;

Second : Word;

Fractions : LongWord;

end;

A time stamp field can automatically covert standard date and time values using the AsDate-
Time property (as opposed to the native AsSQLTimeStamp property). You can also do custom
conversions and further manipulation of time stamps by using the routines provided by the Sql-
TimSt unit, including functions like DateTimeToSQLTimeStamp, SQLTimeStampToStr, and
VarSQLTimeStampCreate.

A Simple dbExpress Demo
After that introduction, let’s have a look at an actual demonstration, highlighting the key fea-
tures of these components and showing how to use the ClientDataSet to provide caching and
editing support for the unidirectional datasets. In another example, later on, I’ll show you an
example of native use of the unidirectional query, with no caching and editing support required.

The standard visual application based on dbExpress uses this series of components:

• The SQLConnection component provides the connection with the database and the
proper dbExpress driver.

• The SQLDataSet component, which is hooked to the connection (via the SQLConnection
property), indicates which SQL query to execute or table to open (using the CommandType
and CommandText properties discussed earlier).

• The DataSetProvider component, connected with the dataset, extracts the data from
the SQLDataSet and can generate the proper SQL update statements.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 632

http://www.sybex.com

633

• The ClientDataSet component reads from the data provider and stores all the data
(if its PacketRecords property is set to –1) in memory. This component has a lot of
extra features and provides the actual data to the application, with full navigation and
editing capabilities. You’ll need at least to call its ApplyUpdates method to send the
actual updates back to the database server (through the provider).

• The DataSource component allows you to surface the data from the ClientDataSet to
the visual data-aware controls.

As I mentioned earlier, the picture can be simplified by using the SQLClientDataSet, which
replaces the two datasets and the provider. The SQLClientDataSet combines most of the prop-
erties of the components it replaces. For a simple example, you’ll have to set the DBConnection
property for connecting to the proper database, the CommandType and CommandText properties
to specify which data to fetch, and the PacketRecords property to indicate how many records to
retrieve in each block. You’ll also need to call to the ApplyUpdates method to send the actual
updates back to the database.

These are the key properties of the core components of the DbxSingle example:
object SQLConnection1: TSQLConnection
ConnectionName = ‘IBLocal’
LoginPrompt = False

end
object SQLClientDataSet1: TSQLClientDataSet
CommandText = ‘EMPLOYEE’
CommandType = ctTable
DBConnection = SQLConnection1

end

As an alternative, the DbxMulti example uses the entire sequence of components:
object SQLConnection1: TSQLConnection
ConnectionName = ‘IBLocal’
LoginPrompt = False

end
object SQLDataSet1: TSQLDataSet
SQLConnection = SQLConnection1
CommandText = ‘select * from EMPLOYEE’

end
object DataSetProvider1: TDataSetProvider
DataSet = SQLDataSet1

end
object ClientDataSet1: TClientDataSet
ProviderName = ‘DataSetProvider1’

end
object DataSource1: TDataSource
DataSet = ClientDataSet1

end

The dbExpress Library

2874c14.qxd 7/2/01 4:34 PM Page 633

http://www.sybex.com

634

Both examples also have some visual controls: a grid and a toolbar based on the action
manager architecture.

Applying Updates
What is important to do in every example based on a local cache, like the one provided by the
ClientDataSet and SQLClientDataSet components, is to write the local changes back to the
database server. This is typically accomplished by calling the ApplyUpdates method. But when
should you call it? You can either keep the changes in the local cache for a while and then apply
a bunch of updates at once, or post each change right away. In these two simple examples, I’ve
gone for the latter approach, attaching the following event handler to the AfterPost (fired after
an edit or an insert operation) and AfterDelete events of the ClientDataSet components:

procedure TForm1.DoUpdate(DataSet: TDataSet);
begin
// immediately apply local changes to the database
SQLClientDataSet1.ApplyUpdates(0);

end;

If you want to apply all the updates in a single batch, you can either do this when the form
is closed or the program ends, or let a user do the update operation by selecting a specific
command. We’ll explore some of these alternatives when discussing the ClientDataSet com-
ponent in more detail.

Monitoring the Connection
Another feature, which I’ve added only to the DbxSingle example, is the monitoring capability
offered by the SQLMonitor component. In the example, the component is activated as the
program starts.

Every time there is a tracing string available, the component fires the OnTrace event to let
you choose whether to include the string in the log. If the LogTrace parameter of this event is
True (the default value), the component logs the message in the TraceList string list and
fires the OnLogTrace event to indicate that a new string has been added to the log.

The component can also automatically store the log into the file indicated by its FileName
property, but I haven’t used this feature in the example. All I’ve done is to handle the OnLogTrace
event, adding the last message to a memo component with the following code (and the out-
put of Figure 14.9):

procedure TForm1.SQLMonitor1LogTrace(Sender: TObject;
CBInfo: pSQLTRACEDesc);

begin
MemoLog.Lines.Add (CBInfo.pszTrace);

end;

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 634

http://www.sybex.com

635

Also, a button allows a user to refresh the memo with the entire content of the trace list:
procedure TForm1.Button1Click(Sender: TObject);
begin
MemoLog.Lines := SQLMonitor1.TraceList;

end;

Controlling the SQL Update Code
If you run the DbxSingle program and change, for example, the telephone number of an
employee, the monitor will log this update operation:

update EMPLOYEE set
PHONE_EXT = ?

where
EMP_NO = ? and
FIRST_NAME = ? and
LAST_NAME = ? and
PHONE_EXT = ? and
HIRE_DATE = ? and
DEPT_NO = ? and
JOB_CODE = ? and
JOB_GRADE = ? and
JOB_COUNTRY = ? and
SALARY = ? and
FULL_NAME = ?

F I G U R E 1 4 . 9 :
A sample log obtained by
the SQLMonitor in the
DbxSingle example.

The dbExpress Library

2874c14.qxd 7/2/01 4:34 PM Page 635

http://www.sybex.com

636

The structure of the update statement depends on the UpdateMode property of the SQL-
ClientDataSet component. Trying to use upWhereChanged or upWhereKeyOnly, however,
causes an error, as the component is unable to determine which are the key records, and the
provider doesn’t generate a correct update statement. In fact, it simply tries to update the
update the record based on the specific field changed, without including the key field in the
where statement:

update EMPLOYEE set
PHONE_EXT = ?

where
PHONE_EXT = ?

The update statement should rather be:
update EMPLOYEE set
PHONE_EXT = ?

where
EMP_NO = ? and
PHONE_EXT = ?

How can we obtain the proper update call? Considering we cannot directly attach a com-
ponent like the UpdateSQL (which is a BDE-only component), a simple solution would be
to force the inclusion of the key field. This can be accomplished in the ClientDataSet archi-
tecture by turning on the pfInKey flag of the ProviderOptions property of the source field.

This can easily be accomplished in the DbxMulti example, after adding persistent fields for
the SQLDataSet component, but the problem is that the database library should locate the
key fields automatically. In the DbxSingle example, we have no control on the source dataset
and its fields, so the only solution is to write the update statements in a totally custom way,
with quite some effort.

NOTE We’ll be able to discuss this type of problem again as we get into the details of the ClientDataSet
component, the Provider, the Resolver, and other technical details later in this chapter and in
Chapter 17.

Accessing Database Metadata with SetSchemaInfo
All RDBMS systems use special-purpose tables (generally called system tables) for storing
metadata, such as the list of the tables, their fields, indexes, and constraints, and any other
system information. As dbExpress provides a unified API for working with different SQL
servers, it provides also a common way for accessing metadata. The TSQLDataSet compo-
nent has a method, SetSchemaInfo, which fills the dataset with system information. This
SetSchemaInfo method has three parameters:

SchemaType indicates the type of information requested and includes stTables, stSysTables,
stProcedures, stColumns, and stProcedureParams.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 636

http://www.sybex.com

637

SchemaObject indicates the object you are referring to, such as the name of the table for
which you are requesting the columns.

SchemaPattern is a filter, so that you can limit your request to tables, columns, or proce-
dures starting with the given letters. This is very handy if you use prefixes to identify
groups of elements.

For example, in the SchemaTest program, a button reads into the dataset all of the tables of
the connected database:

ClientDataSet1.Close;
SQLDataSet1.SetSchemaInfo (stTables, ‘’, ‘’);
ClientDataSet1.Open;

The program uses the usual group of dataset provider, client dataset and data source com-
ponent to display the resulting data in a grid, as you can see in Figure 14.10. After you’re
retrieved the tables, you can select a row of the grid and press the second button to see a list
of the fields of this table:

SQLDataSet1.SetSchemaInfo (stColumns, ClientDataSet1[‘Table_Name’], ‘’);
ClientDataSet1.Close;
ClientDataSet1.Open;

Besides accessing database metadata, dbExpress provides a way to access to its own config-
uration information, including the installed drivers and the configured connections. The unit
DbConnAdmin defines a TConnectionAdmin class for this purpose, but the aim of this sup-
port is probably limited to dbExpress add-on utilities for developers, as letting end users
access multiple databases in a totally dynamic way is not very common.

F I G U R E 1 4 . 1 0 :
The SchemaTest example
allows you to see the tables
of a database and the
columns of a given table.

The dbExpress Library

2874c14.qxd 7/2/01 4:34 PM Page 637

http://www.sybex.com

638

TIP The DbxExplorer demo included in Delphi 6 shows how to access both dbExpress administra-
tion files and schema information. Also check the help file under “The structure of metadata
datasets” within the section “Developing database applications.”

A Round-Up on dbExpress
After we’ve delved a little more into the dbExpress architecture and SQL components, I can
try to add a few comments about this solution and its alternatives. On the whole, dbExpress
provides a much neater architecture, compared to the BDE. In particular, I like it a lot when
a database engine does things for me but lets me control what’s going on and fine-tune every
element. Ready-to-use defaults, such as those provided by the SQLClientDataSet component,
are nice, but it is important for me in real-world applications to be able to take full control and
write the exact SQL code I want my system to execute.

NOTE Another complaint I have is that I don’t really like the architecture used for the specific Client-
DataSet components bound to the various technologies (BDE, ADO, dbExpress and so on). In
Chapter 19, “COM Programming,” I’ll discuss an alternate approach. In particular, I dislike the
fact that you cannot code for a generic base component, but have to tune your code to
the specific version of the ClientDataSet. Moreover, this architecture isn’t extensible: you’ll
have to write a new specific component for each data access class you want to use (or to
write). This seems really contrary to the spirit of OOP and to the overall architecture of VCL.
My suggestion is simply to avoid using these all-in-one components and get used to dropping
the DataSet–Provider–ClientDataSet triad every time you need to (or build a custom com-
pound component for them).

When One-Way Is Enough: Printing Data
We have seen that one of the key elements of the dbExpress library is that it returns uni-
directional datasets and that we can use the ClientDataSet component (in one of its incar-
nations) to store the records in a local cache. Now it is interesting to discuss at least a simple
example where a unidirectional dataset is all we need.

This is common in reporting, that is, to produce information for each record in sequence
without needing any further access to the data. This broad category includes producing
printed reports (via a set of reporting components or using the printer directly), sending data
to other applications like Microsoft Excel or Word, saving data to files (including HTML
and XML formats), and more.

As I don’t want to delve into HTML and XML right now, and we still haven’t discussed
COM-based automation, I’ll go ahead with an example of printing—nothing fancy and noth-
ing based on reporting components, but a simple way to produce a draft report on your video

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 638

http://www.sybex.com

639

and printer. For this reason, I’m going to use Delphi’s simplest technique to produce a print-
out: assigning a file to the printer with the AssignPrn RTL procedure.

The example, called UniPrint, has a unidirectional SQLDataSet component, hooked to an
InterBase connection and based on the following SQL statement, which joins the employee
table with the department table to display the name of the department where each employee
works:

select d.DEPARTMENT, e.FULL_NAME, e.JOB_COUNTRY, e.HIRE_DATE
from EMPLOYEE e
inner join DEPARTMENT d on d.DEPT_NO = e.DEPT_NO

To handle printing, I’ve written a somewhat generic routine, requiring as parameters the
data to print, a progress bar for status information, the output font, and the maximum format
size of each field. The entire routine, listed below, uses file-print support and the graphic
objects recall technique, and formats each field in a fixed-size, left-aligned string, to produce
a columnar type of report. The call to the Format function has a parametric format string,
built dynamically using the size of the field.

Here is the code, which uses three nested try/finally blocks to release all the resources
properly:

procedure PrintOutDataSet (data: TDataSet;
progress: TProgressBar; Font: TFont; maxSize: Integer = 30);

var
PrintFile: TextFile;
I: Integer;
sizeStr: string;
oldFont: TFontRecall;

begin
// assign the printer to a file
AssignPrn (PrintFile);
Rewrite (PrintFile);

// set the font and keep the original one
oldFont := TFontRecall.Create (Printer.Canvas.Font);
try
Printer.Canvas.Font := Font;
try
data.Open;
try
// print header (field names) in bold
Printer.Canvas.Font.Style := [fsBold];
for I := 0 to data.FieldCount - 1 do
begin
sizeStr := IntToStr (min (data.Fields[i].DisplayWidth, maxSize));
Write (PrintFile, Format (‘%-’ + sizeStr + ‘s’,

The dbExpress Library

2874c14.qxd 7/2/01 4:34 PM Page 639

http://www.sybex.com

640

[data.Fields[i].FieldName]));
end;
Writeln (PrintFile);

// for each record of the dataset
Printer.Canvas.Font.Style := [];
while not data.EOF do
begin
// print out each field of the record
for I := 0 to data.FieldCount - 1 do
begin
sizeStr := IntToStr (min (data.Fields[i].DisplayWidth, maxSize));
Write (PrintFile, Format (‘%-’ + sizeStr + ‘s’,
[data.Fields[i].AsString]));

end;
Writeln (PrintFile);
// advance ProgressBar
progress.Position := progress.Position + 1;
data.Next;

end;
finally
// close the dataset
data.Close;

end;
finally
// reassign the original printer font
oldFont.Free;

end;
finally
// close the printer/file
System.CloseFile (PrintFile);

end;
end;

The program invokes this routine when the Print All button is clicked. The program
executes a separate query, which returns the number of records of the employee table to set
up the progress bar (the unidirectional dataset, in fact, has no way to know how many records
it is going to retrieve until it has reached the last one). Then it sets the output font, possibly
using a fixed-width font, and calls the PrintOutDataSet routine.

procedure TNavigator.PrintAllButtonClick(Sender: TObject);
var
Font: TFont;

begin
// set ProgressBar range
EmplCountData.Open;
try

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 640

http://www.sybex.com

641

ProgressBar1.Max := EmplCountData.Fields[0].AsInteger;
finally
EmplCountData.Close;

end;

Font := TFont.Create;
try
Font.Name := ‘Courier New’;
Font.Size := 9;
PrintOutDataSet (EmplData, ProgressBar1, Font);

finally
Font.Free;

end;
end;

ClientDataSet and MyBase
The general idea of a client/server application implies that the computation workload is
shared between two separate programs, the RDBMS and a client application. Although it is
very hard to strike a precise line between the two sides, it is certainly useful to do operations
on the client. Most database engines (BDE, as we’ve seen in this chapter, and ADO, as we’ll
see in Chapter 16, “ActiveX Data Objects”) can manipulate client-side data stored in a cache.
Using the ClientDataSet component, you can do the same regardless of the database engine
you are using, which makes your program more flexible, particularly if you want to use
dbExpress, which doesn’t provide a similar feature natively.

A practical example will underline what I mean: Suppose you’ve written a SQL query to
retrieve a rather large dataset, and a user wants to see the same data in a different order. You
can certainly run a new query, with the proper order by clause, but this implies sending the
same (possibly large) dataset once more from the server to the client. Since the client already
has the data in memory, it would be more practical and generally faster to re-sort the data in
memory and present the same data to the user with a different ordering.

The ClientDataSet component allows you to do this: Attaching the code to sort the data
by assigning a proper field name to the IndexFieldNames property. This is often accomplished
when the user clicks the field title in a DBGrid component (firing the OnTitleClick event):

procedure TForm1.DBGrid1TitleClick(Column: TColumn);
begin
ClientDataSet1.IndexFieldNames := Column.Field.FieldName;

end;

ClientDataSet and MyBase

2874c14.qxd 7/2/01 4:34 PM Page 641

http://www.sybex.com

642

TIP Unlike local databases, a ClientDataSet can have dynamic indexes, as they are computed in
memory anyway. The component also supports indexes based on a calculated field, specifically
an internally calculated field, a type of field available only for this dataset. Unlike ordinary cal-
culated fields, which are computed every time the record is used, values of internally calcu-
lated fields are kept in memory. This is why indexes consider them as plain fields.

Indexing is not all the ClientDataSet has to offer. When you have an index, you can define
groups based on it, possibly with multiple levels of grouping. There is even specific support
for determining the position of a record within a group (first, last, or middle position). Over
groups or entire tables, you can define aggregates; that is, you can compute the sum or aver-
age value of a column for the entire table or the current group on-the-fly. The data doesn’t
need to be posted to a physical server, because these aggregate operations take place in mem-
ory. You can even define new aggregate fields, to which you can directly connect data-aware
controls. I’ll explore these capabilities in the next section.

Another very interesting area of the ClientDataSet component is its ability to handle the
updates log, undoing changes, looking at their list before committing them, and so on. I’ll
explore this next.

The ClientDataSet component supports many features, only some of which are related to
the three-tier architecture (covered in Chapter 17). This component represents a database
completely mapped in memory and can also be made persistent to a local file. Borland mar-
keting has introduced the name MyBase to describe this feature of the ClientDataSet com-
ponent, which was formerly called the briefcase model.

The important thing to keep in mind is that all of these features are available to any client/
server and even local applications. The ClientDataSet component, in fact, can get its data
from a remote connection, from a local dataset (as you must do with dbExpress), or from a
local MyBase file. This is another huge area to explore, so I’ll simply show you a couple of
examples highlighting key features.

WARNING The use of the ClientDataSet component, in each of its incarnations, requires either the
deployment of the Midas.dll library or the inclusion in the project of the MidasLib unit (avail-
able in compiled format only). The core code of this component, in fact, is not directly part of
the library and is not available in source code format. This is unfortunate, as many Delphi devel-
opers are accustomed to debugging into the source code and using it as the ultimate refer-
ence. It is noteworthy, though, the inclusion in Delphi 6 of the DCU version of the library, obtained
from a C-language source code. This allows you to avoid deploying the actual library along with
your program.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 642

http://www.sybex.com

643

The Packets and the Cache
The ClientDataSet component reads data in packets made of the number of records indi-
cated by the PacketRecords property. The default value of this property is –1, which means
that the provider will pull all the records at once (this is reasonable only for a small dataset).
Alternatively, you can set this value to zero to ask the server for only the field descriptors and
no actual data or use any positive value to specify an actual number.

If you retrieve only a partial dataset, as you browse past the end of local cache, if FetchOn-
Demand property is set to True (the default value), the ClientDataSet component will get
more records from its source. This same property also controls whether BLOB fields and
nested datasets of the current records are fetched automatically (these values might not be
already part of the data packet, depending on the value of the Options of the dataset
provider).

If you turn off this property, you’ll need to manually fetch more records, by calling the
GetNextPacket method, until the method returns zero. (You’ll call FetchBlobs and Fetch-
Details for these other elements.)

WARNING Notice, by the way, that before you set a index for the data, you should retrieve the entire
dataset (either by going to its last record or by setting the PacketRecords property to –1).
Otherwise you’ll have an odd index based on partial data.

Filtering
As with any other dataset, you can use the Filter property to specify the inclusion in the
dataset of portions of the data the component is bound to. When manipulating a large table,
of course, you should use a proper query so that you don’t retrieve a large dataset from a
SQL server. Filtering up-front in the server should generally be your first choice.

However, local filtering in the ClientDataSet can be quite useful, particularly because
the filter expressions you can use are much more extensive than those you can use with
other datasets. In particular, you can use the standard comparison and logical operators
(Population > 1000 and Area < 1000) and arithmetic operators (Population / Area < 10),
but also string functions (Substring(Last_Name), 1, 2 = ‘Ca’), date and time functions
(Year (Invoice_Date) = 2002), and others, including a Like function, wildcards, and an In
operator.

These filtering capabilities are fully documented in the VCL Help file. Notice that the
documentation was already there for Delphi 5, but most of these features didn’t actually
work. Now they do.

ClientDataSet and MyBase

2874c14.qxd 7/2/01 4:34 PM Page 643

http://www.sybex.com

644

Grouping and Aggregates
We’ve already seen that a ClientDataSet can have an index different than the order in which
it received the data. Once you’ve defined an index, you can group the data by that index. In
practice, a group is defined as a list of consecutive records (according to the index) for which
the value of the indexed field doesn’t change. For example, if you have an index by state, all the
addresses within that state will fall in the group.

Grouping
The CdsCalcs example has a ClientDataSet component that extracts its data from the
Country table of the familiar DBDEMOS database. This operation is performed using a
DataSetProvider component to the form, connecting the three components as follows:

object Table1: TTable
Active = True
DatabaseName = ‘DBDEMOS’
TableName = ‘COUNTRY.DB’

end
object DataSetProvider1: TDataSetProvider
DataSet = Table1

end
object ClientDataSet1: TClientDataSet
ProviderName = ‘DataSetProvider1’

end

I could have also used the specific BDEClientDataSet component, as I’ll discuss later. Now
we can focus on the definition of the group. This is obtained, along with the definition of an
index, by specifying a grouping level for the index itself:

object ClientDataSet1: TClientDataSet
IndexDefs = <
item
Name = ‘ClientDataSet1Index1’
Fields = ‘Continent’
GroupingLevel = 1

end>
IndexName = ‘ClientDataSet1Index1’

When you have a group active, you can make this obvious to the user by displaying the
grouping structure in the DBGrid, as shown in Figure 14.11. Simply handle the OnGetText
event for the grouped field (the Continent field in the example), and show the text only if the
record is the first of the group:

procedure TForm1.ClientDataSet1ContinentGetText(Sender: TField;
var Text: String; DisplayText: Boolean);

begin

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 644

http://www.sybex.com

645

if gbFirst in ClientDataSet1.GetGroupState (1) then
Text := Sender.AsString

else
Text := ‘’;

end;

Defining Aggregates
Another feature of the ClientDataSet component is support for aggregates. An aggregate is a
calculated value based on multiple records, such as the sum or the average value of a field for
the entire table or a group of records (defined with the grouping logic I’ve just discussed).
Aggregates are maintained; that is, they are recalculated immediately if one of the records
changes. For example, the total of an invoice can be maintained automatically while the user
types in the invoice items.

NOTE Aggregates are maintained incrementally, not by recalculating all the values every time one
value changes. Aggregate updates take advantage of the deltas tracked by the ClientDataSet.
For example, to update a sum when a field is changed, the ClientDataSet subtracts the old
value from the aggregate and adds the new value. Only two calculations are needed, even if
there are thousands of rows in that aggregate group. For this reason, aggregate updates are
instantaneous.

F I G U R E 1 4 . 1 1 :
The CdsCalcs example
demonstrates that by
writing a little code, you
can have the DBGrid
control visually show the
grouping defined in the
ClientDataSet.

ClientDataSet and MyBase

2874c14.qxd 7/2/01 4:34 PM Page 645

http://www.sybex.com

646

There are two ways to define aggregates. You can use the Aggregates property of the
ClientDataSet, which is a collection, or you can define aggregate fields using the Fields
editor. In both cases, you define the aggregate expression, give it a name, and connect it to
an index and a grouping level (unless you want to apply it to the entire table). Here is the
Aggregates collection of the CdsCalcs example:

object ClientDataSet1: TClientDataSet
Aggregates = <
item
Active = True
AggregateName = ‘Count’
Expression = ‘COUNT (NAME)’
GroupingLevel = 1
IndexName = ‘ClientDataSet1Index1’
Visible = False

end
item
Active = True
AggregateName = ‘TotalPopulation’
Expression = ‘SUM (POPULATION)’
Visible = False

end>
AggregatesActive = True

Notice in the last line above that you must activate the support for aggregates, in addition
to activating each specific aggregate you want to use. Disabling aggregates is important,
because having too many of them can slow down a program. The alternative approach, as I
mentioned, is to use the Fields editor, select the New Field command of its shortcut menu,
and choose the Aggregate option (available, along with the InternalCalc option, only in a
ClientDataSet). This is the definition of an aggregate field:

object ClientDataSet1: TClientDataSet
object ClientDataSet1TotalArea: TAggregateField
FieldName = ‘TotalArea’
ReadOnly = True
Visible = True
Active = True
DisplayFormat = ‘###,###,###’
Expression = ‘SUM(AREA)’
GroupingLevel = 1
IndexName = ‘ClientDataSet1Index1’

end

The aggregate fields are displayed in the Fields editor in a separate group, as you can see in
Figure 14.12. The advantage of using an aggregate field, compared to a plain aggregate, is
that you can define the display format and hook the field directly to a data-aware control,

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 646

http://www.sybex.com

647

such as a DBEdit in the CdsCalcs example. Because the aggregate is connected to a group, as
soon as you select a record of a different group, the output will be automatically updated.
Also, if you change the data, the total will immediately show the new value.

To use plain aggregates, instead, you have to write a little code, as in the following example
(notice that the Value of the aggregate is a variant):

procedure TForm1.Button1Click(Sender: TObject);
begin
Label1.Caption :=
‘Area: ‘ + ClientDataSet1TotalArea.DisplayText + #13’Population : ‘
+ FormatFloat (‘###,###,###’, ClientDataSet1.Aggregates [1].Value) +
#13’Number : ‘ + IntToStr (ClientDataSet1.Aggregates [0].Value);

end;

Manipulating Updates
One of the core ideas behind the ClientDataSet component is that it is used as a local cache
to collect some input from a user and then send a batch of update requests to the database.
The component has both a list of the changes to apply to the database server, stored in the
same format used by the ClientDataSet (accessible though the Delta property), and a com-
plete updates log that you can manipulate with a few methods (including an Undo capability).

The Status of the Records
The component lets us monitor what’s going on within the data packets. The UpdateStatus
method returns one of the following indicators for the current record:

type TUpdateStatus = (usUnmodified, usModified, usInserted, usDeleted);

F I G U R E 1 4 . 1 2 :
The bottom portion of the
Fields editor of a Client-
DataSet displays aggregate
fields.

ClientDataSet and MyBase

2874c14.qxd 7/2/01 4:34 PM Page 647

http://www.sybex.com

648

To check the status of every record in the client dataset easily, you can add a string-type
calculated field to the dataset (I’ve called it ClientDataSet1Status) and compute its value
with the following OnCalcFields event handler:

procedure TForm1.ClientDataSet1CalcFields(DataSet: TDataSet);
begin
ClientDataSet1Status.AsString := GetEnumName (TypeInfo(TUpdateStatus),
Integer (ClientDataSet1.UpdateStatus));

end;

This method (based on the RTTI GetEnumName function) converts the current value of the
TUpdateStatus enumeration to a string, with the effect you can see in Figure 14.13.

Accessing the Delta
Beyond examining the status of each record, the best way to understand which changes have
occurred in a given ClientDataSet (but haven’t been uploaded to the server) is to look at the
delta, the list of changes waiting to be applied to the server. This property is defined as follows:

property Delta: OleVariant;

The format used by the Delta property is the same as that used to transmit the data from
the client to the server. What we can do, then, is add another ClientDataSet component to
an application and connect it to the data in the Delta property of the first client dataset:

if ClientDataSet1.ChangeCount > 0 then
begin
ClientDataSet2.Data := ClientDataSet1.Delta;
ClientDataSet2.Open;

In the CdsDelta example, I’ve added a data module with the two ClientDataSet compo-
nents and an actual source of data, a SQLDataSet mapped to InterBase’s EMPLOYEE demo

F I G U R E 1 4 . 1 3 :
The CdsDelta program
displays the status of each
record of a ClientDataSet.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 648

http://www.sybex.com

649

table. Both client datasets have the extra status calculated field, with a slightly more generic
version than the code discussed earlier, because the event handler is shared between them.

TIP To create persistent fields for the ClientDataSet hooked to the delta (at run time), I’ve tem-
porarily connected it, at design time, to the same provider of the main ClientDataSet. The
structure of the delta, in fact, is the same of the dataset it refers to. After creating the persis-
tent fields, I’ve removed the connection.

The form of this application has a page control with two pages, each with a DBGrid, one
for the actual data and one for the delta. Some code hides or shows the second tab depending
on the existence of data in the change log, as returned by the ChangeCount method, and updates
the delta when the corresponding tab is selected. The core of the code used to handle the delta
is very similar to the last code snippet above, and you can study the example source code on the
CD to see more details.

You can see the change log of the CdsDelta application in Figure 14.14. Notice that the
delta dataset has two entries for each modified record: the original values and the modified
fields, unless this is a new or deleted record, as indicated by its status.

TIP You can also filter the delta dataset (or any other ClientDataSet) depending on its update sta-
tus, using the StatusFilter property. This allows you to show new, updated, and deleted
records in separate grids or in a grid filtered by selecting an option in a TabControl.

Undo and SavePoint
Because the update data is stored in the local memory (in the delta), besides applying the
updates and sending them to the application server, we can reject them, removing entries

F I G U R E 1 4 . 1 4 :
The CdsDelta example
allows you to see the
temporary update requests
stored in the Delta
property of the
ClientDataSet.

ClientDataSet and MyBase

2874c14.qxd 7/2/01 4:34 PM Page 649

http://www.sybex.com

650

from the delta. The ClientDataSet component has a specific UndoLastChange method to
accomplish this. The parameter of this method allows you to follow the undo operation (the
name of this parameter is FollowChange). This means the client dataset will move to the
record that has been restored by the undo operation.

Here is the code connected to the Undo button of the CdsDelta example:
procedure TForm1.ButtonUndoClick(Sender: TObject);
begin
DmCds.cdsEmployee.UndoLastChange (True);

end;

An extension of the undo support is the possibility to save a sort of bookmark of the change
log position (the current status) and to restore it later by undoing all successive changes. The
SavePoint property can be used either to save the number of changes in the log or to reset
the log to a past situation. Notice, anyway, that you can only remove records from the change
log, not reinsert changes. In other words, the ChangeLog refers to a position in a log, so it can
only go back to a position in which there were fewer records! This position is just a number of
changes, so if you undo some changes and then do more edits, that number of changes will
become meaningless.

Enabling and Disabling Logging
Keeping track of changes makes sense if you need to send the updated data back to a server
database. In local applications with data stored to a MyBase file, keeping this log around can
become useless and consumes memory. For this reason, you can disable logging altogether
with the LogChanges property.

You can also call the MergeChangesLog method to remove all current editing from the
change log. This makes sense if the dataset doesn’t directly originate by a provider but was
built with custom code, or in case you want to add or edit the data programmatically, without
having to send it to the back-end database server.

TIP The ClientDataSet in Delphi 6 has a new property, DisableStringTrim, which allows you to
keep trailing spaces in field values. In past versions, in fact, string fields were invariably
trimmed, which creates trouble with some databases.

Updating the Data
Now that we have a better understanding of what goes on during local updates, we can try to
make this program work by sending the local update (stored in the delta) back to the database
server. To apply all the updates from a dataset at once, pass -1 to the ApplyUpdates method.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 650

http://www.sybex.com

651

If the provider (or actually the Resolver component inside it) has trouble applying an update,
it triggers the OnReconcileError event. This can take place because of a concurrent update by
two different people. As we tend to use optimistic locking in client/server applications, this
should be regarded as a normal situation.

The OnReconcileError event allows you to modify the Action parameter (passed by refer-
ence), which determines how the server should behave:

procedure TForm1.ClientDataSet1ReconcileError(DataSet: TClientDataSet;
E: EReconcileError; UpdateKind: TUpdateKind; var Action: TReconcileAction);

This method has three parameters: the client dataset component (in case more than one
client application is interacting with the application server), the exception that caused the
error (with the error message), and the kind of operation that failed (ukModify, ukInsert, or
ukDelete). The return value, which you’ll store in the Action parameter, can be any one of
the following:

type TReconcileAction = (raSkip, raAbort, raMerge, raCorrect, raCancel,
raRefresh);

• The raSkip value specifies that the server should skip the conflicting record, leaving it
in the delta (this is the default value).

• The raAbort value tells the server to abort the entire update operation and not even try
to apply the remaining changes listed in the delta.

• The raMerge value tells the server to merge the data of the client with the data on the
server, applying only the modified fields of this client (and keeping the other fields
modified by other clients).

• The raCorrect value tells the server to replace its data with the current client data,
overriding all field changes already done by other clients.

• The raCancel value cancels the update request, removing the entry from the delta and
restoring the values originally fetched from the database (thus ignoring changes done
by other clients).

• The raRefresh value tells the server to dump the updates in the client delta and to
replace them with the values currently on the server (thus keeping the changes done by
other clients).

If you want to test a collision, you can simply launch two copies of the client application,
change the same record in both clients, and then post the updates from both. We’ll do this
later to generate an error, but let’s first see how to handle the OnReconcileError event.

This is actually a simple thing to accomplish, but only because we’ll receive a little help.
Since building a specific form to handle an OnReconcileError event is very common, Delphi

ClientDataSet and MyBase

2874c14.qxd 7/2/01 4:34 PM Page 651

http://www.sybex.com

652

already provides such a form in the Object Repository. Simply go to the Dialogs page and
select the Reconcile Error Dialog item. This unit exports a function you can directly use to
initialize and display the dialog box, as I’ve done in the CdsDelta example:

procedure TDmCds.cdsEmployeeReconcileError (DataSet: TCustomClientDataSet;
E: EReconcileError; UpdateKind: TUpdateKind; var Action: TReconcileAction);

begin
Action := HandleReconcileError(DataSet, UpdateKind, E);

end;

WARNING As the source code of the Reconcile Error Dialog unit suggests, you should use the Project
Options dialog to remove this form from the list of automatically created forms (if you don’t,
an error will occur when you compile the project). Of course, you need to do this only if you
haven’t set up Delphi to skip the automatic form creation.

The HandleReconcileError function simply creates the form of the dialog box and shows
it, as you can see in the code provided by Borland:

function HandleReconcileError(DataSet: TDataSet; UpdateKind: TUpdateKind;
ReconcileError: EReconcileError): TReconcileAction;

var
UpdateForm: TReconcileErrorForm;

begin
UpdateForm := TReconcileErrorForm.CreateForm(DataSet, UpdateKind,
ReconcileError);

with UpdateForm do
try
if ShowModal = mrOK then
begin
Result := TReconcileAction(ActionGroup.Items.Objects[
ActionGroup.ItemIndex]);

if Result = raCorrect then
SetFieldValues(DataSet);

end
else
Result := raAbort;

finally
Free;

end;
end;

The Reconc unit, which hosts the Reconcile Error dialog, contains over 350 lines of code,
so we can’t describe it in detail. However, you should be able to understand the source code
by studying it carefully. Alternatively, you can simply use it without caring about how every-
thing works.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 652

http://www.sybex.com

653

The dialog box will appear in case of an error, reporting the requested change that caused
the conflict and allowing the user to choose one of the possible TReconcileAction values.
You can see an example in Figure 14.15.

TIP When you call ApplyUpdates, you start a rather complex update sequence, discussed in more
detail in Chapter 17 for multitier architectures. In short, the delta is sent to the provider, which
fires the OnUpdateData event and then receives a BeforeUpdateRecord event for every
record to update. These are two chances you have to take a look at the changes and force
specific operations on the database server.

MyBase (or the Briefcase Model)
The last capability of the ClientDataSet component I want to discuss in this chapter is its
support for mapping memory data to local files, building stand-alone applications. The same
technique can be applied in multitier applications to use the client program even when you’re
not physically connected to the application server. In this case, you can save all the data you
expect to need in a local file for travel with a laptop (perhaps visiting client sites). You’ll use
the client program to access the local version of the data, edit the data normally, and when
you reconnect, apply all the updates you’ve performed while disconnected.

To map a ClientDataSet to a local file you only need to set its FileName property, which
requires an absolute pathname. To build a minimal MyBase program (called MyBase1), all

F I G U R E 1 4 . 1 5 :
The Reconcile Error dialog
provided by Delphi in the
Object Repository and used
by the CdsDelta example

ClientDataSet and MyBase

2874c14.qxd 7/2/01 4:34 PM Page 653

http://www.sybex.com

654

you need is a ClientDataSet component hooked to a file and with a few fields defined (in the
FieldDefs property):

object ClientDataSet1: TClientDataSet
FileName = ‘C:\md6code\14\MyBase1\test’
FieldDefs = <
item
Name = ‘one’
DataType = ftString
Size = 20

end
item
Name = ‘two’
DataType = ftSmallint

end>
StoreDefs = True

end

At this point you can use the Create DataSet command of the local menu of the ClientDataSet
at design time, or call its CreateDataSet method at run time, to physically create the file for
the table. As you make changes and close the application, the data will be automatically saved
to the file. (You might want to disable the change log, though, to reduce the size of this data.)
The dataset, in any case, also has a SaveToFile method and a LoadFromFile method you can
use in your code.

MyBase1, my example program, shown in Figure 14.16, doesn’t require any database
server or database connection to work. It needs only your own program and the Midas.dll
file, but you can even get rid of it by including the MidasLib unit in the project. And the
program doesn’t require any actual Pascal code, either.

TIP MyBase generally saves the datasets in XML format, although the internal CDS format is still
available. I’ll explore this format in detail when I discuss XML in Chapter 23, “XML and SOAP.”
For the moment, suffice to say this is a text-based format (so it is less space-efficient than the
internal format), which can be manipulated programmatically but immediately makes some
sense even if you try reading it.

F I G U R E 1 4 . 1 6 :
The MyBase1 example,
which saves data directly to
a MyBase file

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 654

http://www.sybex.com

655

The MyBase support in Delphi 6 also includes the possibility of extracting the XML repre-
sentation of a memory dataset by using the XMLData property. In Delphi 5, you could obtain
the same by saving the ClientDataSet in XML format in a memory stream.

Abstract Data Types in MyBase
The ClientDataSet component supports most data types provided by Delphi, including
nested data types and abstract data types, the case I want to investigate with this second
MyBase example. In the FieldDefs property editor of a ClientDataSet component you can
and select the ftADT value for the DataType property of one of fields. Now move to the
ChildDefs property and define the child fields. This is the field definition of the AdtDemo
example:

FieldDefs = <
item
Name = ‘ID’
DataType = ftInteger

end
item
Name = ‘Name’
ChildDefs = <
item
Name = ‘LastName’
DataType = ftString
Size = 20

end
item
Name = ‘FirstName’
DataType = ftString
Size = 20

end>
DataType = ftADT
Size = 2

end>

At this point, provide the FileName, create the dataset, and you are ready to compile and run
the application. If you use a DBGrid to view the resulting dataset, it will allow you to expand
or collapse the subfields of the ADT field, as you can see in Figure 14.17. The condensed value
of the field is defined in the AdtDemo program by handling the OnGetText event of the ADT
field:

procedure TForm1.ClientDataSet1NameGetText(Sender: TField;
var Text: String; DisplayText: Boolean);

begin
Text := ClientDataSet1NameFirstName.AsString + ‘ ‘ +
ClientDataSet1NameLastName.AsString;

end;

ClientDataSet and MyBase

2874c14.qxd 7/2/01 4:34 PM Page 655

http://www.sybex.com

656

Indexing for ADT Fields
We’ve seen how easily you can set up an index as the user selects the title of a DBGrid. In
ADT fields, the situation becomes a little more complex. The AdtDemo program, in fact,
uses the FullName property of the field (not the FieldName property) because of the ADT
definition. For the LastName child field, in fact, the index should be based on Name.LastName,
not simply on LastName. Also, the ADT field cannot itself be indexed, so if it is selected, the
program uses as index the LastName subfield. Here is the code:

procedure TForm1.DBGrid1TitleClick(Column: TColumn);
begin
if Column.Field.FullName = ‘Name’ then
ClientDataSet1.IndexFieldNames := ‘Name.LastName’

else
ClientDataSet1.IndexFieldNames := Column.Field.FullName;

end;

What’s Next?
This chapter has presented a somewhat detailed introduction to client/server programming
with Delphi. We saw what the key issues are and delved a little into some interesting areas of
client/server programming. After a general introduction, I discussed the use of the dbExpress
database library Borland is introducing in Delphi 6 and of the ClientDataSet component and
MyBase technology.

There is certainly more we can say about client/server programming in Delphi, and in the
next chapter I’ll discuss some real-world examples, after introducing InterBase and the IBX
components. Chapter 16 will then focus on Microsoft’s ADO database engine.

F I G U R E 1 4 . 1 7 :
The AdtDemo example
shows the support for
expanding or collapsing the
definition of an ADT field.

Chapter 14 • Client/Server Programming

2874c14.qxd 7/2/01 4:34 PM Page 656

http://www.sybex.com

15CH A P T E R

InterBase and IBX

� Getting started with InterBase 6

� Server-side programming: views, stored
procedures, and triggers

� Using InterBase Express

� Pieces for a real-world example

2874c15.qxd 7/2/01 4:35 PM Page 657

http://www.sybex.com

658

Client/server programming requires two sides: a client application that you probably
want to build with Delphi, and a relational database management system (RDBMS), usually a
“SQL server.” In this chapter, I focus on one specific SQL server, InterBase. There are many
reasons for this choice. InterBase is the SQL server developed by Borland; it is an open
source project and can be obtained for free; and it has traditionally been bound with Delphi,
which has specific dataset components for it.

For all of these reasons, InterBase should be a good choice for your Delphi client/server
development, although there are many other equally powerful alternatives. I’ll discuss Inter-
Base from the Delphi perspective, without delving in to its internal architecture. A lot of the
information presented also applies to other SQL servers, so even if you’ve decided not to use
InterBase, you might still find it valuable.

Getting Started with InterBase 6
After installing InterBase 6, you’ll be able to activate the server from the Windows Start
menu, but if you plan on using it frequently, you should install it as a Windows service (of
course, only if you have Windows NT/2000, as Windows 9x/Me doesn’t have support for ser-
vices). When the server is active, you’ll see a corresponding icon in the Tray Icon area of the
Windows Taskbar (unless you start it as a service). The menu connected with this icon allows
you to see status information (see Figure 15.1) and do some very limited configuration.

F I G U R E 1 5 . 1 :
The status information
displayed by InterBase
when you double-click
its tray icon

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 658

http://www.sybex.com

659

Inside InterBase
Even though it has a limited market share, InterBase is a very powerful RDBMS. In this sec-
tion I’ll introduce the key technical features of InterBase, without getting into too much
detail. This is a book on Delphi programming, in fact. Unfortunately, there is currently very
little published about InterBase, although there are some ongoing efforts for an InterBase
book and there is a wealth of information in the documentation accompanying the product
and on a few Web sites devoted to the product.

InterBase was built from the beginning with a very modern and robust architecture. Its
original author, Jim Starkey, invented an architecture for handling concurrency and transac-
tions without imposing physical locks on portions of the tables, something other well-known
database servers can hardly do even today. InterBase architecture is called Multi-Generational
Architecture (MGA), and it handles concurrent access to the same data by multiple users, who
can modify records without affecting what other concurrent users see in the database.

This approach naturally maps to the Repeatable Read transaction isolation mode, in which a
user within a transaction keeps seeing the same data, regardless of changes done and commit-
ted by other users. Technically, the server handles this by maintaining a different version of
each accessed record for each open transaction. Even if this approach (also called versioning)
can lead to larger memory consumption, it avoids almost any physical lock on the tables and
makes the system much more robust in case of a crash. Also, MGA pushes toward a very clear
programming model—Repeatable Read—which other well-known SQL servers don’t even
support without losing most of their performance.

If Multi-Generational Architecture is at the heart of InterBase, the server has many other
technical advantages:

• A limited footprint, which makes InterBase the ideal candidate for running directly on
client computers, including portables. The disk space required by InterBase for a mini-
mal installation is well below 10 MB, and its memory requirements are also incredibly
limited.

• Good performance on large amounts of data.

• Availability on many different platforms (including 32-bit Windows, Solaris, and
Linux), with totally compatible versions, which makes the server scalable from very
small to huge systems without notable differences.

• A very good track record, as InterBase has been in use for 15 years with very few
problems.

• A language very close to the SQL standard.

Getting Started with InterBase 6

2874c15.qxd 7/2/01 4:35 PM Page 659

http://www.sybex.com

660

• Advanced programming capabilities, with positional triggers, selectable stored proce-
dures, updateable views, exceptions, events, generators, and more.

• Simple installation and management, with limited administration headaches.

A Short History of InterBase
Jim Starkey wrote InterBase for his own Groton Database Systems company (hence the .gds
extension still in use for InterBase files). The company was later bought by Ashton-Tate, which
was then acquired by Borland. Borland handled InterBase directly for a while, then created an
InterBase subsidiary, which was later re-absorbed into the parent company.

Starting with Delphi 1, an evaluation copy of InterBase has been distributed along with the
development tool, spreading the database server among developers. Although it doesn’t have
a large piece of the RDBMS market, which is dominated by a handful of players, InterBase has
been chosen by a few very relevant organizations, from Ericsson to the U.S. Department of
Defense, from stock exchanges to home banking systems.

More recent events include the announcement of InterBase 6 as an open source database
(December 1999), the effective release of source code to the community (July 2000), and the
release of the officially certified version of InterBase 6 by Borland (March 2001).

In between these events, there were announcements of the spin-off of a separate company to
run the consulting and support business on top of the open source database. Contacts with a
group of former InterBase developers and managers (who had left Borland) didn’t lead to an
agreement, but the group decided to go ahead even without Borland’s help and formed
IBPhoenix (www.ibphoenix.com) with the plan of supporting InterBase users.

At the same time, independent groups of InterBase experts formed the InterBase Developer Initia-
tive (IBDI; www.interbase2000.org) and started the Firebird open source project to further
extend InterBase. For this reason, SourceForge currently hosts two different versions of the project,
InterBase itself run by Borland and the Firebird project run by this independent group. You see that
the picture is rather complex, but this certainly isn’t a problem for InterBase, as there are currently
many organizations pushing it, along with Borland.

IBConsole
In past versions of InterBase, there were two main tools you could use to interact directly with
the program: the Server Manager application, which could be used to administer both a local
and a remote server; and Windows Interactive SQL (WISQL). Version 6 includes a much
more powerful front-end application, called IBConsole. This is a full-fledged Windows pro-
gram (built with Delphi) that allows you to administer, configure, test, and query an InterBase
server, whether local or remote.

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 660

http://www.sybex.com

661

IBConsole is a simple and complete system for managing InterBase servers and their data-
bases. You can use it to look into the details of the database structure, modify it, query the
data (which can be useful to develop the queries you want to embed in your program), back
up and restore the database, and perform all the other administrative tasks.

As you can see in Figure 15.2, IBConsole allows you to manage multiple servers and data-
bases, all listed in a single, handy configuration tree. You can ask for general information
about the database and list its entities (tables, domains, stored procedures, triggers, and
everything else), accessing the details of each. You can also create new databases and config-
ure them, back up the files, update the definitions, check what’s going on and who is cur-
rently connected, and so on.

The IBConsole application allows you to open multiple windows to look at detailed infor-
mation, such as the tables window depicted in Figure 15.3. In this window, you can see lists
of the key properties of each table (columns, triggers, constraints, and indexes), see the raw
metadata (the SQL definition of the table), access permissions, have a look at the actual data,
modify it, and study the dependencies of the table. Similar windows are available for each of
the other entities you can define in a database.

F I G U R E 1 5 . 2 :
IBConsole allows you to
manage, from a single com-
puter, InterBase databases
hosted by multiple servers.

Getting Started with InterBase 6

2874c15.qxd 7/2/01 4:35 PM Page 661

http://www.sybex.com

662

Finally, IBConsole embeds an improved version of the original Windows Interactive SQL
application (see Figure 15.4). You can directly type a SQL statement in the upper portion of
the window (without any actual help from the tool, unfortunately) and then execute the SQL
query. As a result, you’ll see the data, but also the access plan used by the database (which an
expert can use to determine the efficiency of the query) and some statistics on the actual
operation performed by the server.

This is really a minimal description of IBConsole, which is a rather powerful tool and the
only one included by Borland with the server besides command-line tools. IBConsole is
probably not the most complete tool in its category, though. Quite a few third-party Inter-
Base management applications are more powerful, although they are not all very stable or
user-friendly. Some InterBase tools are shareware programs, while others are totally free.
Two examples, out of many, are InterBase Workbench (www.interbaseworkbench.com) and
IB_WISQL (done with and part of InterBase Objects, www.ibobjects.com).

F I G U R E 1 5 . 3 :
IBConsole can open sepa-
rate windows to show you
the details of each entity—
in this case, a table.

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 662

http://www.sybex.com

663

TIP To find the latest third-party InterBase tools, have a look at www.interbase2000.org/tools,
which hosts an up-to-date list.

Server-Side Programming
At the beginning of the previous chapter, I underlined the fact that one of the objectives of
client/server programming—and one of its problems—is the division of the workload between
the computers involved. When you activate SQL statements from the client, the burden falls
on the server to do most of the work. However, you should try to use select statements that
return a large result set, to avoid jamming the network.

Besides accepting DDL and DML requests, most RDBMS servers allow you to create rou-
tines directly on the server using the standard SQL commands plus their own server-specific
extensions (which are generally not portable). These routines typically come in two forms,
stored procedures and triggers.

F I G U R E 1 5 . 4 :
The Interactive SQL
window of IBConsole
allows you to try out in
advance the queries you
plan to include in your
Delphi programs.

Server-Side Programming

2874c15.qxd 7/2/01 4:35 PM Page 663

http://www.sybex.com

664

Stored Procedures
Stored procedures are like the global functions of a Delphi unit and must be explicitly called
by the client side. Stored procedures are generally used to define routines for data maintenance,
to group sequences of operations you need in different circumstances, or to hold complex
select statements.

Like Pascal procedures, stored procedures can have one or more typed parameters. Unlike
Pascal procedures, they can have more than one return value. As an alternative to returning a
value, a stored procedure can also return a result set, the result of an internal select state-
ment or a custom fabricated one.

The following is a stored procedure written for InterBase; it receives a date in input and
computes the highest salary among the employees hired on that date:

create procedure maxsaloftheday(ofday date)
returns (maxsal decimal(8,2)) as
begin
select max(salary)
from employee
where hiredate = :ofday
into :maxsal;

end

Notice the use of the into clause, which tells the server to store the result of the select
statement in the maxsal return value. To modify or delete a stored procedure, you can later
use the alter procedure and drop procedure commands.

Looking at this stored procedure, you might wonder what its advantage is compared to the
execution of a similar query activated from the client. The difference between the two
approaches is not in the result you obtain but in its speed. A stored procedure is compiled on
the server in an intermediate and faster notation when it is created, and the server determines
at that time the strategy it will use to access the data. By contrast, a query is compiled every
time the request is sent to the server. For this reason, a stored procedure can replace a very
complex query, provided it doesn’t change too often!

From Delphi you can activate a stored procedure returning a result set by using either a
Query or a StoredProc component. With a Query, you can use the following SQL code:

select *
from MaxSalOfTheDay (‘01/01/1990’)

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 664

http://www.sybex.com

665

Triggers (and Generators)
Triggers behave more or less like Delphi events and are automatically activated when a given
event occurs. Triggers can have specific code or call stored procedures; in both cases, the exe-
cution is done completely on the server. Triggers are used to keep data consistent, checking
new data in more complex ways than a check constraint allows, and to automate the side
effects of some input operations (such as creating a log of previous salary changes when the
current salary is modified).

Triggers can be fired by the three basic data update operations: insert, update, and delete.
When you create a trigger, you indicate whether it should fire before or after one of these
three actions.

As an example of a trigger, we can use a generator to create a unique index in a table. Many
tables use a unique index as primary key. InterBase doesn’t have an AutoInc field, unlike Paradox
and other local databases. Because multiple clients cannot generate unique identifiers, we can
rely on the server to do this. Almost all SQL servers offer a counter you can call to ask for a
new ID, which you should later use for the table. InterBase calls these automatic counters
generators, while Oracle calls them sequences. Here is the sample InterBase code:

create generator cust_no_gen;
...
gen_id (cust_no_gen, 1);

The gen_id function then extracts the new unique value of the generator passed as first param-
eter, with the second parameter indicating how much to increase (in this case, by one).

At this point you can add a trigger to a table, an automatic handler for one of the table’s
events. A trigger is similar to the event handler of the Table component, but you write it in
SQL and execute it on the server, not on the client. Here is an example:

create trigger set_cust_no for customers
before insert position 0 as
begin
new.cust_no = gen_id (cust_no_gen, 1);

end

This trigger is defined for the Customer table and is activated each time a new record is
inserted. The new symbol indicates the new record we are inserting. The position option
indicates the order of execution of multiple triggers connected to the same event. Triggers
with the lowest values will be executed first.

Inside a trigger, you can write DML statements that also update other tables, but watch
out for updates that end up reactivating the trigger, creating an endless recursion. You can
later modify or disable a trigger by calling the alter trigger statement or drop trigger.

Server-Side Programming

2874c15.qxd 7/2/01 4:35 PM Page 665

http://www.sybex.com

666

TIP Triggers fire automatically for specified events. If you have to make many changes in the data-
base using batch operations, the presence of a trigger might slow down the process. If the input
data has already been checked for consistency, you can temporarily deactivate the trigger. These
batch operations are often coded in stored procedures, but stored procedures generally cannot
issue DDL statements, like those required for deactivating and reactivating the trigger. In this sit-
uation, you can define a view based on a simple select * from table command, thus creat-
ing an alias for the table. Then you can let the stored procedure do the batch processing on the
table and apply the trigger to the view (which should also be used by the client program).

Using InterBase Express
The examples built in the last chapter either still used the BDE or were done with the new
dbExpress database engine. Using this server-independent engine could allow you to switch
the database server used by your application, although in practice this is often far from simple.
You might decide that an application you are building will invariably use a given database
server, possibly the internal server of the company you are working for. In this case, you can
decide to skip any database engine or library as well and write programs that are tied directly
to the API of the specific database server, which will make your program intrinsically non-
portable to other SQL servers.

Of course, you won’t generally use similar APIs directly, but rather base your development
on some native or third-party dataset components, which wrap these APIs and naturally fit
into Delphi and the architecture of its class library. An example of such a family of compo-
nents is InterBase Express (IBX). Applications built using these components should work
better and faster (even if only marginally), giving you more control over the specific features
of the server. For example, IBX provides you a set of administrative components specifically
built for InterBase 6.

NOTE I’ll examine the IBX components because they are tied to InterBase (the database server dis-
cussed in this chapter) and because that set is the only one available in the standard Delphi
installation. Other similar sets of components (for InterBase, Oracle, and other database
servers) are equally powerful and well-regarded in the Delphi programmers’ community. A
good example (and an alternative to IBX) is InterBase Objects, www.ibobjects.com.

IBX Dataset Components
The IBX components include custom dataset components and a few others. The dataset
components inherit from the base TDataSet class, can use all the common Delphi data-aware

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 666

http://www.sybex.com

667

controls, provide a field editor and all the usual design-time features, and can be used in the
Data Module Designer, but they don’t require the BDE.

You can actually choose among multiple dataset components. Three datasets of IBX have a
role and a set of properties similar to their BDE counterparts:

• IBTable resembles the Table component and allows you to access a single table or view.

• IBQuery resembles the Query component and allows you to execute a SQL query, return-
ing a result set. The IBQuery component can be used together with the IBUpdateSQL
component to obtain a live (or editable) dataset.

• IBStoredProc resembles the StoredProc component and allows you to execute a stored
procedure.

For new applications, you should generally use the IBDataSet component, which allows
you to work with a live result set obtained by executing a select query. It basically merges
IBQuery with IBUpdateSQL in a single component. The three components above, in fact,
are provided mainly for compatibility with Delphi BDE applications.

Many other components in InterBase Express don’t belong to the dataset category, but are
still used in applications that need to access to a database:

• IBDatabase mimics the BDE Database component and is used to set up the database
connection. The BDE also uses the specific Session component to perform some
global tasks done by the IBDatabase component.

• IBTransaction allows complete control over transactions. It is important in InterBase
to use transactions explicitly and isolate each transaction properly, using the Snapshot
isolation level for reports and the Read Committed level for interactive forms. Each
dataset explicitly refers to a given transaction, so you can have multiple concurrent
transactions against the same database, choosing which datasets take part in which
transaction.

• IBSQL lets you execute SQL statements that don’t return a dataset (for example, DDL
requests, or update and delete statements) without the overhead of a dataset component.

• IBDatabaseInfo is used for querying the database structure and status.

• IBSQLMonitor is used for debugging the system, since the SQL Monitor debugger
provided by Delphi is a BDE-specific tool.

• IBEvents receives events posted by the server.

This group of components provides greater control over the database server than you can
have with the BDE. For example, having a specific transaction component allows you to
manage multiple concurrent transactions over one or multiple databases, as well as a single

Using InterBase Express

2874c15.qxd 7/2/01 4:35 PM Page 667

http://www.sybex.com

668

transaction spanning multiple databases. The IBDatabase component allows you to create
databases, test the connection, and generally access system data, something the Database and
Session BDE components don’t fully provide.

TIP A feature of the IBX datasets that is new in Delphi 6 is the ability to set up the automatic
behavior of a generator as a sort of auto-incremental field. This is accomplished by setting the
GeneratorField property using its specific property editor. An example of this is discussed
later in this chapter in the section “Generators and IDs.”

IBX Administrative Components
A new page of Delphi 6 Component palette, InterBase Admin, hosts InterBase 6 administra-
tive components. Although your aim is probably not to build a full InterBase console applica-
tion, including some administrative features (such as backup handling or user monitoring)
can make sense in applications meant for power users.

Most of these components have self-explanatory names. They are IBConfigService,
IBBackupService, IBRestoreService, IBValidationService, IBStatisticalService, IBLogService,
IBSecurityService, IBServerProperties, IBInstall, and IBUninstall. I won’t build any advanced
examples of the use of these components, as they are more focused towards the development
of server management applications than that of client programs. I’ll only embed a couple of
them in a simple example, later in this chapter.

From BDE to IBX
To demonstrate how simple it can be to move from the use of the BDE to the use of IBX,
I’ve built a trivial application, using the Database Form Wizard (which is strictly bound to
the BDE). The application, on the companion CD, is called IbEmp and shows only a few
fields of the usual Employee table of the corresponding InterBase demo database.

All of the features of the IbEmp example are summarized by the properties of its Query
component:

object Query1: TQuery
DatabaseName = ‘IBLocal’
RequestLive = True
SQL.Strings = (
‘SELECT * ‘
‘FROM EMPLOYEE’)

end

I could have extended the structure of this example generated by Delphi, adding a Data-
base component to handle the connection, but I decided this was useless, as my intention was
only to port the example to the use of the IBX components. The interesting example, in fact,

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 668

http://www.sybex.com

669

is IbEmp2, which I started by copying all of the source code files of the version generated by
the wizard. (The previous example is available on the companion CD just so you can try this
type of porting, as the example by itself is not particularly interesting.)

After replacing the Query component with an IBQuery, I had to add two more compo-
nents: IBTransaction and IBDatabase. Any IBX application requires at least an instance of
each of these two components. You cannot set database connections in a dataset (as you can
do with a plain Query), and at least a transaction object is required even to read the result of
a query.

Here are the key properties of these components in the IbEmp2 example:
object IBTransaction1: TIBTransaction
Active = False
DefaultDatabase = IBDatabase1

end
object IBQuery1: TIBQuery
Database = IBDatabase1
Transaction = IBTransaction1
CachedUpdates = False
SQL.Strings = (
‘SELECT * FROM EMPLOYEE’)

end
object IBDatabase1: TIBDatabase
DatabaseName = ‘C:\Program Files\InterBase ‘ +
‘Corp\InterBase6\examples\Database\employee.gdb’

Params.Strings = (
‘user_name=SYSDBA’
‘password=masterkey’)

LoginPrompt = False
IdleTimer = 0
SQLDialect = 1
TraceFlags = []

end

The changes don’t take too much time to perform, and if you are accessing the same data-
base table as in the BDE-based program, you won’t need to change the data-aware components
at all, but only hook the DataSource component to IBQuery1. Because I’m not using the BDE,
I had to type in the pathname of the InterBase database. However, not everyone in the world
has the Program Files folder, which depends on the local version of Windows, and of course
the InterBase sample data files could have been installed in any other location of the disk. We’ll
try to solve these problems in the next example.

Using InterBase Express

2874c15.qxd 7/2/01 4:35 PM Page 669

http://www.sybex.com

670

WARNING Notice that I’ve embedded the password in the code, a very naïve approach to security. Not
only can anyone run the program, but someone could even extract the password by looking at
the hexadecimal code of the executable file. I used this approach so I wouldn’t need to keep
typing in my password while testing a program, but in a real application you should require
your users to do so if they care about the security of their data.

Building a Live Query
The IbEmp2 example has a query that doesn’t allow editing. To activate editing, you need to
use an IBTable component or add to the query an IBUpdateSQL component, even if the query
is very simple. Usually the BDE does the behind-the-scenes work that lets you edit the result
set of a simple query, but we are not using the BDE now.

The relationship between the IBQuery and IBUpdateSQL components is the same as
between the Query and UpdateSQL components. To highlight this, I’ve taken the main form
of the UpdateSql example discussed in the last chapter and ported it to the InterBase Express
components, building the UpdSql2 example. I’ve simply copied the two components from the
original example, pasted them into an editor, changed the type of the object, and copied the
resulting text into a new form. The properties are so similar that I had only to ignore a couple
of missing ones (the DatabaseName and the UpdateMode properties).

At this point, I simply added an IBDatabase and an IBTransaction component, a data
source and a grid, and my program was up and running. The key element of these compo-
nents, in fact, is their SQL code, which is attached to the SQL property of the query and the
ModifySQL, DeleteSQL, and InsertSQL properties of the update component.

However, this time I’ve made the reference to the database a little more flexible. Instead of
typing in the database name at design time, I’ve extracted the InterBase folder from the
Windows Registry (where Borland saves it while installing the programs). This is the code
executed when the program starts:

uses
Registry;

procedure TForm1.FormCreate(Sender: TObject);
var
Reg: TRegistry;

begin
Reg := TRegistry.Create;
try
Reg.RootKey := HKEY_LOCAL_MACHINE;
Reg.OpenKey(‘\Software\Borland\InterBase\CurrentVersion’, False);
IBDatabase1.DatabaseName := Reg.ReadString(‘RootDirectory’) +

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 670

http://www.sybex.com

671

‘examples\database\employee.gdb’;
finally
Reg.CloseKey;
Reg.Free;

end;
EmpDS.DataSet.Open;

end;

The source code actually contains alternate code for using the database installed in the
Data subfolder of the Borland Shared folder, used for Delphi sample databases. Notice also
that InterBase 6 places the sample databases in a different subfolder than InterBase 5 did.

NOTE For more information about the Windows Registry and INI files, see the related sidebar in
Chapter 10, “The Architecture of Delphi Applications.”

The new feature of this example, compared to the last version, is the presence of a transac-
tion component. As I’ve already said, the InterBase Express components make the use of a
transaction component compulsory, explicitly following a requirement of InterBase. Simply
adding a couple of buttons to the form to commit or roll back the transaction would be
enough, because a transaction starts automatically as you edit any dataset attached to it.

I’ve also improved the program a little by adding an ActionList component to it. This
includes all the standard database actions and adds two custom actions for transaction sup-
port, Commit and Rollback. Both actions are enabled when the transaction is active:

procedure TForm1.ActionUpdateTransactions(Sender: TObject);
begin
acCommit.Enabled := IBTransaction1.InTransaction;
acRollback.Enabled := acCommit.Enabled;

end;

When executed, they perform the main operation but also need to reopen the dataset in a
new transaction (which can also be done by “retaining” the transaction context). Actually,
CommitRetaining doesn’t reopen a new transaction, but it allows the current transaction to
remain open. This way, you can keep using your datasets, which won’t be refreshed (so you
won’t see edits already committed by other users) but will keep showing the data you’ve
modified. This is the code:

procedure TForm1.acCommitExecute(Sender: TObject);
begin
IBTransaction1.CommitRetaining;

end;

procedure TForm1.acRollbackExecute(Sender: TObject);
begin
IBTransaction1.Rollback;

Using InterBase Express

2874c15.qxd 7/2/01 4:35 PM Page 671

http://www.sybex.com

672

// reopen the dataset in a new transaction
IBTransaction1.StartTransaction;
EmpDS.DataSet.Open;

end;

WARNING Be aware that InterBase closes any opened cursors when a transaction ends, which means you
have to reopen them and refetch the data even if you haven’t made any changes. When com-
mitting data, instead, you can ask InterBase to retain the “transaction context”—not to close
open datasets—by issuing a CommitRetaining command, as mentioned before. The reason
for this behavior of InterBase depends on the fact that a transaction corresponds to a snapshot
of the data. Once a transaction is finished, you are supposed to read the data again to refetch
records that may have been modified by other users. Version 6.0 of InterBase includes also a
RollbackRetaining command, which I’ve decided not to use, because in a rollback opera-
tion, the program should refresh the dataset data to show the original values on screen, not
the updates you’ve discarded.

The last operation refers to a generic dataset and not a specific one because I’m going to
add a second alternate dataset to the program. The actions are connected to a text-only tool-
bar, as you can see in Figure 15.5. The program opens the dataset at startup and automati-
cally closes the current transaction on exit, after asking the user what to do, with the
following OnClose event handler:

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
var
nCode: Word;

begin
if IBTransaction1.InTransaction then
begin
nCode := MessageDlg (‘Commit Transaction? (No to rollback)’,
mtConfirmation, mbYesNoCancel, 0);

case nCode of
mrYes: IBTransaction1.Commit;
mrNo: IBTransaction1.Rollback;
mrCancel: Action := caNone; // don’t close

end;
end;

end;

An alternative to using the IBQuery and IBUpdateSQL components is to use the IBDataSet
component, which combines the two. An InterBase dataset, in fact, is a live query with a com-
plete set of SQL statements for all the main operations. The differences between using the

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 672

http://www.sybex.com

673

two components and the single one are minimal. Using IBQuery and IBUpdateSQL is proba-
bly better when porting an existing application based on the two equivalent BDE components,
even if porting the program directly to the IBDataSet component doesn’t really require a lot
of extra work.

In the UpdSql2 example, I’ve provided both alternatives, so that you can test the differ-
ences yourself. Here is part of the DFM description of the dataset component:

object IBDataSet1: TIBDataSet
Database = IBDatabase1
Transaction = IBTransaction1
CachedUpdates = False
BufferChunks = 32
DeleteSQL.Strings = (
‘delete from EMPLOYEE’
‘where EMP_NO = :OLD_EMP_NO’)

InsertSQL.Strings = (
‘insert into EMPLOYEE’
‘ (FIRST_NAME, LAST_NAME, SALARY, DEPT_NO, JOB_CODE, JOB_GRADE, ‘ +
‘ JOB_COUNTRY)’
‘values’

F I G U R E 1 5 . 5 :
The output of the UpdSql2
example

Using InterBase Express

2874c15.qxd 7/2/01 4:35 PM Page 673

http://www.sybex.com

674

‘ (:FIRST_NAME, :LAST_NAME, :SALARY, :DEPT_NO, :JOB_CODE, ‘ +
‘ :JOB_GRADE, :JOB_COUNTRY)’)

SelectSQL.Strings = (...)
UpdateRecordTypes = [cusUnmodified, cusModified, cusInserted]
ModifySQL.Strings = (...)

end

If you connect the IBQuery1 or the IBDataSet1 components to the data source and run the
program, you’ll see that the behavior is identical. Not only do the components have a similar
effect; the available properties and events are also very similar.

Monitoring InterBase Express
SQL Monitor works by using a hook into the BDE architecture. For this reason, you cannot
use it with applications based on the InterBase Express components. Instead, you can simply
embed in your application a copy of the IBSQLMonitor component and produce a custom
log.

You can even write a more generic monitoring application, as I’ve done in the IbxMon
example. I’ve placed in its form a monitoring component and a RichEdit control, and written
the following handler for the OnSQL event:

procedure TForm1.IBSQLMonitor1SQL(EventText: String);
begin
if Assigned (RichEdit1) then
RichEdit1.Lines.Add (TimeToStr (Now) + ‘: ‘ + EventText);

end;

The if Assigned test can be useful when receiving a message during shutdown, and it is
required when you add this code directly inside the application you are monitoring.

To receive the messages from other applications (or from the current one), you have to
turn on the tracing options of the IBDatabase component. In the UpdSql2 example (dis-
cussed earlier, in the section “Building a Live Query”), I turned them all on:

object IBDatabase1: TIBDatabase
...
TraceFlags = [tfQPrepare, tfQExecute, tfQFetch, tfError, tfStmt,

tfConnect, tfTransact, tfBlob, tfService, tfMisc]

If you run the two examples at the same time, the output of the IbxMon program will list
the details about the UpdSql2 program’s interaction with InterBase, as you can see in
Figure 15.6.

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 674

http://www.sybex.com

675

Getting More System Data
The IbxMon example doesn’t only monitor the InterBase connection, but it allows you also
to query some settings to the server using the various tabs of its page control. The example
embeds a few IBX administrative components, showing server statistics, a few server properties,
and all connected users. You can see an example of server properties in Figure 15.7 and the code
for extracting the users in the following code fragment.

F I G U R E 1 5 . 7 :
The assorted server infor-
mation displayed by the
IbxMon application

F I G U R E 1 5 . 6 :
The output of the IbxMon
example, based on the
IBMonitor component

Using InterBase Express

2874c15.qxd 7/2/01 4:35 PM Page 675

http://www.sybex.com

676

// grab the users data
IBSecurityService1.DisplayUsers;
// display the name of each user
for i := 0 to IBSecurityService1.UserInfoCount - 1 do
with IBSecurityService1.UserInfo[i] do
RichEdit4.Lines.Add (Format (‘User: %s, Full Name: %s, Id: %d’,
[UserName, FirstName + ‘ ‘ + LastName, UserId]));

Real-World Blocks
Up to now, we’ve discussed specific techniques related to InterBase programming, but we
haven’t delved into the development of an actual application, with the problems this presents
in practice. In the following subsections, I’ll discuss a few practical techniques, with no specific
order.

Nando Dessena (who knows InterBase much better than I do) and I have used all of these
techniques in a seminar discussing the porting of an internal Paradox application to InterBase.
The application discussed in that circumstance was much larger and more complex, and I’ve
trimmed it down to only a few tables to make it fit into the space I have for this chapter.

TIP The database discussed in this section is called mastering.gdb and is hosted on the companion
CD inside the data subfolder of the folder for this chapter. You can examine it using InterBase
Console, possibly after making a copy to a writable drive so that you can fully interact with it.

Generators and IDs
I’ve mentioned in the last chapter that I’m quite a fan of an extensive use of IDs to identify
the records in each table of a database.

NOTE I even tend to use a single sequence of IDs for an entire system, something often indicated as
an Object ID (OID). The advantage is that I can place a series of related objects in different
tables, depending on their internal structure, one of the possible approaches for implementing
inheritance using relational tables. In such a circumstance, however, the IDs of the two tables
must be unique. As you might not know in advance which objects could be used in place of
others, adopting a global OID allows more freedom later. The drawback is that, if you have lots
of data, using an integer as the ID (that is, having only 4 billion objects) might not be enough.
For this reason, InterBase 6 supports 64-bit generators.

How do you generate the unique values for these IDs when multiple clients are running?
Keeping a table with a latest value is going to create troubles, as multiple concurrent transac-
tions (from different users) will see the same values. If you don’t use tables, you can use a

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 676

http://www.sybex.com

677

database-independent mechanism, including the rather large Windows GUIDs or the so-called
high-low technique (the assignment of a base number to each client at startup—the high num-
ber—that is combined with a consecutive number—the low number—determined by the client).

Another approach, bound to the database, is the use of internal mechanisms for sequences,
indicated with different names in each SQL server. In InterBase they are called generators.
The characteristic of these sequences is that they operate and are incremented outside of
transactions, so that they provide unique numbers even to concurrent users (remember that
InterBase forces you to open a transaction even to read data).

We’ve already seen how to create a generator. Here is the definition for the one in my
demo database, followed by the definition of the view you can use to query for a new value:

create generator g_master;

create view v_next_id (
next_id
) as

select gen_id(g_master, 1) from rdb$database
;

Inside the RWBlocks application, I’ve added to a data module an IBQuery component (as I
don’t need it to be an editable dataset) with the following SQL:

select next_id from v_next_id;

The advantage, compared to using the direct statement, is that this is easier to write and
maintain, even if the underlying generator changes (or in case you switch to a different
approach behind the scenes). Moreover, in the same data module I’ve added a function,
which returns a new value for the generator:

function TDmMain.GetNewId: Integer;
begin
// return the next value of the generator
QueryId.Open;
try
Result := QueryId.Fields[0].AsInteger;

finally
QueryId.Close;

end;
end;

This method can be called in the AfterInsert event of any dataset, to fill in the value for
the ID:

mydataset.FieldByName (‘ID’).AsInteger := data.GetNewId;

Real-World Blocks

2874c15.qxd 7/2/01 4:35 PM Page 677

http://www.sybex.com

678

As I’ve mentioned, the IBX datasets in Delphi 6 can be tied directly to a generator, sim-
plifying the overall picture quite a lot. Thanks to the specific property editor (shown in
Figure 15.8), in fact, connecting a field of the dataset to the generator becomes trivial.

Notice that both these approaches are much better than the one, based on a server-side
trigger, discussed earlier in this chapter. In that case, in fact, the Delphi application didn’t
know the ID of the record sent to the database and so was unable to refresh it. Not having
the record ID (which is also the only key field) on the Delphi side implies it is almost impos-
sible to insert such a value directly inside a DBGrid. If you try, you’ll see that the value you
insert apparently gets lost right away, only to reappear in case of a full refresh.

Using client-side techniques instead, based on the manual code or the GeneratorField
property, causes no trouble, as the Delphi application knows the ID, the record key, before
posting it, so it can easily place it in a grid and refresh it properly.

Case-Insensitive Searches
An interesting issue with SQL servers in general, not specifically InterBase, has to do with
case-insensitive searches. Suppose you don’t want to show a large amount of data inside a
grid (which is rather a bad idea for a client/server application). You instead choose to let the
user type the initial portion of a name and then filter a query on this input, displaying only
the smaller resulting record set in a grid. I’ve done this for a table of companies.

This search by company name is going to be executed quite frequently and will probably
take place on a large table. However, if we simply search using the starting with or like
operators, the search will be case sensitive, as in the following SQL statement:

select * from companies
where name starting with ‘win’;

To make a case-insensitive search, you can use the upper function on both sides of the com-
parison to test the uppercase values of each string, but a similar query would be very slow, as it

F I G U R E 1 5 . 8 :
The editor of the
GeneratorField
property of the IBX
datasets in Delphi 6

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 678

http://www.sybex.com

679

won’t be based on an index. On the other hand, saving the company names (or any other
name) in uppercase letters would be rather silly, because when you have to print out those
names, the result will be quite unnatural (even if very common in old information systems).

If we can trade off some disk space and memory for the extra speed, we can use a trick: add
an extra field to the table, to store the uppercase value of the company name, using a server-
side trigger to generate it and update it. We can then ask the database to maintain an index
on the uppercase version of the name, to speed our search operation even further.

In practice, the table definition will look like this:
create domain d_uid as integer;
create table companies
(
id d_uid not null,
name varchar(50),
tax_code varchar(16),
name_upper varchar(50),

constraint companies_pk primary key (id)
);

To copy the uppercase name of each company into the related field, we cannot rely on
client-side code, as an inconsistency would cause problems. In a case like this, it is better to
use a trigger on the server, so that each time the company name changes, its uppercase ver-
sion is updated accordingly. Another trigger will be used for the insertion of a new company:

create trigger companies_bi for companies
active before insert position 0
as
begin
new.name_upper = upper(new.name);

end;

create trigger companies_bu for companies
active before update position 0
as
begin
if (new.name <> old.name) then
new.name_upper = upper(new.name);

end;

Finally, I’ve added an index to the table with this DDL statement:
create index i_companies_name_upper on companies(name_upper);

With this structure behind the scenes, we can now select all the companies starting with
the text of an edit box (edSearch) by writing the following code in a Delphi application:

dm.DataCompanies.Close;
dm.DataCompanies.SelectSQL.Text :=
‘select c.id, c.name, c.tax_code,’ +

Real-World Blocks

2874c15.qxd 7/2/01 4:35 PM Page 679

http://www.sybex.com

680

‘ from companies c ‘ +
‘ where name_upper starting with ‘’’ +
UpperCase (edSearch.Text) + ‘’’’;

dm.DataCompanies.Open;

TIP Using a prepared parametric query, we might be able to make this code even faster.

As an alternative, we could have created a server-side calculated field in the table defini-
tion, but this would have prevented us from having an index on the field, which speeds up
our queries considerably:

name_upper varchar(50) computed by (upper(name))

Handling Locations and People
You might notice that the table describing companies is quite bare. In fact, it has no company
address, nor any contact information. The reason is simple: I want to be able to handle com-
panies that have multiple offices (or locations) and list contact information about multiple
employees of those companies.

Every location is bound to a company. Notice, though, that I’ve decided not to use a loca-
tion identifier related to the company (such as a progressive location number for each com-
pany) but a global ID for all of the locations. This way I can refer to a location ID (let’s say,
for shipping goods) without having to refer also to the company ID. This is the definition of
the table storing company locations:

create table locations
(
id d_uid not null,
id_company d_uid not null,
address varchar(40),
town varchar(30),
zip varchar(10),
state varchar(4),
phone varchar(15),
fax varchar(15),

constraint locations_pk primary key (id),
constraint locations_uc unique (id_company, id)
);

alter table locations add constraint locations_fk_companies
foreign key (id_company) references companies (id)
on update no action on delete no action;

The final definition of a foreign key relates the id_company field of the locations table with
the ID field of the companies table. The other table lists names and contact information for

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 680

http://www.sybex.com

681

people at specific company locations. To follow the database normalization rules, I should
have added to this table only a reference to the location, as each location relates to a com-
pany. However, to make it simpler to change the location of a person within a company and
to make my queries much more efficient (avoiding an extra step), I’ve added to the people
table both a reference to the location and to the company.

The table also has another unusual feature: One of the people working for a company can
be set as the key contact. This is obtained with a Boolean field (defined with a domain, as the
Boolean type is not supported by InterBase) and by adding triggers to the table so that only
one employee of each company can have this flag active:

create domain d_boolean as char(1)
default ‘F’
check (value in (‘T’, ‘F’)) not null

create table people
(
id d_uid not null,
id_company d_uid not null,
id_location d_uid not null,
name varchar(50) not null,
phone varchar(15),
fax varchar(15),
email varchar(50),
key_contact d_boolean,

constraint people_pk primary key (id),
constraint people_uc unique (id_company, name)
);

alter table people add constraint people_fk_companies
foreign key (id_company) references companies (id)
on update no action on delete cascade;

alter table people add constraint people_fk_locations
foreign key (id_company, id_location)
references locations (id_company, id);

create trigger people_ai for people
active after insert position 0
as
begin
/* if a person is the key contact, remove the

flag from all others (of the same company) */
if (new.key_contact = ‘T’) then
update people
set key_contact = ‘F’
where id_company = new.id_company
and id <> new.id;

end;

Real-World Blocks

2874c15.qxd 7/2/01 4:35 PM Page 681

http://www.sybex.com

682

create trigger people_au for people
active after update position 0
as
begin
/* if a person is the key contact, remove the

flag from all others (of the same company) */
if (new.key_contact = ‘T’ and old.key_contact = ‘F’) then
update people
set key_contact = ‘F’
where id_company = new.id_company
and id <> new.id;

end;

Building a User Interface
The three tables we have discussed so far have a clear master/detail relation. For this reason,
the RWBlocks example uses three IBDataSet components for accessing the data, hooking up the
two secondary tables to the main one. The code for the master/detail support is that of a
standard database example based on queries, so I won’t discuss it further (but I suggest you
study the source code of the example).

Each of the datasets has a full set of SQL statements, to make the data editable. Whenever
you enter a new detail element, the program hooks it to its master tables, as in the two fol-
lowing methods:

procedure TDmCompanies.DataLocationsAfterInsert(DataSet: TDataSet);
begin
// initialize the data of the detail record
// with a reference to the master record
DataLocationsID_COMPANY.AsInteger := DataCompaniesID.AsInteger;

end;

procedure TDmCompanies.DataPeopleAfterInsert(DataSet: TDataSet);
begin
// initialize the data of the detail record
// with a reference to the master record
DataPeopleID_COMPANY.AsInteger := DataCompaniesID.AsInteger;
// the suggested location is the active one, if available
if not DataLocations.IsEmpty then
DataPeopleID_LOCATION.AsInteger := DataLocationsID.AsInteger;

// the first person added becomes the key contact
// (checks whether the filtered dataset of people is empty)
DataPeopleKEY_CONTACT.AsBoolean := DataPeople.IsEmpty;

end;

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 682

http://www.sybex.com

683

As this code suggests, a data module hosts the dataset components. Actually, the program
has a data module for every form (hooked up dynamically, as you can create multiple instances
of each form). Each of these data modules has a separate transaction, so that the various oper-
ations done in different pages are totally independent. The database connection, instead, is
centralized. A main data module hosts the corresponding component, which is referenced by
all the datasets. Each of the data modules is created dynamically by the form referring to it,
and its value is stored in the dm private field of the form:

procedure TFormCompanies.FormCreate(Sender: TObject);
begin
dm := TDmCompanies.Create (Self);
dsCompanies.Dataset := dm.DataCompanies;
dsLocations.Dataset := dm.DataLocations;
dsPeople.Dataset := dm.DataPeople;

end;

This way we can easily create multiple instances of a form, with an instance of the data mod-
ule connected to each of them. The form connected to the data module has three DBGrid con-
trols, each tied to a data module and one of the corresponding datasets. You can see this form at
run time, with some actual data, in Figure 15.9.

F I G U R E 1 5 . 9 :
A form showing companies,
office locations, and people
(part of the RWBlocks
example)

Real-World Blocks

2874c15.qxd 7/2/01 4:35 PM Page 683

http://www.sybex.com

684

The form is actually hosted by a main form, which in turn is based on a page control, with
the other forms embedded. Only the form connected with the first page is created when the
program starts. The ShowForm method I’ve written takes care of parenting the form to the tab
sheet of the page control, after removing the form border:

procedure TFormMain.FormCreate(Sender: TObject);
begin
ShortDateFormat := ‘dd/mm/yyyy’;
ShowForm (TFormCompanies.Create (self), TabCompanies);

end;

procedure TFormMain.ShowForm (Form: TForm; Tab: TTabSheet);
begin
Form.BorderStyle := bsNone;
Form.Align := alClient;
Form.Parent := Tab;
Form.Show;

end;

The other two pages, instead, are populated at runtime:
procedure TFormMain.PageControl1Change(Sender: TObject);
begin
if PageControl1.ActivePage.ControlCount = 0 then
if PageControl1.ActivePage = TabFreeQ then
ShowForm (TFormFreeQuery.Create (self), TabFreeQ)

else if PageControl1.ActivePage = TabClasses then
ShowForm (TFormClasses.Create (self), TabClasses);

end;

The companies form hosts the search by company name we’ve already discussed in the last
section, plus a search by location. You enter the name of a town and get back a list of compa-
nies having an office in that town:

procedure TFormCompanies.btnTownClick(Sender: TObject);
begin
with dm.DataCompanies do
begin
Close;
SelectSQL.Text :=
‘select c.id, c.name, c.tax_code’ +
‘ from companies c ‘ +
‘ where exists (select loc.id from locations loc ‘ +
‘ where loc.id_company = c.id and upper(loc.town) = ‘’’ +
UpperCase(edTown.Text) + ‘’’)’;

Open;
dm.DataLocations.Open;
dm.DataPeople.Open;

end;
end;

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 684

http://www.sybex.com

685

If you look at the source code of the form, you’ll find a lot more code. Some of it is related
to closing permission (as a user cannot close the form while there are pending edits not posted
to the database), while a good amount relates to the use of the form as a lookup dialog, as
described later.

Booking Classes
Another portion of the program and of the database involves booking training classes and
courses. (Needless to say, although I built this program as a showcase, it also helps me run
my own business.) In the database is a classes table listing all the training courses, each with
a title and the planned date. Another table hosts registration by company, including the
classes registered for, the ID of the company, and some notes. Finally, a third table has a list
of people who’ve signed up, each hooked to a registration for his or her company, with the
amount paid.

The rationale behind this company-based registration is that invoices are sent out to com-
panies, which book the classes for their programmers and can receive specific discounts. This
is a case in which the database is a little more normalized, as the people registration doesn’t
refer directly to a class, but only to the company registration for that class. Here is the defini-
tion of the tables involved (I’ve omitted foreign key constraints and other elements):

create table classes
(
id d_uid not null,
description varchar(50),
starts_on timestamp not null,

constraint classes_pk primary key (id)
);
create table classes_reg
(
id d_uid not null,
id_company d_uid not null,
id_class d_uid not null,
notes varchar(255),

constraint classes_reg_pk primary key (id),
constraint classes_reg_uc unique (id_company, id_class)
);
create domain d_amount as numeric(15, 2);
create table people_reg
(
id d_uid not null,
id_classes_reg d_uid not null,
id_person d_uid not null,
amount d_amount,

constraint people_reg_pk primary key (id)
);

Real-World Blocks

2874c15.qxd 7/2/01 4:35 PM Page 685

http://www.sybex.com

686

The data module for this group of tables uses a master/detail/detail relationship, and has
code to set the connection with the active master record when a new detail record is created.
Each dataset has a generator field for its ID, and each has the proper update and insert SQL
statements. These statements have been generated by the corresponding component editor
using only the ID field to identify existing records and updating only the fields of the original
table. In fact, each of the two secondary datasets retrieves data from a lookup table, either the
list of companies or the list of people. Finally, I had to edit manually the RefreshSQL state-
ments to repeat the proper inner join. Here is an example:

object IBClassReg: TIBDataSet
Database = DmMain.IBDatabase1
Transaction = IBTransaction1
AfterInsert = IBClassRegAfterInsert
DeleteSQL.Strings = (
‘delete from classes_reg’
‘where id = :old_id’)

InsertSQL.Strings = (
‘insert into classes_reg (id, id_class, id_company, notes)’
‘values (:id, :id_class, :id_company, :notes)’)

RefreshSQL.Strings = (
‘select reg.id, reg.id_class, reg.id_company, reg.notes, c.name ‘
‘from classes_reg reg’
‘join companies c on reg.id_company = c.id’
‘where id = :id’)

SelectSQL.Strings = (
‘select reg.id, reg.id_class, reg.id_company, reg.notes, c.name ‘
‘from classes_reg reg’
‘join companies c on reg.id_company = c.id’
‘where id_class = :id’)

ModifySQL.Strings = (
‘update classes_reg’
‘set’
‘ id = :id,’
‘ id_class = :id_class,’
‘ id_company = :id_company,’
‘ notes = :notes’
‘where id = :old_id’)

GeneratorField.Field = ‘id’
GeneratorField.Generator = ‘g_master’
DataSource = dsClasses

end

To complete the discussion of IBClassReg, here is its only event handler:
procedure TDmClasses.IBClassRegAfterInsert(DataSet: TDataSet);
begin
IBClassReg.FieldByName (‘id_class’).AsString :=
IBClasses.FieldByName (‘id’).AsString;

end;

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 686

http://www.sybex.com

687

The IBPeopleReg dataset has similar settings, but the IBClasses dataset is simpler, at
design time. At run time, the SQL code of this dataset is dynamically modified, using three
alternatives to display scheduled classes (whenever the date is after today’s date), classes
already started or finished in the current year, and classes of past years. A user selects one of
the three groups of records for the table with a tab control, which hosts the DBGrid for the
main table (see Figure 15.10).

The three alternative SQL statements are created when the program starts, or actually
when the class registrations form is created and displayed. The program stores the final por-
tion of the three alternative instructions (the where clause) in a string list, and selects one of
the strings when the tab changes:

procedure TFormClasses.FormCreate(Sender: TObject);
begin
dm := TDmClasses.Create (Self);
// connect the datasets to the data sources
dsClasses.Dataset := dm.IBClasses;
dsClassReg.DataSet := dm.IBClassReg;
dsPeopleReg.DataSet := dm.IBPeopleReg;
// open the datasets
dm.IBClasses.Active := True;
dm.IBClassReg.Active := True;
dm.IBPeopleReg.Active := True;

F I G U R E 1 5 . 1 0 :
The form for class registra-
tions of the RWBlocks
example

Real-World Blocks

2874c15.qxd 7/2/01 4:35 PM Page 687

http://www.sybex.com

688

// prepare the SQL for the three tabs
SqlCommands := TStringList.Create;
SqlCommands.Add (‘ where Starts_On > ‘’now’’’);
SqlCommands.Add (‘ where Starts_On <= ‘’now’’ and ‘ +
‘ extract (year from Starts_On) >= extract(year from current_timestamp)’);

SqlCommands.Add (‘ where extract (year from Starts_On) < ‘ +
‘ extract(year from current_timestamp)’);

end;
procedure TFormClasses.TabChange(Sender: TObject);
begin
dm.IBClasses.Active := False;
dm.IBClasses.SelectSQL [1] := SqlCommands [Tab.TabIndex];
dm.IBClasses.Active := True;

end;

Building a Lookup Dialog
The two detail datasets of this class registration form display some lookup fields. Instead of
showing the ID of the company that booked the class, for example, it shows the company
name. This is obtained with an inner join in the SQL statement and by configuring the
DBGrid columns not to display the company ID. In a local application, or one with a lim-
ited amount of data, we could have used a lookup field. However, copying the entire lookup
dataset locally or opening it for browsing should be limited to tables with about a hundred
records at most, embedding some search capabilities.

If you have a large table, like a table of companies, an alternative solution can be to use a
secondary dialog box to do the lookup selection. For example, we can choose a company using
the form we’ve already built and taking advantage of its search capabilities. To display this
form as a dialog box, the program creates a new instance of it, shows some hidden buttons
already there at design time, and lets the user select a company to refer to from the other
table.

To simplify the use of this lookup, which can happen multiple times in a large program,
I’ve added to the companies form a class function, having as output parameters the name and
ID of the selected company. An initial ID can be passed to the function to determine its ini-
tial selection. Here is the complete code of this class function, which creates an object of its
class, selects the initial record if requested, shows the dialog box, and finally extracts the
return values:

class function TFormCompanies.SelectCompany (
var CompanyName: string; var CompanyId: Integer): Boolean;

var
FormComp: TFormCompanies;

begin

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 688

http://www.sybex.com

689

Result := False;
FormComp := TFormCompanies.Create (Application);
FormComp.Caption := ‘Select Company’;
try
// activate dialog buttons
FormComp.btnCancel.Visible := True;
FormComp.btnOK.Visible := True;
// select company
if CompanyId > 0 then
FormComp.dm.DataCompanies.SelectSQL.Text :=
‘select c.id, c.name, c.tax_code’ +
‘ from companies c ‘ +
‘ where c.id = ‘ + IntToStr (CompanyId)

else
FormComp.dm.DataCompanies.SelectSQL.Text :=
‘select c.id, c.name, c.tax_code’ +
‘ from companies c ‘ +
‘ where name_upper starting with ‘’a’’’;

FormComp.dm.DataCompanies.Open;
FormComp.dm.DataLocations.Open;
FormComp.dm.DataPeople.Open;

if FormComp.ShowModal = mrOK then
begin
Result := True;
CompanyId := FormComp.dm.DataCompanies.FieldByName (‘id’).AsInteger;
CompanyName := FormComp.dm.DataCompanies.FieldByName (‘name’).AsString;

end;
finally
FormComp.Free;

end;
end;

Another slightly more complex class function (available within the example’s source code,
but not listed here) allows the selection of a person of a given company to register people for
classes. In this case, the form is displayed after disallowing searching another company or
changing it.

In both cases, the lookup is triggered by adding an ellipsis button to the column of the
DBGrid—for example, the grid column listing the names of companies registered for classes.
When this button is pressed, the program calls the class function to display the dialog box
and uses its result for updating the hidden ID field and the visible name field:

procedure TFormClasses.DBGridClassRegEditButtonClick(Sender: TObject);
var
CompanyName: string;

Real-World Blocks

2874c15.qxd 7/2/01 4:35 PM Page 689

http://www.sybex.com

690

CompanyId: Integer;
begin
CompanyId := dm.IBClassReg.FieldByName (‘id_Company’).AsInteger;
if TFormCompanies.SelectCompany (CompanyName, CompanyId) then
begin
dm.IBClassReg.Edit;
dm.IBClassReg.FieldByName (‘Name’).AsString := CompanyName;
dm.IBClassReg.FieldByName (‘id_Company’).AsInteger := CompanyId;

end;
end;

Adding a Free Query Form
The final feature of the program is a form where a user can directly type in a SQL statement
and run it. As a helper, the form lists in a combo box the available tables of the database,
obtained when the form is created by calling:

DmMain.IBDatabase1.GetTableNames (ComboTables.Items);

Selecting an item of the combo box generates a simple SQL query:
MemoSql.Lines.Text := ‘select * from ‘ + ComboTables.Text;

The user, if an expert, can then edit the SQL, possibly introducing restrictive clauses, and
then run the query:

procedure TFormFreeQuery.ButtonRunClick(Sender: TObject);
begin
QueryFree.Close;
QueryFree.SQL := MemoSql.Lines;
QueryFree.Open;

end;

You can see this third form of the RWBlocks program in Figure 15.11. Of course, I’m not
suggesting that you add SQL editing to programs intended for all of your users. This feature
is intended for power users, maybe programmers. I basically wrote it for myself!

Chapter 15 • InterBase and IBX

2874c15.qxd 7/2/01 4:35 PM Page 690

http://www.sybex.com

691

What’s Next?
After looking at other, more general, database access technologies Delphi provides (such as
the BDE and dbExpress), in this chapter I’ve introduced the InterBase database and the IBX
family of components. The last part of the chapter presented a complete real-world applica-
tion, discussing a series of general-purpose techniques you can probably apply even to com-
pletely different InterBase applications.

Now we are ready to focus on another data access alternative, Microsoft’s own ADO tech-
nology, which Delphi fully supports with a specific set of dataset components since version 5.
In subsequent chapters, we’ll continue to explore database development, with multitier archi-
tectures and the development of database-oriented Delphi components.

F I G U R E 1 5 . 1 1 :
The free query form of the
RWBlocks example is
intended for power users.

What’s Next?

2874c15.qxd 7/2/01 4:35 PM Page 691

http://www.sybex.com

16CH A P T E R

ActiveX Data Objects

� Microsoft Data Access Components (MDAC)

� dbGo

� Data link files

� Getting schema information

� Using the Jet engine

� Transaction processing

� Disconnected and persistent recordsets

� The briefcase model and deploying MDAC

2874c16.qxd 7/2/01 4:36 PM Page 693

http://www.sybex.com

694

I wish to acknowledge and thank Guy Smith-Ferrier for writing this chapter. Guy is
a programmer, author, and speaker. He is the author of several commercial soft-
ware products and countless internal systems for independent and blue-chip com-
panies alike. He has written many articles for The Delphi Magazine and for others
on topics beyond Delphi, and he has spoken at numerous conferences in North
America and Europe. Guy lives in England with his wife, his son, and his cat.

Since the mid-1980s, database programmers have been on a quest for the “holy grail” of
database independence. The idea is to use a single API that applications can use to interact with
many different sources of data. The use of such an API would release developers from a depen-
dence upon a single database engine and allow them to adapt to the world’s changing demands.
Vendors have produced many solutions to this goal, the two most notable early solutions being
Microsoft’s Open Database Connectivity (ODBC) and Borland’s Independent Database Appli-
cation Programming Interface (IDAPI), more commonly known as the Borland Database
Engine (BDE).

Microsoft started to replace ODBC with OLE DB in the mid-1990s with the success of
COM. However, OLE DB is what Microsoft would class a system-level interface and is intended
to be used by system-level programmers. It is very large and complex and unforgiving. It makes
greater demands on the programmer and requires a higher level of knowledge in return for
lower productivity. ActiveX Data Objects (ADO) is a layer on top of OLE DB and is referred to
as an application-level interface. It is considerably simpler than OLE DB and more forgiving. In
short, it is designed for use by application programmers.

ADO has great similarities with the BDE. They are, after all, designed to solve very similar
problems. Both support navigation of datasets, manipulation of datasets, transaction process-
ing, and cached updates (called batch updates in ADO), so the concepts and issues involved in
using ADO are similar to those of the BDE. However, there are also differences. ADO is a
more recent technology. This gives it an advantage over the BDE because it is better suited
to today’s needs and doesn’t need to carry so much deadwood around with it. Perhaps more
importantly, ADO has a wider interpretation of “data.” The BDE is used for accessing
“rectangular” data—that is, data in rows and columns. This is ideal for accessing data from
databases. ADO can be used for accessing this data but can also be used for accessing non-
rectangular data, including directory structures, documents, Web sites, and e-mail.

In this chapter we will look at ADO and dbGo. (This set of Delphi components was called
ADOExpress but has been renamed dbGo in Delphi 6, because Microsoft has objected to the
use of the term ADO in product names.) It is possible to use ADO in Delphi without using
dbGo. By importing the ADO type library, you can gain direct access to the ADO interfaces;
this is, indeed, how Delphi programmers used ADO before the release of Delphi 5. However,

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 694

http://www.sybex.com

695

this path bypasses Delphi’s database infrastructure and ensures that you are unable to make
use of other Delphi technologies such as DataSnap. Alternatively, you can turn to Delphi’s
active third-party market for other ADO component suites such as Adonis, AdoSolutio, Dia-
mond ADO, and Kamiak.

This chapter uses dbGo for all of its examples, not only because it is readily available and
supported but also because it is a very viable solution. Regardless of your final choice, you
will find the information here useful.

Microsoft Data Access Components (MDAC)
ADO is part of a bigger picture called Microsoft Data Access Components (MDAC). MDAC
is an umbrella for Microsoft’s database technologies and includes ADO, OLE DB, ODBC,
and RDS (Remote Data Services). Often you will hear people use the terms MDAC and ADO
interchangeably (but incorrectly) because their version numbers and releases are now aligned.
As ADO is only distributed as part of MDAC, we talk in terms of MDAC releases. The major
releases of MDAC have been versions 1.5, 2.0, 2.1, 2.5, and 2.6. Microsoft releases MDAC
independently and makes it available for free download and virtually free distribution (there
are distribution requirements, but almost all Delphi developers will not have trouble meeting
these requirements). MDAC is also distributed with most Microsoft products that have some
kind of database content. This includes Windows 98, Windows 2000, Windows Millennium
Edition, Microsoft Office, Internet Explorer, and SQL Server. In addition, Delphi 6 Enter-
prise ships with MDAC 2.5, and Delphi 5 Enterprise ships with MDAC 2.1.

There are two consequences of this level of availability. First, it is highly likely that your users
will already have MDAC installed on their machines. Second, whatever version your users have,
or you upgrade them to, it is also virtually certain that someone, either you, your users, or other
application software, will upgrade their existing MDAC to whatever the current release of
MDAC is. There is no way you will be able to prevent this, as MDAC is installed with such
commonly used software as Internet Explorer. Add to this the fact that Microsoft supports
only the current release of MDAC and the release before it, and you are forced to arrive at a
conclusion:

Your applications must be designed to work with the current release of MDAC or the
release before it.

If you chart the releases of MDAC, you can expect to see a new version of MDAC every 10
months on average (Delphi itself has a new release every 14 months on average).

As an ADO developer, you should regularly check the MDAC pages on Microsoft’s site at
www.microsoft.com/data. From there you can download the latest version of MDAC for free.
At the time of writing, this is MDAC 2.6, which you can download from www.microsoft.com/
data/download_260rtm.htm (5.2 MB), but you should check for a more recent version first.

Microsoft Data Access Components (MDAC)

2874c16.qxd 7/2/01 4:36 PM Page 695

http://www.sybex.com

696

While you are on this Web site, you should take the opportunity to download the MDAC
SDK (13 MB) if you do not already have it or the Platform SDK (the MDAC SDK is part of
the Platform SDK). The MDAC SDK is your bible. Download it and consult it regularly and
use it to answer your ADO questions. You should treat this as your first port of call when you
need MDAC information. Beyond this, you should read the README files that come with
MDAC. Look in \Program Files\Common Files\System\ADO for all of the files ending
README.TXT.

Finally, in getting ready for using ADO in your Delphi applications, you should check for
dbGo/ADOExpress updates on Borland’s excellent community site (http://community
.borland.com). Informal patches are released here that are often a must-have. For example,
there is a show-stopping problem when using MDAC 2.6 and Delphi 5’s ADOExpress,
which requires a patch.

OLE DB Providers
OLE DB providers enable access to a source of data. They are ADO’s equivalent to the
BDE’s drivers. However, although the BDE’s Driver SDK has been available for many years,
there are no third-party BDE drivers. This is not the case for OLE DB providers. MDAC
includes many providers that I’ll discuss, but many more are available from Microsoft and,
more prolifically, the third-party market. It is no longer possible to reliably list all available
OLE DB providers, because the list is so large and ever-changing, but here are some of the
main vendors of these drivers:

Company Web Site OLE DB Provider

B2 Systems www.b2systems.com SQL Server, Oracle, Sybase,
Informix, RDB, DB2, flat files

ISG www.isgsoft.com ISG Navigator (ISAM, DB2, IMS,
Informix, Jasmine, Open Ingres,
Oracle, SQL Server, Sybase, Adabas,
RDB, RMS, VSAM)

Merant www.merant.com DB2, Informix, Lotus Notes, SQL
Server, Ingres, Oracle, Sybase

You should add to this list almost all database vendors, as the majority now supply their own
OLE DB providers. For example, Oracle supplies the ORAOLEDB provider. Notable omis-
sions include InterBase; at the time of writing, Borland doesn’t plan to write an OLE DB
provider for InterBase. Your only solutions are to access InterBase either using the ODBC
Driver, or through Jason Wharton’s InterBase provider (www.ibobjects.com, although this is

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 696

http://www.sybex.com
http://community

697

still in development) or Dmitry Kovalenko’s IBProvider (www.lcpi.lipetsk.ru/prog/eng/
index.html).

TIP Jason Wharton’s OLE DB Provider is additionally interesting because it is written using Binh Ly’s OLE
DB Provider Development Toolkit (www.techvanguards.com/products/optk/install.htm). If
you want to write your own OLE DB provider, this is an easier way than most.

MDAC OLE DB Providers
When you install MDAC, you automatically install the OLE DB providers shown in
Table 16.1:

TABLE 16.1: OLE DB Providers Included with MDAC

Driver Provider Description

MSDASQL ODBC Drivers ODBC drivers (default)

Microsoft.Jet.OLEDB.3.5 Jet 3.5 MS Access 97 databases only

Microsoft.Jet.OLEDB.4.0 Jet 4.0 MS Access databases et al.

SQLOLEDB SQL Server MS SQL Server databases

MSDAORA Oracle Oracle databases

MSOLAP OLAP Services Online Analytical Processing

SampProv Sample provider Example of an OLE DB provider for CSV files

MSDAOSP Simple provider For creating your own providers for simple text data

If you do not specify which OLE DB provider you are using, OLE DB defaults to the
ODBC OLE DB Provider, which is used for backward compatibility with ODBC. As you
learn more about ADO, you will discover the limitations of this provider. It’s probable that
you will eventually tire of these limitations, and I recommend that you look from the begin-
ning for an OLE DB provider that is specific to your database rather than struggle with the
ODBC OLE DB Provider.

The Jet OLE DB Providers support MS Access and other “desktop” databases. We will
return to these providers later.

The SQL Server Provider supports SQL Server 7, SQL Server 2000, and Microsoft Data-
base Engine (MSDE). MSDE is worth taking a moment’s thought over. MSDE is SQL
Server with most of the tools removed and some code added to deliberately degrade perfor-
mance when there are more than 5 active connections. MSDE is important for two reasons.
First, it is free. You can download it from Microsoft’s Web site and, with very few restrictions,
distribute it with your application. Second, MSDE is SQL Server. Of course you don’t get the

OLE DB Providers

2874c16.qxd 7/2/01 4:36 PM Page 697

http://www.sybex.com

698

SQL Server tools, and it does deliberately degrade performance, but it is SQL Server. This
means that it is perfect for use with low numbers of users. When the number of users increases
and performance starts to suffer, your upgrade path to SQL Server is just a question of paying
for SQL Server. Compatibility is virtually assured. You use the same OLE DB provider, and
you use it in exactly the same way with exactly the same names and parameters. This is because
MSDE is SQL Server. Because of these reasons and because Microsoft is moving their empha-
sis away from Access, MSDE is worth considering for future developments.

The OLE DB Provider For OLAP can be used directly but is more often used by ADO
Multi-Dimensional (ADOMD). ADOMD is an additional ADO technology designed to
provide Online Analytical Processing (OLAP). If you have used Delphi’s Decision Cube,
or Excel’s Pivot Tables, or Access’s Cross Tabs, then you have used some form of OLAP.

In addition to these MDAC OLE DB providers, Microsoft supplies other OLE DB
providers with other products or with downloadable SDKs. The Active Directory Services
OLE DB Provider is included with the ADSI SDK; the AS/400 And VSAM OLE DB
Provider is included with SNA Server; and the Exchange OLE DB Provider is included
with Microsoft Exchange 2000.

The OLE DB Provider For Indexing Service provides access to (and is part of) Microsoft
Indexing Service, a Windows NT and 2000 mechanism that speeds up file searches by build-
ing catalogs of file information. Indexing Service is integrated into IIS and, consequently, is
often used for indexing Web sites. Microsoft Indexing Service is also available for Windows
NT 4 as part of the NT 4 Option Pack.

The OLE DB Provider For Internet Publishing is included with Internet Explorer 5,
Windows 2000, and Office 2000 and allows developers to manipulate directories and files
using HTTP. This is useful for maintaining Web sites that support either FrontPage Web
Extender (WEC) or Web Distributed Authoring and Versioning (WebDAV).

Still more OLE DB providers come in the form of service providers. As their name implies,
OLE DB service providers provide a service to other OLE DB providers. Often these service
providers will go unnoticed because they are invoked automatically as needed without pro-
grammer intervention. The Cursor Service, for example, is invoked when you create a client-
side cursor, and the Persisted Recordset provider is invoked to save data locally.

dbGo
The set of components that make up dbGo (Table 16.2) should be easily recognizable by
programmers familiar with the BDE, dbExpress, or IBExpress.

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 698

http://www.sybex.com

699

TABLE 16.2: dbGo Components

dbGo Component Description BDE Equivalent Component

TADOConnection Connection to a database TDatabase

TADOCommand Executes an action SQL command No equivalent

TADODataSet All-purpose TDataSet No equivalent

TADOTable Encapsulation of a table TTable

TADOQuery Encapsulation of SQL SELECT TQuery

TADOStoredProc Encapsulation of a stored procedure TStoredProc

TRDSConnection Remote Data Services connection No equivalent

The four dataset components (TADODataSet, TADOTable, TADOQuery, TADOStored-
Proc) are implemented almost entirely by their immediate ancestor TCustomADODataSet.
This component provides the majority of dataset functionality, and its descendants are
mostly thin wrappers that expose different features of the same component. As such, the
components have a lot in common. In general, however, TADOTable, TADOQuery, and
TADOStoredProc are viewed as “compatibility” components and are used to aid the transi-
tion of knowledge and code from their BDE counterparts. Be warned, though: These com-
patibility components are similar to their counterparts but not exactly the same. You will find
differences in any application except the most trivial. TADODataSet is the component of
choice partly because of its versatility but also because it is closer in appearance to the ADO
Recordset interface upon which it is based. Throughout this chapter, we will use all of the
TDataSet components to give you the experience of using each.

Enough theory. Let’s see some action. Drop a TADOTable onto a form. Look in the Object
Inspector and you will not see any DatabaseName or AliasName properties. ADO doesn’t use
aliases, so there are no alias-related properties. Instead ADO runs on connection strings. Con-
nection strings are the lifeblood of ADO, and you should take time out to master this sub-
ject. You can type in a connection string by hand if you know what you are doing, but only
programmers who think that VI is a great editor of our time enjoy doing this. For the rest
of us, there is the connection string editor. In the Object Inspector, click the ellipses in the
ConnectionString property. This invokes Delphi’s connection string editor (Figure 16.1).

dbGo

2874c16.qxd 7/2/01 4:36 PM Page 699

http://www.sybex.com

700

This editor adds little value to the process of entering a connection string, so you can click
Build to go straight to Microsoft’s connection string editor (Figure 16.2).

This is a tool you will come to know and love—or maybe just to know. The first tab shows
the OLE DB providers and service providers installed on your computer. The list will vary
according to the version of MDAC and other software installed on your computer. You can
see that the OLE DB Provider for ODBC Drivers is selected by default. In our first example,
we will open the infamous MS Access Northwind database using the Jet 4.0 OLE DB
Provider. Northwind is the Microsoft equivalent of DBDEMOS; it is the test data used in

F I G U R E 1 6 . 2 :
Microsoft’s connection
string editor

F I G U R E 1 6 . 1 :
Delphi’s connection string
editor

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 700

http://www.sybex.com

701

many examples on ADO because it is so widely available. The exact location of Northwind
and its name are not fixed, but you should search your hard disk for Northwind.mdb or
NWind.mdb. Microsoft SQL Server comes with a very similar version of the same database,
also called Northwind.

Double-click the Jet 4.0 OLE DB Provider and you will be presented with the Connection
tab. This page varies according to the provider you select, but for Jet it simply asks you for
the name of the database and your login details. If you have Microsoft Office installed on
your computer, then the database name will probably be

c:\program files\microsoft office\office\samples\northwind.mdb

Click the Test Connection button to test the validity of your selections.

The Advanced tab handles access control to the database, and this is where you would
specify exclusive or read-only access to the database.

The All tab lists all the parameters in the connection string. The list is specific to the OLE
DB provider you selected on the first page. You should make a mental note of this page,
because it contains many parameters that are the answers to many problems. Click OK to
close the Microsoft connection string editor, click OK again to close the Borland connection
string editor, and the value will be returned to the ConnectionString property, which will
now be set to

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=c:\program files\microsoft office\
office\samples\northwind.mdb;Persist Security Info=False

So connection strings are just a string with many parameters delimited by semicolons. If
you want to add, edit, or delete any of these parameter values programmatically, you must
write your own routines to find the parameter in the list and amend it appropriately.

Now that we have set the connection string, we can select a table. Drop down the list of
tables using the TableName property in the Object Inspector. Select the Customers table and set
Active to True. Add a TDataSource and a TDBGrid and connect them all together, and you
are now using ADO.

Incidentally, if you are going to use dbGo on a permanent basis, you might benefit from a
simple tip. If you followed along with the last example, you will have noticed that you had to
flip back and forth between the Data Access page and the ADO page to drop a TDataSource
component onto the form. If you use dbGo exclusively, then the TDataSource component is
the only component you will ever need on the Data Access page. Delphi’s IDE prevents you
from adding the same component to multiple pages, but you can move components. To move
the TDataSource component from the Data Access page to the ADO page, right-click the
palette, select Properties, and drag TDataSource onto the ADO page. If, however, you use both
ADO and another database technology such as the BDE, then you can simulate installing

dbGo

2874c16.qxd 7/2/01 4:36 PM Page 701

http://www.sybex.com

702

TDataSource on multiple pages by creating a Component Template for a TDataSource and
installing it on the ADO page. This is a more elegant solution than creating a TADOData-
Source descendant, because the component that is dropped onto the form is still a genuine
TDataSource and not some other component.

TADOConnection
When a TADOTable component is used in this way, it creates its own connection compo-
nent behind the scenes in the same way that the BDE components create their temporary
TDatabase component. You do not have to accept the default connection it creates, and you
should not accept it. Instead, you should create your own connection in the form of a
TADOConnection component.

The TADOConnection component is used for many of the same purposes as the BDE’s
TDatabase component. It allows you to customize the login procedure, control transactions,
execute action commands directly, and reduce the number of connections in an application.
Using a TADOConnection is easy. Place one on a form and set its ConnectionString prop-
erty in the same way as for the TADOTable. Alternatively, you can double-click a TADO-
Connection to invoke the connection string editor directly. With the ConnectionString set to
Northwind.mdb, you can disable the login dialog box by setting LoginPrompt to False. To make
use of the new connection, set ADOTable1’s Connection property to ADOConnection1. You will
see ADOTable1’s ConnectionString property reset because Connection and ConnectionString
are mutually exclusive. One of the benefits of using a TADOConnection is that the connection
string is centralized instead of scattered throughout many components. Another, more impor-
tant, benefit is that all of the components that share the TADOConnection share a single con-
nection. Without your own TADOConnection, each ADO dataset uses its own connection.

Data Link Files
So a TADOConnection allows us to centralize the definition of a connection string within a
form or data module. However, even though this is a worthwhile step forward from scatter-
ing the same connection string throughout all ADO datasets, it still suffers from a fundamen-
tal flaw: If you use a database engine that defines the database in terms of a filename, then the
path to the database file(s) is hard-coded in the EXE. This makes for a very fragile applica-
tion. The BDE uses aliases to overcome this problem; ADO uses Data Link files. A Data
Link file is a connection string in an INI file. The following is an example of a Data Link file:

[oledb]
; Everything after this line is an OLE DB initstring
Provider=Microsoft.Jet.OLEDB.4.0;Data Source=c:\program files\microsoft office\
office\samples\northwind.mdb;Persist Security Info=False

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 702

http://www.sybex.com

703

Although you can give a Data Link file any extension, the recommended extension is
.UDL. You can create a Data Link using any text editor, or you can right-click Windows
Explorer, select New, then Text Document, rename the file with a UDL extension, and then
double-click the file to invoke the Microsoft connection string editor.

To use the Data Link file, set the TADOConnection’s ConnectionString to:
File Name=TEST.UDL

assuming that the file is called TEST.UDL and it is in the same directory as the EXE. You can
place your Data Link files anywhere on the hard disk, but if you are looking for a common,
shared location, then you can use the DataLinkDir function in ADODB.PAS:

ShowMessage(‘The Data Link directory is ‘ + DataLinkDir);

If you haven’t altered MDAC’s defaults, DataLinkDir will return
C:\Program Files\Common Files\System\OLE DB\Data Links

Delphi 5’s ADOExpress suffers from a flaw when using data link files, which is fixed in
Delphi 6’s dbGo. In 5, set the Connected property of the TADOConnection to True and
watch the ConnectionString property. The ConnectionString becomes the actual connec-
tion string that is in use (i.e., the one from the data link file). The problem is that when the
property is streamed to the form when the application is saved, it is the active connection
string that is saved. The reference to the data link file is permanently forgotten. If you
change the data link file, you will not see any change to your application.

If you want to use data link files and you don’t want to suffer from this problem, use the
following TADOConnectionX component instead of TADOConnection:

TADOConnectionX = class(TADOConnection)
private
FUDLFile: string;

protected
procedure DoConnect; override;

published
property UDLFile: string read FUDLFile write FUDLFile;

end;

The component has a UDLFile property where the UDL filename is permanently stored
(you must manually set this property yourself). The class has a single method, DoConnect,
which ensures that the UDL file is always read each time the connection is opened:

procedure TADOConnectionX.DoConnect;
begin
if FUDLFile <> ‘’ then
ConnectionString:= ‘File Name=’ + FUDLFile;

inherited;
end;

Data Link Files

2874c16.qxd 7/2/01 4:36 PM Page 703

http://www.sybex.com

704

Dynamic Properties
Imagine that you are responsible for designing a new database middleware architecture. You
have to reconcile two opposing goals of a single API for all databases and access to database-
specific features. You could take the approach of designing an interface that is the sum of all
of the features of every database ever created. Each class would have every property and
method imaginable, but it would only use the properties and methods it had support for. It
doesn’t take much discussion to realize that this isn’t a good solution. ADO has to solve these
apparently mutually exclusive goals, and it does so using dynamic properties. Almost all ADO
interfaces, and their corresponding dbGo components, have a property called Properties that
is a collection of database-specific properties. These properties can be accessed by their ordi-
nal position, like this:

ShowMessage(ADOTable1.Properties[1].Value);

But they are more usually accessed by name like this:
ShowMessage(ADOConnection1.Properties[‘DBMS Name’].Value);

It would be tedious to list all of the different dynamic properties for all of the different
classes for all of the different OLE DB providers for all of the situations in which they are
used, but to give you an idea of their importance, a typical ADO Connection or Recordset
has approximately 100 dynamic properties. As we will see throughout this chapter, the
answers to many ADO questions lie in dynamic properties, so keep your eyes and ears open
for the ones that solve your problems. An important event, OnRecordsetCreate, was planned
to be added to TCustomADODataSet in Delphi 6, which you may need to be aware of when
using dynamic properties. (This event was not yet included as this book went to press.)
OnRecordsetCreate is called immediately after the recordset has been created but has not
been opened. This is useful when setting some dynamic properties as certain properties can
only be set when the recordset is closed.

Getting Schema Information
One of the BDE components for which there is no apparent ADO alternative is TSession.
TSession is used for several purposes, but a common use is to retrieve schema information
(information about the structure of the database and its contents). In ADO this information
can be retrieved using TADOConnection’s OpenSchema method. This method accepts four
parameters. The first, and most interesting, is the kind of data that OpenSchema should return.
It is a TSchemaInfo value, which is a set of 40 values including those for retrieving a list of
tables, indexes, columns, views, and stored procedures. The second parameter is a filter to
place on the data before it is returned. We will see an example of this parameter in a moment.

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 704

http://www.sybex.com

705

The third parameter is a GUID for a provider-specific query and is only used if the first
parameter is siProviderSpecific. The fourth and final parameter is a TADODataSet into
which the data is returned. This last parameter illustrates a common theme in ADO: any
method that needs to return more than a small amount of data will return its data as a
Recordset, or in dbGo terms, a TADODataSet.

To use TADOConnection.OpenSchema, you need an open a TADOConnection. The follow-
ing example retrieves a list of primary keys for every table into a TADODataSet:

ADOConnection1.OpenSchema(siPrimaryKeys, EmptyParam, EmptyParam, ADODataSet1);

Each field in a primary key has a single row in the result set. So a table with a composite
key of two fields has two rows. The two EmptyParam values indicate that these parameters are
given empty values and are ignored.

When EmptyParam is passed as the second parameter, the result set includes all information
of the requested type for the entire database. For many kinds of information, you will want to
filter the result set. You can, of course, apply a traditional Delphi filter to the result set using
the Filter and Filtered properties or the OnFilterRecord event. However, this applies the
filter on the client side in this example. Using the second parameter, we can apply a more
efficient filter at the source of the schema information. The filter is specified as an array of
values. Each element of the array has a specific meaning relevant to the kind of data being
returned. For example, the filter array for primary keys has three elements: the first is the
catalog (catalog is ANSI-speak for the database), the second is the schema, and the third is
the table name. This example returns a list of primary keys for the Customers table:

var
Filter: OLEVariant;

begin
Filter := VarArrayCreate([0, 2], varVariant);
Filter[2] := ‘CUSTOMERS’;
ADOConnection1.OpenSchema(
siPrimaryKeys, Filter, EmptyParam, ADODataSet1);

end;

You can retrieve the same information using ADOX, and this warrants a brief comparison
between OpenSchema and ADOX. ADOX is an additional ADO technology that allows you to
retrieve and update schema information. It is ADO’s equivalent to SQL’s Data Definition
Language (DDL, i.e., CREATE, ALTER, DROP) and Data Control Language (DCL, i.e.,
GRANT, REVOKE). ADOX is not directly supported in dbGo, but you can easily import
the ADOX type library and use it successfully in Delphi applications. Unfortunately, ADOX
is not as universally implemented as OpenSchema, so there are greater gaps. If you just want to
retrieve information and not to update it, then OpenSchema is usually a better choice.

Getting Schema Information

2874c16.qxd 7/2/01 4:36 PM Page 705

http://www.sybex.com

706

Using the Jet Engine
Now that you have some of the MDAC and ADO basics under your belt, we can take a
moment out to look at the Jet engine. This engine is of great interest to some and of no
interest to others. If you’re interested in Access, Paradox, dBase, text, Excel, Lotus 1-2-3, or
HTML, then this section is for you. If you have no interest in any of these formats, you can
safely skip this section.

The Jet database engine is usually associated with Microsoft Access databases, and this is,
indeed, its forte. However, the Jet engine is also an all-purpose desktop database engine, and
this lesser-known attribute is where much of its strength lies. Since using the Jet engine with
Access is its default mode and is straightforward, this section mostly covers use of non-Access
formats, which are not so obvious.

Before we look at these formats, we should discuss the availability of the Jet engine. It was
included with MDAC from v1.5c until, and including, v2.5. From MDAC v2.6, the Jet engine
was dropped from MDAC (which accounts for the reduction in download size from 7.5 MB to
5.2 MB). You can download a distributable version of the Jet engine from www.microsoft.com/
data/download.htm. Of course, if you have installed MDAC prior to v2.6, or Microsoft Access,
Office, Excel, Visual Basic, or Visual C++ on your user’s machine, then your user will already
have the Jet engine.

There are two Jet OLE DB providers: the Jet 3.51 OLE DB Provider and the Jet 4.0 OLE
DB Provider. The Jet 3.51 OLE DB Provider uses the Jet 3.51 engine and supports Access 97
databases only. If you intend to use Access 97 and not Access 2000, then you will get better
performance using this OLE DB provider in most situations than using the Jet 4.0 OLE DB
Provider. The Jet 4.0 OLE DB Provider supports Access 97, Access 2000, and Installable
Indexed Sequential Access Method (IISAM) drivers. Installable ISAM drivers are those writ-
ten specifically for the Jet engine to support access to ISAM formats such as Paradox, dBase,
and text, and it is this facility that makes the Jet engine so useful and versatile. The complete
list of ISAM drivers installed on your machine depends on what software you have installed
on your machine. You can find this list by looking in the registry at

HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\4.0\ISAM Formats

However, the Jet engine includes drivers for Paradox, dBase, Excel, text, and HTML.

Paradox
The Jet engine, naturally, expects to be used with Access databases. To use it with any data-
base other than Access, you need to tell it which IISAM driver to use. This is a painless
process that involves setting the Extended Properties connection string argument in the con-
nection string editor. We’ll do a quick example. Add a TADOTable to a form and invoke the

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 706

http://www.sybex.com

707

connection string editor. Select the Jet 4.0 OLE DB Provider. Select the All page, locate the
Extended Properties property, and double-click it to show the dialog box illustrated in
Figure 16.3.

Enter Paradox 7.x in the Property Value as shown and click OK. Now go back to the
Connection tab and enter the name of the directory containing the Paradox tables. For
example you can enter

c:\program files\common files\borland shared\data

which contains Delphi’s DBDEMOS Paradox tables. Unfortunately, the Browse button
showing the ellipses does not react to the Extended Properties value and always expects to
select a file and not a directory, and so it has little value when used with Paradox databases.
Click OK on both dialog boxes and select a table in the TADOTable’s TableName. Set Active
to True and you are now using Paradox through ADO.

Sadly, I have some bad news for Paradox users. Under certain circumstances, you will need
to install the BDE in addition to the Jet engine. It is bizarre that in a chapter dedicated to
ADO we are talking about the need to install the BDE in addition to MDAC, but depending
on your application this may be true. Jet 4.0 requires the BDE in order to be able to update
Paradox tables, but it doesn’t require the BDE just to read them. The same is true for most
releases of the Paradox ODBC Driver. As disastrous as this sounds, all is not lost. Microsoft
has received justified criticism on this point and has made a new Paradox IISAM available
that does not require the BDE. You can get these updated drivers from Microsoft Technical
Support.

NOTE As you learn more and more about ADO, you will discover how much of ADO depends on the
OLE DB provider and the DBMS (database management system) in question. You will see how
the desktop databases such as Paradox and dBase have more restrictions and fewer functional
features. If you are using Paradox simply because it is free, then you would be well advised to
use another free database such as Access or MSDE. Alternatively, if leaving Paradox is not an
option, then you should closely compare the BDE’s support for Paradox with ADO’s support for
Paradox. In some cases, you will find the BDE’s support better.

F I G U R E 1 6 . 3 :
Setting Extended Properties

Using the Jet Engine

2874c16.qxd 7/2/01 4:36 PM Page 707

http://www.sybex.com

708

Excel
Excel is easily accessed using the Jet OLE DB Provider. Once again, we use the Extended
Properties property and set it to Excel 8.0. Assume that we have an Excel spreadsheet called
ABCCompany.xls that, in Excel, looks like Figure 16.4.

Notice that the sheet is called Employees. Our mission is to open and read this file using
Delphi. You can, of course, solve this problem by automating Excel with only a small knowl-
edge of COM. However, the ADO solution is considerably easier to implement.

Ensure that your spreadsheet is not open in Excel. Add a TADODataSet to a form. Set
ConnectionString to use the Jet 4.0 OLE DB Provider and set Extended Properties to Excel
8.0. In the Connection tab, set the database name to the full file and path specification of the
Excel spreadsheet. Close the connection string editor. The TADODataSet component works
by opening or executing a value in its CommandText property. This value might be the name of
a table or an SQL statement or a stored procedure or the name of a file. You specify how this
value is interpreted by setting the CommandType property. Set CommandType to cmdTableDirect
to indicate that the value in CommandText is the name of a table and that all columns should
be returned from this table. Select CommandText in the Object Inspector and you will see a
drop-down arrow. Drop down the arrow and a single “table” will be displayed: Employees$.
(Excel workbooks are suffixed with a $.) Set Active to True, add a TDataSource and a TDB-
Grid and connect them altogether, and you will see the Excel spreadsheet. It will be a little
difficult to view in the grid because each column has a width of 255 characters. You can
change this either by adding columns to the grid and changing their Width properties, or by
adding persistent fields and changing their Size or DisplayWidth properties. After a little
rearranging, you should see something like Figure 16.5.

F I G U R E 1 6 . 4 :
ABCCompany.xls in Excel

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 708

http://www.sybex.com

709

Now save your application. If you run it from the IDE, you will discover the first of the
limitations of the Excel IISAM: the XLS file is opened exclusively. To run the application,
you will first need to close the application that is open in the IDE and then run it from Win-
dows Explorer. When you run the program, you will notice another limitation of this IISAM
driver: you can add new rows and edit existing rows, but you cannot delete rows.

Incidentally, you could have used either TADOTable or TADOQuery, instead of TADO-
DataSet, but you need to be aware of how ADO treats symbols in things like table names and
field names. If you were to use a TADOTable and drop down the list of tables, you would see
the Employees$ table as you would expect. Unfortunately if you attempt to open the table,
you will receive an error. The same is true for SELECT * FROM Employees$ in a TADOQuery.
The problem lies with the dollar sign in the table name. If you use characters such as dollars,
dots, or, more importantly, spaces in table names or field names, then you must enclose the
name in square brackets (e.g., [Employees$]).

Text Files
One of the very useful IISAM drivers that comes with the Jet engine is the Text IISAM. This
driver allows you to read and update text files of almost any structured format. We will start
with a simple text file to get up and running and then cover the variations later. Assume we
have a simple text file called NightShift.TXT that contains the following text:

CrewPerson ,HomeTown
Neo ,Cincinnati
Trinity ,London
Morpheus ,Milan

Add a TADOTable to a form, set its ConnectionString to use the Jet 4.0 OLE DB
Provider, and set Extended Properties to Text. The Text IISAM considers a directory a data-
base, so you need to enter the directory that contains the NightShift.TXT file as the database
name. Back in the Object Inspector, drop down the list of tables in the TableName property.
The “database” consists of all of the text files in this directory. You will notice that the dot in
the filename has been converted to a hash, as in NightShift#TXT. Set Active to True, add a
TDataSource and a TDBGrid and connect them altogether, and you will see the contents of
the text file in a grid.

F I G U R E 1 6 . 5 :
ABCCompany.xls in Delphi

Using the Jet Engine

2874c16.qxd 7/2/01 4:36 PM Page 709

http://www.sybex.com

710

If your computer’s settings are such that the decimal separator is a comma instead of a
period (so that 1,000.00 is displayed as 1.000,00), then you will need to either change your
Regional Settings (Start ➢ Settings ➢ Control Panel ➢ Regional Settings ➢ Numbers) or
take advantage of SCHEMA.INI, described shortly.

Of course, the grid indicates that the widths of the columns are 255 characters. You can
change these just as we did in Excel by adding persistent fields or columns to the grid and
then setting the relevant width property. Alternatively you can define the structure of the
text file more specifically using SCHEMA.INI.

Text files come in all shapes and sizes. Often you do not need to worry about the format of
a text file because the Text IISAM takes a peek at the first 25 rows to see whether it can
determine the format for itself. It uses this information and some additional information in
the Registry to decide how to interpret the file and how to behave. If you have a file that
doesn’t match a regular format the Text IISAM can determine, then you can provide this
information in the shape of SCHEMA.INI. SCHEMA.INI is an INI file located in the same direc-
tory as the text files to which it refers. It contains schema information, also called metadata,
about any or all of the text files in the same directory. Each text file is given its own section,
identified by the name of the text file, such as [NightShift.TXT].

Thereafter you can specify the format of the file, the names, types, and sizes of columns,
any special character sets to use, and any special column formats (e.g., date/time, currency).
Let’s assume that we change our NightShift.TXT file to the following format:

Neo |Cincinnati
Trinity |London
Morpheus |Milan

In this example, the column names are not included in the text file and the delimiter is a
vertical bar. An associated SCHEMA.INI file might look something like the following:

[NightShift.TXT]
Format=Delimited(|)
ColNameHeader=False
Col1=CrewPerson Char Width 10
Col2=HomeTown Char Width 30

Regardless of whether or not you use a SCHEMA.INI file, you will encounter two limitations
of the Text IISAM: rows cannot be deleted, and rows cannot be edited.

Importing and Exporting
The Jet engine is particularly adept at importing and exporting data. The process of export-
ing data is the same for each export format and consists of executing a SELECT statement
with a special syntax. Let’s start with an example of exporting data from the Northwind

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 710

http://www.sybex.com

711

Access database to a Paradox table. You will need an active TADOConnection, called ADO-
Connection1 in our example, that uses the Jet 4.0 OLE DB Provider to open the North-
wind.mdb Access database. The following code exports the Customers table to a Paradox
Customers.db file:

ADOConnection1.Execute(‘SELECT * INTO Customers ‘ +
‘IN “C:\Temp” “Paradox 7.x;” FROM CUSTOMERS’);

Let’s look at the pieces of this SELECT statement. The INTO clause specifies the new
table that will be created by the SELECT statement; this table must not already exist. The
IN clause specifies the database to which the new table is added; in Paradox, this is a direc-
tory that already exists. The clause immediately following the database is the name of the
IISAM driver to be used to perform the export. You must include the trailing semicolon at the
end of the driver name. The FROM clause is a regular part of any SELECT statement.

All export statements follow these same basic clauses, but you will find that some IISAM
drivers have differing interpretations of what a database is. I’ll do another couple of examples
to demonstrate the differences. Here, we export the same data to Excel:

ADOConnection1.Execute(‘SELECT * INTO Customers ‘ +
‘IN “Northwind.xls” “Excel 8.0;” FROM CUSTOMERS’);

A new Excel file called Northwind.xls is created in the application’s current directory. A
workbook called Customers is added, containing all of the data of the Customers table in
Northwind.mdb. You can also export data to Excel by automating Excel, but if you have ever
done this you will know that this ADO solution is simpler by far.

This next example exports the same data to HTML:
ADOConnection1.Execute(‘SELECT * INTO [Customers.htm] ‘ +

‘IN “C:\Temp” “HTML Export;” FROM CUSTOMERS’);

In this example, the database is the directory, as it was for Paradox but not for Excel. The
table name must include the .htm extension and, therefore, it must be enclosed in square
brackets. Notice that the name of the IISAM driver is “HTML Export”, not just "HTML",
because this driver can only be used for exporting to HTML.

The last IISAM driver we’ll look at in this investigation of the Jet engine is the sister to
HTML Export: HTML Import. Add a TADOTable to a form, set its ConnectionString to
use the Jet 4.0 OLE DB Provider and Extended Properties to HTML Import. Set the data-
base name to the name of the HTML file created by the export a few moments ago—that is,
C:\Temp\Customers.htm. Close the connection string editors and set the TableName to
Customers. Open the table and you have just imported the HTML file! Bear in mind,
though, that the name of this IISAM driver is “HTML Import”, not just "HTML". If you
attempt to update the data in any way, you’ll receive an error because this driver is intended
for import only. Finally, if you create your own HTML files containing tables and want to

Using the Jet Engine

2874c16.qxd 7/2/01 4:36 PM Page 711

http://www.sybex.com

712

open these tables using this driver, then remember that the name of the table is the value of
the CAPTION tag of the HTML TABLE.

Cursor Locations and Cursor Types
There are two properties of ADO datasets that have a fundamental impact on your applica-
tion and are inextricably linked with each other: CursorLocation and CursorType. The key to
a successful application and to understanding your dataset’s behavior and capabilities and the
performance of your application lies in understanding these two properties.

The CursorLocation, of type TCursorLocation, allows you to specify what is in control of
the retrieval and update of your data. You have two choices: client (clUseClient) or server
(clUseServer). Your choice affects your dataset’s functionality, performance, and scalability.

A client cursor is managed by the ADO Cursor Engine. This engine is an excellent exam-
ple of an OLE DB service provider: it provides a service to other OLE DB providers. The
ADO Cursor Engine manages the data from the client side of the application. All data in the
result set is retrieved from the server to the client when the dataset is opened. Thereafter, the
data is held in memory and updates and manipulation are managed by the ADO Cursor
Engine. One benefit is that manipulation of the data, after the initial retrieval, is considerably
faster. Furthermore, as the manipulation is performed in memory, the ADO Cursor Engine
is more versatile than most server-side cursors and offers facilities that cannot be reproduced
by server-side cursors. I’ll examine these benefits later, as well as other technologies that
depend on client-side cursors such as disconnected and persistent recordsets.

A server-side cursor is managed by the DBMS. In a client/server database such as SQL
Server, Oracle, or InterBase, this means that the cursor is managed physically on the server.
In a desktop database such as Access or Paradox, the “server” location is simply a logical loca-
tion, as the database is running on the desktop. Server-side cursors are often faster to load
than client-side cursors because not all of the data is transferred to the client when the
dataset is opened. This also makes them more suitable for very large result sets where the
client has insufficient memory to hold the entire result set in memory. Often you can deter-
mine what kinds of features will be available to you with each cursor location by thinking
through how the cursor works. A good example of how features determine cursor type is
locking, which I will cover in more detail later. To place a lock on a record requires a server-
side cursor, because there must be a conversation between the application and the DBMS.

Another issue that will affect your choice of cursor location is scalability. Server-side cur-
sors are managed by the DBMS; in a client/server database, this will be located on the server.
As more and more users use your application, the load on the server increases with each server-
side cursor. A greater workload on the server means that the DBMS becomes a bottleneck

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 712

http://www.sybex.com

713

faster, so the application is less scalable. You can achieve better scalability by using client-side
cursors. The initial hit on opening the cursor is often heavier, because all the data is trans-
ferred to the client, but the maintenance of the open cursor can be lower. As you can see,
many conflicting issues are involved in choosing the correct cursor location for your datasets.

Your choice of cursor location directly affects your choice of cursor type. To all intents and
purposes there are four cursor types, but I will digress for a moment to explain why there is
one unused value. There is a cursor type that means “unspecified.” Many values in ADO sig-
nify an unspecified value, and I will cover them all here and explain why you won’t have much
to do with them. They exist in Delphi because they exist in ADO. ADO was mostly designed
for Visual Basic and C programmers. In these languages, you use the objects directly without
any of the assistance that dbGo provides. As such, you can create and open recordsets, as they
are called in ADO-speak, without having to specify every value for every property. The prop-
erties for which a value has not been specified have an unspecified value. However, in dbGo
we use components. These components have constructors, and these constructors initialize
the properties of the components. So from the moment you create a dbGo component, it will
usually have a value for each and every property. The consequence is that we have little need
for the unspecified values in many enumerated types.

Back to the cursor types. Cursor types, of type TCursorType, affect how your data is read
and updated. There are four choices: forward-only, static, keyset, and dynamic. Before we get
too involved in all of the permutations of cursor locations and cursor types, you should be
aware that there is only one cursor type available for client-side cursors: the static cursor. All
other cursor types are only available to server-side cursors. I’ll return to the subject of cursor
type availability after we have looked at the various cursor types, in increasing order of
expensiveness.

The least expensive cursor type, and therefore the type with the best possible performance,
is the forward-only cursor, which, as the name implies, will let you navigate forward. The
cursor reads the number of records specified by CacheSize (default of 1) and each time it
runs out of records, it reads another CacheSize set. Any attempt to navigate backward
through the result set beyond the number of records in the cache will result in an error.

Knowing how a forward-only cursor works should help you to understand why they do not
support bookmarks. A bookmark normally allows your dataset to navigate by jumping to a
selected row. Because you can only travel forward through a forward-only cursor and any
bookmark placed will be behind the current cursor position, bookmarks are not supported.
As such a forward-only cursor is not suitable for use in the user interface where the user can
control the direction through the result set. However, it is eminently suitable for batch oper-
ations and reports, because these situations start at the top of the result set and work progres-
sively toward the end, then the result set is closed.

Cursor Locations and Cursor Types

2874c16.qxd 7/2/01 4:36 PM Page 713

http://www.sybex.com

714

A static cursor works by reading the complete result set and providing a window of CacheSize
records into the result set. As the complete result set has been retrieved by the server, you can
navigate both forward and backward through the result set. However, in exchange for this facil-
ity, the data is static—that is, updates, insertions, and deletions made by other users cannot be
seen because the cursor’s data has already been read.

A keyset cursor is best understood by breaking keyset down into its two words key and set.
Key, in this context, refers to an identifier for each row. Often this will be a primary key. A
keyset cursor, therefore, is a set of keys. When the result set is opened, the complete list of
keys for the result set is read. If, for example, the dataset was a query like SELECT * FROM
CUSTOMERS, then the list of keys would be built from SELECT CUSTID FROM CUSTOMERS. This
set of keys is held until the cursor is closed. When the application requests data, the OLE
DB provider reads the rows using the keys in the set of keys. Consequently, the data is always
up to date. If another user changes a row in the result set, then the changes will be seen when
the data is reread. However, the set of keys, itself, is static; it is read only when the result set
is first opened. So if another user adds new records, these additions will not be seen. Deleted
records become inaccessible, and changes to primary keys (you don’t let your users change
primary keys, do you?) are also inaccessible.

The last, and most expensive, cursor type is dynamic. A dynamic cursor is almost identical
to a keyset cursor. The sole difference is that the set of keys is reread when the application
requests data that is not in the cache. As the default for TADODataSet.CacheSize is 1, this is
very frequent. You can imagine the additional load this places on the DBMS and the network
and why this is the most expensive cursor. However, the result set can see and respond to the
additions and deletions made by other users.

Ask and Ye Shall Not Receive
Now that we know all about cursor locations and cursor types, a word of warning: not all com-
binations of cursor location and cursor type are possible. Usually, this is a limitation imposed by
the DBMS and/or the OLE DB provider as a result of the functionality and architecture of the
DBMS. For example, client cursors always force the cursor type to static. You can see this
for yourself. Add a TADODataSet to a form, set its ConnectionString to any database, set
ClientLocation to clUseCursor and CursorType to ctDynamic. Now set Active to True and
keep your eye on the CursorType; it changes to ctStatic. We learn an important lesson from
this example:

What you ask for is not necessarily what you get.

Always check your properties after opening a dataset for what you think you “know” is true.

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 714

http://www.sybex.com

715

Each OLE DB provider will make different changes according to different requests and
circumstances, but to give you a rough idea of what you can expect here are a few examples.
The Jet 4.0 OLE DB Provider changes most cursor types to keyset. The SQL Server OLE
DB Provider often changes keyset and static to dynamic. The Oracle OLE DB Provider
changes all cursor types to forward-only. The ODBC OLE DB Provider makes various
changes according to the ODBC driver in use.

RecordCount = –1
Armed with all of this knowledge about cursors, we can explain why ADO datasets some-
times return –1 for their RecordCount. A forward-only cursor cannot know how many
records are in the result set until it reaches the end, so it returns –1 for the RecordCount. A
static cursor always knows how many records are in the result set, because it reads the entire
set when it is opened, so it returns the number of records in its result set. A keyset cursor also
knows how many records are in the result set, because it has to retrieve a fixed set of keys
when the result set is opened, so it also returns a useful value for RecordCount. A dynamic
cursor does not reliably know how many records are in the result set, because it is regularly
rereading the set of keys, so it returns –1. You could, of course, avoid using RecordCount
altogether and execute SELECT COUNT(*) FROM tablename, but this will be an accurate reflec-
tion of the number of records in the database, which is not necessarily the same as the num-
ber of records in the dataset.

Client Indexes
One of the many benefits of client-side cursors is the ability to create local, or client, indexes.
You can try this out for yourself. Assuming that you have an ADO client-side dataset for the
Northwind’s Customer table, which has a grid attached to it, set the dataset’s IndexFieldNames
property to CompanyName. Immediately the grid will show that the data is in Company-
Name order. There is an important point to make here: In order to index the data, ADO
did not have to reread the data from its source. The index was created from the data in
memory. This means not only is the creation of the index just about as fast as it could possi-
bly be, but the network and the DBMS are not overloaded with transferring the same data
over and over in different orders. The IndexFieldNames property has more potential. Set it
to Country;CompanyName and you will see the data ordered first by country and then, within
country, in company name order. Now set IndexFieldNames to CompanyName DESC. Be sure to
write DESC in capitals and not “desc” or “Desc”. I’m sure you won’t be surprised to see that
the data is now sorted in descending order.

Client Indexes

2874c16.qxd 7/2/01 4:36 PM Page 715

http://www.sybex.com

716

This simple but powerful feature allows us to solve one of the great bugbears of database
developers. From time to time users seem to ask the inevitable, and quite reasonable, ques-
tion, “Can I click the columns of the grid to sort my data?” There are three traditional
answers to this question:

• “Yes. I can replace all of my grids with non–data-aware controls such as TListView that
have the sorting built into the control. Of course, I lose all of the benefits of data-aware
controls with this solution.”

• “Yes. I can trap the TDBGrid’s OnTitleClick event and rebuild the SQL SELECT
statement to include an appropriate ORDER BY clause and then reissue the SELECT
statement. Of course, this will mean requerying exactly the same data as I already have
just to get it in a different order, but the user is always right.”

• “No. I admit that this would be a cool feature, but the extra load on the DBMS and the
network is antisocial to other users.”

Sadly, none of the above are acceptable answers. Client indexes to the rescue! Add the fol-
lowing OnTitleClick event to the grid:

procedure TForm1.DBGrid1TitleClick(Column: TColumn);
begin
if ADODataSet1.IndexFieldNames = Column.Field.FieldName then
ADODataSet1.IndexFieldNames := Column.Field.FieldName + ‘ DESC’

else
ADODataSet1.IndexFieldNames := Column.Field.FieldName

end;

This simple event checks to see whether the current index is built on the same field as the
column. If it is, then a new index is built on the column but in descending order. If not, then
a new index is built on the column. When the user clicks the column for the first time, it is
sorted in ascending order, and when it is clicked for the second time, it is sorted in descend-
ing order. You could extend this to allow the user to Ctrl-click several column titles to build
up more complicated indexes. Of course, all of this can be achieved using TClientDataSet,
but that solution is not as elegant for two reasons: descending indexes must be built from
scratch (because TClientDataSet does not support the DESC keyword) and existing ascend-
ing indexes cannot be changed to descending indexes (they must be deleted and rebuilt).

Cloning
ADO is crammed full of features. You can argue that “feature-rich” can translate into “footprint-
rich,” but it also translates into more powerful and reliable applications. One such powerful
feature is cloning. A cloned recordset is a new recordset that has all of the same properties

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 716

http://www.sybex.com

717

as the original from which it is cloned. First, I’ll explain how you can create and use a clone,
and then I’ll explain why they are so useful.

You can clone a recordset, or, in dbGo-speak, a dataset, using the Clone method. You can
clone any ADO dataset, but we will use TADOTable in this example. Add a TADOTable to a
form and set its ConnectionString to use any OLE DB provider that returns rectangular data
(e.g., the Jet or SQL Server OLE DB providers). Set its TableName to any table and open the
table. Add a TDataSource and a TDBGrid to allow you to view the table. Now add a second
TADOTable and a button with the following code:

ADOTable2.Clone(ADOTable1);

This line clones ADOTable1 and assigns the clone to ADOTable2. If you add another TData-
Source and TDBGrid to show ADOTable2, you will see a second view of the data. The two
datasets have their own record pointers and other status information, so the clone does not
interfere with its original copy.

This behavior makes them ideal for black box programming. This term comes from an old
story, in which you could ask the black box any question at all and it would guarantee to pro-
vide an answer. You couldn’t see inside the black box and you didn’t know how it worked, just
that it did. The black box did what it was supposed to and no more. It is this last part that is
so essential to programming: functions and procedures do no more than they are supposed to.
Sometimes this is also referred to as having “zero side effects.” So in this example, the
CountSelected function attempts to count all of the rows where the Selected field is True:

function CountSelected(
ADODataSet: TCustomADODataSet): integer;
var
Bookmark: TBookmark;

begin
Result := 0;
Bookmark := ADODataSet.GetBookmark;
try
ADODataSet.First;
while not ADODataSet.EOF do
begin
if ADODataSet.FieldByName(‘Selected’).AsBoolean then
Inc(Result);

ADODataSet.Next;
end;
ADODataSet.GoToBookmark(Bookmark);

finally
ADODataSet.FreeBookmark(Bookmark);

end;
end;

Cloning

2874c16.qxd 7/2/01 4:36 PM Page 717

http://www.sybex.com

718

At first sight, this function appears to be a black box function. It dutifully saves the current
row position of the dataset using a bookmark and restores the position before returning, so
that the net effect of moving the row position is zero. This is a standard approach to black
box programming: if you change something in your routine that you are not supposed to
change, then you must restore it again afterward.

Sadly, this routine is not black box. The movement of the row pointer will be observed by
any data-aware controls, and the user interface will be updated by every row movement. A
better solution to this problem is to use cloning:

function CountSelected(ADODataSet: TCustomADODataSet): integer;
var
Clone: TADODataSet;

begin
Result := 0;
Clone := TADODataSet.Create(nil);
try
Clone.Clone(ADODataSet);
Clone.First;
while not Clone.EOF do
begin
if Clone.FieldByName(‘Selected’).AsBoolean then
Inc(Result);

Clone.Next;
end;
Clone.Close;

finally
Clone.Free;

end;
end;

The new clone will not interfere with its original in any way, making it ideal for black box
programming. In particular, note that the closing of the clone does not close the original or
other clones. In fact, not even the closing of the original closes its clones. I will use cloning
later in this chapter, but before we close this subject, there are two points worth mentioning.

WARNING A recordset must support bookmarks in order to be cloned, so forward-only and dynamic cur-
sors cannot be cloned. You can determine whether a recordset supports bookmarks using the
Supports method (e.g., ADOTable1.Supports([coBookMark])).

TIP One of the useful side effects of clones is that the bookmarks created by one clone are usable
by all other clones.

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 718

http://www.sybex.com

719

Transaction Processing
Transaction processing allows developers to group together individual updates to a database
into a single logical unit of work. The benefit is that a database engine can be told to accept
or reject the complete unit of work as a single entity. The facility is present in nearly all of
today’s DBMSs, because it’s essential for maintaining the integrity of the database. The classic
example used to illustrate the need for transaction processing is the transfer of money to and
from a bank account. The movement of money from one account into another consists of
two steps: the removal of money from one account and the addition of the same money into
another account. The entire transaction must either wholly succeed or wholly fail in order
for integrity to be maintained. If only one half of the transaction succeeds, the money will
either have been created (by adding money to one account while failing to remove it from
the other) or destroyed (by removing money from one account while failing to add it to the
other). Database programming is full of examples that require transaction processing, and in
this section we will see how ADO handles this subject.

ADO’s transaction processing support is controlled using a TADOConnection. The fol-
lowing list summarizes the relevant methods:

TADOConnection Method Description TDatabase Equivalent

BeginTrans Begins a transaction StartTransaction

CommitTrans Commits a transaction Commit

RollbackTrans Rolls back a transaction Rollback

To investigate ADO’s transaction processing support, we will build a simple test program.
We will use this test program to investigate the different levels of transaction processing sup-
port offered by different OLE DB providers and different databases.

Create a new application and add a TADOConnection. Set the ConnectionString to use
the ODBC OLE DB Provider and the DBDEMOS Paradox data supplied with Delphi. You
might find it easier to first create an ODBC Data Source, say DBDEMOS, and refer to that.
Set the LoginPrompt to False and Connected to True. Add a TADOTable, set Connection to
ADOConnection1, TableName to Customers, and Active to True. Add a TDataSource and a
TDBGrid and connect them so that the Customers table is shown in the grid. Add three but-
tons to the top of the form to execute each of the following commands:

ADOConnection1.BeginTrans;
ADOConnection1.CommitTrans;
ADOConnection1.RollbackTrans;

The running application should look something like Figure 16.6.

Transaction Processing

2874c16.qxd 7/2/01 4:36 PM Page 719

http://www.sybex.com

720

Click the BeginTrans button and you will receive an error indicating that the DBMS or
the OLE DB provider is not capable of beginning a transaction. The problem lies with the
Paradox ODBC Driver, which simply doesn’t support transaction processing. You can find
out what level of transaction processing support you have using the connection’s Transaction
DDL dynamic property—for example,

if ADOConnection1.Properties[‘Transaction DDL’].Value > DBPROPVAL_TC_NONE then
ADOConnection1.BeginTrans;

The DBPROPVAL_TC_NONE constant comes from OLEDB.PAS along with several others like it.
The related constants indicate that transaction support is available for Data Manipulation
Language (DML) statements, meaning that SQL UPDATE, INSERT, and DELETE state-
ments will all be included in transactions. ADO updates databases using SQL, so all of the
dbGo components’ DML methods (e.g., Append, Post, Delete) are also included in this list.
The difference between the DBPROPVAL_TC constants is the level of support for Data Defini-
tion Language (DDL) commands included in a transaction. DDL is the set of SQL com-
mands that alter the structure of the database and allow developers to perform actions such
as adding and deleting columns and adding new tables. Given the nature of these commands,
it is unlikely that you would want to mix DDL commands in a transaction with DML com-
mands, so your interest in the Transaction DDL dynamic property might not extend beyond
the DBPROPVAL_TC_NONE constant. If you do intend to include DDL commands in a transac-
tion, you should check the other constants to see how the DDL will be treated by the DBMS.
Some DBMSs will ignore the DDL, some will generate an exception if it is included in a
transaction, some will cause certain DDL commands to lock a table, and others will automati-
cally commit a transaction when the DDL is executed.

Let’s get back to our test application. Change the TADOConnection’s ConnectionString
to use the Jet 4.0 OLE DB Provider and set its Extended Properties (in the All tab) to

F I G U R E 1 6 . 6 :
ADO transaction processing

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 720

http://www.sybex.com

721

Paradox 7.x. Set the database name to Delphi’s DBDEMOS directory (c:\program files\
common files\borland shared\data). Save the connection string and reopen the TADOTable.
You should see no difference from the previous example. Now run the application and click the
BeginTrans button. Success? Unfortunately, no. This is a cruel, cruel trick on the part of the
Jet 4.0 OLE DB Provider. Make a few changes and click the RollbackTrans button; close the
application down and restart it. You will see that the changes that you made were permanent
and your act of rolling them back made no difference at all. As I said, it is a cruel trick, because
transactions on a Paradox database cannot be rolled back, and this makes them rather useless.
If you read through the section in this chapter on the Jet engine and, in particular, the section
on Paradox, you will recall that I mentioned that the support for Paradox is lower than most
developers would like. Transaction processing is one such example.

Now let’s look at how Access handles transaction processing. Create an ODBC System
Data Source Name using the ODBC Manager. Call it Northwind DSN, use the Microsoft
Access ODBC driver, and set the database to Northwind.mdb. In Delphi, change the TADO-
Connection to use the ODBC OLE DB Provider and the new Northwind DSN. Now save
the connection string, change the TADOTable’s TableName from Customer to Customers, and
open it. Run the application and click the BeginTrans button. At last, transaction processing
that works. You can make changes to the Northwind database and roll back the changes, and
they will be rolled back! However, something you cannot do is start a transaction within a
transaction. Try clicking the BeginTrans button twice and you get a “Cannot start more trans-
actions on this session” error. This is a limitation of ODBC and not the Jet engine and is a
useful example of why you should always try to locate an OLE DB provider for your DBMS
instead of an ODBC driver.

Nested Transactions
If you try the same test again but use the Jet 4.0 OLE DB Provider, you will see that you can
click the BeginTrans button five times before receiving an error on the sixth attempt. Jet sup-
ports nested transactions, which are transactions that exist within the context of another trans-
action. The nested or inner transaction can be committed or rolled back without affecting the
outcome of the outer transaction. Let’s work through a sequence of steps to be sure of how
this works:

1. Begin a transaction.

2. Change the ContactName of the Around The Horn record from Thomas Hardy to
Dick Solomon.

3. Begin a nested transaction.

Transaction Processing

2874c16.qxd 7/2/01 4:36 PM Page 721

http://www.sybex.com

722

4. Change the ContactName of the Bottom-Dollar Markets record from Elizabeth Lincoln
to Sally Solomon.

5. Roll back the inner transaction.

6. Commit the outermost transaction.

The net effect is that only the change to the Around The Horn record is permanent. If,
however, the inner transaction had been committed and the outer transaction rolled back,
then the net effect would be that none of the changes were permanent (even the changes in
the inner transaction). Although we are using Access to illustrate this behavior, the behavior
is the same for all OLE DB providers that support nested transactions. This, of course, leads
us to an ongoing theme in our ADO exploration: The ADO documentation simply states
how any given feature is supposed to work when it is fully implemented by the OLE DB
provider and the DBMS, but it does not necessarily follow that it is implemented for all OLE
DB providers and all DBMSs. In the example of nested transactions, we have seen that ODBC
does not support them and that the Jet OLE DB Provider supports up to five levels of nested
transactions. The SQL Server OLE DB Provider does not support nesting.
 In SQL Server 7.0 and 2000, full nested transaction support
is provided. In SQL Server 6.5, only “fake nesting” is supported, where all inner-transaction
instructions are ignored. You can commit and roll back inner transactions without any effect.
It is only the outermost transaction that decides whether the complete sum of all of the work
is committed or rolled back.

There is another issue that you should consider if you intend to use nested transactions.
TADOConnection has a property called Attributes, which determines how the connection
should behave when a transaction is committed or rolled back. It is a set of TXActAttributes
that, by default, is empty. There are only two values in TXActAttributes: xaCommitRetaining
and xaAbortRetaining (this value is often mistakenly written as xaRollbackRetaining because
this would have been a more logical name for it). When xaCommitRetaining is included in
Attributes and a transaction is committed, a new transaction is automatically started. When
xaAbortRetaining is included in Attributes and a transaction is rolled back, a new transac-
tion is automatically started. This means that if you include these values in Attributes, a
transaction will always be in progress, because when you end one transaction another will
always be started. Most programmers prefer to be in greater control of their transactions
than allowing them to be automatically started, so these values are not commonly used.
However, they have a special relevance to nested transactions. If you nest a transaction and

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 722

http://www.sybex.com

723

set Attributes to [xaCommitRetaining, xaAbortRetaining], then the outermost transaction
can never be ended. Consider the sequence of events:

1. An outer transaction is started.

2. An inner transaction is started.

3. The inner transaction is committed or rolled back.

4. A new inner transaction is automatically started as a consequence of the Attributes
property.

The outermost transaction can never be ended because a new inner transaction will also be
started when one ends. The conclusion is that the use of the Attributes property and the use
of nested transactions should be considered mutually exclusive.

Lock Types
ADO supports four different approaches to locking your data for update. In this section I will
provide an overview of the four approaches, and in subsequent sections we will take a closer
look. The four approaches are made available to you through the dataset’s LockType property,
of type TLockType, and can be ltReadOnly, ltPessimistic, ltOptimistic, or ltBatchOptimistic
(there is, of course, an ltUnspecified but, for the reasons mentioned earlier, we are ignoring
“unspecified” values).

The ltReadOnly value specifies that the data is read-only and cannot be updated. As such,
there is effectively no locking control required because the data cannot be updated.

The ltPessimistic and ltOptimistic values offer the same “pessimistic” and “optimistic”
locking control that the BDE offers. One important benefit that ADO offers over the BDE
in this respect is that the choice of locking control remains yours. If you use the BDE, the
decision to use pessimistic or optimistic locking is made for you by the BDE driver you use.
If you use a desktop database such as dBase or Paradox, then the BDE driver uses pessimistic
locking; if you use a client/server database such as InterBase, SQL Server, or Oracle, the
BDE driver uses optimistic locking.

Pessimistic Locking
The words pessimistic and optimistic in this context refer to the developer’s expectations of
conflict between user updates. Pessimistic locking assumes that there is a high probability
that users will attempt to update the same records at the same time and that a conflict is
likely. In order to prevent such a conflict, the record is locked when the edit begins. The
record lock is maintained until the update is completed or cancelled. A second user who

Lock Types

2874c16.qxd 7/2/01 4:36 PM Page 723

http://www.sybex.com

724

attempts to edit the same record at the same time will fail in their attempt to place their
record lock and will receive a “Could not update; currently locked” exception.

This approach to locking will be familiar to developers who have worked with desktop
databases such as dBase and Paradox. The benefit is that the user knows that if they can
begin editing a record, then they will succeed in saving their update. The disadvantage of
pessimistic locking is that the user is in control of when the lock is placed and when it is
removed. If the user is skilled with the application, then this could be as short as a couple of
seconds. However, in database terms a couple of seconds is an eternity. At the worst end of
the scale, the user can begin an edit and go to lunch, and the record could be locked until the
user returns. As a consequence of this, most proponents of pessimistic locking guard against
this eventuality by using a TTimer or other such device to time out any locks after a certain
amount of keyboard and mouse inactivity.

Another problem with pessimistic locking is that it requires a server-side cursor. Earlier we
looked at cursor locations and saw that they have an impact on the availability of the different
cursor types. Now we can see that cursor locations also have an impact on locking types. Later
in this chapter we will see more benefits of client-side cursors, and if you choose to take
advantage of these benefits, then you’ll be unable to use pessimistic locking.

Pessimistic locking is one of the areas of ADOExpress/dbGo that changed in Delphi 6.
This section describes the way pessimistic locking works in version 6 (which is now the same
as for ADO). Create a new application and add a TADODataSet. Set its ConnectionString
to use either the Jet or SQL Server Northwind database. Set its CommandType to cmdTable and
CommandText to Customers. As we will be using pessimistic locking, we must set the Cursor-
Location to clUseServer and LockType to ltPessimistic. Finally, set Active to True. Add a
TDataSource and a TDBGrid, connect them altogether, and ensure that the grid is aligned
to client.

Now for the test. Run the application and begin editing a record. Using Windows Explorer,
run a second copy of the same application and attempt to edit the same record; you will fail
because the record is locked by another user.

If you were using ADOExpress in Delphi 5, the attempt to edit the same record at the
same time would have succeeded, because ADOExpress in version 5 did not lock the record
at the beginning of the edit. The work-around for this problem in Delphi 5 involved creating
a clone of the original recordset and forcing a record lock in the clone before an edit, and
releasing the record lock before the actual post or when the edit was cancelled.

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 724

http://www.sybex.com

725

Jet Page and Row Locking
This section demystifies some of the issues surrounding locking in Microsoft’s Jet engine. If
you have no interest in Access as a database, you can safely skip over this section.

The Jet 4.0 OLE DB Provider, which you will recall is used primarily for Access 2000
databases although it can also be used with Access 97 databases, supports both page-level and
row-level locking. The Jet 3.5 OLE DB Provider, which is used solely for Access 97 data-
bases, supports page-level locking only. A page is a length of data. The page in question com-
pletely contains the record for which the lock is required. In Jet 3.5, a page is 2 KB in length,
and in Jet 4.0 it is 4 KB. It is unlikely that a record is exactly 2 KB or 4 KB, so the locking of
a single record usually includes the locking of one or more subsequent records. Clearly this
locks additional records unnecessarily, which is a disadvantage of page locking and is the
main reason why Jet 4.0 offers a choice of page or row locking.

Row locking, sometimes referred to as Alcatraz in the Jet engine, allows a single row to be
locked individually with no additional space locked. As such, this solution provides the least
lock contention. The path to understanding locking in Jet lies in Jet’s dynamic properties.
Most of your control over Jet locking is provided by the ADO Connection object’s dynamic
properties. The first and most important dynamic property is Jet OLEDB:Database Locking
Mode, which can be revealed in a TADOConnection as follows:

ShowMessage(ADOConnection1.Properties[
‘Jet OLEDB:Database Locking Mode’].Value);

By default this value is 1, which means that the connection will allow recordsets to choose
between row locking and page locking. The only alternative value is 0, which forces page
locking. However, in order to ensure that all users use the same locking mechanism, the first
user who opens the database dictates the locking mode used by all users. This mode remains
in force until all users have disconnected from the database.

The second part of the locking jigsaw is the recordset. The recordset itself can specify its
locking mode, using the Jet OLEDB:Locking Granularity dynamic property. By default this
value is 2, which indicates that it should use row-level locking. Setting this value to 1 indicates
that the recordset should use page locking. The Jet OLEDB:Locking Granularity dynamic
property is ignored if the connection’s Jet OLEDB:Database Locking Mode is not 1. You will
have to use the OnRecordsetCreate event added in Delphi 6 to set the dynamic property,
because it can only be set when the recordset is created but closed. (OnRecordsetCreate was
not yet functional as this book went to press. Also, if you are using ADOExpress in Delphi 5,
you will have to modify the source code of TCustomADODataSet.OpenCursor to add in your own
OnRecordsetCreate event immediately after the recordset is created.) Thus, so far, Jet 4.0 uses
row-level locking by default. This is true but there is an extra twist to add to this tale.

Lock Types

2874c16.qxd 7/2/01 4:36 PM Page 725

http://www.sybex.com

726

Row-level locking is only the default for recordsets. It is not the default for SQL you exe-
cute directly, or what BDE developers refer to as “non-passthrough SQL.” For SQL state-
ments you write yourself and execute directly, the default locking mode is still page locking,
even using Jet 4.0.

Having gone through these trials and tribulations you will be pleased to learn that Jet pro-
vides a significant level of control over its locking facilities. Once again, this control is
offered by dynamic properties and is available through TADOConnection. The following
list shows the relevant dynamic properties:

Property Description

Jet OLEDB:Lock Delay Milliseconds to wait before attempting to reac-
quire a lock (default is 0)

Jet OLEDB:Lock Retry Number of times to retry a failed lock (default is 0)

Jet OLEDB:Max Locks Per File Maximum number of locks that Jet can place on a
database (default is 9500)

Jet OLEDB:Page Locks To Table Number of page locks before Jet promotes to a
table lock (default is 0)

Updating JOINs
One of the reasons why people used to turn to cached updates in the BDE and, more
recently, TClientDataSet, is to make an SQL JOIN updatable. Consider the following SQL
equi-join:

SELECT * FROM Products, Suppliers
WHERE Products.SupplierID=Suppliers.SupplierID

This statement provides a list of products and the details of the suppliers of those products.
The BDE considers any SQL JOIN to be read-only because inserting, updating, and delet-
ing rows in a join is ambiguous. For example, should the insert of a row into the above join
result in a new product and also a new supplier or just a new product?

The BDE supports cached updates, which allow the developer to resolve this ambiguity by
specifying exactly what the developer wants to happen. Although the BDE’s cached updates
implementation is often flawed, and cached updates are now discouraged in favor of the
more reliable TClientDataSet, the concept is sound.

ADO supports an equivalent to cached updates, called batch updates, which are very simi-
lar. In the next section we will take a closer look at ADO’s batch updates, what they can offer
you, and why they are so important. However, in this section they will not be needed to solve

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 726

http://www.sybex.com

727

the problem of updating a join for a very simple reason: in ADO, joins are naturally updatable.
Place a TADOQuery on a form and set its connection string to use a Northwind database.
Enter the SQL join above in its SQL property and set Active to True. Add a TDataSource
and a TDBGrid and connect them altogether and run the program. Now edit one of the
Product’s fields and save the changes (by moving off the record). No error occurs because the
update has been applied successfully. ADO has taken a more practical approach to the prob-
lem: it has made some intelligent guesses. In an ADO join, each field object knows which
underlying table it belongs to. If you update a field of the Products table and post the change,
then a SQL UPDATE statement is generated to update the field in the Products table. If you
change a field in the Products table and a field in the Suppliers table, then two SQL
UPDATE statements are generated, one for each table.

The inserting of a row into a join follows a similar behavior. If you insert a row and enter
values for the Products table only, then a SQL INSERT statement is generated for the Prod-
ucts table. If you enter values for both tables, two SQL INSERT statements are generated,
one for each table. The order in which the statements are executed is important, because the
new product might relate to the new supplier, so the new supplier is inserted first.

The biggest problem with ADO’s solution can be seen when a row in a join is deleted. The
deletion attempt will appear to fail. The exact message you see depends on the version of
ADO you are using and the DBMS, but it will be along the lines that you cannot delete the
row because other records relate to it. The error message can be confusing. In our scenario,
the error message implies that a product cannot be deleted because there are records that
relate to the product. The error occurs whether the product has any related records or not.
The explanation can be found by following through the same logic for deletions as for inser-
tions. Two SQL DELETE statements are generated: one for the Suppliers table and then
another for the Products table. Contrary to appearances, the DELETE statement for the
Product table succeeds. It is the DELETE statement for the Suppliers table that fails,
because the Supplier cannot be deleted while it still has dependent records.

If you are curious about the SQL statements that get generated and you use SQL Server,
you can see these statements using SQL Server Profiler.

Despite understanding how this works, a better way of looking at this problem is through
the user’s eyes. From their point of view, when they delete a row in the grid, do they intend
to delete just the product or both the product and the supplier? I would wager that 99% of
users expect the former and not the latter. Fortunately you can achieve exactly this with our
old friend, the dynamic property—in this case, the Unique Table dynamic property. You can
specify that deletes refer to just the Products table and not to Suppliers using the following
line of code:

ADOQuery1.Properties[‘Unique Table’].Value := ‘Products’;

Updating JOINs

2874c16.qxd 7/2/01 4:36 PM Page 727

http://www.sybex.com

728

As this value cannot be assigned at design time, the next best alternative is to place this line in
the form’s OnCreate event.

For me, updatable joins are just one of many examples of how the designers of ADO have
replaced traditional problems with elegant solutions.

Batch Updates
Batch updates are ADO’s equivalent to the BDE’s cached updates; they are similar in func-
tionality, syntax, and, to some extent, implementation, with the all-important difference
being that their implementation is not fundamentally flawed. The idea is the same for both
database technologies: By using batch/cached updates, any changes you make to your records
can be made in memory and then later the entire “batch” of changes can be submitted as one
operation. There are some performance benefits to this approach, but there are more practi-
cal reasons why this technology is a necessity: the user might not be connected to the data-
base at the time they make their updates. This would be the case in the infamous “briefcase”
application, which we will return to later, but this can also be the case in Web applications
that use another ADO technology, Remote Data Services (RDS).

You can enable batch updates in any ADO dataset by setting LockType to ltBatchOptimistic
before the dataset is opened. In addition, you will need to set the CursorLocation to clUse-
Client, as batch updates are managed by ADO’s cursor engine. Hereafter, changes are all
made to a “delta” (i.e., a list of changes). The dataset looks to all intents and purposes as if
the data has changed, but the changes have only been made in memory; they have not been
applied to the database. To make the changes permanent, use UpdateBatch (equivalent to
cached updates’ ApplyUpdates):

ADODataSet1.UpdateBatch;

(Fortunately, there is no equivalent to the cached update’s CommitUpdates method, because
the successful changes are automatically removed from the batch.) To reject the entire batch
of updates, use either CancelBatch or CancelUpdates. There are many similarities in method
and property names between ADO’s batch updates and BDE’s cached updates and TClient-
DataSet. UpdateStatus, for example, can be used in exactly the same way as for cached
updates to identify records according to whether they have been inserted, updated, deleted,
or unmodified. This is particularly useful for highlighting records in different colors in a grid
or showing their status on a status bar. Some differences between the syntaxes are slight, such
as changing RevertRecord to CancelBatch(arCurrent). Others require more effort.

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 728

http://www.sybex.com

729

One useful cached update feature that is not present in ADO batch updates is the dataset’s
UpdatesPending property. This property is true if changes have been made but not yet
applied. This is particularly useful in a form’s OnCloseQuery event:

procedure TForm1.FormCloseQuery(
Sender: TObject; var CanClose: Boolean);
begin
CanClose := True;
if ADODataSet1.UpdatesPending then
CanClose := (MessageDlg(‘Updates are still pending’ #13 +
‘Close anyway?’, mtConfirmation, [mbYes, mbNo], 0) = mrYes);

end;

However, with a little knowledge and a little ingenuity we can implement a suitable
ADOUpdatesPending function. The little knowledge is that ADO datasets have a property
called FilterGroup, which is a kind of filter. Unlike a dataset’s Filter property, which filters
the data based on a comparison of the data against a condition, FilterGroup filters based on
the status of the record. One such status is fgPendingRecords, which includes all records that
have been modified but not yet applied. So to allow the user to look through all of the
changes they have made so far, you need only execute two lines:

ADODataSet1.FilterGroup := fgPendingRecords;
ADODataSet1.Filtered := True;

Naturally, the result set will now include the records that have been deleted. If you try this
yourself, the effect that you will see will depend on the version of dbGo you have and the
patches you have applied to it. In early versions of ADOExpress, the deleted record showed
the fields of the previous record. This either was confusing (if there was a previous record) or
resulted in a fatal error (if there wasn’t). In later versions, the fields are just left blank, which
also is not very helpful because you don’t know what record has been deleted.

Back to the UpdatesPending problem. The “little ingenuity” is the knowledge of clones, dis-
cussed earlier. The idea of the ADOUpdatesPending function is that it will set the FilterGroup
to restrict the dataset to only those changes that have not yet been applied. All we need to do
is to see whether there are any records in the dataset once the FilterGroup has been applied.
If there are, then some updates are pending. However, if we do this with the actual dataset,
then the setting of the FilterGroup will move the record pointer and the user interface will
be updated. The best solution is to use a clone.

function ADOUpdatesPending(ADODataSet: TCustomADODataSet): boolean;
var
Clone: TADODataSet;

begin
Clone := TADODataSet.Create(nil);
try
Clone.Clone(ADODataSet);

Batch Updates

2874c16.qxd 7/2/01 4:36 PM Page 729

http://www.sybex.com

730

Clone.FilterGroup := fgPendingRecords;
Clone.Filtered := True;
Result := not (Clone.BOF and Clone.EOF);
Clone.Close;

finally
Clone.Free;

end;
end;

In this function we clone the original dataset, set the FilterGroup, and check to see
whether the dataset is at both beginning of file and also end of file. If it is, then no records
are pending.

Optimistic Locking
Earlier we looked at the LockType property and saw how pessimistic locking worked. In this
section, we’ll look at optimistic locking, not only because it is the preferred locking type for
medium- to high-throughput transactions but also because it is the locking scheme employed
by batch updates.

Optimistic locking assumes that there is a low probability that users will attempt to update
the same records at the same time and that a conflict is unlikely. As such, the attitude is that
all users can edit any record at any time, and we deal with the consequences of conflicts
between different users’ updates to the same records when the changes are saved. Thus, con-
flicts are considered an exception to the rule. This means that there are no controls to pre-
vent two users from editing the same record at the same time. The first user to save their
changes will succeed. The second user’s attempt to update the same record might fail. This
behavior is essential for briefcase applications and Web applications, where there is no per-
manent connection to the database and, therefore, no way to implement pessimistic locking.
In contrast with pessimistic locking, optimistic locking has the additional considerable bene-
fit that resources are consumed only momentarily and, therefore, the average resource usage
is much lower, making the database more scalable.

Let’s consider an example. Assume that we have a TADODataSet connected to the Cus-
tomers table of Northwind, that LockType is set to ltBatchOptimistic, and the contents are
displayed in a grid. Assume that we also have a button to call UpdateBatch. Run the program
twice and begin editing a record in the first copy of the program. Although for the sake of
simplicity we will be demonstrating a conflict using just a single machine, the scenario and
subsequent events are unchanged when using multiple machines. In this example I will
choose the Bottom-Dollar Markets company in Canada and change the name to Bottom-
Franc Markets. Save the change, move off the record to post it, and click the button to
update the batch. Now, in the second copy of the program, locate the same record and
change the company name to Bottom-Pound Markets. Move off the record and click the

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 730

http://www.sybex.com

731

button to update the batch. It will fail. As with many ADO error messages, the exact message
you receive will depend not only on the version of ADO you are using but also on how closely
you followed the example. In ADO 2.6, the error message is “Row cannot be located for updat-
ing. Some values may have been changed since it was last read.” This is the nature of optimistic
locking. The update to the record is performed by executing the following SQL statement:

UPDATE CUSTOMERS SET CompanyName=”Bottom-Pound Markets”
WHERE CustomerID=”BOTTM” AND CompanyName=”Bottom-Dollar Markets”

The number of records affected by this update statement is expected to be 1, because it
locates the original record using the primary key and the contents of the CompanyName field as
it was when the record was first read. In our example, however, the number of records
affected by the UPDATE statement is 0. This can only occur if the record has been deleted,
or the record’s primary key has changed, or the field that we are changing was changed by
someone else. Hence, the update fails.

If our “second user” had changed the ContactName field and not the CompanyName field,
then the UPDATE statement would have looked like this:

UPDATE CUSTOMERS SET ContactName=”Liz Lincoln”
WHERE CustomerID=”BOTTM” AND ContactName=”Elizabeth Lincoln”

In our scenario, this statement would have succeeded because the other user didn’t change
the primary key or the contact name.

This behavior differs from the BDE’s behavior in the same scenario. In this example, using
the BDE the attempt to update the contact name would have failed because, by default, the
BDE includes every field in the WHERE clause. The consequence of this is that any change
to the record will fail if any other user has already changed any field, regardless of whether
the changed fields are the same fields or different fields. Fortunately, both the BDE and
ADO allow you to specify how you want to locate the original record: in the BDE you use
the UpdateMode property, and in ADO the Update Criteria dynamic property of a dataset.
The following list shows the possible values that can be assigned to this dynamic property:

Constant Locate Records By

adCriteriaKey Primary key columns only

adCriteriaAllCols All columns

adCriteriaUpdCols Primary key columns and changed columns only

adCriteriaTimeStamp Primary key columns and a timestamp column only

The reason why the BDE and ADO differ in their behavior is that their defaults differ.
The BDE’s default behavior is equivalent to ADO’s adCriteriaAllCols, whereas ADO’s
default is adCriteriaUpdCols. Don’t fall into the trap of thinking that one of these settings is

Batch Updates

2874c16.qxd 7/2/01 4:36 PM Page 731

http://www.sybex.com

732

better than another for your whole application. In practice, your choice of setting will be influ-
enced by the contents of each table. Say that the Customers table has just CustomerID, Name,
and City fields. In this case, the update of any one of these fields is logically not mutually exclu-
sive with the update of any of the other fields, so a good choice for this table would be
adCriteriaUpdCols (i.e., the default). If, however, the Customers table included a PostalCode
field, then the update of a PostalCode field would be mutually exclusive with the update of
the City field by another user (because if the city changes, then surely so should the postal
code, and possibly vice versa). In this case, you could argue that adCriteriaAllCols would be a
safer solution.

Another issue to be aware of is how ADO deals with errors during the update of multiple
records. Using the BDE’s cached updates and TClientDataSet, you can use the OnUpdateError
event to handle each update error as the error occurs and resolve the problem before mov-
ing on to the next record. In ADO, you cannot establish such a dialog. You can monitor
the progress and success or failure of the updating of the batch using the dataset’s
OnWillChangeRecord and OnRecordChangeComplete, but you cannot revise the record and
resubmit it during this process as you can with the BDE and TClientDataSet. There’s more:
if an error occurs during the update process, the updating does not stop. It continues to the
end until all updates have been applied or have failed. This can produce a rather unhelpful
and blatantly incorrect error message. If more than one record cannot be updated, or the sin-
gle record that failed is not the last record to be applied, then the error message in ADO 2.6
is “Multiple-step OLE DB operation generated errors. Check each OLE DB status value, if
available. No work was done.” The last sentence is the problem; it states that “No work was
done,” but this is incorrect. It is true that no work was done on the record that failed, but
other records were successfully applied and their updates stand.

Resolving Update Conflicts
As a consequence of the nature of applying updates, the approach that you need to take to
update the batch is to update the batch, let the individual records fail, and then deal with the
failed records once the process is over. You can determine which records have failed by set-
ting the dataset’s FilterGroup to fgConflictingRecords:

ADODataSet1.FilterGroup := fgConflictingRecords;
ADODataSet1.Filtered := True;

For each failed record, you can inform the user of three critical pieces of information about
each field using the following TField properties:

Property Description

NewValue The value this user changed it to

CurValue The new value from the database

OldValue The value when first read from the database

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 732

http://www.sybex.com
COURTNEY
ADODataset1.Recordset.Resync(adAffectGroup, adResyncUnderlyingValues);

733

Users of TClientDataSet will be aware of the very handy TReconcileErrorForm dialog,
which wraps up the process of showing the user the old and new records and allows them to
specify what action to take. Unfortunately, there is no ADO equivalent to this form, and
TReconcileErrorForm has been written with TClientDataSet so much in mind that it is diffi-
cult to convert it for use with ADO datasets.

One last gotcha to point out when using these TField properties: They are taken straight
from the underlying ADO Field objects to which they refer. This means, as is common in
ADO, that you are at the mercy of your chosen OLE DB provider to support the features
you hope to use. All is well for most providers, but the Jet OLE DB Provider returns the
same value for CurValue as it does for OldValue. In other words, if you use Jet, you cannot
determine what the other user changed the field to unless you resort to your own measures.

Disconnected Recordsets
All this knowledge of batch updates allows us to take advantage of our next ADO feature:
disconnected recordsets. A disconnected recordset is a recordset that has been disconnected
from its connection. What is impressive about this feature is that the user cannot tell the dif-
ference between a regular recordset and a disconnected one; their feature sets and behavior
are almost identical. To disconnect a recordset from its connection, the CursorType must be
set to clUseClient and the LockType must be set to ltBatchOptimistic. You then simply tell
the dataset that it no longer has a connection:

ADODataSet1.Connection := nil;

Hereafter, the recordset will continue to contain the same data, support the same naviga-
tional features, and allow records to be added, edited, and deleted. The only relevant differ-
ence is that you cannot update the batch because you need to be connected to the server to
update the server. To reconnect the connection (and use UpdateBatch):

ADODataSet1.Connection := ADOConnection1;

This same feature is available to the BDE and other database technologies by switching
over to TClientDataSets, but the beauty of the ADO solution is that you can build your
entire application using dbGo dataset components and be unaware of disconnected record-
sets. At the point that you discover this feature and want to take advantage of it, you can con-
tinue to use the same components that you always used.

So why would you want to disconnect your recordsets? For two reasons:

• To keep the total number of connections lower

• To create a briefcase application

Disconnected Recordsets

2874c16.qxd 7/2/01 4:36 PM Page 733

http://www.sybex.com

734

I’ll cover keeping down the number of connections here and return to briefcase applica-
tions later. Most regular client/server business applications open tables and maintain a per-
manent connection to their database while the table is open. However, there are usually only
two reasons why you want to be connected to the database: to retrieve data and to update
data. If you change your regular client/server application so that, after the table is opened
and the data retrieved, then the dataset is disconnected from the connection and the connec-
tion dropped, your user will be none the wiser and the application will not need to maintain
an open database connection. The following code shows the two steps:

ADODataSet1.Connection := nil;
ADOConnection1.Connected := False;

The only other point at which a connection is required is when the batch of updates needs
to be applied, so the update code would look like this:

ADOConnection1.Connected := True;
ADODataSet1.Connection := ADOConnection1;
try
ADODataSet1.UpdateBatch;

finally
ADODataSet1.Connection := nil;
ADOConnection1.Connected := False;

end;

If this approach were followed throughout the application, the average number of open
connections at any one time would be minimal because the connections would only be open
for the small amount of time that they are required. The consequence of this change is scala-
bility; The application will be able to cope with significantly more simultaneous users than
one that maintains an open connection. The downside, of course, is that the reopening of the
connection can be a lengthy process on some, but not all, database engines, so the application
will be slower to update the batch.

Connection Pooling
All of this talk of dropping connections and reopening them brings us to the subject of con-
nection pooling. Connection pooling, not to be confused with session pooling, allows connec-
tions to a database to be reused once they have been finished with. This happens automatically
and, if your OLE DB provider supports it and it is enabled, you need take no action to take
advantage of connection pooling. There is a single reason why you would want to pool your
connections: performance. The problem with database connections is that it can take time to
establish a connection. In a desktop database such as Access, this is typically a small amount of
time. In a client/server database such as Oracle used on a network, this time could be mea-
sured in seconds. Given such an expensive (in performance terms) resource, it makes sense to

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 734

http://www.sybex.com

735

promote its reuse. With ADO’s connection pooling enabled, ADO Connection objects are
placed in a pool when the application “destroys” them. Subsequent attempts to create an ADO
connection will automatically search the connection pool for a connection with the same con-
nection string. If a suitable connection is found, it is reused; otherwise, a new connection is cre-
ated. The connections themselves stay in the pool until they are reused, the application closes,
or they time out. By default, connections will time out after 60 seconds, but from MDAC 2.5
onward you can set this using the HKEY_CLASSES_ROOT\CLSID\<ProviderCLSID>\SPTimeout
registry key. The connection pooling process occurs seamlessly, without the intervention or
knowledge of the developer. This process is similar to the BDE’s database pooling under
Microsoft Transaction Server (MTS) and COM+, with the important exception that ADO per-
forms its own connection pooling without the aid of MTS or COM+.

By default, connection pooling is enabled on all of the MDAC OLE DB providers for rela-
tional databases (including SQL Server and Oracle) with the notable exception of the Jet
OLE DB Provider. If you use ODBC you should choose between ODBC’s connection pool-
ing and ADO’s connection pooling, but you should not use both. From MDAC 2.1 on,
ADO’s connection pooling is enabled and ODBC’s is disabled.

NOTE Connection pooling does not occur on Windows 95 regardless of the OLE DB provider.

To be truly comfortable with connection pooling, you will need to see the connections get-
ting pooled and timed out. Unfortunately, there are no adequate ADO connection pool spy-
ing tools available at the time of writing, so we will use SQL Server’s Performance Monitor
as it can accurately spy on SQL Server database connections. Figure 16.7 is a look at SQL
Server’s Performance Monitor with all of the “counters” deleted except User Connections.
This allows us to concentrate of the subject of connection pooling.

The Last field under the graph shows us the number of active connections to the database.

To see how connection pooling works, you can set up a very simple test. Create a new
application and add a TADOConnection to the form. Set the ConnectionString to use the
SQL Server OLE DB Provider and the Northwind database but leave Connected as False.
Now add a check box with the following OnClick event:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
ADOConnection1.Connected := CheckBox1.Checked;

end;

Connection Pooling

2874c16.qxd 7/2/01 4:36 PM Page 735

http://www.sybex.com

736

Run the program and make sure that you can see the Performance Monitor at the same
time. Now click the check box to open the connection. In the Performance Monitor, you will
see the connection count increase by one. Now close the application and the count immedi-
ately decreases by one, because the connection pool is destroyed with the application. Now
rerun the program, check the check box, and check it a second time to close the connection.
You will see that the connection count does not decrease by one. Observe Performance Mon-
itor for a further 60 seconds, and the connection count will then decrease by one when the
pooled connection times out.

You can enable or disable connection pooling either in the Registry or in the connection
string. The key in the Registry is OLEDB_SERVICES and can be found at HKEY_CLASSES_ROOT\
CLSID\<ProviderCLSID>. It is a bit array that allows you to disable several OLE DB services,
including connection pooling, transaction enlistment, and the cursor engine. To disable con-
nection pooling using the connection string, include “;OLE DB Services=-2” at the end of
the connection string. To enable connection pooling for the Jet OLE DB Provider, you can
include “;OLE DB Services=-1” at the end of the connection string, which enables all OLE
DB services.

F I G U R E 1 6 . 7 :
SQL Server’s Performance
Monitor

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 736

http://www.sybex.com

737

Persistent Recordsets
One of the very useful features that contributes to the briefcase model is persistent record-
sets. These allow you to save the contents of any recordset to a local file, which can be loaded
later. Apart from aiding with the briefcase model, this feature allows developers to create true
single-tier applications. It means that you can deploy a database application without having
to deploy a database. This makes for a very small footprint on your client’s machine.

You can “persist” your datasets using the SaveToFile method:
ADODataSet1.SaveToFile(‘Local.ADTG’);

This will save the data and its delta in a file on your hard disk. You can reload this file using
the LoadFromFile method, which accepts a single parameter indicating the file to load. The
format of the file is Advanced Data Table Gram (ADTG), which is a proprietary Microsoft
format. It does, however, have the advantage of being very efficient. If you prefer, you can
save the file as XML by passing a second parameter to SaveToFile:

ADODataSet1.SaveToFile(‘Local.XML’, pfXML);

However, ADO does not have its own built-in XML parser (as TClientDataSet does), so it
must use the MSXML parser. Your user must either install Internet Explorer 5 or later or
download the MSXML parser from the Microsoft Web site. If you intend to persist your files
locally in XML format, be aware of a few disadvantages. First, the saving and loading of
XML files is slower than the saving and loading of ADTG files. Second, ADO’s XML files
(and XML files in general) are significantly larger than their ADTG counterparts (XML files
are typically twice as large as their ADTG counterparts). Third, ADO’s XML format is spe-
cific to Microsoft, as most companies’ XML implementations are. This means that the XML
generated in ADO is not readable by Borland’s TClientDataSet and vice versa. In fact, it’s
worse than that, because the XML generated in ADO 2.1 is incompatible with the XML in
ADO 2.5. Fortunately this last problem can be overcome using Delphi 6’s new TXML-
Transform component, which can be used to translate between different XML structures.

If you intend to use these features solely for single-tier applications and not as part of the
briefcase model, then you can save yourself a little effort by using a TADODataSet and set-
ting its CommandType to cmdFile and its CommandText to the name of the file. This will save
you the effort of having to call LoadFromFile manually. You will, however, still have to call
SaveToFile. In a briefcase application, however, this approach is too limiting, as the dataset
can be used in two different modes.

Persistent Recordsets

2874c16.qxd 7/2/01 4:36 PM Page 737

http://www.sybex.com

738

The Briefcase Model
Our new-found knowledge of batch updates, disconnected recordsets, and persistent record-
sets allows us to take advantage of the “briefcase model.” The idea behind the briefcase
model is that your users want to be able to use your application while they are out on the
road. They want to take the same application that they use on the desktops in the office and
use it on their laptops while on their clients’ sites. The problem with this scenario tradition-
ally is that when your users are at their clients’ sites, they are not connected to their database
server, because their database server is running on their network back at their office. Conse-
quently, there is no data on their laptop, and the data cannot be updated anyway.

This is where that new-found knowledge comes in. Assume that the application has already
been written; the user has requested this new briefcase enhancement, and you have to retrofit
it into your existing application. You need to add a new option for your users to allow them
to “prepare” the briefcase application. This simply consists of executing SaveToFile for each
and every table in the database. The result is a collection of ADTG or XML files that mirror
the contents of the database. These files are then copied to the laptop where a copy of the
application has previously been installed.

The application needs to be sensitive to whether it is running locally or connected to the
network. You can decide this either by attempting to connect to the database and seeing
whether it fails, by detecting the presence of a local “briefcase” file, or by creating some flag of
your own design. If the application decides it is running in briefcase mode, then it needs to use
LoadFromFile for each table instead of setting Connected to True for the TADOConnections
and Active to True for the ADO datasets. Thereafter, the briefcase application needs to use
SaveToFile instead of UpdateBatch whenever data is saved. Upon return to the office, there
needs to be an update process where each table is loaded from its local file, the dataset is con-
nected to the database, and the changes are applied using UpdateBatch. Voilà, the briefcase
model.

Deploying MDAC
MDAC, and therefore ADO, can be almost freely distributed. There are some conditions on
its distribution, but these are to protect Microsoft from unreasonable behavior and it is unlikely
that regular application developers will fall afoul of them. To distribute MDAC, you distribute
and execute MDAC_TYP.EXE. You may not distribute and install MDAC components individually.
If you use InstallShield Express For Delphi, then you will have to run MDAC_TYP.EXE separately
from your regular InstallShield Setup program, because InstallShield Express For Delphi can-
not shell out to an external program—i.e., MDAC_TYP.EXE. If you use an installation program
that can shell out to another program, you might want to be aware of some of the parameters

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 738

http://www.sybex.com

739

you can pass to MDAC_TYP.EXE. The various parameters affect whether the user has to specifically
accept the end user license, whether the file copy dialog is shown, whether there is an automatic
reboot on completion (or the user decides to reboot or there is no reboot), and, finally, whether
MDACSET.LOG is a summary log file or a full log file. The /Q parameter is a quiet, but not com-
pletely silent, setup. A truly silent setup can be achieved with /Q:A /C:”setup /QNT” parameters.
See the Platform SDK for a complete list of setup parameters. Although I have not tested
installing every version of MDAC on top of every other version of MDAC, my experience is
that, despite the progress bar indicating the successful progress of the installation, an earlier
version of MDAC does not overwrite a later version of MDAC.

In addition to installing MDAC, you will also need to install DCOM if the target is
Windows 95.

One invaluable tool that you should add to your toolbox is Component Checker. This is
available for free download from www.microsoft.com/data/download.htm. Component
Checker is the most accurate method of determining which version of MDAC is installed on
a machine. It scans for all ADO, OLE DB, and ODBC files and gets their version numbers.
It can compare all of these version numbers against its own internal database of correct ver-
sion numbers for each release of MDAC. At the end of its analysis, it reveals the version of
MDAC that most closely matches the files installed on a machine. It is also useful as a kind of
“REGEDIT For MDAC,” as it reports on all of the MDAC registry information using a
considerably more relevant user interface than REGEDIT. Finally, it is the only safe way of
removing MDAC from a machine.

ADO.NET
ADO.NET is part of Microsoft’s new dotNet (or “.NET”) architecture—their redesign of applica-
tion development tools to better suit the needs of Web development. At the time of writing,
Visual Studio.NET was in beta, so this section has been included solely as a means to give you
an idea of where ADO is heading.

ADO.NET is a revolution of ADO. It looks at the problems of Web development and addresses
shortcomings of ADO’s solution. The problem with ADO’s solution is that it is based on COM.
For one- and two-tier applications, COM imposes few problems, but in the world of Web
development it is unacceptable as a transport mechanism. COM suffers from three main prob-
lems for use in Web development: it (mostly) runs only on Windows; the transmission of
recordsets from one process requires COM marshalling; and COM calls cannot penetrate cor-
porate firewalls. ADO.NET’s solution to all of these problems is to use XML.

Deploying MDAC

Continued on next page

2874c16.qxd 7/2/01 4:36 PM Page 739

http://www.sybex.com

740

Some other redesign issues focus around breaking up the ADO recordset into separate classes.
The resulting classes are adept at solving a single problem instead of multiple problems. For
example, the ADO.NET class currently called DataSetReader is very similar to a read-only,
forward-only server-side recordset and, as such, is best suited to reading a result set very
quickly. A DataTable is most like a disconnected, client-side recordset. A DataRelation has
similarities with the MSDataShape OLE DB Provider. So you can see that your knowledge of
how ADO works is of great benefit in understanding the basic principles of ADO.NET.

If you wish to experiment with ADO.NET in Delphi before direct support is added to Delphi,
then you will need to give Delphi access to the ADO.NET classes, which are called “managed”
classes and are based on a new run-time environment called the Common Language Runtime
(CLR). These classes are not COM classes and, as such, Delphi cannot normally access them.
However, Visual Studio.NET includes a utility called REGASM.EXE, which takes any “assembly”
(library of managed classes) and creates a COM type library interface to the managed classes.
As Delphi can easily access COM classes, simply import the resulting type library into Delphi
and use the classes as if they were COM classes.

What’s Next?
This chapter described ActiveX Data Objects (ADO) and dbGo, the set of Delphi components
for accessing the ADO interfaces. You’ve seen how to take advantage of Microsoft Data Access
Components (MDAC) and various server engines, and I’ve described some of the benefits and
hurdles you’ll encounter in using ADO.

The next chapter will take you into the world of Delphi’s DataSnap architecture, for devel-
oping custom client and server applications in a three-tier environment.

Chapter 16 • ActiveX Data Objects

2874c16.qxd 7/2/01 4:36 PM Page 740

http://www.sybex.com

17CH A P T E R

Multitier Database
Applications with DataSnap

� Logical three-tier architecture

� The technical foundation of DataSnap

� The connection protocols and the data packets

� Delphi’s support components (client-side and
server-side)

� The connections broker and other new Delphi 6
features

2874c17.qxd 7/2/01 4:39 PM Page 741

http://www.sybex.com

742

Large companies often have broader needs than applications using local database and SQL
servers can meet. In the past few years, Borland Software Corporation has been addressing the
needs of large corporations, and it even temporarily changed its own name to Inprise to under-
line this new enterprise focus. The name was changed back to Borland, but the focus on enter-
prise development remains.

Delphi is targeting many different technologies: three-tier architectures based on Win-
dows NT and DCOM, CORBA architectures based on NT and Unix servers, TCP/IP and
socket applications, and—most of all—SOAP- and XML-based Web services. This chapter
focuses on database-oriented multitier architectures, while XML-oriented solutions will be
discussed in Chapter 23, “XML and SOAP.”

Even though I haven’t yet discussed COM and sockets (covered in Chapters 19 to 21), in
this chapter we’ll build multitier architectures based on those technologies. As we’ll use high-
level Delphi support, not knowing the details of some of the foundations should not create
any problem. I’ll concentrate more on the programming aspects of these architectures than
on installation and configuration (the latter aspects are subject to change across different
operating systems and are too complex to cover thoroughly).

Before proceeding, I should emphasize two important elements. First, the tools to support
this kind of development are available only in the Enterprise version of Delphi; and second,
you’ll have to pay a license fee to Borland in order to deploy the necessary server-side soft-
ware for DataSnap. This second requirement makes this architecture cost-effective mainly
for large systems (that is, servers connected to dozens or even hundreds of clients). The
license fee is only required for deployment of the server application and is a flat fee for each
server you deploy to (regardless of the number of clients that will connect). The license fee is
not required for development or evaluation purposes.

NOTE You spend money on the DataSnap license, but you might save on the SQL server client
licenses. When SQL server licenses were based on the number of connections, companies have
saved tens of thousands of dollars in those licenses by connecting the hundreds of clients to a
few instances of the DataSnap server, using few connections with the SQL server. Nowadays,
the licenses for most SQL servers are based on the number of users who connect to the data-
base, not the number of connections active at each time, so this kind of savings doesn’t
always apply.

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 742

http://www.sybex.com

743

One, Two, Three Levels
Initially, database PC applications were client-only solutions: the program and the database
files were on the same computer. From there, adventuresome programmers moved the data-
base files onto a network file server. The client computers still hosted the application soft-
ware and the entire database engine, but the database files were now accessible to several
users at the same time. You can still use this type of configuration with a Delphi application
and Paradox files (or, of course, Paradox itself), but the approach was much more widespread
just few years ago.

The next big transition was to client/server development, embraced by Delphi since its first
version. In the client/server world, the client computer requests the data from a server com-
puter, which hosts both the database files and a database engine to access them. This architec-
ture downplays the role of the client, but it also reduces its requirements for processing power
on the client machine. Depending on how the programmers implement client/server, the
server can do most (if not all) of the data processing. In this way, a powerful server can provide
data services to several less powerful clients.

Naturally, there are many other reasons for using centralized database servers, such as the
concern for data security and integrity, simpler backup strategies, central management of
data constraints, and so on. The database server is often called a SQL server, because SQL is
the language most commonly used for making queries into the data, but it may also be called
a DBMS (database management system), reflecting the fact that the server provides tools for
managing the data, such as support for backup and replication.

Of course, some applications you build may not need the benefits of a full DBMS, so a
simple client-only solution might be sufficient. On the other hand, you might need some of
the robustness of a DBMS system, but on a single, isolated computer. In this case, you can
use a local version of a SQL server, such as InterBase. Traditional client/server development
is done with a two-tier architecture. However, if the DBMS is primarily performing data
storage instead of data- and number-crunching, the client might contain both user interface
code (formatting the output and input with customized reports, data-entry forms, query
screens, and so on) and code related to managing the data (also known as business rules). In
this case, it’s generally a good idea to try to separate these two sections of the program and
build a logical three-tier architecture. The term logical here means that there are still just two
computers (that is, two physical tiers), but we’ve now partitioned the application into three
distinct elements.

Delphi 2 introduced support for a logical three-tier architecture with data modules. As you’ll
recall, a data module is a nonvisual container for the data access components of an application,
but it often includes several handlers for database-related events. You can share a single data

One, Two, Three Levels

2874c17.qxd 7/2/01 4:39 PM Page 743

http://www.sybex.com

744

module among several different forms and provide different user interfaces for the same data;
there might be one or more data-input forms, reports, master/detail forms, and various
charting or dynamic output forms.

The logical three-tier approach solves many problems, but it also has a few drawbacks.
First, you must replicate the data-management portion of the program on different client
computers, which might hamper performance, but a bigger issue is the complexity this adds
to code maintenance. Second, when multiple clients modify the same data, there’s no simple
way to handle the resulting update conflicts. Finally, for logical three-tier Delphi applica-
tions, you must install and configure the database engine (if any) and SQL server client
library on every client computer.

The next logical step up from client/server is to move the data-module portion of the
application to a separate server computer and design all the client programs to interact with
it. This is exactly the purpose of remote data modules, which were introduced in Delphi 3.
Remote data modules run on a server computer—generally called the application server. The
application server in turn communicates with the DBMS (which can run on the application
server or on another dedicated computer). Therefore, the client machines don’t connect to
the SQL server directly, but indirectly via the application server.

At this point there is a fundamental question: Do we still need to install the database access
software? The traditional Delphi client/server architecture (even with three logical tiers)
requires you to install the database access on each client, something quite troublesome when
you must configure and maintain hundreds of machines. In the physical three-tier architec-
ture, you need to install and configure the database access only on the application server, not
on the client computers. Since the client programs have only user interface code and are
extremely simple to install, they now fall into the category of so-called thin clients. To use
marketing-speak, we might even call this a zero-configuration thin-client architecture. But let us
focus on technical issues instead of marketing terminology.

The Technical Foundation of DataSnap
When Borland introduced this physical multitier architecture in Delphi, it was called MIDAS
(Middle-tier Distributed Application Services). For example, Delphi 5 included the third ver-
sion of this technology, MIDAS 3. Now Delphi 6 renames this technology as DataSnap and
extends its capabilities.

DataSnap requires the installation of specific libraries on the server (actually the middle-
tier computer), which provides your client computers with the data extracted from the SQL
server database or other data sources. DataSnap does not require a SQL server for data stor-
age. DataSnap can serve up data from a wide variety of sources, including SQL, CORBA,
other DataSnap servers, or just data computed on the fly.

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 744

http://www.sybex.com

745

As you would expect, the client side of DataSnap is extremely thin and easy to deploy. The
only file you need is Midas.dll, a small (260 KB) DLL that implements the ClientDataSet
and RemoteServer components and provides the connection to the application server. As
we’ve seen in Chapter 14, “Client/Server Programming,” this DLL is basically a small,
stand-alone database engine. It caches data from a remote data module and enforces the rules
requested by the Constraint Broker.

The application server uses the same DLL to handle the datasets (called deltas) returned
from the clients when they post updated or new records. However, the server also requires
several other libraries, all of which are installed by DataSnap.

The IAppServer Interface
Starting with Delphi 5, the two sides of a DataSnap application communicate using the
IAppServer interface.

NOTE In Delphi 5 (and 6), the IAppServer interface supersedes Delphi 4’s IProvider interface. The
main reason for this change was support for stateless objects. With IProvider, the server
stored status information about the client program—for example, which records had already
been passed to the client. This made it difficult to adapt the server-side objects to stateless
connection layers, like CORBA message queues and MTS, and also to move toward HTTP and
Web-based support. Other reasons for moving to this new architecture were to make the sys-
tem more dynamic (providers are now exported by setting a property, not by changing the
type library) and to reduce the number of calls, or round-trips, which can affect performance.
DataSnap makes fewer calls but delivers more data each time.

The IAppServer interface has the following methods:
AS_ApplyUpdates
AS_GetRecords
AS_DataRequest
AS_GetProviderNames
AS_GetParams
AS_RowRequest
AS_Execute

You’ll seldom need to call them directly, anyway, because there are Delphi components to
be used on the client and server sides of the application that embed these calls, making them
easier (and at times even hiding them completely). In practice, the server will make available
to the client objects implementing this interface, possibly along with other custom interfaces.

NOTE A DataSnap server exposes an interface using a COM type library, a technology I’ll discuss in
Chapter 20, “Automation, ActiveX, and Other COM Technologies.”

One, Two, Three Levels

2874c17.qxd 7/2/01 4:39 PM Page 745

http://www.sybex.com

746

The Connection Protocol
DataSnap defines only the higher-level architecture and can use different technologies for
moving the data from the middle tier to the client side. DataSnap supports most of the lead-
ing standards, including the following:

Distributed COM (DCOM) and Stateless COM (MTS or COM+) DCOM is directly available
in Windows NT/2000 and 98/Me, and it requires no additional run-time applications on
the server. You still have to install it on Windows 95 machines. DCOM is basically an exten-
sion of COM technology (discussed in Chapter 19, “COM Programming,” and Chapter 20)
that allows a client application to use server objects that exist and execute on a separate com-
puter. The DCOM infrastructure allows you to use stateless COM objects, available in the
COM+ and in the older MTS (Microsoft Transaction Server) architectures. Both COM+ and
MTS provide features such as security, component management, and database transactions,
and are available in Windows NT/2000 and in Windows 98/Me.

Due to the complexity of DCOM configuration and of its problems in passing through
firewalls, even Microsoft is abandoning DCOM in favor of SOAP-based solutions.

TCP/IP sockets These are available on most systems. Using TCP/IP you might distribute
clients over the Web, where DCOM cannot be taken for granted, and have many fewer con-
figuration headaches. To use sockets, the middle-tier computer must run the ScktSrvr.exe
application provided by Borland, a single program that can run either as an application or as
a service. This program receives the client requests and forwards them to the remote data
module (executing on the same server) using COM. Sockets provide no protection against
failure on the client side, as the server is not informed and might not release resources when
a client unexpectedly shuts down.

HTTP and SOAP The use of HTTP as a transport protocol over the Internet simplifies
connections through firewalls or proxy servers (which generally don’t like custom TCP/IP
sockets). You need a specific Web server application, httpsrvr.dll, which accepts client
requests and creates the proper remote data modules using COM. These Web connections
can use SSL security but must register themselves by adding a call to EnableWebTransport
in the UpdateRegistry method. Finally, Web connections based on HTTP transport can
use DataSnap object-pooling support.

NOTE The DataSnap HTTP transport can use XML as the data packet format, enabling any platform
or tool that can read XML to participate in a DataSnap architecture. This is an extension of the
original DataSnap data packet format, which is also platform-independent. The use of XML
over HTTP is also the foundation of SOAP. There’s more on XML in Chapter 23.

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 746

http://www.sybex.com

747

CORBA Common Object Request Broker Architecture is an official standard for object
management available on most operating systems. Compared to DCOM, the advantage is
that your client and server applications can be also written with Java and other products.
The Borland implementation of CORBA, VisiBroker, is available with Delphi Enterprise.
CORBA provides many benefits, including location transparency, load balancing, and fail-
over from the ORB run-time software. (An in-depth discussion of CORBA is certainly
beyond the scope of this book, and in practice only a limited number of Delphi program-
mers use CORBA.)

Internet Express As an extension to this architecture, you can transform the data packets
into XML and deliver them to a Web browser. In this case, you basically have one extra
tier: the Web server gets the data from the middle tier and delivers it to the client. I’ll dis-
cuss this new architecture, called Internet Express, in Chapter 23. The DLL can also be
folded into the executable file by using the MidasLib unit.

Providing Data Packets
The entire Delphi multitier data-access architecture centers around the idea of data packets.
In this context, a data packet is a block of data that moves from the application server to the
client or from the client back to the server. Technically, a data packet is a sort of subset of a
dataset. It describes the data it contains (usually a few records of data), and it lists the names
and types of the data fields. Even more important, a data packet includes the constraints—
that is, the rules to be applied to the dataset. You’ll typically set these constraints in the appli-
cation server, and the server sends them to the client applications along with the data.

All communication between the client and the server occurs by exchanging data packets.
The provider component on the server manages the transmission of several data packets
within a big dataset, with the goal of responding faster to the user. As the client receives a
data packet, in a ClientDataSet component, the user can edit the records it contains. As men-
tioned earlier, during this process the client also receives and checks the constraints, which
are applied during the editing operations.

When the client has updated the records and sends a data packet back, that packet is known
as a delta. The delta packet tracks the difference between the original records and the updated
ones, recording all the changes the client requested from the server. When the client asks to
apply the updates to the server, it sends the delta to the server, and the server tries to apply
each of the changes. I say tries because if a server is connected to several clients, the data might
have changed already, and the update request might fail.

Since the delta packet includes the original data, the server can quickly determine if
another client has already changed it. If so, the server fires an OnReconcileError event,
which is one of the vital elements for thin-client applications. In other words, the three-tier

One, Two, Three Levels

2874c17.qxd 7/2/01 4:39 PM Page 747

http://www.sybex.com

748

architecture uses an update mechanism similar to the one Delphi uses for cached updates. As
we have seen in Chapter 14, “Client/Server Programming Techniques,” the ClientDataSet
manages data in a memory cache, and it typically reads only a subset of the records available
on the server side, loading more elements only as they’re needed. When the client updates
records or inserts new ones, it stores these pending changes in another local cache on the
client, the delta cache.

The client can also save the data packets to disk and work off-line, thanks to the MyBase
support discussed in Chapter 13, “Delphi’s Database Architecture.” Even error information
and other data moves using the data packet protocol, so it is truly one of the foundation ele-
ments of this architecture.

NOTE It’s important to remember that data packets are protocol-independent. A data packet is
merely a sequence of bytes, so anywhere you can move a series of bytes, you can move a data
packet. This was done to make the architecture suitable for multiple transport protocols
(including DCOM, CORBA, HTTP, and TCP/IP) and for multiple platforms.

Delphi Support Components (Client-Side)
Now that we’ve examined the general foundations of Delphi’s three-tier architecture, we can
focus on the components that support it. For developing client applications, Delphi provides
the ClientDataSet component, which provides all the standard dataset capabilities and embeds
the client side of the IAppServer interface. In this case, the data is delivered through the
remote connection.

The connection to the server application is made via another component you’ll also need
in the client application. You should use one of the four specific connection components
(available in the DataSnap page):

• The DCOMConnection component can be used on the client side to connect to a
DCOM and MTS server, located either on the current computer or in another one
indicated by the ComputerName property. The connection is with a registered object
having a given ServerGUID or ServerName.

• The CorbaConnection component can be used to hook with a CORBA server. You
indicate the HostName (the name or IP address) to indicate the server computer, the
RepositoryID to request a specific data module on the server, and optionally the
ObjectName property if the data module exports multiple objects.

• The SocketConnection component can be used to connect to the server via a TCP/IP
socket. You should indicate the IP address or the host name, and the GUID of the
server object (in the InterceptGUID property). In Delphi 5, this connection component

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 748

http://www.sybex.com

749

has an extra property, SupportCallbacks, which you can disable if you are not using
callbacks and want to deploy your program on Windows 95 computers that don’t have
Winsock 2 installed.

NOTE In the WebServices page, you can also find the SoapConnection component, which requires a
specific type of server and will be discussed in Chapter 23.

• The WebConnection component is used to handle an HTTP connection that can easily
get through a firewall. You should indicate the URL where your copy of httpsrvr.dll
is located and the name or GUID of the remote object on the server.

Delphi 6 adds new client-side components to the DataSnap architecture, mainly for man-
aging connections:

• The ConnectionBroker component can be used as an alias of an actual connection
component, something useful when you have a single application with multiple client
datasets. In fact, to change the physical connection of each of the datasets, you only
need to change the Connection property of the ConnectionBroker. You can also use the
events of this virtual connection component in place of those of the actual connections,
so you don’t have to change any code if you change the data transport technology. For
the same reason, you can refer to the AppServer object of the ConnectionBroker
instead of the corresponding property of a physical connection.

• The SharedConnection component can be used to connect to a secondary (or child)
data module of a remote application, piggy-backing on an existing physical connection
to the main data module. In other words, an application can connect to multiple data
modules of the server with a single, shared connection.

• The LocalConnection component can be used to target a local dataset provider as the
source of the data packet. The same effect can be obtained by hooking the ClientDataSet
directory to the provider. However, using the LocalConnection, you can write a local
application with the same code as a complete multitier application, using the IAppServer
interface of the “fake” connection. This will make the program easier to scale up, com-
pared to a program with a direct connection.

A few other components of the DataSnap page relate to the transformation of the DataSnap
data packet into custom XML formats. These components (XMLTransform, XMLTransform-
Provider, and XMLTransformClient) will be discussed in Chapter 23.

One, Two, Three Levels

2874c17.qxd 7/2/01 4:39 PM Page 749

http://www.sybex.com

750

Delphi Support Components (Server-Side)
On the server side (or actually the middle tier), you’ll need to create an application or a
library that embeds a remote data module, a special version of the TDataModule class. There
are actually specialized remote data modules for transactional COM and CORBA support. In
the Multitier page of the New Items dialog box (obtained with the File ➢ New ➢ Others
menu) are specific wizards to create remote data modules of each of these types.

The only specific component you need on the server side is the DataSetProvider. You need
one of these components for every table or query you want to make available to the client
applications, which will then use a separate ClientDataSet component for every exported
dataset. The DataSetProvider was already introduced in Chapter 14.

NOTE The DataSetProvider component of Delphi 5 and 6 supersedes the stand-alone Provider compo-
nent of Delphi 4 and the internal Provider object, which was embedded in the TBDEDataSet
subclasses.

Building a Sample Application
Now we’re ready to build a sample program. This will allow us to observe some of the com-
ponents I’ve just described in action, and it will also allow us to focus on some other prob-
lems, shedding light on other pieces of the Delphi multitier puzzle. I’ll build the client and
application server portions of a three-tier application in two steps. The first step will simply
test the technology using a bare minimum of elements. These programs will be very simple.

From that point, we’ll add more power to the client and the application server. In each of
the examples, we’ll display data from local Paradox tables, and we’ll set up everything to
allow you to test the programs on a stand-alone computer. I won’t cover the steps you have to
follow to install the examples on multiple computers with various technologies—that would
be the subject of at least one other book.

The First Application Server
The server side of our basic example is very easy to build. Simply create a new application
and add a remote data module to it using the corresponding icon in the Multitier page of the
Object Repository. The simple Remote Data Module Wizard (see Figure 17.1) will ask you
for a class name and the instancing style. As you enter a class name, such as AppServerOne,
and click the OK button, Delphi will add a data module to the program. This data module will
have the usual properties and events, but its class will have the following Pascal declaration:

type
TAppServerOne = class(TRemoteDataModule, IAppServerOne)
private

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 750

http://www.sybex.com

751

{ Private declarations }
protected
class procedure UpdateRegistry(Register: Boolean;
const ClassID, ProgID: string); override;

public
{ Public declarations }

end;

In addition to inheriting from the TRemoteDataModule base class, this class implements
the custom IAppServerOne interface, which derives from the standard DataSnap interface
(IAppServer). The class also overrides the UpdateRegistry method to add the support for
enabling the socket and Web transports, as you can see in the code generated by the wizard.
At the end of the unit, you’ll find the class factory declaration, which will become clear after
reading Chapter 19:

initialization
TComponentFactory.Create(ComServer, TAppServerOne,
Class_AppServerOne, ciMultiInstance, tmApartment);

end.

Now you can add a dataset component to the data module (I’ve used the dbExpress
SQLDataSet), connect it to a database and a table or query, activate it, and finally add a
DataSetProvider and hook it to the dataset component. You’ll obtain a DFM file like this:

object AppServerOne: TAppServerOne
object SQLConnection1: TSQLConnection
ConnectionName = ‘IBLocal’
LoginPrompt = False

end
object SQLDataSet1: TSQLDataSet
SQLConnection = SQLConnection1
CommandText = ‘select * from EMPLOYEE’

end
object DataSetProvider1: TDataSetProvider
DataSet = SQLDataSet1
Constraints = True

F I G U R E 1 7 . 1 :
The simple Remote Data
Module Wizard

Building a Sample Application

2874c17.qxd 7/2/01 4:39 PM Page 751

http://www.sybex.com

752

end
end

What about the main form of this program? Well, it’s almost useless, so we can simply add
a label to it indicating that it’s the form of the server application. When you’ve built the
server, you should compile it and run it once. This operation will automatically register it as
an Automation server on your system, making it available to client applications. Of course,
you should register the server on the computer where you want it to run, either the client or
the middle tier.

The First Thin Client
Now that we have a working server, we can build a client that will connect to it. We’ll again
start with a standard Delphi application and add a DCOMConnection component to it (or
the proper component for the specific type of connection you want to test). This component
defines a ComputerName property that you’ll use to specify the computer that hosts the appli-
cation server. If you want to test the client and application server from the same computer,
you can leave this blank.

Once you’ve selected an application server computer, you can simply display the ServerName
property’s combo-box list to view the available DataSnap servers. This combo box shows the
servers’ registered names, by default the name of the executable file of the server followed by
the name of the remote data module class, as in AppServ1.AppServerOne. Alternatively, you
can type the GUID of the server object in the ServerGUID property. Delphi will automati-
cally fill this property as you set the ServerName property, determining the GUID by looking
it up in the Registry.

At this point, if you set the DCOMConnection component’s Connected property to True,
the server form will appear, indicating that the client has activated the server. You don’t usu-
ally need to perform this operation, because the ClientDataSet component typically activates
the RemoteServer component for you. I’ve suggested this simply to emphasize what’s hap-
pening behind the scenes.

TIP You should generally leave the DCOMConnection component’s Connected property set to
False at design time, to be able to open the project in Delphi even on a computer where the
DataSnap server is not already registered.

As you might expect, the next step is to add a ClientDataSet component to the form. You
must connect the ClientDataSet to the DCOMConnection1 component via the RemoteServer
property, and thereby to one of the providers it exports. You can see the list of available
providers in the ProviderName property, via the usual combo box. In this example, you’ll be
able to select only DataSetProvider1, as this is the only provider available in the server we’ve

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 752

http://www.sybex.com

753

just built. This operation connects the dataset in the client’s memory with the dbExpress
dataset on the server. If you activate the client dataset and add a few data-aware controls (or a
DBGrid), you’ll immediately see the server data appear in them, as illustrated in Figure 17.2.

Here is the DFM file for our minimal client application, ThinCli1:
object Form1: TForm1
Caption = ‘ThinClient1’
object DBGrid1: TDBGrid
Align = alClient
DataSource = DataSource1

end
object DCOMConnection1: TDCOMConnection
ServerGUID = ‘{09E11D63-4A55-11D3-B9F1-00000100A27B}’
ServerName = ‘AppServ1.AppServerOne’

end
object ClientDataSet1: TClientDataSet
Aggregates = <>
Params = <>
ProviderName = ‘DataSetProvider1’
RemoteServer = DCOMConnection1

end
object DataSource1: TDataSource
DataSet = ClientDataSet1

end
end

Obviously, the programs of our first three-tier application are quite simple, but they demon-
strate how to create a dataset viewer that splits the work between two different executable files.
At this point, our client is only a viewer. If you edit the data on the client, it won’t be updated

F I G U R E 1 7 . 2 :
When you activate a
ClientDataSet component
connected to a remote data
module at design time, the
data from the server
becomes visible as usual.

Building a Sample Application

2874c17.qxd 7/2/01 4:39 PM Page 753

http://www.sybex.com

754

on the server. To accomplish this, you’ll need to add some more code to the client. However,
before we do that, let’s add some features to the server.

Adding Constraints to the Server
When you write a traditional data module in Delphi, you can easily add some of the applica-
tion logic, or business rules, by handling the dataset events, and by setting field object prop-
erties and handling their events. You should avoid doing this work on the client application;
instead, write your business rules on the middle tier.

In the DataSnap architecture, you can send some constraints from the server to the client
and let the client program impose those constraints during the user input. You can also send
field properties (such as minimum and maximum values and the display and edit masks) to
the client and (using some of the data access technologies) process updates through the
dataset used to access the data (or a companion UpdateSql object).

Field and Table Constraints
When the provider interface creates data packets to send to the client, it includes the field
definitions, the table and field constraints, and one or more records (as requested by the
ClientDataSet component). This implies that you can customize the middle tier and build
distributed application logic by using SQL-based constraints.

The constraints you create using SQL expressions can be assigned to an entire dataset or
to specific fields. The provider sends the constraints to the client along with the data, and the
client applies them before sending updates back to the server. This reduces network traffic,
compared to having the client send updates back to the application server and eventually up
to the SQL server, only to find that the data is invalid. Another advantage of coding the con-
straints on the server side is that if the business rules change, you need to update the single
server application and not the many clients on multiple computers.

But how do you write constraints? There are several properties you can use:

• BDE datasets have a Constraints property, which is a collection of TCheckConstraint
objects. Every object has a few properties, including the expression and the error message.

• Each field object defines the CustomConstraint and ConstraintErroMessage proper-
ties. There is also an ImportedConstraint property for constraints imported from the
SQL server.

• Each field object has also a DefaultExpression property, which can be used locally or
passed to the ClientDataSet. This is not an actual constraint, only a suggestion to the
end user.

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 754

http://www.sybex.com

755

Our next example, AppServ2, adds a few constraints to a remote data module connected to
the sample EMPLOYEE InterBase database. After connecting the table to the database and
creating the field objects for it, you can set the following special properties:

object SQLDataSet1: TSQLDataSet
...
object SQLDataSet1EMP_NO: TSmallintField
CustomConstraint = ‘x > 0 and x < 10000’
ConstraintErrorMessage =
‘Employee number must be a positive integer below 10000’

FieldName = ‘EMP_NO’
end
object SQLDataSet1FIRST_NAME: TStringField
CustomConstraint = ‘x <> ‘#39#39
ConstraintErrorMessage = ‘The first name is required’
FieldName = ‘FIRST_NAME’
Size = 15

end
object SQLDataSet1LAST_NAME: TStringField
CustomConstraint = ‘not x is null’
ConstraintErrorMessage = ‘The last name is required’
FieldName = ‘LAST_NAME’

end
end

NOTE The expression ‘x <> ‘#39#39 is the DFM transposition of the string x <> ‘’, indicating
that we don’t want to have an empty string. The final constraint, not x is null, instead
allows empty strings but not null values.

Including Field Properties
You can control whether the properties of the field objects on the middle tier are sent to the
ClientDataSet (and copied into the corresponding field objects of the client side), by using
the poIncFieldProps value of the Options property of the DataSetProvider. This flag con-
trols the download of the field properties Alignment, DisplayLabel, DisplayWidth, Visible,
DisplayFormat, EditFormat, MaxValue, MinValue, Currency, EditMask, and DisplayValues, if
they are available in the field. Here is an example of another field of the AppServ2 example
with some custom properties:

object SQLDataSet1SALARY: TBCDField
DefaultExpression = ‘10000’
FieldName = ‘SALARY’
DisplayFormat = ‘#,###’
EditFormat = ‘####’
Precision = 15
Size = 2

end

Adding Constraints to the Server

2874c17.qxd 7/2/01 4:39 PM Page 755

http://www.sybex.com

756

With this setting, you can simply write your middle tier the way you usually set the fields
of a standard client/server application. This approach also makes it faster to move existing
applications from a client/server to a multitier architecture. The main drawback of sending
fields to the client is that transmitting all the extra information takes time. Turning off
poIncFieldProps can dramatically improve network performance of datasets with many
columns.

A server can generally filter the fields returned to the client; it does this by declaring persis-
tent field objects with the Fields editor and omitting some of the fields. Because a field you’re
filtering out might be required to identify the record for future updates (if the field is part of
the primary key), you can also use the field’s ProviderFlags property on the server to send the
field value to the client but make it unavailable to the ClientDataSet component (this provides
some extra security, compared to sending the field to the client and hiding it there).

Field and Table Events
You can write middle-tier dataset and field event handlers as usual and let the dataset process
the updates received by the client in the traditional way. This means that updates are consid-
ered to be operations on the dataset, exactly as when a user is directly editing, inserting, or
deleting fields locally.

This is accomplished by setting the ResolveToDataSet property of the TDatasetProvider
component, again connecting either the dataset used for input or a second one used for the
updates. This approach is possible with datasets supporting editing operations. These
includes BDE, ADO, and InterBase Express datasets, but not those of the new dbExpress
architecture.

With this technique, the updates are performed by the dataset, which implies a lot of con-
trol (the standard events are being triggered) but generally slower performance. Flexibility is
much greater, as you can use standard coding practices. Also, porting existing local or client/
server database applications, which use dataset and field events, is much more straightforward
with this model. However, keep in mind that the user of the client program will receive your
error messages only when the local cache (the delta) is sent back to the middle tier. Saying to
the user that some data prepared half an hour ago is not valid might be a little awkward. If
you follow this approach, you’ll probably need to apply the updates in the cache at every
AfterPost event on the client side.

Finally, if you decide to let the dataset and not the provider do the updates, Delphi helps
you a lot in handling possible exceptions. Any exceptions raised by the middle-tier update
events (for example, OnBeforePost) are automatically transformed by Delphi into update
errors, which activate the OnReconcileError event on the client side (more on this event later
in this chapter). No exception is shown on the middle tier, but the error travels back to the
client.

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 756

http://www.sybex.com

757

Adding Features to the Client
After adding some constraints and field properties to the server, we can now return our
attention to the client application. The first version was very simple, but now there are sev-
eral features we can add to it to make it work well. In the ThinCli2 example, I’ve embedded
support for checking the record status and accessing the delta information (the updates to be
sent back to the server), using some of the ClientDataSet techniques already discussed in
Chapter 13. The program also handles reconcile errors and supports the briefcase model.

Keep in mind that while you’re using this client to edit the data locally, you’ll be reminded
of any failure to match the business rules of the application, set up on the server side using
constraints. The server will also provide us with a default value for the Salary field of a new
record and pass along the value of its DisplayFormat property. In Figure 17.3 you can see one
of the error messages this client application can display, which it receives from the server. This
message is displayed while editing the data locally, not when you send it back to the server.

The Update Sequence
This client program also includes a button to Apply the updates to the server and a standard
reconcile dialog. Here is a summary of the complete sequence of operations related to an
update request and the possible error events:

1. The client program calls the ApplyUpdates method of a ClientDataSet.

2. The delta is sent to the provider on the middle tier. The provider fires the OnUpdateData
event, where you have a chance to look at the requested changes before they reach the

F I G U R E 1 7 . 3 :
The error message
displayed by the ThinCli2
example when the
employee ID is too large

Adding Features to the Client

2874c17.qxd 7/2/01 4:39 PM Page 757

http://www.sybex.com

758

database server. At this point you can modify the delta, which is passed in a format
compatible with the data of a ClientDataSet.

3. The provider (technically, a part of the provider called the “resolver”) applies each row
of the delta to the database server. Before applying each update, the provider receives a
BeforeUpdateRecord event. If you’ve set the ResolveToDataSet flag, this update will
eventually fire local events of the dataset in the middle tier.

4. In case of a server error, the provider fires the OnUpdateError event (on the middle tier)
and the program has a chance of fixing the error at that level.

5. If the middle-tier program doesn’t fix the error, the corresponding update request
remains in the delta. The error is returned to the client side at this point or after a
given number of errors have been collected, depending on the value of the MaxErrors
parameter of the ApplyUpdates call.

6. Finally, the delta packet with the remaining updates is sent back to the client, firing the
OnReconcileError event of the ClientDataSet for each remaining update. In this event
handler, the client program can try to fix the problem (possibly prompting the user for
help), modifying the update in the delta, and later reissuing it.

Refreshing Data
You can obtain an updated version of the data, which other users might have modified, by
calling the Refresh method of the ClientDataSet. However, this operation can be done only
if there are no pending update operations in the cache, as calling Refresh raises an exception
when the change log is not empty:

if cds.ChangeCount = 0 then
cds.Refresh;

If only some records have been changed, you can refresh the others by calling RefreshRecords.
This method refreshes only the current record, but it should be used only if the user hasn’t mod-
ified the current record. In this case, in fact, RefreshRecords leaves the unapplied changes in the
change log. As an example, you can refresh a record every time it becomes the active one, unless
it has been modified and the changes have not yet been posted to the server:

procedure TForm1.cdsAfterScroll(DataSet: TDataSet);
begin
if cds.UpdateStatus = usUnModified then
cds.RefreshRecord;

end;

When the data is subject to frequent changes by many users and each user should see
changes right away, you should generally apply any change immediately in the AfterPost

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 758

http://www.sybex.com

759

and AfterDelete methods, and call RefreshRecords for the active record (as shown above) or
each of the records visible inside a grid. This code is actually part of the ClientRefresh example,
connected to the AppServ2 server. For debugging purposes, the program also logs the
EMP_NO field for each record it refreshes, as you can see in Figure 17.4.

I’ve done this by adding a button to the ClientRefresh example. The handler of this button
moves from the current record to the first visible record of the grid and then to the last visi-
ble record. This is accomplished by noting that there are RowCount - 1 rows visible, assum-
ing that the first row is the fixed one hosting the field names. The program doesn’t call
RefreshRecord every time, as each movement will trigger an AfterScroll event with the
code shown above. This is the code to refresh the visible rows, which might even be trig-
gered by a timer:

var
i: Integer;
bm: TBookmarkStr;

begin
// refresh visible rows
cds.DisableControls;
// start with the current row
i := TMyGrid(DbGrid1).Row;
bm := cds.Bookmark;
try
// get back to the first visible record
while i > 1 do
begin
cds.Prior;
Dec (i);

end;
// return to the current record
i := TMyGrid(DbGrid1).Row;
cds.Bookmark := bm;
// go ahead until the grid is complete

F I G U R E 1 7 . 4 :
The form of the
ClientRefresh example,
which automatically
refreshes the active record
and allows more extensive
updates by pressing the
buttons

Adding Features to the Client

2874c17.qxd 7/2/01 4:39 PM Page 759

http://www.sybex.com

760

while i < TMyGrid(DbGrid1).RowCount do
begin
cds.Next;
Inc (i);

end;
finally
// set back everything and refresh
cds.Bookmark := bm;
cds.EnableControls;

end;

This approach generates a huge amount of network traffic, so you might want to trigger
updates only when there are actual changes. This can be implemented by adding a callback
technology to the server, so that it can inform all connected clients that a given record has
changed. The client can determine whether it is interested in the change and eventually trig-
ger the update request.

Advanced DataSnap Features
There are many more features in DataSnap than I’ve covered up to now. Here is a quick tour
of some of the more advanced features of the architecture, partially demonstrated by the
AppSPlus and ThinPlus examples. Unfortunately, demonstrating every single idea would
turn this chapter into an entire book (and not every Delphi programmer is interested in and
can afford DataSnap), so I’ll limit myself to an overview.

Besides the features discussed in the following sections, the AppSPlus and ThinPlus examples
demonstrate the use of a socket connection, limited logging of events and updates on the
server side, and direct fetching of a record on the client side. The last feature is accomplished
with this call:

procedure TClientForm.ButtonFetchClick(Sender: TObject);
begin
ButtonFetch.Caption := IntToStr (cds.GetNextPacket);

end;

This allows you to get more records than are actually required by the client user interface
(the DBGrid). In other words, you can fetch records directly, without waiting for the user to
scroll down in the grid. I suggest you study the details of these complex examples after read-
ing the rest of this section.

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 760

http://www.sybex.com
COURTNEY
ThinPlus example: This program requires Delphi's socket server (provided in Delphi's bin folder) to run. This is apparently not clear in the text. Without this program you'll see a socket error.

761

Parametric Queries
If you want to use parameters in a query or stored procedure, then instead of building a cus-
tom solution (with a custom method call to the server), you can let Delphi help you. First
define the query on the middle tier with a parameter, such as:

select * from customer where Country = :Country

Use the Params property to set the type and default value of the parameter. On the client
side, you can use the Fetch Params command of the ClientDataSet’s shortcut menu, after
connecting it to the proper provider. At run time, you can call the equivalent FetchParams
method of the ClientDataSet component.

Now you can provide a local default value to the parameter by acting on the Params prop-
erty. This will be sent to the middle tier when you fetch the data. The ThinPlus example
refreshes the parameter with the following code:

procedure TFormQuery.btnParamClick(Sender: TObject);
begin
cdsQuery.Close;
cdsQuery.Params[0].AsString := EditParam.Text;
cdsQuery.Open;

end;

You can see the secondary form of this example, which shows the result of the parametric
query in a grid, in Figure 17.5. In the figure you can also see some custom data sent by the
server, as explained in the section “Customizing the Data Packets.”

F I G U R E 1 7 . 5 :
The secondary form of the
ThinPlus example, showing
the data of a parametric
query

Advanced DataSnap Features

2874c17.qxd 7/2/01 4:39 PM Page 761

http://www.sybex.com

762

Custom Method Calls
Since the server has a normal COM interface, we can add more methods or properties to it and
call them from the client. Simply open the type library editor of the server and use it as with
any other COM server. In the AppSPlus example, I’ve added a custom Login method with the
following implementation:

procedure TAppServerPlus.Login(const Name, Password: WideString);
begin
// TODO: add actual login code...
if Password <> Name then
raise Exception.Create (‘Wrong name/password combination received’)

else
Query.Active := True;

ServerForm.Add (‘Login:’ + Name + ‘/’ + Password);
end;

The program makes a simple test, instead of checking the name/password combination
against a list of authorizations as a real application should do. Also, disabling the Query doesn’t
really work, as it can be activated by the provider. Disabling the DataSetProvider is actually a
more robust approach. The client has a simple way to access the server, the AppServer prop-
erty of the remote connection component. Here is a sample call from the ThinPlus example,
which takes place in the AfterConnect event of the connection component:

procedure TClientForm.ConnectionAfterConnect(Sender: TObject);
begin
Connection.AppServer.Login (Edit2.Text, Edit3.Text);

end;

Note that you can call extra methods of the COM interface through DCOM and also using a
socket-based or HTTP connection. Because the program uses the safecall calling conven-
tion, the exception raised on the server is automatically forwarded and displayed on the client
side. This way, when a user selects the Connect check box, the event handler used to enable the
client datasets is interrupted, and a user with the wrong password won’t be able to see the data.

NOTE Besides direct method calls from the client to the server, you can also implement callbacks
from the server to the client. This can be used, for example, to notify every client of specific
events. COM events are one way to do this. As an alternative, you can add a new interface,
implemented by the client, which passes the implementation object to the server. This way,
the server can call the method on the client computer. Callbacks are not possible with HTTP
connections, though.

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 762

http://www.sybex.com

763

Master/Detail Relations
If your middle-tier application exports multiple datasets, you can retrieve them using multiple
ClientDataSet components on the client side and connect them locally to form a master/detail
structure. This will create quite a few problems for the detail dataset unless you retrieve all of
the records locally.

This solution also makes it quite complex to apply the updates; you cannot usually cancel a
master record until all related detail records have been removed, and you cannot add detail
records until the new master record is properly in place. (Actually, different servers handle
this differently, but in most cases where a foreign key is used, this is the standard behavior.)
What you can do to solve this problem is to write complex code on the client side to update
the records of the two tables according to the specific rules.

A completely different approach is to retrieve a single dataset that already includes the
detail as a dataset field, a field of type TDatasetField. To accomplish this, you need to set up
the master/detail relation on the server application:

object TableCustomer: TTable
DatabaseName = ‘DBDEMOS’
TableName = ‘customer.db’

end
object TableOrders: TTable
DatabaseName = ‘DBDEMOS’
MasterFields = ‘CustNo’
MasterSource = DataSourceCust
TableName = ‘ORDERS.DB’

end
object DataSourceCust: TDataSource
DataSet = TableCustomer

end
object ProviderCustomer: TDataSetProvider
DataSet = TableCustomer

end

On the client side, the detail table will show up as an extra field of the ClientDataSet, and
the DBGrid control will display it as an extra column with an ellipsis button. Clicking the but-
ton will display a secondary form with a grid presenting the detail table (see Figure 17.6). If
you need to build a flexible user interface on the client, you can then add a secondary Client-
DataSet connected to the dataset field of the master dataset, using the DataSetField property.
Simply create persistent fields for the main ClientDataSet and then hook up the property:

object cdsDet: TClientDataSet
DataSetField = cdsTableOrders

end

Advanced DataSnap Features

2874c17.qxd 7/2/01 4:39 PM Page 763

http://www.sybex.com

764

With this setting you can show the detail dataset in a separate DBGrid placed as usual in the
form (the bottom grid of Figure 17.6) or in any other way you like. Note that with this struc-
ture, the updates relate only to the master table, and the server should handle the proper
update sequence even in complex situations.

Using the Connection Broker
I’ve already mentioned that the ConnectionBroker component can be helpful in case you
might want to change the physical connection used by many ClientDataSet components of a
single program. In fact, by hooking each ClientDataSet to the ConnectionBroker, you can
change the physical connection of them all simply by updating the physical connection of the
broker.

These are the settings used by the ThinPlus example:
object Connection: TSocketConnection
ServerName = ‘AppSPlus.AppServerPlus’
AfterConnect = ConnectionAfterConnect
Address = ‘127.0.0.1’

end
object ConnectionBroker1: TConnectionBroker
Connection = Connection

end

F I G U R E 1 7 . 6 :
The ThinPlus example
shows how a dataset field
can either be displayed in a
grid in a floating window
or extracted by a Client-
DataSet and displayed in a
second form. You’ll gener-
ally do one of the two
things, not both!

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 764

http://www.sybex.com

765

object cds: TClientDataSet
ConnectionBroker = ConnectionBroker1

end
// in the secondary form
object cdsQuery: TClientDataSet
ConnectionBroker = ClientForm.ConnectionBroker1

end

That’s basically all you have to do. To change the physical connection, drop a new DataSnap
connection component to the main form and set the Connection property of the broker to it.

WARNING There are some glitches with the ConnectionBroker, even in the shipping version of Delphi 6. If
you experience unusual errors in a program that uses this component, try removing it. Of
course, this note applies only until Borland provides a patch to fix this behavior.

More Provider Options
I’ve already mentioned the Options property of the DataSetProvider component, noting that
it can be used to add the field properties to the data packet. There are several other options
you can use to customize the data packet and the behavior of the client program. Here is a
short list:

• You can minimize downloading BLOB data with poFetchBlobsOnDemand option. In
this case, the client application can download BLOBs by specifying the FetchOnDemand
property of the ClientDataSet to True or by calling the FetchBlobs method for specific
records. Similarly, you can disable the automatic downloading of detail records by set-
ting the poFetchDetailsOnDemand option. Again, the client can use the FetchOnDemand
property or call the FetchDetails method.

• When you are using a master/detail relation, you can control cascades with either of
two options. The poCascadeDeletes flag controls whether the provider should delete
detail records before deleting a master record. You can set this option if the database
server performs cascaded deletes for you as part of its referential integrity support.
Similarly, you can set the poCascadeUpdates option when the update of key values of
a master/detail relation can be performed automatically by the server.

• You can limit the operations on the client side. The most restrictive option, poReadOnly,
disables any update. If you want to give the user a limited editing capability, use
poDisableInserts, poDisableEdits, or poDisableDeletes.

• You can resend to the client a copy of the records the client has modified with poAutoRefresh,
which is useful in case other users have simultaneously made other, nonconflicting
changes. You can also send back to the client changes done in the BeforeUpdateRecord

Advanced DataSnap Features

2874c17.qxd 7/2/01 4:39 PM Page 765

http://www.sybex.com

766

or AfterUpdateRecord event handlers by specifying the poPropogateChanges option.
This option is also handy when you are using autoincrement fields, triggers, and other
techniques that modify data on the server or middle tier beyond the changes requested
from the client tier.

• Finally, if you want the client to drive the operations, you can enable the poAllow-
CommandText option. This lets you set the SQL query or table name of the middle
tier from the client, using the GetRecords or Execute methods.

The Simple Object Broker
The SimpleObjectBroker component provides an easy way to locate a server application
among several server computers. You simply provide a list of available computers, and the
client will try each of them in order until it finds one that is available.

Moreover, if you enable the LoadBalanced property, the component will randomly choose
one of the servers; when many clients use the same configuration, the connections will be
automatically distributed among the multiple servers. If this seems like a “poor man’s” object
broker, consider that some highly expensive load-balancing systems don’t actually offer much
more than this.

Object Pooling
When multiple clients connect to your server at the same time, you have two options. The
first is to create a remote data module object for each of them and let each request be processed
in sequence (the default behavior for a COM server with the ciMultiInstance style). Alterna-
tively, you can let the system create a different instance of the application for every client
(ciSingleInstance). This requires more resources and more SQL server connections (and
licenses), potentially overloading the BDE (as it cannot handle more than a set number of
threads or processes).

An alternative approach is offered by the support in DataSnap for object pooling. All
you need to do to request this feature is add a call to RegisterPooled in the overridden
UpdateRegistry method. Combined with the stateless support built into this architecture,
the pooling capability allows you to share some middle-tier objects among a much larger
number of clients.

The users on the client computers will spend most of their time reading data and typing in
updates, and they generally don’t continue asking for data and sending updates. When the
client is not calling a method of the middle-tier object, this can be used for another client.
Being stateless, in fact, every request reaches the middle tier as a brand-new operation, even
when a server is dedicated to a specific client.

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 766

http://www.sybex.com

767

Pooling mechanisms are built into MTS and CORBA, but DataSnap makes it available
also for HTTP and socket-based connections, and for the Internet Express Web client.

Customizing the Data Packets
There are many ways to include custom information within the data packet handled by the
IAppServer interface. The simplest is probably to handle the OnGetDataSetProperties event
of the provider itself. This event has a Sender parameter, a dataset parameter indicating
where the data is coming from, and an OleVariant array Properties parameter, in which you
can place the extra information. You need to define one variant array for each extra property
and include the name of the extra property, its value, and whether you want the data to
return to the server along with the update delta (the IncludeInDelta parameter).

Of course, you can pass properties of the related dataset component, but you can also pass
any other value (extra fake properties). In the AppSPlus example, I pass to the client the time
the query was executed and its parameters:

procedure TAppServerPlus.ProviderQueryGetDataSetProperties(
Sender: TObject; DataSet: TDataSet; out Properties: OleVariant);

begin
Properties := VarArrayCreate([0,1], varVariant);
Properties[0] := VarArrayOf([‘Time’, Now, True]);
Properties[1] := VarArrayOf([‘Param’, Query.Params[0].AsString, False]);

end;

On the client side, the ClientDataSet component has a GetOptionalParameter method to
retrieve the value of the extra property with the given name. The ClientDataSet also has the
SetOptionalParameter method to add more properties to the dataset. These values will be
saved to disk (in the briefcase model) and eventually sent back to the middle tier (by setting
the IncludeInDelta member of the variant array to True). Here is a simple example of the
retrieval of the dataset in the code above:

Caption := ‘Data sent at ‘ + TimeToStr (TDateTime (
cdsQuery.GetOptionalParam(‘Time’)));

Label1.Caption := ‘Param ‘ + cdsQuery.GetOptionalParam(‘Param’);

The effect of this code was visible in Figure 17.5. An alternative and more powerful
approach for customizing the data packet sent to the client is to handle the OnGetData event
of the provider, which receives the outgoing data packet in the form of a client dataset. Using
the methods of this client dataset, you can edit data before it is sent to the client. For example,
you might encode some of the data or filter out sensitive records.

Advanced DataSnap Features

2874c17.qxd 7/2/01 4:39 PM Page 767

http://www.sybex.com

768

What’s Next?
Borland originally introduced its multitier technology in Delphi 3 and has kept extending it
from version to version. In addition to further updates and the change of the MIDAS name
to DataSnap, Delphi 6 sees the introduction of XML and SOAP support, introducing an
alternate and extended architecture for multitier applications. We’ll fully explore this topic in
Chapter 23.

For the moment, we’ll continue with database programming, discussing data-aware con-
trols and custom datasets. In the next part of the book we’ll explore COM, sockets, and
Internet programming, getting to XML and SOAP at the end of the book, after we’ve dis-
cussed a lot of foundation material.

Chapter 17 • Multitier Database Applications with DataSnap

2874c17.qxd 7/2/01 4:39 PM Page 768

http://www.sybex.com

18CH A P T E R

Writing Database
Components

� Data-aware components: the data link

� Field-oriented data-aware controls

� Data-aware TrackBar and ProgressBar

� Record-oriented data-aware controls

� A record viewer

� Building custom datasets

� Saving a dataset to a local stream

2874c18.qxd 7/2/01 4:40 PM Page 769

http://www.sybex.com

770

In Chapter 11, “Creating Components,” we explored the development of Delphi compo-
nents in depth. Now that I’ve discussed database programming, we can get back to the earlier
topic and focus on the development of database-related components.

There are basically two families of such components. There are data-aware controls you
can use to present the data of a field or an entire record to the users of a program. There are
dataset components you can define to provide data to existing data-aware controls, reading it
from a database or any other data source. In this chapter, I’ll cover both topics.

The Data Link
When you write a Delphi database program, you generally connect some data-aware controls
to a DataSource component, and then connect the DataSource component to a dataset. The
connection between the data-aware control to the DataSource is called a data link and is rep-
resented by an object of class TDataLink. The data-aware control creates and manages this
object and represents its only connection to the data. From a more practical perspective, to
make a component data-aware, you need to add a data link to it and surface some of the
properties of this internal object, such as the DataSource and DataField properties.

Delphi uses the DataSource and DataLink objects for bidirectional communication. The
dataset uses the connection to notify the data-aware controls that new data is available (because
the dataset has been activated, or the current record has changed, and so on). Data-aware
controls use the connection to ask for the current value of a field or to update it, notifying
the dataset of this event.

The relations among all these components are complicated by the fact that some of the
connections can be one-to-many. For example, you can connect multiple data sources to the
same dataset, and you generally have multiple data links to the same data source, simply
because you need one link for every data-aware component, and in most cases you connect
multiple data-aware controls to each data source.

The TDataLink Class
We’ll work for much of this chapter with TDataLink and its derived classes, which are defined
in the DB unit. This class has a set of protected virtual methods, which have a role similar to
events. They are “almost-do-nothing” methods you can override in a specific subclass to inter-
cept user operations and other data-source events. Here is a list, extracted from the source code
of the class:

type
TDataLink = class(TPersistent)
protected
procedure ActiveChanged; virtual;

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 770

http://www.sybex.com

771

procedure CheckBrowseMode; virtual;
procedure DataSetChanged; virtual;
procedure DataSetScrolled(Distance: Integer); virtual;
procedure FocusControl(Field: TFieldRef); virtual;
procedure EditingChanged; virtual;
procedure LayoutChanged; virtual;
procedure RecordChanged(Field: TField); virtual;
procedure UpdateData; virtual;

All of these virtual methods are called by the DataEvent private method, a sort of window
procedure for a data source, a procedure triggered by several data events (see the TDataEvent
enumeration). These events originate in the dataset, fields, or data source, and are generally
applied to a dataset. The DataEvent method of the dataset component dispatches the events
to the connected data sources. Each data source calls the NotifyDataLinks method to for-
ward the event to each connected data link, and then the data source triggers either its own
OnDataChange or OnUpdateData event.

Derived DataLink Classes
The TDataLink class is not technically an abstract class, but you’ll seldom use it directly. When
you need to create data-aware controls, you’ll need to use one of its derived classes or derive a
new one yourself. The most important class derived from TDataLink is the TFieldDataLink class,
which is used by data-aware controls that relate to a single field of the dataset. Most data-aware
controls fall into this category, and the TFieldDataLink class solves the most common problems
of this type of component.

All of the table- or record-oriented data-aware controls define specific subclasses of
TDataLink, as we’ll do later on. The TFieldDataLink class has a list of events corresponding
to the virtual methods of the base class it overrides. This makes the class simpler to customize,
as you can use event handlers instead of having to inherit a new class from it. Here’s an example
of an overridden method, which fires the corresponding event, if available:

procedure TFieldDataLink.ActiveChanged;
begin
UpdateField;
if Assigned(FOnActiveChange) then FOnActiveChange(Self);

end;

The TFieldDataLink class contains also the Field and FieldName properties that let you
connect the data-aware control to a specific field of the dataset. The link keeps also a refer-
ence to the current visual component, using the Control property.

The Data Link

2874c18.qxd 7/2/01 4:40 PM Page 771

http://www.sybex.com

772

Writing Field-Oriented Data-Aware Controls
Now that you understand the theory of how the data link classes work, I can start building
some data-aware controls. The first two examples I’ll build are data-aware versions of the
ProgressBar and TrackBar common controls. We can use the first to display a numeric value,
such as a percentage, in a visual way. We can use the second to allow a user to change the
numeric value as well.

A Read-Only ProgressBar
A data-aware version of the ProgressBar control is a relatively simple case of a data-aware
control, because it is a read-only control. This component is derived from the version that’s
not data-aware and adds a few properties of the data link object it encapsulates:

type
TMdDbProgress = class(TProgressBar)
private
FDataLink: TFieldDataLink;
function GetDataField: string;
procedure SetDataField (Value: string);
function GetDataSource: TDataSource;
procedure SetDataSource (Value: TDataSource);
function GetField: TField;

protected
// data link event handler
procedure DataChange (Sender: TObject);

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
property Field: TField read GetField;

published
property DataField: string read GetDataField write SetDataField;
property DataSource: TDataSource read GetDataSource write SetDataSource;

end;

As with every data-aware component that connects to a single field, this control makes
available the DataSource and DataField properties. There is very little code to write here;
simply export the properties from the internal data link object, as follows:

function TMdDbProgress.GetDataField: string;
begin
Result := FDataLink.FieldName;

end;

procedure TMdDbProgress.SetDataField (Value: string);
begin

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 772

http://www.sybex.com

773

FDataLink.FieldName := Value;
end;

function TMdDbProgress.GetDataSource: TDataSource;
begin
Result := FDataLink.DataSource;

end;

procedure TMdDbProgress.SetDataSource (Value: TDataSource);
begin
FDataLink.DataSource := Value;

end;

function TMdDbProgress.GetField: TField;
begin
Result := FDataLink.Field;

end;

Of course, to make this component work, you must create and destroy the data link when
the component itself is created or destroyed:

constructor TMdDbProgress.Create (AOwner: TComponent);
begin
inherited Create (AOwner);
FDataLink := TFieldDataLink.Create;
FDataLink.Control := self;
FDataLink.OnDataChange := DataChange;

end;

destructor TMdDbProgress.Destroy;
begin
FDataLink.Free;
FDataLink := nil;
inherited Destroy;

end;

In the preceding constructor, notice that the component installs one of its own methods as
an event handler for the data link. This is where the most important code of the component
resides. Every time the data changes, we modify the output of the progress bar to reflect the
values of the current field:

procedure TMdDbProgress.DataChange (Sender: TObject);
begin
if (FDataLink.Field <> nil) and (FDataLink.Field is TNumericField) then
Position := FDataLink.Field.AsInteger

else
Position := Min;

end;

Writing Field-Oriented Data-Aware Controls

2874c18.qxd 7/2/01 4:40 PM Page 773

http://www.sybex.com

774

Following the convention of the VCL data-aware controls, if the field type is invalid, the
component doesn’t display an error message—it simply disables the output. Alternatively,
you might want to check the field type when SetDataField method assigns it to the control.

In Figure 18.1 you can see an example of the DbProgr application’s output, which uses
both a label and a progress bar to display an order’s quantity information. Thanks to this
visual clue, you can step through the records and easily spot orders for many items. One
obvious benefit to this component is that the application contains almost no code, since all
the important code is in the component itself.

As you’ve seen, a read-only data-aware component is not too difficult to write. It gets
extremely complex, on the other hand, to use such a component inside a DBCtrlGrid container.

NOTE If you remember the discussion of the Notification method in Chapter 11, you might won-
der what happens if the data source referenced by the data-aware control is destroyed. The
good news is that the data source has a destructor that removes itself from its own data links.
So there is no need for a Notification method for data-aware controls, even though you’ll
see books and articles suggesting it, and VCL has plenty of this extra useless code.

Replicable Data-Aware Controls
Extending a data-aware control to support its use inside a DBCtrlGrid component is rather
complex and not well documented. You can find a complete “replicable” version of the
progress bar in the MdDataPack package and an example of its use in the RepProgr folder,
along with an HTML file describing its development. The DBCtrlGrid component has a peculiar
behavior, as it displays on screen multiple versions of the same physical control, using some

F I G U R E 1 8 . 1 :
The data-aware
ProgressBar in action
in the DbProgr example

Chapter 18 • Writing Database Components

Continued on next page

2874c18.qxd 7/2/01 4:40 PM Page 774

http://www.sybex.com

775

“smoke and mirrors.” The grid can attach the control to a data buffer other than the current
record and redirects the control paint operations to another portion of the monitor.

In short, to appear in the DBCtrlGrid, a component must have its csReplicatable control style
set, a flag merely indicating that your component actually supports being hosted by a control
grid. First, the component must respond to the cm_GetDataLink Delphi message and return a
pointer to the data link, so that the control grid can use and change it. Second, it needs a cus-
tom Paint method to draw the output in the appropriate canvas object, which is provided in a
parameter of the wm_Paint message in case the csPaintCopy flag of the ControlState prop-
erty is set.

The actual code of the example is rather complex, and the DBCtrlGrid component is not heav-
ily used, so I decided not to give you full details here, but you can find the full code and some
more information in the source code on the companion CD. Here’s the output of a test pro-
gram that uses this component:

A Read-Write TrackBar
The next step is to write a component that allows a user to modify the data in a database, not
just browse it. The overall structure of this type of component isn’t very different from the
previous version, but there are a few extra elements. In particular, when the user starts inter-
acting with the component, the code should put the dataset into edit mode and then notify

Writing Field-Oriented Data-Aware Controls

2874c18.qxd 7/2/01 4:40 PM Page 775

http://www.sybex.com

776

the dataset that the data has changed. The dataset will then use an event handler of the
FieldDataLink to ask for the updated value.

To demonstrate how you can create a data-aware component that modifies the data, I’ve
decided to extend the TrackBar control. This probably isn’t the simplest example, but it
demonstrates several important techniques.

Here’s the definition of the component’s class:
type
TMdDbTrack = class(TTrackBar)
private
FDataLink: TFieldDataLink;
function GetDataField: string;
procedure SetDataField (Value: string);
function GetDataSource: TDataSource;
procedure SetDataSource (Value: TDataSource);
function GetField: TField;
procedure CNHScroll(var Message: TWMHScroll); message CN_HSCROLL;
procedure CNVScroll(var Message: TWMVScroll); message CN_VSCROLL;
procedure CMExit(var Message: TCMExit); message CM_EXIT;

protected
// data link event handlers
procedure DataChange (Sender: TObject);
procedure UpdateData (Sender: TObject);
procedure ActiveChange (Sender: TObject);

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
property Field: TField read GetField;

published
property DataField: string read GetDataField write SetDataField;
property DataSource: TDataSource read GetDataSource write SetDataSource;

end;

Compared to the read-only data-aware control built earlier, this class is a bit more complex,
because it has three message handlers, including component notification handlers, and two
new event handlers for the data link. The component installs these event handlers in the
constructor, which also disables the component:

constructor TMdDbTrack.Create (AOwner: TComponent);
begin
inherited Create (AOwner);
FDataLink := TFieldDataLink.Create;
FDataLink.Control := self;
FDataLink.OnDataChange := DataChange;
FDataLink.OnUpdateData := UpdateData;
FDataLink.OnActiveChange := ActiveChange;
Enabled := False;

end;

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 776

http://www.sybex.com

777

All of the get and set methods and the DataChange event handler are very similar to those
in the TMdDbProgress component. The only difference is that whenever the data source or
data field changes, the component checks the current status to see whether it should enable
itself:

procedure TMdDbTrack.SetDataSource (Value: TDataSource);
begin
FDataLink.DataSource := Value;
Enabled := FDataLink.Active and (FDataLink.Field <> nil) and
not FDataLink.Field.ReadOnly;

end;

This code tests three conditions: the data link should be active, the link should refer to an
actual field, and the field shouldn’t be read-only. When the user changes the field, the com-
ponent should also consider that the field name might be invalid; to test for this condition,
the component should rather use a try/finally block:

procedure TMdDbTrack.SetDataField (Value: string);
begin
try
FDataLink.FieldName := Value;

finally
Enabled := FDataLink.Active and (FDataLink.Field <> nil) and
not FDataLink.Field.ReadOnly;

end;
end;

The control executes the same test when the dataset is enabled or disabled:
procedure TMdDbTrack.ActiveChange (Sender: TObject);
begin
Enabled := FDataLink.Active and (FDataLink.Field <> nil) and
not FDataLink.Field.ReadOnly;

end;

The most interesting portion of this component’s code is related to its user interface. When
a user starts moving the scroll thumb, the component should do the following: put the dataset
into edit mode, let the base class update the thumb position, and alert the data link (and there-
fore the data source) that the data has changed. Here’s the code:

procedure TMdDbTrack.CNHScroll(var Message: TWMHScroll);
begin
// enter edit mode
FDataLink.Edit;
// update data
inherited;
// let the system know
FDataLink.Modified;

end;

Writing Field-Oriented Data-Aware Controls

2874c18.qxd 7/2/01 4:40 PM Page 777

http://www.sybex.com

778

procedure TMdDbTrack.CNVScroll(var Message: TWMVScroll);
begin
// enter edit mode
FDataLink.Edit;
// update data
inherited;
// let the system know
FDataLink.Modified;

end;

When the dataset needs new data—for example, to perform a Post operation—it simply
requests it from the component via the TFieldDataLink class’s OnUpdateData event:

procedure TMdDbTrack.UpdateData (Sender: TObject);
begin
if (FDataLink.Field <> nil) and (FDataLink.Field is TNumericField) then
FDataLink.Field.AsInteger := Position;

end;

If the proper conditions are met, the component simply updates the data in the proper
table field. Finally, if the component loses the input focus, it should force a data update (if
the data has changed) so that any other data-aware components showing the value of that
field will display the correct value as soon as the user moves to a different field. If the data
hasn’t changed, the component won’t bother updating the data in the table. This is the stan-
dard CmExit code for components used by VCL and borrowed for our component as well:

procedure TMdDbTrack.CmExit(var Message: TCmExit);
begin
try
FDataLink.UpdateRecord;

except
SetFocus;
raise;

end;
inherited;

end;

Again, there is a demo program for testing this component; you can see its output in Fig-
ure 18.2. The DbTrack program contains a check box to enable and disable the table, the
visual components, and a couple of buttons you can use to detach the vertical TrackBar com-
ponent from the field it relates to. Again, I placed these on the form to test enabling and dis-
abling the track bar.

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 778

http://www.sybex.com

779

Creating Custom Data Links
The data-aware controls I’ve built up to this point all referred to specific fields of the dataset,
so I was able to use a TFieldDataLink object to establish the connection with a data source.
Now I want to build a data-aware component that works with a dataset as a whole, a simple
record viewer.

Delphi’s database grid shows the value of several fields and several records simultaneously.
In my record viewer component, I want to list all the fields of the current record, using a
customized grid. This example will show you how to build a customized grid control, and
a custom data link to go with it.

A Record Viewer Component
In Delphi there are no data-aware components that manipulate multiple fields of a single
record, without displaying other records. In fact, the only component that displays multiple
fields from the same table is the DBGrid, which displays multiple fields and multiple records.

The record viewer component I’m going to describe in this section is based on a two-column
grid; the first column displays the table’s field names, while the second column displays the
corresponding field values. The number of rows in the grid will correspond to the number of
fields, with a vertical scroll bar in case they can’t fit in the visible area.

The data link we need in order to build this component is a simple class, connected only
to the record viewer component, and declared directly in the implementation portion of its

F I G U R E 1 8 . 2 :
The DbTrack example has a
couple of track bars you
can use to enter data in a
database table. The check
box and buttons are used
to test the enabled status
of the components.

Creating Custom Data Links

2874c18.qxd 7/2/01 4:40 PM Page 779

http://www.sybex.com

780

unit. This is the same approach used by VCL for some specific data links. Here’s the defini-
tion of the new class:

type
TMdRecordLink = class (TDataLink)
private
RView: TMdRecordView;

public
constructor Create (View: TMdRecordView);
procedure ActiveChanged; override;
procedure RecordChanged (Field: TField); override;

end;

As you can see, the class overrides the methods related to the principal event, in this case
simply the activation and data (or record) change. Alternatively, I could have exported some
events and then let the component handle them. That’s what the TFieldDataLink does, but
the approach I’ve taken makes more sense for a data link class, because you’ll want to use it
with different data-aware components. The constructor requires the associated component
as its only parameter:

constructor TMdRecordLink.Create (View: TMdRecordView);
begin
inherited Create;
RView := View;

end;

After storing a reference to the associated component, the other methods can operate on it
directly:

procedure TMdRecordLink.ActiveChanged;
var
I: Integer;

begin
// set number of rows
RView.RowCount := DataSet.FieldCount;
// repaint all...
RView.Invalidate;

end;

procedure TMdRecordLink.RecordChanged;
begin
inherited;
// repaint all...
RView.Invalidate;

end;

As you’ve seen, the record link code is very simple. Most of the difficulties in building this
example depend on the use of a grid. To avoid dealing with useless properties, I’ve derived
the record viewer grid from the TCustomGrid class. This class incorporates much of the code

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 780

http://www.sybex.com

781

for grids, but most of its properties, events, and methods are protected. For this reason, the
class declaration is quite long, because it needs to publish many existing properties. Here is
an excerpt (excluding the base class properties):

type
TMdRecordView = class(TCustomGrid)
private
// data-aware support
FDataLink: TDataLink;
function GetDataSource: TDataSource;
procedure SetDataSource (Value: TDataSource);

protected
// redefined TCustomGrid methods
procedure DrawCell (ACol, ARow: Longint; ARect: TRect;
AState: TGridDrawState); override;

procedure ColWidthsChanged; override;
procedure RowHeightsChanged; override;

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
procedure SetBounds (ALeft, ATop, AWidth, AHeight: Integer); override;
procedure DefineProperties (Filer: TFiler); override;
// public parent properties (omitted...)

published
// data-aware properties
property DataSource: TDataSource read GetDataSource write SetDataSource;
// published parent properties (omitted...)

end;

Besides redeclaring the properties to publish them, the component defines a data link
object and the DataSource property. There’s no DataField property for this component,
because it refers to an entire record. The component’s constructor is very important. It sets
the values of many unpublished properties, including the grid options:

constructor TMdRecordView.Create (AOwner: TComponent);
begin
inherited Create (AOwner);
FDataLink := TMdRecordLink.Create (self);
// set numbers of cells and fixed cells
RowCount := 2; // default
ColCount := 2;
FixedCols := 1;
FixedRows := 0;
Options := [goFixedVertLine, goFixedHorzLine,
goVertLine, goHorzLine, goRowSizing];

DefaultDrawing := False;
ScrollBars := ssVertical;
FSaveCellExtents := False;

end;

Creating Custom Data Links

2874c18.qxd 7/2/01 4:40 PM Page 781

http://www.sybex.com

782

The grid has two columns, one of them fixed, and no fixed rows. The fixed column is used
for resizing each row of the grid. Unfortunately, a user cannot drag the fixed row to resize
the columns, because you can’t resize fixed elements, and the grid already has a fixed column.

NOTE An alternative approach could be to have an extra empty column, as the DBGrid control does.
You’d be able to resize the two other columns after adding a fixed row. Overall, though, I prefer
my implementation.

I’ve used an alternative approach to resize the columns. The first column (holding the field
names) can be resized either using programming code or visually at design time, and the sec-
ond column (holding the values of the fields) will be resized to use the remaining area of the
component, leaving space for the borders, lines, and vertical scrollbar:

procedure TMdRecordView.SetBounds (ALeft, ATop, AWidth, AHeight: Integer);
begin
inherited;
ColWidths [1] := Width - ColWidths [0] - GridLineWidth * 3 -
GetSystemMetrics (sm_CXVScroll) - 2; // border

end;

This takes place when the component size changes and when either of the columns
change. With this code, the DefaultColWidth property of the component becomes, in prac-
tice, the fixed width of the first column.

After everything has been set up, the key method of the component is the overridden
DrawCell method, detailed in Listing 18.1. This is where the control displays the information
about the fields and their values. There are three things it needs to draw. If the data link is
not connected to a data source, the grid displays an “empty element” sign ([]). When draw-
ing the first column, the record viewer shows the DisplayName of the field, which is the same
value used by the DBGrid for the heading. When drawing the second column, the compo-
nent accesses the textual representation of the field value, extracted with the DisplayText
property (or with the AsString property for memo fields).

➲ Listing 18.1: The DrawCell method of the custom RecordView component

procedure TMdRecordView.DrawCell(ACol, ARow: Longint; ARect: TRect;
AState: TGridDrawState);

var
Text: string;
CurrField: TField;
Bmp: TBitmap;

begin
CurrField := nil;
Text := ‘[]’; // default
// paint background

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 782

http://www.sybex.com

783

if (ACol = 0) then
Canvas.Brush.Color := FixedColor

else
Canvas.Brush.Color := Color;

Canvas.FillRect (ARect);
// leave small border
InflateRect (ARect, -2, -2);
if (FDataLink.DataSource <> nil) and FDataLink.Active then
begin
CurrField := FDataLink.DataSet.Fields[ARow];
if ACol = 0 then
Text := CurrField.DisplayName

else if CurrField is TMemoField then
Text := TMemoField (CurrField).AsString

else
Text := CurrField.DisplayText;

end;
if (ACol = 1) and (CurrField is TGraphicField) then
begin
Bmp := TBitmap.Create;
try
Bmp.Assign (CurrField);
Canvas.StretchDraw (ARect, Bmp);

finally
Bmp.Free;

end;
end
else if (ACol = 1) and (CurrField is TMemoField) then
begin
DrawText (Canvas.Handle, PChar (Text), Length (Text), ARect,
dt_WordBreak or dt_NoPrefix)

end
else // draw single line vertically centered
DrawText (Canvas.Handle, PChar (Text), Length (Text), ARect,
dt_vcenter or dt_SingleLine or dt_NoPrefix);

if gdFocused in AState then
Canvas.DrawFocusRect (ARect);

end;

The final portion of the method is where the component considers memo and graphic fields.
If the field is a TMemoField, the DrawText function call doesn’t specify the dt_SingleLine flag,
but uses dt_WordBreak flag to wrap the words when there’s no more room. For a graphic field,
of course, the component uses a completely different approach, assigning the field image to a
temporary bitmap, and then stretching it to fill the surface of the cell.

Notice also that the component sets the DefaultDrawing property to False, so that it’s also
responsible for drawing the background and the focus rectangle, as it does in the DrawCell
method. The component also calls the InflateRect API function to leave a small area

Creating Custom Data Links

2874c18.qxd 7/2/01 4:40 PM Page 783

http://www.sybex.com

784

between the cell border and the output text. The actual output is produced by calling
another Windows API function, DrawText, which centers the text vertically in its cell.

This drawing code works both at run time, as you can see in Figure 18.3, and at design time.
The output may not be perfect, but this component can certainly be very useful in many cases.
If you want to display the data for a single record, instead of building a custom form with labels
and data-aware controls, you can easily use this record viewer grid. Of course, it’s important to
remember that the record viewer is a read-only component: it’s certainly possible to extend it
to add editing capabilities (they’re already part of the TCustomGrid class). However, instead of
adding this support, we’ve decided to make the component more complete by adding support
for displaying BLOB fields.

To improve the graphical output, the control makes the lines for those fields twice as high
as those for plain text fields. This operation is accomplished when the dataset connected to
the data-aware control is activated. The ActiveChanged method of the data link is triggered
also by the RowHeightsChanged methods, connected to the DefaultRowHeight property of the
base class:

procedure TMdRecordLink.ActiveChanged;
var
I: Integer;

begin
// set number of rows
RView.RowCount := DataSet.FieldCount;
// double the height of memo and graphics
for I := 0 to DataSet.FieldCount - 1 do
if DataSet.Fields [I] is TBlobField then

F I G U R E 1 8 . 3 :
The ViewGrid example
demonstrates the output
of the RecordView
component, using
Borland’s sample BioLife
database table.

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 784

http://www.sybex.com

785

RView.RowHeights [I] := RView.DefaultRowHeight * 2;
// repaint all...
RView.Invalidate;

end;

At this point, we stumble into a minor problem. In the DefineProperties method, the
TCustomGrid class saves the values of the RowHeights and ColHeights properties. We could
disable this streaming by overriding the method and not calling inherited (which is gener-
ally a bad technique to use), but it is also possible to toggle the FSaveCellExtents protected
field to disable this feature.

Customizing the DBGrid Component
Besides writing brand-new custom data-aware components, it’s common for Delphi pro-
grammers to customize the DBGrid control. The goal for the next component is to enhance
the DBGrid with the same kind of custom output I’ve used for the RecordView component,
directly displaying graphic and memo fields. To do this, the grid needs to make the row
height resizable, to allow space for a reasonable amount of text and big enough for graphics.
You can see an example of this grid at design time in Figure 18.4.

F I G U R E 1 8 . 4 :
An example of the
MdDbGrid component at
design time. Notice the
output of the graphics and
memo fields.

Customizing the DBGrid Component

2874c18.qxd 7/2/01 4:40 PM Page 785

http://www.sybex.com

786

While creating the output was a simple matter of adapting the code used in the record
viewer component, setting the height of the grid cells ended up being a very difficult prob-
lem to solve. The lines of code you’ll see for that operation may be few, but they cost me
hours of work!

NOTE Unlike the generic grid we’ve used above, a DBGrid is a virtual view on the dataset—there is
no relation between the number of rows shown on the screen and the number of rows of data
in the dataset. When you scroll up and down through the data records of the dataset, you are
not scrolling up and down through the rows of the DBGrid; the rows are stationary while the
data moves from one row to the next to give the appearance of movement. For this reason,
the program doesn’t try to set the height of an individual row to suit its data, but it sets the
height of all the data rows to a multiline height value.

This time the control doesn’t have to create a custom data link, because it is deriving from a
component that already has a complex connection with the data. The new class has a new prop-
erty to specify the number of lines of text for each row and overrides a few virtual methods:

type
TMdDbGrid = class(TDbGrid)
private
FLinesPerRow: Integer;
procedure SetLinesPerRow (Value: Integer);

protected
procedure DrawColumnCell(const Rect: TRect; DataCol: Integer;
Column: TColumn; State: TGridDrawState); override;

procedure LayoutChanged; override;
public
constructor Create (AOwner: TComponent); override;

published
property LinesPerRow: Integer
read FLinesPerRow write SetLinesPerRow default 1;

end;

The constructor simply sets the default value for the FLinesPerRow field. Here is the set
method for the property:

procedure TMdDbGrid.SetLinesPerRow(Value: Integer);
begin
if Value <> FLinesPerRow then
begin
FLinesPerRow := Value;
LayoutChanged;

end;
end;

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 786

http://www.sybex.com

787

The side effect of changing the number of lines is a call to the LayoutChanged virtual
method. The system calls this method frequently when one of the many output parameters
changes. In the code of this method, the component first calls the inherited version and then
sets the height of each row. As a basis for this computation it uses the same formula of the
TCustomDBGrid class: the text height is calculated using the sample word Wg in the current
font (this text is used because it includes both a full-height uppercase character and a lower-
case letter with a descender). Here’s the code:

procedure TMdDbGrid.LayOutChanged;
var
PixelsPerRow, PixelsTitle, I: Integer;

begin
inherited LayOutChanged;

Canvas.Font := Font;
PixelsPerRow := Canvas.TextHeight(‘Wg’) + 3;
if dgRowLines in Options then
Inc (PixelsPerRow, GridLineWidth);

Canvas.Font := TitleFont;
PixelsTitle := Canvas.TextHeight(‘Wg’) + 4;
if dgRowLines in Options then
Inc (PixelsTitle, GridLineWidth);

// set number of rows
RowCount := 1 + (Height - PixelsTitle) div (PixelsPerRow * FLinesPerRow);

// set the height of each row
DefaultRowHeight := PixelsPerRow * FLinesPerRow;
RowHeights [0] := PixelsTitle;
for I := 1 to RowCount - 1 do
RowHeights [I] := PixelsPerRow * FLinesPerRow;

end;

WARNING Font and TitleFont are the grid defaults that can be overridden by properties of the individ-
ual DBGrid column objects. This component would currently ignore those settings.

The difficult part here was to get the last four statements correct. You can simply set the
DefaultRowHeight property, but in that case the title row will probably be too high. At first, I
tried setting the DefaultRowHeight and then the height of the first row, but this complicated the
code used to compute the number of visible rows in the grid (the read-only VisibleRowCount
property). If you specify the number of rows (in order to avoid having rows hidden beneath the
lower edge of the grid), the base class keeps recomputing them.

Customizing the DBGrid Component

2874c18.qxd 7/2/01 4:40 PM Page 787

http://www.sybex.com

788

Finally, here’s the code used to draw the data, ported from the RecordView component and
adapted slightly for the grid:

procedure TMdDbGrid.DrawColumnCell (const Rect: TRect; DataCol: Integer;
Column: TColumn; State: TGridDrawState);

var
Bmp: TBitmap;
OutRect: TRect;

begin
if FLinesPerRow = 1 then
inherited DrawColumnCell(Rect, DataCol, Column, State)

else
begin
// clear area
Canvas.FillRect (Rect);
// copy the rectangle
OutRect := Rect;
// restrict output
InflateRect (OutRect, -2, -2);
// output field data
if Column.Field is TGraphicField then
begin
Bmp := TBitmap.Create;
try
Bmp.Assign (Column.Field);
Canvas.StretchDraw (OutRect, Bmp);

finally
Bmp.Free;

end;
end
else if Column.Field is TMemoField then
begin
DrawText (Canvas.Handle, PChar (Column.Field.AsString),
Length (Column.Field.AsString), OutRect, dt_WordBreak or dt_NoPrefix)

end
else // draw single line vertically centered
DrawText (Canvas.Handle, PChar (Column.Field.DisplayText),
Length (Column.Field.DisplayText), OutRect,
dt_vcenter or dt_SingleLine or dt_NoPrefix);

end;
end;

In the code above you can see that if the user displays just a single line, the grid uses the
standard drawing technique with no output for memo and graphic fields. However, as soon
as you increase the line count, you’ll see a better output.

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 788

http://www.sybex.com

789

To see this code in action, run the GridDemo example. This program has two buttons you
can use to increase or decrease the row height of the grid, and two more buttons to change
the font. This is an important test because the height in pixels of each cell is the height of the
font multiplied by the number of lines.

Building Custom Datasets
When discussing the TDataSet class and the alternative families of dataset components avail-
able in Delphi, in Chapter 13, “Delphi’s Database Architecture,” I mentioned the possibility
of writing a custom dataset class. Now it’s time to have a look at an actual example. The rea-
sons for writing a custom dataset relate to the fact that you won’t need to deploy a database
engine but you’ll still be able to take full advantage of Delphi’s database architecture, includ-
ing things like persistent database fields and data-aware controls.

Writing a custom dataset is one of the most complex task for a component developer, so
this is one of the most advanced areas (as far as low-level coding practices, including tons of
pointers) of the entire book. Moreover, Borland hasn’t released any official documentation
on writing custom datasets. If you are early in your experience with Delphi, you might want
to skip the rest of this chapter and come back here later.

The TDataSet class is an abstract class, which declares several virtual abstract methods—23
to be precise. Every subclass of TDataSet must override all of those methods.

Before discussing the development of a custom dataset, we need to explore a few technical
elements of the TDataSet class, in particular record buffering. The class maintains a list of
buffers, which store the values of different records. These buffers store the actual data, but
they also usually store further information for the dataset to use when managing the records.
These buffers don’t have a predefined structure, and each custom dataset must allocate the
buffers, fill them, and destroy them. The custom dataset must also copy the data from the
record buffers to the various fields of the dataset, and vice versa. In other words, the custom
dataset is entirely responsible for handling these buffers.

In addition to managing the data buffers, the component is also responsible for navigating
among the records, managing the bookmarks, defining the structure of the dataset, and creating
the proper data fields. The TDataSet class is nothing more than a framework; you must fill it
with the appropriate code. Fortunately, most of the code follows a standard structure, which
the TDataSet-derived VCL classes use. Once you’ve grasped the key ideas, you’ll be able to
build multiple custom datasets borrowing quite a lot of code.

To simplify this type of reuse, I’ve collected the common features required by any custom
dataset in a TMDCustomDataSet class. However, I’m not going to discuss the base class first

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 789

http://www.sybex.com

790

and the specific implementation later, because that would probably be rather complex to
understand. Instead, I’ll detail the code required by a dataset, presenting methods of the
generic and specific classes at the same time, according to a logical flow.

The Definition of the Classes
The starting point, as usual, is the declaration of the two classes discussed in this section, the
generic custom dataset I’ve written and the specific component storing data in a stream. These
declaration of these classes is available in Listing 18.2. Besides virtual methods, the classes
contain a series of protected fields used to manage the buffers, track the current position
and record count, and handle many other features. You should also notice another record
declaration at the beginning, a structure used to store the extra data for every data record
we place in a buffer. The dataset places this information in each record buffer, following
the actual data.

➲ Listing 18.2: The declaration of TMdCustomDataSet and TMdDataSetStream

// in the unit MdDsCustom
type
EMdDataSetError = class (Exception);

TMdRecInfo = record
Bookmark: Longint;
BookmarkFlag: TBookmarkFlag;

end;
PMdRecInfo = ^TMdRecInfo;

TMdCustomDataSet = class(TDataSet)
protected
// status
FIsTableOpen: Boolean;
// record data
FRecordSize, // the size of the actual data
FRecordBufferSize, // data + housekeeping (TRecInfo)
FCurrentRecord, // current record (0 to FRecordCount - 1)
BofCrack, // before the first record (crack)
EofCrack: Integer; // after the last record (crack)
// create, close, and so on
procedure InternalOpen; override;
procedure InternalClose; override;
function IsCursorOpen: Boolean; override;
// custom functions
function InternalRecordCount: Integer; virtual; abstract;
procedure InternalPreOpen; virtual;
procedure InternalAfterOpen; virtual;
procedure InternalLoadCurrentRecord(Buffer: PChar); virtual; abstract;
// memory management

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 790

http://www.sybex.com

791

function AllocRecordBuffer: PChar; override;
procedure InternalInitRecord(Buffer: PChar); override;
procedure FreeRecordBuffer(var Buffer: PChar); override;
function GetRecordSize: Word; override;
// movement and optional navigation (used by grids)
function GetRecord(Buffer: PChar; GetMode: TGetMode; DoCheck: Boolean):
TGetResult; override;

procedure InternalFirst; override;
procedure InternalLast; override;
function GetRecNo: Longint; override;
function GetRecordCount: Longint; override;
procedure SetRecNo(Value: Integer); override;
// bookmarks
procedure InternalGotoBookmark(Bookmark: Pointer); override;
procedure InternalSetToRecord(Buffer: PChar); override;
procedure SetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure GetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag); override;
function GetBookmarkFlag(Buffer: PChar): TBookmarkFlag; override;
// editing (dummy vesions)
procedure InternalDelete; override;
procedure InternalAddRecord(Buffer: Pointer; Append: Boolean); override;
procedure InternalPost; override;
procedure InternalInsert; override;
// other
procedure InternalHandleException; override;

published
// redeclared dataset properties
property Active;
property BeforeOpen;
property AfterOpen;
property BeforeClose;
property AfterClose;
property BeforeInsert;
property AfterInsert;
property BeforeEdit;
property AfterEdit;
property BeforePost;
property AfterPost;
property BeforeCancel;
property AfterCancel;
property BeforeDelete;
property AfterDelete;
property BeforeScroll;
property AfterScroll;
property OnCalcFields;
property OnDeleteError;
property OnEditError;
property OnFilterRecord;
property OnNewRecord;
property OnPostError;

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 791

http://www.sybex.com

792

end;

// in the unit MdDsStream
type
TMdDataFileHeader = record
VersionNumber: Integer;
RecordSize: Integer;
RecordCount: Integer;

end;

TMdDataSetStream = class(TMdCustomDataSet)
private
procedure SetTableName(const Value: string);

protected
FDataFileHeader: TMdDataFileHeader;
FDataFileHeaderSize, // optional file header size
FRecordCount: Integer; // current number of records
FStream: TStream; // the physical table
FTableName: string; // table path and file name
FFieldOffset: TList; // field offsets in the buffer

protected
// open and close
procedure InternalPreOpen; override;
procedure InternalAfterOpen; override;
procedure InternalClose; override;
procedure InternalInitFieldDefs; override;
// edit support
procedure InternalAddRecord(Buffer: Pointer; Append: Boolean); override;
procedure InternalPost; override;
procedure InternalInsert; override;
// fields
procedure SetFieldData(Field: TField; Buffer: Pointer); override;
// custom dataset virutal methods
function InternalRecordCount: Integer; override;
procedure InternalLoadCurrentRecord(Buffer: PChar); override;

public
procedure CreateTable;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean; override;

published
property TableName: string read FTableName write SetTableName;

end;

In dividing the methods into sections (as you can see by looking at the source code files),
I’ve marked each one with a roman number. You’ll see those numbers in a comment describ-
ing the method, so that while browsing this long listing you’ll immediately know which of
the three sections you are in.

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 792

http://www.sybex.com

793

Section I: Initialization, Opening, and Closing
The first methods I’ll examine are responsible for initializing the dataset, and for opening
and closing the file stream we’ll use to store the data. In addition to initializing the compo-
nent’s internal data, these methods are responsible for initializing and connecting the proper
TFields objects to the dataset component. To make this work, all we need to do is to initial-
ize the FieldsDef property with the definitions of the fields for our dataset, then call a few
standard methods to generate and bind the TField objects. This is the general InternalOpen
method:

procedure TMDCustomDataSet.InternalOpen;
begin
InternalPreOpen; // custom method for subclasses

// initialize the field definitions
InternalInitFieldDefs;

// if there are no persistent field objects, create the fields dynamically
if DefaultFields then
CreateFields;

// connect the TField objects with the actual fields
BindFields (True);

InternalAfterOpen; // custom method for subclasses

// sets cracks and record position and size
BofCrack := -1;
EofCrack := InternalRecordCount;
FCurrentRecord := BofCrack;
FRecordBufferSize := FRecordSize + sizeof (TMdRecInfo);
BookmarkSize := sizeOf (Integer);

// everything OK: table is now open
FIsTableOpen := True;

end;

You’ll notice that the method sets most of the local fields of the class, and also the BookmarkSize
field of the base TDataSet class. Within this method, I call two custom methods I introduced
in my custom dataset hierarchy: InternalPreOpen and InternalAfterOpen. The first,
InternalPreOpen, is used for operations required at the very beginning, such as checking
whether the dataset can actually be opened and reading the header information from the file.
The code checks an internal version number for consistency with the value saved when the
table is first created, as you’ll see later on. By raising an exception in this method, we can
eventually stop the open operation.

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 793

http://www.sybex.com

794

Here is the code for the to methods in the derived stream-based dataset:
const
HeaderVersion = 10;

procedure TMdDataSetStream.InternalPreOpen;
begin
// the size of the header
FDataFileHeaderSize := sizeOf (TMdDataFileHeader);

// check if the file exists
if not FileExists (FTableName) then
raise EMdDataSetError.Create (‘Open: Table file not found’);

// create a stream for the file
FStream := TFileStream.Create (FTableName, fmOpenReadWrite);

// initialize local data (loading the header)
FStream.ReadBuffer (FDataFileHeader, FDataFileHeaderSize);
if FDataFileHeader.VersionNumber <> HeaderVersion then
raise EMdDataSetError.Create (‘Illegal File Version’);

// let’s read this, double check later
FRecordCount := FDataFileHeader.RecordCount;

end;

procedure TMdDataSetStream.InternalAfterOpen;
begin
// check the record size
if FDataFileHeader.RecordSize <> FRecordSize then
raise EMdDataSetError.Create (‘File record size mismatch’);

// check the number of records against the file size
if (FDataFileHeaderSize + FRecordCount * FRecordSize) <> FStream.Size then

raise EMdDataSetError.Create (‘InternalOpen: Invalid Record Size’);
end;

The second method, InternalAfterOpen, is used for operations required after the field
definitions have been set and is followed by code that compares the record size read from the
file against the value computed in the InternalInitFieldDefs method. The code checks also
that the number of records read from the header is compatible with the actual size of the file.
This test might fail if the dataset wasn’t closed properly: you might want to modify this code
to let the dataset refresh the record size in the header anyway.

The InternalOpen method of the custom dataset class is specifically responsible for calling
InternalInitFieldDefs, which determines the field definitions (at either design time or run
time). For this example, I’ve decided to base the field definitions on an external file, a simple
INI file that provides a section for every field. Each section contains the name and data type

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 794

http://www.sybex.com

795

of the field, as well as its size if it is string data. Listing 18.3 is the Contrib.INI file that we’ll
use in the component’s demo application:

➲ Listing 18.3: The Contrib.INI file for the demo application

[Fields]
Number = 6

[Field1]
Type = ftString
Name = Name
Size = 30

[Field2]
Type = ftInteger
Name = Level

[Field3]
Type = ftDate
Name = BirthDate

[Field4]
Type = ftCurrency
Name = Stipend

[Field5]
Type = ftString
Name = Email
Size = 50

[Field6]
Type = ftBoolean
Name = Editor

This file, or a similar one, must use the same name as the table file and must be in the same
directory. The InternalInitFieldDefs method (shown in Listing 18.4) will read it, using the
values it finds to set up the field definitions and determine the size of each record. The method
also initializes an internal TList object that stores the offset of every field inside the record.
We’ll use this TList to access fields’ data within the record buffer, as you can see in the code
listing.

➲ Listing 18.4: The InternalInitFieldDefs method of the stream-based dataset

procedure TMdDataSetStream.InternalInitFieldDefs;
var
IniFileName, FieldName: string;
IniFile: TIniFile;

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 795

http://www.sybex.com

796

nFields, I, TmpFieldOffset, nSize: Integer;
FieldType: TFieldType;

begin
FFieldOffset := TList.Create;
FieldDefs.Clear;
TmpFieldOffset := 0;
IniFilename := ChangeFileExt(FTableName, ‘.ini’);
Inifile := TIniFile.Create (IniFilename);
// protect INI file
try
nFields := IniFile.ReadInteger (‘ Fields’, ‘Number’, 0);
if nFields = 0 then
raise EDataSetOneError.Create (‘ InitFieldsDefs: 0 fields?’);

for I := 1 to nFields do
begin
// create the field
FieldType := TFieldType (GetEnumValue (TypeInfo (TFieldType),
IniFile.ReadString (‘Field’ + IntToStr (I), ‘Type’, ‘’)));

FieldName := IniFile.ReadString (‘Field’ + IntToStr (I), ‘Name’, ‘’);
if FieldName = ‘’ then
raise EDataSetOneError.Create (
‘InitFieldsDefs: No name for field ‘ + IntToStr (I));

nSize := IniFile.ReadInteger (‘Field’ + IntToStr (I), ‘Size’, 0);
FieldDefs.Add (FieldName, FieldType, nSize, False);
// save offset and compute size
FFieldOffset.Add (Pointer (TmpFieldOffset));
case FieldType of
ftString: Inc (TmpFieldOffset, nSize + 1);
ftBoolean, ftSmallInt, ftWord: Inc (TmpFieldOffset, 2);
ftInteger, ftDate, ftTime: Inc (TmpFieldOffset, 4);
ftFloat, ftCurrency, ftDateTime: Inc (TmpFieldOffset, 8);

else
raise EDataSetOneError.Create (

‘InitFieldsDefs: Unsupported field type’);
end;

end; // for
finally
IniFile.Free;

end;
FRecordSize := TmpFieldOffset;

end;

Closing the table is simply a matter of disconnecting the fields (using some standard calls).
Each class must dispose the data it allocated and update the file header, the first time records
are added and each time the record count has changed:

procedure TMDCustomDataSet.InternalClose;
begin
// disconnect field objects
BindFields (False);

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 796

http://www.sybex.com

797

// destroy field object (if not persistent)
if DefaultFields then
DestroyFields;

// close the file
FIsTableOpen := False;

end;

procedure TMdDataSetStream.InternalClose;
begin
// if required, save updated header
if (FDataFileHeader.RecordCount <> FRecordCount) or
(FDataFileHeader.RecordSize = 0) then

begin
FDataFileHeader.RecordSize := FRecordSize;
FDataFileHeader.RecordCount := FRecordCount;
if Assigned (FStream) then
begin
FStream.Seek (0, soFromBeginning);
FStream.WriteBuffer (FDataFileHeader, FDataFileHeaderSize);

end;
end;
// free the internal list field offsets and the stream
FFieldOffset.Free;
FStream.Free;
inherited InternalClose;

end;

Another related function is used to test whether the dataset is open, something we can
solve using the corresponding local field:

function TMDCustomDataSet.IsCursorOpen: Boolean;
begin
Result := FIsTableOpen;

end;

These are the opening and closing methods you need to implement in any custom
dataset. However, most of the time, you’ll also add a method to create the table. In this
example, the CreateTable method creates an empty file and inserts information in the
header: a fixed version number, a dummy record size (we don’t know the size until we initial-
ize the fields), and the record count (which is zero to start):

procedure TMdDataSetStream.CreateTable;
begin
CheckInactive;
InternalInitFieldDefs;

// create the new file
if FileExists (FTableName) then

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 797

http://www.sybex.com

798

raise EMdDataSetError.Create (‘File ‘ + FTableName + ‘ already exists’);
FStream := TFileStream.Create (FTableName, fmCreate or fmShareExclusive);
try
// save the header
FDataFileHeader.VersionNumber := HeaderVersion;
FDataFileHeader.RecordSize := 0; // used later
FDataFileHeader.RecordCount := 0; // empty
FStream.WriteBuffer (FDataFileHeader, FDataFileHeaderSize);

finally
// close the file
FStream.Free;

end;
end;

Section II: Movement and Bookmark Management
As mentioned earlier, one of the things every dataset must implement is bookmark manage-
ment, which is necessary for navigating through the dataset. Logically, a bookmark is a refer-
ence to a specific record of the dataset, something that uniquely identifies the record so that
a dataset can access it and compare it to other records. Technically, bookmarks are pointers.
You can implement them as pointers to specific data structures that store record information,
or you can implement them as simple record numbers. For simplicity, I’ll use the latter
approach.

Given a bookmark, you should be able to find the corresponding record, but given a record
buffer, you should also be able to retrieve the corresponding bookmark. This is the reason
for appending the TMdRecInfo structure to the record data in each record buffer. This data
structure stores the bookmark for the record in the buffer, as well as some bookmark flags
defined as:

type
TBookmarkFlag = (bfCurrent, bfBOF, bfEOF, bfInserted);

The system will request us to store these flags in each record buffer, and will later ask us to
retrieve the flags for a given record buffer.

To summarize, the structure of a record buffer stores the data of the record, the bookmark,
and the bookmark flags, as you can see in Figure 18.5.

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 798

http://www.sybex.com

799

To access the bookmark and flags, we can simply use as an offset the size of the actual
data, casting the value to the PMdRecInfo pointer type, and then access the proper field of
the TMdRecInfo structure via the pointer. The two methods used to set and get the bookmark
flags demonstrate this technique:

procedure TMDCustomDataSet.SetBookmarkFlag (Buffer: PChar;
Value: TBookmarkFlag);

begin
PMdRecInfo(Buffer + FRecordSize).BookmarkFlag := Value;

end;

function TMDCustomDataSet.GetBookmarkFlag (Buffer: PChar): TBookmarkFlag;
begin
Result := PMdRecInfo(Buffer + FRecordSize).BookmarkFlag;

end;

The methods we use to set and get the current bookmark of a record are similar to the
previous two, but they add some complexity because we receive a pointer to the bookmark in
the Data parameter. Casting this pointer as an integer pointer (PInteger) and dereferencing
it, we obtain the bookmark value:

procedure TMDCustomDataSet.GetBookmarkData (Buffer: PChar; Data: Pointer);
begin
PInteger(Data)^ := PMdRecInfo(Buffer + FRecordSize).Bookmark;

end;

procedure TMDCustomDataSet.SetBookmarkData (Buffer: PChar; Data: Pointer);
begin
PMdRecInfo(Buffer + FRecordSize).Bookmark := PInteger(Data)^;

end;

The key bookmark management method is InternalGotoBookmark, which your dataset uses
to make a given record the current one. You’ll notice that this isn’t the standard navigation
technique, since it’s much more common to move to the next or previous record (something

F I G U R E 1 8 . 5 :
The structure of each buffer
of the custom dataset,
along with the various
local fields referring to its
sub-portions

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 799

http://www.sybex.com

800

we can accomplish using the GetRecord method presented in the next section), or to move to
the first or last record (something we’ll accomplish using the InternalFirst and InternalLast
methods described shortly).

Oddly enough, the InternalGotoBookmark method doesn’t expect a bookmark parameter, but
a pointer to a bookmark, so we must dereference it to determine the bookmark value. The fol-
lowing method, InternalSetToRecord, is what you use to jump to a given bookmark, but it must
extract the bookmark from the record buffer passed as a parameter. Then, InternalSetToRecord
calls InternalGotoBookmark. Here are the two methods:

procedure TMDCustomDataSet.InternalGotoBookmark (Bookmark: Pointer);
var
ReqBookmark: Integer;

begin
ReqBookmark := PInteger (Bookmark)^;
if (ReqBookmark >= 0) and (ReqBookmark < InternalRecordCount) then
FCurrentRecord := ReqBookmark

else
raise EMdDataSetError.Create (‘Bookmark ‘ +
IntToStr (ReqBookmark) + ‘ not found’);

end;

procedure TMDCustomDataSet.InternalSetToRecord (Buffer: PChar);
var
ReqBookmark: Integer;

begin
ReqBookmark := PMdRecInfo(Buffer + FRecordSize).Bookmark;
InternalGotoBookmark (@ReqBookmark);

end;

In addition to the bookmark management methods just described, there are several other
navigation methods we use to move to specific positions within the dataset, such as the first
or last record. Actually, these two methods don’t move the current record pointer to the
first or last record, but move it to one of two special locations before the first record and
after the last one. These are not actual records; Borland calls them cracks. The beginning-
of-file crack, or BofCrack, has the value –1 (set in the InternalOpen method), since the
position of the first record is zero. The end-of-file crack, or EofCrack, has the value of the
number of records, since the last record has the position FRecordCount - 1. We’ve used
two local fields, called EofCrack and BofCrack, to make this code easier to read:

procedure TMDCustomDataSet.InternalFirst;
begin
FCurrentRecord := BofCrack;

end;

procedure TMDCustomDataSet.InternalLast;

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 800

http://www.sybex.com

801

begin
EofCrack := InternalRecordCount;
FCurrentRecord := EofCrack;

end;

The InternalRecordCount method is a virtual method introduced in my TMDCustomDataSet
class, as different datasets can either have a local field for this value (as in case of the stream-
based dataset, which has an FRecordCount field) or compute it on-the-fly.

Another group of optional methods is used to get the current record number (used by the
DBGrid component to show a proportional vertical scroll bar), set the current record num-
ber, or determine the number of records. These methods are quite easy to understand, if you
recall that the range of the internal FCurrentRecord field is from 0 to the number of records
minus 1. In contrast, the record number reported to the system ranges from 1 to the number
of records:

function TMDCustomDataSet.GetRecordCount: Longint;
begin
CheckActive;
Result := InternalRecordCount;

end;

function TMDCustomDataSet.GetRecNo: Longint;
begin
UpdateCursorPos;
if FCurrentRecord < 0 then
Result := 1

else
Result := FCurrentRecord + 1;

end;

procedure TMDCustomDataSet.SetRecNo(Value: Integer);
begin
CheckBrowseMode;
if (Value > 1) and (Value <= FRecordCount) then
begin
FCurrentRecord := Value - 1;
Resync([]);

end;
end;

Notice that it is the generic custom dataset class that implements all the methods of this
section. The derived stream-based dataset doesn’t need to modify any of them.

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 801

http://www.sybex.com

802

Section III: Record Buffers and Field Management
Now that we’ve covered all the support methods, we can examine the core of a custom dataset.
Besides opening and creating records and moving around between them, the component really
needs to move the data from the stream (the persistent file) to the record buffers, and from the
record buffers to the TField objects that are connected to the data-aware controls. The man-
agement of record buffers is quite complex, because each dataset also needs to allocate, empty,
and free the memory it requires:

function TMDCustomDataSet.AllocRecordBuffer: PChar;
begin
GetMem (Result, FRecordBufferSize);

end;

procedure TMDCustomDataSet.FreeRecordBuffer (var Buffer: PChar);
begin
FreeMem (Buffer);

end;

The reason for allocating memory this way is that a dataset generally adds more informa-
tion to the record buffer, so the system has no way of knowing how much memory to allo-
cate. You’ll notice that in the AllocRecordBuffer method, the component allocates the
memory for the record buffer, including both the database data and the record information.
In fact, in the InternalOpen method I wrote

FRecordBufferSize := InternalRecordSize + sizeof (TMdRecInfo);

The component also needs to implement a function to reset the buffer, InternalInitRecord,
usually filling it with numeric zeros or spaces.

Oddly enough, we must also implement a method that returns the size of each record, but
only the data portion—not the entire record buffer. This method is necessary for implement-
ing the read-only RecordSize property, used only in a couple of peculiar cases in the entire
VCL source code. In the generic custom dataset, the GetRecordSize method returns the
value of the FRecordSize field.

Now we’ve actually reached the core of our custom dataset component. The methods of this
group are GetRecord, which reads data from the file, InternalPost and InternalAddRecord,
which update or add new data to the file, and InternalDelete, which removes data and is not
implemented in my sample dataset.

The most complex method of this group is probably GetRecord, which serves multiple pur-
poses. In fact, this method is used by the system to retrieve the data for the current record,
fill a buffer passed as a parameter, and retrieve the data of the next or previous records. The
GetMode parameter determines its action:

type
TGetMode = (gmCurrent, gmNext, gmPrior);

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 802

http://www.sybex.com

803

Of course, a previous or next record might not exist. Even the current record might not
exist; for example, when the table is empty (or in case of an internal error). In these cases we
don’t retrieve the data but return an error code. Therefore, this method’s result can be one of
the following values:

type
TGetResult = (grOK, grBOF, grEOF, grError);

Checking to see if the requested record exists is slightly different than you might expect.
We don’t have to determine if the current record is in the proper range, only if the requested
one is. For example, in the gmCurrent branch of the case statement, we use the standard
expression CurrentRecord>=InternalRecourdCount. To fully understand the various cases,
you might want to read the code a couple of times.

It took me some trial and error (and system crashes caused by recursive calls) to get it
straight when I wrote my first custom dataset a few years back. To test it, consider that if you
use a DBGrid, the system will perform a series of GetRecord calls, until either the grid is full
or GetRecord return grEOF. Here’s the entire code of the GetRecord method:

// III: Retrieve data for current, previous, or next record
// (moving to it if necessary) and return the status
function TMdCustomDataSet.GetRecord(Buffer: PChar;
GetMode: TGetMode; DoCheck: Boolean): TGetResult;

begin
Result := grOK; // default
case GetMode of
gmNext: // move on
if FCurrentRecord < InternalRecordCount - 1 then
Inc (FCurrentRecord)

else
Result := grEOF; // end of file

gmPrior: // move back
if FCurrentRecord > 0 then
Dec (FCurrentRecord)

else
Result := grBOF; // begin of file

gmCurrent: // check if empty
if FCurrentRecord >= InternalRecordCount then
Result := grError;

end;
// load the data
if Result = grOK then
InternalLoadCurrentRecord (Buffer)

else if (Result = grError) and DoCheck then
raise EMdDataSetError.Create (‘GetRecord: Invalid record’);

end;

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 803

http://www.sybex.com

804

If there’s an error and the DoCheck parameter was True, GetRecord raises an exception. If
everything goes fine during record selection, the component loads the data from the stream,
moving to the position of the current record (given by the record size multiplied by the
record number). In addition, we need to initialize the buffer with the proper bookmark flag
and bookmark (or record number) value. This is accomplished by another virtual method I
introduced, so that derived classes will only need to implement this portion of the code,
while the complex GetRecord method remains unchanged:

procedure TMdDataSetStream.InternalLoadCurrentRecord (Buffer: PChar);
begin
FStream.Position := FDataFileHeaderSize + FRecordSize * FCurrentRecord;
FStream.ReadBuffer (Buffer^, FRecordSize);
with PMdRecInfo(Buffer + FRecordSize)^ do
begin
BookmarkFlag := bfCurrent;
Bookmark := FCurrentRecord;

end;
end;

We move data to the file in two different cases: when you modify the current record (that
is, a post after an edit) or when you add a new record (a post after an insert or append). We
use the InternalPost method in both cases, but we can check the dataset’s State property to
determine which type of post we’re performing. In both cases we don’t receive a record
buffer as a parameter, so we must use the ActiveRecord property of TDataSet, which points
to the buffer for the current record:

procedure TMdDataSetStream.InternalPost;
begin
CheckActive;
if State = dsEdit then
begin
// replace data with new data
FStream.Position := FDataFileHeaderSize + FRecordSize * FCurrentRecord;
FStream.WriteBuffer (ActiveBuffer^, FRecordSize);

end
else
begin
// always append
InternalLast;
FStream.Seek (0, soFromEnd);
FStream.WriteBuffer (ActiveBuffer^, FRecordSize);
Inc (FRecordCount);

end;
end;

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 804

http://www.sybex.com

805

In addition, there’s another related method, InternalAddRecord. This method is called by
the AddRecord method, which in turn is called by InsertRecord and AppendRecord. These last
two are public methods a user can call. This is an alternative to inserting or appending a new
record to the dataset, editing the values of the various fields, and then posting the data, since
the InsertRecord and AppendRecord calls receive the values of the fields as parameters. All we
must do at that point is replicate the code used to add a new record in the InternalPost
method:

procedure TMdDataSetOne.InternalAddRecord(Buffer: Pointer; Append: Boolean);
begin
// always append at the end
InternalLast;
FStream.Seek (0, soFromEnd);
FStream.WriteBuffer (ActiveBuffer^, FRecordSize);
Inc (FRecordCount);

end;

The last file operation I should have implemented is one that removes the current record.
This operation is common, but it is actually quite complex. If we take a simple approach,
such as creating an empty spot in the file, then we’ll need to keep track of that spot and make
the code for reading or writing a specific record work around that spot. An alternate solution
is to make a copy of the entire file, without the given record, and then replace the original
file with the copy. Given these choices, I felt that for this example I could forgo supporting
record deletion.

Section IV: From Buffers to Fields
In the last few methods, we’ve seen how datasets move data from the data file to the memory
buffer. However, there’s little Delphi can do with this record buffer, because it doesn’t yet know
how to interpret the data in the buffer. We need to provide two more methods: GetData, which
copies the data from the record buffer to the field objects of the dataset, and SetData, which
moves the data back from the fields to the record buffer. What Delphi will do automatically for
us is move the data from the field objects to the data-aware controls, and back.

The code for these two methods isn’t very complex, primarily because we saved the field
offsets inside the record data in a TList object called FFieldOffset. By simply incrementing
the pointer to the initial position in the record buffer of the current field’s offset, we’ll be
able to get the specific data, which takes Field.DataSize bytes.

A confusing element of these two methods is that they both accept a Field parameter and a
Buffer parameter. At first, one might think that the buffer passed as parameter is the record
buffer. Actually, I found out that the Buffer is a pointer to the field object’s raw data. If you
use one of the field object’s methods to move that data, it will call the dataset’s GetData or

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 805

http://www.sybex.com

806

SetData methods, probably causing an infinite recursion. Instead, you should use the Active-
Buffer pointer to access the record buffer, use the proper offset to get to the data for the cur-
rent field in the record buffer, and then use the provided Buffer to access the field data. The
only difference between the two methods is the direction we’re moving the data:

function TMdDataSetOne.GetFieldData (Field: TField; Buffer: Pointer): Boolean;
var
FieldOffset: Integer;
Ptr: PChar;

begin
Result := False;
if not IsEmpty and (Field.FieldNo > 0) then
begin
FieldOffset := Integer (FFieldOffset [Field.FieldNo - 1]);
Ptr := ActiveBuffer;
Inc (Ptr, FieldOffset);
if Assigned (Buffer) then
Move (Ptr^, Buffer^, Field.DataSize);

Result := True;
if (Field is TDateTimeField) and (PInteger(Ptr)^ = 0) then
Result := False;

end;
end;

procedure TMdDataSetOne.SetFieldData(Field: TField; Buffer: Pointer);
var
FieldOffset: Integer;
Ptr: PChar;

begin
if Field.FieldNo >= 0 then
begin
FieldOffset := Integer (FFieldOffset [Field.FieldNo - 1]);
Ptr := ActiveBuffer;
Inc (Ptr, FieldOffset);
if Assigned (Buffer) then
Move (Buffer^, Ptr^, Field.DataSize)

else
raise Exception.Create (
‘Very bad error in TMdDataSetStream.SetField data’);

DataEvent (deFieldChange, Longint(Field));
end;

end;

The GetField method should return True or False to indicate whether the field contains
data or is empty. However, unless you use a special marker for blank fields, it’s very difficult
to determine this, since we’re storing values of different data types. For example, a test such

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 806

http://www.sybex.com

807

as Ptr^<>#0 makes sense only if you are using a string representation for all of the fields. If
you use this test, zero integer values and empty strings will show as null values (the data-
aware controls will be empty), which may be what you want. The problem is that Boolean
False values won’t show up. Even worse, floating-point values with no decimals and few dig-
its won’t be displayed, because the exponent portion of their representation will be zero!
However, to make this example work in Delphi 6, I had to consider as empty each date/time
field with an initial zero. Without this code, Delphi tries to convert the illegal internal zero
date (internally, date fields don’t use a TDateTime data type but a different representation)
raising an exception. The code used to work with past versions of Delphi.

WARNING While trying to fix this problem, I also found out that if you call IsNull for a field, this request is
resolved by calling GetFieldData without passing any buffer to fill but looking only for the result
of the function call. This is the reason for the if Assigned (Buffer) test within the code.

There’s one final method, which doesn’t fall into any category: InternalHandleException.
Generally, this method silences the exception, as it is activated only at design time.

Testing the Stream-Based DataSet
After all this work, we’re finally ready to test an application example of the custom dataset
component, installed in the component’s package for this chapter. The form displayed by the
StreamDSDemo program is quite simple, as you can see in Figure 18.6. It has a panel with
two buttons, a check box, and a navigator component, plus a DBGrid filling its client area.

F I G U R E 1 8 . 6 :
The form of the StreamDS-
Demo example. The custom
dataset has been activated,
so we can already see the
data at design time.

Building Custom Datasets

2874c18.qxd 7/2/01 4:40 PM Page 807

http://www.sybex.com

808

Figure 18.6 shows the form of the example at design time, but we’ve activated the custom
dataset so that its data is already visible. Of course we’d already prepared the INI file with the
table definition (it’s the file we already listed when discussing the dataset initialization), and
we executed the program to add some data to the file.

It’s also possible to modify the form using Delphi’s Fields editor and set the properties of
the various field objects. Everything works as it does with one of the standard dataset con-
trols! However, to make this work you’ll need to enter the name of the custom dataset’s file
in the TableName property, using the complete path.

WARNING As the demo program defines the absolute path of the table file at design time, you’ll need to
fix it if you copy the examples to a different drive or directory. In the example, the TableName
property is used only at design time. At run time, in fact, the program looks for the table in the
current directory.

The code of the example is rather simple, especially compared to the code of the custom
dataset. If the table doesn’t exist yet, you can click the Create button:

procedure TForm1.Button1Click(Sender: TObject);
begin
MdDataSetStream1.CreateTable;
MdDataSetStream1.Open;
CheckBox1.Checked := MdDataSetStream1.Active;

end;

You’ll notice that we create the file first, open and close it, and then open the table. This is
the same behavior as the TTable component (which accomplishes this using the CreateTable
method). To simply open or close the table, you can click the check box:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
MdDataSetStream1.Active := CheckBox1.Checked;

end;

Finally, I’ve created a method that tests custom dataset’s bookmark management code and
seems to work.

A Directory in a Dataset
An important idea related to datasets in Delphi is that they simply represent a set of data,
regardless where this data comes from. An SQL server or a local file are examples of tradi-
tional datasets, but you can use the same technology to show a list of users of a system, a list
of files of a folder, the properties of some objects, some XML-based data, and so on.

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 808

http://www.sybex.com

809

As an example, the second (and last) dataset presented in this chapter is a list of files. This
is based once more on a generic approach. I’ve built a generic dataset based on a list of
objects in memory (using a TObjectList), then derived a version in which the objects corre-
spond to the files of a folder. The actual example is simplified by the fact it is a read-only
dataset, so you might even find it simpler than the previous dataset I presented.

NOTE Some of the ideas presented here were discussed in an article I wrote for the Borland Commu-
nity Web site, http://community.borland.com, published in June 2000.

A List as a Dataset
The generic list-based dataset is called TMdListDataSet and contains the list of objects, created
when you open the dataset and freed when you close it. This dataset doesn’t store the actual
record data within the buffer; rather, it saves in the buffer only the position in the list of the
entry corresponding to the record’s data. This is the class definition:

type
TMdListDataSet = class (TMdCustomDataSet)
protected
// the list holding the data
FList: TObjectList;
// dataset virtual methods
pprroocceedduurree InternalPreOpen; override;
pprroocceedduurree InternalClose; override;
// custom dataset virtual methods
ffuunnccttiioonn InternalRecordCount: Integer; override;
pprroocceedduurree InternalLoadCurrentRecord (Buffer: PChar); override;

end;

You can see that by writing a generic custom data class, we can override few virtual methods
of the TDataSet class and of this custom dataset class, and have a working dataset (although
this is still an abstract class, which requires extra code from subclasses to work). When the
dataset is opened, we have to create the list and set the record size, to indicate we’re simply
saving the list index in the buffer:

procedure TMdListDataSet.InternalPreOpen;
begin
FList := TObjectList.Create (True); // owns the objects
FRecordSize := 4; // an integer, the list item id

end;

Further subclasses at this point should also fill the list with actual objects.

A Directory in a Dataset

2874c18.qxd 7/2/01 4:40 PM Page 809

http://www.sybex.com
http://community.borland.com

810

TIP Similarly to the ClientDataSet, my list dataset keeps all of its data in memory. However, using
some smart techniques, you can also create a list of “fake” objects, and then load the actual
objects only when you are accessing them.

Closing is simply a matter of freeing the list, which has a record count corresponding to
the list size:

function TMdListDataSet.InternalRecordCount: Integer;
begin
Result := fList.Count;

end;

The only other method is used to save the data of the current record in the record buffer,
including the bookmark information. The core data is simply the position of the current
record, which matches the list index (and also the bookmark):

procedure TMdListDataSet.InternalLoadCurrentRecord (Buffer: PChar);
begin
PInteger (Buffer)^ := fCurrentRecord;
with PMdRecInfo(Buffer + FRecordSize)^ do
begin
BookmarkFlag := bfCurrent;
Bookmark := fCurrentRecord;

end;
end;

Directory Data
The derived directory dataset class has to provide a way to load the objects in memory when
the dataset is opened, to define the proper fields, and to read and write the value of those
fields. Of course, it has also a property indicating the directory to work on, or to be more
precise, the directory plus the file mask used for filtering the files (as in c:\docs*.txt):

type
TMdDirDataset = class(TMdListDataSet)
private
FDirectory: string;
procedure SetDirectory(const NewDirectory: string);

protected
// TDataSet virtual methdos
procedure InternalInitFieldDefs; override;
procedure SetFieldData(Field: TField; Buffer: Pointer); override;
function GetCanModify: Boolean; override;
// custom dataset virtual methods
procedure InternalAfterOpen; override;

public

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 810

http://www.sybex.com

811

function GetFieldData(Field: TField; Buffer: Pointer): Boolean; override;
published
property Directory: string read FDirectory write SetDirectory;

end;

The GetCanModify function is another virtual method of TDataSet, used to determine if the
dataset is read-only. In this case, it simply returns False. Also, we won’t have to write any code
for the SetFieldData procedure, but we have to define it because it is an abstract virtual method.

As I am dealing with a list of objects, the unit includes also a class for those objects. In this
case, I am working with file data extracted by a TSearchRec buffer by the TFileData class
constructor:

type
TFileData = class
public
ShortFileName: string;
Time: TDateTime;
Size: Integer;
Attr: Integer;
constructor Create (var FileInfo: TSearchRec);

end;

constructor TFileData.Create (var FileInfo: TSearchRec);
begin
ShortFileName := FileInfo.Name;
Time := FileDateToDateTime (FileInfo.Time);
Size := FileInfo.Size;
Attr := FileInfo.Attr;

end;

This constructor is called for each folder while opening the dataset:
procedure TMdDirDataset.InternalAfterOpen;
var
Attr: Integer;
FileInfo: TSearchRec;
FileData: TFileData;

begin
// scan all files
Attr := faAnyFile;
FList.Clear;
if SysUtils.FindFirst(fDirectory, Attr, FileInfo) = 0 then
repeat
FileData := TFileData.Create (FileInfo);
FList.Add (FileData);

until SysUtils.FindNext(FileInfo) <> 0;
SysUtils.FindClose(FileInfo);

end;

A Directory in a Dataset

2874c18.qxd 7/2/01 4:40 PM Page 811

http://www.sybex.com

812

The next step is to define the fields of the dataset, which in this case are fixed and depend
on the available directory data:

procedure TMdDirDataset.InternalInitFieldDefs;
begin
if fDirectory = ‘’ then
raise EMdDataSetError.Create (‘Missing directory’);

// field definitions
FieldDefs.Clear;
FieldDefs.Add (‘FileName’, ftString, 40, True);
FieldDefs.Add (‘TimeStamp’, ftDateTime);
FieldDefs.Add (‘Size’, ftInteger);
FieldDefs.Add (‘Attributes’, ftString, 3);
FieldDefs.Add (‘Folder’, ftBoolean);

end;

Finally, the component has to move the data from the object of the list referenced by the
current record buffer (the ActiveBuffer value) to each field of the dataset, as requested by
the GetFieldData method. This function uses either Move or StrCopy, depending on the data
type and does some conversions for the attributes codes (H for hidden, R for read-only, and
S for system) extracted from the related flags and used also to determine whether a file is
actually a folder. Here is the code:

function TMdDirDataset.GetFieldData (Field: TField; Buffer: Pointer): Boolean;
var
FileData: TFileData;
Bool1: WordBool;
strAttr: string;
t: TDateTimeRec;

begin
FileData := fList [PInteger(ActiveBuffer)^] as TFileData;
case Field.Index of
0: // filename
StrCopy (Buffer, pchar(FileData.ShortFileName));

1: // timestamp
begin
t := DateTimeToNative (ftdatetime, FileData.Time);
Move (t, Buffer^, sizeof (TDateTime));

end;
2: // size
Move (FileData.Size, Buffer^, sizeof (Integer));

3: // attributes
begin
strAttr := ‘ ‘;
if (FileData.Attr and SysUtils.faReadOnly) > 0 then
strAttr [1] := ‘R’;

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 812

http://www.sybex.com

813

if (FileData.Attr and SysUtils.faSysFile) > 0 then
strAttr [2] := ‘S’;

if (FileData.Attr and SysUtils.faHidden) > 0 then
strAttr [3] := ‘H’;

StrCopy (Buffer, pchar(strAttr));
end;
4: // folder
begin
Bool1 := FileData.Attr and SysUtils.faDirectory > 0;
Move (Bool1, Buffer^, sizeof (WordBool));

end;
end; // case
Result := True;

end;

The tricky part in writing this code was figuring out the internal format of dates stored
within date/time fields. This is not the common TDateTime format used by Delphi, and not
even the internal TTimeStamp, but what is called the internally called the “native” date time
format. I’ve written a conversion function cloning one I’ve found in the VCL code for the
date/time fields:

function DateTimeToNative(DataType: TFieldType; Data: TDateTime): TDateTimeRec;
var
TimeStamp: TTimeStamp;

begin
TimeStamp := DateTimeToTimeStamp(Data);
case DataType of
ftDate: Result.Date := TimeStamp.Date;
ftTime: Result.Time := TimeStamp.Time;

else
Result.DateTime := TimeStampToMSecs(TimeStamp);

end;
end;

With this dataset available, building the demo program (shown in Figure 18.7) was simply
a matter of connecting a DBGrid component to it and adding a folder-selection component,
Delphi 6’s ShellTreeView control. This control is set up to work only on files, by setting its
Root property to C:\. When the user selects a new folder, the OnChange event handler of the
ShellTreeView control refreshes the dataset.

A Directory in a Dataset

2874c18.qxd 7/2/01 4:40 PM Page 813

http://www.sybex.com

814

procedure TForm1.ShellTreeView1Change(Sender: TObject; Node: TTreeNode);
begin
MdDirDataset1.Close;
MdDirDataset1.Directory := ShellTreeView1.Path + ‘*.*’;
MdDirDataset1.Open;

end;

What’s Next?
In this chapter we’ve delved inside Delphi’s database architecture, by first examining the
development of data-aware controls and then studying the internals of the TDataSet class to
write a couple of custom dataset components. With this information, and all the other ideas
presented in this part devoted to database programming, you should probably be able to
choose the architecture of your database applications, depending on your needs.

NOTE I’ve actually extended the list-based dataset to build an object-based version, hosting the busi-
ness logic of an application and mapped to a relational database. Refer to my Web site
(www.marcocantu.com) or contact me for the availability of this code.

Database programming is certainly a core element of Delphi, the reason for devoting sev-
eral chapters of the book to this topic. We’ll get back to this topic when focusing on present-
ing database data over the Web, in Chapters 21 and 22.

For the moment, though, we have to introduce another important element of Windows
applications, COM and OLE Automation, covered in the next two chapters.

F I G U R E 1 8 . 7 :
The output of the DirDemo
example, which uses a
rather unusual dataset,
showing directory data.

Chapter 18 • Writing Database Components

2874c18.qxd 7/2/01 4:40 PM Page 814

http://www.sybex.com

Beyond Delphi:
Connecting with the
World

� Chapter 19: COM Programming

� Chapter 20: From Automation to COM+

� Chapter 21: Internet Programming: Sockets and Indy
Components

� Chapter 22: Web Programming with WebBroker and
WebSnap

� Chapter 23: XML and SOAP

PART IV

2874c19.qxd 7/2/01 4:41 PM Page 815

http://www.sybex.com

19CH A P T E R

COM Programming

� What are OLE and COM?

� COM, GUIDs, and class factories

� Delphi interfaces and COM

� The VCL COM-support classes

� Windows shell interfaces

2874c19.qxd 7/2/01 4:41 PM Page 817

http://www.sybex.com

818

For about 10 years, starting soon after the release of Windows 3.0, Microsoft has kept
promising that its operating system and their API would be based on a real object model
instead of functions. According to the speculations, Windows 95 (and later Windows 2000)
should have been based on this revolutionary approach. Nothing like this happened, but
Microsoft kept pushing COM (Component Object Model), built the Windows 95 shell on
top of it, pushed applications integration with COM and derivative technologies (such as
Automation), and reached the peak by introducing COM+ with Windows 2000.

Now, soon after the release of the complete foundation required for high-level COM pro-
gramming, Microsoft has decided to switch to a new core technology, part of the dotNet (or
.Net, if you prefer) initiative. My impression is that COM wasn’t really suited for the integra-
tion of fine-grained objects, though it succeeded in providing an architecture for integrating
applications or large objects.

NOTE dotNet is a mix of interesting new technologies and pure marketing hype, and this book
doesn’t discuss it in detail. Even if it were possible to predict how dotNet will affect program-
mers using Microsoft development tools, it is far from clear how it will affect Delphi pro-
grammers. dotNet, in fact, is based on a class library very similar to Delphi’s VCL, and it is
unclear what the advantage will be of switching to it. If Borland could bundle the VCL with
an operating system, along with its core run-time packages, you’d have a situation very simi-
lar to dotNet, as far as the library is concerned. Instead, if you are looking for a virtual
machine and portable code, you can certainly consider Java and the portability between Win-
dows and Linux possible with the CLX library of Delphi 6 and Kylix. Having said this, I’m not
underestimating dotNet, but this is a book on Delphi programming. In any case, we’ll get
back to many core elements of dotNet in the final chapters, discussing XML and SOAP.
Finally, the system can expose dotNet objects as COM objects, so after you learn COM you’ll
also have a chance to interact with dotNet.

In this chapter, we’ll build our first COM object and integrate COM objects with the
Windows shell. Type libraries, Automation, and other topics will be covered in the next
chapter. I will stick to the basic elements to let you understand the role of this technology
without delving heavily into the details. I’ll bear in mind the clouds on the future of COM,
declared obsolete by Microsoft after the announcement of dotNet but still heavily used by
the same company inside their applications and operating systems.

A Short History of OLE and COM
Part of the confusion related to COM technology comes from the fact that Microsoft has
used different names for it for marketing reasons. Everything started with Object Linking

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:41 PM Page 818

http://www.sybex.com

819

and Embedding (OLE, for short), which was an extension of the DDE (Dynamic Data
Exchange) model. Using the Clipboard allows you to copy some raw data, and using DDE
allows you to connect parts of two documents. OLE allows you to copy data from a server
application to a client application, along with information regarding the server or a reference
to information stored in the Windows Registry. The raw data might be copied along with the
link (object embedding) or kept in the original file (object linking). OLE Documents are now
called Active Documents.

Microsoft updated OLE to OLE 2 and started adding new features, such as OLE Automa-
tion and OLE Controls. The next step was to build the Windows 95 shell using OLE tech-
nology and interfaces and then to rename the OLE Controls (previously known also as OCX)
as ActiveX controls, changing the specification to allow for lightweight controls suitable for
distribution over the Internet. For a while, Microsoft promoted ActiveX controls as suitable
for the Internet, but the idea was never fully accepted by the development community, cer-
tainly not as “suitable” for Internet development.

As this technology was extended and became increasingly important to the Windows plat-
form, Microsoft changed the name to OLE, and then to COM, and now to COM+ for Win-
dows 2000. These changes in naming are only partially related to technological changes and
are driven to a large extent by marketing purposes.

What, then, is COM? Basically, the Component Object Model, or COM, is a technology
that defines a standard way for a client module and a server module to communicate through
a specific interface. Here, “module” indicates an application or a library (a DLL); the two mod-
ules may execute on the same computer or on different machines connected via a network.
Many interfaces are possible, depending on the role of the client and server, and you can add
new interfaces for specific purposes. These interfaces are implemented by server objects. A
server object usually implements more than one interface, and all the server objects have a few
common capabilities, because they must all implement the IUnknown interface.

The good news is that Delphi is fully compliant with COM. When you look at the source
code, Object Pascal seems to be easier to use than C++ or other languages for writing COM
objects. This simplicity mainly derives from the incorporation of interface types into the
Object Pascal language. By the way, interfaces are also similarly used to integrate Java with
COM on the Windows platform.

The purpose of COM interfaces is to communicate between two software modules, two
executable files, or one executable file and a DLL. Implementing COM objects in DLLs is
generally simpler, because in Win32, a program and the DLL it uses reside in the same mem-
ory address space. This means that if the program passes a memory address to the DLL, the
address remains valid. When you use two executable files, COM has a lot of work to do behind
the scenes to let the two applications communicate. This mechanism is called marshaling. Note

A Short History of OLE and COM

2874c19.qxd 7/2/01 4:41 PM Page 819

http://www.sybex.com

820

that a DLL implementing COM objects is described as an in-process server, whereas when the
server is a separate executable, it is called an out-of-process server. However, when DLLs are
executing on another machine (DCOM) or inside a host environment (MTS), they are also
out-of-process.

Implementing IUnknown
Before we start looking to an example of COM development, I would like to introduce a few
COM basics. The first is that every COM object must implement the IUnknown interface, also
dubbed IInterface in Delphi 6 for non-COM usage of interfaces (as we saw in Chapter 3,
“The Object Pascal Language: Inheritance and Polymorphism”). This is the base interface
from which every Delphi interface inherits, and Delphi provides a couple of different classes
with ready-to-use implementations of IUnknown/IInterface, including TInterfacedObject and
TComObject. The first can be used to have an internal object unrelated with COM, while the sec-
ond is used to create objects that can be exported by servers. As I’ll discuss in Chapter 20, “From
Automation to COM+,” several other classes inherit from TComObject and provide support
for more interfaces, which are required by Automation servers or ActiveX controls.

As mentioned in Chapter 3, the IUnknown interface has three methods: _AddRef, _Release,
and QueryInterface. Here is the definition of the IUnknown interface (extracted from the
System unit):

type
IUnknown = interface
[‘{00000000-0000-0000-C000-000000000046}’]
function QueryInterface(const IID: TGUID;
out Obj): Integer; stdcall;

function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

end;

The _AddRef and _Release methods are used to implement reference counting. The
QueryInterface method handles the type information and type compatibility of the objects.

NOTE In the code above, you can see an example of an out parameter, a parameter passed back
from the method to the calling program but without an initial value passed by the calling pro-
gram to the method. The out parameters have been added to Delphi’s Object Pascal language
specifically to support COM. It’s also important to note that although Delphi’s language defin-
ition for the interface type is designed for compatibility with COM, Delphi interfaces do not
require COM. This was already highlighted in Chapter 3, where I built a complex interface-
based example with no COM support whatsoever.

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:41 PM Page 820

http://www.sybex.com

821

You don’t usually need to implement these methods, as you can inherit from one of the
Delphi classes already supporting them. The most important class is TComObject, defined in
the ComObj unit. When you build a COM server, you’ll generally inherit from this class.
Because TComObject is a complex class, this excerpt shows only its key elements:

type
TComObject = class(TObject, IUnknown, ISupportErrorInfo)
private
FNonCountedObject: Boolean;
FRefCount: Integer;

protected
{ IUnknown }
function IUnknown.QueryInterface = ObjQueryInterface;
function IUnknown._AddRef = ObjAddRef;
function IUnknown._Release = ObjRelease;
{ ISupportErrorInfo }
function InterfaceSupportsErrorInfo(const iid: TIID): HResult; stdcall;

public
constructor Create;
destructor Destroy; override;
procedure Initialize; virtual;
function ObjAddRef: Integer; virtual; stdcall;
function ObjQueryInterface(const IID: TGUID; out Obj): HResult;
virtual; stdcall;

function ObjRelease: Integer; virtual; stdcall;
property RefCount: Integer read FRefCount;

end;

This class implements the IUnknown interface (using the ObjAddRef, ObjQueryInterface,
and ObjRelease methods, as indicated by the method-mapping statements in the protected por-
tion of the class) and the ISupportErrorInfo interface (through the InterfaceSupportsError-
Info method). The implementation of reference counting for the TComObject class has been
extended to support threading. Instead of using Inc and Dec, the code uses the thread-safe
InterlockedIncrement and InterlockedDecrement API functions, as you can see in the source
code of the class:

function TComObject.ObjAddRef: Integer;
begin
Result := InterlockedIncrement(FRefCount);

end;

function TComObject.ObjRelease: Integer;
begin
Result := InterlockedDecrement(FRefCount);
if Result = 0 then Destroy;

end;

Implementing IUnknown

2874c19.qxd 7/2/01 4:41 PM Page 821

http://www.sybex.com

822

As you can see, the implementation of Release destroys the object when there are no more
references to it. At first sight, the need to call this method each time you operate on an object
seems like a lot of work. However, you might remember from Chapter 3 that when you’re
using interface variables to refer to objects, Delphi automatically adds the reference-counting
calls to the compiled code, which automatically destroys unreferenced objects. This labor-saving
feature makes Delphi a convenient tool for COM development.

The most complex method is QueryInterface, which in Delphi is actually implemented
through the GetInterface method of the TObject class:

function TComObject.ObjQueryInterface(const IID: TGUID; out Obj): HResult;
begin
if GetInterface(IID, Obj) then
Result := S_OK

else
Result := E_NOINTERFACE;

end;

The role of the QueryInterface method is twofold:

• QueryInterface is used for type checking. The program can ask an object the follow-
ing questions: Are you of the type I’m interested in? Do you implement the interface I
want to call? And the specific methods? If the answer is no, the program can look for
another object, maybe asking another server.

• If the answer is yes, QueryInterface usually returns a pointer to the object, using its
reference output parameter (out).

To understand the role of the QueryInterface method, it is important to keep in mind that
a COM object can implement multiple interfaces, as the event TComObject does. When you
call QueryInterface, you might ask for one of the possible interfaces of the object, using the
TGUID parameter.

Globally Unique Identifiers
The QueryInterface method has a special parameter of the TGUID type. This is an ID that
identifies any COM server class and any interface in the system. When you want to know
whether an object supports a specific interface, you ask the object whether it implements the
interface that has a given ID (which for the default OLE interfaces is determined by
Microsoft).

Another ID is used to indicate a specific class, a specific server. The Windows Registry
stores this ID, with indications of the related DLL or executable file. The developers of an
OLE server define the class identifier.

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:41 PM Page 822

http://www.sybex.com

823

Both of these IDs are known as GUIDs, or globally unique identifiers. If each developer uses
a number to indicate its own OLE servers, how can we be sure that these values are not dupli-
cated? The short answer is that we cannot. The real answer is that a GUID is such a long number
(with 16 bytes, or 128 bits, or a number with 38 digits!) that it is almost impossible to come up
with two random numbers having the same value. Moreover, programmers should use the spe-
cific API call CoCreateGuid (directly or through their development environment) to come up
with a valid GUID that reflects some system information.

In fact, GUIDs created on machines with network cards are guaranteed to be unique,
because network cards contain unique serial numbers that form a base for the GUID cre-
ation. GUIDs created on machines with CPU IDs (such as the Pentium III) should also be
guaranteed unique, even without a network card. With no unique hardware identifier,
GUIDs are unlikely to ever duplicate.

WARNING Besides being careful not to copy the GUID from someone else’s program (which can result in
two completely different COM objects using the same GUID), you should never make up your
own ID by entering a casual sequence of numbers. Windows checks the IDs, and using a
casual sequence won’t generate a valid ID. An OLE server with an invalid ID is not recognized,
and you won’t get an error message! Windows also won’t include an API or technique to vali-
date a GUID. The risk with creating class or interface IDs by hand is that you could coinciden-
tally duplicate a GUID that is already in use somewhere else in the system. However, to avoid
this problem, simply press Ctrl+Shift+G in the Delphi editor, and you will get a new, properly
defined, unique GUID.

Delphi defines a TGUID data type (in the System unit) to hold these numbers:
type
TGUID = record
D1: Integer;
D2: Word;
D3: Word;
D4: array [0..7] of Byte;

end;

This structure is actually quite odd but is required by Windows. You can assign a value to a
GUID using the standard hexadecimal notation stored inside a string, as in this code fragment:

const
Class_ActiveForm1: TGUID = ‘{1AFA6D61-7B89-11D0-98D0-444553540000}’;

If you need to generate a GUID manually and not in the Delphi environment, you can
simply call the CoCreateGuid Windows API function, as demonstrated by the NewGuid
example (see Figure 19.1). This example is so simple that I’ve decided not to list its code.

Implementing IUnknown

2874c19.qxd 7/2/01 4:41 PM Page 823

http://www.sybex.com

824

(You can find the source code for this application, along with the chapter’s other examples, in
the folder for Chapter 19 on the companion CD.)

To handle GUIDs, Delphi provides the GUIDToString function and the opposite String-
ToGUID function. You can also use the corresponding Windows API functions, such as
StringFromGuid2, but in this case, you must use the WideString type instead of the string
type. Any time OLE is involved, you have to use the WideString type, unless you use Delphi
functions that automatically do the required conversion for you. Actually, OLE API func-
tions use the PWChar type (pointer to null-terminated arrays of wide characters), but simply
casting a WideString to PWChar does the trick.

TIP Keep in mind that GUIDs come in different flavors. The two most important types are interface
IDs (or IID), which refer to an interface, and class IDs (or CLSID), which refer to a specific object
in a server. These two kinds of IDs both use the GUID style.

The Role of Class Factories
When we register the GUID of a COM object in the Registry, we can use a specific API
function to create the object, such as the CreateComObject API:

function CreateComObject (const ClassID: TGUID): IUnknown;

This API function will look into the Registry, find the server registering the object with
the given GUID, load it, and, if the server is a DLL, call the DLLGetClassObject method
of the DLL. This is a function every in-process server must provide and export:

function DllGetClassObject (const CLSID, IID: TGUID;
var Obj): HResult; stdcall;

This API function receives as parameters the requested class and interface, and it returns
an object in its reference parameter. The object returned by this function is a class factory.

F I G U R E 1 9 . 1 :
An example of the GUIDs
generated by the NewGuid
example. Values depend on
my computer and the time I
run this program.

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:41 PM Page 824

http://www.sybex.com

825

Now, what is a class factory? As the name suggests, a class factory is an object capable of
creating other objects. Each server can have multiple objects. The server exposes the class
factory, and the class factory can create one of these various objects. Each object, then, can
have multiple interfaces. One of the many advantages of the Delphi simplified approach to
COM development is that the system can provide a class factory for us. For this reason, I’m
not going to add a class factory to our simple example.

The call to the CreateComObject API doesn’t stop at the creation of the class factory, how-
ever. After retrieving the class factory, CreateComObject calls the CreateInstance method of
the IClassFactory interface. This method creates the requested object and returns it. If no
error occurs, this object becomes the return value of the CreateComObject API.

By setting up this mechanism (including the class factory and the DLLGetClassObject call),
you make it very simple to create objects. CreateComObject is just a simple function call with
a complex behavior behind the scenes. What’s great in Delphi is that the complex mechanism
is handled for you by the run-time system. So it’s time to start looking in detail at how Delphi
makes COM really easy to master.

Class Factories and Other Delphi COM Classes
Besides the TComObject class, Delphi includes several other predefined COM classes. We’ll
use them in the following sections, but here is a list of the most important COM classes of
the Delphi VCL:

• TInterfacedObject, defined in the System unit, inherits from TObject and implements
the IUnknown interface. It is used only for internal objects.

• TComObject, defined in the ComObj unit, inherits from TObject and implements both
the IUnknown interface and the ISupportErrorInfo interface. Unlike TInterfaced-
Object, this class also has a related class factory.

• TTypedComObject, defined in the ComObj unit, inherits from TComObject and imple-
ments the IProvideClassInfo interface (in addition to the IUnknown and ISupport-
ErrorInfo interfaces already implemented by the base class, TComObject).

• TAutoObject, defined in the ComObj unit, inherits from TTypedComObject and imple-
ments also the IDispatch interface.

• TActiveXControl, defined in the AxCtrls unit, inherits from TAutoObject and imple-
ments several interfaces (IPersistStreamInit, IPersistStorage, IOleObject, and
IOleControl, to name just a few).

For each of these classes, Delphi also defines a class factory. The class factory classes form
another hierarchy, with the same structure. Their names are TComObjectFactory, TTyped-
ComObjectFactory, TAutoObjectFactory, and TActiveXControlFactory. Class factories are
important, and every COM server requires them. Usually we simply use class factories by

Implementing IUnknown

2874c19.qxd 7/2/01 4:41 PM Page 825

http://www.sybex.com

826

creating an object in the initialization section of the unit defining the corresponding server
object class.

A First COM Server
There is no better way to understand COM than to build a simple COM server hosted by a
DLL. A library hosting a COM object is indicated in Delphi as an ActiveX library. For this
reason we can start the development of this project by selecting File ➢ New ➢ Other, mov-
ing to the ActiveX page, and selecting the ActiveX Library option. This generates a project
file I’ve saved as FirstCom on the companion CD. This is the complete source code:

library FirstCom;

uses
ComServ;

exports
DllGetClassObject,
DllCanUnloadNow,
DllRegisterServer,
DllUnregisterServer;

{$R *.RES}

begin
end.

The four functions exported by the DLL are required for COM compliance and are used
by the system as follows:

• To access the class library (DllGetClassObject)

• To check whether the server has destroyed all its objects and can be unloaded from
memory (DllCanUnloadNow)

• To add or remove information about the server in the Windows Registry (DllRegis-
terServer and DllUnregisterServer)

You generally don’t have to implement these functions, because Delphi provides a default
implementation in the ComServ unit. For this reason, in the code of our server, we only need
to export them.

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:41 PM Page 826

http://www.sybex.com

827

COM Interfaces and Objects
Now that we have the structure of our COM server in place, we can start developing it. The
first step is to write the code of the interface we want to implement in the server. The interface
can be very similar to the code of an abstract class, listing all the methods we want to make
available from our server. (I have already discussed Object Pascal interfaces in Chapter 3.) Here
is the code of a simple interface, which you should add to a separate unit (called NumIntf in
the example):

type
INumber = interface
[‘{B4131140-7C2F-11D0-98D0-444553540000}’]
function GetValue: Integer; stdcall;
procedure SetValue (New: Integer); stdcall;
procedure Increase; stdcall;

end;

The IID was added to the code by pressing the Ctrl+Shift+G key combination.

After declaring the custom interface, we can add the actual object to the server. To accom-
plish this, we can use the COM Object Wizard (available in the ActiveX page of the File ➢
New ➢ Other dialog box). You can see this wizard’s dialog box in Figure 19.2. Here you
should enter the name of the class of the server, the interface you want to implement, and a
description. I’ve disabled the generation of the type library to avoid introducing too many
topics at once. You should also choose an instancing and a threading model, as described in
the related sidebar.

F I G U R E 1 9 . 2 :
The COM Object Wizard

A First COM Server

2874c19.qxd 7/2/01 4:41 PM Page 827

http://www.sybex.com

828

The code generated by the COM Object Wizard is actually quite simple. The interface
contains the definition of the class to fill with methods and data:

type
TNumber = class(TComObject, INumber)
protected
{Declare INumber methods here}

end;

The server class inherits from the TComObject class, which I discussed in the last section.
In the code generated by the wizard, after the server class comes the definition of the GUID
for the server:

const
Class_Number: TGUID = ‘{5B2EF181-3AAE-11D3-B9F1-00000100A27B}’;

Finally, there is some code in the initialization section (which uses most of the options
we’ve set up in the wizard’s dialog box):

initialization
TComObjectFactory.Create(ComServer, TNumber, Class_Number, ‘Number’,
‘Number Server’, ciMultiInstance, tmApartment);

This code creates an object of the TComObjectFactory class, passing as parameters the global
ComServer object, a class reference to the class we’ve just defined, the GUID for the class, the
server name, the server description, and the instancing and threading models we want to use.

The global ComServer object, defined in the ComServ unit, is a manager of the class facto-
ries available in the server library. It uses its own ForEachFactory method to look for the
class supporting a given COM object request, and it keeps track of the number of allocated
objects. As we’ve already seen, in fact, the ComServ unit implements the functions required
by the DLL to be a COM library.

Having examined the source code generated by the wizard, we can now complete it by
adding to the TNumber class the methods required for implementing the INumber interface.
First, write the declaration of the methods:

type
TNumber = class(TComObject, INumber)
private
fValue: Integer;

public
function GetValue: Integer; virtual; stdcall;
procedure SetValue (New: Integer); virtual; stdcall;
procedure Increase; virtual; stdcall;

end;

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:41 PM Page 828

http://www.sybex.com

829

At this point, simply activate class completion by pressing Shift+Ctrl+C and fill the meth-
ods with the proper code. This is so straightforward that I’m not going to list it here; you can
find the source code on the companion CD.

COM Instancing and Threading Models
When you create a COM server, you should choose a proper instancing and threading model,
which can significantly affect the behavior of the COM server.

Instancing affects only out-of-process servers (any COM server in a separate executable file,
rather than a DLL) and can assume three values:

Multiple indicates that when several client applications require the COM object, the
system starts multiple instances of the server.

Single indicates that, even when several client applications require the COM object,
there is only one instance of the server application; it creates multiple internal objects to
service the requests.

Internal indicates that the object can only be created inside the server; client applica-
tions cannot ask for one.

The second decision relates to the thread support of the COM object, which is valid for in-
process servers only (DLLs). The threading model is a joint decision of the client and the server
application: if both sides agree on one model, it is used for the connection. If no agreement is
found, COM can still set up a connection using marshaling, which can slow down the opera-
tions. And keep in mind that a server must not only publish its threading model in the Registry
(as a result of setting the option in the wizard); it must also follow the rules for that threading
model in the code. Here are the key highlights of the various threading models:

The Single model indicates no real support for threads. The requests reaching the
COM server are serialized, so that the client can perform one operation at a time.

The Apartment model, or “single-threaded Apartment” indicates that only the
thread that created the object can call its methods. This means that the requests for each
server object are serialized, but other objects of the same server can receive requests at
the same time. For this reason, the server object must take extra care only to access
global data of the server (using critical sections, mutexes, or some other synchronization
techniques). This is the threading model generally used for ActiveX controls inside Inter-
net Explorer.

The Free model, or “multi-threaded Apartment” indicates that the client has no
restrictions, which means that multiple threads can use the same object at the same time.
For this reason, every method of every object must protect itself and the nonlocal data it
uses against multiple simultaneous calls. This threading model is more complex for a

A First COM Server

Continued on next page

2874c19.qxd 7/2/01 4:41 PM Page 829

http://www.sybex.com

830

server to support than the Single and Apartment models, because even access to the
object’s own instance data must be handled with thread-safe care.

The fourth option, Both indicates that the server object supports both the Apartment
model and the Free model.

The final option, Neutral was introduced in Windows 2000 and is available only
under COM+. It indicates that multiple clients can call the object on different threads at
the same time, but COM guarantees you that the same method is not invoked twice at
the same time. Guarding for concurrent access to the data of the objet is required. Under
COM, it is mapped to the Apartment model.

Initializing the COM Object
If you look back at the definition of the TComObject class, you will notice it has a nonvirtual
constructor. (Actually, it has multiple nonvirtual constructors, which I’ve omitted from the
listing.) Each TComObject constructor calls the virtual Initialize method. For this reason, if
you want to customize the creation of an object and then initialize it, you should not define a
new constructor (which will never be called). What you should do is override its Initialize
method, as I’ve done in the TNumber class. Here is the final version of this class:

type
TNumber = class(TComObject, INumber)
private
fValue: Integer;

public
function GetValue: Integer; virtual; stdcall;
procedure SetValue (New: Integer); virtual; stdcall;
procedure Increase; virtual; stdcall;
procedure Initialize; override;
destructor Destroy; override;

end;

As you can see, I’ve also overridden the destructor of the class, because I wanted to test the
automatic destruction of the COM objects provided by Delphi. Here is the code for this
pseudoconstructor and the destructor:

procedure TNumber.Initialize;
begin
inherited;
fValue := 10;

end;

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 830

http://www.sybex.com

831

destructor TNumber.Destroy;
begin
inherited;
MessageBox (0, ‘Object Destroyed’, ‘TDLLNumber’, mb_OK); // API call

end;

In the first method, calling the inherited version is good practice, even though the
TComObject.Initialize method has no code in this version of Delphi. The destructor,
instead, must call the base class version. This is the code required to make our COM object
work properly and to let us know when an object is actually destroyed.

Testing the COM Server
Now that we’ve finished writing our COM server object, we can register and use it. Simply
compile its code and then use the Run ➢ Register ActiveX Server menu command in Delphi.
You do this to register the server on your own machine, with the results you can see in
Figure 19.3.

When you distribute this server, you should install it on the client computers. To accom-
plish this, you can write a REG file to install the server in the Registry. However, this is not
really the best approach, because the server already includes a function you can activate to
register the server. This function can be activated by the Delphi environment, as we’ve seen,
or in a few other ways:

• You can pass the COM server DLL as a command-line parameter to Microsoft’s
RegSvr32.exe program, found in the \Windows\System directory.

• You can use the similar TRegSvr.exe demo program that ships with Delphi. (The com-
piled version is in the \Bin directory, and its source code is in the \Demos\ActiveX
directory.)

• You can let an installation builder program call the registration function of the server.

F I G U R E 1 9 . 3 :
The new registered server
in Windows RegEdit

A First COM Server

2874c19.qxd 7/2/01 4:42 PM Page 831

http://www.sybex.com

832

Having registered the server, we can now turn to the client side of our example. This time,
the example is called TestCom and is stored in a separate directory. In fact, the program loads the
server DLL through the OLE/COM mechanism, thanks to the server information present in
the Registry, so it’s not necessary for the client to know which directory the server resides in.

The form displayed by this program is very similar to the one we’ve used to test the object
inside the DLL. In the client program, you must include the source code file with the inter-
face and redeclare the COM server GUID. Of course, the code of the program’s FormCreate
method should be updated to create the required COM objects. The program starts with all
the buttons disabled (at design time), and it enables them only after an object has been created.
This way, if an exception is raised while creating one of the objects, the buttons related to the
object won’t be enabled:

procedure TForm1.FormCreate(Sender: TObject);
begin
// create first object
Num1 := CreateComObject (Class_Number) as INumber;
Num1.SetValue (SpinEdit1.Value);
Label1.Caption := ‘Num1: ‘ + IntToStr (Num1.GetValue);
Button1.Enabled := True;
Button2.Enabled := True;

// create second object
Num2 := CreateComObject (Class_Number) as INumber;
Label2.Caption := ‘Num2: ‘ + IntToStr (Num2.GetValue);
Button3.Enabled := True;
Button4.Enabled := True;

end;

Notice in particular the call to CreateComObject and the following as cast. The API call
starts the COM object-construction mechanism I’ve already described in detail. This call
also dynamically loads the server DLL. The return value is an IUnknown object. This object
must be converted to the proper interface type before assigning it to the Num1 and Num2 fields,
which now have the interface type INumber as their data type:

type
TForm1 = class(TForm)
...

private
Num1, Num2 : INumber;

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 832

http://www.sybex.com

833

WARNING To downcast an interface to the actual type, always use the as cast, which for interfaces per-
forms a QueryInterface call behind the scenes. This provides some protection, because it
raises an exception if the interface you are casting to is not supported by the given object. In
the case of interfaces, the as cast is the only way to extract an interface from another inter-
face. If you write a plain cast of the form INumber(CreateComObject(Class_Number)), the
program will crash, even if the cast seems to make sense, as in the case above. Casting an
interface pointer to another interface pointer is an error. Period. Never do it.

In Figure 19.4, you can see the output of this test program, which is very similar to the
previous version. Notice that this time, Num2 shows the initial value of the object at start-up,
as set up in its Initialize method. Notice also that I’ve added one more button, which creates
a third temporary COM object:

procedure TForm1.Button5Click(Sender: TObject);
var
Num3: INumber;

begin
// create a new temporary COM object
Num3 := CreateComObject (Class_Number) as INumber;
Num3.SetValue (100);
Num3.Increase;
ShowMessage (‘Num3: ‘ + IntToStr (Num3.GetValue));

end;

Pressing this button, you simply get the value of the number following 100. To see why I
added this method to the example, you need to press the button a second time, after the mes-
sage showing the result. Now you get a second message, indicating that the object has been
destroyed. This demonstrates that simply letting an interface object go out of scope automat-
ically calls the object’s Release method, decreases the object’s reference count, and destroys

F I G U R E 1 9 . 4 :
The output of the TestCom
example, a COM client

A First COM Server

2874c19.qxd 7/2/01 4:42 PM Page 833

http://www.sybex.com

834

the object if its reference count reaches zero. Chapter 3 described this reference-counting
mechanism in more detail.

The same happens to the other two objects as soon as the program terminates. Even if
the program doesn’t explicitly destroy the two objects in the FormDestroy method, they are
indeed destroyed, as the message shown by their Destroy destructor clearly demonstrates.
This happens because they were declared to be of an interface type, and Delphi is going to
use reference counting for them.

Using Interface Properties
As a further small step, we can extend the example by adding a property to the INumber inter-
face. When you add a property to an interface, you indicate the data type and then the read
and write directives. You can have read-only or write-only properties, but the read and
write clauses must always refer to a method because interfaces don’t hold anything else but
methods.

Here is the updated interface, which is part of the PropCom example:
type
INumberProp = interface
[‘{B36C5800-8E59-11D0-98D0-444553540000}’]
function GetValue: Integer; stdcall;
procedure SetValue (New: Integer); stdcall;
property Value: Integer read GetValue write SetValue;
procedure Increase; stdcall;

end;

I’ve given this interface a new name and, what’s even more important, a new interface ID.
I could have inherited the new interface type from the previous one, but this would have pro-
vided no real advantage. COM by itself doesn’t really support inheritance, and from the per-
spective of COM, all interfaces are different simply because they have different interface IDs.
Needless to say, in Delphi we can use inheritance to improve the structure of the code of the
interfaces and of the server objects implementing them.

In the PropCom example, I’ve updated the server class declaration simply by writing:
type
TDllNumber = class (TComObject, INumberProp)
...

This class also has a new server object ID. The client program, also on the CD, can now sim-
ply use the Value property instead of the SetValue and GetValue methods. Here is a small
excerpt from the FormCreate method:

Num1 := CreateComObject (Class_NumPropServer) as INumberProp;
Num1.Value := SpinEdit1.Value;
Label1.Caption := ‘Num1: ‘ + IntToStr (Num1.Value);

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 834

http://www.sybex.com

835

The difference between using methods and properties for an interface is only syntactical,
because interface properties cannot access private data as class properties can. By using prop-
erties, we can make the code a little more readable.

Calling Virtual Methods
We’ve built a couple of examples based on COM, but you might still feel uncomfortable with
the idea of a program calling methods of objects that are created within a DLL. How is this
possible if those methods are not exported by the DLL? The COM server, the DLL, creates
an object and returns it to the calling application. By doing this, the DLL creates an object
with a virtual method table (VMT). (Remember that all the interface methods are virtual by
default.)

Because every object embeds a pointer to its VMT, the main program receives an object,
and also a way to work on it, by calling its virtual methods. The main program doesn’t need
to know the memory address of those methods, because the objects know it, exactly as they
do with a polymorphic call. But COM is even more powerful than this: you don’t even have
to know which programming language was used to create the object, provided its VMT fol-
lows the standard dictated by COM.

TIP The COM-compatible VMT implies also a strange effect. The method names are not impor-
tant, provided their address is in the proper position in the VMT. This is why you can map a
method of an interface to an actual function implementing it.

To sum things up, we can say that COM provides a language-independent binary standard
for objects. The objects you share among modules are compiled, and their VMT has a partic-
ular structure, determined by COM and not by the development environment you’ve used.

Windows Shell Programming
In the last section, we built a fully standard COM object, packaged it as an in-process server,
and used it from a standard client. However, the COM interface we implemented was a cus-
tom interface we’d built. Now we can try to build clients and servers related to the Windows
shell interfaces, which are all based on COM. The original Windows API was basically a col-
lection of functions, but all the most recent APIs are generally based on COM.

The following sections use some existing servers that are part of the Windows shell; we’ll
write a client application and use the COM servers provided by the system. This case illus-
trates the difference from the traditional use of the Windows API calls. I’m also going to
write some COM servers to be used by the Windows system, particularly the Explorer. This

Windows Shell Programming

2874c19.qxd 7/2/01 4:42 PM Page 835

http://www.sybex.com

836

case illustrates the difference from the traditional development of a callback function invoked
by the system.

Creating Shortcuts
One of the simplest shell interfaces we can use in a client application is the IShellLink inter-
face. This interface relates to Windows shortcuts and allows programmers to access the infor-
mation of an existing shortcut or to create a new one. In the ShCut example on the CD-ROM,
I’m going to create various types of shortcuts, all referring to the program itself. Of course,
once you understand how to do this, you can easily extend the example and create shortcuts for
any program or file.

The example has an edit box for the name of the shortcut, a few check boxes, and two but-
tons. When the Create button is pressed, the text in the edit box is used as the name of a new
shortcut, which is placed in the current directory, on the desktop, or in the Start menu.
These options are not exclusive; a user can create multiple shortcuts at once.

The most important code is at the very beginning of this method. The CreateComObject
call creates a system object, as indicated by the GUID passed as a parameter. The result of
this call (which is an IUnknown interface) is converted both to an IShellLink interface and to
an IPersistFile interface:

uses
ComObj, ActiveX, ShlObj, Registry;

procedure TForm1.Button1Click(Sender: TObject);
var
AnObj: IUnknown;
ShLink: IShellLink;
PFile: IPersistFile;
FileName: string;
WFileName: WideString;
Reg: TRegIniFile;

begin
// access the two interfaces of the object
AnObj := CreateComObject (CLSID_ShellLink);
ShLink := AnObj as IShellLink;
PFile := AnObj as IPersistFile;

Actually, we could have written the last three lines of code above using this shorter notation:
ShLink := CreateComObject (CLSID_ShellLink) as IShellLink;
PFile := ShLink as IPersistFile;

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 836

http://www.sybex.com

837

If you look at similar examples built in other languages, you’ll notice that to access the
IPersistFile interface, the programs use custom calls to the QueryInterface method. The
two as expressions basically call QueryInterface for us.

Once we have the IShellLink interface, we can call some of its methods, such as SetPath
and SetWorkingDirectory:

// get the name of the application file
FileName := ParamStr (0);
// set the link properties
ShLink.SetPath (PChar (FileName));
ShLink.SetWorkingDirectory (PChar (ExtractFilePath (FileName)));

Once we’ve set up the shell link object, we have to save it, depending on the status of the
three check boxes, calling the Save method of the IPersistFile interface of the object. The
simplest version is the one used to save the link in the current directory:

// save the file in the current dir
if cbDir.Checked then
begin
// using a WideString
WFileName := ExtractFilePath (FileName) + EditName.Text + ‘.lnk’;
PFile.Save (PWChar (WFileName), False);

end;

The call to the Save method (which creates the physical LNK file) requires a “pointer to
wide char” parameter. The simplest way to obtain this is to declare a long string and then
cast it to a PWChar. Do not try casting a plain string to PWChar—the compiler will emit a
warning and the program won’t work!

To create the shortcut on the desktop or in the Start menu, we should first determine the
corresponding system folder by looking up the proper value in the Registry. By writing the
program this way, we ensure it will work on different versions of Windows and on localized
versions as well. Here is the source code for the last two check boxes:

// save on the desktop
if cbDesktop.Checked then
begin
Reg := TRegIniFile.Create(
‘Software\MicroSoft\Windows\CurrentVersion\Explorer’);

WFileName := Reg.ReadString (‘Shell Folders’, ‘Desktop’, ‘’) +
‘\’ + EditName.Text + ‘.lnk’;

Reg.Free;
PFile.Save (PWChar (WFileName), False);

end;
// save in the Start Menu
if cbStartMenu.Checked then
begin

Windows Shell Programming

2874c19.qxd 7/2/01 4:42 PM Page 837

http://www.sybex.com

838

Reg := TRegIniFile.Create(
‘Software\MicroSoft\Windows\CurrentVersion\Explorer’);

WFileName := Reg.ReadString (‘Shell Folders’, ‘Start Menu’, ‘’) +
‘\’ + EditName.Text + ‘.lnk’;

Reg.Free;
PFile.Save (PWChar (WFileName), False);

end;

To look up the information in the Registry, I’ve used the TRegIniFile class, although there are
other related classes in the VCL, such as the TRegistry class. The effect of running this program
and pressing the button is that Windows will add a new link in the directory of the project, on
the desktop, or in the Start menu. You can see an example of the program in Figure 19.5.

Using Shell APIs and Objects
As an extra feature, the program can also add a new document to the list of recently used
ones, calling the SHAddToRecentDocs method:

procedure TForm1.Button2Click(Sender: TObject);
var
ProjectFile: string;

begin
ProjectFile := ChangeFileExt (ParamStr (0), ‘.dpr’);
SHAddToRecentDocs (SHARD_PATH, PChar(ProjectFile));

end;

F I G U R E 1 9 . 5 :
The simple user interface of
the ShCut example, and
two shortcuts created with
it in the project folder and
on the desktop

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 838

http://www.sybex.com

839

This has very little to do with COM, and I’ve added it to the example only to highlight
that there is a very large number of shell-related APIs, available in the ShlObj unit, besides
the original and more limited ShellApi unit.

Another example, available in the source code for this chapter and called FindFolders,
highlights the use of another plain (non-COM) shell function, SHBrowseForFolder. In the
example you can see the following code:

procedure TForm1.btnBrowseClick(Sender: TObject);
var
bi: TBrowseInfo;
pidl: pItemIdList;
strpath, displayname: string;

begin
SetLength (displayname, 100);

bi.hwndOwner := Handle;
bi.pidlRoot := nil;
bi.pszDisplayName := pChar (displayname);
bi.lpszTitle := ‘Select a folder’;
bi.ulFlags := bif_StatusText;
bi.lpfn := nil;
bi.lParam := 0;

pidl := SHBrowseForFolder (bi);

SetLength (strPath, 100);
SHGetPathFromIdList (pidl, PChar(strPath));
Edit1.Text := strPath;

end;

The FindFolders example even shows some Delphi-specific APIs to interact with files and
folders (available also on Linux) including SelectDirectory, which has the same effect of
SHBrowseForFolder but a different user interface. The example also uses the DirectoryExists
and ForceDirectories functions, available in the FileCtrl unit. You can see how they are used
by looking in the source code of the example.

NOTE Notice that in Delphi 6, some of the Shell API is also encapsulated in the sample ShellListView,
ShellTreeView, and ShellComboBox controls. I’ve used these controls in a few examples
throughout the book, including the DirDemo example of Chapter 18, “Writing Database
Components.”

Windows Shell Programming

2874c19.qxd 7/2/01 4:42 PM Page 839

http://www.sybex.com

840

The “To-Do File”Application
As a second example of integrating a Delphi program with the system shell, I’ve tried to write
a simple real-world application that uses file dragging and a context menu handler. I’ll start
with the file dragging first, because this will actually introduce some of the techniques used
by the context menu handler.

As I mentioned, this application is actually useful; you can use it to create a sort of “to-do
list.” It is based on a Paradox table that stores filenames and notes about the files. The form
of the application has a DBGrid component showing only a single column containing the
filenames and a memo control hosting the notes related to the current file. You can see this
form at design time in Figure 19.6.

TIP Using a single-column DBGrid is the only way in Delphi to show a list of the available records in
a list-box format. The alternative, of course, is to fill a list box with custom code and then man-
ually navigate in the database table when the selection in the list box changes. This manual
approach is, of course, less efficient when we have many records, because the program needs
to scan them all to fill the list box, while the DBGrid loads only the record it currently displays.

Notice that the navigator component has no “New Record” button, and the DBGrid is set
up as a read-only component. In fact, users should not be able to create new records except
by dragging a file onto the form, and they’re not allowed to change the filename field in any
way (except by deleting it). All the user can do is edit the notes field, entering a description of
the operations to be done on the file.

F I G U R E 1 9 . 6 :
The form of the ToDoFile
example at design time

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 840

http://www.sybex.com

841

Creating the Database
To create the database table for this example, I’ve used the FieldDefs property to define the
structure and set the StoreDefs property to True to save the table definition along with the
form DFM file. The table has two fields, a string field called Filename and a memo field
called Notes. Of course, you can also create the table at design time, using the table compo-
nent’s local menu. The program, however, calls the CreateTable method in the OnCreate
event handler, unless this has already been done:

procedure TToDoFileForm.FormCreate(Sender: TObject);
begin
// eventually create the table
if not Table1.Exists then
Table1.CreateTable;

// activate the table
Table1.Activate;
// accept dragging to the form
DragAcceptFiles (Handle, True);

end;

Dragging Files to the Form
As you can see in the listing above, the form initialization code also registers the window
with the system as a file-dragging target, by calling the DragAcceptFiles Windows API func-
tion. As a result, the application’s cursor changes to the typical “drag accept” icon when a file
is dragged over it. You can see an example of this cursor in Figure 19.7.

F I G U R E 1 9 . 7 :
The drag-accept cursor dis-
played by the ToDoFile
application as a user drags
a file over it

Windows Shell Programming

2874c19.qxd 7/2/01 4:42 PM Page 841

http://www.sybex.com

842

When a file-dragging operation is performed, the system sends the window a wm_DropFiles
message. This message passes (among its other parameters) a handle to a file-drop structure
from which you can extract information by using the DragQueryFile API function. When
this API function is called with the $FFFFFFFF parameter, it returns the number of files dragged
to the window; when it is called with a numeric parameter, it fills a buffer with the name of that
file. For this reason, the code of a wm_DropFiles message handler gets the number of files first
and then loops for each of the files, as the following listing demonstrates:

procedure TToDoFileForm.DropFiles(var Msg: TWmDropFiles);
var
nFiles, I: Integer;
Filename: string;

begin
// get the number of dropped files
nFiles := DragQueryFile (Msg.Drop, $FFFFFFFF, nil, 0);
// for each file
try
for I := 0 to nFiles - 1 do
begin
// allocate memory
SetLength (Filename, 80);
// read the file name
DragQueryFile (Msg.Drop, I, PChar (Filename), 80);
// normalize file
Filename := PChar (Filename);
// add a new record
Table1.InsertRecord ([Filename, ‘’]);

end;
finally
DragFinish (Msg.Drop);

end;
// open the (last) record in edit mode
Table1.Edit;
// move the input focus to the memo
DBMemo1.SetFocus;

end;

As you can see in the preceding code, for every new file, the program inserts a new record
with the corresponding filename and an empty field for the notes. Then, for the last file
being dragged, the program opens the record in edit mode and moves the focus to the memo
control, so that a user can fill the notes for the file.

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 842

http://www.sybex.com

843

Creating a Context-Menu Handler
Now that we have the base program running, we can add a shell extension to the system to
let the user simply select a file and “send” it to the application without having to do the
dragging operation, which is not always handy when there are many programs running. A
context-menu extension is one of the available Windows shell extensions and is activated
every time a user right-clicks a file in the Windows Explorer.

Technically, a context menu is a COM server exposing an internal object that is going to be
created and used by the system. A context-menu COM object must implement two different
interfaces, IContextMenu and IShellExtInit. The first interface defines specific actions for
the context menu, such as defining the number of menu items to add and their text, while the
second interface defines a way to access the file or files the user is operating on. This is the
resulting definition of the COM server object class:

type
TToDoMenu = class(TComObject, IUnknown, IContextMenu, IShellExtInit)
private
fFileName: string;

protected
{Declare IContextMenu methods here}
function QueryContextMenu(Menu: HMENU; indexMenu,
idCmdFirst, idCmdLast, uFlags: UINT): HResult; stdcall;

function InvokeCommand(
var lpici: TCMInvokeCommandInfo): HResult; stdcall;

function GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HResult; stdcall;

{Declare IShellExtInit methods here}
function IShellExtInit.Initialize = InitShellExt;
function InitShellExt (pidlFolder: PItemIDList;
lpdobj: IDataObject; hKeyProgID: HKEY): HResult; stdcall;

end;

Notice that the class implements the Initialize method of the IShellExtInit interface
with a differently named method, InitShellExt. The reason is that I wanted to avoid confu-
sion with the Initialize method of the TComObject base class, which is the hook we have to
initialize the object, as described earlier in this chapter. Let’s examine the InitShellExt
method first; it is definitely the most complex one:

function TToDoMenu.InitShellExt(pidlFolder: PItemIDList;
lpdobj: IDataObject; hKeyProgID: HKEY): HResult; stdcall;

var
medium: TStgMedium;
fe: TFormatEtc;

begin
Result := E_FAIL;

Windows Shell Programming

2874c19.qxd 7/2/01 4:42 PM Page 843

http://www.sybex.com

844

// check if the lpdobj pointer is nil
if Assigned (lpdobj) then
begin
with fe do
begin
cfFormat := CF_HDROP;
ptd := nil;
dwAspect := DVASPECT_CONTENT;
lindex := -1;
tymed := TYMED_HGLOBAL;

end;
// transform the lpdobj data to a storage medium structure
Result := lpdobj.GetData(fe, medium);
if not Failed (Result) then
begin
// check if only one file is selected
if DragQueryFile (medium.hGlobal, $FFFFFFFF, nil, 0) = 1 then
begin
SetLength (fFileName, 1000);
DragQueryFile (medium.hGlobal, 0, PChar (fFileName), 1000);
// realign string
fFileName := PChar (fFileName);
Result := NOERROR;

end
else
Result := E_FAIL;

end;
ReleaseStgMedium(medium);

end;
end;

The initial portion of the method transforms the pointer to the IDataObject interface,
which we receive as a parameter, into the same data structure used in a file drop operation, so
that we can read the file information by using the DragQueryFile function again. This com-
plex way of coding is actually the simplest one you can use! At the end of this operation, we
have the value of the filename. Any selection of multiple files is not accepted.

We can now look at the methods of the IContextMenu interface. The first, QueryContextMenu,
is used to add new items to the local menu of the file. In this case, we add a new menu item (call-
ing the InsertMenu API function) only if the ToDoFile application is running. We can determine
this by searching for a window corresponding to the TToDoFileForm class, which should be
unique in the system. The result of the function is the number of items added to the menu:

function TToDoMenu.QueryContextMenu(Menu: HMENU;
indexMenu, idCmdFirst, idCmdLast, uFlags: UINT): HResult;

begin

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 844

http://www.sybex.com

845

// add entry only if the program is running
if FindWindow (‘TToDoFileForm’, nil) <> 0 then
begin
// add a new item to context menu
InsertMenu (Menu, indexMenu, MF_STRING or MF_BYPOSITION, idCmdFirst,
‘Send to ToDoFile’);

// return the number of menu items added
Result := 1;

end
else
Result := 0;

end;

Now that items have been added to the menu, a user can select them. While he or she moves
over the items, a descriptive message is displayed in the status bar of the Windows Explorer.
The menu ID (idCmd) we receive in the GetCommandString method is simply the relative num-
ber, starting with zero, of the items we have added to the menu. When the cursor is over an
item, we simply copy a string with its description to the buffer provided by the system:

function TToDoMenu.GetCommandString(idCmd, uType: UINT;
pwReserved: PUINT; pszName: LPSTR; cchMax: UINT): HRESULT;

begin
if idCmd = 0 then
begin
// return help string for menu item
strCopy (pszName, ‘Add file to the ToDoFile database’);
Result := NOERROR;

end
else
Result := E_INVALIDARG;

end;

The final step is the operation to do once a menu item is actually selected. The InvokeCommand
method receives a pointer to a structure holding the request. This method follows a standard
pattern of first checking that the request is valid by looking at the two 16-bit words of the
lpici.lpVerb value. After these preliminary (but required) steps, we check the value to see
which menu item was activated; or, if the context menu has only one item, as in this case, we
simply test for a value of zero. The following is the skeleton of the code, before we add the
specific action:

function TToDoMenu.InvokeCommand (var lpici: TCMInvokeCommandInfo): HResult;
begin
Result := NOERROR;
// make sure we are not being called by an application
if HiWord(Integer(lpici.lpVerb)) <> 0 then
begin
Result := E_FAIL;
Exit;

Windows Shell Programming

2874c19.qxd 7/2/01 4:42 PM Page 845

http://www.sybex.com

846

end;
// make sure we aren’t being passed an invalid argument number
if LoWord(lpici.lpVerb) > 0 then
begin
Result := E_INVALIDARG;
Exit;

end;
// execute the command specified by lpici.lpVerb
if LoWord(lpici.lpVerb) = 0 then
begin
// actual code still missing here

end
end;

Sending Data to Another Application with wm_CopyData
Because we have the filename the user is operating on, all we have to do in the context-menu
handler is send this name to the main form of the ToDoFile application. The problem is that
the context-menu handler DLL runs in the Windows Explorer process, so it cannot send the
value of a memory pointer to another process. This would simply be useless; as in Win32,
different applications have separate memory address spaces.

We saw in the last chapter that one way to share data among applications is to use a memory-
mapped file. Another technique, which is actually better in this case, is to use the wm_CopyData
message. This is a special Windows message, which can be used to send a memory buffer to
another application: Windows will resolve all the memory conversion problems for us. A
program basically fills the CopyDataStruct data structure with the data and indicates its
length, and then must use the SendMessage API to forward it to a destination window. For
this reason we need to use FindWindow again to get the handle of the main window of the
ToDoFile application. Here is the rest of the code of the InvokeCommand method:

var
hwnd: THandle;
cds: CopyDataStruct;

begin
...
if LoWord(lpici.lpVerb) = 0 then
begin
// get the handle of the window
hwnd := FindWindow (‘TToDoFileForm’, nil);
if hwnd <> 0 then
begin
// prepare the data to copy
cds.dwData := 0;
cds.cbData := length (fFileName);
cds.lpData := PChar (fFileName);

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 846

http://www.sybex.com

847

// activate the destination window
SetForegroundWindow (hwnd);
// send the data
SendMessage (hwnd, wm_CopyData, lpici.hWnd, Integer (@cds));

end;
end;

NOTE Before sending the data, we must activate the destination window by calling the Set-
ForegroundWindow API. This is necessary because we are going to activate a window that
was created by another thread, something Windows doesn’t normally do. Notice also that if
you write this call in the ToDoFile application as it receives the wm_CopyData message, it will
produce no effect at all.

As the context-menu handler sends data to it, the application has to be extended to handle
the wm_CopyData message. In this event handler, we receive the same structure we sent for the
other side, although between the send operation done by the context-menu handler and the
receive operation done by the application. Windows takes care of mapping the data properly
to the other address space. As a result, extracting the filename is actually very simple, but
keep in mind that this is so only because Windows does a lot of work behind the scenes.
Using a plain Windows message other than wm_CopyData will never work!

Here is the code I’ve added to the form of the ToDoFile application. It does several things:
It restores the application if it was minimized, retrieves the name of the file, inserts a new
record in the database table, copies the filename, and moves the focus to the memo control
once more.

procedure TToDoFileForm.CopyData(var Msg: TWmCopyData);
var
Filename: string;

begin
// restore the window if minimized
if IsIconic (Application.Handle) then
Application.Restore;

// extract the filename from the data
Filename := PChar (Msg.CopyDataStruct.lpData);
// insert a new record
Table1.Insert;
// set up the file name
Table1.FieldByName (‘Filename’).AsString := Filename;
// move the input focus to the memo
DBMemo1.SetFocus;

end;

Windows Shell Programming

2874c19.qxd 7/2/01 4:42 PM Page 847

http://www.sybex.com

848

Registering the Shell Extension
After writing this shell extension, we must register it. With the usual Run ➢ Register ActiveX
Server command, we can register the server in the system, but we still have to provide some
extra information to register it as a shell extension, in this case for any type of file. There are sev-
eral approaches: you can edit the Registry manually, you can write a REG file, or you can add
registration information right into the COM server library, which is my preferred approach. In a
Delphi COM server, the default registration takes place in the TComObjectFactory class, when
the UpdateRegistry method is executed. We can modify the default registration by inheriting
a class from the standard class factory class and overriding this method:

type
TToDoMenuFactory = class (TComObjectFactory)
public
procedure UpdateRegistry (Register: Boolean); override;

end;

In this method, we should either add the entry in the Registry or delete it, depending on
the value of the Boolean parameter:

procedure TToDoMenuFactory.UpdateRegistry(Register: Boolean);
var
Reg: TRegistry;

begin
inherited UpdateRegistry (Register);

Reg := TRegistry.Create;
Reg.RootKey := HKEY_CLASSES_ROOT;
try
if Register then
if Reg.OpenKey(‘*\ShellEx\ContextMenuHandlers\ToDo’, True) then
Reg.WriteString(‘’, GUIDToString(Class_ToDoMenuMenu))

else
if Reg.OpenKey(‘*\ShellEx\ContextMenuHandlers\ToDo’, False) then
Reg.DeleteKey (‘*\ShellEx\ContextMenuHandlers\ToDo’);

finally
Reg.CloseKey;
Reg.Free;

end;
end;

WARNING I’ve checked this code under Windows 2000, but I’m not completely sure it works also on
Windows 98/Me, as the shell portion of the registry has been subject to subtle changes among
different versions of Windows.

Chapter 19 • COM Programming

2874c19.qxd 7/2/01 4:42 PM Page 848

http://www.sybex.com

849

In the initialization section of the COM object unit, we also need to create a new global
object of this class instead of the base class factory class:

initialization
TToDoMenuFactory.Create (ComServer, TToDoMenu, Class_ToDoMenuMenu,
‘ToDoMenu’, ‘ToDoMenu Shell Extension’, ciMultiInstance, tmApartment);

Now you can simply register the server and set it up as a context-menu handler by using
the Delphi Run ➢ Register ActiveX Server menu command, the RegSrv32 application, or
most of the tools used to create installation programs.

What’s Next?
In this chapter I have discussed the foundations of Microsoft’s COM technology. We’ve seen
how Delphi supports COM and built a few simple servers. In the second part of the chapter,
we’ve spend some time discussing the COM-based Shell API and the development of a shell
extension.

The next chapter opens up COM to its higher-level techniques, covering Automation,
Documents, and ActiveX Controls. Now that we know the foundations, exploring these
COM-technologies will definitely be simpler, although we won’t delve into the low-level
details of these technologies.

What’s Next?

2874c19.qxd 7/2/01 4:42 PM Page 849

http://www.sybex.com

20CH A P T E R

From Automation to COM+

� OLE Automation

� Creating and using Automation servers

� Using type libraries

� Automating office programs

� The OLE Container component

� Building an ActiveX and an ActiveForm

� Introducing COM+

2874c20.qxd 7/2/01 4:43 PM Page 851

http://www.sybex.com

852

After the last chapter, which was devoted to the foundations of Microsoft’s COM architec-
ture, it is time to look into some of the actual high-level Windows programming techniques
based on COM. We’ll start by discussing Automation and the role of type libraries. Also, we’ll
see how to work properly with Delphi data types in Automation servers and clients.

Later, we’ll focus on the use of the Automation support provided by Microsoft Office
applications, made simple thanks to the ready-to-use components that embed Office server
programs and documents. In the final part of the chapter, we’ll explore the use of embedded
objects, with the OleContainer component, and the development of OLE controls or
ActiveX controls.

I’ll also introduce stateless COM (MTS and COM+) technologies and a few other
advanced ideas. But let’s begin with more foundational material.

OLE Automation
In the last chapter, we saw that you can use COM to let an executable file and a library share
objects, and that this can be used to interact with the Windows shell. Most of the time, how-
ever, users want applications that can talk to each other. One of the approaches you can use
for this goal is OLE Automation. After presenting a couple of examples that use custom inter-
faces based on type libraries, I’ll cover the development of Word and Excel OLE controllers,
showing how to transfer database information to those applications.

NOTE The current Microsoft documentation uses the term Automation instead of OLE Automation,
and uses the terms active document and compound document instead of OLE Document. This
book uses this new terminology along with the older “OLE” terminology incorporated into
many Delphi component names and other identifiers.

In Windows, applications don’t live in separate worlds; users often want them to interact.
The Clipboard and DDE offer a simple way for applications to interact, as users can copy
and paste data between applications. However, more and more programs offer an OLE
Automation interface to let other programs drive them. Beyond the obvious advantage of
programmed automation compared to manual user operations, these interfaces are com-
pletely language-neutral, so you can use Delphi, C++, Visual Basic, or a macro language to
drive an OLE Automation server regardless of the programming language used to write it.

OLE Automation is quite straightforward to implement in Delphi, thanks to the extensive
work by the compiler and VCL to shield developers from its intricacies. To support OLE
Automation, Delphi provides a wizard and a powerful type-library editor, and it supports
dual interfaces.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 852

http://www.sybex.com

853

When you use an in-process DLL, the client application can use the server and call its
methods directly, because they are in the same address space. When you use OLE Automa-
tion, the situation is more complex. The client (called the controller) and the server are two
separate applications running in different address spaces. For this reason, the system must
dispatch the method calls using a complex mechanism called marshaling (something I won’t
cover in detail). What is important to know is that there are two ways a controller can call
the methods exposed by a server:

• It can ask for the execution of a method, passing its name in a string, in a way similar to
the dynamic call to a DLL. This is what Delphi does when you use a variant to call the
OLE Automation server. This technique is very easy to use, but it is rather slow and
provides very little compiler type-checking.

• It can import the definition of a Delphi interface for the object on the server and call
its methods in a more direct way (simply dispatching a number). This technique, based
on interfaces, allows the compiler to check the types of the parameters and produces
faster code, but it requires a little more effort from the programmer. Also, you end up
binding your controller application to a specific version of the server. A variation of
this technique involves the use of dispatch interfaces, based on the definition of the
interfaces.

In the following examples, we’ll use all these techniques and compare them a little further.

Introducing Type Libraries
The most important difference between the two approaches is that the second generally
requires a type library, one of the foundations of OLE and COM. A type library is basically a
collection of type information. This collection generally describes all of the elements (the
objects, the interfaces, and other type information) made available by a server. The key dif-
ference between a type library and other descriptions of these elements (such as some C or
Pascal code) is that a type library is language-independent. The type elements are defined by
OLE as a subset of the standard elements of programming languages, and any development
tool can use them. Why do we need this information?

As mentioned before, an OLE Automation controller can use variants and have no type
information about the server it is using. This means that, behind the scenes, every function
call has to be dispatched to the server using the Invoke method of IDispatch, passing the
function name as a string parameter and hoping the name corresponds to an existing func-
tion of the server.

OLE Automation

2874c20.qxd 7/2/01 4:43 PM Page 853

http://www.sybex.com

854

Although this sounds difficult, a small code fragment using the old Automation interface of
Microsoft Word, registered as Word.Basic, illustrates how simple it is for a programmer:

var
VarW: Variant;

begin
VarW := CreateOleObject (‘Word.Basic’);
VarW.FileNew;
VarW.Insert (‘Mastering Delphi by Marco Cantù’);

NOTE As we’ll see later, recent versions of Word still register the Word.Basic interface, which corre-
sponds to the internal WordBasic macro language, but it also registers the new interface
Word.Application, which corresponds to the VBA macro language. We’ll also see that Delphi
provides some components that simplify the connection with Microsoft Office applications.

These three lines of code start Word (unless it was already running), create a new docu-
ment, and add a few words to it. You can see the effect of this code in Figure 20.1. The code
uses a variant, which is a type-variant data type. A variant can assume as its value different
data types, including a COM object supporting the IDispatch interface. Variants are type-
checked at run time; this is why the compiler can compile the code even if it doesn’t know
about the methods of the OLE Automation server.

Unfortunately, the Delphi compiler has no way to check whether the methods exist. Doing
all the type checks at run time is risky, because if you make even a minor spelling error in a
function name, you get no warning whatsoever of your error until you run the program and
reach that line of code. For example, if you type VarW.Isnert, the compiler will not complain
about the misspelling at all, but at run time, you’ll get an error. Because it doesn’t recognize
the name, Word assumes the method does not exist.

F I G U R E 2 0 . 1 :
This Word document is
being created and
composed by a Delphi
application, WordTest.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 854

http://www.sybex.com

855

Although the OLE IDispatch interface supports the approach we’ve just seen, it is also
possible—and safer—for a server to export the description of its interfaces and objects using
a type library. This type library can then be converted by a specific tool (such as Delphi) into
definitions written in the language you want to use to write your client or controller program
(such as Object Pascal). This makes it possible for a compiler to check whether the code is
correct.

Once the compiler has done its checks, it can use either of two different techniques to send
the request to the server. It can use a plain VTable (that is, an entry in an interface type declara-
tion), or it can use a dispinterface (dispatch interface). We used an interface type declaration in
the last chapter, so it should be familiar. A dispinterface is basically a way to map each entry in
an interface to a number. Calls to the server can then be dispatched by number. We can consider
this an intermediate technique, in between dispatching by function name and using a direct call
in the VTable.

NOTE The term dispinterface is actually a keyword. A dispinterface is automatically generated by the
type-library editor for every interface. Along with dispinterface, Delphi uses other related
keywords: dispid indicates the number to associate with each element; readonly and
writeonly are optional specifiers for properties.

The term used to describe this ability to connect to a server in two different ways, using a
more dynamic or a more static approach, is dual interfaces. This means that in writing an OLE
controller, you can choose to access the methods of a server in two ways: you can use late bind-
ing and the mechanism provided by the dispinterface, or you can use early binding and the
mechanism based on the VTables, the interface types.

It is important to keep in mind that (along with other considerations) different techniques
result in faster or slower execution. Looking up a function by name (and doing the type
checking at run time) is the slowest approach, using a dispinterface is much faster, and
using the direct VTable call is the fastest approach. We’ll do this kind of test in the TlibCli
example, later in this chapter.

Writing an OLE Automation Server
We’ll start by writing an OLE Automation server. To create an OLE Automation object, you
can use Delphi’s Automation Object Wizard. Start with a new application, open the Object
Repository by selecting File ➢ New, move to the ActiveX page, and choose Automation
Object. In the resulting Automation Object Wizard (shown in Figure 20.2), enter the name
of the class (without the initial T, because this will be added automatically for you) and click
OK. Delphi will now open the type-library editor.

Writing an OLE Automation Server

2874c20.qxd 7/2/01 4:43 PM Page 855

http://www.sybex.com

856

As you can see in Figure 20.2, Delphi can generate OLE Automation servers that also
export events. Select the corresponding check box of the Wizard, and Delphi will add the
proper entries in the type library and in the source code it generates.

The Type-Library Editor
The type-library editor is the tool you can use to define a type library in Delphi. Figure 20.3
shows its window after I’ve added some elements to it. The type-library editor allows you to
add methods and properties to the OLE Automation server object we’ve just created. Once
this is done, it can generate both the type library (TLB) file and the corresponding Object
Pascal source code.

F I G U R E 2 0 . 3 :
The type-library editor,
showing the details of
an interface

F I G U R E 2 0 . 2 :
Delphi’s Automation
Object Wizard

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 856

http://www.sybex.com

857

To build a first example, we can add to the server a property and a method. In the editor,
we actually add these two elements to the interface, which should be called IFirstServer.
Select it, and then click the Method button of the toolbar. (The names of these buttons can
be displayed by using the shortcut menu of the toolbar.) Now you have to give it a name, such as
ChangeColor. You can type the name either in the Tree View control on the left side of the win-
dow or in the Name edit box on the right side. Delphi automatically defines the new method as a
function in the Invoke Kind box and (as you’ll see on the Parameters page) assigns it an HRESULT
return value and no parameters. This corresponds to the Pascal definition:

procedure ChangeColor; safecall;

There are two reasons for this difference in the type of method. The first is that in the IDL
language used by COM, all methods are indicated as functions (following the C language
style); the second is that Delphi handles the HRESULT error codes automatically in every
method that uses the safecall calling convention.

NOTE The methods contained in OLE Automation interfaces in Delphi generally use the safecall
calling convention. This wraps a try/except block around each method and provides a
default return value indicating error or success.

Now we can add a property to the interface by clicking the Property button of the type-
library editor’s toolbar. Again, we can type a name for it, such as Value, and select a data type
in the Type combo box. Besides selecting one of the many types already listed, you can also
enter other types directly, particularly interfaces of other objects. Keep in mind, however,
that OLE Automation supports only a subset of Delphi types. In this example, we can select
the long type, which corresponds to Delphi’s Integer type.

If you look again in the Parameters page for this example (see Figure 20.4), you can see that
both the Set and Get (actually called Put and Get in the COM jargon) methods have the HRESULT
return value. You can also see that while the Put method uses the property’s data type as its para-
meter (as with Delphi properties), the Get method uses a pointer to the type as its out parameter.
This definition corresponds to the following elements of the Pascal interface:

function Get_Value: Integer; safecall;
procedure Set_Value(Value: Integer); safecall;
property Value: Integer read Get_Value write Set_Value;

Writing an OLE Automation Server

2874c20.qxd 7/2/01 4:43 PM Page 857

http://www.sybex.com

858

Clicking the Refresh button on the type-library editor toolbar generates the Pascal version
of the interface. We’ll examine it shortly, but first I want you to focus on the Text page of the
editor, which includes the definition we’ve just created, written in the IDL language:

interface IFirstServer: IDispatch
{
[id(0x00000001)]
HRESULT _stdcall ChangeColor(void);
[propget, id(0x00000002)]
HRESULT _stdcall Value([out, retval] long * Value);
[propput, id(0x00000002)]
HRESULT _stdcall Value([in] long Value);

};

Fortunately, Delphi’s type-library editor saves you from writing similar code by hand, and
the Delphi environment options (in the Type Library page) include a radio button to select
Pascal or IDL in the text displayed by the type-library editor.

The Code of the Server
Now we can close the type-library editor and save the changes. This operation adds three items
to the project: the type library file, a corresponding Pascal definition, and the declaration of the
server object. The type library is connected to the project using a resource-inclusion statement,
added to the source code of the project file:

{$R *.TLB}

F I G U R E 2 0 . 4 :
The Parameters page of
the type-library editor

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 858

http://www.sybex.com

859

You can always reopen the type-library editor by using the View ➢ Type Library command
or by selecting the proper TLB file in the normal File Open dialog box of Delphi.

As mentioned earlier, the type library is also converted into an interface definition and added
to a new Pascal unit. This unit is quite long, so I’ve listed in the book only its key elements.
The most important part is the new interface declaration:

type
IFirstServer = interface(IDispatch)
[‘{89855B42-8EFE-11D0-98D0-444553540000}’]
procedure ChangeColor; safecall;
function Get_Value: Integer; safecall;
procedure Set_Value(Value: Integer); safecall;
property Value: Integer read Get_Value write Set_Value;

end;

Then comes the dispinterface, which associates a number with each element of the
IFirstServer interface:

type
IFirstServerDisp = dispinterface
[‘{89855B42-8EFE-11D0-98D0-444553540000}’]
procedure ChangeColor; dispid 1;
property Value: Integer dispid 2;

end;

The last portion of the file includes the so-called CoClass (also shown in the type-library
editor), a class used to create an object on the server (and for this reason used on the client
side of the application, not on the server side):

type
CoFirstServer = class
class function Create: IFirstServer;
class function CreateRemote(const MachineName: string): IFirstServer;

end;

All the declarations of this file (I’ve skipped some others) can be considered an internal,
hidden implementation support. You don’t need to understand them fully in order to write
most OLE Automation applications.

Finally, Delphi generates a file with the declaration of the actual object. This unit is added
to the application and is the one we’ll work on to finish the program. This unit declares the
class of the server object, which must implement the interface we’ve just defined:

type
TFirstServer = class(TAutoObject, IFirstServer)
protected
function Get_Value: Integer; safecall;
procedure ChangeColor; safecall;
procedure Set_Value(Value: Integer); safecall;

end;

Writing an OLE Automation Server

2874c20.qxd 7/2/01 4:43 PM Page 859

http://www.sybex.com

860

Delphi already provides us with the skeleton code of the methods, so you only need to fill
the lines in between. This is the final code of the server object methods of the TLibDemo
example from the companion CD:

function TFirstServer.Get_Value: Integer;
begin
Result := ServerForm.Value;

end;

procedure TFirstServer.ChangeColor;
begin
ServerForm.ChangeColor;

end;

procedure TFirstServer.Set_Value(Value: Integer);
begin
ServerForm.Value := Value;

end;

In this case, the three methods refer to a property and two methods I’ve added to the form.
In general, you should not add code related to the user interface inside the class of the server
object. It is better to refer to a user interface element, such as a form class, and let it perform
the actions.

I’ve added a property to the form because I want to change the Value property and have a
side effect (displaying the value in an edit box). The server object, in this example, exposes
some properties and methods of the application. Here is the part of the declaration of the
TServerForm class I’ve edited manually:

type
TServerForm = class(TForm)
...

private
CurrentValue: Integer;

protected
procedure SetValue (NewValue: Integer);

public
property Value: Integer read CurrentValue write SetValue;
procedure ChangeColor;

end;

The implementation of these methods is quite straightforward, and you can easily guess
what their code looks like. What’s important is the SetValue method, which might produce a
side effect:

procedure TServerForm.SetValue (NewValue: Integer);
begin
if NewValue <> CurrentValue then

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 860

http://www.sybex.com

861

begin
CurrentValue := NewValue;
UpDown1.Position := CurrentValue;

end;
end;

The form of this example has an edit box with an associated UpDown component as well
as a couple of buttons to show the current value and change the color. You can see this form
at design time in Figure 20.5.

Registering the Automation Server
The unit containing the server object has one more statement, added by Delphi to the
initialization section:

initialization
TAutoObjectFactory.Create(ComServer, TFirstServer, Class_FirstServer,
ciMultiInstance);

end.

NOTE In this case, I’ve selected multiple instancing. For the various instancing styles possible in COM,
see the sidebar “COM Instancing and Threading Models” in Chapter 19, “COM Programming.”

This is not very different from the creation of class factories we saw in the examples of the
last chapter. Combined with the call to the Initialize method of the Application object,
which Delphi adds by default to the project source code of any program, the initialization
code above makes the registration of this server straightforward.

You can add the server information to the Windows Registry by running this application
on the target machine (the computer where you want to install the OLE Automation server),
passing to it the /regserver parameter on the command line. You can do this by selecting
Start ➢ Run, by using the Explorer or File Manager, or by running the program within

F I G U R E 2 0 . 5 :
The form of the TLibDemo
example at design time

Writing an OLE Automation Server

2874c20.qxd 7/2/01 4:43 PM Page 861

http://www.sybex.com

862

Delphi after you’ve entered a command-line parameter (using the Run ➢ Parameters com-
mand). Another command-line parameter, /unregserver, is used to remove this server from
the Registry.

Writing a Client for Our Server
Now that we have built a server, we can prepare a client program to test it. This client can
connect to the server either by using variants or by using the new type library. This second
approach can be implemented manually or by using the techniques introduced in Delphi 5
for wrapping components around Automation servers. We’ll actually try out all of these
approaches.

Create a new application—I’ve called it TLibCli—and then open the type library file of
the server, after (optionally) copying it to the project’s directory. Save the type library file,
using Delphi’s File ➢ Save menu command, and a new version of the interface declarations
will be generated for you. Of course, in this case you could have grabbed the Pascal declara-
tions from the server source code, but I’m trying to follow a more general approach, which
also applies when you haven’t written the server yet. In fact, you can usually extract the type
library directly from the executable file of the server or from a DLL shipped with the program.

WARNING Do not add the type library to the client application, though, because we are writing the OLE
Automation controller, not a server. The Delphi project of a controller should not include the
type library of the server it connects to.

You can refer to the Pascal file generated by the type-library editor in the code of the
main form:

uses
TlibdemoLib_TLB;

I’ve already mentioned that one of the elements of this unit generated by the type library is
the creation class, or CoClass, a special class with two class functions you can use to create a
server object locally or remotely (using DCOM). I’ve already shown you the interface of this
class, but here is the implementation:

class function CoFirstServer.Create: IFirstServer;
begin
Result := CreateComObject(Class_FirstServer) as IFirstServer;

end;

class function CoFirstServer.CreateRemote(
const MachineName: string): IFirstServer;

begin
Result := CreateRemoteComObject(MachineName, Class_FirstServer)
as IFirstServer;

end;

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 862

http://www.sybex.com

863

You can use the first of these two functions, Create, to create a server object (and possibly start
the server application) on the same computer. You can use the second function, CreateRemote, to
create the server on a different computer, as long as your version of the operating system sup-
ports DCOM.

The two functions are a shortcut of the CreateComObject call, which allows you to create an
instance of a COM object if you know its GUID. As an alternative, you can also use the
CreateOleObject function, which requires as a parameter the registered name of the server.
There is another difference between these two creation functions: CreateComObject returns an
object of the IUnknown type, whereas CreateOleObject returns an object of the IDispatch type.

In my example, I’m going to use the CoFirstServer.Create shorthand. When you create
the server object, you get as return value an IFirstServer interface. You can use it directly or
store it in a variant variable. Here is an example of the first approach:

var
MyServer: Variant;

begin
MyServer := CoFirstServer.Create;
MyServer.ChangeColor;

This code, based on variants, is not very different from that of the first controller we built in
this chapter (the one that used Microsoft Word). Here is the alternative code, which has
exactly the same effect:

var
IMyServer: IFirstServer;

begin
IMyServer := CoFirstServer.Create;
IMyServer.ChangeColor;

Interfaces, Variants, and Dispatch Interfaces: Testing the
Speed Difference
As I mentioned in the section introducing type libraries, one of the differences between these
approaches is speed. It is actually quite complex to assess the exact performance of each tech-
nique because there are many factors involved. I’ve added a simple test to the TLibCli example
on the companion CD, just to give you an idea. Here is the code of the test, a loop that accesses
the Value of the server. The total value is displayed only to fool the optimizer, which might
otherwise remove some of the code. The real output of the program relates to the timing,
which is determined by calling the GetTickCount API function before and after executing the
loop. (Two alternatives are to use Delphi’s own time functions, which are slightly less precise,

Writing an OLE Automation Server

2874c20.qxd 7/2/01 4:43 PM Page 863

http://www.sybex.com

864

or to use the very precise timing functions of the multimedia support unit, MMSystem.)
Here is the code of one of the methods; they are quite similar:

procedure TClientForm.BtnIntfClick(Sender: TObject);
var
I, K: Integer;
Ticks: Cardinal;

begin
Screen.Cursor := crHourglass;
try
Ticks := GetTickCount;
K := 0;
for I := 1 to 100 do
K := K + IMyServer.Value;

Ticks := GetTickCount - Ticks;
ListResult.items.Add (Format (
‘Interface: %d - Seconds %.3f’, [K, Ticks / 1000]));

finally
Screen.Cursor := crDefault;

end;
end;

With this program, you can compare the output obtained by calling this method based on
an interface, the corresponding version based on a variant, and even a third version based on a
dispatch interface. An example of the output (which is added to a list box so you can do several
tests and compare the results) is shown in Figure 20.6. Obviously, the timing depends on the
speed of your computer, and you can also alter the results by increasing or decreasing the
maximum value of the loop counter.

F I G U R E 2 0 . 6 :
The TLibCli OLE Automation
controller can access the
server in different ways,
with different performance
results. Notice the server
window in the background.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 864

http://www.sybex.com

865

We’ve already seen how you can use the interface and the variant. What about the dispatch
interface? You can declare a variable of the dispatch interface type, in this case:

var
DMyServer: IFirstServerDisp;

Then you can use it to call the methods as usual, after you’ve assigned an object to it by cast-
ing the object returned by the CoClass:

DMyServer := CoFirstServer.Create as IFirstServerDisp;

Looking at the timing and at the internal code of the example, there is apparently very little
difference between the use of the interface and of the dispatch interface, because the two are
actually connected. In other words, we can say that dispatch interfaces are a technique in
between variants and interfaces, but they deliver almost all of the speed of interfaces.

The Scope of Automation Objects
Another important element to keep in mind is the scope of the automation objects. Variants and
interface objects use reference-counting techniques, so if a variable that is related to an inter-
face object is declared locally in a method, at the end of the method the object will be destroyed
and the server may terminate (if all the objects created by the server have been destroyed). For
example, writing a method with this code produces very little effect:

procedure TClientForm.ChangeColor;
var
IMyServer: IFirstServer;

begin
IMyServer := CoFirstServer.Create;
IMyServer.ChangeColor;

end;

Unless the server is already active, a copy of the program is created, and the color is
changed, but then the server is immediately closed as the interface-typed object goes out of
scope. The alternative approach I’ve used in the TLibCli example is to declare the object as a
field of the form and create the COM objects at start-up, as in this procedure:

procedure TClientForm.FormCreate(Sender: TObject);
begin
IMyServer := CoFirstServer.Create;

end;

With this code, as the client program starts, the server program is immediately activated. At
the program termination, the form field is destroyed and the server closes. A further alternative

Writing an OLE Automation Server

2874c20.qxd 7/2/01 4:43 PM Page 865

http://www.sybex.com

866

is to declare the object in the form, but then create it only when it is used, as in these two
code fragments:

// MyServerBis: Variant;
if varType (MyServerBis) = varEmpty then
MyServerBis := CoFirstServer.Create;

MyServerBis.ChangeColor;

// IMyServerBis: IFirstServer;
if not Assigned (IMyServerBis) then
IMyServerBis := CoFirstServer.Create;

IMyServerBis.ChangeColor;

NOTE A variant is initialized to the varEmpty type when it is created. If you instead assign the value
null to the variant, its type becomes varNull. Both varEmpty and varNull represent variants
with no value assigned, but they behave differently in expression evaluation. The varNull
value always propagates through an expression (making it a null expression), while the
varEmpty value quietly disappears.

The Server in a Component
When creating a client program for our server or any other Automation server, we can use a bet-
ter approach, namely, wrapping a Delphi component around the COM server. Actually, if you
look at the final portion of the TlibdemoLib_TLB file, you can find the following declaration:

// OLE Server Proxy class declaration
TFirstServer = class(TOleServer)
private
FIntf: IFirstServer;
FProps: TFirstServerProperties;
function GetServerProperties: TFirstServerProperties;
function GetDefaultInterface: IFirstServer;

protected
procedure InitServerData; override;
function Get_Value: Integer;
procedure Set_Value(Value: Integer);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure Connect; override;
procedure ConnectTo(svrIntf: IFirstServer);
procedure Disconnect; override;
procedure ChangeColor;
property DefaultInterface: IFirstServer read GetDefaultInterface;
property Value: Integer read Get_Value write Set_Value;

published
property Server: TFirstServerProperties read GetServerProperties;

end;

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 866

http://www.sybex.com

867

This is a new component, derived from TOleServer, that the system registers in the Register
procedure, which is part of the unit. If you add this unit to a package, the new server compo-
nent will become available on the Delphi Component Palette. You can also import the type
library of the new server (with the Project ➢ Import Type Library menu command), add the
server to the list (by clicking the Add button and selecting the server’s executable file), and install
it in a new or existing package. The component will be placed in the Servers page of the Palette.
The Import Type Library dialog box indicating these operations is visible in Figure 20.7.

I’ve created a new package, PackAuto, available in the directory of the TlibDemo project.
In this package, I’ve added the directive LIVE_SERVER_AT_DESIGN_TIME in the Directories/
Conditionals page of the Project Options dialog box of the package. This enables an extra
feature that you don’t get by default: at design time, the server component will have an extra
property that lists as subitems all the properties of the Automation server. You can see an
example in Figure 20.8, taken from the TLibComp example at design time.

WARNING The LIVE_SERVER_AT_DESIGN_TIME directive should be used with care with the most com-
plex Automation servers (including programs such as Word, Excel, PowerPoint, and Visio). In
fact, this setting requires the application to be in a particular mode before you can use some
properties of their automation interfaces. For example, you’ll get exceptions if you touch the
Word server before a document has been opened in Word. That’s why this feature is not active
by default in Delphi—it’s problematic at design time for many servers.

F I G U R E 2 0 . 7 :
The Import Type Library
dialog box can be used to
import an Automation
server object as a new
Delphi component.

Writing an OLE Automation Server

2874c20.qxd 7/2/01 4:43 PM Page 867

http://www.sybex.com

868

As you can see in the Object Inspector, the component has few properties. AutoConnection
indicates when to start up the server component at design time and as soon as the client
program starts. As an alternative, the Automation server is started the first time one of its
methods is called. Another property, ConnectKind, indicates how to establish the connection
with the server. It can always start a new instance (ckNewInstance), use the running instance
(ckRunningInstance, which causes an access violation if the server is not already running), or
select the current instance or start a new one if none is available (ckRunningOrNew). Finally,
you can ask for a remote server with ckRemote and directly attach a server in the code after a
manual connection with ckAttachToInterface.

OLE Data Types
OLE and COM do not support all of the data types available in Delphi. This is particularly
important for OLE Automation, because the client and the server are often executed in dif-
ferent address spaces, and the system must move the data from one side to the other. Also
keep in mind that OLE interfaces should be accessible by programs written in any language.

COM data types include basic data types such as Integer, SmallInt, Byte, Single, Double,
WideString, Variant, and WordBool (but not Boolean). Table 20.1 presents the mapping of
some basic data types, available in the type-library editor, to the corresponding Delphi types.

TABLE 20.1: OLE and Delphi Data Types

OLE Type Delphi Type

BSTR WideString

byte ShortInt

CURRENCY Currency

DATE TDateTime

DECIMAL TDecimal

F I G U R E 2 0 . 8 :
A server component, with
the live properties at design
time

Chapter 20 • From Automation to COM+

Continued on next page

2874c20.qxd 7/2/01 4:43 PM Page 868

http://www.sybex.com

869

TABLE 20.1 continued: OLE and Delphi Data Types

OLE Type Delphi Type

double Double

float Single

GUID GUID

int SYSINT

long Integer

LPSTR PChar

LPWSTR PWideChar

short SmallInt

unsigned char Byte

unsigned int SYSUINT

unsigned long UINT

unsigned short Word

VARIANT OleVariant

Notice that SYSINT is currently defined as an Integer, so don’t worry about the apparently
strange type definition. Besides the basic data types, you can also use OLE types for com-
plex elements such as fonts, string lists, and bitmaps, using the IFontDisp, IStrings, and
IPictureDisp interfaces. The following sections describe the details of a server that provides
a list of strings and a font to a client.

Exposing Strings Lists and Fonts
The ListServ example is a practical demonstration of how you can expose two complex types,
such as a list of strings and a font, from an OLE Automation server written in Delphi. I’ve
chosen these two specific types simply because they are both supported by Delphi.

The IFontDisp interface is actually provided by Windows and is available in the ActiveX
unit. The AxCtrls Delphi unit extends this support by providing conversion methods like
GetOleFont and SetOleFont. The IStrings interface is provided by Delphi in the StdVCL
unit, and the AxCtrls unit provides conversion functions for this type (along with a third type
I’m not going to use, TPicture).

WARNING To run this and similar applications, the StdVCL library must be installed and registered on the
client computer. On your computer, it is registered during Delphi’s installation.

Writing an OLE Automation Server

2874c20.qxd 7/2/01 4:43 PM Page 869

http://www.sybex.com

870

The server we are building has a plain form containing a list-box component. It includes
an Automation object built around the following interface:

type
IListServer = interface (IDispatch)
[‘{323C4A84-E400-11D1-B9F1-004845400FAA}’]
function Get_Items: IStrings; safecall;
procedure Set_Items(const Value: IStrings); safecall;
function Get_Font: IFontDisp; safecall;
procedure Set_Font(const Value: IFontDisp); safecall;
property Items: IStrings read Get_Items write Set_Items;
property Font: IFontDisp read Get_Font write Set_Font;

end;

The server object has the same four methods listed in its interface as well as some private
data storing the status, the initialization function, and the destructor:

type
TListServer = class (TAutoObject, IListServer)
private
fItems: TStrings;
fFont: TFont;

protected
function Get_Font: IFontDisp; safecall;
function Get_Items: IStrings; safecall;
procedure Set_Font(const Value: IFontDisp); safecall;
procedure Set_Items(const Value: IStrings); safecall;

public
destructor Destroy; override;
procedure Initialize; override;

end;

The code of the methods is limited to few statements. The pseudoconstructor creates the
internal objects, and the destructor destroys them. Here is the first of the two:

procedure TListServer.Initialize;
begin
inherited Initialize;
fItems := TStringList.Create;
fFont := TFont.Create;

end;

The Set and Get methods copy information from the OLE interfaces to the local data and
then from this to the form and vice versa. The two methods of the strings, for example, do
this by calling the GetOleStrings and SetOleStrings Delphi functions.

After we’ve compiled and registered the server, we can turn our attention to the client
application. This embeds the Pascal translation of the type library of the server, as in the pre-
vious example, and then implements an object that uses the interface. Instead of creating the

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 870

http://www.sybex.com

871

server when the object starts, the client program creates it when it is required. I’ve described
this technique earlier, but the problem is that because there are several buttons a user can
click, and we don’t want to impose an order, every event should have a handler like this:

if not Assigned (ListServ) then
ListServ := CoListServer.Create;

This kind of code duplication is quite dangerous, so I’ve decided to use an alternative approach.
I’ve defined a property corresponding to the interface of the server and defined a read method for
it. The property is mapped to some internal data I’ve defined with a different name to avoid the
error of using it directly. Here are the definitions added to the form class:

private
fInternalListServ: IListServer;
function GetListSrv: IListServer;

public
property ListSrv: IListServer read GetListSrv;

The implementation of the Get method can check whether the object already exists. This
code is going to be repeated often, but that should not slow down the application noticeably:

function TListCliForm.GetListSrv: IListServer;
begin
// eventually create the server
if not Assigned (fInternalListServ) then
fInternalListServ := CoListServer.Create;

Result := fInternalListServ;
end;

You can see an example of the client application running (along with the server) in Figure 20.9.

This is an example of the selection of a font, which is then sent to the server:
procedure TListCliForm.btnFontClick(Sender: TObject);
var
NewFont: IFontDisp;

F I G U R E 2 0 . 9 :
The ListCli and ListServ
applications share complex
data, namely fonts and lists
of strings.

Writing an OLE Automation Server

2874c20.qxd 7/2/01 4:43 PM Page 871

http://www.sybex.com

872

begin
// select a font and apply it
if FontDialog1.Execute then
begin
GetOleFont (FontDialog1.Font, NewFont);
ListSrv.Font := NewFont;

end;
end;

There are also several methods related to the strings, which you can see by looking at the
source code of the program.

Using Office Programs
So far, we’ve built both the client and the server side of the OLE Automation connection. If
your aim is just to let two applications you’ve built cooperate, this is certainly a useful tech-
nique, although it is not the only one. We’ve seen some alternative data-sharing approaches
in the last two chapters (using memory-mapped files and the wm_CopyData message). The real
value of OLE Automation is that it is a standard, so you can use it to integrate your Delphi
programs with other applications your users own. A typical example is the integration of a
program with office applications, such as Microsoft Word and Microsoft Excel, or even with
stand-alone applications, such as AutoCAD.

Integration with these applications provides a two-fold advantage:

• You can let your users work in an environment they know—for example, generating
reports and memos from database data in a format they can easily manipulate.

• You can avoid implementing complex functionality from scratch, such as writing your
own word-processing code inside a program. Instead of just reusing components, you
can reuse complex applications.

There are also some drawbacks with this approach, which are certainly worth mentioning:

• The user must own the application you plan to integrate with, and they may also need
a recent version of it to support all the features you are using in your program.

• You have to learn a new programming language and programming structure, often
with limited documentation at hand. It is true, of course, that you are still using Pascal,
but the code you write depends on the OLE data types, the types introduced by the
server, and in particular, a collection of interrelated classes that are often difficult to
understand.

• You might end up with a program that works only with a specific version of the server
application, particularly if you try to optimize the calls by using interfaces instead of
variants. In particular, Microsoft does not attempt to maintain script compatibility
between major releases of Word or other Office applications.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 872

http://www.sybex.com

873

We’ve already seen a small source code excerpt from the WordTest example, but now I want
to complete the coverage of this limited but interesting test program by providing a few extra
features.

Sending Data to Microsoft Word
Delphi simplifies the use of Microsoft Office applications by preinstalling some ready-to-use
components that wrap the Automation interface of these servers. These components, avail-
able in the Servers page of the Palette, have been installed using the same technique I
demonstrated in the last section.

NOTE What I want to underline here is that the real plus of Delphi lies in this technique of creating
components to wrap existing Automation servers, rather than in the availability of some pre-
defined server components.

Technically, it is possible to use variants to interact with Automation servers, as we’ve seen
in the section “Introducing Type Libraries.” Using interfaces and the type libraries is cer-
tainly better, because the compiler helps you catch errors in the source code and produces
faster code. Thanks to the new server component, this process is also quite straightforward.

I’ve written a program, called DBOffice, which uses predefined server components to send
a table to Word and to Excel. In both cases, you can use the application object, the document/
worksheet object, or a combination of the two. There are other specialized components, for
tasks such as handling Excel charts, but this example will suffice to introduce use of the built-
in Office components.

NOTE The DBOffice program was tested with Office 97. I’m currently using StarOffice more often
than the Microsoft suite, so I never feel compelled to give Microsoft more money by upgrading
to their newer offerings.

In case of Microsoft Word, I use only a document object with default settings. The code
used to send the table to Word starts by adding some text to a document:

procedure TFormOff.BtnWordClick(Sender: TObject);
begin
WordDocument1.Activate;
// insert title
WordDocument1.Range.Text := ‘American Capitals from ‘ + Table1.TableName;
WordDocument1.Range.Font.Size := 14;

This code follows the typical while loop, which scans the database table and has the fol-
lowing code inside:

while not Table1.EOF do
begin
// send the two fields

Using Office Programs

2874c20.qxd 7/2/01 4:43 PM Page 873

http://www.sybex.com

874

WordDocument1.Range.InsertParagraphAfter;
WordDocument1.Paragraphs.Last.Range.Text :=
Table1.FieldByName (‘Name’).AsString + #9 +
Table1.FieldByName (‘Capital’).AsString;

Table1.Next;
end;

The final part of the code gets a little more complex. It works on a selection and on a row
of the table, respectively stored in two variables of the Range and Row types defined by Word
and available in the Word97 unit (the program will have to be updated if you choose the
Office 2000 version of the server component while installing Delphi).

procedure TFormOff.BtnWordClick(Sender: TObject);
var
RangeW: Word97.Range;
v1: Variant;
ov1: OleVariant;
Row1: Word97.Row;

begin
// code above...
RangeW := WordDocument1.Content;
v1 := RangeW;
v1.ConvertToTable (#9, 19, 2);
Row1 := WordDocument1.Tables.Item(1).Rows.Get_First;
Row1.Range.Bold := 1;
Row1.Range.Font.Size := 30;
Row1.Range.InsertParagraphAfter;
ov1 := ‘ ‘;
Row1.ConvertToText (ov1);

end;

As you can see in the last statement above, in order to pass a parameter, you must first save
it in an OleVariant variable, because many parameters are passed by reference, so you cannot
pass a constant value. This implies that if there are many parameters, you must still define some,
even if you are fine with the default values. An often-useful alternative is to use a temporarily
variant variable and apply the method to it, because variants don’t require strict type-checking
on the parameters. This technique is used in the code above to call the ConvertToTable method,
which has more than 10 parameters.

Building an Excel Table
In the case of Excel, I’ve used a slightly different approach and worked with the application
object. The code creates a new Excel spreadsheet, fills it with a database table, and formats
the result. It uses an Excel internal object, Range, which is not to be confused with a similar

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 874

http://www.sybex.com

875

type available in Word (the reason this type is prefixed with the name of the unit defining the
Excel type library). Here is the complete code:

procedure TFormOff.BtnExcelClick(Sender: TObject);
var
RangeE: Excel97.Range;
I, Row: Integer;
Bookmark: TBookmarkStr;

begin
// create and show
ExcelApplication1.Visible [0] := True;
ExcelApplication1.Workbooks.Add (NULL, 0);
// fill is the first row with field titles
RangeE := ExcelApplication1.ActiveCell;
for I := 0 to Table1.Fields.Count - 1 do
begin
RangeE.Value := Table1.Fields [I].DisplayLabel;
RangeE := RangeE.Next;

end;
// add field data in following rows
Table1.DisableControls;
try
Bookmark := Table1.Bookmark;
try
Table1.First;
Row := 2;
while not Table1.EOF do
begin
RangeE := ExcelApplication1.Range [‘A’ + IntToStr (Row),
‘A’ + IntToStr (Row)];

for I := 0 to Table1.Fields.Count - 1 do
begin
RangeE.Value := Table1.Fields [I].AsString;
RangeE := RangeE.Next;

end;
Table1.Next;
Inc (Row);

end;
finally
Table1.Bookmark := Bookmark;

end;
finally
Table1.EnableControls;

end;
// format the section
RangeE := ExcelApplication1.Range [‘A1’, ‘E’ + IntToStr (Row - 1)];
RangeE.AutoFormat (3, NULL, NULL, NULL, NULL, NULL, NULL);

end;

Using Office Programs

2874c20.qxd 7/2/01 4:43 PM Page 875

http://www.sybex.com

876

You can see the effect of this code in Figure 20.10. Notice that in the code I don’t handle
any events of the Office applications, but many are available. Handling these events was quite
complex in the past, but they now become as simple to handle as events of native Delphi
components. The presence of these events is a reason to have specific objects for documents
and other specific elements: you might want to know when the user closes a document, and
that therefore this is an event of the document object, not of the application object.

NOTE When using the Office server components, one of the key problems is the lack of adequate doc-
umentation. Although Microsoft distributes some of it with the high-end version of the Office
suite, this is certainly not Delphi friendly. A totally alternative approach to solve the problem is to
use OfficePartner, a set of components from TurboPower Software (www.turbopower.com).
These components map the Office servers, like those available in Delphi, but they also provide
extensive property editors that allow you to work visually with the internal structure of these
servers. With these property editors, you can create documents, paragraphs, tables, and all the
other internal objects even at design time! From my experience, this can really save a lot of time.

Using Compound Documents
Compound documents, or active documents, are Microsoft’s names for the technology that
allows in-place editing of a document within another one (for example, a picture in a Word
document). This is the technology that originated the term OLE, but although it is still in
use, its role is definitely more limited than Microsoft envisioned when it was introduced in

F I G U R E 2 0 . 1 0 :
The Excel spreadsheet
\generated by the
DBOffice application

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 876

http://www.sybex.com

877

the early 1990s. Compound documents actually have two different capabilities, object linking
and embedding (hence the term OLE):

• Embedding an object in a compound document corresponds to a smart version of the
copy and paste operations you make with the Clipboard. The key difference is that when
you copy an OLE object from a server application and paste it into a container applica-
tion, you copy both the data and some information about the server (its GUID). This
allows you to activate the server application from within the container to edit the data.

• Linking an object to a compound document instead copies only a reference to the data
and the information about the server. You generally activate object linking by using the
Clipboard and making a Paste Link operation. When editing the data in the container
application, you’ll actually modify the original data, which is stored in a separate file.

Because the server program refers to an entire file (only part of which might be linked in the
client document), the server will be activated in a stand-alone window, and it will act upon the
entire original file, not just the data you’ve copied. When you have an embedded object,
instead, the container might support visual (or in-place) editing, which means that you can
modify the object in context, inside the container’s main window. The server and container
application windows, their menus, and their toolbars are merged automatically, allowing the
user to work within a single window on several different object types—and therefore with sev-
eral different OLE servers—without leaving the window of the container application.

Another key difference between embedding and linking is that the data of an embedded object
is stored and managed by the container application. The container saves the embedded object in
its own files. By contrast, a linked object physically resides in a separate file, which is handled by
the server exclusively, even if the link refers only to a small portion of the file.

In both cases, the container application doesn’t have to know how to handle the object and
its data—not even how to display it—without the help of the server. Accordingly, the server
application has a lot of work to do, even when you are not editing the data. Container appli-
cations often make a copy of the image of an OLE object and use the bitmap to represent the
data, which speeds up some operations with the object itself. The drawback of this approach
is that many commercial OLE applications end up with bloated files (because two copies of
the same data are saved). If you consider this problem along with the relative slowness of
OLE and the amount of work necessary to develop OLE servers, you can understand why
the use of this powerful approach is still somewhat limited, compared with what Microsoft
envisioned a few years ago.

Compound document containers can support OLE in varying degrees. You can place an
object in a container by inserting a new object, by pasting or paste-linking one from the Clip-
board, by dragging one from another application, and so on.

Using Compound Documents

2874c20.qxd 7/2/01 4:43 PM Page 877

http://www.sybex.com

878

Once the object is placed inside the container, you can then perform operations on it, using
the server’s available verbs, or actions. Usually the edit verb is the default action—the action per-
formed when you double-click on the object. For other objects, such as video or sound clips,
play is defined as the default action. You can typically see the list of actions supported by the
current contained object by right-clicking it. The same information is available in many pro-
grams via the Edit ➢ Object menu item, which has a submenu that lists the available verbs for
the current object.

NOTE Delphi provides no visual support for building compound document servers. You can always
write a server implementing the proper interfaces. Compound document container support,
instead, is easily available through the OleContainer component.

The OLE Container Component
To create an OLE container application in Delphi, place an OleContainer component in a
form. Then select the component and right-click to activate its shortcut menu, which will
have an Insert Object command. When you select this command, Delphi displays the stan-
dard OLE Insert Object dialog box. This dialog box allows you to choose from one of the
server applications registered on the computer.

Once the OLE object is inserted in the container, the shortcut menu of the control container
component will have several more custom menu items. The new menu items include commands
to change the properties of the OLE object, insert another one, copy the existing object, or
remove it. The list also includes the verbs, or actions, of the object (such as Edit, Open, or Play).
Once you have inserted an OLE object in the container, the corresponding server will launch to
let you edit the new object. As soon as you close the server application, Delphi updates the object
in the container and displays it at design time in the form of the Delphi application you are
developing.

If you look at the textual description of a form containing a component with an object inside,
you’ll notice a Data property, which contains the actual data of the OLE object. Although the
client program stores the data of the object, it doesn’t know how to handle and show that with-
out the help of the proper server (which must be available on the computer where you run the
program). This means that the OLE object is embedded.

To fully support compound documents, a program should provide a menu and a toolbar or
panel. These extra components are important because in-place editing implies a merging of
the user interface of the client and that of the server program. When the OLE object is acti-
vated in place, some of the pull-down menus of the server application’s menu bar are added
to the menu bar of the container application.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 878

http://www.sybex.com

879

OLE menu merging is handled almost automatically by Delphi. You only need to set the
proper indexes for the menu items of the container, using the GroupIndex property. Any
menu item with an odd index number is replaced by the corresponding element of the active
OLE object. More specifically, the File (0) and Window (4) pull-down menus belong to the
container application. The Edit (1), View (3), and Help (5) pull-down menus (or the groups
of pull-down menus with those indexes) are taken by the OLE server. A sixth group, named
Object and indicated with the index 2, can be used by the container to display another pull-
down menu between the Edit and View groups, even when the OLE object is active. The
OleCont demo program I’ve written to demonstrate these features allows a user to create a
new object by calling the InsertObjectDialog method of the TOleContainer class.

The InsertObjectDialog method shows a system dialog box, but it doesn’t automatically
activate the OLE object:

procedure TForm1.New1Click(Sender: TObject);
begin
if OleContainer1.InsertObjectDialog then
OleContainer1.DoVerb (OleContainer1.PrimaryVerb);

end;

Once a new object has been created, you can execute its primary verb using the DoVerb
method. The program also displays a small toolbar with some bitmap buttons. I placed some
TWinControl components in the form to let the user select them and thus disable the Ole-
Container. To keep this toolbar/panel visible while in-place editing is occurring, you should
set its Locked property to True. This forces the panel to remain present in the application
and not be replaced by a toolbar of the server.

To show what happens when you don’t use this approach, I’ve added to the program a sec-
ond panel, with some more buttons. Because I haven’t set its Locked property, this new tool-
bar will be replaced with that of the active OLE server. When in-place editing launches a
server application that displays a toolbar, that server’s toolbar replaces the container’s toolbar,
as you can see in the lower part of Figure 20.11.

TIP To make all the automatic resizing operations work smoothly, you should place the OLE con-
tainer component in a panel component and align both of them to the client area of the form.

Another way to create an OLE object is to use the PasteSpecialDialog method, called
in the PasteSpecial1Click event handler of the example. Another standard OLE dialog
box, wrapped in a Delphi function, is the one showing the properties of the object, which
is activated with the Object Properties item in the Edit pull-down menu by calling the
ObjectPropertiesDialog method of the OleContainer component.

Using Compound Documents

2874c20.qxd 7/2/01 4:43 PM Page 879

http://www.sybex.com

880

You can see an example of the resulting standard OLE dialog box in Figure 20.12. Obvi-
ously, this dialog box changes depending on the nature of the active OLE object in the con-
tainer. The last feature of the OleCont program is support for files; this is actually one of the
simplest additions we can make, because the OLE container component already provides file
support.

F I G U R E 2 0 . 1 2 :
The standard OLE Object
Properties dialog box,
available in the OleCont
example

F I G U R E 2 0 . 1 1 :
The second toolbar of the
OleCont example (top) is
replaced by the toolbar of
the server (bottom).

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 880

http://www.sybex.com

881

Using the Internal Object
In the preceding program, the user determined the type of the internal object created by the
program. In this case, there is little you can do to interact with the internal objects. Suppose,
instead, that you want to embed a Word document in a Delphi application and then modify it
by code. You can do this by using OLE Automation with the embedded object, as demon-
strated by the WordCont example (the name stands for Word container).

WARNING Since the WordCont example includes an object of a specific type, a Microsoft Word docu-
ment, it won’t run if you don’t have that server application installed. Having a different version
of the server might also create problems if the Automation methods used by the client pro-
gram are not available in that version of the server.

In the form of this example, I’ve added an OleContainer component, set its AutoActivate
property to aaManual (so that the only possible interaction is with our code), and added a
toolbar with a couple of buttons. The code for the two buttons is quite straightforward, once
you know that the embedded object corresponds to a Word document:

procedure TForm1.Button1Click(Sender: TObject);
var
Document: Variant;

begin
// activates if not running
if not (OleContainer1.State = osRunning) then
OleContainer1.Run;

// get the document
Document := OleContainer1.OleObject;
// first paragraph to bold
Document.Paragraphs.Item(1).Range.Bold := 1;

end;

procedure TForm1.Button3Click(Sender: TObject);
var
Document, Paragraph: Variant;

begin
// activate if not running
if not (OleContainer1.State = osRunning) then
OleContainer1.Run;

// get the document
Document := OleContainer1.OleObject;
// add paragraphs, getting the last one
Document.Paragraphs.Add;
Paragraph := Document.Paragraphs.Add;
// add text to the paragraph, using random font size

Using the Internal Object

2874c20.qxd 7/2/01 4:43 PM Page 881

http://www.sybex.com

882

Paragraph.Range.Font.Size := 10 + Random (20);
Paragraph.Range.Text := ‘New text (‘ +
IntToStr (Paragraph.Range.Font.Size) + ‘)’#13;

end;

You can see the effect of this code in Figure 20.13. The code is not terribly powerful, but it
does show how you can merge the usage of OLE Containers and OLE Automation techniques.

Introducing ActiveX Controls
Microsoft’s Visual Basic was the first program development environment to introduce the idea
of supplying software components to the mass market. Actually, the concept of reusable soft-
ware components is older than Visual Basic—it’s well rooted in the theories of object-oriented
programming (OOP). But OOP languages never delivered the reusability they promised,
probably more because of marketing and standardization problems than for any other reason.
Although Visual Basic does not fully exploit OOP, it applies the component concept through
its standard way of building and distributing new controls that developers can integrate into
the environment.

The first technical standard promoted by Visual Basic was VBX, a 16-bit specification that
was fully available in the 16-bit version of Delphi. In moving to the 32-bit platforms, Microsoft
replaced the VBX standard with the more powerful and more open ActiveX controls.

F I G U R E 2 0 . 1 3 :
The WordCont example
shows how to use OLE
Automation with an
embedded object.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 882

http://www.sybex.com

883

NOTE ActiveX controls used to be called OLE controls (or OCX). The name change reflects a new
marketing strategy from Microsoft rather than a technical innovation. Technically, ActiveX can
be considered a minor extension to the OCX technology. Not surprisingly, then, ActiveX con-
trols are usually saved in files with the .ocx extension.

From a general perspective, an ActiveX control is not very different from a Windows,
Delphi, or Visual Basic control. A control in any of these languages is always a window, with
its associated code defining its behavior. The key difference between various families of con-
trols is in the interface of the control—the interaction between the control and the rest of the
application. Typical Windows controls use a message-based interface; VBX controls use
properties and events; OLE Automation objects use properties and methods; and ActiveX
controls use properties, methods, and events. These three elements of properties, methods,
and events are also found in Delphi’s own components.

Using OLE jargon, an ActiveX control is a “compound document object which is imple-
mented as an in-process server DLL and supports OLE Automation, visual editing, and
inside-out activation.” Perfectly clear, right? Let’s see what this definition actually means.
An ActiveX control uses the same approach as OLE server objects, which are the objects
you can insert into an OLE Document, as we saw in the last chapter. The difference between
a generic OLE server and an ActiveX control is that, whereas ActiveX controls can only be
implemented in one way, OLE servers can be implemented in three different ways:

• As stand-alone applications (for example, Microsoft Excel)

• As out-of-process servers—that is, executables files that cannot be run by themselves and
can only be invoked by a server (for example, Microsoft Graph and similar applications)

• As in-process servers, such as DLLs loaded into the same memory space as the pro-
gram using them

ActiveX controls can only be implemented using the last technique, which is also the fastest:
as in-process servers. Furthermore, ActiveX controls are OLE Automation servers. This means
you can access properties of these objects and call their methods. You can see an ActiveX con-
trol in the application that is using it and interact with it directly in the container application
window. This is the meaning of the term visual editing, or in-place activation. A single click acti-
vates the control rather than the double-click used by OLE Documents, and the control is
active whenever it is visible (which is what the term inside-out activation means), without having
to double-click it.

As I’ve mentioned before, an ActiveX control has properties, methods, and events. Properties
can identify states, but they can also activate methods. (This is particularly true for ActiveX
controls that are updated VBX controls, because in a VBX there was no other way to activate a

Introducing ActiveX Controls

2874c20.qxd 7/2/01 4:43 PM Page 883

http://www.sybex.com

884

method than by setting a property.) Properties can refer to aggregate values, arrays, subobjects,
and so on. Properties can also be dynamic (or read-only, to use the Delphi term).

In an ActiveX control, properties are divided into different groups: stock properties that
most controls need to implement; ambient properties that offer information about the con-
tainer (similar to the ParentColor or ParentFont properties in Delphi); extended properties
managed by the container, such as the position of the object; and custom properties, which
can be anything.

Events and methods are, well, events and methods. Events relate to a mouse click, a key
press, the activation of a component, and other specific user actions. Methods are functions
and procedures related to the control. There is no major difference between the ActiveX and
Delphi concepts of events and methods.

ActiveX Controls Versus Delphi Components
Before I show you how to use and write ActiveX controls in Delphi, let’s go over some of the
technical differences between the two kinds of controls. ActiveX controls are DLL-based.
This means that when you use them, you need to distribute their code (the OCX file) along
with the application using them. In Delphi, the code of the components can be statically
linked to the executable file or dynamically linked to it using a run-time package, so you can
always choose.

Having a separate file allows you to share code among different applications, as DLLs usu-
ally do. If two applications use the same control (or run-time package), you need only one
copy of it on the hard disk and a single copy in memory. The drawback, however, is that if
the two programs have to use two different versions (or builds) of the ActiveX control, some
compatibility problems might arise. An advantage of having a self-contained executable file is
that you will also have fewer installation problems.

Now, what is the drawback of using Delphi components? The real problem is not that there
are fewer Delphi components than ActiveX controls, but that if you buy a Delphi component,
you’ll only be able to use it in Delphi and Borland C++Builder. If you buy an ActiveX control,
on the other hand, you’ll be able to use it in multiple development environments from multi-
ple vendors. Even so, if you develop mainly in Delphi and find two similar components based
on the two technologies, I suggest you buy the Delphi one—it will be more integrated with
your environment, and therefore easier for you to use. Also, the native Delphi component will
probably be better documented (from the Pascal perspective), and it will take advantage of
Delphi and Object Pascal features not available in the general ActiveX interface, which is tra-
ditionally based on C and C++.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 884

http://www.sybex.com

885

Using ActiveX Controls in Delphi
Delphi comes with some preinstalled ActiveX controls, and you can buy and install more
third-party ActiveX controls easily. After this description of how ActiveX controls work in
general, I’ll demonstrate one in an example.

The Delphi installation process is very simple. Select Component ➢ Import ActiveX
Control in the Delphi menu. This opens the Import ActiveX dialog box, where you can see
the list of ActiveX control libraries registered in Windows. If you choose one, Delphi will
read its type library, list its controls, and suggest a filename for its unit. If the information is
correct, click the Create Unit button to view the Pascal source code file created by Delphi
as a wrapper for the ActiveX control. Click the Install button to add this new unit to a
Delphi package and to the Component Palette.

Using the WebBrowser Control
To build my example, I’ve used a preinstalled ActiveX control available in Delphi. Unlike the
third-party controls, this is not available in the ActiveX page of the palette, but in the Internet
page. The control, called WebBrowser, is a wrapper around Microsoft’s Internet Explorer
engine. The example is a very limited Web browser.

The WebBrows program on the CD-ROM has a TWebBrowser ActiveX control covering its
client area and a control bar at the top and a status bar at the bottom. To move to a given
Web page, a user can type in the combo box of the toolbar, select one of the visited URLs
(saved in the combo box), or click on the Open File button to select a local file.

The actual implementation of the code used to select a Web or local HTML file is in the
GotoPage method:

procedure TForm1.GotoPage(ReqUrl: string);
begin
WebBrowser1.Navigate (ReqUrl, EmptyParam, EmptyParam, EmptyParam,
EmptyParam);

end;

EmptyParam is a predefined OleVariant you can use whenever you want to pass a default
value as a reference parameter. This is a handy shortcut you can use to avoid creating an
empty OleVariant each time you need a similar parameter. This method is called for by a file,
when the user clicks on the Enter key in the combo box, or by selecting the Go button, as
you can see in the source code on the companion CD.

Introducing ActiveX Controls

2874c20.qxd 7/2/01 4:43 PM Page 885

http://www.sybex.com

886

The program also handles four events of the WebBrowser control. When the download
operations start and end, the program updates the text of the status bar and also the drop-
down list of the combo box:

procedure TForm1.WebBrowser1DownloadBegin(Sender: TObject);
begin
StatusBar1.Panels[0].Text := ‘Downloading ‘ +
WebBrowser1.LocationURL + ‘...’;

end;

procedure TForm1.WebBrowser1DownloadComplete(Sender: TObject);
var
NewUrl: string;

begin
StatusBar1.Panels[0].Text := ‘Done’;
// add URL to combobox
NewUrl := WebBrowser1.LocationURL;
if (NewUrl <> ‘’) and (ComboURL.Items.IndexOf (NewUrl) < 0) then
ComboURL.Items.Add (NewUrl);

end;

Two other useful events are the OnTitleChange, used to update the caption with the title of the
HTML document, and the OnStatusTextChange event, used to update the second part of the
status bar. This code basically duplicates the information displayed in the first part of the status
bar by the previous two event handlers.

F I G U R E 2 0 . 1 4 :
The WebDemo program at
startup: it fully supports
graphics and all other Web
extensions, as it is based on
the Internet Explorer
engine.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 886

http://www.sybex.com

887

Writing ActiveX Controls
Besides using existing ActiveX controls in Delphi, you can easily develop new ones. Although
you can write the code of a new ActiveX control yourself, implementing all the required OLE
interfaces (and there are many), it’s much easier to use one of the techniques directly sup-
ported by Delphi:

• You can use the ActiveX Control Wizard to turn a VCL control into an ActiveX control.
You start from an existing VCL component, which must be a TWinControl descendant,
and Delphi wraps an ActiveX around it. During this step, Delphi adds a type library to
the control. (Wrapping an ActiveX control around a Delphi component is exactly the
opposite of what we did to use an ActiveX inside Delphi.)

• You can create an ActiveForm, place several controls inside it, and ship the entire form
(without borders) as an ActiveX control. This second technique is the same one used by
Visual Basic and is generally aimed at building Internet applications. However, it is also
a very good alternative for the construction of an ActiveX control based on multiple
Delphi controls or on Delphi components that do not descend from TWinControl.

An optional step you can take in both cases is to prepare a property page for the control, to
use as a sort of property editor for setting the initial value of the properties of the control in
any development environment—a kind of alternative to the Object Inspector in Delphi. Because
most development environments allow only limited editing, it is more important to write a
property page than it is to write a component or a property editor for a Delphi control.

Building an ActiveX Arrow
As an example of the development of an ActiveX control, I’ve decided to take the Arrow compo-
nent we developed in Chapter 11, “Creating Components,” and turn it into an ActiveX. We can-
not use that component directly, because it was a graphical control, a subclass of TGraphicControl.
However, turning a graphical control into a window-based control is usually a straightforward
operation.

In this case, I’ve just changed the base class name to TCustomControl (and changed the
name of the class of the control, as well, to avoid a name clash):

type
TMdWArrow = class(TCustomControl)
...

The TWinControl class has very minimal support for graphical output. Its TCustomControl
subclass, however, has basically the same capabilities as the TGraphicControl class. The key
difference is that a TCustomControl object has a window handle.

Writing ActiveX Controls

2874c20.qxd 7/2/01 4:43 PM Page 887

http://www.sybex.com

888

After installing this new component in Delphi, we are ready to start developing the new
example. To create a new ActiveX library, select File ➢ New, move to the ActiveX page, and
choose ActiveX library. Delphi creates the bare skeleton of a DLL, as we saw at the begin-
ning of this chapter. I’ve saved this library as XArrow, in a directory with the same name, as
usual.

Now it is time to use the ActiveX Control Wizard, available in the ActiveX page of the
Object Repository—Delphi’s New dialog box. In this wizard (shown in Figure 20.15), you
select the VCL class you are interested in, customize the names shown in the edit boxes, and
click OK; Delphi then builds the complete source code of an ActiveX control for you.

The use of the three check boxes at the bottom of the ActiveX Control Wizard window
may not be obvious. If you include design-time license support, the user of the control won’t
be able to use it in a design environment without the proper license key for the control. The
second check box allows you to include version information for the ActiveX, in the OCX file.
If the third check box is selected, the ActiveX Control Wizard automatically adds an About
box to the control.

Take a look at the code the ActiveX Control Wizard generates. The key element of this wiz-
ard is the generation of a type library. You can see the library generated for our arrow control
in Delphi’s type-library editor in Figure 20.16. From the type library information, the Wizard
also generates an import file with the definition of an interface, the dispinterface, and other
types and constants.

F I G U R E 2 0 . 1 5 :
Delphi’s ActiveX Control
Wizard

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 888

http://www.sybex.com

889

In this example, the import file is named XArrow_TLB.PAS. The first part of this file includes
a couple of GUIDs, one for the library as a whole and one for the control, and other constants
for the definition of values corresponding to the OLE enumerated types used by properties of
the Delphi control, for example:

type
TxMdWArrowDir = TOleEnum;

const
adUp = $00000000;
adLeft = $00000001;
adDown = $00000002;
adRight = $00000003;

The real meat is the declaration of the IMdWArrowX interface, which I suggest you look at in
the source code. Notice that the final part of the import unit includes the declaration of the
TMdWArrowX class. This is a TOleControl-derived class you can use to install the control in Delphi,
as we’ve seen in the first part of this chapter. You don’t need this class to build the ActiveX con-
trol; you need it to install the ActiveX control in Delphi. The class used by the ActiveX server has
the same class name but a different implementation.

The rest of the code, and the code you’ll customize, is in the main unit, which in my example
is called MdWArrowImpl1. This unit has the declaration of the ActiveX server object,
TMdWArrowX, which inherits from TActiveXControl and implements the specific IMdWArrowX
interface.

F I G U R E 2 0 . 1 6 :
The type-library editor
with the type library of
the demo ActiveX control
I’ve created

Writing ActiveX Controls

2874c20.qxd 7/2/01 4:43 PM Page 889

http://www.sybex.com

890

NOTE The TActiveXControl class does most of the work for providing ActiveX support in Delphi. This class
implements interfaces required by every ActiveX control: IConnectionPointContainer, IDataObject,
IObjectSafety, IOleControl, IOleInPlaceActiveObject, IOleInPlaceObject, IOleObject,
IPerPropertyBrowsing, IPersistPropertyBag, IPersistStorage, IPersistStreamInit,
IQuickActivate, ISimpleFrameSite, ISpecifyPropertyPages, IViewObject, and IViewObject2.
Just the declaration of the TActiveXControl class takes more than 250 lines of code, and its imple-
mentation code is responsible for a good part of the 4,000 lines of code of the AxCtrls unit.

Before we customize this control in any way, let’s see how it works. You should first com-
pile the ActiveX library and then register it using Delphi’s Run ➢ Register ActiveX Server
menu command. Now you can install the ActiveX control as we’ve done in the past, except
you have to specify a different name for the new class to avoid a name clash. If you use this
control, it doesn’t look much different from the original VCL control, but the advantage is
that the same component can now be installed also in other development environments.

Adding New Properties
Once you’ve created an ActiveX control, adding new properties, events, or methods to it is—
surprisingly—simpler than doing the same operation for a VCL component. Delphi, in fact,
provides specific visual support for the former, not for the latter.

You can open the Pascal unit with the implementation of the ActiveX control, and choose
Edit ➢ Add To Interface. As an alternative, you can use the same command from the short-
cut menu of the editor. Delphi opens the Add To Interface dialog box (see Figure 20.17). In
the combo box of this dialog box, you can choose between a new property, method, or event.
In this example, the first selection will affect the IMdWArrowX interface and the second the
IMdWArrowXEvents interface.

In the edit box, you can then type the declaration of this new interface element. If the Syn-
tax Helper check box is activated, you’ll get hints describing what you should type next and
highlighting any errors. You can see the syntax helper in action in Figure 20.17. When you
define a new ActiveX interface element, keep in mind that you are restricted to OLE data

F I G U R E 2 0 . 1 7 :
The Add To Interface dialog
box, with the syntax helper
in action

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 890

http://www.sybex.com

891

types. In the XArrow example, I’ve added two properties to the ActiveX control. Because the
Pen and the Brush properties of the original Delphi components are not accessible, I’ve made
their color available. These are examples of what you can write in the edit box of the Add To
Interface dialog (executing it twice):

property FillColor: Integer;
property PenColor: Integer;

NOTE Since a TColor is a specific Delphi definition, it is not legal to use it. TColor is an Integer sub-
range that defaults to Integer size, so I’ve used the standard Integer type directly.

The declarations you enter in the Add To Interface dialog box are automatically added to
the control’s type library (TLB) file, to its import library unit, and to its implementation unit:

type
IMdWArrowX = interface(IDispatch)
function Get_FillColor: Integer; safecall;
procedure Set_FillColor(Value: Integer); safecall;
function Get_PenColor: Integer; safecall;
procedure Set_PenColor(Value: Integer); safecall;
...
property FillColor: Integer read Get_FillColor write Set_FillColor;
property PenColor: Integer read Get_PenColor write Set_PenColor;

All you have to do to finish the ActiveX control is fill in the Get and Set methods of the
implementation. Here is the code of the first property:

function TMdWArrowX.Get_FillColor: Integer;
begin
Result := ColorToRGB (FDelphiControl.Brush.Color);

end;

procedure TMdWArrowX.Set_FillColor(Value: Integer);
begin
FDelphiControl.Brush.Color := Value;

end;

If you now install this ActiveX control in Delphi once more, the two new properties will
appear. The only problem with this property is that Delphi uses a plain integer editor, mak-
ing it quite difficult to enter the value of a new color by hand. A program, by contrast, can
easily use the RGB function to create the proper color value.

Adding a Property Page
As it stands, other development environments can do very little with our component, because
we’ve prepared no property page—no property editor. A property page is fundamental so

Writing ActiveX Controls

2874c20.qxd 7/2/01 4:43 PM Page 891

http://www.sybex.com

892

that programmers using the control can edit its attributes. However, adding a property page
is not as simple as adding a form with a few controls. The property page, in fact, will inte-
grate with the host development environment. The property page for our control will show
up inside a property page dialog of the host environment, which will provide the OK, Can-
cel, and Apply buttons, and the tabs for showing multiple property pages (some of which
might be provided by the host environment).

The nice thing is that support for property pages is built into Delphi, so adding one takes
little time. You open an ActiveX project, then open the usual New Items dialog box, move to
the ActiveX page, and choose Property Page. What you get is not very different from a form.
In fact, the TPropertyPage1 class (created by default) inherits from the TPropertyPage class
of VCL, which in turn inherits from TCustomForm.

TIP Delphi provides four built-in property pages for colors, fonts, pictures, and strings. The GUIDs of
these classes are indicated by the constants Class_DColorPropPage, Class_DFontPropPage,
Class_DPicturePropPage, and Class_DStringPropPage in the AxCtrls unit.

In the property page, you can add controls as in a normal Delphi form, and you can write
code to let the controls interact. I’ve added to the property page a combo box with the possi-
ble values of the Direction property, a check box for the Filled property, an edit box with an
UpDown control to set the ArrowHeight property, and two shapes with corresponding buttons
for the colors. The only code added to the form relates to the two buttons used to change the
color of the two shape components, which offer a preview of the colors of the actual ActiveX
control. The OnClick event of the button uses a ColorDialog component, as usual:

procedure TPropertyPage1.ButtonPenClick(Sender: TObject);
begin
with ColorDialog1 do
begin
Color := ShapePen.Brush.Color;
if Execute then
begin
ShapePen.Brush.Color := Color;
Modified; // enable Apply button!

end;
end;

end;

What is important to notice in this code is the call to the Modified method of the
TPropertyPage class. This call is required to let the property page dialog box know we’ve
modified one of the values and to enable the Apply button. When a user interacts with one of
the other controls of this form, this call is made automatically. For the two buttons, however,
we need to add this line ourselves.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 892

http://www.sybex.com

893

TIP Another tip relates to the Caption of the property page form. This will be used in the property
dialog box of the host environment as the caption of the tab corresponding to the property page.

The next step is to associate the controls of the property page with the actual properties
of the ActiveX control. The property page class automatically has two methods for this:
UpdateOleObject and UpdatePropertyPage. As their names suggest, these two methods copy
data from the property page to the ActiveX control and vice versa. Here is the code for my
example:

procedure TPropertyPage1.UpdatePropertyPage;
begin
{ Update your controls from the OleObject }
ComboDir.ItemIndex := OleObject.Direction;
CheckFilled.Checked := OleObject.Filled;
EditHeight.Text := IntToStr (OleObject.ArrowHeight);
ShapePen.Brush.Color := OleObject.PenColor;
ShapePoint.Brush.Color := OleObject.FillColor;

end;

procedure TPropertyPage1.UpdateObject;
begin
{ Update the OleObject from your controls }
OleObject.Direction := ComboDir.ItemIndex;
OleObject.Filled := CheckFilled.Checked;
OleObject.ArrowHeight := UpDownHeight.Position;
OleObject.PenColor := ColorToRGB (ShapePen.Brush.Color);
OleObject.FillColor := ColorToRGB (ShapePoint.Brush.Color);

end;

The final step is to connect the property page itself to the ActiveX control. When the con-
trol was created, the Delphi ActiveX Control Wizard automatically added a declaration for
the DefinePropertyPages method to the implementation unit. In this method, we call the
DefinePropertyPage method (this time the method name is singular) for each property page
we want to add to the ActiveX. This method has as its parameter the GUID of the property
page, something you can find in the corresponding unit. (Of course, you’ll need to add a uses
statement referring to that unit.) Here is the code of my example:

procedure TMdWArrowX.DefinePropertyPages(
DefinePropertyPage: TDefinePropertyPage);

begin
DefinePropertyPage(Class_PropertyPage1);

end;

NOTE The connection between the ActiveX control and its property page takes place using a GUID.
This is possible because the property page object can be created through a class factory, and
its GUID is stored in the Windows Registry when you register the ActiveX control library. To see

Writing ActiveX Controls

2874c20.qxd 7/2/01 4:43 PM Page 893

http://www.sybex.com

894

what’s going on, look at the initialization section of the property page unit, which calls
TActiveXPropertyPageFactory.Create.

Now that we’ve finished developing the property page, and after recompiling and reregis-
tering the ActiveX library, we can install the ActiveX control inside a host development envi-
ronment (including Delphi itself) and see how it looks. Figure 20.18 shows an example. (If
you’ve already installed the ActiveX control in Delphi, you should uninstall it prior to
rebuilding it. This process might also require closing and reopening Delphi itself.)

ActiveForms
As I’ve mentioned, Delphi provides an alternative to the use of the ActiveX Control Wizard
to generate an ActiveX control. You can use an ActiveForm, which is an ActiveX control that
is based on a form and can host one or more Delphi components. This is exactly the tech-
nique used in Visual Basic to build new controls, and it makes sense when you want to create
a compound component.

For example, to create an ActiveX clock, we can place on an ActiveForm a label (a graphic
control that cannot be used as a starting point for an ActiveX control) and a timer, and connect

F I G U R E 2 0 . 1 8 :
The XArrow ActiveX
control and its property
page, hosted by the Delphi
environment

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 894

http://www.sybex.com

895

the two with a little code. The form/control becomes basically a container of other controls,
which makes it very easy to build compound components (easier than for a VCL compound
component).

To build such a control, close the current project, and select the ActiveForm icon in the
ActiveX page of the File ➢ New dialog box. Delphi asks you for some information in the fol-
lowing ActiveForm Wizard dialog box, similar to the ActiveX Control Wizard dialog box.

ActiveForm Internals
Before we continue with the example, let’s look at the code generated by the ActiveForm Wiz-
ard. The key difference from a plain Delphi form is in the declaration of the new form class,
which inherits from the TActiveForm class and implements a specific ActiveForm interface:

type
TAXForm1 = class(TActiveForm, IAXForm1)

As usual, the IAXForm interface is declared in the type library and in a corresponding Pascal file
generated by Delphi. Here is a small excerpt of the IAXForm1 interface from the XF1Lib.pas
file, with some comments I’ve added:

type
IAXForm1 = interface(IDispatch)
[‘{51661AA1-9468-11D0-98D0-444553540000}’]
// Get and Set methods for TForm properties
function Get_Caption: WideString; safecall;
procedure Set_Caption(const Value: WideString); safecall;
...
// TForm methods redeclared
procedure Close; safecall;
...
// TForm properties
property Caption: WideString read Get_Caption write Set_Caption;

The code generated for the TAXForm1 class implements all the Set and Get methods, which
change or return the corresponding properties of the form, and it implements the events,
which again are the events of the form. Here is a small excerpt:

private
procedure ActivateEvent(Sender: TObject);

protected
procedure Initialize; override;
function Get_Caption: WideString; safecall;
procedure Close; safecall;
procedure Set_Caption(const Value: WideString); safecall;

Let’s look at the implementation of properties first:
function TAXForm1.Get_Caption: WideString;

ActiveForms

2874c20.qxd 7/2/01 4:43 PM Page 895

http://www.sybex.com

896

begin
Result := WideString(Caption);

end;

procedure TAXForm1.Set_Caption(const Value: WideString);
begin
Caption := TCaption(Value);

end;

The TForm events are set to the internal methods when the form is created:
procedure TAXForm1.Initialize;
begin
OnActivate := ActivateEvent;
...

end;

Each event then maps itself to the external ActiveX event, as in the following two methods:
procedure TAXForm1.ActivateEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnActivate;

end;

Because of this mapping, you should not handle the events of the form directly. Instead,
you can either add some code to these default handlers or override the TForm methods that
end up calling the events. (This is exactly the approach you use when building a Delphi com-
ponent.) Keep in mind that the interface properties of an ActiveForm are meant for develop-
ers using it as a control, not for final users of the ActiveForm on the Web. This mapping
problem refers only to the events of the form itself, not to the events of the components of
the form. You can continue to handle the events of the components as usual.

The XClock ActiveX Control
Now that we’ve looked at the code generated by Delphi, we can return to the development
of the XClock example. Place on the form a label with a large font and centered text, aligned
to the client area and a timer. Then write an event handler for its OnTimer event, so that the
control updates the output of the label with the current time every second:

procedure TXClock.Timer1Timer(Sender: TObject);
begin
Label1.Caption := TimeToStr (Time);

end;

Now compile this library, register it, and install it in a package to test it in the Delphi envi-
ronment. You can see an example of its use in Figure 20.19. Notice in this figure the effect of

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 896

http://www.sybex.com

897

the sunken border. This is controlled by the AxBorderStyle property of the active form, one
of the few properties of active forms that is not available for a plain form.

ActiveForms are usually considered as a technique to deploy a Delphi application via the
Internet. However, the ActiveX and ActiveForm support provided by Delphi represent to
different ways to build ActiveX controls, which can be used both on a Web page and in
another development environment.

ActiveX in Web Pages
In the last example, we used Delphi’s ActiveForm technology to create a new ActiveX con-
trol. In fact, an ActiveForm is an ActiveX control based on a form. Borland documentation
often implies that ActiveForms should be used in HTML pages, but you can use any ActiveX
control on a Web page.

NOTE Microsoft once promoted ActiveX as an Internet technology for delivering interactive content.
Due to complexities and security problems inherent in downloading executable code, the mar-
ket never really bought into this. Microsoft has since dropped ActiveX from its Internet tech-
nologies list. Still, this technology might have a value in an intranet to let you deliver small
applications to users of your local area network, as you can relax the security settings when
accessing local Web sites.

Basically, each time you create an ActiveX library, Delphi enables the Project ➢ Web
Deployment Options and Project ➢ Web Deploy menu items. The first allows you to specify
how and where to deliver the proper files. As shown in Figure 20.20, in this dialog box you

F I G U R E 2 0 . 1 9 :
The ActiveX timer installed
in a Delphi package

ActiveX in Web Pages

2874c20.qxd 7/2/01 4:43 PM Page 897

http://www.sybex.com

898

can set the server directory for deploying the ActiveX component, the URL of this directory,
and the server directory for deploying the HTML file (which will have a reference to the
ActiveX library using the URL you provide).

You can also specify the use of a compressed CAB file, which can store the OCX file and
other auxiliary files, such as packages, making it easier and faster to deliver the application to
the user. A compressed file, in fact, means a faster download. Using the options shown in
Figure 20.20, Delphi generates the HTML file and CAB file for the XClock project in the
same directory. Opening this HTML file in Internet Explorer produces the output shown in
Figure 20.21.

WARNING At times, when you load an HTML page referring to an ActiveX, all you get is a red X marker
indicating a failure to download the control. There are various possible explanations for this
problem. First, Internet Explorer must be set up properly, allowing the download of controls and
(if the control is not signed) lowering the security level. Second, other problems might arise
when the control requires a DLL or a package that is not part of the downloaded CAB file.
Third, you might get the red slash marker when there is a mismatch in the version number—or
you might see an older version of the control in action.

F I G U R E 2 0 . 2 0 :
The Web Deployment
Options dialog box

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 898

http://www.sybex.com

899

Besides showing you how to deploy the XClock control on a Web page, I’ve created the
XForm1 example to demonstrate the problems with event handlers of ActiveForms men-
tioned in the previous section “ActiveForm Internals.” Because the form events are exported
as events of the control, you should not handle the events of the form directly but add some
code to the default handlers provided by the Active Form. For example, if you add a handler
for the OnPaint event of the form and write the following code, it will never be executed:

procedure TFormX1.FormPaint(Sender: TObject);
begin
Canvas.Brush.Color := clYellow;
Canvas.Ellipse(0, 0, Width, Height);

end;

If you want to paint something on the form’s background, instead, you have to modify the
corresponding handler installed by the ActiveForm Wizard:

procedure TFormX1.PaintEvent(Sender: TObject);
begin
Canvas.Brush.Color := clBlue;
Canvas.Rectangle (20, 20, ClientWidth - 20, ClientHeight - 20);
if FEvents <> nil then FEvents.OnPaint;

end;

F I G U R E 2 0 . 2 1 :
The XClock control in the
sample HTML page

ActiveX in Web Pages

2874c20.qxd 7/2/01 4:43 PM Page 899

http://www.sybex.com

900

As an alternative, you can place a frame, a panel, or another component on the surface of
the form, and handle its events. In the XForm1 example, I’ve added a PaintBox component,
with a bevel component behind it to make the area of the PaintBox visible.

The Role of an ActiveX Form on a Web Page
Before we look at another example, it is important to stop for a second to consider the role of
an ActiveX form placed inside a Web page. Basically, placing a form in a Web page corre-
sponds to letting a user download and execute a custom Windows application. There is little
else happening. You download an executable file and start it. This is one of the reasons the
ActiveX technology raises so many concerns about security.

The XFUser example highlights the situation. It calls the GetUserName Windows API func-
tion and shows the user name on the screen. Its effect is certainly not astonishing, as the
name of the user will be displayed in a label. However, this example highlights a couple of
important points (which apply both to ActiveForms and ActiveX controls in general):

• In an ActiveX control or form, you can call any Windows API function (which means
the user viewing the Web page must have Windows on his or her computer) or certain
Windows API–compatible libraries.

• An ActiveX can access the system information of the computer, such as the user name,
the directory structure, and so on. This is why, before downloading an ActiveX, Web
browsers check whether the ActiveX has a proper authentication, or signature. (You
should note that this signature identifies the author of the control and that the module
has not been corrupted or tampered with since the author published it; it doesn’t prove
in any way that the control is safe.)

Well, I could continue, but I think my point is clear. ActiveX controls and ActiveForms
inside Web pages have problems, and even Microsoft has slowly abandoned this technology.
For this reason, I’m going to show you only one more example, which is instructive on how
external environments can interact with an ActiveX control.

Setting Properties for the XArrow
An ActiveForm has a few properties you can set when you use it inside a development envi-
ronment, and a plain ActiveX control has even more. For example, if you want to set proper-
ties in the HTML file hosting the control, you can use a special param tag, but the control
must support a special interface known as IPersistPropertyBag.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 900

http://www.sybex.com

901

Starting with Delphi 4, the IPersistPropertyBag support is built in, providing support for
all of the properties of the ActiveX control or ActiveForm. As an example, I’ve used the Web
Deploy options on the XArrow control. Then, I’ve modified the automatically generated
HTML file with three param tags:

<object classid=”clsid:482B2145-4133-11D3-B9F1-00000100A27B”
codebase=”./XArrow.cab” width=”350” height=”250” align=”center”
hspace=”0” vspace=”0”>
<param name=”ArrowHeight” value=”100”>
<param name=”Filled” value=”-1”>
<param name=”FillColor” value=”111829”>

</object>

You can compare the default and customized output of the control in Figure 20.22.

Introducing COM+
In addition to plain COM servers, Delphi also allows you to create enhanced COM objects,
including stateless objects and transaction support. This type of COM object was first intro-
duced by Microsoft with the MTS (Microsoft Transaction Server) acronym, and later renamed
as COM+ in Windows 2000.

F I G U R E 2 0 . 2 2 :
By using the param tag,
we can set values for the
properties of an ActiveX
control in the HTML file
hosting it. The two copies
of the program show the
default and the customized
output.

Introducing COM+

2874c20.qxd 7/2/01 4:43 PM Page 901

http://www.sybex.com

902

Delphi 6 supports building both standard stateless objects and DataSnap remote data mod-
ules based on stateless objects. In both cases you’ll start the development by using one of the
available Delphi wizards, using the New Items dialog box and selecting the Transactional
Object icon of the ActiveX page or the Transactional Data Module icon of the Multitier
page. You must add these objects to an ActiveX library project, not to a plain application.
Another icon, COM+ Event Object, is used to support COM+ events.

MTS is an operating-system service you can install on Windows NT and 98; it was renamed as
COM+ in Windows 2000, so I’ll call it COM+ but this actually refers to both. This system service
provides a run-time environment supporting database transaction services, security, resource
pooling, and an overall improvement in robustness for DCOM applications. The run-time envi-
ronment manages objects called COM+ components. These are COM objects stored in an
in-process server (that is, a DLL). While other COM objects run directly in the client appli-
cation, COM+ objects are handled by this run-time environment, in which you install the COM+
libraries. COM+ objects must support specific COM interfaces, starting with IObjectControl,
which is the base interface (like IUnknown for a COM object).

Before getting into too many technical and low-level details, let’s consider COM+ from a
different perspective. What are the benefits of this approach? COM+ provides a few interest-
ing features, including:

Role-based security The role assigned to a client determines whether it has the right to
access the interface of a data module.

Reduced database resources You can reduce the number of database connections, as the
middle tier logs on to the server and uses the same connections for multiple clients (although
you cannot have more clients connected at once than you have licenses for the server).

Database transactions COM+ transaction support includes operations on multiple data-
bases, although few SQL servers other than Microsoft’s support COM+ transactions.

Creating a COM+ Component
The starting point for creating a COM+ component is the creation of an ActiveX library pro-
ject. After this step you can select a new Transactional Object in the ActiveX page of the New
Items dialog box. In the resulting dialog box (see Figure 20.23), enter the name of the new
component (ComPlus1Object in my ComPlus1 example).

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 902

http://www.sybex.com

903

The New Transactional Object dialog box allows you to enter a name for the class of the
COM+ object, the threading model (because COM+ serializes all the requests, Single or
Apartment will generally do), and a transactional model:

Requires A Transaction indicates that each call from the client to the server is con-
sidered to be a transaction (unless the caller supplies an existing transaction context).

Requires A New Transaction indicates that each call is considered a new transaction.

Supports Transactions indicates that the client must explicitly provide a transaction
context.

Does Not Support Transaction (the default choice, and the one I’ve used) indicates
that the remote data module won’t be involved in any transaction.

As you close this dialog, Delphi adds a type library and an implementation unit to the pro-
ject and opens the type-library editor, where you can define the interface of your new COM
object. For this example I’ve added a Value integer property, an Increase method having as
parameter an amount, and an AsText method returning a WideString with the formatted value.
As you accept the edits in the type-library editor (clicking the Refresh button or closing the
window), Delphi shows the Implementation File Update Wizard, if the corresponding IDE
option is set. This wizard will ask for your confirmation before adding four methods to the
class, including the get and set methods of the property. You can now write some code for the
COM object, which for my example was quite trivial.

F I G U R E 2 0 . 2 3 :
Delphi’s New Transactional
Object dialog box, used to
create a COM+ object

Introducing COM+

2874c20.qxd 7/2/01 4:43 PM Page 903

http://www.sybex.com
COURTNEY

COURTNEY

COURTNEY
 "Ignores Transactions" indicates that objects do not participate in transactions, regardless of whether the client has a transaction. The difference from the setting "Does not support transactions" prevents the object from being activated if the client has a transaction.

904

As you’ve compiled an ActiveX library, or COM library, which hosts a COM+ component,
you can use the Component Services administrative tool (shown in the Microsoft Manage-
ment Console, or MMC) to install and configure the COM+ component. Even better, you
can use the Delphi IDE to install the COM+ component using the Run ➢ Install COM+
Object menu command. In the subsequent dialog box, you’ll be able to select the component
to install (as a library can host multiple components), and choose the COM+ application
where to install the component.

A COM+ application is nothing more than a way to group COM+ components; it is not an
actual program or anything like one (why they call it application is not fully clear to me). So
in the Install COM+ Object dialog, you can select an existing application/group, choose the
Install Into New Application page, and enter a name and description for it.

I’ve called the COM+ application Mastering Delphi Demo, as you can see in Figure 20.24 in
the Component Services administration. This is the front end you can use to fine-tune the
behavior of your COM+ components, setting their activation model (just-in-time activation,
object pooling, and so on), their transaction support, and the security and concurrency mod-
els you want to use. You can also use this console to monitor the objects and the actual
method calls (in case these take a long time to execute). In Figure 20.24, you can see that
there are currently two active objects.

F I G U R E 2 0 . 2 4 :
The newly installed COM+
component inside a custom
COM+ application (as
shown by Microsoft’s
Component Services tool)

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 904

http://www.sybex.com

905

TIP Because you’ve created one or more objects, the COM library remains loaded in the COM+
environment and some of the objects might be kept in cache, even if there are no clients con-
nected to them. For this reason, you cannot generally recompile the COM library after using it,
unless you use the MMC to shut it down.

I’ve actually created a client program for the COM+ object, but this is exactly like any
other Delphi COM client. After importing the type library, which is automatically registered
while installing the component, I created an interface-type variable referring to it and called
its methods as usual. You can find the example on the CD accompanying this book.

Transactional Data Modules
The same types of features are available when creating a transactional data module—that is, a
remote data module within a COM+ component. Once you’ve created a transactional data
module, you can build a Delphi DataSnap application as we’ve done in Chapter 17, “Multi-
tier Database Applications with DataSnap.” You can add one or more dataset components, add
one or more providers, and export the provider(s). You can also add custom methods to the data
module type library by editing the type library or using the Add To Interface command.

Within a COM+ component or transactional data module, you can also use the GetObject-
Context method, which returns the IObjectContext interface of the COM+ object. The
IObjectContext interface provides support for transactions:

• You can use SetComplete to tell the COM+ environment that the object has finished
working and can be deactivated, so that the transaction can be committed.

• You can call EnableCommit to indicate that the object hasn’t finished but the transaction
should be committed.

• You can call DisableCommit to stop the commit operation, even if the method is done,
disabling the object deactivation between method calls.

• You can call SetAbort to say that the object has finished and can be activated but the
transaction cannot be committed.

• You can call IsInTransaction to check whether the object is part of a transaction.

Other methods of the IContextObject interface include CreateInstance, which creates another
COM+ object in the same context and within the current transaction, IsCallerInRole, which
checks if the object’s caller is in a particular “security” role, and IsSecurityEnabled (whose
name is self-explanatory).

Introducing COM+

2874c20.qxd 7/2/01 4:43 PM Page 905

http://www.sybex.com

906

Once you’ve built a transactional data module within a server library, you can install it as I’ve
shown above for a plain COM+ object. After the transactional data module has been installed,
it will be directly available to other applications and visible in the management console.

An important feature of COM+ is that it becomes much easier to configure DCOM sup-
port using this environment. In fact, the COM+ environment of a client computer can grab
information from the COM+ environment of a server computer, including registration infor-
mation for the COM+ object you want to be able to call over a network. The same network
configuration is way more complex if done with plain DCOM, without MTS or COM+.

TIP Even though COM+ configuration is much better than DCOM configuration, still you are lim-
ited to computers with a recent version of the Windows operating system. Considering that
even Microsoft is moving away from DCOM technology, before you build a large system based
on this technology you should at least evaluate the alternative provided by SOAP (discussed in
Chapter 23, “XML and SOAP”).

COM+ Events
Client applications that use traditional COM objects and Automation servers can call meth-
ods of those servers, but this is not an efficient way to check whether the server has updated
data for the client. For this reason, it is possible for a client to define a COM object that
implements a callback interface, pass this object to the server, and let the server call it. Tradi-
tional COM events (which use the IConnectionPoint interface) are simplified by Delphi for
Automation objects, but are still quite complex to handle.

COM+ introduces a simplified event model, in which the events are COM+ components
and the COM+ environment manages the connections. In traditional COM callbacks, the
server object doesn’t have to keep track of the multiple clients it has to notify to, which is one
of the reasons for the complexity of its code. In COM+, the server calls into a single event
interface, and the COM+ environment will forward the event to all clients that have expressed
interest for it. This way, the client and the server are less coupled, making it possible for a
client to receive notification from different servers, without any change in its code.

NOTE Some critics say that Microsoft introduced this model only because it was very complex to handle
COM events in the traditional way for Visual Basic developers. Windows 2000 actually pro-
vides a few operating-system features specifically intended for VB developers.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 906

http://www.sybex.com

907

To create a COM+ event, you should create a COM library (or ActiveX library) and use
the COM+ Event Object wizard. The resulting project will contain a type library with the
definition of the interface used to fire the events, plus some fake implementation code. The
actual server that will receive the notification of the events, in fact, will provide the actual
implementation of the interface. The fake code is there only to support Delphi’s COM regis-
tration system.

While building the MdComEvents library, I added to the type library a single method with
two parameters, resulting in the following code (in the interface definition file):

type
IMdInform = interface(IDispatch)
[‘{202D2CC8-8E6C-4E96-9C14-1FAAE3920ECC}’]
procedure Informs(Code: Integer; const Message: WideString); safecall;

end;

The main unit includes the fake COM object and its class factory, to let the server register itself.
The code looks like this (notice that the method is abstract, and it has no implementation):

type
// fake abstract class
TMdInform = class (TAutoObject, IMdInform)
protected
procedure Informs(Code: Integer; const Message: WideString);
virtual; safecall; abstract;

end;

begin
TAutoObjectFactory.Create(ComServer, TMdInform, Class_MdInform,
ciMultiInstance, tmApartment);

end.

At this point, you can compile the library and install it in the COM+ environment. Again,
after selecting a COM+ application (that is, a group of COM+ components), use the shortcut
menu of its Components folder to add a new component to it. In the COM Component
Install Wizard, click the Install New Event Class button and select the library you’ve just
compiled. Your COM+ event definition will be automatically installed.

To test whether it works, you’ll have to build an actual implementation of this event inter-
face and a client invoking it. The implementation can be added to another ActiveX library,
hosting a plain COM object. Within Delphi’s COM Object Wizard you can select the inter-
face to implement, choosing it in the list that appears when you select the List button. An
example of this rather long list, dubbed Interface Selection Wizard, is shown in Figure 20.25.

Introducing COM+

2874c20.qxd 7/2/01 4:43 PM Page 907

http://www.sybex.com

908

The resulting library, which in my example is called EvtSubscriber, exposes an Automation
object, a COM object implementing the IDispatch interface (which is mandatory for COM+
Events). In my example, the object has the following definition and code:

type
TInformSubscriber = class(TAutoObject, IMdInform)
protected
procedure Informs(Code: Integer; const Message: WideString); safecall;

end;

procedure TInformSubscriber.Informs(Code: Integer; const Message: WideString);
begin
ShowMessage (‘Message <’ + IntToStr (Code) + ‘>: ‘ + Message);

end;

After compiling this library, you can first install it into the COM+ environment, then you
have to bind it to the event. This second step is accomplished in the Component Services
management console by selecting the Subscriptions folder under the event object registra-
tion, and using the New ➢ Subscription shortcut menu. In the resulting wizard, you can
choose the interface to implement (but there is probably only one interface in your COM+
event library), then you’ll see a list of COM+ components that implement this interface.
Selecting one or more of them you’ll set up the subscription binding, which is listed under
the Subscriptions folder. You can see an example of my configuration while building this
example in Figure 20.26.

F I G U R E 2 0 . 2 5 :
Delphi 6’s new Interface
Selection Wizard, used in
this case to select an event
interface

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 908

http://www.sybex.com

909

Finally, we can focus on the application that fires the event, which I’ve called Publisher, as
it publishes the information other COM objects are interested in. This is actually the sim-
plest step of this process, as it is a plain COM client that uses the event server. After import-
ing the COM+ event type library, you can add to the publisher code like this:

var
Inform: IMdInform;

begin
Inform := CoMdInform.Create;
Inform.Informs (20, Edit1.Text);

My example actually creates the COM object in the FormCreate method to keep the refer-
ence around, but the effect is the same. Now the client program thinks it is calling the COM+
event object, but this object, provided by the COM+ environment, actually calls the method
for each of the active subscribers. In this case you’ll end up seeing a message box. To make
things a little more interesting, you can actually subscribe twice the same server to the event
interface. The net effect is, without touching your client code, you’ll get two message boxes,
one for each of the subscribed servers.

Obviously this effect becomes interesting when you have multiple different COM compo-
nents that can handle the event, as you can easily enable and disable each of them in the man-
agement console, changing the COM+ environment without modifying the code of any
program.

F I G U R E 2 0 . 2 6 :
A COM+ Event with two
subscriptions in the Com-
ponent Services manage-
ment console.

Introducing COM+

2874c20.qxd 7/2/01 4:43 PM Page 909

http://www.sybex.com

910

What’s Next?
In this chapter, I have discussed applications of Microsoft’s COM technology, covering
automation, documents, controls, and more. We’ve seen how Delphi makes the develop-
ment of Automation servers and clients, and ActiveX controls, reasonably simple. Delphi
even enables us to wrap components around Automation servers, such as Word and Excel.

I’ve also introduced elements of COM+ provided by Delphi 6 and discussed briefly the use
of ActiveForms inside a browser. I’ve stated this is not really a very good approach to Inter-
net Web programming—the topic discussed in the next two chapters.

As I mentioned earlier, if COM has a key role in Windows 2000, future versions of Microsoft’s
operating systems will downplay its role to push the dotNet infrastructure including SOAP and
XML. But you’ll have to wait until Chapter 23 to see a complete discussion of Delphi 6 XML
support.

Chapter 20 • From Automation to COM+

2874c20.qxd 7/2/01 4:43 PM Page 910

http://www.sybex.com

21CH A P T E R

Internet Programming:
Sockets and Indy
Components

� Using sockets

� The WinInet API

� Standard Internet actions

� The Internet Direct (Indy) components

� Mail and HTTP

2874c21.qxd 7/2/01 2:36 PM Page 911

http://www.sybex.com

912

In this chapter I’ll provide an introduction to Internet programming in Delphi, using
some of the components available in the IDE. With the advent of the Internet era, writing
programs based on Internet protocols has become commonplace, so I’ve devoted three chap-
ters to this topic. This chapter focuses on low-level socket programming and Internet proto-
cols; the next chapter is devoted to server-side Web programming; and the final chapter of
the book covers Web services, XML, and SOAP.

We’ll start by looking at the use of Delphi socket components, then we’ll move to the use
of the Internet Direct (Indy) components supporting the most common Internet protocols. I
will introduce some elements of HTTP programming, leading up to building HTML files
out of database data.

Although you probably just want to use a high-level protocol, our discussion of Internet pro-
gramming starts from the core concepts and low-level applications. The reason is that under-
standing TCP/IP and sockets will help you grasp most of the other concepts more easily.

Specifically, I’m going to focus on the use of the connectivity provided by Delphi socket
components, which are based on TCP/IP and the low-level Windows sockets. Before we
look into the foundations of sockets, let me list a couple of alternative approaches you can
use for Internet programming, which I’ll cover in more detail in later sections:

• The Delphi socket components provide a good interface for direct use of the Windows
sockets API, implementing some custom protocols of your own.

• For standard protocols, you can also use the Indy components, included in Delphi 6.

Foundations of Socket Programming
To understand the description of the socket components in the Delphi Help file, and also to
read along with the description of the examples in the book, you need to be confident with
several terms related to the Internet in general and with sockets in particular.

The heart of the Internet is the Transmission Control Protocol/Internet Protocol (TCP/IP
for short), a combination of two separate protocols that work together to provide connection
over the Internet (and can also provide connection over a private intranet). In brief, IP is
responsible for defining and routing the datagrams (Internet transmission units) and specifying
the addressing scheme. TCP is responsible for higher-level transport services.

Configuring a Local Network: IP Addresses
If you have a local network available, you’ll be able to test the following programs on it;
otherwise, you can simply use the same computer as client and server. In this case, as I’ve

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 912

http://www.sybex.com

913

done in the examples, use the address 127.0.0.1 (or localhost), which is invariably the address
of the current computer. If your network is complex, ask your network administrator to set
up proper IP addresses for you. If you want to set up a simple network with a couple of spare
computers, you can simply set up the IP address yourself, a 32-bit number usually repre-
sented with each of its four components (called octets) separated by dots. These numbers have
a complex logic underneath them, with the first octet indicating the class of the address.

Specific IP addresses are actually reserved for unregistered internal networks. Internet
routers will ignore these address ranges, so you can freely do your tests without interfering
with an actual network. For example, the “free” IP address range 192.168.0.0 through
192.168.0.255 can be used for experiments on a network of fewer than 255 machines.

Local Domain Names
How does the IP address map to a name? On the Internet, the client program looks up the
values on a domain name server. But it is also possible to have a local hosts file, a text file that
you can easily edit to provide nice local mappings. You can take a look at the HOSTS.SAM file
(installed in a subdirectory of the Windows directory) to see a sample and then eventually
rename the file as HOSTS, without the extension, to activate local host mapping.

Should you use an IP or a hostname in your programs? Hostnames are easier to remember
and won’t require a change if the IP address changes (for whatever reason). On the other
hand, IP addresses don’t require any resolution, while hostnames must be resolved (a time-
consuming operation if the lookup takes place on the Web).

TCP Ports
Each TCP connection takes place though a port, which is represented by a 16-bit number.
The IP address and the TCP port together specify an Internet connection, or a socket (to use
a more precise term). Different processes running on the same machine cannot use the same
socket—the same port.

Some TCP ports have a standard usage for specific high-level protocols and services. In
other words, you should use those port numbers when implementing those services and stay
away from them in any other case. Here is a short list:

Protocol Port

HTTP (Hypertext Transfer Protocol) 80

FTP (File Transfer Protocol) 21

SMTP (Simple Mail Transfer Protocol) 25

POP3 (Post Office Protocol, version 3) 110

Telnet 23

Foundations of Socket Programming

2874c21.qxd 7/2/01 2:36 PM Page 913

http://www.sybex.com

914

The Services file (another text file similar to the Hosts file) lists the standard ports used by
services. You can add your own entry to the list, giving your service a name of your own
choosing. Client sockets always specify the port number or the service name of the server
socket to which they want to connect.

High-Level Protocols
I’ve used the term protocol many times now, but what does it mean exactly? A protocol is a set
of rules the client and server agree upon to determine the communication flow. The low-
level Internet protocols, such as TCP/IP, are usually implemented by an operating system.
But the term protocol is also used for high-level Internet standard protocols (such as HTTP,
FTP, or SMTP). These protocols are defined in standard documents available on the Web
on the site of the Internet Engineering Task Force (www.ietf.org).

If you want to implement a custom communication, you can define your own (possibly
simple) protocol, a set of rules determining which request the client can send to the server
and how the server can respond to the various possible requests. We’ll see an example of a
custom protocol later on. Transfer protocols are at a higher level than transmission proto-
cols, because they abstract from the transport mechanism provided by TCP/IP. This makes
the protocols independent not only from the operating system and the hardware but also
from the physical network.

Socket Connections
How do you start communication through a socket? The server program starts running first,
but it simply waits for a request from a client. The client program requests a connection indi-
cating the server it wishes to connect to. When the client sends the request, the server can
accept the connection, starting a specific server-side socket, which connects to the client-side
socket.

To support this model, there are three different types of socket connections:

• Client connections are initiated by the client and connect a local client socket with a
remote server socket. Client sockets must describe the server they want to connect to,
by providing either its hostname or IP address and its port.

• Listening connections are passive server sockets waiting for a client. Once a client makes a
new request, the server spawns a new socket devoted to that specific connection and
then gets back to listening. Listening server sockets must indicate the port that repre-
sents the service they provide. (In fact, the client is going to connect through that port.)

• Server connections are the connections activated by servers, as they accept a request from
a client.

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 914

http://www.sybex.com

915

These different types of connections are important only for establishing the link from the
client to the server. Once the link is established, both sides are free to make requests and to
send data to the other side.

Delphi Socket Components
Delphi 6 ships with three sets of socket components you can use to read and write information
over a TCP/IP connection. The Internet page of the palette hosts the ClientSocket and Server-
Socket components (already available in Delphi 5) plus the new TcpClient and TcpServer com-
ponents (also available in Kylix). To these native Borland sockets, the Indy components add the
IdTCPClient and the IdTCPServer components. These three sets of components have very
similar features, which depend on the underlying protocol. There are technical differences, of
course, and platform issues, which can determine your choice.

Host and Port
To use a socket component, you must provide a host and a service. On the server side the
host is the address of the current computer; on the client side you can indicate either a
domain name or an IP address. The ClientSocket component uses two different properties
for these settings (Host and Address), while the TcpClient component and the IdTCPClient
component use a single string property and can determine whether it is a hostname or an
address by looking at its content (the property is called RemoteHost and Host, respectively).

Similarly the service is indicated with the Port property or the Service property, in a
ClientSocket, and with the single RemotePort string in a TcpClient and with the single
numeric Port in an IdTCPClient. The respective servers determine their listening port using
analogous properties (called Port, LocalPort, and DefaultPort in the three components).

NOTE The Indy server sockets allow binding to multiple IP addresses and/or ports, using the Bind-
ings collection.

Blocking, Nonblocking, and Multithreaded Connections
When working with sockets in Windows, multiple approaches are possible. Reading data
from a socket or writing to it can happen asynchronously, so that it does not block the execu-
tion of other code in your network application. This is called a nonblocking connection. Non-
blocking connections read and write asynchronously: the Windows socket support basically
sends a message when data is available. Using the ClientSocket and ServerSocket compo-
nents, for example, the system fires the OnRead or OnWrite events of the client, and the

Delphi Socket Components

2874c21.qxd 7/2/01 2:36 PM Page 915

http://www.sybex.com

916

OnClientRead or OnClientWrite events of servers inform your socket when the other end of
the connection tries to read or write some data.

As an alternative to the asynchronous approach, you can also use blocking connections, where
your application waits for the reading or writing to be completed before executing the next
line of code. In this case, you have to write the code in sequence on both sides, because other-
wise the events won’t be triggered. When using a blocking connection, you must use a thread
on the server, and you’ll generally use a thread also on the client.

The Indy components use an in-between approach. They use blocking connections exclu-
sively, and you can either place their code in a thread or use a special helper component
(IdAntiFreeze). Using blocking connections for implementing a protocol has the advantage
of simplifying the program logic, because you don’t have to use the state-machine approach
of nonblocking connections, as exemplified later.

Finally, when writing threaded code with the ServerSocket components working on a
blocking connection, you can use the TWinSocketStream class to do the actual reading and
writing operations. You can use the WaitForData method of the TWinSocketStream class to
wait until the socket on the other end is ready to write. You can also create the socket stream
class and specify a timeout value, so that if the connection is lost, it won’t hang forever.

Using Sockets
After all that theory, let’s take a look at a couple of examples. The first is the Sock1 program
on the companion CD and is made of the Server1 and Client1 applications, built with the
ClientSocket and ServerSocket components in nonblocking mode. The server has a form
with the following component:

oobbjjeecctt ServerSocket1: TServerSocket
Active = True
Port = 50
ServerType = stNonBlocking
OnClientConnect = ServerSocket1ClientConnect
OnClientDisconnect = ServerSocket1ClientDisconnect
OnClientRead = ServerSocket1ClientRead

eenndd

All the code of the application relates to the events of this component, as the program pro-
vides no specific interaction with the user. However, the server has three list boxes for out-
putting the status, the messages sent from the client, and a log of the events. For example, as
a client connects, the server adds the client address to the log:

pprroocceedduurree TForm1.ServerSocket1ClientConnect(Sender: TObject;
Socket: TCustomWinSocket);

bbeeggiinn

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 916

http://www.sybex.com

917

lbLog.Items.Add (‘Connected: ‘ + Socket.RemoteHost + ‘ (‘ +
Socket.RemoteAddress + ‘)’);

PostMessage (Handle, wm_RefreshClients, 0, 0);
eenndd;

Notice that the OnClientConnect event indicates the first occasion for the server to
know about the connected client. Using the Socket property, which refers to the low-level
TCustomWinSocket, the server can track who is trying to connect. At the end of this and
other events, I want to update the list of the connections, using the ActiveConnections
property of the server. However, in the OnClientConnect event handler, this list is still not
updated, so I post a message to the form to delay the operation:

ccoonnsstt
wm_RefreshClients = wm_User;

pprroocceedduurree TForm1.RefreshClients; // message wm_RefreshClients
vvaarr
I: Integer;

bbeeggiinn
lbClients.Clear;
ffoorr I := 0 ttoo ServerSocket1.Socket.ActiveConnections - 1 ddoo
wwiitthh ServerSocket1.Socket.Connections [I] ddoo
lbClients.Items.Add (RemoteAddress + ‘ (‘ + RemoteHost + ‘)’);

eenndd;

Similar code is executed as the client disconnects from the server:
pprroocceedduurree TForm1.ServerSocket1ClientDisconnect(Sender: TObject;
Socket: TCustomWinSocket);

bbeeggiinn
lbLog.Items.Add (‘Disconnected: ‘ + Socket.RemoteHost + ‘ (‘ +
Socket.RemoteAddress + ‘)’);

PostMessage (Handle, wm_RefreshClients, 0, 0);
eenndd;

Finally, as the client sends some information to the server (writes to the socket), the server
can read the message by calling the ReceiveText function. You should do this read operation
only when there is some data available—that is, when the OnClientRead event is fired. Notice
also that this is a destructive read: the information extracted from the stream is removed from
it. Here is the code:

pprroocceedduurree TForm1.ServerSocket1ClientRead(Sender: TObject;
Socket: TCustomWinSocket);

bbeeggiinn
// read from the client

Delphi Socket Components

2874c21.qxd 7/2/01 2:36 PM Page 917

http://www.sybex.com

918

lbMsg.Items.Add (Socket.RemoteHost + ‘: ‘ + Socket.ReceiveText);
eenndd;

Now we can move to the client side of the application, which has a form hosting a client-
socket component with the following properties:

oobbjjeecctt ClientSocket1: TClientSocket
Active = False
Address = ‘127.0.0.1’
ClientType = ctNonBlocking
Port = 50
OnConnect = ClientSocket1Connect
OnDisconnect = ClientSocket1Disconnect

eenndd

The client form is more interactive. It has two edit boxes and a check box. In the first edit
box, you can type the address of the server you want to connect to (to replace the default
value listed above), using the check box to activate or deactivate the socket connection:

pprroocceedduurree TForm1.cbActivateClick(Sender: TObject);
bbeeggiinn
iiff nnoott ClientSocket1.Active tthheenn
ClientSocket1.Address := EditServer.Text;

ClientSocket1.Active := cbActivate.Checked;
eenndd;

As you connect or disconnect, the program simply updates the caption of the form. In the
second edit box, you can type a message to send to the server and a button you can press to
send the message:

pprroocceedduurree TForm1.btnSendClick(Sender: TObject);
bbeeggiinn
ClientSocket1.Socket.SendText (EditMsg.Text);

eenndd;

Notice that this example program doesn’t check whether the connection is active before
using it, which can result in errors. In Figure 21.1, you can see an example of the client and
the server. As the server indicates, a second copy of the client application is running on
another computer and is connected to it.

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 918

http://www.sybex.com

919

Using Sockets with a Custom Protocol
Unless you want to send and receive only simple text messages, you might want to define
some communication rules between the client and the server. A set of communication rules is
generally indicated as a protocol. Basically, the server can receive different requests and,
depending on the type of request and whether it can be accomplished, reply to the client.

The server program of the Sock2 example accepts four types of requests: the listing of a
directory, a bitmap file, a text file, and the execution of a program on the server. When the
server sends back a file, its reply should indicate both what it is going to send back and the
actual information. The only method modified from the Sock1 example is the Server-
Socket1ClientRead procedure, which starts by extracting the five initial characters of the text
received by the client that host the command:

strCommand := Socket.ReceiveText;
lbLog.Items.Add (‘Client: ‘ + Socket.RemoteAddress + ‘: ‘ + strCommand);
// extract the file name (all commands have 5 characters)
strFile := Copy (strCommand, 6, Length (strCommand) - 5);

The actual code depends on the initial command defined by the protocol (in this case
either EXEC! to execute a file on the server, TEXT! to return a text file, BITM! to retrieve a
bitmap file, or LIST! to return a directory listing). Here is the code for two of these four
alternatives:

// send back a text file
iiff Pos (‘TEXT!’, strCommand) = 1 tthheenn
bbeeggiinn

F I G U R E 2 1 . 1 :
The client and server appli-
cations of the Sock1 exam-
ple, demonstrating the use
of the socket components

Delphi Socket Components

2874c21.qxd 7/2/01 2:36 PM Page 919

http://www.sybex.com

920

iiff FileExists (strFile) tthheenn
bbeeggiinn
strFeedback := ‘TEXT!’;
Socket.SendText (strFeedback);
Socket.SendStream (TFileStream.Create (strFile,
fmOpenRead oorr fmShareDenyWrite));

eenndd
eellssee
bbeeggiinn
strFeedback := ‘ERROR’ + strFile + ‘ not found’;
Socket.SendText (strFeedback);

eenndd;
eenndd
// send back a directory listing
eellssee iiff Pos (‘LIST!’, strCommand) = 1 tthheenn
bbeeggiinn
iiff DirectoryExists (strFile) tthheenn
bbeeggiinn
strFeedback := ‘LIST!’;
Socket.SendText (strFeedback);
FileListBox1.Directory := strFile;
Socket.SendText (FileListBox1.Items.Text);

eenndd
eellssee
bbeeggiinn
strFeedback := ‘ERROR’ + strFile + ‘ not found’;
Socket.SendText (strFeedback);

eenndd;
eenndd
eellssee
bbeeggiinn
strFeedback := ‘ERROR’ + ‘Undefined command: ‘ + strCommand;
Socket.SendText (strFeedback);

eenndd;

For the directory listings, I’ve used an invisible FileListBox component. For sending back
the text file, I’ve used the SendStream method, creating a new stream on the fly. The advan-
tage is that there is no need to destroy the temporary stream, as the SendStream method
becomes the owner of the stream and destroys it when it is done.

The program sends back multiple pieces of information one after the other. This will create
a few problems on the client side, as all the information is received in a single stream. How-
ever, the server responds with a five-character header that we can use to determine the con-
tent of the rest of the stream. After receiving these headers, the client application sets a status
field so that it knows which type of information is coming next. In other words, in the client

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 920

http://www.sybex.com

921

program, we implement a very simple finite-state machine, a typical technique for socket pro-
gramming. The client application has five possible states, listed in an enumerated type:

ttyyppee
TCliStatus = (csIdle, csList, csBitmap, csText, csError);

This type is used for the CliStatus field of the form. The form has two edit boxes refer-
ring to a directory or a file a user can request from the server. When the user presses the Get
Dir button, the client program passes to the server the name of the directory indicated by the
first edit box. The server will return a list of files, which the client program saves in a list box.
At this point, the user can select one of the files from the list box, and the client program will
copy it, along with the complete path, into the second edit box. The text of this second edit
box is used by the other three buttons—Exec, Bitmap, and Text—which send further requests
to the server. In Figure 21.2, you can see an example of the main form of the client program
after a directory has been retrieved.

The core of the program is in the ClientSocket1Read method, triggered by the socket
when there is data to read. The method is first used to get the header indicating which type
of data is reaching the program and to set the client program to the proper status:

ccaassee CliStatus ooff
// look for data to receive
csIdle:
bbeeggiinn
Socket.ReceiveBuf (Buffer, 5);
strIn := Copy (Buffer, 1, 5);
iiff strIn = ‘TEXT!’ tthheenn
CliStatus := csText

eellssee iiff strIn = ‘BITM!’ tthheenn
CliStatus := csBitmap

// .. and so on

F I G U R E 2 1 . 2 :
The form of the Client2
program after the server
has returned the list of the
files of a directory

Delphi Socket Components

2874c21.qxd 7/2/01 2:36 PM Page 921

http://www.sybex.com

922

Since we don’t retrieve all the data, the event is triggered again soon afterward, and this
time we are ready to get the actual data. Here are two more branches of the case statement:

// get a directory listing
csList:

bbeeggiinn
ListFiles.Items.Text := Socket.ReceiveText;
cliStatus := csIdle;

eenndd;
// read a bitmap file
csBitmap:

wwiitthh TFormBmp.Create (Application) ddoo
bbeeggiinn
Stream := TMemoryStream.Create;
Screen.Cursor := crHourglass;
ttrryy
wwhhiillee True ddoo
bbeeggiinn
nReceived := Socket.ReceiveBuf (Buffer, sizeof (Buffer));
iiff nReceived <= 0 tthheenn
Break

eellssee
Stream.Write (Buffer, nReceived);

// delay (200 milliseconds)
Sleep (200);

eenndd;
// reset and load the temporary file
Stream.Position := 0;
Image1.Picture.Bitmap.LoadFromStream (Stream);

ffiinnaallllyy
Stream.Free;
Screen.Cursor := crDefault;

eenndd;
Show;
cliStatus := csIdle;

eenndd;

For loading the bitmap, I simply move the data to a Buffer (declared as array [0..9999]
of Char) and then from the buffer to a memory stream, which is later loaded in the Image
component of the secondary form. Because the data flow can slow down, the program has a
hard-coded delay of 200 milliseconds every time some data is read. Unlike file-reading oper-
ations, the loop doesn’t stop when the data read is less than the data requested, but only when
no data is read. (In case of error, the value returned by the ReceiveBuff method is –1.)

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 922

http://www.sybex.com

923

Sending Database Data over a Socket Connection
Using the techniques we’ve seen so far, we can write an application that moves database
records over a socket. The idea will be to write a front end for data input and a back end for
data storage. The client application will have a simple data-entry form and use a database
table with string fields for Company, Address, State, Country, Email, and Contact, and a
floating-point field for the company ID (called CompID).

NOTE Moving database records over a socket is exactly what you can do with DataSnap and a socket
connection component, or with the SOAP support built into Delphi 6 and discussed in Chapter 23,
“XML and SOAP.”

The client program I’ve come up with works on a table with this structure saved in the cur-
rent directory. (You can see the related code in the OnCreate event handler.) The core method
on the client side is the handler of the OnClick event of the Send All button, which sends all
the new records to the server. The new records are determined by looking to see whether the
record has a valid value for the CompID field. This field, in fact, is not set up by the user but
is determined by the server application when the data is sent.

For all new records, the client program packages the field information in a string list, using
the structure FieldName=FieldValue, obtained using the Values property of the string list. The
string corresponding to the entire list is then sent to the server. At this point, the program
stops in an apparently infinite loop:

// save database data in a string list
Data := TStringList.Create;
table1.First;
wwhhiillee nnoott Table1.Eof ddoo
bbeeggiinn
// if the record is still not logged
iiff Table1CompID.IsNull oorr (Table1CompId.AsInteger = 0) tthheenn
bbeeggiinn
lbLog.Items.Add (‘Sending ‘ + Table1Company.AsString);
Data.Clear;
// create strings with structure “FieldName=Value”
ffoorr I := 0 ttoo Table1.FieldCount - 1 ddoo
Data.Values [Table1.Fields[I].FieldName] := Table1.Fields [I].AsString;

// send the record
ClientSocket1.Socket.SendText (Data.Text);
// wait for response
fWaiting := True;
wwhhiillee fWaiting ddoo
Application.ProcessMessages;

eenndd;
Table1.Next;

eenndd;

Delphi Socket Components

2874c21.qxd 7/2/01 2:36 PM Page 923

http://www.sybex.com

924

The program waits forever … or until the handler of another message sets the fWaiting
field of the form to False. This happens when the server sends some feedback indicating that
the record was received or when the user presses the Stop button. The btnSendAllClick
method automatically connects to the server at the beginning and disconnects at the end.

Now let us look at the server. This program has a database table, again stored in the local
directory, with two new fields added to the client application’s table: LoggedBy, a string field;
and LoggedOn, a data field. The values of the two extra fields are determined automatically
by the server as it receives data, along with the value of the CompID field. All these opera-
tions are done in the ServerSocket1ClientRead method after unpacking the data received by
the client:

// read from the client
strCommand := Socket.ReceiveText;
// reassemble the data
Data := TStringList.Create;
ttrryy
Data.Text := strCommand;
// new record
Table1.Insert;
// set the fields using the strings
ffoorr I := 0 ttoo Table1.FieldCount - 1 ddoo
Table1.Fields [I].AsString := Data.Values [Table1.Fields[I].FieldName];

// complete with random ID, sender, and date
Table1CompID.AsInteger := GetTickCount;
Table1LoggedBy.AsString := Socket.RemoteAddress;
Table1LoggetOn.AsDateTime := Date;
Table1.Post;
// get the value to return
strFeedback := Table1CompID.AsString;
// send results back
lbLog.Items.Add (strFeedback);
Socket.SendText (strFeedback);

ffiinnaallllyy
Data.Free;

eenndd;

Except for the fact that some data might be lost, there is no problem when fields have a
different order and if they do not match, because the data is stored in the FieldName=Field-
Value structure. After receiving all the data and posting it to the local table, the server sends
back the company ID to the client. The client program, after sending the record, goes into
waiting mode, a situation modified by receiving feedback from the server:

pprroocceedduurree TForm1.ClientSocket1Read(Sender: TObject;
Socket: TCustomWinSocket);

bbeeggiinn
iiff fWaiting tthheenn
bbeeggiinn
Table1.Edit;

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 924

http://www.sybex.com

925

Table1CompId.AsString := Socket.ReceiveText;
Table1.Post;
lbLog.Items.Add (Table1Company.AsString + ‘ logged as ‘ +
Table1CompId.AsString);

fWaiting := False;
eenndd;

eenndd;

When receiving feedback, the client program saves the company ID, which marks the
record as sent. If the user modifies the record, there is no way to send an update to the server.
To accomplish this, you might add a modified field to the client database table and make the
server check to see if it is receiving a new field or a modified field. With a modified field, the
server should not add a new record but update the existing one.

This is one of the many additions you can make to the program, to make it usable in a real-
world environment. The existing code of the program and the previous examples on sockets
should provide all you need to complete a similar task. I’ve limited myself to this version of
the application, as shown in Figure 21.3. Notice that the server program has two pages, one
with the usual log and the other with a DBGrid showing the current data of the server data-
base table.

F I G U R E 2 1 . 3 :
The client and server
programs of the database
socket example (DbSock)

Delphi Socket Components

2874c21.qxd 7/2/01 2:36 PM Page 925

http://www.sybex.com

926

Working with Blocking Sockets and Threads
A program like the one I’ve just built is nice, but it won’t really scale up on a large system,
because the server uses a blocking connection and the requests are processed in sequence.
Now, even if making the database-related code multithreading wouldn’t be easy, I’ll take the
excuse of this example to show you how to build a program based on blocking sockets and
threads. (If you don’t know much about threads, read the sidebar “Working with Threads”
before proceeding.)

Working with Threads
Win32 has an API to allow two procedures or methods execute at the same time. Delphi pro-
vides a TThread class that will let us create and control threads. The first thing to know about
the TThread class is that you never use it directly, because it is an abstract class—a class with a
virtual abstract method. To use threads, you always subclass TThread (optionally starting with
the Thread Object of the New Items dialog box (File ➢ New ➢ Other) and use the features of
this base class.

The TThread class has a constructor with a single parameter (CreateSuspended) that lets you
choose whether to start the thread immediately or suspend it until later. There are also some
public synchronization methods:

pprroocceedduurree Resume;

pprroocceedduurree Suspend;

ffuunnccttiioonn Terminate: Integer;

ffuunnccttiioonn WaitFor: Integer;

The published properties include Priority, Suspended, and two read-only, low-level values:
Handle and ThreadID. The class also provides a protected interface, which includes two key
methods for your thread subclasses:

pprroocceedduurree Execute; vviirrttuuaall;; aabbssttrraacctt;

pprroocceedduurree Synchronize(Method: TThreadMethod);

The Execute method, declared as a virtual abstract procedure, must be redefined by each
thread class. It contains the main code of the thread, the code you would typically place in
a thread function when using the Windows API.

The Synchronize method is used to avoid concurrent access to VCL components. The VCL
code runs inside the main thread of the program, and you need to synchronize access to VCL to
avoid reentry problems (errors from reentering a function before a previous call is completed)
and concurrent access to shared resources. The only parameter of Synchronize is a method
that accepts no parameters, typically a method of the same thread class. As you cannot pass
parameters to this method, it is common to save some values within the data of the thread
object in the Execute method and use those values in the synchronized methods.

Chapter 21 • Internet Programming: Sockets and Indy Components

Continued on next page

2874c21.qxd 7/2/01 2:36 PM Page 926

http://www.sybex.com

927

Another way to avoid conflicts is to use the synchronization techniques offered by the operat-
ing system. The SyncObjs unit defines VCL classes for some of these low-level synchronization
objects: events (with the TEvent class and the TSingleEvent class) and critical sections (with
the TCriticalSection class).

In the server program (see the SockDbThread example on the companion CD), the socket
component now has a thread-blocking type and has handlers for many events, including in
particular OnGetThread. No methods are hooked to the read and write events, as they won’t
be triggered anymore (they are used exclusively by message-based nonblocking sockets):

oobbjjeecctt ServerSocket1: TServerSocket
Active = True
Port = 51
ServerType = stThreadBlocking
OnAccept = ServerSocket1Accept
OnGetThread = ServerSocket1GetThread
OnClientConnect = ServerSocket1ClientConnect
OnClientDisconnect = ServerSocket1ClientDisconnect

eenndd

The OnAccept, OnClientConnect, and OnClientDisconnect event handlers are used only
for logging information to the screen, while the OnGetThread event handler has a key role of
creating the server-side thread object:

pprroocceedduurree TForm1.ServerSocket1GetThread(Sender: TObject; ClientSocket:
TServerClientWinSocket; vvaarr SocketThread: TServerClientThread);

bbeeggiinn
lbLog.Items.Add(‘GetThread: ‘ + ClientSocket.RemoteHost + ‘ (‘ +
ClientSocket.RemoteAddress + ‘)’);

SocketThread := TDbServerThread.Create(False, ClientSocket);
eenndd;

This must be an object of a class inherited by the specific TServerClientThread class
(not the generic Delphi TThread class) and with its core code placed in an overridden
ClientExecute method (not the generic Execute method):

ttyyppee
TDbServerThread = ccllaassss(TServerClientThread)
pprriivvaattee
strCommand: string;
strFeedback: string;

ppuubblliicc
pprroocceedduurree ClientExecute; oovveerrrriiddee;
pprroocceedduurree Log;
pprroocceedduurree LogFeedback;

Delphi Socket Components

2874c21.qxd 7/2/01 2:36 PM Page 927

http://www.sybex.com

928

pprroocceedduurree AddRecord;
eenndd;

pprroocceedduurree TDbServerThread.ClientExecute;
vvaarr
Stream: TWinSocketStream;
Buffer, strIn: string;
nRead: Integer;

bbeeggiinn
// keep going
Stream := TWinSocketStream.Create(ClientSocket, 5000);
ttrryy
wwhhiillee nnoott Terminated aanndd ClientSocket.Connected ddoo
bbeeggiinn
// initialize (thread might be reused)
Buffer := ‘’;
strIn := ‘’;
SetLength(Buffer, 64);
rreeppeeaatt
nRead := Stream.Read(Buffer[1], 64);
iiff nRead = 0 tthheenn
bbeeggiinn
ClientSocket.Close;
Break;

eenndd;
SetLength (Buffer, nRead);
StrIn := StrIn + Buffer;

uunnttiill (Pos(#10#13’.’#10#13, Buffer) > 0);

iiff strIn = ‘’ tthheenn
Continue // keep going

eellssee
bbeeggiinn
// handle the request, if anything arrived
StrCommand := Copy (strIn, 1, Pos (#10#13’.’#10#13, strIn) -1);
Synchronize(Log);
Synchronize(AddRecord);
// send results back
Synchronize(LogFeedback);
Stream.Write(strFeedback[1], Length (strFeedback));

eenndd;;
eenndd;;

ffiinnaallllyy
Stream.Free;

eenndd;;
eenndd;;

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 928

http://www.sybex.com

929

The server reads data from the client and sends the feedback using a TWinSocketStream, a
compulsory approach for blocking servers. The thread is kept active, as it can be reused for
subsequent calls, and reads from a buffer until it find a specific separator (in this case, a dot
between two line separators, exactly as occurs in the SMTP protocol). When the data is
received, the server does a synchronized call to the AddRecord method, which is similar to the
code of the previous version of the example.

WARNING This approach is far from perfect, as all database accesses are serialized, but you could solve
the problem by moving the database access component within the thread and adding a Ses-
sion object in case of a BDE application. Not all databases like multithreaded access, though,
so serializing the calls is not always a bad idea.

This is the multithreaded server application. The client program, instead, uses a standard
thread class, derived from TThread. The class creates a client server object internally, so that
multiple threads could spawn multiple socket connections in parallel (something the pro-
gram doesn’t really use) and receives a table to work on as parameter in the constructor:

ttyyppee
TLogEvent = pprroocceedduurree(Sender: TObject; LogMsg: String) ooff oobbjjeecctt;

TSendThread = ccllaassss(TThread)
pprriivvaattee
ClientSocket: TClientSocket;
FTable: TTable;
FOnLog: TLogEvent;
FLogMsg: String;
pprroocceedduurree SetOnLog(const Value: TLogEvent);

pprrootteecctteedd
pprroocceedduurree Execute; override;
pprroocceedduurree DoLog;

ppuubblliicc
ccoonnssttrruuccttoorr Create(ATable: TTable);
pprrooppeerrttyy OnLog: TLogEvent rreeaadd FOnLog wwrriittee SetOnLog;

eenndd;

On the client side, the finite-state machine logic (send, set the wait flag, receive another
event, disable the flag, get the next record) is now replaced by a continual and more logical
flow of operations, all part of the Execute method of the thread. You need to add some code
to let the program wait until the server sends a reply. Again, the blocking socket of the client
is not used directly but via a TWinSocketStream object:

pprroocceedduurree TSendThread.Execute;
vvaarr
I: Integer;
Data: TStringList;

Delphi Socket Components

2874c21.qxd 7/2/01 2:36 PM Page 929

http://www.sybex.com

930

Stream: TWinSocketStream;
Buf: String;

bbeeggiinn
ttrryy
Data := TStringList.Create;
ClientSocket := TClientSocket.Create (nniill);
Stream := nniill;
ttrryy
ClientSocket.Address := EditServer.Text;
ClientSocket.ClientType := ctBlocking;
ClientSocket.Port := 51;
ClientSocket.Active := True;
Stream := TWinSocketStream.Create(ClientSocket.Socket, 30000);

FTable.First;
wwhhiillee nnoott FTable.Eof ddoo
bbeeggiinn
// if the record is still not logged
iiff FTable.FieldByName(‘CompID’).IsNull oorr
(FTable.FieldByName(‘CompID’).AsInteger = 0) tthheenn

bbeeggiinn
FLogMsg := ‘Sending ‘ + Table.FieldByName(‘Company’).AsString;
Synchronize(DoLog);
Data.Clear;
// create strings with structure “FieldName=Value”
ffoorr I := 0 to FTable.FieldCount - 1 ddoo
Data.Values [FTable.Fields[I].FieldName] :=
FTable.Fields [I].AsString;

// send the record followed by separator
Buf := Data.Text + #10#13’.’#10#13;
ClientSocket.Socket.SendText(Buf);
// wait for reponse
iiff Stream.WaitForData(30000) tthheenn
bbeeggiinn
FTable.Edit;
SetLength(Buf, 256);
SetLength(Buf, Stream.Read(Buf[1], Length(Buf)));
FTable.FieldByName(‘CompID’).AsString := Buf;
FTable.Post;
FLogMsg := FTable.FieldByName(‘Company’).AsString +
‘ logged as ‘ + FTable.FieldByName(‘CompID’).AsString;

eenndd
eellssee
FlogMsg := ‘No response for ‘ +
FTable.FieldByName(‘Company’).AsString;

Synchronize(DoLog);
eenndd;

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 930

http://www.sybex.com

931

FTable.Next;
eenndd;;

ffiinnaallllyy
ClientSocket.Active := False;
ClientSocket.Free;
Stream.Free;
Data.Free;

eenndd;;
eexxcceepptt
// trap exceptions

eenndd;;
eenndd;;

The thread also has an event handler to let the forms using it define the effect of the OnLog
operation, in the synchronized DoLog method. Finally, this is how the thread starts, when the
user clicks a button in the form:

pprroocceedduurree TForm1.Button2Click(Sender: TObject);
vvaarr
SendThread: TSendThread;

bbeeggiinn
SendThread := TSendThread.Create(Table1);
SendThread.OnLog := OnLog;
SendThread.Resume;

eenndd;

Internet Protocols
After discussing the low-level socket components, we are ready to delve into the core topic of
this chapter, the use of higher-level Internet protocols.

As already mentioned, Delphi 6 now ships with a collection of open-source Internet com-
ponents called Internet Direct, or Indy for short. The Indy components, previously called
WinShoes (a pun on the term WinSockets), are built by a group of developers led by Chad
Hower and are available also in Kylix. You can find more information and possibly updated
versions of the actual components at www.nevrona.com/indy.

The Indy components are available within the Delphi IDE, but they are not the only set of
Internet components. Delphi 6 Component Palette also has another page of Internet proto-
col components, the FastNet page. These are available for compatibility with Delphi 5 and
earlier versions. Third-party solutions, both freely available or for sale, also provide imple-
mentations of Internet protocols.

Internet Protocols

2874c21.qxd 7/2/01 2:36 PM Page 931

http://www.sybex.com

932

Here and in the next chapter, I’m going to focus exclusively on the Indy components. This
chapter focuses on the use of Internet protocols within Windows applications, while the next
shows examples of the use of these protocols within Web server applications.

Sending and Receiving Mail
Probably the most common operation you do on the Internet is to send and receive e-mail.
There is generally very little need to write a complete application to handle e-mail, as some
of the existing programs are actually rather complete. For this reason, I have no intention of
writing a general-purpose mail program here. You can find some examples of those among
Delphi Internet demos.

Other than creating a general-purpose mail application, what else can one do with the mail
components and protocols? There are many possibilities, which I’ve tried to group in two areas:

Automatic generation of mail messages An application you’ve written can have an About
box for sending a registration message back to your marketing department or a specific
menu item for sending a request to your tech support. You might even decide to enable a
tech-support connection whenever an exception occurs. Another related task would be
automating the dispatching of a message to a list of people or generating an automatic
message from your Web site, an example I’ll show you toward the end of this chapter.

Use of mail protocols for communication with users who are only occasionally online
When you must move data between users who are not always online, you can write an
application on a server to synchronize among them, and you can give each user a special-
ized client application for interacting with the server. An alternative is to use an existing
server application, such as a mail server, and write the two specialized programs based on
the mail protocols. The data sent over this connection will generally be formatted in spe-
cial ways, so you’ll want to use a specific e-mail addresses for these messages (not your pri-
mary e-mail address). As an example, you could rewrite the earlier DbSock example to
dispatch mail messages instead of using a custom socket connection. This will give you the
advantage of being firewall-friendly and allowing the server to be temporarily offline, as
the requests would be kept on the mail server.

Sending Messages with Your Mail Program
The simplest technique for automating the generation of an e-mail message is to use your
existing mail application, adding a message to its outbox. Using the ShellExecute API func-
tion, you can easily send a message to the default mail program registered on the computer.

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 932

http://www.sybex.com

933

To test this technique, I’ve prepared a simple form with two edit boxes and a memo for the
input. Pressing a button creates a string with all the information about the message and then
sends it, simply executing the string with the mailto: prefix. Here is the code of the Send but-
ton of the MailGen example from the companion CD:

uusseess
ShellApi;

pprroocceedduurree TForm1.BtnSendClick(Sender: TObject);
vvaarr
strMsg: string;
I: Integer;

bbeeggiinn
// set the basic information
strMsg := ‘mailto:’ + EditAddress.Text + ‘?Subject=’ + EditSubject.Text +
‘&Body=’;

// add first line
iiff Memo1.Lines.Count > 0 tthheenn
strMsg := strMsg + Memo1.Lines [0];

// add subsequent lines separated by the newline symbol
ffoorr I := 1 ttoo Memo1.Lines.Count - 1 ddoo
strMsg := strMsg + ‘%0D%0A’ + Memo1.Lines [I];

// send the message
ShellExecute (Handle, ‘open’, pChar (strMsg), ‘’, ‘’, SW_SHOW);

eenndd;

To show the body of the message on multiple lines, you can separate each line with the
carriage return and line feed characters (usually indicated in Delphi as #13 and #10). These
values should be explicitly added to the string in hexadecimal format and prefixed by the %
sign, as required by a URL. You can actually obtain this encoding automatically by using the
NMURL component.

NOTE You can also send mail with the TSendMail predefined action, which is based on the MAPI
standard.

Mail In and Out
To showcase the development of simple e-mail management programs, I could build an example
of how you can send and receive mail. The Indy components, though, include a rather complete
set of examples, and I don’t see any reason to duplicate those, as using the mail protocols means
placing a message component (IdMessage) in your application, filling it with data, and then
using the IdSMTP component to send the mail message. To retrieve a mail message from your
mailbox, use the IdPop3 component, which will return you an IdMessage object.

Sending and Receiving Mail

2874c21.qxd 7/2/01 2:36 PM Page 933

http://www.sybex.com
mailto:prefix

934

Just to give you an idea of how this works, I’ve written a program for sending mail to mul-
tiple people at once, using a list stored in an ASCII file. I originally used this program myself
for sending mail to people who sign up on my Web site, but later I extended the program by
adding database support and reading subscriber logs automatically. The original version of
the program is still a good introduction to the use of the SMTP component of Indy.

The SendList program keeps a list of names and e-mail addresses in a local file, which is
displayed in a list box. A few buttons allow you to add and remove items, or modify them by
removing the item, editing it, and then adding the item again. When the program closes, the
updated list is automatically saved. Now let’s get to the interesting portion of the program.
The top-most panel, shown in Figure 21.4, allows you to enter the subject, the sender
address, and the information used to connect to the mail server (hostname, username, and
eventually a password).

You’ll probably want to make the value of these edit boxes persistent, possibly in an INI
file. I haven’t done this, only because I don’t really want you to see my mail connection

F I G U R E 2 1 . 4 :
The SendList program in
action

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 934

http://www.sybex.com

935

details! The value of these edit boxes, along with the list of addressee, allows you to send the
series of mail messages, after customizing each of them, with the following code:

pprroocceedduurree TMainForm.BtnSendAllClick(Sender: TObject);
vvaarr
nItem: Integer;
Res: Word;

bbeeggiinn
Res := MessageDlg (‘Start sending from item ‘ +
IntToStr (ListAddr.ItemIndex) + ‘ (‘ +
ListAddr.Items [ListAddr.ItemIndex] + ‘)?’#13 +
‘(No starts from 0)’, mtConfirmation, [mbYes, mbNo, mbCancel], 0);

iiff Res = mrCancel tthheenn
Exit;

iiff Res = mrYes tthheenn
nItem := ListAddr.ItemIndex

eellssee
nItem := 0;

// connect
Mail.Host := eServer.Text;
Mail.UserID := eUserName.Text;
iiff ePassword.Text <> ‘’ tthheenn
bbeeggiinn
Mail.Password := ePassword.Text;
Mail.AuthenticationType := atLogin;

eenndd;
Mail.Connect;
// send the messages, one by one, prepending a custom message
ttrryy
// set the fixed part of the header
MailMessage.From.Name := eFrom.Text;
MailMessage.Subject := eSubject.Text;
MailMessage.Body.SetText (reMessageText.Lines.GetText);
MailMessage.Body.Insert (0, ‘Hello’);
wwhhiillee nItem < ListAddr.Items.Count ddoo
bbeeggiinn
// show the current selection
Application.ProcessMessages;
ListAddr.ItemIndex := nItem;
MailMessage.Body [0] := ‘Hello ‘ + ListAddr.Items [nItem];
MailMessage.Recipients.EMailAddresses := ListAddr.Items [nItem];
Mail.Send(MailMessage);
Inc (nItem);

eenndd;
ffiinnaallllyy // we’re done
Mail.Disconnect;

eenndd;;
eenndd;

Sending and Receiving Mail

2874c21.qxd 7/2/01 2:36 PM Page 935

http://www.sybex.com

936

Another interesting example of the use of the mail is to notify developers of problems
within applications, something you might want to use more in an internal application than in
one you’ll distribute widely. You can obtain this effect by modifying the ErrorLog example of
Chapter 4, “The Run-Time Library,” and sending mail when an exception (or one of a given
type only) occurs.

Working with HTTP
Handling mail messages is certainly interesting, and mail protocols are probably still the
most widespread Internet protocols. The other popular protocol is HTTP, the one used by
Web servers and Web browsers. This is the protocol to which we’ll devote the rest of this
chapter and all of the following.

On the client side of the Web, the main activity is browsing—reading HTML files. Besides
building a custom browser, you can embed the Internet Express ActiveX control within your
program (as I’ve done in WebDemo example in Chapter 20, “From Automation to COM+”).
You can also directly activate the browser installed on the computer of the user, for example,
opening an HTML page by calling the ShellExecute method (defined in the ShellApi unit):

ShellExecute (Handle, ‘open’, FileName, ‘’, ‘’, sw_ShowNormal);

Using ShellExecute, we can simply execute a document, such as a file. Windows will start
the program associated with the HTM extension, using the action passed as the parameter
(in this case, open). You can use a similar call to view a Web site, by using a string like
‘http://www.example.com’ instead of a filename. In this case, the system recognizes the http
section of the request as requiring a Web browser and launches it.

On the server side, you generate and make available the HTML pages. At times, it may be
enough to have a way to produce static pages, occasionally extracting new data from a data-
base table to update the HTML files as needed. In other cases, you’ll need to generate pages
dynamically based on a request from a user.

As a starting point, I’ll discuss HTTP by building a simple but complete client and server,
then we’ll move on to discussing HTML producer components and introducing the Web
server extension technologies (CGI and ISAPI). In the next chapter, we’ll move from this
“core technology” level to the RAD development style for the Web supported by Delphi 6,
discussing the WebBroker and WebSnap architectures.

Grabbing HTTP Content
As an example of the use of the HTTP protocols, I’ve decided to write a very specific search
application. The program simply hooks onto the Google Web site, searches for a keyword,

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 936

http://www.sybex.com
http://www.example.com%E2%80%99

937

and retrieves the first hundred sites found. Instead of showing the resulting HTML file, the
program parses it to extract only the URLs of the related sites to a list box. The description
of these sites is kept in a separate string list and is displayed as you click a list-box item. So
the program demonstrates two techniques at once: retrieving a Web page and parsing its
HTML code.

To demonstrate how you should work with blocking connections, such as those used by
Indy, I’ve implemented the program using a background thread for the actual processing.
(See the sidebar “Working with Threads,” earlier in this chapter, for a very short introduc-
tion to this topic.) This approach also gives the advantage of being able to start multiple
searches at once. The thread class used by the WebFind application receives as input a URL
to look for, strUrl.

The class has two output procedures, AddToList and ShowStatus, to be called inside the
Synchronize method. The code of these two methods sends some results or some feedback to
the main form, respectively adding a line to the listbox and changing the status bar SimpleText
property. The key method of the thread is the Execute method. Before we look at it, however,
let me show you how the thread is activated by the main form:

ccoonnsstt
strSearch = ‘http://www.google.com/search?as_q=’;

pprroocceedduurree TForm1.BtnFindClick(Sender: TObject);
vvaarr
FindThread: TFindWebThread;

bbeeggiinn
// create suspended, set initial values, and start
FindThread := TFindWebThread.Create (True);
FindThread.FreeOnTerminate := True;
// grab the first 100 entries
FindThread.strUrl := strSearch + EditSearch.Text +’&num=100’;
FindThread.Resume;

eenndd;

The URL string is made of the main address of the search engine, followed by some para-
meters. The first, as_q, indicates the words you are looking for. The second, num=100, indi-
cates the number of sites to retrieve; you cannot use numbers at will but are limited to few
alternatives, with 100 being the largest possible value.

WARNING The WebFind program works with the server on the Google Web site at the time this book
was written and tested. The custom software on the site can change any day, however, which
might prevent WebFind from operating correctly.

Working with HTTP

2874c21.qxd 7/2/01 2:36 PM Page 937

http://www.sybex.com
http://www.google.com/search?as_q=%E2%80%99%00

938

The Execute method of the thread, activated by the Resume call, simply calls the two meth-
ods actually doing the work and shown in Listing 21.1. In the first, GrabHtml, the program
connects to the HTTP server using a dynamically created IdHttp component, and reads the
HTML with the result of the search. The second method, HtmlToList, extracts the URLs
referring to other Web sites from the result, the strRead string.

➲ Listing 21.1: The TFindWebThread class (of the WebFind program)

uunniitt FindTh;

iinntteerrffaaccee

uusseess
Classes, IdComponent, SysUtils, IdHTTP;

ttyyppee
TFindWebThread = class(TThread)
pprrootteecctteedd
Addr, Text, Status: string;
pprroocceedduurree Execute; oovveerrrriiddee;
pprroocceedduurree AddToList;
pprroocceedduurree ShowStatus;
pprroocceedduurree GrabHtml;
pprroocceedduurree HtmlToList;
pprroocceedduurree HttpWork (Sender: TObject; AWorkMode: TWorkMode;
ccoonnsstt AWorkCount: Integer);

ppuubblliicc
strUrl: string;
strRead: string;

eenndd;

iimmpplleemmeennttaattiioonn

{ TFindWebThread }

uusseess
WebFindF;

pprroocceedduurree TFindWebThread.AddToList;
bbeeggiinn
iiff Form1.ListBox1.Items.IndexOf (Addr) < 0 tthheenn
bbeeggiinn
Form1.ListBox1.Items.Add (Addr);
Form1.DetailsList.Add (Text);

eenndd;;
eenndd;;

pprroocceedduurree TFindWebThread.Execute;
bbeeggiinn

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 938

http://www.sybex.com

939

GrabHtml;
HtmlToList;
Status := ‘Done with ‘ + StrUrl;
Synchronize (ShowStatus);

eenndd;

pprroocceedduurree TFindWebThread.GrabHtml;
vvaarr
Http1: TIdHTTP;

bbeeggiinn
Status := ‘Sending query: ‘ + StrUrl;
Synchronize (ShowStatus);
Http1 := TIdHTTP.Create (nniill);
ttrryy
Http1.OnWork := HttpWork;
strRead := Http1.Get (StrUrl);

ffiinnaallllyy
Http1.Free;

eenndd;
eenndd;

pprroocceedduurree TFindWebThread.HtmlToList;
vvaarr
strAddr, strText: string;
nText: integer;
nBegin, nEnd: Integer;

bbeeggiinn
Status := ‘Elaborating data for: ‘ + StrUrl;
Synchronize (ShowStatus);
strRead := LowerCase (strRead);
rreeppeeaatt
// find the initial part HTTP reference
nBegin := Pos (‘href=http’, strRead);
iiff nBegin <> 0 tthheenn
bbeeggiinn
// get the remaining part of the string, starting with ‘http’
strRead := Copy (strRead, nBegin + 5, 1000000);
// find the end of the HTTP reference
nEnd := Pos (‘>’, strRead);
strAddr := Copy (strRead, 1, nEnd - 1);
// move on
strRead := Copy (strRead, nEnd + 1, 1000000);
// add the URL if ‘google’ is not in it
iiff Pos (‘google’, strAddr) = 0 tthheenn
bbeeggiinn
nText := Pos (‘’, strRead);
strText := copy (strRead, 1, nText - 1);
// remove cached references and duplicates
iiff (Pos (‘cached’, strText) = 0) tthheenn
bbeeggiinn
Addr := strAddr;

Working with HTTP

2874c21.qxd 7/2/01 2:36 PM Page 939

http://www.sybex.com

940

Text := strText;
AddToList;

eenndd;
eenndd;

eenndd;
uunnttiill nBegin = 0;

eenndd;

pprroocceedduurree TFindWebThread.HttpWork(Sender: TObject; AWorkMode: TWorkMode;
ccoonnsstt AWorkCount: Integer);

bbeeggiinn
Status := ‘Received ‘ + IntToStr (AWorkCount) + ‘ for ‘ + strUrl;
Synchronize (ShowStatus);

eenndd;

pprroocceedduurree TFindWebThread.ShowStatus;
bbeeggiinn
Form1.StatusBar1.SimpleText := Status;

eenndd;

eenndd.

The program looks for subsequent occurrences of the href=”http substring, copying the
text up to the closing > character. If the found string contains the word google, or its target
text includes the word cached, it is omitted from the result. You can see the effect of this code
in the output of Figure 21.5. Notice that I’ve already gotten the result of a request, but the
program is currently retrieving another page, as indicated in the status bar. You can start
multiple searches at the same time, but be aware that the results will all be added to the same
memo component.

F I G U R E 2 1 . 5 :
The WebFind application
can be used to search for a
list of sites on the Google
search engine.

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 940

http://www.sybex.com

941

The WinInet API
When you need to use the FTP and HTTP protocols, as alternatives to using particular
VCL components, you can use a specific API provided by Microsoft in the WinInet DLL.
This library is part of the core operating system and implements the FTP and HTTP proto-
cols on top of the Windows sockets API.

With just three calls—InternetOpen, InternetOpenURL, and InternetReadFile—you can
retrieve a file corresponding to any URL and store a local copy or analyze it. Other simple
methods can be used for FTP; I suggest you look for the source code of the Delphi unit, list-
ing all the functions, and for the specific Help file for the DLL, which is not part of the SDK
Help shipping with Delphi.

The InternetOpen function establishes a generic connection and returns a handle you can
use in the InternetOpenURL call. This second call returns a handle to the URL that you can
pass to the InternetReadFile function in order to read blocks of data. In the following sample
code, the data is stored in a local string. When all the data has been read, the program closes
the connection to the URL and the Internet session by calling the InternetCloseHandle func-
tion twice.

vvaarr
hHttpSession, hReqUrl: HInternet;
Buffer: aarrrraayy [0..1023] ooff Char;
nRead: Cardinal;
strRead: string;
nBegin, nEnd: Integer;

bbeeggiinn
strRead := ‘’;
hHttpSession := InternetOpen (‘FindWeb’, INTERNET_OPEN_TYPE_PRECONFIG,

nniill, nniill, 0);
ttrryy
hReqUrl := InternetOpenURL (hHttpSession, PChar(StrUrl), nniill, 0,0,0);
ttrryy // read all the data
rreeppeeaatt
InternetReadFile (hReqUrl, @Buffer, sizeof (Buffer), nRead);
strRead := strRead + string (Buffer);

uunnttiill nRead = 0;
ffiinnaallllyy
InternetCloseHandle (hReqUrl);

eenndd;
ffiinnaallllyy
InternetCloseHandle (hHttpSession);

eenndd;
eenndd;

Working with HTTP

2874c21.qxd 7/2/01 2:36 PM Page 941

http://www.sybex.com

942

Browsing on Your Own
Although I doubt you are interested in writing a new Web browser, it might be interesting
anyway to see how you can grab an HTML file from the Internet and display it locally, using
the HTML viewer available in CLX (the TextBrowser control). Connecting this control to
an Indy HTTP client, you can come up with a simplistic text-only browser with limited navi-
gation in minutes. The core is to write

TextBrowser1.Text := IdHttp1.Get (NewUrl);

where NewUrl is complete location of the Web resource you want to access to. In the Browse-
Fast example on the CD-ROM, this URL is entered in a combo box, which keeps track of
recent requests. The effect of a similar call is to return the textual portion of a Web page (see
Figure 21.6), as grabbing the graphic content requires much more complex coding. The
TextBrowser control, in fact, is better defined as a local file viewer than as a browser.

In any case, I’ve added to the program only very limited support for hyperlinks. When a
user moves the mouse over a link, its link text is copied to a local variable (NewRequest),
which is then used in case of a click on the control to compute the new HTTP request to
forward. Merging the current address (LastUrl) with the request, though, is far from trivial,
even with the help of the IdUrl class provided by Indy. Here is the code I’ve come up with,
which handles only the simplest cases:

pprroocceedduurree TForm1.TextBrowser1Click(Sender: TObject);
vvaarr
Uri: TIdUri;

F I G U R E 2 1 . 6 :
The output of the Browse-
Fast text-only browser

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 942

http://www.sybex.com

943

bbeeggiinn
iiff NewRequest <> ‘’ tthheenn
bbeeggiinn
Uri := TIdUri.Create (LastUrl);
iiff Pos (‘http:’, NewRequest) > 0 tthheenn
GoToUrl (NewRequest)

eellssee iiff NewRequest [1] = ‘/’ tthheenn
GoToUrl (‘http://’ + Uri.Host + NewRequest)

eellssee
GoToUrl (‘http://’ + Uri.Host + Uri.Path + NewRequest);

eenndd;
eenndd;

Again, this example is really trivial and is far from usable, but building a browser involves a
little more than the ability to connect via HTTP and display HTML files.

A Simple HTTP Server
The situation with the development of an HTTP server is quite different. Building a server
to deliver static pages based on HTML files is far from simple, although one of the Indy
demos provides a rather good starting point for this. A custom HTTP server, instead, might
be interesting when building a totally dynamic site, something I’ll focus on in more detail in
the next chapter.

To show you how you can start the development of a custom HTTP server, I’ve built the
HttpServ example. This program has a form with a list box used for logging requests and an
IdHTTPServer component, with these settings:

oobbjjeecctt IdHTTPServer1: TIdHTTPServer
Active = True
DefaultPort = 8080
OnCommandGet = IdHTTPServer1CommandGet

eenndd

The server uses the port 8080 instead of the standard port 80, so that you can run it along-
side another Web server. All of the custom code is in the OnCommandGet event handler, which
simply returns a fixed page plus some information about the request itself:

pprroocceedduurree TForm1.IdHTTPServer1CommandGet(AThread: TIdPeerThread;
RequestInfo: TIdHTTPRequestInfo; ResponseInfo: TIdHTTPResponseInfo);

vvaarr
HtmlResult: String;

bbeeggiinn
// log
Listbox1.Items.Add (RequestInfo.Document);
// respond
HtmlResult := ‘<h1>HttpServ Demo</h1>’ +

Working with HTTP

2874c21.qxd 7/2/01 2:36 PM Page 943

http://www.sybex.com

944

‘<p>This is the only page you’’ll get from this example.</p><hr>’ +
‘<p>Request: ‘ + RequestInfo.Document + ‘</p>’ +
‘<p>Host: ‘ + RequestInfo.Host + ‘</p>’ +
‘<p>Params: ‘ + RequestInfo.UnparsedParams + ‘</p>’ +
‘<p>The headers of the request follow:
’ +
RequestInfo.Headers.Text + ‘</p>’;

ResponseInfo.ContentText := HtmlResult;
end;

By passing a path and some parameters in the command line of the browser, you’ll see them
reinterpreted and displayed. For example, Figure 21.7 shows the effect of the command line:

http://localhost:8080/test?user=marco

If this example seems too trivial, you’ll see a slightly more interesting version in the next
section, as I discuss the generation of HTML with Delphi’s producer components.

NOTE If you plan building an advanced Web server or other Internet servers with Delphi, then as an
alternative to the Indy components, have a look at the DXSock components from Brain Patch-
work DX (www.dxsock.com).

F I G U R E 2 1 . 7 :
The page displayed by con-
necting a browser to the
custom HttpServ program

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 944

http://www.sybex.com
http://localhost:8080/test?user=marco

945

Generating HTML
The Hypertext Markup Language, better known by its acronym HTML, is the most wide-
spread format for content on the Web. HTML is the format Web browsers typically read; it
is a standard defined by the W3C, the World Wide Web Consortium, which is one of the
bodies controlling the Internet. The current standard is represented by HTML 4, although
not all browsers fully support that. When building a Web site, you always need to choose a
lowest-common-denominator approach to support most of the browsers in use—that is,
unless you are targeting a specific group of users whom you ask to adopt a specific browser
(as happens in intranet situations). If you don’t know much about the tags included in
HTML files, you may want to read the sidebar “The Format of HTML Files” for a fast
introduction.

The Format of HTML Files
If you have a little familiarity with HTML but don’t work with it often enough to have all the
basic elements “down cold,” here’s a quick summary.

HTML files are basically ASCII text files. Besides plain text, an HTML file contains many tags,
which might determine the style of the font, the type of paragraph, or a link to another HTML
file or an image, among other things.

Most tags are paired as opening tags and closing tags (the closing tag is usually the same as
the opening tag but is preceded by a slash, /) to indicate where the style or content begins and
ends. For example, you write important to set the word important in bold, and you
write <title>Document Title</title> to define the title of a document as Document Title.
(A few elements, such as
 for a line break and for a graphic or “image,” stand
alone and do not use a matching closing tag.)

An HTML document begins with the <html> tag and is divided into two parts, marked as
<head> and <body>. Each of these three tags requires the corresponding terminator. In the
head portion of the HTML file, you’ll generally write the title (often displayed in the title bar of
the browser) and a few other generic elements.

In the body, you write the contents of the file, generally starting with its visible title. You can
use headings with different levels, marked with the <hX> tag, where you’d replace X with a
number from 1 to 6. These are followed by plain paragraphs (<p>), preformatted paragraphs
(<pre>, a style generally used for program listings), various types of lists, and many other ele-
ments. The text will often have links to other pages or other parts of the current page, using
the <a> (“anchor”) tag.

Another relevant element of HTML is tables. The <table> and </table> tags indicate the
beginning and the end of the table, and its optional border attribute displays borders with a
given width. The <tr> and </tr> tags introduce and close each row, and the tags

Generating HTML

Continued on next page

2874c21.qxd 7/2/01 2:36 PM Page 945

http://www.sybex.com

946

<th>…</th> and <td>…</td> indicate a table header cell and a table data cell, respectively.
The number of columns depends on the items in each row. Different rows, in fact, can have
different numbers of items.

HTML was recently refined by the W3C to be more consistent, flexible, and interoperable with
advanced systems such as XML; the new version is named XHTML (Extensible HTML). HTML
and XHTML are the subject of many books, and you can find dozens of tutorials on them just
by browsing the Web. A good, complete source on the topic is Mastering XHTML by Tittel et
al. (Sybex, 2001).

Delphi’s HTML Producer Components
If your version of Delphi includes the HTML producer components (available on the Inter-
net page of the Component Palette), you can use them to generate the HTML files and par-
ticularly to turn a database table into an HTML table. Many developers believe that the use
of these components makes sense only when writing a Web server extension. Although they
were introduced for this purpose and are part of the WebBroker technology, you can still use
three out of the four producer components in any application in which you must generate a
static HTML file.

Before looking at the HtmlProd example, which demonstrates the use of these HTML
producer components, let me summarize their role:

• The simplest of the HTML producer components is the PageProducer, which manip-
ulates an HTML file in which you’ve embedded special tags. The advantage of this
approach is that you can generate such a file using the HTML editor you prefer. At run
time, the PageProducer converts the special tags to actual HTML code, giving you a
straightforward method for modifying sections of an HTML document. The special
tags have the basic format <#tagname>, but you can also supply named parameters
within the tag. You’ll process the tags in the OnTag event handler of the PageProducer.

• The DataSetPageProducer extends the PageProducer by automatically replacing tags
corresponding to field names of a connected data source.

• The DataSetTableProducer component is generally useful for displaying the contents
of a table, query, or other dataset. The idea is to produce an HTML table from a
dataset, in a simple yet flexible way. The component has a very nice preview, so you can
see how the HTML output will look in a browser directly at design time.

• The QueryTableProducer is similar to the previous one (it is actually a subclass), but
it’s specifically tailored for building parametric queries based on input from an HTML

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 946

http://www.sybex.com

947

search form. For this reason, I’ll delay the coverage of this component to the next
chapter.

Producing HTML Pages
A very simple example of using tags is creating an HTML file that displays fields with the
current date or a date computed relative to the current date, such as an expiration date. If you
examine the HtmlProd example, you’ll find the following component in the main form:

oobbjjeecctt PageProducer1: TPageProducer
HTMLDoc.Strings = (...)
OnHTMLTag = PageProducer1HTMLTag

eenndd

The source HTML can be specified using an external file (with the advantage that you can
edit it without having to recompile the application using it) or a string list, stored in the
HTMLDoc property. This is a plain HTML file that might contain a few special tags introduced
by the # symbol:

<html>
<head>
<title>Producer Demo</title>
</head>
<body>
<h1>Producer Demo</h1>
<p>This is a demo of the page produced by the <#appname> application on
<#date>.</p>
<hr>
<p>The prices in this catalog are valid until <#expiration
days=21>.</p>
</body>
</html>

WARNING If you prepare this file with an HTML editor (something I suggest you do), it might automati-
cally place quotes around tag parameters, as in days=”21”, because this is required by HTML
4 and XHTML 1. The PageProducer component has a StripParamQuotes property, which can
be activated to remove those extra quotes when the component parses the code (before call-
ing the OnHTMLTag event handler).

The Demo Page button simply copies the PageProducer component’s output to the Text
of a Memo with the statement

Memo1.Text := PageProducer1.Content;

As you call the Content function of the PageProducer component, it reads the input HTML
code, parses it, and triggers the OnTag event handler for every special tag. In this method, we

Generating HTML

2874c21.qxd 7/2/01 2:36 PM Page 947

http://www.sybex.com

948

check the value of the tag (passed in the TagString parameter) and return a different HTML
text (in the ReplaceText reference parameter), producing the output of Figure 21.8.

pprroocceedduurree TFormProd.PageProducer1HTMLTag(Sender: TObject;
Tag: TTag; ccoonnsstt TagString: String; TagParams: TStrings;
vvaarr ReplaceText: String);

vvaarr
nDays: Integer;

bbeeggiinn
iiff TagString = ‘date’ tthheenn
ReplaceText := DateToStr (Now)

eellssee iiff TagString = ‘appname’ tthheenn
ReplaceText := ExtractFilename (Forms.Application.Exename)

eellssee iiff TagString = ‘expiration’ tthheenn
bbeeggiinn
nDays := StrToIntDef (TagParams.Values[‘days’], 0);
iiff nDays <> 0 tthheenn
ReplaceText := DateToStr (Now + nDays)

eellssee
ReplaceText := ‘<i>{expiration tag error}</i>’;

eenndd;
eenndd;

Notice, in particular, the code we’ve written to convert the last tag, #expiration, which
requires a parameter. The PageProducer places the entire text of the tag parameter (in this case,
days=21) in a string that’s part of the TagParams list. To extract the value portion of this string
(the portion after the equal sign), you can use the Values property of the TagParams string list
and search for the proper entry at the same time. If it can’t locate the parameter or if its value
isn’t an integer, the DLL displays an error message.

F I G U R E 2 1 . 8 :
The output of the HtmlProd
example, a simple demon-
stration of the Page-
Producer component, when
the user clicks the Demo
Page button

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 948

http://www.sybex.com

949

TIP The PageProducer component supports user-defined tags, which can be any string you like,
but you should first review the special tags defined by the TTags enumeration. The possible
values include tgLink (for the link tag), tgImage (for the img tag), tgTable (for the table tag),
and a few others. If you create a custom tag, as in the PageProd example, the value of the Tag
parameter to the HTMLTag handler will be tgCustom.

Producing Pages of Data
The HtmlProd example also has a DataSetPageProducer component, with the following set-
tings and HTML source code:

oobbjjeecctt DataSetPageProducer1: TDataSetPageProducer
HTMLDoc.Strings = (
‘<html><head>’
‘<title>Data for <#name></title>’
‘</head><body>’
‘<h1><center>Data for <#name></center></h1>’
‘<p>Capital: <#capital></p>’
‘<p>Continent: <#continent></p>’
‘<p>Area: <#area></p>’
‘<p>Population: <#population></p>’
‘<hr>’
‘<p>Last updated on <#date>
’
‘HTML file produced by the program <#program>.</p>’
‘</body></html>’)

OnHTMLTag = DataSetPageProducer1HTMLTag
DataSet = Table1

eenndd

Simply by using tags with the names of the fields of the connected dataset (the usual
COUNTRY.DB database table), the program automatically gets the value of the fields of the
current record and replaces it automatically. This produces the output of Figure 21.9, which
shows a browser connected to the HtmlProd example working as an HTTP server, as I’ll dis-
cuss later. In the source code of the program related to this component, in fact, there is no
reference to the database data:

pprroocceedduurree TFormProd.BtnLineClick(Sender: TObject);
bbeeggiinn
Memo1.Clear;
Memo1.Text := DataSetPageProducer1.Content;
BtnSave.Enabled := True;

eenndd;

pprroocceedduurree TFormProd.DataSetPageProducer1HTMLTag(Sender: TObject; Tag: TTag;
ccoonnsstt TagString: String; TagParams: TStrings; vvaarr ReplaceText: String);

Generating HTML

2874c21.qxd 7/2/01 2:36 PM Page 949

http://www.sybex.com

950

bbeeggiinn
iiff TagString = ‘program’ tthheenn
ReplaceText := ExtractFilename (Forms.Application.Exename)

eellssee iiff TagString = ‘date’ tthheenn
ReplaceText := DateToStr (Date);

eenndd;

Producing HTML Tables
The last button of the HtmlProd example is Print Table. This button is connected to a
DataSetTableProducer component, again calling its Content function and copying its result
to the Text of the Memo. By simply connecting the DataSet property of the DataSetTable-
Producer to Table1, you can produce a standard HTML table. Actually, the component by
default generates only 20 rows, as indicated by the MaxRows property. If you want to get all
the records of the table, you can set this property to -1, a simple but undocumented setting.

TIP The DataSetTableProducer component starts from the current record rather than from the first
one. This means that the second time you press the Print Table button, you’ll see no records in
the output. Adding a call to the First method of the table before calling the Content
method of the producer component fixes the problem.

To make the output of this producer component more complete, you can do two different
operations. The first is to provide some Header and Footer information, to generate the HTML
heading and closing elements, and add a Caption to the HTML table. The second is to customize

F I G U R E 2 1 . 9 :
The output of the HtmlProd
example for the Print Line
button

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 950

http://www.sybex.com

951

the table itself, by using the setting specified by the RowAttributes, TableAttributes, and
Columns properties. The property editor of the columns, which is also the default component
editor, allows you to set most of these properties, providing at the same time a very nice preview
of the output, as you can see in Figure 21.10. Before using this editor, you can set up properties
for fields of the table, using the Fields editor. This is how, for example, you can format the out-
put of the population and area fields to use thousands separators.

There are three techniques you can use to customize the HTML table, and it’s worth
reviewing each of them:

• You can use the table producer component’s Column property to set properties, such
as the text and color of the title, or the color and the alignment for the cells in the
rest of the column.

• You can use the TField properties, particularly those related to output. In the example,
I’ve set the DisplayFormat property of the Table1Continent field object to ###,###,###.
This is the approach to use if you want to determine the actual output of each field. You
might go even further and embed HTML tags in the output of a field.

• You can handle the DataSetTableProducer component’s OnFormatCell event to cus-
tomize the output further. In this event, you can set the various column attributes

F I G U R E 2 1 . 1 0 :
The editor of the
Columns property of the
DataSetTableProducer com-
ponent provides you with a
preview of the final HTML
table (if the database table
is active).

Generating HTML

2874c21.qxd 7/2/01 2:36 PM Page 951

http://www.sybex.com

952

uniquely for a given cell, but you can also customize the output string (stored in the
CellData parameter) and embed HTML tags. This is something you can’t do using the
Columns property.

In the HtmlProd example, I’ve used a handler for this event to turn the text of the Popula-
tion and Area columns to bold font and to a red background for large values (unless it is the
header row). Here is the code:

pprroocceedduurree TFormProd.DataSetTableProducer1FormatCell(
Sender: TObject; CellRow, CellColumn: Integer;
vvaarr BgColor: THTMLBgColor; vvaarr Align: THTMLAlign;
vvaarr VAlign: THTMLVAlign; vvaarr CustomAttrs, CellData: String);

bbeeggiinn
iiff (CellRow > 0) aanndd
(((CellColumn = 3) aanndd (Length (CellData) > 8)) oorr
((CellColumn = 4) aanndd (Length (CellData) > 9))) tthheenn

bbeeggiinn
BgColor := ‘red’;
CellData := ‘’ + CellData + ‘’;

eenndd;
eenndd;

The rest of the code is summarized by the settings of the table producer component (for-
matted slightly to make it more readable and take less space):

oobbjjeecctt DataSetTableProducer1: TDataSetTableProducer
Caption = ‘<h2>American Countries</h2>’
Columns = <

iitteemm FieldName = ‘Name’
BgColor = ‘silver’
Title.Align = haLeft
Title.BgColor = ‘silver’
Title.Caption = ‘Country’

eenndd
iitteemm FieldName = ‘Capital’...
iitteemm FieldName = ‘Continent’...
iitteemm FieldName = ‘Area’
Align = haRight

eenndd
iitteemm FieldName = ‘Population’
Align = haRight

eenndd>
Footer.Strings = (‘<hr><i>Produced by HtmlProd</i></body></html>’)
Header.Strings = (<html><head><title>DataSetTableProducer Demo</title>’
‘</head><body><h1><center>DataSetTableProducer Demo</center></h1>’)

MaxRows = -1
DataSet = Table1

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 952

http://www.sybex.com

953

TableAttributes.Border = 1
TableAttributes.CellPadding = 5
OnFormatCell = DataSetTableProducer1FormatCell

eenndd

You can see the output of this program in Figure 21.11. I suggest you study the source
code of the HTML file this program generates so that you can see the richness of its output
and therefore the advantage of using this component.

Using Style Sheets
The latest incarnations of HTML include a very powerful mechanism for separating content
from presentation: Cascading Style Sheets (CSS). Using a style sheet, you can separate the
formatting of the HTML (colors, fonts, font sizes, and so on) from the actual text displayed
(the content of the page). This approach makes your code more flexible and your Web site
easier to update. In addition, you can separate the task of making the site graphically appeal-
ing (the work of a Web designer) from automatic content generation (the work of a program-
mer). Style sheets are a rather complex technique, in which you give formatting values to the
main types of HTML sections and to special “classes” (which have nothing to do with OOP).
Again, see an HTML reference for the details.

F I G U R E 2 1 . 1 1 :
The output of the Print All
button of the HtmlProd
example, which is based on
the DataSetTableProducer
component

Generating HTML

2874c21.qxd 7/2/01 2:36 PM Page 953

http://www.sybex.com

954

How can we update table generation in the HtmlProd example to include style sheets?
Simply enough, we can provide a link to the style sheet to use in the Header property of a
second DataSetTableProducer component, with the line

<link rel=”stylesheet” type=”text/css” href=”test.css”>

We can then update the code of the OnFormatCell event handler with the following action
(instead of the two lines changing the color and adding the bold font tag):

CustomAttrs := ‘class=”highlight”’;

The style sheet I’ve provided (test.css, available in the source code of the example)
defines a highlight style, which has exactly the bold font and red background that were hard-
coded in the first DataSetTableProducer component.

The advantage of this approach is that now a graphic artist can modify the CSS file and
give our table a nicer look without touching its code. When you want to provide many for-
matting elements, using a style sheet can also reduce the total size of the HTML file. This is
an important element that can reduce download time.

Dynamic Pages from a Custom Server
The HtmlProd component can be used to generate static HTML files, but doubles as a Web
server, using an approach similar to what I’ve demonstrated in the HttpServ example, but in
a more realistic context. The program, in fact, accesses the request of one of the possible page
producers, simply passing the name of the component in a request. This is a portion of the
OnCommandGet event handler of its IdHTTPServer component, which uses the FindComponent
method to locate the proper producer component:

vvaarr
Req, Html: String;
Comp: TComponent;

bbeeggiinn
Req := RequestInfo.Document;
iiff Req [1] = ‘/’ tthheenn
Req := Copy (Req, 2, 1000); // skip ‘/’

Comp := FindComponent (Req);
iiff (Req <> ‘’) aanndd Assigned (Comp) aanndd
(Comp is TCustomContentProducer) tthheenn

bbeeggiinn
Table1.First;
Html := TCustomContentProducer (Comp).Content;

eenndd;
ResponseInfo.ContentText := Html;

eenndd;

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 954

http://www.sybex.com

955

In case the parameter is not there (or is not valid), the server responds with an HTML-
based menu of the available components:

Html := ‘<h1>Html Proc Menu<h1><p>’;
ffoorr I := 0 ttoo ComponentCount - 1 ddoo
iiff Components [i] iiss TCustomContentProducer tthheenn
Html := Html + ‘’ +
Components [i].Name + ‘’;

Html := Html + ‘</p>’;

Finally, if the program returns a table that uses CSS, the browser will request the CSS file
from the server, so I’ve added some specific code to return it. With the proper generaliza-
tions, this code shows how a server can respond, returning files, and also how to indicate the
MIME type of the response (ContentType):

iiff Pos (‘test.css’, Req) > 0 tthheenn
bbeeggiinn
CssTest := TStringList.Create;
ttrryy
CssTest.LoadFromFile(ExtractFilePath(Application.ExeName) + ‘test.css’);
ResponseInfo.ContentText := CssTest.Text;
ResponseInfo.ContentType := ‘text/css’;

ffiinnaallllyy
CssTest.Free;

eenndd;
Exit;

eenndd;

Publishing Static Databases on the Web
Once you know how to produce files, you can simply add links from one to another and pro-
duce a series of cross-linked HTML files, representing a portion of a Web site. There are
circumstances in which writing a program that examines a database and produces files is the
best approach for publishing database data on a Web site. You can use a similar technique if
the following conditions apply:

If the data doesn’t change very often A catalogue updated monthly or weekly is a good
example. Even if you can update the site automatically every night, this is still a possible
technique. (For real-time information, of course, this is certainly not a good approach!)

If the amount of data is limited and available space not is an issue This seems obvious,
but the formatted HTML output might take much more space than the original database
files. If you use a server-side program (such as those I’ll be discussing in the next chapter)
to generate the HTML from the database data on the fly, you might need less disk space
on the Web site. Keep in mind that preparing all the HTML files beforehand usually

Generating HTML

2874c21.qxd 7/2/01 2:36 PM Page 955

http://www.sybex.com

956

results in much better performance (faster server response time to Web requests, and lower
memory overhead to process the requests) than generating the data on the fly.

If the number of ways to navigate is limited If there are three or four obvious paths of
navigation (a main one and two or three cross-references), you can generate all of them
statically. Otherwise, the cross-referencing HTML files will be much larger than the files
with the actual data, and the time required to generate them may become excessive.

Even if only parts of these conditions apply to your specific needs, you can consider using a
mixed approach. You can have a portion of the data and of the navigational files generated
periodically and have a CGI and ISAPI application on the site, as well as let users do free
searches and follow other less frequent paths.

NOTE On the companion CD you can find an example, called DbCross, that generates hundreds of
HTML files out of a master/detail database structure. The program also collects other data
about the records, while generating the files, and produces a complete cross-reference. At the
end, you can navigate by customers–orders by each customer–details of the order or by sale
parts–orders where each part appears–details of each order. The code is quite complex, but
I’ve tried to comment it in some detail, so you should be able to follow it.

What’s Next?
In this chapter, we’ve focused on some core Internet technologies, including the use of sock-
ets and core Internet protocols. I’ve discussed the main idea and shown a few examples of the
use of the mail and HTTP protocols. You can find many more examples of the use of the
Indy components in the demos done by their developers.

After this introduction to the world of the Internet, we are now ready to delve into two key
areas, the present and the future. The present is represented by the development of Web
applications, and we’ll explore the development of dynamic Web sites in the next chapter,
focusing first on the old WebBroker technology and then moving to the new WebSnap archi-
tecture. The future is represented by the development of Web services and the use of XML
and related technology, which will be discussed in Chapter 23.

Chapter 21 • Internet Programming: Sockets and Indy Components

2874c21.qxd 7/2/01 2:36 PM Page 956

http://www.sybex.com

22CH A P T E R

Web Programming with
WebBroker and WebSnap

� Dynamic Web pages

� CGI, ISAPI, and Apache modules

� The WebBroker architecture

� The Web App debugger

� The new WebSnap architecture

� Adapters and server-side scripting

2874c22.qxd 7/2/01 2:33 PM Page 957

http://www.sybex.com

958

If the Internet has a growing role in the world, a good part of it depends on the success of
the World Wide Web, based on the HTTP protocol. We’ve already discussed, in the preced-
ing chapter, HTTP and the development of client- and server-side applications based on it.
With the availability of several high-performance, scalable, and flexible Web servers, you’ll
rarely want to create your own. Dynamic Web server applications, in fact, are generally built
by integrating scripting or compiled programs within Web servers, rather then replacing
them with custom software.

This chapter is entirely focused on the development of server-side applications, which
extend existing Web servers. We have already introduced the dynamic generation of HTML
pages toward the end of the last chapter. Now we have to see how to integrate this dynamic
generation within a server. This chapter is a logical continuation of the last one but won’t
complete the coverage of Internet programming, as the next chapter is further devoted to
this topic, covering specifically XML and Web services.

WARNING To test some of the examples in this chapter, you’ll need access to a Web server. The simplest
solution is probably to use the version of Microsoft’s IIS or Personal Web Server already
installed on your computer. My personal preference, however, is to use the free and open-
source Apache Web Server, available (along with extensive documentation) at
www.apache.org. In any case, I won’t spend much time giving you details on the configura-
tion of your Web server to enable the use of applications; refer to its documentation for this.

Dynamic Web Pages
When you browse a Web site, you generally download static pages—HTML-format text files—
from the Web server to your client computer. As a Web developer, you can create these pages
manually, but for most businesses, it makes more sense to build the static pages from informa-
tion in a database of some type (a SQL server, a series of files, and so on). Using this approach,
you’re basically generating a snapshot of the data in HTML format, which is quite reasonable if
the data isn’t subject to frequent changes. This approach was discussed in Chapter 21, “Internet
Programming: Sockets and Indy Components.”

As an alternative to static HTML pages, you can build dynamic ones. To do this, you
extract information directly from a database in response to the browser’s request, so that the
HTML sent by your application displays current data, not an old snapshot of the data. This
approach makes sense if the data changes frequently.

As mentioned earlier, there are a couple of ways you can program custom behavior at the
Web server, and these are ideal ways for you to generate HTML pages dynamically. The two

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:33 PM Page 958

http://www.sybex.com

959

most common protocols for programming Web servers are CGI (the Common Gateway
Interface) and the Web server APIs. Another technique, Active Server Pages (ASP), is quite
popular in the Microsoft world, and I’ll discuss it briefly because Delphi includes specific
support for it.

NOTE Keep in mind that Delphi’s WebBroker technology (available in both the Enterprise and Profes-
sional editions) flattens the differences between CGI, WinCGI, and ISAPI by providing a com-
mon class framework. This way, you can easily turn a CGI application into a WinCGI one,
upgrade it to use the ISAPI model, or integrate it into Apache.

An Overview of CGI
CGI is a standard protocol for communication between the client browser and the Web
server. It’s not a particularly efficient protocol, but it is widely used and is not platform spe-
cific. This protocol allows the browser both to ask for and to send data, and it is based on the
standard command-line input and output of an application (usually a console application).
When the server detects a page request for the CGI application, it launches the application,
passes command-line data from the page request to the application, and then sends the stan-
dard output of the application back to the client computer.

There are many tools and languages you can use to write CGI applications, and Delphi is
only one of them. Given the obvious limitation that your Web server must be an Intel-based
Windows or Linux system, you can build some fairly sophisticated CGI programs in Delphi
and Kylix. Despite the fact that it’s called a standard, there are actually different flavors of
CGI. Traditional CGI uses the standard command-line input and output, along with envi-
ronment variables. WinCGI uses an INI file passed as a command-line parameter to the
application (instead of environment variables) and specific input and output files (instead of
using command-line input/output). Server vendors developed WinCGI primarily for Visual
Basic programmers, who cannot access environment variables. Another new variation, called
FastCGI, is supposed to make the entire process of calling a CGI application much faster,
but it’s not widely supported yet.

To build a CGI program without using any support class, you can simply create a Delphi
console application, remove the typical project source code, and replace it with the following
statements:

program CgiDate;
{$APPTYPE CONSOLE}

uses SysUtils;

begin

Dynamic Web Pages

2874c22.qxd 7/2/01 2:33 PM Page 959

http://www.sybex.com

960

writeln (‘content-type: text/html’);
writeln;
writeln (‘<html><head>’);
writeln (‘<title>Time at this site</title>’);
writeln (‘</head><body>’);
writeln (‘<h1>Time at this site</h1>’);
writeln (‘<hr>’);
writeln (‘<h3>’);
writeln (FormatDateTime(‘“Today is “ dddd, mmmm d, yyyy,’ +

‘“
 and the time is” hh:mm:ss AM/PM’, Now));
writeln (‘</h3>’);
writeln (‘<hr>’);
writeln (‘<i>Page generated by CgiDate.exe</i>’);
writeln (‘</body></html>’);

end.

CGI programs produce a header followed by the HTML text using the standard output. If
you execute this program directly, you’ll see the text in a terminal window. If you run it
instead from a Web server and send the output to a browser, the formatted HTML text will
appear, as shown in Figure 22.1.

Building advanced and complex applications with plain CGI requires a lot of work. For
example, to extract status information on the HTTP request, you need to access to the rele-
vant environment variables, as in:

// get the pathname
GetEnvironmentVariable (‘PATH_INFO’, PathName, sizeof (PathName));

F I G U R E 2 2 . 1 :
The output of the CgiDate
application, as seen in a
browser

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:33 PM Page 960

http://www.sybex.com

961

An Overview of ISAPI/NSAPI
A completely different approach is the use of the Web server APIs, the popular ISAPI (Inter-
net Server API, introduced by Microsoft) and the less common NSAPI (Netscape Server API).
These APIs allow you to write a DLL that the server loads into its own address space and usu-
ally keeps in memory for some time. Once it loads the DLL, the server can execute individual
requests via threads within the main process, instead of launching a new EXE for every request
(as it must in CGI applications).

When the server receives a page request, it loads the DLL (if it hasn’t done so already)
and executes the appropriate code, which may launch a new thread or use an existing one to
process the page request (the IIS Web server offers thread pooling support to avoid creating
a new thread for each request). The DLL code then sends the appropriate data back to the
client that requested the page. Because this communication generally occurs in memory, this
type of application is much faster than CGI, and a given system will be able to support more
simultaneous page requests this way.

The main drawback to server API DLLs is that their tight integration with the server is an
Achilles’ heel; if the DLL crashes or produces memory leaks, the entire Web server can
crash. However, the most recent releases of Microsoft’s IIS Web server fix the problem by
running the DLL in a protected space. Another problem is that when the DLL is in memory,
you cannot compile an updated version; you need to unload the DLL first or momentarily
stop the Web server (an operation you can do only on a test-bed computer).

Technically, ISAPI DLLs are not very different from plain Windows DLLs. They must
export a couple of specific functions that the Web server will call: GetExtensionVersion and
HttpExtensionProc. The server calls the first function when it loads the DLL for the first
time and the second function for every following request. The parameters of these functions
are complex data structures holding input data and server methods you can call to produce
the result. Here is a sample of this function (taken from the IsapiDem example), which uses
the lpszPathInfo field and the WriteClient function:

function HttpExtensionProc(var ECB: TEXTENSION_CONTROL_BLOCK): DWORD; stdcall;
var
OutStr: string;
StrLength: Cardinal;

begin
with ECB do
begin
OutStr :=
‘<html><head><title>First Isapi Demo</title></head><body>’ +
‘<h2><center>First Isapi Demo</center></h2>’ +
‘<p>Hello Mastering Delphi Readers...</p><hr>’ +
‘<p>Activated by ‘ + PChar(@lpszPathInfo[1]) + ‘</p>’ +

Dynamic Web Pages

2874c22.qxd 7/2/01 2:33 PM Page 961

http://www.sybex.com

962

‘<p><i>From IsapiDLL on ‘ + DateToStr(Now) + ‘ at ‘ + TimeToStr(Now) +
‘</i></p></body></html>’;

StrLength := Length(OutStr);
WriteClient(ConnID, PChar (OutStr), StrLength, 0);

end;
Result := HSE_STATUS_SUCCESS;

end;

The program doesn’t simply use the lpszPathInfo parameter but uses the substring start-
ing with the second character, to get rid of the initial slash. To be more precise, the expres-
sion PChar(@lpszPathInfo[1]) takes the string starting at the memory address of the second
character of the path (a zero-based characters array).

Apache Modules
Similarly to Microsoft’s IIS, the Apache server of the Apache Foundation (www.apache.org)
allows server-side extensions by means of CGI or with specific extension libraries. In case of
Apache, these libraries are called modules, or dynamic modules. In the Apache configuration, you
can list the modules you are interested in and eventually connect them to a virtual directory.

Needless to say, you can program Apache modules in a similar low-level way to what I’ve
just done for ISAPI, but I won’t show you an example. I’ll do it later using the Apache sup-
port added to the WebBroker architecture in Delphi 6.

Delphi’s WebBroker Technology
The CGI and ISAPI code snippets I’ve shown you so far demonstrate the plain, direct approach
to the protocol and API. Extending these examples at that level is certainly possible, but what is
interesting in Delphi is to use the WebBroker technology. This comprises a class hierarchy
within VCL and CLX, built to simplify server-side development on the Web, and a specific type
of data modules, called WebModules. Both the Enterprise and Professional editions of Delphi 5
include this framework (differently from the more advanced and newer WebSnap framework,
which is available only in the Enterprise version of Delphi 6).

Using the WebBroker technology, you can begin developing an ISAPI or CGI application
or an Apache module very easily. On the first page (New) of the New Items dialog box, select
the Web Server Application icon. The subsequent dialog box will offer you options (two
more than in Delphi 5). As you can see in Figure 22.2, you can choose ISAPI, CGI,
WinCGI, Apache module, and the Web App Debugger.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:33 PM Page 962

http://www.sybex.com

963

TIP As a starting point for your server-side application, you can also use the DB Web Application
Wizard, available in the Business page of the New Items dialog box. This wizard generates a
program with a BDE table or query connected to a DataSetTableProducer. It can be helpful, but
the generated code is really very limited and there is no support for Apache and the Web App
Debugger.

For example, if you select the first option, Delphi will generate the basic structure of an
ISAPI application for you. The application that Delphi generates (no matter which type
you choose) is based on the TWebModule class, a container very similar to a data module. The
WebModule code is similar to that of a data module, as we’ll see in a moment, but the code
of the library is worth looking at:

library Project1;

uses
WebBroker,
ISAPIThreadPool,
ISAPIApp,
Unit1 in ‘Unit1.pas’ {WebModule1: TWebModule};

{$R *.RES}

exports
GetExtensionVersion,
HttpExtensionProc,
TerminateExtension;

begin
Application.Initialize;
Application.CreateForm(TWebModule1, WebModule1);
Application.Run;

end.

F I G U R E 2 2 . 2 :
The alternative options for
building a Web server
application in Delphi

Delphi’s WebBroker Technology

2874c22.qxd 7/2/01 2:33 PM Page 963

http://www.sybex.com

964

WARNING This code changes slightly between Delphi versions. If you have older code around, you’ll need
to refer to the WebBroker unit instead of the previous HTTPApp unit. Delphi 6 adds the refer-
ence to the ISAPIThreadPool unit, which provides support for pooling threads under ISAPI
(with a couple of classes not documented in the Help file).

Although this is a library that exports the ISAPI functions, the code looks similar to that of an
application. However, it uses a trick—the Application object used by this program is not the
typical global object of class TApplication but an object of a new class. This new Application
object is of class TISAPIApplication (or TCGIApplication if you’ve built that type of applica-
tion), which derives from TWebApplication.

Although these application classes provide the foundations, you won’t use them very often
(just as you don’t use the Application object very often in a form-based Delphi application).
The most important operations take place in the WebModule. This component derives from
TCustomWebDispatcher, which provides support for all the input and output of our programs.

In fact, the TCustomWebDispatcher class defines Request and Response properties, which
store the client request and the response we’re going to send back to the client. Each of these
properties is defined using a base abstract class (TWebRequest and TWebResponse), but an
application initializes them using a specific object (such as the TISAPIRequest and TISAPIRe-
sponse subclasses). These classes make available all the information passed to the server, so
you have a single, simple approach to accessing all the information. The same is true of a
response, which is very easy to manipulate. One advantage to this approach is that an ISAPI
DLL written with this framework is very similar to a CGI application; in fact, they are fre-
quently identical in the source code you write.

If this is the structure of Delphi’s framework, how do you write the application code? Well,
in the WebModule, you can use the Actions editor (shown in Figure 22.3) to define a series
of actions (stored in the Actions array property) depending on the pathname of the request.
This pathname is a portion of the CGI or ISAPI application’s URL, which comes after the
program name and before the parameters, such as path1 in the following URL:

http://www.example.com/scripts/cgitest.exe/path1?param1=date

By providing different actions, your application can easily respond to requests with different
pathnames, and you can assign a different producer component or call a different OnAction
event handler for every possible pathname. Of course, you can omit the pathname to handle a
generic request. Consider also that, instead of basing your application on a WebModule, you
can use a plain data module and add a WebDispatcher component to it. This is a good
approach if you want to turn an existing Delphi application into a Web server extension.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:33 PM Page 964

http://www.sybex.com
http://www.example.com/scripts/cgitest.exe/path1?param1=date

965

WARNING The WebModule incorporates the WebDispatcher and doesn’t require it as a separate compo-
nent. Unlike WebSnap applications, in fact, WebBroker programs cannot have multiple dis-
patchers or multiple Web modules. Notice also that the actions of the WebDispatcher have
absolutely nothing to do with the actions stored in a TActionList component.

When you define the accompanying HTML pages that launch the application, the links
will make page requests to the URLs for each of those paths. Having one single ISAPI DLL
that can perform different operations depending on a parameter (in this case, the pathname)
allows the server to keep a copy of this DLL in memory and respond much faster to user
requests. The same is partially true for a CGI application: The server has to run several
instances but can cache the file and make it available faster.

The OnAction event is where you put the code to specify the response to a given request, the
two main parameters passed to the event handler. Here is a simple example:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content :=
‘<html><head><title>Hello Page</title></head><body>’ +
‘<h1>Hello</h1>’ +
‘<hr><p><i>Page generated by Marco</i></p></body></html>’;

end;

The Content property of the Response parameter is where you enter the HTML code that
you want users to see. The only drawback of this code is that the output in a browser will be
correctly displayed on multiple lines, but looking at the HTML source code, you’ll see a single
line corresponding with the entire string. To make the HTML source code more readable,
by splitting it up onto multiple lines, you can insert the #13 newline character.

F I G U R E 2 2 . 3 :
The Actions property editor
of the WebModule, along
with the properties of one
of the actions in the Object
Inspector

Delphi’s WebBroker Technology

2874c22.qxd 7/2/01 2:33 PM Page 965

http://www.sybex.com

966

To let other actions handle this request, you’ll set the last parameter, Handled, to False. Other-
wise, the default value is True, and once you’ve handled the request with your action, the Web-
Module assumes you’re finished. Most of an ISAPI application’s code will be in the OnAction
event handlers for the actions defined in the WebModule container. These actions receive a
request from the client and return a response using the Request and Response parameters.

When using the producer components, your OnAction event often returns, as
Response.Content, the Content of the producer component, with a simple assignment. You
can shortcut this code by assigning a producer component to the Producer property of the
action itself, with no need to write these simple event handlers anymore (but don’t do both
things, as that might get you into trouble).

TIP As an alternative to the Producer property, you can use the ProducerContent property
introduced in Delphi 6. This new property allows you to connect custom producer classes that
don’t inherit from the TCustomContentProducer class but implement the IProduceContent
interface. The ProducerContent property is almost an interface property: It behaves in the
same way, but thanks to its property editor and not based on the new support for interfaced
properties of Delphi 6.

Building a Multipurpose WebModule
To demonstrate how easily you can build a feature-rich server-side application using Delphi’s
support, I’ve created the BrokDemo example. This example can be compiled as a CGI or an
ISAPI application, simply by choosing the proper project file. The WebModule is shared by
the two projects, without any difference in the source code, a practical proof that, using the
WebBroker framework, you can move from ISAPI to CGI, from Apache to the Web App
Debugger (although this last step requires a little extra tweaking in the source code). In the
past, I tended to test programs with CGI (to avoid having to stop the server to free the library
and recompile it) and then deploy them with ISAPI. Now I tend to test with the Web App
Debugger and then deploy under Apache.

A key element is the list of actions we’re going to support with this application. The actions
can be managed in the Actions editor or directly in the Object TreeView, as we’ve already seen
in Figure 22.3. Actions are also visible in the Designer page of the editor, so you can graphically
see their relationship with database objects, as shown for the BrokDemo in Figure 22.4. If you
examine the figure or the source code, you’ll notice that I’ve given a specific name to every action.
I’ve also given meaningful names to the OnAction event handlers. For instance, TimeAction as a
method name should be much more understandable than the WebModule1WebActionItem1Action
name automatically generated by Delphi.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:33 PM Page 966

http://www.sybex.com

967

Every action has a different pathname, with one of them marked as default and executed
even if no pathname is specified. The first interesting idea in this program is the use of two
PageProducer components, used for the initial and final portion of every page, PageHead and
PageTail. Centralizing this code makes it easier to modify it, particularly if it is based on exter-
nal HTML files. The HTML produced by these components is added at the beginning and
the end of the resulting HTML in the OnAfterDispatch event handler of the Web module:

procedure TWebModule1.WebModule1AfterDispatch(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := PageHead.Content + Response.Content + PageTail.Content;

end;

I’m adding the initial and final HTML at the end of the page generation simply because
this allows the components to produce the HTML as if they were making all of it. Starting
with some HTML in the OnBeforeDispatch event means that you cannot directly assign the
producer components to the actions, or the producer component will override the Content
you’ve already provided in the response. The PageTail component includes a custom tag for
the script name, replaced by the following code, which uses the current request object avail-
able within the Web module:

procedure TWebModule1.PageTailHTMLTag(Sender: TObject; Tag: TTag;

F I G U R E 2 2 . 4 :
The structure of the
BrokDemo example, as
shown by the Designer

Delphi’s WebBroker Technology

2874c22.qxd 7/2/01 2:33 PM Page 967

http://www.sybex.com

968

const TagString: String; TagParams: TStrings; var ReplaceText: String);
begin
if TagString = ‘script’ then
ReplaceText := Request.ScriptName;

end;

This code is activated to expand the <#script> tag of the PageTail component’s HTMLDoc
property. The code of the time and date actions is straightforward. The really interesting
part begins with the Menu path, which is the default action. In its OnAction event handler,
the application uses a for loop to build a list of the available actions (using their names with-
out the first two letters, which are always Wa in my example), providing a link to each of them
with an anchor (an <a> tag):

procedure TWebModule1.MenuAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

var
I: Integer;

begin
Response.Content := ‘<h3>Menu</h3>’#13;
for I := 0 to Actions.Count - 1 do
Response.Content := Response.Content + ‘ <a href=”’ +
Request.ScriptName + Action[I].PathInfo + ‘“> ‘ +
Copy (Action[I].Name, 3, 1000) + ‘’#13;

Response.Content := Response.Content + ‘’;
end;

Another action of the BrokDemo example provides users with a list of the system settings
related to the request, something that is quite useful for debugging. It is also instructive to
learn how much information, and exactly what information, the HTTP protocol transfers
from a browser to a Web server and vice versa. To produce this list, the program looks for the
value of each property of the TWebRequest class, as this initial snippet demonstrates:

procedure TWebModule1.StatusAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

var
I: Integer;

begin
Response.Content := ‘<h3>Status</h3>’#13 +
‘Method: ‘ + Request.Method + ‘
’#13 +
‘ProtocolVersion: ‘ + Request.ProtocolVersion + ‘
’#13 +
‘URL: ‘ + Request.URL + ‘
’#13 +
‘Query: ‘ + Request.Query + ‘
’#13 + ...

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:33 PM Page 968

http://www.sybex.com

969

Dynamic Database Reporting
The BrokDemo example defines two more actions, indicated by the /table and /record
pathnames. For these two last actions, our program produces a main list of names and then
displays the details of one record, using a DataSetTableProducer component to format the
entire table and a DataSetPageProducer component to build the record view. Here are the
properties of these two components:

object DataSetTableProducer1: TDataSetTableProducer
DataSet = Table1
OnFormatCell = DataSetTableProducer1FormatCell

end
object DataSetPage: TDataSetPageProducer
HTMLDoc.Strings = (
‘<h3>Employee: <#LastName></h3>’
‘ Employee ID: <#EmpNo>’
‘ Name: <#FirstName> <#LastName>’
‘ Phone: <#PhoneExt>’
‘ Hired On: <#HireDate>’
‘ Salary: <#Salary>’)

OnHTMLTag = PageTailHTMLTag
DataSet = Table1

end

To produce the entire table, we simply connect the DataSetTableProducer to the Producer
property of the corresponding actions, without providing any specific event handler. The
table is made more powerful by adding internal links to the specific records. The following
code is executed for each cell of the table but activated only for the first column or the first
row (the one with the title):

procedure TWebModule1.DataSetTableProducer1FormatCell(Sender: TObject;
CellRow, CellColumn: Integer; var BgColor: THTMLBgColor;
var Align: THTMLAlign; var VAlign: THTMLVAlign;
var CustomAttrs, CellData: String);

begin
if (CellColumn = 0) and (CellRow <> 0) then
CellData := ‘<a href=”’ + ScriptName + ‘/record?LastName=’ +
Table1[‘LastName’] + ‘&FirstName=’ + Table1 [‘FirstName’] + ‘“> ‘ +
CellData + ‘ ’;

end;

You can see the result of this action in Figure 22.5. When the user selects one of the links,
the program is called again, and it can check the QueryFields string list and extract the para-
meters from the URL. It then uses the values corresponding to the table fields used for the
record search (which is based on the FindNearest call).

Delphi’s WebBroker Technology

2874c22.qxd 7/2/01 2:33 PM Page 969

http://www.sybex.com

970

procedure TWebModule1.RecordAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

begin
Table1.Open;
// go to the requested record
Table1.FindNearest ([Request.QueryFields.Values[‘LastName’],
Request.QueryFields.Values[‘FirstName’]]);

// get the output
Response.Content := Response.Content + DataSetPage.Content;

end;

NOTE The example we’ve just built accesses a Paradox table via the BDE. The CGI version executes
once for every request and will actually load and unload the BDE each time it runs. As alterna-
tives, you can consider three different approaches: using ISAPI instead of CGI (to keep the
application and the BDE loaded in memory), accessing the data from a plain file (or avoid the BDE
with some other data access technology), or running another BDE application on the server (so
that the BDE will remain loaded in memory). When using the BDE in an ISAPI application,
though, you need to add a Session component to avoid concurrent access by multiple threads
to the same BDE session.

Of Queries and Forms
The previous example used some of the HTML producer components introduced earlier in this
chapter. There is another component of this group we haven’t used yet, the QueryTableProducer.
As we’ll see in a moment, this component makes building even complex database programs a

F I G U R E 2 2 . 5 :
The output corresponding
to the table path of the
BrokDemo example, which
produces an HTML table
with internal hyperlinks.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:33 PM Page 970

http://www.sybex.com

971

breeze. Suppose you want to search for some customers in a database. You might construct
the following HTML form (embedded in an HTML table for better formatting):

<h4>Customer QueryProducer Search Form</h4>
<form action=”/scripts/CustQueP.dll/search” method=”POST”>
<table>
<tr><td>State:</td>
<td><input type=”text” name=”State”></td></tr>

<tr><td>Country:</td>
<td><input type=”text” name=”Country”></td></tr>

<tr><td></td>
<td><center><input type=”Submit”></center></td></tr>

</table></form>

NOTE As in Delphi, an HTML form hosts a series of controls (typically, things like input fields). There
are visual tools to help you design these forms, or you can manually enter the proper HTML
code. The available controls include buttons, input text (or edit boxes), selections (or combo
boxes), and radio buttons (or input buttons). You can define buttons as specific types, such as
Submit or Reset, which imply standard behaviors. An important element of forms is the
request method, which can be either POST (data is passed behind the scenes, and you receive
it in the ContentFields property) or GET (data is passed as part of the URL, and you extract it
from the QueryFields property).

There is a very important element to notice in the form: the names of the input compo-
nents (State and Country), which should match the parameters of a Query component:

select
Company, State, Country

from
CUSTOMER.DB

where
State = :State or Country = :Country

This code is used in the CustQueP (customer query producer) example. To build it, I’ve
placed a Query component inside the WebModule and generated the field objects for it. In the
same WebModule, I’ve added a QueryTableProducer component connected to the Producer
property of the /search action. The program will generate the proper response. How does this
work? When we activate the QueryTableProducer component by calling its Content function,
it initializes the Query component by obtaining the parameters from the HTTP request. The
component can automatically examine the request method and then use either the QueryFields
property (if the request is a GET) or the ContentFields property (if the request is a POST).

One problem with using a static HTML form as we did before is that it doesn’t tell us
which states and countries we can search for. To address this, we can use a selection control
instead of an edit control in the HTML form. However, if the user adds new records to the

Delphi’s WebBroker Technology

2874c22.qxd 7/2/01 2:33 PM Page 971

http://www.sybex.com

972

database table, we’ll need to update the element list automatically. As a final solution, we can
design the ISAPI DLL to produce a form on-the-fly, and we can fill the selection controls
with the available elements.

We’ll generate the HTML for this page in the /form action, which we’ve connected to a
PageProducer component. The PageProducer contains the following HTML text, which
embeds two special tags:

<h4>Customer QueryProducer Search Form</h4>
<form action=”CustQueP.dll/search” method=”POST”>
<table>
<tr><td>State:</td>
<td><select name=”State”><#State></select></td></tr>

<tr><td>Country:</td>
<td><select name=”Country”><option> </option><#Country></select></td></tr>

<tr><td></td>
<td><center><input type=”Submit”></center></td></tr>

</table></form>

You’ll notice that the tags have the same name as some of the table’s fields. When the
PageProducer encounters one of these tags, it adds an <option> HTML tag for every distinct
value of the corresponding field. Here’s the OnTag event handler’s code, which is quite
generic and reusable:

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
ReplaceText := ‘’;
Query2.SQL.Clear;
Query2.SQL.Add (‘select distinct ‘ + TagString + ‘ from customer’);
try
Query2.Open;
try
Query2.First;
while not Query2.EOF do
begin
ReplaceText := ReplaceText +
‘<option>’ + Query2.Fields[0].AsString + ‘</option>’#13;

Query2.Next;
end;

finally
Query2.Close;

end;
except
ReplaceText := ‘{wrong field: ‘ + TagString + ‘}’;

end;
end;

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:33 PM Page 972

http://www.sybex.com

973

This method used a second Query component, which I manually placed on the form and
connected to the DBDEMOS database, and it produces the output shown in Figure 22.6.

Finally, this Web server extension, like many others we’ve built, allows the user to view the
details of a specific record. As in the last example, we can accomplish this by customizing the
output of the first column (column zero), which is generated by the QueryTableProducer
component:

procedure TWebModule1.QueryTableProducer1FormatCell(
Sender: TObject; CellRow, CellColumn: Integer;
var BgColor: THTMLBgColor; var Align: THTMLAlign;
var VAlign: THTMLVAlign; var CustomAttrs, CellData: String);

begin
if (CellColumn = 0) and (CellRow <> 0) then
CellData := ‘<a href=”’ + Request.ScriptName + ‘/record?’ + CellData +
‘“>’ + CellData + ‘’#13;

if CellData = ‘’ then
CellData := ‘ ’;

end;

TIP When you have an empty cell in an HTML table, most browsers render it without the border.
For this reason, I’ve added a “nonbreaking space” symbol () into each empty cell. This
is something you’ll have to do in each HTML table generated with Delphi’s table producers.

F I G U R E 2 2 . 6 :
The form action of the
CustQueP example
produces an HTML form
with a selection component
dynamically updated to
reflect the current status of
the database.

Delphi’s WebBroker Technology

2874c22.qxd 7/2/01 2:34 PM Page 973

http://www.sybex.com

974

The action for this link is /record, and we’ll pass a specific element after the ? parameter
(without the parameter name, which is slightly nonstandard). The code we use to produce
the HTML tables for the records doesn’t use the producer components as we’ve been doing;
instead, it is very similar to the code of an early ISAPI example:

procedure TWebModule1.RecordAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

var
I: Integer;

begin
if Request.QueryFields.Count = 0 then
Response.Content := ‘Record not found’

else
begin
Query2.SQL.Clear;
Query2.SQL.Add (‘select * from customer ‘ +
‘where Company=”’ + Request.QueryFields[0] + ‘“‘);

Query2.Open;
Response.Content :=
‘<html><head><title>Customer Record</title></head><body>’#13 +
‘<h1>Customer Record: ‘ + Request.QueryFields[0] + ‘</h1>’#13 +
‘<table border>’#13;

for I := 1 to Query2.FieldCount - 1 do
Response.Content := Response.Content +
‘<tr><td>’ + Query2.Fields [I].FieldName + ‘</td>’#13’<td>’ +
Query2.Fields [I].AsString + ‘</td></tr>’#13;

Response.Content := Response.Content + ‘</table><hr>’#13 +
// pointer to the query form
‘’ +
‘ Next Query ’#13 + ‘</body></html>’#13;

end;
end;

Debugging with the Web App Debugger
Debugging Web applications written in Delphi is often quite difficult. In fact, you cannot
simply run the program and set breakpoints in it, but should convince the Web server to run
your CGI program or library within the Delphi debugger. This can be accomplished by
indicating a Host application in Delphi’s Run Parameters dialog box, but it implies letting
Delphi run the Web server (which is often a Windows service, not a stand-alone program).

To solve all of these issues, Borland has added to Delphi 6 a specific Web App Debugger
program. This tool, activated by the corresponding item of the Tools menu, is a Web server,
which waits for requests on a port you can set up (1024 by default). When a request arrives,
the program can forward it to a stand-alone executable, using COM-based techniques. This

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 974

http://www.sybex.com

975

means you can run the Web server application from within the Delphi IDE, set all the break-
points you need, and then (when the program is activated through the Web App Debugger)
debug the program as you’ll do for a plain executable file.

The Web App Debugger does also a good job in logging all the received requests and the
actual responses returned to the browser, as you can see in Figure 22.7. The program also has
a Statistics page, which interestingly tracks the time required for each response, allowing you
to test the efficiency of an application in different conditions.

By using the corresponding option of the New Web Server Application dialog, you can
easily create a new application compatible with the debugger. This defines a standard project,
which creates both a main form and a data module. The (useless) form includes code for reg-
istering the application as an OLE automation server, as:

const
CLASS_ComWebApp: TGUID = ‘{33A4D4F0-E082-4723-9165-5D8F95AF1577}’;

initialization
TWebAppAutoObjectFactory.Create(Class_ComWebApp, ‘FirstDemo’,
‘FirstDemo Object’);

The information is used by the Web App Debugger to get a list of the available programs.
This is done when you use the default URL for the debugger, indicated in the form as a link,
as you can see (for example) in Figure 22.8. The list includes all of the registered servers, not

F I G U R E 2 2 . 7 :
The log of the Web
App Debugger with its
LogDetail window

Delphi’s WebBroker Technology

2874c22.qxd 7/2/01 2:34 PM Page 975

http://www.sybex.com

976

only those running. In fact, the use of COM Automation accounts for the automatic activa-
tion of a server. Not that this is a good idea, though, as running and terminating the program
each time will make the process much slower. Again, the idea is to run the program within
the Delphi IDE, to be able to debug it easily. Notice, though that the list can be expanded
with the detailed view, which includes a list of the actual executable files and many other
details.

The data module for this type of project has some initialization code as well:
uses WebReq;

initialization
WebRequestHandler.WebModuleClass := TWebModule2;

This approach should be used only for debugging. To deploy the actual application you
should then use one of the other options. What you can do is create the project files for
another type of Web server program and add to the project the same Web module of the
debug application. The presence of the extra initialization line won’t create a problem.

The reverse is slightly more complex. To debug an existing application, you have to create a
program of this type, remove the Web module, add the existing one, and patch it by adding a
line to set the WebModuleClass of the WebRequestHandler, like the one in the preceding code
snippet. To account for possible missing initialization of the WebRequestHandler object, you
might want to change this type of code into:

if WebRequestHandler <> nil then
WebRequestHandler.WebModuleClass := ... // Web module class

F I G U R E 2 2 . 8 :
A list of applications
registered with the Web
App Debugger is displayed
when you hook to its
home page.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 976

http://www.sybex.com

977

WARNING By doing this for the CustQueP example (it is the CustQueDebug project), I realized that some
of the Web request settings are different. So instead of using the ScriptName property of the
request (set to empty for a Web debug application), you have to use the InternalScript-
Name property.

There are other two interesting elements in the use of the Web App Debugger. The first is
that you can test your programs without having a Web server installed and without having to
tweak its settings. In other words, you don’t have to deploy your programs to test them—you
simply try them out right away. Another advantage is that, contrary to doing early development
of the applications as CGI, you can start experimenting with a multithreaded architecture right
away, without having to deal with the loading and unloading of libraries, which often implies
shutting down the Web server and possibly even the computer.

NOTE If your aim is to build an ISAPI application, you can also use a specific ISAPI DLL debugging
tool. One such tool, called IntraBob, has been built by Bob Swart and is available on his Web
site (www.drbob42.com) as freeware.

Working with Apache
If you plan on using Apache instead of IIS or another Web server, you can certainly take
advantage of the common CGI technology to deploy your applications on almost any Web
server. However, using CGI means some reduced speed and some trouble handling state
information (as you cannot keep any data in memory). This is a good reason for writing an
ISAPI application or a dynamic Apache module. Using Delphi’s WebBroker technology, you
can also easily compile the same code for both technologies, so that moving your program to
a different Web platform becomes much simpler. Finally, you can also recompile a CGI pro-
gram or a dynamic Apache module with Kylix and deploy it on a Linux server.

As I’ve mentioned, Apache can run traditional CGI applications but has also a specific
technology for keeping the server extension program loaded in memory at all times for faster
response. To build such a program in Delphi 6, you can simply use the Apache Shared Mod-
ule option of the New Web Server Application dialog box. You end up with a library having
this type of source code for its project:

library Apache1;

uses
WebBroker,
ApacheApp,
ApacheWm in ‘ApacheWm.pas’ {WebModule1: TWebModule};

Delphi’s WebBroker Technology

2874c22.qxd 7/2/01 2:34 PM Page 977

http://www.sybex.com

978

{$R *.res}

exports
apache_module name ‘apache1_module’;

begin
Application.Initialize;
Application.CreateForm(TWebModule1, WebModule1);
Application.Run;

end.

Notice in particular the exports clause, which indicates the name used by Apache configu-
ration files to reference the dynamic module. In the project source code, you can add two
more definitions, the module name and the content type, in the following way:

ModuleName := ‘Apache1_module’;
ContentType:= ‘Apache1-handler’;

If you don’t set them, Delphi will assign them some default values, which are built adding
the _module and -handler strings to the project name, ending up with the two names I’ve used
above.

An Apache module is generally not deployed within a script folder, but within the modules
subfolder of the server itself (by default, c:\Program Files\Apache\modules). Then you have
to edit the http.conf file, adding a line to load the module, as:

LoadModule apache1_module modules/apache1.dll

Finally, you have to indicate when the module is invoked. The handler defined by the mod-
ule can be associated with a given file extension (so that your module will process all of the
files having a given extension) or with a physical or virtual folder. In the latter case, the folder
doesn’t exist, but Apache pretends it is there. This is how you can set up a virtual folder for the
simple Apache1 module:

<Location /Apache1>SetHandler Apache1-handler</Location>

As Apache is inherently case sensitive (because of its Linux heritage), you might also want
to add a second, lowercase virtual folder:

<Location /apache1>SetHandler Apache1-handler</Location>

Now you can invoke the sample application with the URL http://localhost/Apache1. A
great advantage of using virtual folder in Apache is that a user doesn’t really distinguish between
the physical and dynamic portions of your site, as we’ll better see in the next example.

Because the development of Apache modules with WebBroker is almost identical to the
development of other types of programs, instead of building an actual application (besides
the over-simplistic Apache1 example) I’ve created a new version of the BrokDemo example,
already available as a CGI or ISAPI program. To do this, I’ve taken the project file of an

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 978

http://www.sybex.com
http://localhost/Apache1

979

Apache module from that example, added the local Web modules to it, and modified the
project source code to reflect the proper module name and handler. I’ve actually defined
them differently than the default, as the following code excerpt demonstrates:

library BrokApache;

exports apache_module name ‘brokdemo_module’;

begin
ContentType:= ‘brokdemo-handler’;

After compiling the module and editing the http.conf file as explained above, the program
was ready to be used in two different ways, CGI and dynamic module. An obvious difference
between the two types of invocation is their URLs:

http://localhost/scripts/brokcgi.exe/table
http://localhost/brokdemo/table

Not only is the latter URL simpler, but it hides the fact that we are running an application
with a /table parameter. In fact, it seems we are accessing a specific folder of the server. Actu-
ally, the Apache configuration file can be modified to also invoke CGI applications through
virtual folders, which explains why CGI applications have a path-like command prefixing the
request. Another related explanation is that Linux CGI applications, like any other executable
file, have no extension whatsoever, so their names still seem to be part of a path.

Practical Examples
After this general introduction to the core idea of the development of server-side applications
with WebBroker, let me end this part of the chapter with two simple practical examples. The
first is a classic Web counter. The second is an extension of the WebFind program presented
in the preceding chapter to produce a dynamic page instead of filling a list box.

A Web Hit Counter
The server-side applications we’ve built up to now were based only on text. Of course, you
can easily add references to existing graphics files. What’s more interesting, however, is to
build server-side programs capable of generating graphics that change over time.

A typical example is a page hit counter. To write a Web counter, we save the current number
of hits to a file and then read and increase the value every time the counter program is called.
How do we return this information? If all we need is some HTML text with the number of
hits, the code is straightforward:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

Practical Examples

2874c22.qxd 7/2/01 2:34 PM Page 979

http://www.sybex.com
http://localhost/scripts/brokcgi.exe/table
http://localhost/brokdemo/table

980

var
nHit: Integer;
LogFile: Text;
LogFileName: string;

begin
LogFileName := ‘WebCont.log’;
System.Assign (LogFile, LogFileName);
try
// read if the file exists
if FileExists (LogFileName) then
begin
Reset (LogFile);
Readln (LogFile, nHit);
Inc (nHit);

end
else
nHit := 0;

// saves the new data
Rewrite (LogFile);
Writeln (LogFile, nHit);

finally
Close (LogFile);

end;
Response.Content := IntToStr (nHit);

end;

WARNING This simple file handling does not scale. When multiple visitors hit the page at the same time,
this code may return false results or fail with a file I/O error because a request in another
thread has the file open for reading while this thread tries to open the file for writing. To sup-
port a similar scenario, you’ll need to use a mutex (or a critical section in a multithreaded pro-
gram) to let each subsequent thread wait until the thread currently using the file has
completed its task.

What’s a little more interesting is to create a graphical counter that can be easily embedded
into any HTML page. There are basically two approaches for building a graphical counter: you
can prepare a bitmap for each digit up front and then combine them in the program, or you can
simply let the program draw over a memory bitmap to produce the graphic you want to
return. In the WebCount program, I’ve chosen this second approach.

Basically, we can create an Image component that holds a memory bitmap, which we can
paint on with the usual methods of the TCanvas class. Then we can attach this bitmap to a
TJpegImage object. Accessing the bitmap through the JpegImage component converts the

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 980

http://www.sybex.com

981

image to the JPEG format. At this point, we can save the JPEG data to a stream and return
it. As you can see, there are many steps, but the code is not really complex:

// create a bitmap in memory
Bitmap := TBitmap.Create;
try
Bitmap.Width := 120;
Bitmap.Height := 25;
// draw the digits
Bitmap.Canvas.Font.Name := ‘Arial’;
Bitmap.Canvas.Font.Size := 14;
Bitmap.Canvas.Font.Color := RGB (255, 127, 0);
Bitmap.Canvas.Font.Style := [fsBold];
Bitmap.Canvas.TextOut (1, 1, ‘Hits: ‘ +
FormatFloat (‘###,###,###’, Int (nHit)));

// convert to JPEG and output
Jpeg1 := TJpegImage.Create;
try
Jpeg1.CompressionQuality := 50;
Jpeg1.Assign(Bitmap);
Stream := TMemoryStream.Create;
Jpeg1.SaveToStream (Stream);
Stream.Position := 0;
Response.ContentStream := Stream;
Response.ContentType := ‘image/jpeg’;
Response.SendResponse;
// the response object will free the stream

finally
Jpeg1.Free;

end;
finally
Bitmap.Free;

end;

The three statements responsible for returning the JPEG image are the two that set the
ContentStream and ContentType properties of the Response and the final call to SendResponse.
The content type must match one of the possible MIME types accepted by the browser, and
the order of these three statements is relevant. There is also a SendStream method in the
Response object, but it should be called only after sending the type of the data with a sepa-
rate call.

You can see the effect of this program in Figure 22.9. To obtain it, I’ve added the following
code to an HTML page:

Practical Examples

2874c22.qxd 7/2/01 2:34 PM Page 981

http://www.sybex.com
http://localhost/scripts/webcount.exe%E2%80%9D

982

Searching with a Web Search Engine
In Chapter 21, I discussed the use of the Indy HTTP client component to retrieve the result
of a search on the Google Web site. Now I’m going to extend the example a little, turning it
into a server-side application. The WebSearch program on the companion CD, available as a
CGI application or a Web App Debugger executable, has an action that simply returns the
HTML retrieved by the search engine and a second action that fills a client data set compo-
nent, then hooked to a table page producer. This is the code of this second action:

const
strSearch = ‘http://www.google.com/search?as_q=borland+delphi&num=100’;

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
I: integer;

begin
if not cds.Active then
cds.CreateDataSet

else
cds.EmptyDataSet;

for i := 0 to 5 do // how many pages?
begin
// get the data form the search site
GrabHtml (strSearch + ‘&start=’ + IntToStr (i*100));
// scan it to fill the cds
HtmlStringToCds;

end;
cds.First;
// return producer content
Response.Content := DataSetTableProducer1.Content;

end;

F I G U R E 2 2 . 9 :
The graphical Web hit
counter in action

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 982

http://www.sybex.com
http://www.google.com/search?as_q=borland+delphi&num=100%E2%80%99%00

983

The GrabHtml method is identical to the WebFind example, while the HtmlStringToCds
method is similar to corresponding method (which adds the items to a list box) and adds the
addresses and their textual descriptions by calling:

cds.InsertRecord ([0, strAddr, strText]);

The ClientDataSet component, in fact, is set up with three fields: the two strings plus a
line counter. This extra empty field is used to have the extra column in the table producer.
The code fills the column in the cell-formatting event, which also adds the hyperlink:

procedure TWebModule1.DataSetTableProducer1FormatCell(Sender: TObject; CellRow,
CellColumn: Integer; var BgColor: THTMLBgColor; var Align: THTMLAlign;
var VAlign: THTMLVAlign; var CustomAttrs, CellData: String);

begin
if CellRow <> 0 then
case CellColumn of
0: CellData := IntToStr (CellRow);
1: CellData := ‘’ + SplitLong(CellData) + ‘’;
2: CellData := SplitLong (CellData);

end;
end;

The call to SplitLong is used to add some extra spaces within the output text, to avoid hav-
ing grid columns that are too large, as the browser won’t split the text on multiple lines
unless it contains spaces or other special characters. The result of this program is a rather
slow application (because of the multiple HTTP requests it must forward) producing output
like Figure 22.10.

F I G U R E 2 2 . 1 0 :
The WebSearch program
shows the result of the
multiple searches done
on Google.

Practical Examples

2874c22.qxd 7/2/01 2:34 PM Page 983

http://www.sybex.com

984

Active Server Pages
Another approach to the development of server-side applications is the use of scripting. Before
looking at the scripting technology embedded in the WebSnap framework, let me shortly dis-
cuss Microsoft’s Active Server Pages (ASP) technology and how you can use Delphi to support
it. The idea behind ASP is to add scripts to the HTML code, so that part of the text on a Web
page is directly available while other information can be added at run time on the server. The
client receives a plain HTML file. The difference between this approach and ISAPI is that
you don’t need to recompile a program on the server to see a change; you simply update the
script. ASP offers a complex model, where you can attach persistent data to a session (for
example, a user moving from page to page of a section of your Web site) and to the entire
application (the section of the Web site, regardless of the user).

ASP is quite a complex technology, and here I can only discuss it in relation to Delphi pro-
gramming. One of the features of ASP is that it allows you to create COM objects within a
script, and you can write those COM objects in Delphi. The Delphi IDE even provides spe-
cific support classes and a wizard to help you build ASP objects. Compared to ISAPI or CGI,
one of the advantages is that your ASP object built in Delphi can get access to session and
application information, exactly as an ASP script does. This means we automatically get extra
features such as persistent user data built into our server-side object. By building a compiled
ASP object, we can also increase the speed of complex server-side code. (ASP scripts are not
always the best solution in term of performance.) But, again, I don’t want to discuss ASP in
detail, only focus on Delphi support.

To try this out, simply create a new ActiveX library, and then start the Active Server Object
Wizard (from the ActiveX page of the File ➢ New dialog box). As you can see in Figure 22.11,
the wizard has a couple of options. You can build an object integrated with the ASP script by
selecting the Page-Level Event Methods radio button, or an internal object (which can be
installed as an MTS object) by using the Object Context option. Only in the first case does
the object automatically handle the OnStartPage method, which receives as parameter the
scripting context. In both cases, however, the VCL classes you inherit from (TASPObject and
TASPMTSObject, respectively) have properties to access the Request, Response, Session,
Server, and Application ASP objects.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 984

http://www.sybex.com

985

Once you’ve created the ASP object with the wizard (I’ve used the Page-Level Event
Methods option for the AspTest example), Delphi will bring up the Type Library editor,
where you can prepare a list of properties and methods for your ASP object. Simply add the
features you need, and then write their code. For example, you can write the following
simple test method:

procedure Tasptest.ShowData;
begin
Response.Write (‘<h3>Delphi wrote this text</h3>’);

end;

and activate it from the following ASP script (only slightly modified from the demo script the
Delphi wizard will generate for you):

<h4>Message</h4>
<% Set DelphiASPObj = Server.CreateObject(“asptest1.asptest”)

DelphiASPObj.showData
%>

The interesting element is that the same script (or another ASP script of the same applica-
tion) can also set global values our Delphi object can access. Similarly, multiple objects can
communicate, setting global variables for the application and session variables for the specific
user. For example, we can add the following text to the ASP page:

<h4>hello</h4>
<%

Session.Value(“UserName”) = “Marco”
DelphiASPObj.Hello

%>

I’ve written the code used to set the property and the method invocation one after the
other, but they can even be in different pages. This new dynamic property (Microsoft’s term

F I G U R E 2 2 . 1 1 :
The new Active Server
Object wizard

Active Server Pages

2874c22.qxd 7/2/01 2:34 PM Page 985

http://www.sybex.com

986

for these values added to an object) is saved in the session, so it depends on the current user.
The Hello method can use the username to welcome them:

procedure Tasptest.Hello;
var
strName: string;

begin
strName := Session [‘UserName’];
Response.Write (‘<h3>Hello, ‘ + strName + ‘</h3>’);
Response.Write (‘<p>Page started at ‘ + TimeToStr (StartTime) + ‘</p>’);

end;

You can see the result of this and the previous method combined in Figure 22.12. The last
line of the method uses a variable that’s set when the page is first loaded, in the OnStartPage
method (despite the name, this is not an event handler, but a method the ASP engine will call
as the page containing the object is activated):

procedure Tasptest.OnStartPage(const AScriptingContext: IUnknown);
begin
inherited OnStartPage(AScriptingContext);
StartTime := Now;

end;

F I G U R E 2 2 . 1 2 :
The Web page generated by
the AspTest object I’ve built
with Delphi

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 986

http://www.sybex.com

987

Technically, this method retrieves the scripting context. The TASPObject base class uses the
method to initialize all the ASP objects (including the two, Response and Session, I use in
the code), surfacing them as properties.

To generate more complex HTML from the Delphi ASP object, you can use Producer
components, optionally connecting them to a dataset. In the AspTest example, I’ve added a
Table component and a DataSetTableProducer, connected them as usual, and written the fol-
lowing code to activate it:

procedure Tasptest.ShowTable;
begin
DataModule1 := TDataModule1.Create (nil);
try
Response.Write (DataModule1.DataSetTableProducer1.Content)

finally
DataModule1.Free;

end;
end;

It will actually make more sense to create the data module when the COM object is created
and destroyed (overriding Initialize and Destroy) or when the page is loaded and unloaded
(with OnStartPage and OnEndPage).

WebSnap
After this lengthy introduction of the core elements of the development of Web server appli-
cations with Delphi, we can finally focus on some of the new related technologies introduced
in Delphi 6. There were two good reasons for not jumping right into this topic from the
beginning of this chapter. The first is that WebSnap builds on the foundation offered by
WebBroker, so that you cannot learn how to use the new features if you don’t know the core
ones. For example, a WebSnap application is technically a CGI or WinCGI program, or an
ISAPI or Apache module. The second reason is that since WebSnap is included only in the
Enterprise version of Delphi, not all Delphi programmers have the chance to use it (needing
to limit their expense to the Professional version of Delphi 6, which includes WebBroker).

WebSnap has a few definitive advantages over the plain WebBroker, such as allowing for
multiple pages, integrating server-side scripting, and XSL and Delphi 5 Internet Express
technology (these last two elements will be covered in the next chapter). Moreover, there are
many ready-to-use components for handling common tasks, such as users’ login, session
management, and so on. Instead of listing all the features of WebSnap right away, though,
I’ve decided to cover them in a sequence of simple and focused applications. All of these
applications have been built using the Web App Debugger, for testing purposes, but you’ll be
able to easily deploy them using one of the other available technologies.

WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 987

http://www.sybex.com

988

The starting point of the development of a WebSnap application is a dialog box that you
can invoke either in the WebSnap page of the New items dialog box (File ➢ New ➢ Other) or
using the new Internet toolbar of the IDE. The resulting dialog box, shown in Figure 22.13,
allows you to choose the type of application (like in a WebBroker application) and to cus-
tomize the initial application components (but you’ll be able to add more later on). The bot-
tom portion of the dialog determines the behavior of the first page, usually the default or
home page of the program. A similar dialog box is displayed also for subsequent pages.

If you go ahead, choosing the defaults and typing in a name for the home page, the dialog
box will create a project and open up a TWebAppPageModule for you. This module contains the
components you’ve chosen, by default:

• A WebAppComponents component is a container of all of the centralized services of
the WebSnap application, such as the user list, core dispatcher, session services, and so
on. Not all of its properties must be available, as an application might not need all of
the available services.

• One of these core services is offered by the PageDispatcher component, which (automat-
ically) holds a list of the available pages of the application and defines the default one.

• Another core service is given by the AdapterDispatcher component, which handles
HTML form submissions and image requests.

• The ApplicationAdapter is the first component we encounter of the adapters family.
These components offer fields and actions to the server-side scripts evaluated by the

F I G U R E 2 2 . 1 3 :
The options offered by the
New WebSnap Application
dialog box include the type
of server and a button for
the selection of the core
application components.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 988

http://www.sybex.com

989

program. Specifically, the ApplicationAdapter is a fields adapter that exposes the value
of its own ApplicationTitle property. By entering a value for this property, it will be
made available to the scripts.

• Finally, the module hosts a PageProducer that includes the HTML code of the page—
in this case, the default page of the program. Unlike WebBroker applications, the
HTML for this component is not stored inside its HTMLDoc string list property or refer-
enced by its HTMLFile property. The HTML file is an external file, stored by default in
the folder hosting the source code of the project and referenced from the application
using a statement similar to a resource include statement: {*.html}.

Because the HTML file included by the PageProducer is kept as a separate file (the
LocateFileService component will eventually help you for its deployment), you can edit it to
change the output of a page of your program without having to recompile the application.
These possible changes relate not only to the fixed portion of the HTML file but also to
some of its dynamic content, thanks to the support for server-side scripting. The default
HTML file, based on a standard template, actually already has some scripting in it.

The HTML file is visible within the Delphi editor with reasonably good syntax highlight-
ing, simply by selecting the corresponding lower tab, such as WSnapDM.html in my simple
example, shown in Figure 22.14. The editor also has other pages for a WebSnap module,
including by default an HTML Result page, where you can see the HTML generated after
evaluating the scripts, and a Preview page hosting what a user will see inside a browser.

F I G U R E 2 2 . 1 4 :
The Delphi 6 editor for a
WebSnap module includes
a simple HTML editor and a
preview of its output.

WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 989

http://www.sybex.com

990

TIP If you prefer editing the HTML of your Web application with another more sophisticated edi-
tor, you can set up your choice in the Internet page of the Environment Options dialog box.
Within this page, you can see a list of file extensions. Selecting the Edit button for one of these
groups of extensions, you can choose an external editor to use for these files. At this point, the
External Editor button of the Internet toolbar will become active.

The standard HTML template used by WebSnap adds to any page of the program its title
and the application title, using simple script lines such as:

<h1><%= Application.Title %></h1>
<h2><%= Page.Title %></h2>

We’ll get back to the scripting in a while. But let me start the development of the WSnap1
example by simply creating a program with multiple pages. Before I do this, let me finish this
overview by showing you the extra source code of a sample Web page module:

type
Thome = class(TWebAppPageModule)
...

end;

function home: Thome;

implementation

{$R *.dfm} {*.html}

uses WebReq, WebCntxt, WebFact, Variants;

function home: Thome;
begin
Result := Thome(WebContext.FindModuleClass(Thome));

end;

initialization
if WebRequestHandler <> nil then
WebRequestHandler.AddWebModuleFactory(TWebAppPageModuleFactory.Create(
Thome, TWebPageInfo.Create([wpPublished {, wpLoginRequired}], ‘.html’),
caCache));

end.

The module uses a global function instead of a typical global object of forms to support
caching of the pages. This Web App Debugger application also has some extra code in the
initialization section, particularly some registration code, to let the application know the role
of the page and its behavior.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 990

http://www.sybex.com

991

Managing Multiple Pages
The first notable difference between WebSnap and WebBroker is that, instead of having a single
data module with multiple actions eventually connected to producer components, WebSnap
has multiple data modules, each corresponding to an action and having a producer component
with an HTML file attached to it. Actually, you can still add multiple actions to a page/mod-
ule, but the idea is that you structure applications around pages and not around actions. Like
actions, the name of the page is indicated in the request path.

As an example, I’ve added to the WebSnap application, built with default settings, two
more pages. For the first, in the New WebSnap Page Module dialog (see Figure 22.15), I’ve
chosen a standard page producer and given to it the name date. For the second, I’ve gone
with a DataSetPageProducer and given it the name country. After saving the files, you can
start testing the application. Thanks to some of the scripting I’ll discuss later, each page lists
all of the available pages (unless you’ve unchecked the Published check box in the New Web-
Snap Page Module dialog).

All of the pages will be rather empty, but at least we have the structure in place. To com-
plete the home page, I’ve simply edited its linked HTML file directly. For the date page, I’ve

F I G U R E 2 2 . 1 5 :
The New WebSnap Page
Module dialog box

WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 991

http://www.sybex.com

992

employed the same approach as a WebBroker application. I’ve added to the HTML text
some custom tags, as in:

<p>The time at this site is <#time>.</p>

and I’ve added some code to the OnTag event handler of the producer component to replace
this tag with the current time.

For the third page, the country page, I’ve modified the HTML to include tags for the vari-
ous fields of the country table, as in:

<h3>Country: <#name></h3>

Then I’ve attached the table to the page producer (and I’ve also added a session compo-
nent to account for concurrent requests in multiple threads):

object DataSetPageProducer: TDataSetPageProducer
DataSet = Table1

end
object Table1: TTable
DatabaseName = ‘DBDEMOS’
SessionName = ‘Session1_2’
TableName = ‘country.db’

end
object Session1: TSession
Active = True
AutoSessionName = True

end

To open this table when the page is first created and reset it to the first record in further
invocations, I’ve handled the OnBeforeDispatchPage event of the Web page module, adding
this code to it:

Table1.Open;
Table1.First;

The fact that a WebSnap page can be very similar to a portion of a WebBroker application
(basically an action tied to a producer) is quite important, in case you want to port existing Web-
Broker code to this new architecture. You can even port your existing DataSetTableProducer
components to the new architecture. Technically, you can generate a new page, remove its pro-
ducer component, replace it with a DataSetTableProducer, and hook this component to the
PageProducer property of the Web page module. In practice, this approach would cut out the
HTML file of the page and its scripts.

In the WSnap1 program, I’ve used a better technique. I’ve added a custom tag
(<#htmltable>) to the HTML file and used the OnTag event of the page producer to add to
the HTML the result of the data set table:

if TagString = ‘htmltable’ then
ReplaceText := DataSetTableProducer1.Content;

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 992

http://www.sybex.com

993

Server-Side Scripts
If having multiple pages in a server-side program, each associated with a different page mod-
ule, changes the way you write a program, having the server-side scripts at hand offers an
even more powerful approach. For example, the standard scripts of the WSnap1 example
account for the application and page titles, and for the index of the pages. This is generated
by an enumerator, the technique used to scan a list from within a WebSnap script code. Let’s
have a look at it:

<table cellspacing=”0” cellpadding=”0”><td>
<% e = new Enumerator(Pages)

s = ‘’
c = 0
for (; !e.atEnd(); e.moveNext())
{
if (e.item().Published)
{
if (c > 0) s += ‘ | ’
if (Page.Name != e.item().Name)
s += ‘’ + e.item().Title + ‘’

else
s += e.item().Title

c++
}

}
if (c>1) Response.Write(s)

%>
</td></table>

NOTE Typically, WebSnap scripts are written in JavaScript, an object-based language very common
for Internet programming because it is the only scripting language generally available in
browsers (on the client side). JavaScript, technically indicated as ECMAScript, borrows the core
syntax of the C language and has almost nothing to do with Java. Actually, WebSnap uses
Microsoft’s ActiveScripting engine, which supports both JScript (a variation of JavaScript) and
VBScript.

Inside the single cell of this table (which, oddly enough, has no rows), the script outputs a
string with the Reponse.Write command. This string is built with a for loop over an enumer-
ator of the pages of the application, stored in the Pages global entity. The title of each page is
added to the string, only if the page is published and using an hyperlink only for pages differ-
ent than the current one. Having this code in a script, instead of hard-coded into a Delphi
component, allows you to pass it over to a good Web designer to turn it into something a little
more visually appealing.

WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 993

http://www.sybex.com

994

TIP To publish or unpublish a page, don’t look for a property in the Web page module. This status
is controlled by a flag of the AddWebModuleFactory method called in the Web page module
initialization code. Simply comment or uncomment this flag to obtain the desired effect.

As a sample of what you can do with scripting, I’ve added to the WSnap2 example (an exten-
sion of the WSnap1 example) a demoscript page. The script of this page can generate a full table
of multiplied values with the following scripting code (see Figure 22.16 for its output):

<table border=1 cellspacing=0>
<tr>
<th> </th>
<% for (j=1;j<=5;j++) { %>
<th>Column <%=j %></th>
<% } %>

</tr>
<% for (i=1;i<=5;i++) { %>
<tr>
<td>Line <%=i %></td>
<% for (j=1;j<=5;j++) { %>
<td>Value= <%=i*j %></td>
<% } %>

</tr>
<% } %>
</table>

F I G U R E 2 2 . 1 6 :
The WSnap2 example has a
custom menu stored in an
included file reference by
each page.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 994

http://www.sybex.com

995

In this script, the <%= symbol replaces the longer Response.Write command. Another
important feature of server-side scripting is the inclusion of pages within other pages. For
example, if you plan on modifying the menu, you can include the related HTML and script
in a single file, instead of changing it and maintaining it in multiple pages. File inclusion is
generally done with a statement like:

<!-- #include file=”menu.html” -->

In Listing 22.1, you can find the complete source code of the include file for the menu, ref-
erenced by all the other HTML files of the project. In Figure 22.16, you can see an example
of this menu, across the top of the page with the table generation script mentioned earlier.

➲ Listing 22.1: The menu.html file included in each page of the WSnap2 example

<html>
<head>
<title><%= Page.Title %></title>
</head>
<body>
<h2><%= Application.Title %></h2>
<table cellspacing=”0” cellpadding=”2” border=”1” bgcolor=”#c0c0c0”>
<tr>
<% e = new Enumerator(Pages)

for (; !e.atEnd(); e.moveNext())
{
if (e.item().Published)
{
if (Page.Name != e.item().Name)
Response.Write (‘<td>’ +
e.item().Title + ‘</td>’)

else
Response.Write (‘<td>’ + e.item().Title + ‘</td>’)

}
}

%>
</tr>
</table>
<hr>
<h1><%= Page.Title %></h1>
<p>

This script for the menu uses the Pages list and the Page and Application global script-
ing objects. WebSnap makes available a few other global objects, including EndUser and
Session objects (in case you add the corresponding adapters to the application), the Modules
object, and the Producer object, which allows access to the Producer component of the Web
page module. The script also has available the Response and Request objects of the Web
module.

WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 995

http://www.sybex.com

996

Adapters
Besides these global objects, within a script you can access all the adapters available in the
corresponding Web page module. (Adapters in other modules, including shared Web data
modules, must be referenced by prefixing their name with the Modules object and the corre-
sponding module.) The idea is that adapters allow you to pass information from your com-
piled Delphi code to the interpreted script, providing a scriptable interface to your Delphi
application. Adapters contain fields that represent data and host actions that represent com-
mands. The server-side scripts can access these values and issue these commands, passing
specific parameters to them.

NOTE Technically, adapters implement an IDispatch interface that can be accessed by the script
through an Active Scripting engine language, such as JavaScript. The page producer compo-
nent is responsible for invoking the Active Scripting engine and has a property indicating the
language of the script. Because of this, you’ll have to register two type libraries (and deploy
the corresponding DLLs) to make this work on a machine where Delphi is not installed: Web-
BrokerScript.tlb and stdvcl40.dll. As the first is a type library, it must be installed with
Delphi’s TRegSvr utility (available in the bin subfolder) rather than Microsoft’s RegSvr32 pro-
gram. Of course, the server computer must also have Microsoft Active Scripting Engine
installed in order to work.

Adapter Fields
For simple customizations, you can simply add new fields to the specific adapters. For instance,
in the WSnap2 example, I’ve added a custom field to the application adapter. After selecting
this component, you can either open up its Fields editor (accessible via its local menu) or simply
work within the Object TreeView. After adding a new field (called Count in the example), you
can assign a value to it in its OnGetValue event. As I want to count the hits (or requests) on any
page of the Web application, I’ve also handled the OnBeforePageDispatch event of the global
PageDispatcher component. Here is the code of the two methods:

procedure Thome.PageDispatcherBeforeDispatchPage(Sender: TObject;
const PageName: String; var Handled: Boolean);

begin
Inc (HitCount);

end;

procedure Thome.CountGetValue(Sender: TObject; var Value: Variant);
begin
Value := HitCount;

end;

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 996

http://www.sybex.com

997

Of course, I could have used the page name to also count hits on each specific page (and I
could have added some support for persistency, as the count is reset every time you run a new
instance of the application). Now that I’ve added a custom field to an existing adapter (corre-
sponding to the Application script object), I can access it from within any script, like this:

<p>Application hits since last activation:
<%= Application.Count.Value %></p>

Adapter Components
In the same way, you can also add custom adapters to specific pages. If you need to pass along
a few fields, use the generic Adapter component. Other custom adapters (besides the global
ApplicationAdapter we’ve already used) include these:

• The PagedAdapter component has built-in support for showing its content over multiple
pages.

• The DataSetAdapter component is used to access a Delphi dataset from a script and is
covered in the next section.

• The StringValuesList holds a list of name/value pairs, like a string list, and can be used
directly or to provide a list of values to an adapter field. The inherited DataSetValues-
List adapter has the same role but grabs the list of name/value pairs from a dataset,
providing support for lookups and other selections.

• User-related adapters, such as the EndUser, EndUserSession, and LoginForm
adapters, are used to access user and session information and to build a login form for
the application, automatically tied to the users list. I’ll cover these adapters in the sec-
tion “Sessions, Users, and Permissions” later in this chapter.

Using the AdapterPageProducer
Most of these components are used in conjunction with an AdapterPageProducer compo-
nent. The AdapterPageProducer, in fact, can generate portions of script after you visually
design the desired result. As an example, I’ve added to the WSnap2 application the inout
page, which has an adapter with two fields, one standard and one Boolean:

object Adapter1: TAdapter
OnBeforeExecuteAction = Adapter1BeforeExecuteAction
object TAdapterActions
object AddPlus: TAdapterAction
OnExecute = AddPlusExecute

end
object Post: TAdapterAction
OnExecute = PostExecute

end
end

WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 997

http://www.sybex.com

998

object TAdapterFields
object Text: TAdapterField
OnGetValue = TextGetValue

end
object Auto: TAdapterBooleanField
OnGetValue = AutoGetValue

end
end

end

The adapter has also a couple of actions, used to post the current user input and to add a
plus sign to the text. The same plus sign is added anyway when the Auto field is enabled.
Developing the user interface for this form, and the related scripting, would take some time
using plain HTML. But the AdapterPageProducer component (used in this page) has an
integrated HTML designer, which Borland calls Web Surface Designer. Using this tool, you
can visually add a form to the HTML page and add an AdapterFieldGroup to it. Connect
this field group to the adapter to have editors for the two fields automatically displayed.
Then you can add an AdapterCommandGroup and connect it to the AdapterFieldGroup, to
have buttons for all of the actions of the adapter. You can see an example of this designer in
Figure 22.17.

F I G U R E 2 2 . 1 7 :
The Web Surface Designer
of Delphi 6 for the inout
page of the WSnap2
example, at design time

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 998

http://www.sybex.com

999

To be more precise, the fields and buttons are automatically displayed if the AddDefault-
Fields and AddDefaultCommands properties of the field group and command group are set.
The effect of the visual operations I’ve done to build this form are summarized in the follow-
ing DFM snippet:

object AdapterPageProducer: TAdapterPageProducer
object AdapterForm1: TAdapterForm
object AdapterFieldGroup1: TAdapterFieldGroup
Adapter = Adapter1
object FldText: TAdapterDisplayField
FieldName = ‘Text’

end
object FldAuto: TAdapterDisplayField
FieldName = ‘Auto’

end
end
object AdapterCommandGroup1: TAdapterCommandGroup
DisplayComponent = AdapterFieldGroup1
object CmdPost: TAdapterActionButton
ActionName = ‘Post’

end
object CmdAddPlus: TAdapterActionButton
ActionName = ‘AddPlus’

end
end

end
end

Now that we have an HTML page with some scripts to move data back and forth and issue
commands, we can have a look at the source code required to make this work. First, you’ll
have to add to the class two local fields to store the adapter fields and manipulate them, and
you need to implement the OnGetValue event for both, returning the field values. When each
of the buttons is pressed, we have to retrieve the text passed by the user, which is not auto-
matically copied into the corresponding adapter field. You can obtain this effect by looking at
the ActionValue property of these fields, which is set only if something was entered (for this
reason, when nothing is entered we set the Boolean field to False). To avoid repeating this
code for both actions, I’ve placed it in the OnBeforeExecuteAction event of the Web page
module:

procedure Tinout.Adapter1BeforeExecuteAction(Sender, Action: TObject;
Params: TStrings; var Handled: Boolean);

begin
if Assigned (Text.ActionValue) then
fText := Text.ActionValue.Values [0];

fAuto := Assigned (Auto.ActionValue);
end;

WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 999

http://www.sybex.com

1000

Notice that each action can have multiple values (in case of components allowing multiple
selections); but this is not the case, so we can simply grab the first element. Finally, I’ve writ-
ten the code for the OnExecute events of the two actions:

procedure Tinout.AddPlusExecute(Sender: TObject; Params: TStrings);
begin
fText := fText + ‘+’;

end;

procedure Tinout.PostExecute(Sender: TObject; Params: TStrings);
begin
if fAuto then
AddPlusExecute (Self, nil);

end;

As an alternative, adapter fields have a public EchoActionFieldValue property that you can
set to get the value entered by the user and place it again in the resulting form. This tech-
nique is typically used in case of errors, to let the user change the input starting with the val-
ues already entered.

NOTE The AdapterPageProducer component has specific support for cascading style sheets (CSS).
You can define the CSS for a page using either the StylesFile property or Styles string list.
Any element of the editor of the items of the producer, at this point, can define a specific style
or choose one of the styles of the attached CSS. This last operation (which is the suggested
approach) is accomplished using the StyleRule property.

Scripts Rather Than Code?
Even this simple example of the combined use of an adapter and an adapter page producer,
with its visual designer, shows the power of this architecture. However, this approach also has
a big drawback. By letting the components generate the script (in the HTML, you have only
the <#SERVERSCRIPT> tag), you save a lot of development time, but at the same time you end
up mixing the script with the code, so that changes to the user interface will require updating
the program. The division of responsibilities between the Delphi application developer and the
HTML/script designer is lost. And, ironically, we end up having to run a script to accom-
plish something the Delphi program could have done right away, possibly even much faster!

So my opinion is that this is a very powerful architecture and a huge step forward from
WebBroker, but it has to be used with some care, to avoid misusing some of these technolo-
gies just because they are simple and powerful (and they are indeed). For example, it might
be worth using the designer of the AdapterPageProducer to generate the first version of a
page, then grabbing the generated script and copying to the HTML of a plain PageProducer,
so that a Web designer can modify the script with a specific tool.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 1000

http://www.sybex.com

1001

For nontrivial applications, I tend to prefer the possibilities offered by XML and XSL,
which are available within this architecture even if they don’t have a central role. More on
this specific topic in the next chapter.

WebSnap and Databases
One of the areas where Delphi has always shined is database programming. For this reason,
it is not surprising to see a lot of support for handling datasets within the WebSnap frame-
work. Specifically, you can use the DataSetAdapter component to connect to a dataset and
display its values in a form or a table using the visual editor of the AdapterPageProducer
component.

A WebSnap Data Module
As an example, I’ve built a new WebSnap application (called WSnapTable) with an Adapter-
PageProducer as its main page to display a table in a grid and another AdapterPageProducer
in a secondary page to show a form with a single record. I’ve also added to the application a
WebSnap Data Module, as a container of the dataset components. The data module has a
ClientDataSet wired to a dbExpress dataset through a provider and based on an InterBase
connection, as shown here:

object ClientDataSet1: TClientDataSet
Active = True
ProviderName = ‘DataSetProvider1’

end
object SQLConnection1: TSQLConnection
Connected = True
ConnectionName = ‘IBLocal’
LoginPrompt = False

end
object SQLDataSet1: TSQLDataSet
SQLConnection = SQLConnection1
CommandText =
‘select CUST_NO, CUSTOMER, ADDRESS_LINE1, CITY, STATE_PROVINCE, ‘ +
‘ COUNTRY from CUSTOMER’

end
object DataSetProvider1: TDataSetProvider
DataSet = SQLDataSet1

end

The DataSetAdapter
Now that we have a dataset available, we can add a DataSetAdapter to the first page, and
connect it to the ClientDataSet of the Web module. The adapter automatically makes avail-
able all of the fields of the dataset and several predefined actions for operating on it (such as

WebSnap and Databases

2874c22.qxd 7/2/01 2:34 PM Page 1001

http://www.sybex.com

1002

Delete, Edit, and Apply). You can add them explicitly to the Actions and Fields collections
to exclude some of them and customize their behavior, but this is not always required.

Like the PagedAdapter, the DataSetAdapter has a PageSize property where you can indi-
cate the number of elements to display in each page. The component also has commands
that you can use to navigate among pages. This approach is particularly suitable when you
want to display a large dataset in a grid. These are the adapter settings for the main page of
the WSnapTable example:

object DataSetAdapter1: TDataSetAdapter
DataSet = WebDataModule1.ClientDataSet1
PageSize = 6

end

The corresponding page producer has a form containing two command groups and a grid.
The first command group (displayed above the gird) has the predefined commands for han-
dling pages: CmdPrevPage, CmdNextPage, and CmdGotoPage. This last command generates a list
of numbers for the pages, so that a user can jump to each of them directly. The AdapterGrid
component has the default columns plus an extra one hosting a couple of commands, Edit
and Delete. The bottom command group has a button used to create a new record. You can
see an example of the output of the table in Figure 22.18 and the complete settings of the
AdapterPageProducer in Listing 22.2.

➲ Listing 22.2: AdapterPageProducer settings for the WSnapTable main page

object AdapterPageProducer: TAdapterPageProducer
object AdapterForm1: TAdapterForm

F I G U R E 2 2 . 1 8 :
The page shown by the
WSnapTable example at
start up includes the initial
portion of a paged table.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 1002

http://www.sybex.com

1003

object AdapterCommandGroup1: TAdapterCommandGroup
DisplayComponent = AdapterGrid1
object CmdPrevPage: TAdapterActionButton
ActionName = ‘PrevPage’
Caption = ‘Previous Page’

end
object CmdGotoPage: TAdapterActionButton
ActionName = ‘GotoPage’

end
object CmdNextPage: TAdapterActionButton
ActionName = ‘NextPage’
Caption = ‘Next Page’

end
end
object AdapterGrid1: TAdapterGrid
TableAttributes.CellSpacing = 0
TableAttributes.CellPadding = 3
Adapter = DataSetAdapter1
AdapterMode = ‘Browse’
object ColCUST_NO: TAdapterDisplayColumn
FieldName = ‘CUST_NO’

end
object ColCUSTOMER: TAdapterDisplayColumn
FieldName = ‘CUSTOMER’

end
object ColADDRESS_LINE1: TAdapterDisplayColumn
FieldName = ‘ADDRESS_LINE1’

end
object ColCITY: TAdapterDisplayColumn
FieldName = ‘CITY’

end
object ColSTATE_PROVINCE: TAdapterDisplayColumn
FieldName = ‘STATE_PROVINCE’

end
object ColCOUNTRY: TAdapterDisplayColumn
FieldName = ‘COUNTRY’

end
object AdapterCommandColumn1: TAdapterCommandColumn
Caption = ‘COMMANDS’
object CmdEditRow: TAdapterActionButton
ActionName = ‘EditRow’
Caption = ‘Edit’
PageName = ‘formview’
DisplayType = ctAnchor

end
object CmdDeleteRow: TAdapterActionButton
ActionName = ‘DeleteRow’
Caption = ‘Delete’
DisplayType = ctAnchor

end
end

WebSnap and Databases

2874c22.qxd 7/2/01 2:34 PM Page 1003

http://www.sybex.com

1004

end
object AdapterCommandGroup2: TAdapterCommandGroup
DisplayComponent = AdapterGrid1
object CmdNewRow: TAdapterActionButton
ActionName = ‘NewRow’
Caption = ‘New’
PageName = ‘formview’

end
end

end
end

In this rather long listing, there are a few things to notice. First, the grid has the Adapter-
Mode property set to Browse, other possibilities being Edit, Insert, and Query. This dataset
display mode for adapters determines the type of user interface (text or edit boxes and other
input controls) and the visibility of other buttons (for example, Apply and Cancel buttons are
only present in the edit view, the opposite for the Edit command).

NOTE The adapter mode can also be modified using server-side script and accessing Adapter.Mode.

Second, I’ve modified the display of the commands inside the grid, using the ctAnchor
value for the DisplayType property instead of the default button style. Similar properties are
available in most components of this architecture to tweak the HTML code they produce.

Editing the Data in a Form
Finally, some of the commands are connected to a different page, the page that is going to be
displayed after the commands are invoked. For example, the edit command has its PageName
property set to formview. This second page of the application has an AdapterPageProducer
with components hooked to the same DataSetAdapter of the other table, so that all of the
request will be automatically synchronized. Selecting the edit command, in fact, the program
will open the secondary page displaying the data of the record corresponding to the command.

Listing 22.3 shows the details of the page producer of the second page of the program. Again,
building the HTML form visually using the Delphi specific designer (see Figure 22.19) was a
very fast operation.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 1004

http://www.sybex.com

1005

➲ Listing 22.3: AdapterPageProducer settings for the formview page

object AdapterPageProducer: TAdapterPageProducer
object AdapterForm1: TAdapterForm
object AdapterErrorList1: TAdapterErrorList
Adapter = table.DataSetAdapter1

end
object AdapterCommandGroup1: TAdapterCommandGroup
DisplayComponent = AdapterFieldGroup1
object CmdApply: TAdapterActionButton
ActionName = ‘Apply’
PageName = ‘table’

end
object CmdCancel: TAdapterActionButton
ActionName = ‘Cancel’
PageName = ‘table’

end
object CmdDeleteRow: TAdapterActionButton
ActionName = ‘DeleteRow’
Caption = ‘Delete’

F I G U R E 2 2 . 1 9 :
The formview page shown
by the WSnapTable example
at design time, in the Web
Surface Designer (or
AdapterPageProducer
editor)

WebSnap and Databases

2874c22.qxd 7/2/01 2:34 PM Page 1005

http://www.sybex.com

1006

PageName = ‘table’
end

end
object AdapterFieldGroup1: TAdapterFieldGroup
Adapter = table.DataSetAdapter1
AdapterMode = ‘Edit’
object FldCUST_NO: TAdapterDisplayField
DisplayWidth = 10
FieldName = ‘CUST_NO’

end
object FldCUSTOMER: TAdapterDisplayField
DisplayWidth = 27
FieldName = ‘CUSTOMER’

end
object FldADDRESS_LINE1...
object FldCITY...
object FldSTATE_PROVINCE...
object FldCOUNTRY...

end
end

end

In the listing, you can see that all the operations send the user back the main page and that
the AdapterMode is set to Edit, unless there are update errors or conflicts. In this case, the
same page is displayed again, with a description of the errors obtained by adding an Adapter-
ErrorList component at the top of the form.

The second page is not published, because selecting it without referring to a specific
record would make very little sense. To unpublish the page, I’ve simply commented the cor-
responding flag in the initialization code. Finally, to make the changes to the database persis-
tent, you can call the ApplyUdpates method in the OnAfterPost and OnAfterDelete events of
the ClientDataSet component hosted by the data module. Another problem (which I haven’t
fixed) relates to the fact that the SQL server assigns the ID of each customer, so that when
you enter a new record, the data in the ClientDataSet and in the actual database are not
aligned any more. This can cause Record Not Found errors, a problem I’ve not fixed in the
example.

Master/Detail in WebSnap
The DataSetAdapter component has specific support for master/detail relationships between
datasets. After you’ve created the relationship among the datasets, as usual, define an adapter
for each dataset and then connect the MasterAdapter property of the adapter of the detail
dataset. Setting up the master/detail relationship between the adapters makes them work in a

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 1006

http://www.sybex.com

1007

more seamless way. For example, when you change the work mode of the master, or enter
new records, the detail automatically enters into Edit mode or is refreshed.

In the WSnapMD example, I’ve defined such a relationship using two SQLClientDataSet
components connected with an InterBase database via dbExpress. All these components and
the related adapters are in a Web data module, which has the structure displayed in the design
view in Figure 22.20. I haven’t provided a complete listing of the details of these components,
as it shouldn’t be too difficult for you to rebuild it after looking at the example itself.

The only page of this WebSnap application has an AdapterPageProducer component hooked
to both dataset adapters. The form of this page, in fact, has both a field group hooked to the
master and a grid connected with the detail. Unlike other examples, I’ve tried to improve the
user interface by adding custom attributes for the various elements, as you can see in the fol-
lowing detailed excerpt:

object AdapterPageProducer: TAdapterPageProducer
object AdapterForm1: TAdapterForm
Custom = ‘Border=”1” CellSpacing=”0” CellPadding=”10” ‘ +
‘BgColor=”Silver” align=”center”’

object AdapterCommandGroup1: TAdapterCommandGroup
DisplayComponent = AdapterFieldGroup1

F I G U R E 2 2 . 2 0 :
The design view of the
Web data module of the
WSnapMD example.
Both the datasets and
the adapters have a
master/detail relationship.

WebSnap and Databases

2874c22.qxd 7/2/01 2:34 PM Page 1007

http://www.sybex.com

1008

Custom = ‘Align=”Center”’
object CmdFirstRow: TAdapterActionButton
ActionName = ‘FirstRow’
Caption = ‘ First ‘

end
object CmdPrevRow: TAdapterActionButton
ActionName = ‘PrevRow’
Caption = ‘ Previous ‘

end
object CmdNextRow: TAdapterActionButton
ActionName = ‘NextRow’
Caption = ‘ Next ‘

end
object CmdLastRow: TAdapterActionButton
ActionName = ‘LastRow’
Caption = ‘ Last ‘

end
end
object AdapterFieldGroup1: TAdapterFieldGroup
Custom = ‘BgColor=”Silver”’
Adapter = WDataMod.dsaDepartment
AdapterMode = ‘Browse’

end
object AdapterGrid1: TAdapterGrid
TableAttributes.BgColor = ‘Silver’
TableAttributes.CellSpacing = 0
TableAttributes.CellPadding = 3
HeadingAttributes.BgColor = ‘Gray’
Adapter = WDataMod.dsaEmployee
AdapterMode = ‘Browse’
object ColEMP_NO: TAdapterDisplayColumn...
object ColFIRST_NAME: TAdapterDisplayColumn...
object ColLAST_NAME: TAdapterDisplayColumn...
object ColDEPT_NO: TAdapterDisplayColumn...
object ColJOB_CODE: TAdapterDisplayColumn...
object ColJOB_COUNTRY: TAdapterDisplayColumn...
object ColSALARY: TAdapterDisplayColumn...

end
end

end

I’ve used a gray background, displayed some of the grid borders (HTML grids are used
very often by the Web surface designer), centered most of the elements, and added some
spacing. Notice that I’ve added some extra spaces to the button captions, to avoid them being
too small. The effect of these settings (and the master/detail structure) is visible at run time
in Figure 22.21.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 1008

http://www.sybex.com

1009

Sessions, Users, and Permissions
Another very interesting area of the WebSnap architecture is its support for sessions and
users. Sessions are supported using a classic approach: temporary cookies. These cookies are
sent to the browser, so that following requests from the same user can be acknowledged by
the system. By adding data to a session instead of an application adapter, you can have data
that depends on the specific session or user (although a user can possibly run multiple ses-
sions by opening multiple browser windows on the same computer). For supporting sessions,
the application keeps data in memory, so this feature is not available in case of CGI pro-
grams.

Using Sessions
To underline the importance of this type of support, I’ve built a WebSnap application with a
single page showing both the total number of hits and the total number of hits for each ses-
sion. The program has a SessionService component with default values for its MaxSessions
and DefaultTimeout properties. For every new request, the program increases both an nHits
private field of the page module and the SessionHits value of the current session:

procedure TSessionDemo.WebAppPageModuleBeforeDispatchPage(Sender: TObject;

F I G U R E 2 2 . 2 1 :
The WSnapMD example
shows a master/detail
structure and has some
customized output.

Sessions, Users, and Permissions

2874c22.qxd 7/2/01 2:34 PM Page 1009

http://www.sybex.com

1010

const PageName: String; var Handled: Boolean);
begin
// increase application and session hits
Inc (nHits);
WebContext.Session.Values [‘SessionHits’] :=
Integer (WebContext.Session.Values [‘SessionHits’]) + 1;

end;

NOTE The WebContext object (of type TWebContext) is a thread variable, created by WebSnap for
each request, which provides thread-safe access to other global variables used by program.

The associated HTML displays status information both by using some custom tags evalu-
ated by the OnTag event of the page producer and some script, evaluated by the engine. Here
is the core portion of the HTML file:

<h3>Plain Tags</h3>
<p>Session id: <#SessionID>

Session hits: <#SessionHits></p>
<h3>Script</h3>
<p>Session hits (via application): <%=Application.SessionHits.Value%>

Application hits: <%=Application.Hits.Value%></p>

The parameters of the output are provided by the OnTag event handler and the OnGetValue
events of the fields:

procedure TSessionDemo.PageProducerHTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
if TagString = ‘SessionID’ then
ReplaceText := WebContext.Session.SessionID

else if TagString = ‘SessionHits’ then
ReplaceText := WebContext.Session.Values [‘SessionHits’]

end;

procedure TSessionDemo.HitsGetValue(Sender: TObject; var Value: Variant);
begin
Value := nHits;

end;

procedure TSessionDemo.SessionHitsGetValue(Sender: TObject; var Value: Variant);
begin
Value := Integer (WebContext.Session.Values [‘SessionHits’]);

end;

The effect of this program is visible in Figure 22.22, where I’ve activated two sessions in
two different copies of Internet Explorer.

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 1010

http://www.sybex.com

1011

TIP In this example, I’ve voluntarily used both the traditional WebBroker tag replacement and the
newer WebSnap adapter fields and scripting, so that you can compare the two approaches
and keep in mind that they are both available in a WebSnap application.

Requesting Login
Besides generic sessions, WebSnap also has specific support for users and login-based authorized
sessions. You can add to an application a list of users (with the WebUserList component), each
with a name and a password. My impression is that this component is rather rudimentary in the
data it can store. Instead of filling it with your list of users, however, you can keep the list in a
database table (or in some other proprietary format) and use the events of the WebUserList
component to retrieve your custom users data and check the user passwords.

You’ll generally also add to the application the SessionService and EndUserSession-
Adapter components. At this point, you can ask the users to log in, indicating for each page
whether it can be viewed by everyone or only by logged-in users. This is accomplished by
setting the wpLoginRequired flag in the constructor of the TWebPageModuleFactory and
TWebAppPageModuleFactory classes in the initialization code of the Web page unit.

F I G U R E 2 2 . 2 2 :
Two instances of the
browser operate on two
different sessions of the
same WebSnap application.

Sessions, Users, and Permissions

2874c22.qxd 7/2/01 2:34 PM Page 1011

http://www.sybex.com

1012

NOTE The reason for having rights and publication information in the factory rather than in the Web-
PageModule, is that the program can check the access rights and list the pages even without
loading the module.

When a user tries to see a page that requires the user identification, the login page indicated
in the EndUserSessionAdapter component is displayed. You can create such a page rather eas-
ily by creating a new Web page module based on an AdapterPageProducer and adding to it
the LoginFormAdapter. In the editor of the page, add a field group within a form, connect the
field group to the LoginFormAdapter, and add a command group with the default Login but-
ton. The resulting login form will have fields for the username and its password, but also for
the requested page. This last value is automatically filled with the requested page, in case this
page required authorization and the user wasn’t already logged in. This is done so that a user
can immediately reach the requested page without being bounced back to a generic menu.

The login form is typically not published, because the corresponding Login command is
already available when the user isn’t logged into the system; when the user logs in, it is
replaced by a Logout command. This is obtained by the standard script of the Web Page
Module, and particularly:

<% if (EndUser.Logout != null) { %>
<% if (EndUser.DisplayName != ‘’) { %>
<h1>Welcome <%=EndUser.DisplayName %></h1>

<% } %>
<% if (EndUser.Logout.Enabled) { %>
<a href=”<%=EndUser.Logout.AsHREF%>”>Logout

<% } %>
<% if (EndUser.LoginForm.Enabled) { %>
<a href=<%=EndUser.LoginForm.AsHREF%>>Login

<% } %>
<% } %>

There isn’t much else to say about the WSnapUsers application, as it has almost no custom
code and settings. The access to the users data is demonstrated by the script of the standard
template shown above.

Single Page Access Rights
Besides having pages that require a login for access, you can give specific users the right to
see more pages than others. Any user, in fact, has a set of rights separated by semicolons or
commas. The user must have all of the rights defined for the requested page generally listed
in the ViewAccess and ModifyAccess properties of the adapters, which indicate respectively
whether the user can see the given elements while browsing or can even edit them. These
settings are very granular, and can be applied to entire adapters or some specific adapter

Chapter 22 • Web Programming with WebBroker and WebSnap

2874c22.qxd 7/2/01 2:34 PM Page 1012

http://www.sybex.com

1013

fields (notice I’m referring to the adapter fields, not the user interface components within the
designer). For example, you can hide some of the columns of a table to given users by hiding
the corresponding fields (and also in other cases, as specified by the HideOptions property).

The global PageDispatcher component also has the OnCanViewPage and OnPageAccessDenied
events that can also be used to control the access to the various pages of the program within
the program code, allowing for even greater control.

What’s Next?
In this chapter, I’ve covered Web server applications, using multiple techniques (CGI, ISAPI,
Apache dynamic modules) and two different frameworks of the Delphi class library: Web-
Broker and WebSnap. This wasn’t certainly an in-depth presentation, as one could write an
entire book on this topic alone. It was intended as a starting point, and (as usual) I’ve tried to
make the core concepts clear rather than building very complex examples.

If you want to learn more details of the WebSnap framework and see different examples in
actions, refer to the extensive Delphi demos for this area, in the \Demos\WebSnap folder.
Some of the other available options, relating to XML, XSL, and client-side scripts, will be
examined in the next chapter, where I’ll also discuss Web services as a powerful alternative to
HTTP/HTML-based distributed applications.

What’s Next?

2874c22.qxd 7/2/01 2:34 PM Page 1013

http://www.sybex.com

23CH A P T E R

XML and SOAP

� Introducing XML, Extensible Markup Language

� Working with XML: DOM and SAX

� Delphi 6 and XML: interfaces and mapping

� Internet Express

� Using XSTL

� Web services

� SOAP and WSDL

2874c23.qxd 7/2/01 2:27 PM Page 1015

http://www.sybex.com

1016

Building applications for the Internet means using protocols and creating browser-based
user interfaces, as we’ve done in the preceding two chapters, but also opens up the opportu-
nity of exchanging business documents electronically. The emerging standards for this type of
activity all center around the XML document format and include the SOAP transmission pro-
tocol, XML schemas for the validation of documents, and XSL for rendering them as HTML.

In this chapter, I’ll discuss all of these technologies and the extensive support Delphi 6
offers for them, a series of features collectively known as BizSnap. Since you might not know
XML and related technologies, I’ll provide a little introduction about each of them, but you
should refer to books specifically devoted to each subject to know more. What I won’t try to
do is to cover why this is a revolution for running the IT side of a business and what it opens
up. In the conclusion of the chapter, I’ll point you to some initiatives you might be interested
in tracking.

Introducing XML
XML, or Extensible Markup Language, is a simplified version of SGML and is getting a lot
of attention in the IT world. XML is a markup language, meaning it uses symbols to describe
its own content—in this case, tags consisting of specially defined text enclosed in angle brackets.
It is named extensible because it allows for free markers (in contrast, for example, to HTML,
which has predefined markers). The XML language is a standard promoted by the World
Wide Web Consortium (better known as W3C, www.w3.org).

TIP The XML Recommendation is at www.w3.org/TR/REC-xml.

XML has been touted as the ASCII of year 2000, to indicate a simple and widespread tech-
nology, and also to indicate that XML document is actually a plain text file (optionally with
Unicode characters instead of plain ACSII text). The important element of XML is that it is
descriptive, as every tag has an almost human-readable name. Here is a small example, in
case you’ve never seen an XML document:

<book>
<title>Mastering Delphi 6</title>
<author>Cantu</author>
<publisher>Sybex</publisher>

</book>

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1016

http://www.sybex.com

1017

WARNING XML has also a few disadvantages I want to underline from the beginning. The biggest is that
without a formal description, a document is worth very little. If you want to exchange docu-
ments with another company, you have to agree on what each tag means and also on the
semantic meaning of the content. (For example, when you have a quantity, you have to agree
on the measurement system or include it in the document.) Another disadvantage is that XML
documents are much larger than other formats; using strings for numbers, for example, is far
from efficient, and the repeated opening and closing tags eat up a lot of space. The good
news is that XML compresses quite well, exactly for the same reasons.

Core XML Syntax
There are a few technical elements of XML that are worth knowing before discussing its
usage within Delphi. Here is a short summary of the key elements of the XML syntax:

• White space (including the space character, carriage return, line feed, and tabs) is gen-
erally ignored (as in an HTML document). It is important to format an XML docu-
ment to make it readable by a human being, but your programs won’t care much.

• You can add comments within <!-- and --> markers, which are basically ignored by
any XML processor. There are also directives and processing instructions, enclosed
within the <? and ?> markers.

• There a few special or reserved characters you cannot use in the text. The only two
symbols you can never use are the less-than character (or “left angle bracket,” used to
delimit a marker) replaced by < and the ampersand character replaced by &.
Other optional special characters are > for the greater-than symbol (right angle
bracket), ' for the single quote, and " for the double quote.

• To add non-XML content (for example, binary information or a script), you can use a
CDATA section, enclosed within <![CDATA[and]]>.

• All markers are enclosed by angle brackets, < and >. Markers are case sensitive (in con-
trast to HTML).

• For each opening marker, you must have a matching closing marker, denoted by an ini-
tial slash character, as in:

<node>value</node>

• Markers must not overlap—they must be properly nested, as in the first line below (the
second line is not correct):

<node>xx <nested> yy</nested> </node> // OK
<node>xx <nested> yy</node> </nested> // WRONG

Introducing XML

2874c23.qxd 7/2/01 2:27 PM Page 1017

http://www.sybex.com

1018

• If a marker has no content (but its presence is important anyway), you can replace the
opening and closing markers with an single marker that includes a final or “trailing”
slash: <node/>.

• Markers can also have attributes, using multiple attribute names followed by a value
enclosed within quotes: <node attrib1=”aaa”>.

• Any XML node can have multiple attributes, multiple embedded tags, and only one
block of text, representing the value of the node. If it’s technically possible, it is com-
mon practice for XML nodes to have either a textual value or embedded tags, and not
both. Here is an example of the full syntax of a node:

<node attrib1=”aaa” attrib2=”bbb”>
value1
<child1>
value2

</child1>
</node>

• A node can have multiple child nodes with the same tag (tags need not be unique).
Attribute names are unique for each node.

Well-Formed XML
If the elements discussed in the previous section define the syntax of an XML document,
they are not enough. A XML document is considered syntactically correct, or well formed, if
it follows a few extra rules. Notice that this type of check doesn’t guarantee that the content
of the document is meaningful, but only the tags are properly laid out.

One of the rules is that each document should have a prologue, indicating that is it indeed
an XML document, which version of XML it complies with, and the possibly the type of
character encoding. Here is an example:

<?xml version=”1.0” encoding=”UTF-8”?>

Possible encodings include various Unicode character sets (such as UTF-8, UTF-16, and
UTF-32) or some ISO encodings (such as ISO-10646-xxx or ISO-8859-xxx). The prologue
can also include external declarations, the schema used to validate the document, namespace
declarations, an associated XSL file, and some internal entity declarations. Refer to XML
documentation or books for more information on these topics.

An XML document is well formed if it has a prologue, has a proper syntax (see the rules in
the previous section), and has a tree of nodes with a single root. Most tools (including Inter-
net Explorer) check whether a document is well formed when loading it.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1018

http://www.sybex.com

1019

NOTE As you can see, XML is more formal and precise than HTML. The W3C is coming along
with an XHTML standard that will make HTML documents XML-compliant, for better pro-
cessing with XML tools. This implies many changes in a typical HTML document, such as
avoiding attributes with no values, adding all the closing markers (as </p> and),
adding the slash to stand-alone markers (as <hr/> and
), proper nesting, and more.
An HTML-to-XHTML converter, called HTML Tidy, is hosted by the W3C Web site at
www.w3.org/People/Raggett/tidy/.

Working with XML
To get acquainted with the format of XML, you can use one of the existing XML editors
available on the market. You can also simply type your XML code into Notepad and then try
to load it into Internet Explorer to see whether it is correct. In this case, you’ll see it within
the browser in a tree-like structure.

To speed up this type of operation, I’ve build the simplest XML editor I could come up
with—basically Notepad with some XML syntax-checking and a browser attached to it. The
XmlEditOne example has a PageControl with three pages. The first page, Settings, hosts a
couple of components where you can insert the path and the name of the file and you want to
work with. (The reason for not using a standard dialog will become clear when I show you an
extension of the program.) The edit box hosting the complete filename is automatically
updated with the path and filename, provided the AutoUpdate check box is selected.

The second page hosts a Memo control, with the text of the XML file, loaded and saved by
clicking the two toolbar buttons. As soon as you load the file, or each time you modify its
text, its content is loaded into a DOM to let a parser check for its correctness (something
that would be quite complex to do with your own code). To parse the code, I’ve used the
XMLDocument component available in Delphi 6, which is basically a wrapper around a
DOM available on the computer and indicated by its DOMVendor property. I’ll discuss the use
of this component in a little more detail in the next section. For the moment, suffice to say
you can assign a string list to its XML property and activate it to let it parse the XML text and
eventually report an error with an exception.

For this specific example, though, this behavior is far from good, because while typing the
XML code you’ll have temporarily incorrect XML. Still, I prefer not to ask the user to click a
button to do the validation, but let it run continuously. As it is not possible to disable the parse
exception raised by the XMLDocument component, I had to work at a lower level, extracting
the DOMPersist property (referring to the persistency interface of the DOM) after extracting the
IXMLDocumentAccess interface from the XMLDocument component (called XmlDoc in this

Introducing XML

2874c23.qxd 7/2/01 2:27 PM Page 1019

http://www.sybex.com

1020

code). At this point, I can also extract the IDOMParseError interface from the document com-
ponent, to display any error message in the status bar:

pprroocceedduurree TFormXmlEdit.MemoXmlChange(Sender: TObject);
vvaarr
eParse: IDOMParseError;

bbeeggiinn
XmlDoc.Active := True;
xmlBar.Panels[1].Text := ‘OK’;
xmlBar.Panels[2].Text := ‘’;
(XmlDoc aass IXMLDocumentAccess).DOMPersist.loadxml(MemoXml.Text);
eParse := (XmlDoc.DOMDocument aass IDOMParseError);
iiff eParse.errorCode <> 0 tthheenn
wwiitthh eParse ddoo
bbeeggiinn
xmlBar.Panels[1].Text := ‘Error in: ‘ + IntToStr (Line) + ‘.’ +
IntToStr (LinePos);

xmlBar.Panels[2].Text := SrcText + ‘: ‘ + Reason;
eenndd;

eenndd;

You can see an example of the output of the program in Figure 23.1, alongside the XML
tree view provided by the third page (for a correct document). The third page of the program
is built using the WebBrowser component, which embeds the ActiveX control of Internet
Explorer. Unfortunately, there is no direct way to assign a string with the XML text to this
control, so you’ll have to save the file first and then move to its page to trigger the loading of
the XML in the browser (or manually click the Refresh button).

F I G U R E 2 3 . 1 :
The XmlEditOne example
allows you to enter XML
text in a memo, indicating
errors as you type, and
shows the result in the
embedded browser.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1020

http://www.sybex.com

1021

WARNING Unicode support in Internet Explorer 5 is quite limited, even on Windows 2000 (which has, in
general, rather good Unicode support). If you change the final letter in my last name to an
accented letter, as it should be, you won’t see any problem when checking the document with
the DOM, but you’ll see an error when viewing it in the browser. The same happens if you
change the format to UTF-16.

Managing XML Documents
Now that you know the core elements of XML, we can start discussing how to manage XML
documents in Delphi programs (or in programs in general, as some of the techniques dis-
cussed here go beyond the language used). There are two typical techniques for manipulat-
ing XML documents, using a Document Object Model (DOM) interface or using the Simple
API for XML (SAX). The two approaches are quite different:

• The DOM loads the entire document into a hierarchical tree of nodes, allowing you to
read them and manipulate them to change the document. For this reason, the DOM is
suited when you want to navigate the XML structure in memory and edit it, or even for
creating new documents from scratch.

• The SAX parses the document firing an event for each element of the document, without
building any structure in memory. Once parsed by the SAX, the document is lost, but this
operation is generally much faster than the construction of the DOM tree. Using the
SAX is good for reading a document once, possibly looking for portion of its data.

There is a third classic way to manipulate (and specifically create) XML documents: string
management. Creating a document by adding strings is certainly the fastest operation, par-
ticularly if you can do a single pass (and don’t need to modify nodes already generated). Even
reading documents by means of string functions is very fast, but this can become quite diffi-
cult for complex structures.

Finally, Delphi 6 provides two more techniques you should consider. The first is the defin-
ition of interfaces mapping the document structure and used to access the document instead
of the generic DOM interface. As we’ll see, this approach makes for faster coding and more
robust applications. Another technique is the development of transformations that allow you
to read a generic XML document into a ClientDataSet component or save the dataset into
an XML file of a given structure (not the specific XML structure natively supported by the
ClientDataSet, or MyBase).

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1021

http://www.sybex.com

1022

I won’t try to fully assess which option is better suited for each type of document and
manipulation, but I will try to highlight some of the advantages and disadvantages while dis-
cussing examples of each approach in the next sections.

Programming with the DOM
Since an XML document has a tree-like structure, loading an XML document into a tree in
memory is quite a natural fit. This is what the Document Object Model does. The DOM is a
standard interface, so that when you have written code that uses a DOM, you can switch
DOM implementations without changing your source code (at least, if you haven’t used any
non-custom extensions).

In Delphi, you can install several DOM implementations, available as COM servers, and
use their interfaces. One of the most commonly used DOMs on Windows is the one pro-
vided by Microsoft as part of the MSXML SDK. That DOM is also used by Internet
Explorer (even if generally in an older version), but the SDK contains some rather detailed
documentation, which will probably help you. Other frequently used DOMs are available
from IBM and Apache (this one is called Xerces).

TIP There are also a couple of native Object Pascal DOM components. One is the open source
OpenXML, available at www.philo.de/xml. Another native Delphi DOM is offered by Turbo-
Power. The advantage of these solutions is that they don’t require an external library for the
program to execute, because the DOM component gets compiled into your application.

Delphi 6 embeds the DOM implementations into a wrapper component, called XMLDoc-
ument. I’ve just used this component in the preceding example, but here I want to examine
its role in a more general way. The idea behind using this component is that, instead of the
actual DOM interface, you remain even more independent from the implementations and
can work with some simplified methods, or helpers.

The DOM interface, in fact, is quite complex to use. A document is a collection of nodes,
each having a name, a text element, a collection of attributes, and a collection of child nodes.
Each collection of nodes allows accessing elements by position or searching them by name.
Notice that the text within the tags of a node, if any, is rendered as a child of the node and
listed in its collection of child nodes. The root node has some extra methods for creating new
nodes, values, or attributes.

With Delphi’s XMLDocument, you can actually work at two different levels:

• At a lower level, you can use the DOMDocument property (of the IDOMDocument interface
type) to access a standard W3C Document Object Model interface. The official DOM
is defined in the xmldom unit, and includes interfaces like IDOMNode, IDOMNodeList,

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1022

http://www.sybex.com

1023

IDOMAttr, IDOMElement, and IDOMText. With the official DOM interfaces, Delphi sup-
ports a lower-level but standard programming model. Notice that the actual DOM
implementation will be the one indicated by the XMLDocument component.

• As a higher-level alternative, the XMLDocument component implements also the
IXMLDocument interface. This is a custom DOM-like interface defined by Borland
in the XMLIntf unit and comprising interfaces like IXMLNode, IXMLNodeList, and
IXMLNodeCollection. This Borland interface simplifies some of the DOM operations
by replacing multiple method calls, which are repeated quite often in sequence, with a
single property or method.

In the following examples (particularly the DomCreate demo), I’ll use both approaches so
you can have a better idea of the practical differences among the two approaches.

An XML Document in a TreeView
The starting point is generally loading a document from a file or creating it from a string,
but you can also start with a brand new document. As a first example of the use of the DOM,
I’ve built a program that can load an XML document into a DOM and show its structure in a
TreeView control. I’ve also added to the program, called XmlDomTree on the companion CD,
a few buttons with sample code used to access to the elements of a sample file, as an example of
accessing the DOM data. Loading the document is actually quite simple, while showing it in a
tree requires a recursive function that navigates the nodes and subnodes. Here is the code of
the two methods:

pprroocceedduurree TFormXmlTree.btnLoadClick(Sender: TObject);
bbeeggiinn
OpenDialog1.InitialDir := ExtractFilePath (Application.ExeName);
iiff OpenDialog1.Execute tthheenn
bbeeggiinn
XMLDocument1.LoadFromFile(OpenDialog1.FileName);
Treeview1.Items.Clear;
DomToTree (XMLDocument1.DocumentElement, nniill);
TreeView1.FullExpand;

eenndd;
eenndd;

pprroocceedduurree TFormXmlTree.DomToTree (XmlNode: IXMLNode; TreeNode: TTreeNode);
vvaarr
I: Integer;
NewTreeNode: TTreeNode;
NodeText: string;
AttrNode: IXMLNode;

bbeeggiinn
// skip text nodes and other special cases

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1023

http://www.sybex.com

1024

iiff nnoott (XmlNode.NodeType = ntElement) tthheenn
Exit;

// add the node itself
NodeText := XmlNode.NodeName;
iiff XmlNode.IsTextElement tthheenn
NodeText := NodeText + ‘ = ‘ + XmlNode.NodeValue;

NewTreeNode := TreeView1.Items.AddChild(TreeNode, NodeText);
// add attributes
ffoorr I := 0 ttoo xmlNode.AttributeNodes.Count - 1 ddoo
bbeeggiinn
AttrNode := xmlNode.AttributeNodes.Nodes[I];
TreeView1.Items.AddChild(NewTreeNode,
‘[‘ + AttrNode.NodeName + ‘ = “‘ + AttrNode.Text + ‘“]’);

eenndd;
// add each child node
iiff XmlNode.HasChildNodes tthheenn
ffoorr I := 0 ttoo xmlNode.ChildNodes.Count - 1 ddoo
DomToTree (xmlNode.ChildNodes.Nodes [I], NewTreeNode);

eenndd;

This code is quite interesting, as it highlights some of the operations you can do with a
DOM. First of all, each node has a NodeType property that you can use to determine whether
the node is an element, attribute, text node, or special entity (such as CDATA and others).
Another aspect is that you cannot access the textual representation of the node, its NodeValue,
unless it has a text element (notice that the text node will be skipped, as per the initial test). After
displaying the name of the item, and then the text value if available, the program (Figure 23.2)
shows the content of each attribute directly and of each subnode calling the DomToTree method
recursively.

F I G U R E 2 3 . 2 :
The XmlDomTree example
can open a generic XML
document and show it
inside a TreeView common
control.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1024

http://www.sybex.com

1025

Once you have loaded the sample document that accompanies the XmlDomTree program
(and shown in Listing 23.1) into the XMLDocument component, you can use the various
methods to access generic nodes, as in tree-building code above, or fetch specific elements.
For example, you can grab the value of the attribute text of the root node by writing:

XMLDocument1.DocumentElement.Attributes [‘text’]

Notice that if there is no attribute called text, the call will fail with a rather generic error
message, “Invalid variant type conversion,” which helps neither you nor the end user to
understand what’s wrong. If you need to access to the first attribute of the root without
knowing its name, you can use the following more generic code:

XMLDocument1.DocumentElement.AttributeNodes.Nodes[0].NodeValue

To access the actual nodes, you use a similar technique, possibly taking advantage of the
ChildValues array. This is a Delphi extension to the DOM, which allows you to pass as para-
meter either the name of the element or its numeric position:

XMLDocument1.DocumentElement.ChildNodes.Nodes[1].ChildValues[‘author’]

This code gets the (first) author of the second book. I cannot use the ChildValues[‘book’]
expression, as there are multiple nodes with the same name under the root node.

➲ Listing 23.1: The sample XML document used by examples in this chapter

<?xml version=”1.0” encoding=”UTF-8”?>
<books text=”Books”>
<book>
<title>Mastering Delphi 6</title>
<author>Cantu</author>

</book>
<book>
<title>Delphi Developer’s Handbook</title>
<author>Cantu</author>
<author>Gooch</author>

</book>
<book>
<title>Mastering Delphi 5</title>
<author>Cantu</author>

</book>
<book>
<title>Delphi COM Programming</title>
<author>Harmon</author>

</book>
<book>
<title>Thinking in C++</title>
<author>Eckel</author>

</book>
<ebook>
<title>Essential Pascal</title>

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1025

http://www.sybex.com

1026

<url>http://www.marcocantu.com</url>
<author>Cantu</author>

</ebook>
<ebook>
<title>Thinking in Java</title>
<url>http://www.mindview.com</url>
<author>Eckel</author>

</ebook>
</books>

Creating Documents Using the DOM
Although I mentioned earlier that you can create an XML document by chaining together
some strings, this is far from a robust technique. Using a DOM to create a document ensures
that the XML will be well formed. Also, if the DOM has a schema definition attached, you
can validate the structure of the document while adding data to it.

To highlight different cases of document creation, I’ve built the DomCreate example (a pro-
gram I originally created with the Xerces DOM from the Apache group and changed slightly
for supporting Delphi’s XMLDocument). This program can create XML documents within
the DOM, showing the text of them on a memo and optionally in a TreeView.

TIP The XMLDocument component uses the doAutoIndent option to improve the output of the
XML text to the memo by formatting the XML in a slightly better way. You can choose the type
of indentation by setting the NodeIndentStr property. For formatting a generic XML text, you
can also use the global FormatXMLData function using the default setting (2 spaces) as inden-
tation. Oddly, there doesn’t seem a way to pass a different parameter to the function.

The first button of the form, Simple, creates some simple XML text using the low-level,
official DOM interfaces. The program calls the createElement method of the document for
each node, adding them as children of other nodes:

pprroocceedduurree TForm1.btnSimpleClick(Sender: TObject);
vvaarr
iXml: IDOMDocument;
iRoot, iNode, iNode2, iChild, iAttribute: IDOMNode;

bbeeggiinn
// empty the document
XMLDoc.Active := False;
XMLDoc.XML.Text := ‘’;
XMLDoc.Active := True;

// root
iXml := XmlDoc.DOMDocument;
iRoot := iXml.appendChild (iXml.createElement (‘xml’));
// node “test”
iNode := iRoot.appendChild (iXml.createElement (‘test’));

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1026

http://www.sybex.com
http://www.marcocantu.com</url
http://www.mindview.com</url

1027

iNode.appendChild (iXml.createElement (‘test2’));
iChild := iNode.appendChild (iXml.createElement (‘test3’));
iChild.appendChild (iXml.createTextNode(‘simple value’));
iNode.insertBefore (iXml.createElement (‘test4’), iChild);

// node replication
iNode2 := iNode.cloneNode (True);
iRoot.appendChild (iNode2);

// add an attribute
iAttribute := iXml.createAttribute (‘color’);
iAttribute.nodeValue := ‘red’;
iNode2.attributes.setNamedItem (iAttribute);

// show XML in memo
Memo1.Lines.Text := FormatXMLData (XMLDoc.XML.Text);

eenndd;

Notice that text nodes are added explicitly, attributes are created with a specific create call,
and that the code uses cloneNode to replicate an entire branch of the tree. Overall, the code
is quite cumbersome to write, but after a while you might get used to this style. The effect of
the program is visible (formatted in the memo and in the tree) in Figure 23.3.

The second example of DOM creation relates to a dataset. I’ve added to the form a BDE
Table component (but any other dataset would have done) and added to a button the call to
my custom DataSetToDOM procedure, like this:

DataSetToDOM (‘customers’, ‘customer’, XMLDoc, Table1);

F I G U R E 2 3 . 3 :
The DomCreate example
can generate various
types of XML documents
using a DOM.

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1027

http://www.sybex.com

1028

The DataSetToDOM procedure creates a root node with the text of the first parameter, then
grabs each record of the dataset, defines a node with the second parameter, and adds a subn-
ode for each field of the record, all using extremely generic code:

pprroocceedduurree DataSetToDOM (RootName, RecordName: string; XMLDoc: TXMLDocument;
DataSet: TDataSet);

vvaarr
iNode, iChild: IXMLNode;
i: Integer;

bbeeggiinn
DataSet.Open;
DataSet.First;
// root
XMLDoc.DocumentElement := XMLDoc.CreateNode (RootName);

// add table data
wwhhiillee nnoott DataSet.EOF ddoo
bbeeggiinn
// add a node for each record
iNode := XMLDoc.DocumentElement.AddChild (RecordName);
ffoorr I := 0 ttoo DataSet.FieldCount - 1 ddoo
bbeeggiinn
// add an element for each field
iChild := iNode.AddChild (DataSet.Fields[i].FieldName);
iChild.Text := DataSet.Fields[i].AsString;

eenndd;
DataSet.Next;

eenndd;;
eenndd;

The preceding code uses the simplified DOM access interfaces provided by Borland,
which include an AddChild node that creates the subnode, and the direct access to the Text
property for defining a child node with textual content. This apparently simple routine
extracts an XML representation of your dataset, also opening up a lot of opportunities for
Web publishing, as I’ll discuss later in the section on XSL.

Another interesting opportunity is the generation of XML documents describing Delphi
objects. The DomCreate program has a button used to describe a few selected properties of
an object, again using the low-level DOM:

pprroocceedduurree AddAttr (iNode: IDOMNode; Name, Value: string);
vvaarr
iAttr: IDOMNode;

bbeeggiinn
iAttr := iNode.ownerDocument.createAttribute (name);
iAttr.nodeValue := Value;
iNode.attributes.setNamedItem (iAttr);

eenndd;

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1028

http://www.sybex.com

1029

pprroocceedduurree TForm1.btnObjectClick(Sender: TObject);
vvaarr
iXml: IDOMDocument;
iRoot: IDOMNode;

bbeeggiinn
// empty the document
XMLDoc.Active := False;
XMLDoc.XML.Text := ‘’;
XMLDoc.Active := True;

// root
iXml := XmlDoc.DOMDocument;
iRoot := iXml.appendChild (iXml.createElement (‘Button1’));

// a few properties as attributes (might also be nodes)
AddAttr (iRoot, ‘Name’, Button1.Name);
AddAttr (iRoot, ‘Caption’, Button1.Caption);
AddAttr (iRoot, ‘Font.Name’, Button1.Font.Name);
AddAttr (iRoot, ‘Left’, IntToStr (Button1.Left));
AddAttr (iRoot, ‘Hint’, Button1.Hint);

// show XML in memo
Memo1.Lines := XmlDoc.XML;

eenndd;

Of course, it is more interesting to have a generic technique capable of saving the proper-
ties of each Delphi component (or persistent object, to be more precise), recursing on persis-
tent subobjects and indicating the names of referenced components. This is what I’ve done in
the ComponentToDOM procedure, which uses the low-level RTTI information provided by the
TypInfo unit, including the extraction of the list of the properties of a component. Once
more, the program uses the simplified Delphi XML interfaces:

pprroocceedduurree ComponentToDOM (iNode: IXmlNode; Comp: TPersistent);
vvaarr
nProps, i: Integer;
PropList: PPropList;
Value: Variant;
newNode: IXmlNode;

bbeeggiinn
// get list of properties
nProps := GetTypeData (Comp.ClassInfo)^.PropCount;
GetMem (PropList, nProps * SizeOf(Pointer));
ttrryy
GetPropInfos (Comp.ClassInfo, PropList);
ffoorr i := 0 ttoo nProps - 1 ddoo
bbeeggiinn
Value := GetPropValue (Comp, PropList [i].Name);
NewNode := iNode.AddChild(PropList [i].Name);

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1029

http://www.sybex.com

1030

NewNode.Text := Value;
iiff (PropList [i].PropType^.Kind = tkClass) aanndd (Value <> 0) tthheenn
iiff TObject (Integer(Value)) iiss TComponent tthheenn
NewNode.Text := TComponent (Integer(Value)).Name

eellssee
// TPersistent but not TComponent: recurse
ComponentToDOM (newNode, TObject (Integer(Value)) aass TPersistent);

eenndd;;
ffiinnaallllyy
FreeMem (PropList);

eenndd;;
eenndd;;

These two lines of code, in this case, trigger the creation of the XML document (visible in
Figure 23.4):

XMLDoc.DocumentElement := XMLDoc.CreateNode(self.ClassName);
ComponentToDOM (XMLDoc.DocumentElement, self);

XML Data Binding Interfaces
We have seen that working with the DOM to access or generate a document is rather tedious,
because you must use positional information and not logical access to the data. Also, handling

F I G U R E 2 3 . 4 :
The XML generated to
describe the form of the
DomCreate program.
Notice (in the tree and in
the memo text) that prop-
erties of class types are fur-
ther expanded.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1030

http://www.sybex.com

1031

series of repeated nodes of different possible types (as in the XML sample of Listing 23.1,
describing books) is far from simple. Moreover, using a DOM, you can create any well-
formed document, but (unless you use a validating DOM) you can add any subnode to any
node, coming up with almost useless documents, as no one else will be able to manage them.

To solve these issues, Borland has added to Delphi 6 an XML Data Binding Wizard, which
can examine an XML document or a document definition (a schema, a DTD, or another
type of definition) and generate a set of interfaces for manipulating the document. These
interfaces are specific to the document and its structure, and allow you to have more readable
code, but are certainly less generic as far as the types of documents you can handle with them
(and this is far more positive than it might sound at first).

You can activate the XML Data Binding Wizard by using the corresponding icon in the first
page of the New Items dialog box of the IDE or by double-clicking directly on the XMLDoc-
ument component. (What is quite odd is that the corresponding command is not in the local
menu of the component.)

After a first page where you can select a input file, this wizard shows you the structure of
the document graphically, as you can see in Figure 23.5 for the sample XML file from List-
ing 23.1. In this page, you can give a name to each entity of the generated interfaces, in case
you don’t like the defaults suggested by the wizard. You can actually also change the rules
used by the wizard to generate the names, an extended flexibility I’d like to have in other
areas of the Delphi IDE. The final page gives you a preview of the generated interfaces and
offers options for generating schemas and other definition files.

F I G U R E 2 3 . 5 :
Delphi’s XML Data Binding
Wizard can examine the
structure of a document or
a schema (or another docu-
ment definition) to create a
set of interfaces for simpli-
fied and direct access to
the DOM data.

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1031

http://www.sybex.com

1032

For the sample XML file with the author names, the XML Data Binding Wizard generates
an interface of the root node, and four interfaces for the two lists of different elements and
the actual elements (books and e-books). These are a few excerpts of the generated code,
available in the XmlIntfDefinition unit of the XmlInterface example:

ttyyppee
IXMLBooksType = iinntteerrffaaccee(IXMLNode)
[‘{C9A9FB63-47ED-4F27-8ABA-E71F30BA7F11}’]
{ Property Accessors }
ffuunnccttiioonn Get_Text: WideString;
ffuunnccttiioonn Get_Book: IXMLBookTypeList;
ffuunnccttiioonn Get_Ebook: IXMLEbookTypeList;
pprroocceedduurree Set_Text(Value: WideString);
{ Methods & Properties }
pprrooppeerrttyy Text: WideString rreeaadd Get_Text wwrriittee Set_Text;
pprrooppeerrttyy Book: IXMLBookTypeList rreeaadd Get_Book;
pprrooppeerrttyy Ebook: IXMLEbookTypeList rreeaadd Get_Ebook;

eenndd;

IXMLBookTypeList = iinntteerrffaaccee(IXMLNodeCollection)
[‘{3449E8C4-3222-47B8-B2B2-38EE504790B6}’]
{ Methods & Properties }
ffuunnccttiioonn Add: IXMLBookType;
ffuunnccttiioonn Insert(const Index: Integer): IXMLBookType;
ffuunnccttiioonn Get_Item(Index: Integer): IXMLBookType;
pprrooppeerrttyy Items[Index: Integer]: IXMLBookType rreeaadd Get_Item; ddeeffaauulltt;

eenndd;

IXMLBookType = iinntteerrffaaccee(IXMLNode)
[‘{26BF5C51-9247-4D1A-8584-24AE68969935}’]
{ Property Accessors }
ffuunnccttiioonn Get_Title: WideString;
ffuunnccttiioonn Get_Author: IXMLString_List;
pprroocceedduurree Set_Title(Value: WideString);
{ Methods & Properties }
pprrooppeerrttyy Title: WideString rreeaadd Get_Title wwrriittee Set_Title;
pprrooppeerrttyy Author: IXMLString_List rreeaadd Get_Author;

eenndd;

For each interface, the XML Data Binding Wizard also generates an implementation class
that provides the code for the interface methods by translating the requests into DOM calls.
The unit includes three initialization functions, which can return the interface of the root
node from a document loaded in an XMLDocument component (or a component providing
a generic IXMLDocument interface), or return one from a file, or create a brand new DOM:

ffuunnccttiioonn Getbooks(Doc: IXMLDocument): IXMLBooksType;
ffuunnccttiioonn Loadbooks(ccoonnsstt FileName: WideString): IXMLBooksType;
ffuunnccttiioonn Newbooks: IXMLBooksType;

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1032

http://www.sybex.com

1033

After generating these interfaces using the wizard, in the XmlInterface example, I’ve repeated
XML document access code similar to the XmlDomTree example, but much simpler to write
(and to read). For example, you can get the attribute of the root node by writing:

pprroocceedduurree TForm1.btnAttrClick(Sender: TObject);
vvaarr
Books: IXMLBooksType;

bbeeggiinn
Books := Getbooks (XmlDocument1);
ShowMessage (Books.Text);

eenndd;

Simple, isn’t it? It is even simpler if you recall that while typing this code, Delphi’s code
insight can help by listing the available properties of each node, thanks to the fact that the
parser can read in the interface definitions (while it cannot understand the format of a generic
XML document). Accessing a node of one of the sublists is a matter of writing one of the fol-
lowing statements (possibly the second with the default array property):

Books.Book.Items[1].Title // full
Books.Book[1].Title // further simplified

Similarly simplified code can be used to generate new documents or add new elements,
also thanks to the customized Add method is available in each list-based interface. Again, if
you don’t have a predefined structure for the XML document, as in the dataset-based and
RTTI-based examples of the previous demonstration, you won’t be able to use this approach.

Validation and Schemas in Short
The XML Data Binding Wizard can work from existing schemas or generate one for an XML
document (and eventually save it in a file with the .XDB extension). But what is a schema for,
and what does it look like? An XML document describes some data, but to exchange this data
among companies it has to stick to some agreed structure. A schema is a document definition,
against which a document can be checked for correctness, an operation usually indicated with
the term validation.

The first—and still very widespread—type of validation available for XML was document
type definitions (DTDs). These documents describe the structure of the XML but cannot
really define the possible content of each node. Also, DTDs are not XML document them-
selves but use a different, very awkward notation.

At the end of year 2000, the W3C approved the first official draft of XML schemas (already
available in an incompatible version called XML-Data within Microsoft’s DOM). An XML
schema is itself a XML document, one that can validate both the structure of the XML tree
and the content of the node. A schema is based on the use and definition of simple and com-
plex data types, similar to what happens in an OOP programming language.

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1033

http://www.sybex.com

1034

A schema defines complex types, indicating for each the possible nodes, their optional
sequence (sequence, all), the number of occurrences for each subnode (minOccurs, maxOc-
curs), and the data type of each specific element. Here is the schema defined by the XML
Data Binding Wizard for the usual sample books file:

<?xml version=”1.0”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:xdb=”http://www.borland.com/schemas/delphi/6.0/XMLDataBinding”>
<xs:element name=”books” type=”booksType”/>
<xs:complexType name=”booksType”>
<xs:annotation>
<xs:appinfo xdb:docElement=”books”/>

</xs:annotation>
<xs:sequence>
<xs:element name=”book” type=”bookType” maxOccurs=”unbounded”/>
<xs:element name=”ebook” type=”ebookType” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:attribute name=”text” type=”xs:string”/>

</xs:complexType>
<xs:complexType name=”bookType”>
<xs:annotation>
<xs:appinfo xdb:repeated=”True”/>

</xs:annotation>
<xs:sequence>
<xs:element name=”title” type=”xs:string”/>
<xs:element name=”author” type=”xs:string” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=”ebookType”>
<xs:annotation>
<xs:appinfo xdb:repeated=”True”/>

</xs:annotation>
<xs:sequence>
<xs:element name=”title” type=”xs:string”/>
<xs:element name=”url” type=”xs:string”/>
<xs:element name=”author” type=”xs:string”/>

</xs:sequence>
</xs:complexType>

</xs:schema>

NOTE As I write, there are still very few DOM implementations that can be used to validate a docu-
ment against an XML schema. Apache Xerces DOM has good support for schemas. Another
tool I’ve used for validation is XSV (XML Schema Validator), an open source attempt at a con-
formant schema-aware processor, which can be used either directly via the Web or after
downloading a command-line executable.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1034

http://www.sybex.com
http://www.w3.org/2001/XMLSchema%E2%80%9D
http://www.borland.com/schemas/delphi/6.0/XMLDataBinding%E2%80%9D%00

1035

Using the SAX API
The Simple API for XML, or SAX, doesn’t create a tree for the XML nodes, but simply
parses the node-firing events for each node, attribute, value, and so on. Because it doesn’t
keep the document in memory, using the SAX allows managing much larger documents. Its
approach is also very useful for one-time examination of a document, or retrieval of specific
information. This is a list of events fired by the SAX:

• StartDocument and EndDocument for the entire document

• StartElement and EndElement for each node

• Characters for the text within the nodes

It is quite common to use a stack to handle the current path within the nodes tree, and
push and pop elements to and from the stack for every StartElement and EndElement event.

Delphi 6 does not include specific support for the SAX interface, but this can be easily
obtained by importing Microsoft’s XML support (the MSXML library). In particular for the
SaxDemo1 example I’ve used version 2 of MSXML: the Pascal version of its type library is
available within the source code of the program, but you must have the COM library regis-
tered on your computer to run the program successfully.

To use the SAX, you have to install a SAX event handler within a SAX reader, then load a
file and parse it. I’ve used the SAX reader interface provided by MSXML for VB program-
mers. In fact, the official (C++) interface had a few errors in its type library that prevented
Delphi from importing it properly (the newer MSXML 3 might have fixed this issue by the
time you read this).

In the main form of the SaxDemo1 example, I’ve declared:
sax: IVBSAXXMLReader;

In the FormCreate method, this is initialized with the actual COM object:
sax := CreateComObject (CLASS_SAXXMLReader) aass IVBSAXXMLReader;
sax.ErrorHandler := TMySaxErrorHandler.Create;

The code also sets an error handler, which is a class implementing a specific interface, IVB-
SAXErrorHandler, with three methods that are called depending on the severity of the prob-
lem: error, fatalError, and ignorableWarning.

Simplifying the code a little, the SAX parser is activated by calling the parseURL method
after assigning a content handler to it:

sax.ContentHandler := TMySaxHandler.Create;
sax.parseURL (filename)

So the code ultimately resides in the TMySaxHandler class, which has the SAX events.
Because I have multiple SAX content handlers in this example, I’ve written a base class with

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1035

http://www.sybex.com

1036

the core code and a few specialized versions for specific processing; this is the code of the
base class, which implements both the IDispatch and IVBSAXContentHandler interfaces:

ttyyppee
TMySaxHandler = ccllaassss (TInterfacedObject, IVBSAXContentHandler)
pprrootteecctteedd
stack: TStringList;

ppuubblliicc
ccoonnssttrruuccttoorr Create;
ddeessttrruuccttoorr Destroy; oovveerrrriiddee;
// IDispatch
ffuunnccttiioonn GetTypeInfoCount(oouutt Count: Integer): HResult; stdcall;
ffuunnccttiioonn GetTypeInfo(Index, LocaleID: Integer; oouutt TypeInfo):
HResult; ssttddccaallll;

ffuunnccttiioonn GetIDsOfNames(const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): HResult; ssttddccaallll;

ffuunnccttiioonn Invoke(DispID: Integer; ccoonnsstt IID: TGUID; LocaleID: Integer;
Flags: Word; vvaarr Params; VarResult, ExcepInfo, ArgErr: Pointer):
HResult; ssttddccaallll;

// IVBSAXContentHandler
pprroocceedduurree Set_documentLocator(const Param1: IVBSAXLocator);
vviirrttuuaall; ssaaffeeccaallll;

pprroocceedduurree startDocument; vviirrttuuaall; ssaaffeeccaallll;
pprroocceedduurree endDocument; vviirrttuuaall; ssaaffeeccaallll;
pprroocceedduurree startPrefixMapping(vvaarr strPrefix: WideString;
vvaarr strURI: WideString); vviirrttuuaall; ssaaffeeccaallll;

pprroocceedduurree endPrefixMapping(vvaarr strPrefix: WideString); vviirrttuuaall; ssaaffeeccaallll;
pprroocceedduurree startElement(var strNamespaceURI: WideString;
vvaarr strLocalName: WideString; vvaarr strQName: WideString;
ccoonnsstt oAttributes: IVBSAXAttributes); vviirrttuuaall;; ssaaffeeccaallll;;

pprroocceedduurree endElement(vvaarr strNamespaceURI: WideString;
vvaarr strLocalName: WideString; vvaarr strQName: WideString);
vviirrttuuaall; ssaaffeeccaallll;

pprroocceedduurree characters(vvaarr strChars: WideString); vviirrttuuaall; ssaaffeeccaallll;
pprroocceedduurree ignorableWhitespace(vvaarr strChars: WideString);
vviirrttuuaall; ssaaffeeccaallll;

pprroocceedduurree processingInstruction(vvaarr strTarget: WideString;
vvaarr strData: WideString); vviirrttuuaall; ssaaffeeccaallll;

pprroocceedduurree skippedEntity(vvaarr strName: WideString); vviirrttuuaall; ssaaffeeccaallll;
eenndd;

The most interesting portion, of course, is the final list of SAX events. All this base class does
is emit information to a log when the parser starts (startDocument) and finishes (endDocument)
and keep track of the current node and all of its parent nodes with a stack:

// TMySaxHandler.startElement
stack.Add (strLocalName);
// TMySaxHandler.endElement

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1036

http://www.sybex.com

1037

stack.Delete (stack.Count - 1);

An actual implementation is provided by the TMySimpleSaxHandler class, which overrides
the startElement event triggered for any new node to output the current position in the tree
with the statement:

Log.Add (strLocalName + ‘(‘ + stack.CommaText + ‘)’);

The second method of the class is the characters event, triggered when a node value (or a
test node) is encountered, to output its content:

pprroocceedduurree TMySimpleSaxHandler.characters(var strChars: WideString);
vvaarr
str: WideString;

bbeeggiinn
iinnhheerriitteedd;
str := RemoveWhites (strChars);
iiff (str <> ‘’) tthheenn
Log.Add (‘Text: ‘ + str);

eenndd;

The two methods produce the combined effect of Figure 23.6.

F I G U R E 2 3 . 6 :
The log produced by read-
ing an XML document with
the SAX in the SaxDemo1
example

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1037

http://www.sybex.com

1038

This is still a generic parsing operation affecting the entire XML file. The second derived
SAX content handler class, instead, refers to the specific structure of the XML document,
extracting only nodes of a give type. In particular, the program looks for nodes of the title type.
When a node has this type (in startElement), the class sets the isbook Boolean variable. The
text value of the node is considered only right after a node of this type is encountered:

pprroocceedduurree TMyBooksListSaxHandler.startElement(vvaarr strNamespaceURI,
strLocalName, strQName: WideString; ccoonnsstt oAttributes: IVBSAXAttributes);

bbeeggiinn
iinnhheerriitteedd;
isbook := (strLocalName = ‘title’);

eenndd;

pprroocceedduurree TMyBooksListSaxHandler.characters(var strChars: WideString);
vvaarr
str: string;

bbeeggiinn
inherited;
iiff isbook tthheenn
bbeeggiinn
str := RemoveWhites (strChars);
iiff (str <> ‘’) tthheenn
Log.Add (stack.CommaText + ‘: ‘ + str);

eenndd;
eenndd;

Mapping XML with Transformations
There is one more technique you can use in Delphi 6 to handle at least some XML docu-
ments. You can create a transformation to translate the XML of a generic document into the
format used natively by the ClientDataSet component when saving data to a MyBase XML
file. In the reverse direction, another transformation can turn a dataset available within a
ClientDataSet (through a DataSetProvider component) into a XML file of a required format
(or schema).

Delphi 6 includes a wizard to generate such transformations. Called XML Mapping Tool,
or XML Mapper for short, it is invokable from the Tools menu of the IDE or executed as a
stand-alone application. The XML Mapper, visible in Figure 23.7, is a design-time helper
that assists you in defining transformation rules between the nodes of a generic XML docu-
ment and fields of the data packet of the ClientDataSet.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1038

http://www.sybex.com

1039

The XML Mapper windows has three areas:

• On the left is the XML document section, which displays information about the struc-
ture of the XML document (and eventually its data, if the related check box is active) in
the Document View or an XML schema in the Schema View, depending on the
selected tab.

• On the right is the data packet section, which displays information about the metadata
in the data packet, either in the Field View indicating the dataset structure or in the
Datapacket View reporting the XML structure. Notice, in fact, that the XML Mapper
can also open files in the native ClientDataSet format.

• The central portion of the windows is used by the mapping section. This contains two
pages as well: one for Mapping, where you can see the correspondences between selected
elements of the two sides that will be part of the mapping, and one for Node Properties,
where you can modify the data types and other details of each of the possible mappings.

The Mapping page of the central pane also hosts the local menu used to generate the
transformation, while each other pane and view has specific local menus you can use to per-
form the various actions (beside the few commands in the main menu).

You can use XML Mapper to map an existing schema (or extract it from a document) to a
brand new data packet, an existing data packet to a new schema or document, or an existing
data packet into an existing XML document (if a match is reasonable). Besides converting
the data of an XML file into a data packet, you can also convert to a delta packet of the
ClientDataSet. This is useful for merging a document to an existing table, as if a user had

F I G U R E 2 3 . 7 :
The XML Mapper shows
the two sides of a transfor-
mation to define a map-
ping among them (with the
rules indicated in the cen-
tral portion).

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1039

http://www.sybex.com

1040

inserted them. In particular, you can transform an XML document into a delta packet for
records to be modified, deleted, or inserted.

The result of using the XML Mapper is one or more transformation files, each represent-
ing a one-way conversion (so you need at least two transformation files to convert data back
and forth). These transformation files are then used at design time and at run time by the
XMLTransform, XMLTransformProvider, and XMLTransformClient components.

As an example, I’ve tried opening the usual “books” XML, which has a structure that doesn’t
easily match a table, since there are two lists of values of different types (I’ve skipped easier
examples in which the XML has a plain rectangular structure). After opening the Sample.XML
file in the XML Document section, I’ve used its local menu to select all of its elements (Select
All) and to create the data packet (Create Datapacket From XML). This automatically fills the
right pane with the data packet and the central portion with the proposed transformation. You
can also immediately view its effect in a sample program by selecting the Create And Test
Transformation button. This opens a generic application that can load a document into the
dataset using the transformation you’ve just created, as you can see in Figure 23.8.

In this specific case, you can see that the XML Mapper generates a table with two dataset
fields, one of each possible list of subelements. This was the only possible standard solution,
as the two sublists have different structures, and is the only solution that allows you to edit
the data in a DBGrid attached to the ClientDataSet and save it back to a complete XML file,
as demonstrated by the XmlMapping example. This program is basically a Windows-based
editor of a complex XML document.

It uses a TransformProvider component, with two transformation files attached, to read in
an XML document and make it available to a ClientDataSet. As the name suggests, in fact,
this component is a dataset provider. To build the user interface, I haven’t connected the

F I G U R E 2 3 . 8 :
The Create and Test Trans-
formation button of the
XML Mapper tool allows
you to immediately verify
the effect of the transfor-
mations you are building

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1040

http://www.sybex.com

1041

ClientDataSet directly to a grid, as it has a single record with a text field plus two detailed
datasets. For this reason, I’ve added to the program two more ClientDataSet components,
attached to the dataset fields and connected to two DBGrid controls. This is probably easier
to understand by looking at its DFM source code in the following excerpt and at its output in
Figure 23.9.

oobbjjeecctt Form1: TForm1
Caption = ‘XmlMapping’
oobbjjeecctt XMLTransformProvider1: TXMLTransformProvider
TransformRead.TransformationFile = ‘BooksDefault.xtr’
TransformWrite.TransformationFile = ‘BooksDefaultToXml.xtr’
XMLDataFile = ‘Sample.xml’

eenndd
oobbjjeecctt ClientDataSet1: TClientDataSet
ProviderName = ‘XMLTransformProvider1’
oobbjjeecctt ClientDataSet1text: TStringField
FieldName = ‘text’
Size = 5

eenndd
oobbjjeecctt ClientDataSet1book: TDataSetField
FieldName = ‘book’

eenndd
oobbjjeecctt ClientDataSet1ebook: TDataSetField
FieldName = ‘ebook’

eenndd
eenndd

F I G U R E 2 3 . 9 :
The XmlMapping example
uses a TransformProvider
component to make a com-
plex XML document avail-
able for editing within
multiple ClientDataSet
components.

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1041

http://www.sybex.com

1042

oobbjjeecctt DataSource1: TDataSource
DataSet = ClientDataSet1

eenndd
oobbjjeecctt Panel1: TPanel
Align = alTop
oobbjjeecctt Label2: TLabel
Caption = ‘Text’
FocusControl = DBEdit2

eenndd
oobbjjeecctt DBNavigator1: TDBNavigator
VisibleButtons = [nbEdit, nbPost, nbCancel, nbRefresh]

eenndd
oobbjjeecctt DBEdit2: TDBEdit
DataField = ‘text’
DataSource = DataSource1

eenndd
oobbjjeecctt Button1: TButton
Caption = ‘Save’
OnClick = Button1Click

eenndd
eenndd
oobbjjeecctt ClientDataSet2: TClientDataSet
DataSetField = ClientDataSet1book

eenndd
oobbjjeecctt DataSource2: TDataSource
DataSet = ClientDataSet2

eenndd
oobbjjeecctt DBGrid1: TDBGrid
Align = alTop
DataSource = DataSource2

eenndd
oobbjjeecctt Splitter1: TSplitter
Cursor = crVSplit
Align = alTop

eenndd
oobbjjeecctt ClientDataSet3: TClientDataSet
DataSetField = ClientDataSet1ebook

eenndd
oobbjjeecctt DataSource3: TDataSource
DataSet = ClientDataSet3
Left = 232
Top = 224

eenndd
oobbjjeecctt DBGrid2: TDBGrid
Align = alClient
DataSource = DataSource3

eenndd
eenndd

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1042

http://www.sybex.com

1043

This program allows you to edit the data of the various sublists of nodes, within the grids,
modifying them but also adding or deleting records. As you apply the changes to the dataset
(clicking the Save button, which calls ApplyUdpates), the transform provider saves an
updated version of the file to disk.

As an alternative approach, you can also create transformations that map only portions of the
XML document into a dataset. As an example, see the BooksOnly.xtr file in the folder of the
XmlMapping example. This can be useful for viewing the data, but the modified XML docu-
ment you’ll generate will have a different structure and content from the original, including only
the portion you’ve selected. So this can be useful for viewing the data, but not for editing it.

NOTE It is not surprising that the transformation files are themselves XML documents, as you can see
by opening one in the editor. This XML document uses a custom format.

At the opposite side, we can see how a transformation can be used to take a database table
or the result of a query and produce an XML file with a more readable format than the one
provided by default by the ClientDataSet persistence mechanism. To build the MapTable
example, I’ve placed a table component on a form and attached a DataSetProvider to it and a
ClientDataSet to the provider. After opening the table and the client dataset, I saved its con-
tent to an XML file.

At that point, I opened the XML Mapper, loaded the data packet file into it, selected all of
the data packet nodes (with the Select All command of its local menu) and invoked the Cre-
ate XML From Datapacket command. In the following dialog box, I accepted the default
name mappings for fields and only changed the suggested name for record nodes (ROW) into
something more readable (Customer). If you now test the transformation, the XML Mapper
will display the contents of the resulting XML document in a custom tree view, as you can
see in Figure 23.10.

After saving the transformation file, I was ready to resume developing the program, adding
to it another provider that takes the data from the ClientDataSet (as a user might edit in on
an attached DBGrid before transforming it) and makes it available to an XMLTransform-
Client component. This component has the transformation file connected to it, but not an
XML file. In fact, clicking the button shows the XML document within a memo (after a for-
matting it) instead of saving it to a file, something you can do by calling the GetDataAsXml
method (even if the Help file is far from clear about this):

pprroocceedduurree TForm1.btnMapClick(Sender: TObject);
bbeeggiinn
Memo1.Lines.Text := FormatXmlData(XMLTransformClient1.GetDataAsXml(‘’));

eenndd;

Managing XML Documents

2874c23.qxd 7/2/01 2:27 PM Page 1043

http://www.sybex.com

1044

This is the only code of the program visible at run time in Figure 23.11. The application
has much simpler code than the DomCreate example I used to generate a similar XML doc-
ument, but requires the design-time definition of the transformation. The DomCreate
example, instead, could work on any dataset at run time, without any connection to a specific
table, as it had some rather generic code. In theory, it is possible to produce similar dynamic
mappings by using the events of the generic XMLTransform component, but I find it much
easier to use the DOM-based approach discussed earlier. Notice also that the FormatXmlData
call produces much nicer output but slows down the program, because it involves loading the
XML into a DOM.

F I G U R E 2 3 . 1 0 :
When you convert from a
data packet to an XML doc-
ument, the XML Mapper
can preview the document
in a tree structure.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1044

http://www.sybex.com

1045

XML and Internet Express
Once you have defined the structure of an XML document, you might want to let users see
and edit the data in a Windows application or over the Web. This second case is rather inter-
esting, as Delphi provides specific support for it. Delphi 5 already included an architecture
called Internet Express, which is now available in Delphi 6 as part of the WebSnap platform.
WebSnap offers also support for XSL, which I’ll discuss later.

In Chapter 17, “Multitier Database Applications with DataSnap,” I discussed the develop-
ment of DataSnap applications (formerly known as Midas applications). Internet Express pro-
vides a client component for this architecture, called XMLBroker, which can be used in place of
a client dataset to retrieve data from a middle-tier DataSnap program and make it available to a
specific type of page producer, called InetXpageProducer. You can use these components in a
standard WebBroker application or in a WebSnap program. The idea behind Internet Express
is that you write a Web server extension (CGI or ISAPI or Apache modules, as discussed in the

F I G U R E 2 3 . 1 1 :
The MapTable example can
generate an XML document
from a database table
using a custom transforma-
tion file. You can see the
original dataset in the
DBGrid above and the
resulting XML document in
the memo control below

XML and Internet Express

2874c23.qxd 7/2/01 2:27 PM Page 1045

http://www.sybex.com

1046

preceding chapter), which in turn produces Web pages hooked to your DataSnap server.
Your custom application acts as a DataSnap client and produces pages for a browser client.
Internet Express offers the services required to build this custom application easily.

I know this sounds confusing, but Internet Express is a four-tier architecture: SQL server,
application server (the DataSnap server), Web server with a custom application, and finally
Web browser. Of course, you can place the database access components within the same appli-
cation handling the HTTP request and generating the resulting HTML, as in a client/server
solution. You can even access a local database or an XML file, in a single-tier structure.

In other words, Internet Express is a technology for building clients based on a browser,
which lets you send the entire dataset to the client computer along with the HTML and
some JavaScript for manipulating the XML and showing it into the user interface defined by
the HTML. It is the JavaScript that enables the browser to show the data and manipulate it.

The XMLBroker Component
Internet Express uses multiple technologies to accomplish this. The DataSnap data packets
are converted into the XML format, to let the program embed this data right into the HTML
page for Web client-side manipulation. Actually, the Delta data packet is also represented in
XML. These operations are performed by the XMLBroker component, which can handle
XML and provide data to the new JavaScript components. Like the ClientDataSet, the XML-
Broker has

• A MaxRecords property indicating the number of records to add to a single page

• A Params property hosting the parameters that components will forward to the remote
query through the provider

• A WebDispatch property indicating the update request the broker responds to

The InetXPageProducer allows you to generate HTML forms from datasets, in a visual
way similar to the development of an AdapterPageProducer user interface. Actually, the
Internet Express architecture, the interfaces it uses internally, and some of its IDE editor can
together be considered the parent of the WebSnap architecture. With the notable difference
of generating scripts to be executed on the server side and on the client side, they both pro-
vide an editor for placing visual components and generating such scripts. A notable differ-
ence I’m personally not terribly happy about, though, is that the older Internet Express is
more XML-oriented than newer WebSnap.

TIP Another common feature of the InetXPageProducer and the AdapterPageProducer is the sup-
port for Cascading Style Sheets (CSS). These components have the two alternative Style and
StylesFile properties for defining the CSS, and each visual element has a StyleRule prop-
erty where you can select the style name.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1046

http://www.sybex.com

1047

JavaScript Support
To make the editing operations on the client side powerful, the InetXPageProducer uses spe-
cial JavaScript components and code. Delphi embeds a rather large JavaScript library, which
the browser will have to download. This might seem a nuisance, but it is the only way the
browser interface (which is based on dynamic HTML) can be rich enough to support field
constraints and other business rules with the browser. This is really impossible with plain
HTML. The JavaScript files provided by Borland, and that you should make available on the
Web site hosting the application, are the following:

File Description

Xmldom.js DOM-compatible XML parser (for browsers lacking native
XML DOM support)

Xmldb.js JavaScript classes for the HTML controls

Xmldisp.js JavaScript classes for binding XML data with the HTML
controls

Xmlerrdisp.js Classes for reconciling errors

XmlShow.js JavaScript functions to display data and delta packets (for
debugging purposes)

HTML pages generated by Internet Express usually include references to these JavaScript
files, such as:

<script language=Javascript type=”text/javascript”
src=”IncludePathURL/xmldb.js”></script>

You can customize the JavaScript by adding code directly into the HTML pages or by
creating a new Delphi components, written to fit with the Internet Express architecture that
“emits” JavaScript code (possibly along with HTML). As an example, the sample TPrompt-
QueryButton class of INetXCustom generates the following HTML and JavaScript code:

<script language=javascript type=”text/javascript”>
ffuunnccttiioonn PromptSetField(input, msg) {
vvaarr v = prompt(msg);
iiff (v == nnuullll || v == “”)
rreettuurrnn false;

input.value = v
rreettuurrnn true;

}
vvaarr QueryForm3 = document.forms[‘QueryForm3’];

</script>
<input type=button value=”Prompt...”
onclick=”iiff (PromptSetField(PromptResult, ‘Enter some text\n’))
QueryForm3.submit();”>

XML and Internet Express

2874c23.qxd 7/2/01 2:27 PM Page 1047

http://www.sybex.com

1048

TIP If you plan on using Internet Express, have a look at the INetXCustom extra demo compo-
nents, available in the \Demos\Midas\InternetExpress\INetXCustom folder. Follow the
detailed instructions in the readme.txt file for the installation of these components, which
are provided by Borland with no support but allow you to add many more features to your
Internet Express applications with little extra effort.

Of course, to deploy this architecture you don’t need anything special on the client side, as
any browser up to the HTML 4 standard can be used, on any operating system. The Web
server, instead, must be a Win32 server (we’re waiting for this technology to be available in
Kylix) and you must deploy the DataSnap libraries on it (after paying the proper license fee
to Borland, still not disclosed at this time).

Building a First Example
To better understand what I’m talking about, and as a way to cover some more technical
details, let me try out a simple demo, called IeFirst. To avoid configuration issues, this is a
CGI application accessing a dataset directly—in this case, a local table retrieved via the BDE.
Later I’ll show you how to turn an existing DataSnap Windows client to a browser-based
interface. To build IeFirst, I’ve created a new CGI application and added to its data module a
Table and a DataSetProvider. The next step is to add an XMLBroker component and con-
nect it to the provider:

oobbjjeecctt Table1: TTable
DatabaseName = ‘DBDEMOS’
TableName = ‘employee.db’

eenndd
oobbjjeecctt DataSetProvider1: TDataSetProvider
DataSet = Table1

eenndd
oobbjjeecctt XMLBroker1: TXMLBroker
ProviderName = ‘DataSetProvider1’
WebDispatch.MethodType = mtAny
WebDispatch.PathInfo = ‘XMLBroker1’
ReconcileProducer = PageProducer1
OnGetResponse = XMLBroker1GetResponse

eenndd

The ReconcileProducer property is required to show a proper error message in case of an
update conflict. As we’ll see later, one of the Delphi demos includes some custom code, but
in this simple example I’ve simply connected a traditional PageProducer component with a

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1048

http://www.sybex.com

1049

generic HTML error message. After setting up the XML broker, you can add an InetXPage-
Producer to the Web data module. This component has a standard HTML skeleton; I’ve
customized to add a title to it, without touching the special tags:

<HTML><HEAD>
<title>IeFirst</title>

</HEAD><BODY>
<h1>Internet Express First Demo (IeFirst.exe)</h1>
<#INCLUDES><#STYLES><#WARNINGS><#FORMS><#SCRIPT>

</BODY>

The special tags are automatically expanded using the JavaScript files of the directory speci-
fied by the IncludePathURL property. You must set this property to refer to the Web server
directory where these files reside. You can find them in the \Delphi6\Source\WebMidas direc-
tory. The five tags have the following effect:

Tag Effect

<#INCLUDES> Generates the instructions to include the JavaScript libraries

<#STYLES> Adds the embedded style sheet definition

<#WARNINGS> Used at design time to show errors in the InetXPageProducer editor

<#FORMS> Generates the HTML code produced by the components of the
Web page

<#SCRIPT> Adds a JavaScript block used to start up the client-side script

NOTE The InetXPageProducer component handles also a few more internal tags. <#BODYELEMENTS> cor-
responds to all of the five tags of the predefined template. <#COMPONENT Name=WebComponent-
Name> is part of the generated HTML code used to declare the components generated visually.
<#DATAPACKET XMLBroker=BrokerName> is replaced with the actual XML of the data packet.

To customize the resulting HTML of the InetXPageProducer, you can use its editor, which
again is similar to the one for WebSnap server-side scripting. Just double-click the InetXPage-
Producer component, and Delphi opens up a window like the one in Figure 23.12 (with the
final settings of the example). In this editor, you can create complex structures, starting with a
query form, data form, or generic layout group. In the data form of my simple example, I’ve
added a DataGrid and a DataNavigator component, without customizing them any further
(an operation you do by adding child buttons, columns, and other objects, which fully replace
the default ones).

XML and Internet Express

2874c23.qxd 7/2/01 2:27 PM Page 1049

http://www.sybex.com

1050

The DFM code for the InetXPageProducer and its internal components in my example is
the following, where you can seen the core settings plus some limited graphical customizations:

oobbjjeecctt InetXPageProducer1: TInetXPageProducer
IncludePathURL = ‘/jssource/’
HTMLDoc.Strings = (...)
oobbjjeecctt DataForm1: TDataForm
oobbjjeecctt DataNavigator1: TDataNavigator
XMLComponent = DataGrid1
Custom = ‘align=”center”’

eenndd
oobbjjeecctt DataGrid1: TDataGrid
XMLBroker = XMLBroker1
DisplayRows = 5
TableAttributes.BgColor = ‘Silver’
TableAttributes.CellSpacing = 0
TableAttributes.CellPadding = 2
HeadingAttributes.BgColor = ‘Aqua’
oobbjjeecctt EmpNo: TTextColumn...
oobbjjeecctt LastName: TTextColumn...
oobbjjeecctt FirstName: TTextColumn...
oobbjjeecctt PhoneExt: TTextColumn...
oobbjjeecctt HireDate: TTextColumn...
oobbjjeecctt Salary: TTextColumn...
oobbjjeecctt StatusColumn1: TStatusColumn...

eenndd
eenndd

eenndd

F I G U R E 2 3 . 1 2 :
The InetXPageProducer edi-
tor allows you to build
complex HTML forms visu-
ally, similarly to the
AdapterPageProducer.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1050

http://www.sybex.com

1051

But the value of these components is in the HTML (and JavaScript) code they generate,
which you can preview by selecting the HTML tab of the InetXPageProducer editor. Here
are a few portions of the definitions in the HTML, for the buttons, the data grid heading,
and one if its cells:

// buttons
<table align=”center”>
<tr><td colspan=”2”>
<input type=”button” value=”|<”
onclick=’if (xml_ready) DataGrid1_Disp.first();’>

<input type=”button” value=”<<”
onclick=’if (xml_ready) DataGrid1_Disp.pgup();’>

...
// data grid heading
<table cellspacing=”0” cellpadding=”2” border=”1” bgcolor=”silver”>
<tr bgcolor=”aqua”>
<th>EmpNo</th>
<th>LastName</th>

...
</tr>
<tr>
// a data cell
<td><div>
<input type=”text” name=”EmpNo” size=”10”
onfocus=’if(xml_ready)DataGrid1_Disp.xfocus(this);’
onkeydown=’if(xml_ready)DataGrid1_Disp.keys(this);’>

</div></td>...

When the HTML generator is set up, you can go back to the Web data module, add an
action to it, and connect the action with the InetXPageProducer via the Producer property.
This should be enough to make the program work through a browser, as you can see in Fig-
ure 23.13.

If you look at the HTML file received by the browser, you’ll find the table mentioned in
the preceding definition, some JavaScript code here and there, and the database data in the
data packet XML format. This data is assembled by the XML broker and passed to the pro-
ducer component to be embedded in the HTML file. Notice that the number of records sent
to the client depends on the XMLBroker, not on the number of lines in the grid. Once the
XML data is sent to the browser, in fact, you can use the buttons of the navigator component
to move around in the data without requiring further access to the server to fetch more. This
is quite different from the paging behavior of WebSnap. Not that one is better than the
other; this depends on the specific application you are building.

XML and Internet Express

2874c23.qxd 7/2/01 2:27 PM Page 1051

http://www.sybex.com

1052

At the same time, the JavaScript classes in the system allow the user to type in new data,
following the rules imposed by the JavaScript code hooked to dynamic HTML events.
Notice that the grid, by default, has an extra asterisk column, indicating which records have
been modified. The update data is collected in an XML data packet in the browser, and sent
back to the server when the user clicks the Apply Updates button. At this point, the browser
activates the action specified by the WebDispath.PathInfo property of the XMLBroker.
There is no need to export this action from the Web data module, as this operation is auto-
matic (although you can disable it by setting WebDispath.Enable to False).

The XMLBroker applies the changes to the server, returning the content of the provider
connected to the ReconcileProvider property (or raising an exception if this is not defined).
When everything works fine, the XMLBroker redirects the control to the main page that
contains the data. However, I’ve experienced some problems with this technique, so the
IeFirst example handles the OnGetReponse, indicating this is an update view:

pprroocceedduurree TWebModule1.XMLBroker1GetResponse(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; vvaarr Handled: Boolean);

bbeeggiinn
Response.Content := ‘<h1>Updated</h1><p>’ + InetXPageProducer1.Content;
Handled := True;

eenndd;

Master/Detail in Internet Express
My second Internet Express example goes a little beyond the basics by providing a master/
detail data packet for Web browsing obtained through a DataSnap connection. The program

F I G U R E 2 3 . 1 3 :
The IeFirst application
sends to the browser
some HTML components,
an entire XML document,
and the JavaScript code to
show the data in the visual
components.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1052

http://www.sybex.com

1053

uses the AppPlus server of Chapter 17, which defines the master/detail relationship between
two tables. The dataset field embedded in the table will be transformed into a nested XML
structure, delivering the same information.

The program uses a combination of XMLBroker, InetXPageProducer, and DCOMCon-
nection. This time, I’ve customized the Web components, by adding a LayoutGroup compo-
nent to obtain multiple columns, and I’ve also created fields to select the information to
display. In Listing 23.2 are some snippets of the DFM file of this Web module: I’ve removed
a lot of extra information, but I think it is worth looking at it.

➲ Listing 23.2: Portions of the DFM file for the IeMd example’s Web module

oobbjjeecctt DCOMConnection1: TDCOMConnection
Connected = False
ServerName = ‘AppSPlus.AppServerPlus’

eenndd
oobbjjeecctt XMLBroker1: TXMLBroker
ProviderName = ‘ProviderCustomer’
RemoteServer = DCOMConnection1
WebDispatch.PathInfo = ‘XMLBroker1’

eenndd
oobbjjeecctt InetXPageProducer1: TInetXPageProducer
IncludePathURL = ‘/jssource/’
oobbjjeecctt DataForm1: TDataForm
oobbjjeecctt LayoutGroup1: TLayoutGroup
DisplayColumns = 2
oobbjjeecctt DataNavigator1: TDataNavigator
XMLComponent = FieldGroup1
oobbjjeecctt FirstButton1: TFirstButton
XMLComponent = FieldGroup1
Caption = ‘|<’

eenndd
oobbjjeecctt PriorButton1: TPriorButton
XMLComponent = FieldGroup1
Caption = ‘<’

eenndd
oobbjjeecctt NextButton1: TNextButton
XMLComponent = FieldGroup1
Caption = ‘>’

eenndd
......
oobbjjeecctt ApplyUpdatesButton1: TApplyUpdatesButton
Caption = ‘Apply Updates’
XMLBroker = XMLBroker1
XMLUseParent = True

eenndd
eenndd
oobbjjeecctt FieldGroup1: TFieldGroup
XMLBroker = XMLBroker1

XML and Internet Express

2874c23.qxd 7/2/01 2:27 PM Page 1053

http://www.sybex.com

1054

object CustNo: TFieldText
DisplayWidth = 10
Caption = ‘CustNo’
FieldName = ‘CustNo’

eenndd
oobbjjeecctt Company: TFieldText
DisplayWidth = 30
Caption = ‘Company’
FieldName = ‘Company’

eenndd
...

eenndd
oobbjjeecctt DataNavigator2: TDataNavigator
XMLComponent = DataGrid1
oobbjjeecctt FirstButton2: TFirstButton
XMLComponent = DataGrid1
Caption = ‘|<’

eenndd
oobbjjeecctt PriorPageButton1: TPriorPageButton
XMLComponent = DataGrid1
Caption = ‘<<’

eenndd
...

eenndd
oobbjjeecctt DataGrid1: TDataGrid
XMLBroker = XMLBroker1
XMLDataSetField = ‘TableOrders’
DisplayRows = 8
oobbjjeecctt OrderNo: TTextColumn
DisplayWidth = 10
Caption = ‘OrderNo’
FieldName = ‘OrderNo’

eenndd
oobbjjeecctt SaleDate: TTextColumn
DisplayWidth = 18
Caption = ‘SaleDate’
FieldName = ‘SaleDate’

eenndd
......

eenndd
eenndd

eenndd
eenndd

Once the structure is set up, you can deploy the CGI executable on the Web server and see
the effect illustrated in Figure 23.14 directly in a browser. Notice that the HTML you
receive is rather large, as it includes the entire master/detail structure. Once you’ve received
it, however, you can browse the master table and the detail grid without having to ask the
server for any more data.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1054

http://www.sybex.com

1055

Obviously, much more could be said about the capabilities of the Internet Express to build
a Web front end for a DataSnap server, as a possible alternative to the server-side scripting
offered by WebSnap. Server-side scripting certainly allows for wider support of browsers,
although most browsers have the minimal JavaScript required by Internet Express. Also, you
should consider cases in which you prefer to have immediate feedback on the server for every
action of the user or when you prefer to let the user prepare a large delta packet, even work-
ing in a disconnected situation, and then receive the entire batch of updates at once.

Using XSLT
Another approach for generating HTML starting from an XML document is the use of the
Extensible Stylesheet Language (XSL) or, to be more precise, its XSL Transformations
(XSLT) subset. XSLT uses other XML technologies, notably XPath and XPointer to identify
portions of documents.

F I G U R E 2 3 . 1 4 :
A master/detail relationship
displayed in a browser by
the IeMd example

Using XSLT

2874c23.qxd 7/2/01 2:27 PM Page 1055

http://www.sybex.com

1056

XPath defines a set of rules to locate one or more nodes within a document. The rules are based
on a path-lie structure of the node within the XML tree, so that /books/book identifies any book
node under the books document root. XPath uses a few special symbols to identify nodes:

• An asterisk (*) stands for any node; for example, book/* indicates any subnode under a
book node.

• A dot (.) stands for the current node.

• The pipe symbol (|) indicates alternatives, as in book|ebook.

• A double slash (//) stands for any path, so that //title indicates all of the title nodes,
whatever their parent nodes, and books//author indicates any author node under a
books node regardless of the nodes in between.

• The at sign (@) indicates an attribute instead of a node, as in the hypothetical
author/@lastname. A similar notation can be used to choose only nodes having a given
value for an attribute—for example, all authors with a given first name:
author[@name=”marco”].

There are many other cases, but this short introduction to the rules of XPath should at
least get you started and help you understand the following examples. An XSTL document is
an XML document that works on the structure of a source XML document and generates in
output another XML document, possibly an XHTML document you can view within a Web
browser.

NOTE Commonly used XSLT processors include MS-XML, Xalan from the Apache XML project
(xml.apache.org), and the Java-based Xt of James Clarke.

The structure of an XSL file is quite simple, although its content can become extremely
complex to understand. At the root should be a node like:

<xsl:stylesheet version=”1.0” xmlns:xsl=”...”>

This node is followed by some of the base commands, such as the definition of a template to
operate on a given type of nodes (xsl:template match), the activation of a template for a
given node (xsl:apply-templates select), or the extraction of a value from an XML docu-
ment (xsl:value-of select). There are also specific instructions you can use, including
xsl:for-each, xsl:if, xsl:choose, xsl:sort (not available in MSXML the last time I
checked), and xsl:number.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1056

http://www.sybex.com

1057

XSTL in Practice
After this short and probably unclear explanation, let me discuss a couple of examples. As a
starting point, you should study XSL by itself, and then focus on its activation from within a
Delphi application.

For your initial tests, you can connect an XSL file directly into an XML file. As you load
the XML file in Internet Explorer, this will show you the resulting transformation, usually
the HTML. The connection is indicated in the heading of the XML document with a com-
mand like:

<?xml-stylesheet type=”text/xsl” href=”sample1embedded.xsl”?>

This is what I’ve done in the sample1embedded.xml file available in the XslEmbed project.
The related XSL embeds various XSL snippets that I cannot discuss in detail. For example, it
grabs the entire list of authors or filters a specific group of them with this code:

<h2>All Authors</h2>

<xsl:for-each select=”books//author”>
<xsl:value-of select=”.”/>

</xsl:for-each>

<h3>E-Authors</h3>

<xsl:for-each select=”books/ebook/author”>
<xsl:value-of select=”.”/>

</xsl:for-each>

Some rather more complex code is used to extract nodes only when a specific value is pre-
sent in a subnode or attribute, regardless of the higher-level nodes. This final XSL snippet
also has an if statement and produces an attribute in the resulting node, as a way to build an
href hyperlink in the HTML:

<h3>Marco’s works (books + ebooks)</h3>

<xsl:for-each select=”books/*[author = ‘Cantu’]”>
 <xsl:value-of select=”title”/>

<xsl:if test=”url”>
(<a><xsl:attribute name=”href”><xsl:value-of select=”url”/>

</xsl:attribute>Jump to document)
</xsl:if>

</xsl:for-each>

Again, I suggest you get some more documentation on the topic, but these examples
should at least get you started.

Using XSLT

2874c23.qxd 7/2/01 2:27 PM Page 1057

http://www.sybex.com

1058

XSLT with WebSnap
Within the code of a program, you can execute the TransformNode method of a DOM node,
passing to it another DOM hosting the XSL document. Instead of using this low-level
approach, however, we can let WebSnap help us to create an XSL-based example. In fact,
you can create a new WebSnap application (I’ve built a CGI program called XslCust in this
case) and choose an XSLPageProducer component for its main page, to let Delphi help you
start with the application code. Actually, Delphi also includes a skeleton XSL file for manipu-
lating a ClientDataSet data packet and adds to the editor many new views. The XSL Text
replaces the HTML file; the XML Tree shows the data, if any; the XSL tree shows the XSL
within the Internet Explorer ActiveX; the HTML result shows the code produced by the
transformation; and (finally) the Preview page shows what a user will see in a browser.

To make this actually work, you must provide some data to the XSLPageProducer compo-
nent, via its XMLData property. This property can be hooked up to an XMLDocument but
also directly to an XMLBroker component, as I’ve done in this case. The broker takes its
data from a provider connected to a local table, attached to the Customers table of the classic
DBDEMOS.

The effect is that, with the following Delphi-generated XSL, you get (even at design time)
the output of Figure 23.15.

F I G U R E 2 3 . 1 5 :
The result of an XSTL trans-
formation generated (even
at design time) by the
XSLPageProducer compo-
nent in the XslCust example

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1058

http://www.sybex.com

1059

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>
<xsl:template match=”/”>
<html><body>
<xsl:apply-templates/>

</body></html>
</xsl:template>

<xsl:template match=”DATAPACKET”>
<table border=”1”>
<xsl:apply-templates select=”METADATA/FIELDS”/>
<xsl:apply-templates select=”ROWDATA/ROW”/>
</table>

</xsl:template>

<xsl:template match=”FIELDS”>
<tr><xsl:apply-templates/></tr>

</xsl:template>

<xsl:template match=”FIELD”>
<th><xsl:value-of select=”@attrname”/></th>

</xsl:template>

<xsl:template match=”ROWDATA/ROW”>
<tr><xsl:for-each select=”@*”>
<td><xsl:value-of/></td>

</xsl:for-each></tr>
</xsl:template>

</xsl:stylesheet>

This code, based heavily on XSL templates, generates an HTML table made of the expan-
sion of field metadata and row data. The fields are used to generate the table heading, with a
<th> cell for each entry in a single row. The row data is used to fill in the other rows of the
table with the value of each attribute (select=”@*”). At this point, you should be able to
modify this XSL file and change the output of the program.

Direct XSL Transformations with the DOM
Using the XSLPageProducer can certainly be handy, but generating multiple pages based
on the same data just to handle different possible XSL styles with WebSnap doesn’t seem to
be the best approach. I’ve rather built a plain CGI application, called CdsXstl, that can trans-
form a ClientDataSet data packet into different types of HTML, depending on the name of
the XSL file passed as parameter to it. The advantage is that I can not only modify but even
add new XSL files to the system without having to recompile the program.

Using XSLT

2874c23.qxd 7/2/01 2:27 PM Page 1059

http://www.sybex.com
http://www.w3.org/TR/WD-xsl%E2%80%9D%00

1060

To obtain the XSL transformation, the program loads both the XML and the XSL files into
two XMLDocument components, called xmlDom and XslDom. Then it invokes the transformNode
method of the XML document, passing the XSL document as parameter and filling in a third
XMLDocument component, called HtmlDom:

pprroocceedduurree TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; vvaarr Handled: Boolean);

vvaarr
xslfile: string;
attr: IDOMAttr;

bbeeggiinn
// open the client dataset and load its XML in a DOM
ClientDataSet1.Open;
XmlDom.Xml.Text := ClientDataSet1.XMLData;
XmlDom.Active := True;
// load the requested xsl file
xslfile := Request.QueryFields.Values [‘style’];
iiff xslfile = ‘’ tthheenn
xslfile := ‘customer.xsl’;

xslDom.LoadFromFile (‘c:\websites\xsl\’ + xslfile);
XSLDom.Active := True;
iiff xslfile = ‘single.xsl’ tthheenn
bbeeggiinn
attr := xslDom.DOMDocument.createAttribute(‘select’);
attr.value := ‘//ROW[@CustNo=”’ + Request.QueryFields.Values [‘id’] + ‘“]’;
xslDom.DOMDocument.getElementsByTagName (‘xsl:apply-templates’).
item[0].attributes.setNamedItem(attr);

eenndd;
// do the transformation
HTMLDom.Active := True;
xmlDom.DocumentElement.transformNode (xslDom.DocumentElement, HTMLDom);
Response.Content := HTMLDom.XML.Text;

eenndd;

The code uses the DOM to modify the XSL document for displaying a single record,
adding the XPath statement for selecting the record indicated by the id query field. This id
is added to the hyperlink by the XSL with the list of records, but here I’d rather skip listing
more XSL files. You can study them, as they are available in the XSL subfolder of the folder
for this example.

WARNING To run this program, the XSL files should be deployed to the folder c:\websites\xsl\, or
anywhere you like after fixing the source code accordingly.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1060

http://www.sybex.com

1061

Web Services
Of all of the new features of Delphi 6, one stands out quite clearly: the support for Web ser-
vices built into the product. The fact I’m discussing it at the end of the book has nothing to
do with its importance, but only with the logical flow of the text, and with the fact that this is
indeed not the starting point to learn Delphi programming.

But what is a Web service? It is a rapidly emerging technology that has the potential to
change the way the Internet works for businesses. Browsing Web pages to enter your orders
is fine for individuals (so-called B2C or business-to-consumer applications) but not for com-
panies (so-called B2B or business-to-business applications). If you want to buy a few books,
going to a book vendor Web site and punching in your requests is probably fine. But if you
run a bookstore and want to place hundreds of orders a day, this is far from a good approach,
particularly if you have a program that helps you track your sales and determine reorders.
Grabbing the output of this program and reentering it into another application is really
ridiculous.

The idea of Web services is to solve this issue: The program used to track sales can automati-
cally create a request and send it to a Web service, which can immediately return information
about the order. The next step might be to ask for a tracking number for the shipment. At this
point, your program can use another Web service to track the shipment until it is at its destina-
tion, so you can tell your customers how long they have to wait. As the shipment arrives, your
program can send a reminder via SMS or pager to the people with pending orders, issue a pay-
ment with a bank Web service, and … I could continue but I think I’ve given you an idea. Web
services are for computer interoperability as much as the Web and email let people interact.

SOAP and WSDL
If the idea of Web services should be clear by now, what makes them possible is the Simple
Object Access Protocol (SOAP). SOAP is built over standard HTTP, so that a Web server
can handle the SOAP requests and the related data packets can pass though firewalls. SOAP
defines an XML-based notation for requesting the execution of a method by an object on the
server, passing parameters to it, and a notation to define the format of a response.

NOTE SOAP was originally developed by DevelopMentor (the training company of COM expert Don
Box) and Microsoft, to overcome weaknesses of using DCOM inside Web servers. Submitted
to the W3C for standardization, it is being embraced by many companies, with a particular
push from IBM. It is too early to see whether there will be a real standardization to let software
programs from Microsoft, IBM, Sun, Oracle, and many others truly interoperate or whether
some of these vendors will try to push a private version of the standard. In any case, SOAP is a cor-
nerstone of Microsoft’s dotNet architecture but also of the current proposals by Sun and Oracle.

Web Services

2874c23.qxd 7/2/01 2:27 PM Page 1061

http://www.sybex.com

1062

SOAP is going to replace COM invocation, at least between different types of computers.
Similarly, the definition of a SOAP service in the Web Services Description Language (WSDL)
format is going to replace the IDL and type libraries used by COM and COM+. WSDL docu-
ments are another type of XML document that provides the metadata definition of a SOAP
request. As you get a file in this format (generally published to define a service), you’ll be able
to create a program to call it.

Specifically, Delphi 6 provides a bidirectional mapping between WSDL and interfaces.
This means you can grab a WSDL file and generate an interface for it. At this point, you can
create a client program embedding SOAP requests via these interfaces and use a special Del-
phi component that allows you to convert your local interface requests into SOAP calls (as I
doubt you want to manually generate the XML required for a SOAP request).

The other way around, you can define an interface (or use an existing one) and let a Delphi
component generate a WSDL description for it. Another component provides you with a
SOAP-to-Pascal mapping, so that by embedding this component and an object implement-
ing the interface within a server-side program, you can have your Web service up and run-
ning in matter of minutes.

BabelFish Translations
As a first example of the use of Web service, I’m going to build a simple client for the BabelFish
translation service offered by AltaVista. Because this is an experimental service, like most others,
there is no guarantee that the service will be working by the time you read this. You can find this
and other services for experiments on the XMethods Web site (www.xmethods.com) and also look
for sample Web services provided by my own site (www.marcocantu.com).

After downloading the WSDL description of this service from XMethods (also available
on the CD-ROM), I invoked Delphi’s Web Services Importer in the Web Services page of
the New items dialog box and selected the file. Delphi generated an Object Pascal interface
for the Web service, as follows:

uunniitt babelintf;

iinntteerrffaaccee

uusseess
Types, XSBuiltIns;

ttyyppee
BabelFishPortType = iinntteerrffaaccee(IInvokable)
[‘{DF96B8F8-DD8E-43A1-9276-4F821D9EA3FA}’]
ffuunnccttiioonn BabelFish(ccoonnsstt translationmode: String;
ccoonnsstt sourcedata: String): String; ssttddccaallll;

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1062

http://www.sybex.com

1063

eenndd;

iimmpplleemmeennttaattiioonn

uusseess InvokeRegistry;

iinniittiiaalliizzaattiioonn
InvRegistry.RegisterInterface(TypeInfo(BabelFishPortType), ‘’, ‘’);

eenndd.

Notice first that the interface inherits from the IInvokable interface. This doesn’t add any-
thing in terms of methods to the IInterface base interface of Delphi, but is compiled with
the flag used to enable RTTI generation, {$M+}, like the TPersistent class. In this code, you
can also see that the interface is registered in the global invocation registry (or InvRegistry),
passing the type information reference of the interface type.

NOTE Having RTTI information for interfaces is actually the most important technological advance
underlying SOAP invocation. Not that SOAP-to-Pascal mapping isn’t important, as it is crucial
to simplify the process, but having RTTI for an interface is what makes the entire architecture
powerful and robust.

Once you have converted a WSDL definition into an easy-to-use interface, you need a
component translating from interface call to SOAP call, and also handling the response and
possible errors. This role can be played by the HTTPRio component, which implements the
idea of a Remote Invocation Object (RIO) over HTTP. Delphi 6 was built opening up the
road for SOAP, but also keeping it open for other remote invocation mechanisms.

In the BabelFish example, the HTTPRio component has the following settings, obtained
by choosing the WSDL file first and then selecting the only available service and port from
it, directly in the drop-down lists of the Object Inspector:

oobbjjeecctt HTTPRIO1: THTTPRIO
WSDLLocation = ‘C:\md6code\23\BabelFish\BabelFishService.xml’
Service = ‘BabelFish’
Port = ‘BabelFishPort’
HTTPWebNode.Agent = ‘Borland SOAP 1.1’
Converter.Options = [soSendMultiRefObj, soTryAllSchema]

eenndd

At this point, there is very little left to do. We have information about the service that can
be used for its invocation, and we know the parameters required by the only available method.
The two elements are merged by extracting the interface you want to call directly from the
HTTPRio component, with an expression like HTTPRIO1 as BabelFishPortType. It might

Web Services

2874c23.qxd 7/2/01 2:27 PM Page 1063

http://www.sybex.com

1064

seem rather astonishing at first, but it is also outrageously simple. This is the Web service call
done by the example:

EditTarget.Text := (HTTPRIO1 as BabelFishPortType).
BabelFish(ComboBoxType.Text, EditSource.Text);

The resulting output of the program, depicted in Figure 23.16, allows you to learn foreign
languages (although the teacher here has its shortcomings!). I haven’t replicated the same
example with stock options, currencies, weather forecasts, and the many other services avail-
able, as they would look much the same.

Building a Web Service
If calling a Web service in Delphi 6 is very straightforward, the same can be said of the devel-
opment of an actual service. If you go into the Web Services page of the New items dialog
box, you can see the SOAP Server Application option. Selecting it, Delphi presents you a list
quite similar to selection of a WebBroker application. A Web service, in fact, is typically
hosted by a Web server, using one of the available Web server extension technologies (CGI,
ISAPI, Apache modules, etc.). After completing this step, Delphi will add three components
to the resulting Web module, which is just a plain Web module, with no special additions:

• The HTTPSoapDispatcher component has the role of receiving the Web request, as
any other HTTP dispatcher does.

• The HTTPSoapPascalInvoker component does the reverse operation of the
HTTPRio component, as it can translate SOAP requests into calls of Pascal interfaces
(instead of shifting interface method calls into SOAP requests).

• The WSDLHTMLPublish component can be used to extract the WSDL definition of
the service from the interfaces it support, and performs the opposite role of the Web
Services Importer Wizard. Technically, this is another HTTP dispatcher.

Once this framework is in place—something you can also do by adding the three compo-
nents above to an existing Web module—we can start writing a service. As an example I’ve
taken the euro conversion example of Chapter 4, “The Run-Time Library,” and transformed

F I G U R E 2 3 . 1 6 :
An example of a translation
from English to German
obtained by AltaVista’s
BabelFish via a Web service

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1064

http://www.sybex.com

1065

it into a Web service called ConvertService. First of all, I’ve added to the program a unit
defining the interface of the service, as follows:

ttyyppee
IConvert = iinntteerrffaaccee(IInvokable)
[‘{FF1EAA45-0B94-4630-9A18-E768A91A78E2}’]

ffuunnccttiioonn ConvertCurrency (Source, Dest: string; Amount: Double): Double;
ssttddccaallll;;

ffuunnccttiioonn ToEuro (Source: string; Amount: Double): Double; ssttddccaallll;;
ffuunnccttiioonn FromEuro (Dest: string; Amount: Double): Double; ssttddccaallll;;
ffuunnccttiioonn TypesList: string; ssttddccaallll;;

eenndd;

Defining an interface directly in code, without having to use a tool such as the Type
Library Editor, provides a great advantage. Notice that I’ve given a GUID to the interface, as
usual, and used the stdcall calling convention, as the SOAP converter does not support the
default register calling convention.

In the same unit defining the interface of the service, we should also register it, an opera-
tion which will be useful on both the client and server sides of the program, as we will be able
to include this interface definition unit in both.

uusseess InvokeRegistry;

iinniittiiaalliizzaattiioonn
InvRegistry.RegisterInterface(TypeInfo(IConvert));

Now that we have an interface we can expose to the public, we have to provide an imple-
mentation for it, again by means of the standard Pascal code (and with the help of the prede-
fined TInvokableClass class:

ttyyppee
TConvert = ccllaassss (TInvokableClass, IConvert)
pprrootteecctteedd
ffuunnccttiioonn ConvertCurrency (Source, Dest: string; Amount: Double): Double;
ssttddccaallll;

ffuunnccttiioonn ToEuro (Source: string; Amount: Double): Double; ssttddccaallll;
ffuunnccttiioonn FromEuro (Dest: string; Amount: Double): Double; ssttddccaallll;
ffuunnccttiioonn TypesList: string; ssttddccaallll;

eenndd;

The implementation of these functions, which call in the code of the euro conversion sys-
tem of Chapter 4, is not discussed here as it has little to do with the development of the ser-
vice itself. What is important to notice, instead, is that this implementation unit also has a
registration call in its initialization section:

InvRegistry.RegisterInvokableClass (TConvert);

Web Services

2874c23.qxd 7/2/01 2:27 PM Page 1065

http://www.sybex.com

1066

This is basically all. By registering the interface, we’ll make it possible for the program to gen-
erate a WSDL description, as you can see in Figure 23.17, where I’ve used a browser to connect
to the wsdl action of the service, implemented by the WSDLHTMLPublish component.

Of course, you cannot call the service from a browser, as the role of a Web service is not to
display data on the Web but rather to let applications interoperate (still, you can reasonably
have a Web application calling a service). Before I discuss the client application, though, let
me cover another interesting element. For debugging purposes, I’ve added to the Web mod-
ule an actual action, connected with code to generate information about the registered inter-
faces and servers:

Response.Content :=
‘<h3>GetMethExternalName - ToEuro</h3><p>’ +
InvRegistry.GetMethExternalName(TypeInfo(IConvert), ‘ToEuro</p>’) +
‘<h3>GetInterfaceExternalName - IConvert</h3><p>’ +
InvRegistry.GetInterfaceExternalName(TypeInfo(IConvert)) + ‘</p>’ +
‘<h3>GetNamespaceByGUID - IConvert</h3><p>’ +
InvRegistry.GetNamespaceByGUID (IConvert) + ‘</p>’;

The first call verifies whether a given method is properly registered and really exists, by
calling the GetMethExternalName of the invocation registry. The result, unsurprisingly, is the
same string passed as parameter, ToEuro. The second call, GetInterfaceExternalName,

F I G U R E 2 3 . 1 7 :
The WSDL file generated
automatically from the
interface published by the
ConvertService program

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1066

http://www.sybex.com

1067

should return the external name of the interface, but I haven’t been able to make it work
properly (I left it in anyway, as it is supposed to work). The last call, GetNamespaceByGUID,
returns the XML namespace of the interface, urn:ConvertIntf-IConvert. There are other
similar calls you can make against the registry, which are quite interesting and demonstrate
the power of this approach and of RTTI for interfaces.

Having said this, let me move to the client application, calling the service. This time I
don’t really need to start from the WSDL file, as I already have the Pascal interface. This
time the form doesn’t even have the HTTPRio component, which is created in code:

pprriivvaattee
Invoker: THTTPRio;

pprroocceedduurree TForm1.FormCreate(Sender: TObject);
bbeeggiinn
Invoker := THTTPRio.Create(nniill);
Invoker.URL := ‘http://localhost/scripts/ConvertService.exe/soap/iconvert’;
ConvIntf := Invoker aass IConvert;

eenndd;;

As an alternative to using a WSDL file, the SOAP invoker component can be associated
with an URL. Once this association has been done and the required interface has been extracted
from the component, you can start writing straight Pascal code to invoke the service, as we saw
earlier.

A user can fill the two combo boxes, calling the TypesList method, which returns a list of
available currencies within a string (separated by semicolons). This list is extracted by replac-
ing any semicolon with a line break and then assigning the multiline string directly to the
combo items:

pprroocceedduurree TForm1.Button2Click(Sender: TObject);
vvaarr
TypeNames: string;

bbeeggiinn
TypeNames := ConvIntf.TypesList;
ComboBoxFrom.Items.Text := StringReplace (TypeNames, ‘;’, sLineBreak,
[rfReplaceAll]);

ComboBoxTo.Items := ComboBoxFrom.Items;
eenndd;

At this point, after selecting two currencies, you can perform the conversion, with this
code and the result of Figure 23.18:

pprroocceedduurree TForm1.Button1Click(Sender: TObject);
bbeeggiinn
LabelResult.Caption := Format (‘%n’, [(ConvIntf.ConvertCurrency(
ComboBoxFrom.Text, ComboBoxTo.Text, StrToFloat(EditAmount.Text)))]);

eenndd;

Web Services

2874c23.qxd 7/2/01 2:27 PM Page 1067

http://www.sybex.com
http://localhost/scripts/ConvertService.exe/soap/iconvert%E2%80%99%00

1068

DataSnap over SOAP
Now that we have a reasonably good idea of how to build a SOAP server and a SOAP client,
we can have a look at how to use this technology in building a multitier DataSnap applica-
tion. We’ll use a Soap Server Data Module to create the new Web service and the SoapCon-
nection component to connect a client application to it.

Let’s look at the server side first. You have to move to the Web Services page of the New
Items dialog box and use the Soap Server Application icon first to create a new Web service,
and then use the Soap Server Data Module icon to add a DataSnap server-side data module
to the SOAP server. This is what I’ve done in the SoapDataServer example (which uses the
Web App Debugger architecture for testing purposes). From this point on, all you do is write
a normal DataSnap server (or actually a middle-tier DataSnap application) as discussed in
Chapter 17. In this specific case, I’ve added to the program InterBase access by means of
dbExpress, resulting in the following structure:

oobbjjeecctt SoapTestDm: TSoapTestDm
oobbjjeecctt SQLConnection1: TSQLConnection
ConnectionName = ‘IBLocal’

eenndd
oobbjjeecctt SQLDataSet1: TSQLDataSet
SQLConnection = SQLConnection1
CommandText = ‘select * from EMPLOYEE’

eenndd
oobbjjeecctt DataSetProvider1: TDataSetProvider
DataSet = SQLDataSet1

eenndd
eenndd

F I G U R E 2 3 . 1 8 :
The ConvertCaller client of
the ConvertService Web
service shows how few
German marks you used to
get for so many Italian
liras, before the euro
changed all this.

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1068

http://www.sybex.com

1069

The data module built for a SOAP-based DataSnap server defines a custom interface (so you
can add methods to it) inheriting from IAppServer, which is now defined as a published inter-
face (even though it doesn’t inherit from IInvokable). The implementation class, TSoapTestDm,
is the data module itself, as in other DataSnap types of servers. This is the code Delphi gener-
ated for me:

ttyyppee
ISoapTestDm = iinntteerrffaaccee(IAppServer)
[‘{1F109687-6D8B-4F85-9BF5-EFFC87A9F10F}’]

eenndd;

TSoapTestDm = ccllaassss(TSoapDataModule, ISoapTestDm, IAppServer)
DataSetProvider1: TDataSetProvider;
SQLConnection1: TSQLConnection;
SQLDataSet1: TSQLDataSet;

eenndd;

The base TSoapDataModule doesn’t inherit from TInvokableClass. This is not a problem as
long as you provide an extra procedure to create the object (which is what TInvokableClass
does for you) and add it to the registration code:

pprroocceedduurree TSoapTestDmCreateInstance(oouutt obj: TObject);
bbeeggiinn
obj := TSoapTestDm.Create(nniill);

eenndd;

iinniittiiaalliizzaattiioonn
InvRegistry.RegisterInvokableClass(TSoapTestDm, TSoapTestDmCreateInstance);
InvRegistry.RegisterInterface(TypeInfo(ISoapTestDm));

The server application actually also publishes the IAppServer interface, thanks to the only
line of code in the SOAPMidas unit.

WARNING Web service applications should not include more than one SOAP Data Module, as the registra-
tion cannot distinguish between multiple implementations of the same IAppServer interface.

To build the client application, called SoapDataClient, I’ve started with a plain program
and added a SoapConnection component to it (from the Web Services page of the palette),
hooking it to the URL of the DataSnap Web service, referring to the specific interface we
are looking for:

oobbjjeecctt SoapConnection1: TSoapConnection
Agent = ‘Borland SOAP 1.1’
URL = ‘http://localhost:1024/SoapDataServer.SoapDataServer/Soap/ISoapTestDm’

eenndd

Web Services

2874c23.qxd 7/2/01 2:27 PM Page 1069

http://www.sybex.com
http://localhost:1024/SoapDataServer.SoapDataServer/Soap/ISoapTestDm%E2%80%99

1070

From this point on, I’ve proceeded as usual, adding a ClientDataSet component, a Data-
Source, and a DBGrid to the program, choosing the only available provider for the client dataset,
and hooking the rest as usual. Not surprisingly, for this simple example, the client application has
little custom code: a single call to open the connection when a button is clicked (to avoid startup
errors) and an ApplyUpdates call to send changes back to the database.

Regardless of the apparent similarity of this program to all of the other DataSnap client
and server programs built in Chapter 17, there is a very important difference worth underlin-
ing: The SoapDataServer and SoapDataClient programs do not use COM for exposing or
calling the IAppServer interface. Quite the opposite—the socket- and HTTP-based connec-
tions of DataSnap still rely on local COM objects and a registration of the server in the Win-
dows Registry. The native SOAP-based support provided by Delphi 6, instead, allows for a
totally custom solution independent from COM and with many more chances to be ported
to other operating systems (Linux being certainly the first, with a future release of Kylix).

What’s Next?
In this final chapter of the book, I’ve covered XML and related technologies, including XSLT,
SOAP, WSDL, XML schemas, XPath, and a few more. We’ve seen how Delphi 6 provides
simplified DOM programming, XML access using interfaces, and XML transformations. I’ve
also covered Internet Express and the development of Web services.

Besides tracking what goes on in the area of SOAP and WSDL, particularly in terms of
standards conformance by the major players, there are a few interesting initiatives you should
probably keep track of if you’re interested in the development in business-to-business services.
One of them is the UDDI proposal (www.uddi.org), pushed by Microsoft, IBM, Ariba, and many
other companies, to create a universal registry of services. Another is ebXML (www.ebxml.org), a
proposal by the U.N. office that defined the EDI standards for an XML-based global business
exchange.

Of course, I don’t want to delve too much into these nontechnical issues, but I thought it
was worth mentioning them at the end of this book, as I try to give a few hints at a sort of
“what’s next” for Delphi programmers. Delphi is indeed a strong player in both the Windows
and Linux client markets, in the client/server and enterprise application markets, and now
takes a bold step in the areas of Web development and Web services.

Just as Borland wants to provide the best tools to developers, I hope this book has helped
you master Delphi, the most successful tool Borland has brought to the market in the last few
years. Remember to check from time to time the reference, foundations, and advanced mate-
rial I’ve collected on my Web site (www.marcocantu.com). Check my site also for eventual
updates and integration of the material in the book, and feel free to use the newsgroups

Chapter 23 • XML and SOAP

2874c23.qxd 7/2/01 2:27 PM Page 1070

http://www.sybex.com

1071

hosted there for your questions about the book and about Delphi in general. Much of this
material could not be included in the book, simply because of space constraints. Some of this
extra material is actually already available on the companion CD, where you can continue
reading about other aspects of Delphi programming.

What’s Next?

2874c23.qxd 7/2/01 2:27 PM Page 1071

http://www.sybex.com

Developer’s Guide

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Borland®

Delphi™ 6
for Windows

Refer to the DEPLOY document located in the root directory of your Delphi 6 product for a complete list of files that
you can distribute in accordance with the Delphi 6 License Statement and Limited Warranty.

Inprise may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1983, 2001 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Printed in the U.S.A.

HDE1350WW21001 1E0R0501
0102030405-9 8 7 6 5 4 3 2 1
D3

iii

Chapter 1
Introduction 1-1
What’s in this manual? 1-1
Manual conventions 1-3
Developer support services 1-3
Ordering printed documentation 1-3

Part I
Programming with Delphi

Chapter 2
Developing applications with Delphi 2-1
Integrated development environment 2-1
Designing applications 2-2
Developing applications 2-3

Creating projects 2-3
Editing code. 2-4
Compiling applications 2-4
Debugging applications 2-5
Deploying applications 2-5

Chapter 3
Using the component libraries 3-1
Understanding the component libraries. 3-1

Properties, methods, and events 3-2
Properties 3-2
Methods 3-3
Events . 3-3
User events 3-3
System events 3-4

Object Pascal and the class libraries 3-4
Using the object model 3-4

What is an object?. 3-5
Examining a Delphi object 3-5
Changing the name of a component . . . 3-7

Inheriting data and code from an object . . . 3-8
Scope and qualifiers 3-8

Private, protected, public, and published
declarations 3-9

Using object variables 3-10
Creating, instantiating, and destroying

objects . 3-11
Components and ownership 3-11

Objects, components, and controls 3-12
TObject branch 3-14

TPersistent branch. 3-14
TComponent branch 3-15
TControl branch 3-16
TWinControl/TWidgetControl branch . . . 3-17
Properties common to TControl 3-18

Action properties 3-18
Position, size, and alignment

properties 3-19
Display properties 3-19
Parent properties. 3-19
A navigation property. 3-19
Drag-and-drop properties 3-20
Drag-and-dock properties

(VCL only) 3-20
Standard events common to TControl . . . 3-20
Properties common to TWinControl and

TWidgetControl 3-21
General information properties 3-21
Border style display properties. 3-22
Navigation properties 3-22
Drag-and-dock properties

(VCL only) 3-22
Events common to TWinControl and

TWidgetControl 3-22
Creating the application user interface . . . 3-23
Using Delphi components 3-23
Setting component properties 3-24

Using the Object Inspector 3-24
Using property editors 3-25
Setting properties at runtime 3-25

Calling methods 3-25
Working with events and event

handlers. 3-25
Generating a new event handler 3-26
Generating a handler for a component’s

default event 3-26
Locating event handlers. 3-26
Associating an event with an existing

event handler 3-27
Associating menu events with event

handlers 3-28
Deleting event handlers 3-28

VCL and CLX components 3-28
Adding custom components to the

 Component palette 3-30
Text controls 3-31

Text control properties. 3-31

Contents

iv

Properties of memo and rich text
controls 3-31

Rich text controls (VCL only) 3-32
Specialized input controls3-32

Scroll bars 3-32
Track bars 3-33
Up-down controls (VCL only). 3-33
Spin edit controls (CLX only) 3-33
Hot key controls (VCL only). 3-33
Splitter controls 3-34

Buttons and similar controls 3-34
Button controls 3-34
Bitmap buttons 3-35
Speed buttons 3-35
Check boxes 3-35
Radio buttons 3-35
Toolbars 3-36
Cool bars (VCL only) 3-36

Handling lists 3-36
List boxes and check-list boxes 3-37
Combo boxes 3-37
Tree views 3-38
List views 3-38
Date-time pickers and month

calendars (VCL only)3-39
Grouping components 3-39

Group boxes and radio groups 3-39
Panels .3-39
Scroll boxes 3-40
Tab controls 3-40
Page controls 3-40
Header controls 3-41

Providing visual feedback. 3-41
Labels and static text components 3-41
Status bars 3-42
Progress bars 3-42
Help and hint properties 3-42

Grids . .3-43
Draw grids. 3-43
String grids 3-43

Value list editors (VCL only) 3-43
Displaying graphics 3-44

Images . 3-44
Shapes . 3-44
Bevels .3-45
Paint boxes. 3-45
Animation control (VCL only). 3-45

Developing dialog boxes 3-45
Using open dialog boxes 3-46

Using helper objects 3-46
Working with lists 3-47
Working with string lists 3-47

Loading and saving string lists. 3-48
Creating a new string list 3-48
Manipulating strings in a list 3-50
Associating objects with a string list. . . 3-52

Windows registry and INI files 3-52
Using TIniFile (VCL only) 3-52
Using TRegistry 3-53
Using TRegIniFile 3-53

Creating drawing spaces 3-54
Printing . 3-54
Using streams 3-55

Chapter 4
Common programming tasks 4-1
Understanding classes 4-1
Defining classes 4-2
Handling exceptions 4-4

Protecting blocks of code 4-4
Responding to exceptions. 4-5
Exceptions and the flow of control. 4-6
Nesting exception responses 4-6

Protecting resource allocations. 4-7
What kind of resources need

protection? 4-7
Creating a resource protection block. . . . 4-8

Handling RTL exceptions. 4-9
What are RTL exceptions? 4-9
Creating an exception handler 4-10
Exception handling statements. 4-11
Using the exception instance 4-11
Scope of exception handlers 4-12
Providing default exception

handlers 4-12
Handling classes of exceptions 4-13
Reraising the exception 4-13

Handling component exceptions 4-14
Exception handling with external

sources . 4-15
Silent exceptions. 4-15
Defining your own exceptions 4-16

Declaring an exception object type. . . . 4-16
Raising an exception. 4-17

Using interfaces 4-17
Interfaces as a language feature 4-18

Implementing interfaces across
the hierarchy 4-18

v

Using interfaces with procedures 4-20
Implementing IInterface 4-20
TInterfacedObject 4-21
Using the as operator 4-21
Reusing code and delegation 4-22

Using implements for delegation 4-22
Aggregation 4-23

Memory management of interface
objects . 4-24

Using reference counting 4-24
Not using reference counting 4-25

Using interfaces in distributed
applications (VCL only) 4-26

Defining custom variants4-27
Storing a custom variant type’s data 4-28
Creating a class to enable the custom

variant type 4-28
Enabling casting 4-29
Implementing binary operations 4-30
Implementing comparison operations . . 4-32
Implementing unary operations 4-34
Copying and clearing custom

variants. 4-34
Loading and saving custom variant

values. 4-35
Using the TCustomVariantType

descendant4-36
Writing utilities to work with a custom

variant type 4-36
Supporting properties and methods in

custom variants 4-37
Using TInvokeableVariantType 4-37
Using TPublishableVariantType. 4-39

Working with strings 4-39
Character types4-39
String types 4-40

Short strings4-40
Long strings 4-41
WideString. 4-41
PChar types 4-42
OpenString 4-42

Runtime library string handling routines . . 4-42
Wide character routines 4-43
Commonly used long string routines. . . 4-43

Declaring and initializing strings 4-46
Mixing and converting string types 4-47
String to PChar conversions. 4-47

String dependencies 4-47
Returning a PChar local variable 4-48

Passing a local variable as a PChar . . . 4-48
Compiler directives for strings. 4-49
Strings and characters: related topics 4-50

Working with files 4-50
Manipulating files 4-50

Deleting a file. 4-50
Finding a file 4-51
Renaming a file. 4-52
File date-time routines 4-52
Copying a file 4-53

File types with file I/O 4-53
Using file streams 4-54

Creating and opening files 4-54
Using the file handle 4-55
Reading and writing to files 4-55
Reading and writing strings 4-56
Seeking a file 4-56
File position and size 4-57
Copying. 4-57

Converting measurements 4-58
Performing conversions 4-58

Performing simple conversions 4-58
Performing complex conversions 4-58

Adding new measurement types 4-59
Creating a simple conversion family

and adding units 4-59
Using a conversion function 4-60
Using a class to manage

conversions 4-62
Defining data types 4-64

Chapter 5
Building applications, components,
and libraries 5-1

Creating applications 5-1
GUI applications. 5-1

User interface models 5-2
SDI applications 5-2
MDI applications. 5-2
Setting IDE, project, and compilation

options 5-3
Programming templates 5-3
Console applications 5-3
Service applications 5-4

Service threads 5-6
Service name properties. 5-7
Debugging services 5-8

Creating packages and DLLs 5-9
When to use packages and DLLs 5-9

vi

Writing database applications 5-10
Distributing database applications 5-11

Creating Web server applications 5-11
Using Web Broker 5-11
Creating WebSnap applications. 5-13
Using InternetExpress5-13
Creating Web Services applications 5-13

Writing applications using COM. 5-14
Using COM and DCOM 5-14
Using MTS and COM+ 5-14

Using data modules 5-15
Creating and editing standard data

modules . 5-15
Naming a data module and its unit

file. . 5-16
Placing and naming components 5-17
Using component properties and

events in a data module 5-17
Creating business rules in a data

module 5-18
Accessing a data module from a form 5-18
Adding a remote data module to an

application server project 5-19
Using the Object Repository 5-19

Sharing items within a project 5-19
Adding items to the Object Repository . . .5-19
Sharing objects in a team environment . . .5-20
Using an Object Repository item in

a project . 5-20
Copying an item 5-20
Inheriting an item. 5-20
Using an item 5-21

Using project templates 5-21
Modifying shared items 5-21
Specifying a default project, new form,

and main form 5-21
Enabling Help in applications 5-22

Help system interfaces 5-22
Implementing ICustomHelpViewer 5-23
Communicating with the Help

Manager . 5-23
Asking the Help Manager for

information 5-24
Displaying keyword-based Help 5-24
Displaying tables of contents 5-25
Implementing IExtendedHelpViewer 5-26
Implementing IHelpSelector 5-26
Registering Help system objects 5-27

Registering Help viewers 5-27

Registering Help selectors 5-27
Using Help in a VCL Application 5-28

How TApplication processes VCL
Help . 5-28

How VCL controls process Help. 5-28
Using Help in a CLX Application 5-29

How TApplication processes CLX
Help . 5-29

How CLX controls process Help. 5-29
Calling a Help system directly 5-30
Using IHelpSystem 5-30
Customizing the IDE Help system 5-30

Chapter 6
Developing the application user
interface 6-1

Controlling application behavior 6-1
Using the main form 6-1
Adding forms 6-2

Linking forms 6-2
Avoiding circular unit references. 6-2

Hiding the main form. 6-3
Working at the application level 6-3
Handling the screen 6-3
Managing layout 6-4

Responding to event notification 6-5
Using forms . 6-5

Controlling when forms reside in
memory . 6-6

Displaying an auto-created form. 6-6
Creating forms dynamically 6-6
Creating modeless forms such as

windows 6-7
Using a local variable to create a form

instance 6-7
Passing additional arguments to forms 6-8
Retrieving data from forms. 6-9

Retrieving data from modeless forms . . . 6-9
Retrieving data from modal forms. . . . 6-10

Reusing components and groups of
components 6-12

Creating and using component templates . . . 6-13
Working with frames 6-13

Creating frames 6-14
Adding frames to the component

palette . 6-14
Using and modifying frames. 6-14
Sharing frames. 6-15

vii

Organizing actions for toolbars and
menus . 6-16

What is an action? 6-17
Setting up action bands 6-18
Creating toolbars and menus 6-18

Adding color, patterns, or pictures to
menus, buttons, and toolbars 6-20

Adding icons to menus and toolbars . . . 6-21
Creating toolbars and menus that

users can customize. 6-21
Hiding unused items and categories

in action bands 6-22
Using action lists 6-23

Setting up action lists 6-23
What happens when an action fires 6-24

Responding with events 6-24
How actions find their targets 6-26

Updating actions 6-26
Predefined action classes 6-26
Writing action components 6-27
Registering actions 6-28

Creating and managing menus. 6-29
Opening the Menu Designer 6-29
Building menus. 6-31

Naming menus 6-31
Naming the menu items 6-31
Adding, inserting, and deleting

menu items 6-32
Adding separator bars 6-32
Specifying accelerator keys and

keyboard shortcuts 6-33
Creating submenus. 6-33

Creating submenus by demoting
existing menus 6-34

Moving menu items 6-34
Adding images to menu items 6-35
Viewing the menu 6-35

Editing menu items in the Object
Inspector . 6-35

Using the Menu Designer context
menu . 6-36

Commands on the context menu 6-36
Switching between menus at design

time . 6-37
Using menu templates 6-37
Saving a menu as a template 6-38

Naming conventions for template
menu items and event handlers 6-39

Manipulating menu items at runtime 6-40

Merging menus 6-40
Specifying the active menu: Menu

property 6-40
Determining the order of merged menu

items: GroupIndex property 6-40
Importing resource files 6-41

Designing toolbars and cool bars 6-41
Adding a toolbar using a panel

component 6-42
Adding a speed button to a panel 6-43
Assigning a speed button’s glyph 6-43
Setting the initial condition of a

speed button 6-43
Creating a group of speed buttons 6-44
Allowing toggle buttons 6-44

Adding a toolbar using the toolbar
component 6-44

Adding a tool button 6-45
Assigning images to tool buttons 6-45
Setting tool button appearance and

initial conditions 6-46
Creating groups of tool buttons 6-46
Allowing toggled tool buttons 6-46

Adding a cool bar component 6-47
Setting the appearance of the

cool bar 6-47
Responding to clicks 6-48

Assigning a menu to a tool button 6-48
Adding hidden toolbars 6-48
Hiding and showing toolbars 6-48
Demo programs 6-49

Chapter 7
Working with controls 7-1
Implementing drag-and-drop in controls 7-1

Starting a drag operation 7-1
Accepting dragged items 7-2
Dropping items 7-2
Ending a drag operation 7-3
Customizing drag and drop with a

drag object 7-3
Changing the drag mouse pointer. 7-4

Implementing drag-and-dock in controls 7-4
Making a windowed control a docking

site. . 7-4
Making a control a dockable child. 7-4
Controlling how child controls are

docked . 7-5

viii

Controlling how child controls are
undocked 7-6

Controlling how child controls respond
to drag-and-dock operations 7-6

Working with text in controls. 7-6
Setting text alignment 7-7
Adding scroll bars at runtime 7-7
Adding the clipboard object. 7-8
Selecting text 7-8
Selecting all text 7-9
Cutting, copying, and pasting text 7-9
Deleting selected text 7-9
Disabling menu items 7-10
Providing a pop-up menu7-10
Handling the OnPopup event. 7-11

Adding graphics to controls 7-11
Indicating that a control is

owner-drawn 7-12
Adding graphical objects to a string list . . . 7-12

Adding images to an application 7-13
Adding images to a string list 7-13
Drawing owner-drawn items 7-13

Sizing owner-draw items 7-14
Drawing owner-draw items. 7-15

Chapter 8
Working with graphics and
multimedia 8-1

Overview of graphics programming. 8-1
Refreshing the screen 8-2
Types of graphic objects 8-3
Common properties and methods of

Canvas . 8-4
Using the properties of the Canvas

object . 8-5
Using pens. 8-5
Using brushes 8-8
Reading and setting pixels 8-9

Using Canvas methods to draw graphic
objects . 8-9

Drawing lines and polylines. 8-10
Drawing shapes 8-11

Handling multiple drawing objects in
your application 8-12

Keeping track of which drawing tool
to use . 8-12

Changing the tool with speed buttons . . 8-13
Using drawing tools 8-13

Drawing on a graphic 8-16

Making scrollable graphics 8-16
Adding an image control 8-17

Loading and saving graphics files 8-18
Loading a picture from a file 8-19
Saving a picture to a file. 8-19
Replacing the picture 8-20

Using the clipboard with graphics 8-21
Copying graphics to the clipboard. . . . 8-21
Cutting graphics to the clipboard 8-21
Pasting graphics from the clipboard . . . 8-22

Rubber banding example. 8-23
Responding to the mouse 8-23
Responding to a mouse-down action . . 8-24
Adding a field to a form object to track

mouse actions 8-26
Refining line drawing 8-27

Working with multimedia 8-28
Adding silent video clips to an

application 8-29
Example of adding silent video clips . . 8-30

Adding audio and/or video clips to an
application 8-30

Example of adding audio and/or video
clips (VCL only) 8-32

Chapter 9
Writing multi-threaded applications 9-1
Defining thread objects 9-1

Initializing the thread 9-2
Assigning a default priority 9-2
Indicating when threads are freed 9-3

Writing the thread function 9-4
Using the main VCL/CLX thread 9-4
Using thread-local variables 9-5
Checking for termination by other

threads 9-5
Handling exceptions in the thread

function 9-6
Writing clean-up code. 9-6

Coordinating threads 9-7
Avoiding simultaneous access 9-7

Locking objects. 9-7
Using critical sections 9-7
Using the multi-read exclusive-write

synchronizer 9-8
Other techniques for sharing memory. . . 9-8

Waiting for other threads 9-9
Waiting for a thread to finish

executing 9-9

ix

Waiting for a task to be completed 9-9
Executing thread objects 9-10

Overriding the default priority 9-11
Starting and stopping threads 9-11

Debugging multi-threaded applications 9-12

Chapter 10
Using CLX for cross-platform
development 10-1

Creating cross-platform applications 10-1
Porting VCL applications to CLX 10-2

Porting techniques 10-3
Platform-specific ports 10-3
Cross-platform ports 10-3
Windows emulation ports 10-3

Porting your application. 10-4
CLX versus VCL 10-5
What CLX does differently 10-6

Look and feel 10-6
Styles . 10-6
Variants 10-7
Registry 10-7
Other differences 10-7

Missing in CLX 10-8
Features that will not port10-8
CLX and VCL unit comparison 10-9
Differences in CLX object

constructors 10-13
Sharing source files between

Windows and Linux 10-13
Environmental differences between

Windows and Linux 10-14
Directory structure on Linux 10-16
Writing portable code 10-17

Using conditional directives 10-18
Terminating conditional directives . . . 10-19
Emitting messages 10-20
Including inline assembler code. 10-20

Messages and system events 10-21
Programming differences on Linux 10-22

Cross-platform database applications 10-23
dbExpress differences 10-23
Component-level differences 10-24
User interface-level differences 10-25
Porting database applications to

Linux . 10-25
Updating data in dbExpress

applications 10-27
Cross-platform Internet applications 10-29

Porting Internet applications to Linux . . 10-29

Chapter 11
Working with packages and
components 11-1

Why use packages? 11-2
Packages and standard DLLs 11-2

Runtime packages 11-2
Using packages in an application 11-3
Dynamically loading packages 11-4
Deciding which runtime packages

to use . 11-4
Custom packages 11-4

Design-time packages 11-5
Installing component packages 11-5

Creating and editing packages 11-6
Creating a package 11-6
Editing an existing package 11-7
Editing package source files manually . . . 11-8
Understanding the structure of a

package . 11-8
Naming packages 11-8
Requires clause. 11-8
Contains clause. 11-9

Compiling packages 11-10
Package-specific compiler

directives 11-10
Using the command-line compiler

and linker11-12
Package files created by a successful

compilation11-12
Deploying packages 11-13

Deploying applications that use
packages 11-13

Distributing packages to other
developers 11-13

Package collection files11-13

Chapter 12
Creating international applications 12-1
Internationalization and localization 12-1

Internationalization 12-1
Localization 12-2

Internationalizing applications 12-2
Enabling application code 12-2

Character sets 12-2
OEM and ANSI character sets 12-3
Multibyte character sets. 12-3
Wide characters 12-4

x

Including bi-directional functionality
in applications 12-4

BiDiMode property 12-6
Locale-specific features. 12-8

Designing the user interface. 12-9
Text . 12-9
Graphic images 12-9
Formats and sort order 12-10
Keyboard mappings 12-10

Isolating resources 12-10
Creating resource DLLs 12-10
Using resource DLLs 12-12
Dynamic switching of resource DLLs . . . 12-13

Localizing applications 12-13
Localizing resources 12-13

Chapter 13
Deploying applications 13-1
Deploying general applications 13-1

Using installation programs. 13-2
Identifying application files 13-2
Application files. 13-3
Package files13-3
Merge modules 13-3
ActiveX controls 13-5
Helper applications. 13-5
DLL locations 13-5

Deploying CLX applications 13-6
Deploying database applications. 13-6

Deploying dbExpress database
applications 13-7

Deploying BDE applications 13-8
Borland Database Engine 13-8
SQL Links 13-8

Deploying multi-tiered database
applications (DataSnap) 13-9

Deploying Web applications 13-9
Deployment on Apache 13-10

Programming for varying host
environments 13-11

Screen resolutions and color depths 13-11
Considerations when not

dynamically resizing 13-11
Considerations when dynamically

resizing forms and controls 13-12
Accommodating varying color

depths 13-13
Fonts . 13-13
Operating systems versions 13-14

Software license requirements. 13-14
DEPLOY 13-14
README 13-15
No-nonsense license agreement 13-15
Third-party product documentation . . . 13-15

Part II
Developing database applications

Chapter 14
Designing database applications 14-1
Using databases 14-1

Types of databases. 14-2
Database security 14-3
Transactions 14-4
Referential integrity, stored procedures,

and triggers. 14-5
Database architecture. 14-5

General structure 14-6
The user interface form 14-6
The data module 14-6

Connecting directly to a database
server . 14-7

Using a dedicated file on disk 14-9
Connecting to another dataset 14-10

Connecting a client dataset to another
dataset in the same application. 14-11

Using a multi-tiered architecture. . . . 14-12
Combining approaches 14-14

Designing the user interface 14-15
Analyzing data 14-15
Writing reports. 14-16

Chapter 15
Using data controls 15-1
Using common data control features 15-2

Associating a data control with a
dataset . 15-3

Changing the associated dataset
at runtime 15-3

Enabling and disabling the data
source 15-4

Responding to changes mediated by
the data source 15-4

Editing and updating data 15-5
Enabling editing in controls on user

entry . 15-5
Editing data in a control. 15-5

xi

Disabling and enabling data display 15-6
Refreshing data display 15-6
Enabling mouse, keyboard, and timer

events . 15-7
Choosing how to organize the data 15-7

Displaying a single record. 15-7
Displaying data as labels. 15-8
Displaying and editing fields in an

edit box. 15-8
Displaying and editing text in a

memo control 15-8
Displaying and editing text in a rich

edit memo control. 15-9
Displaying and editing graphics

fields in an image control 15-9
Displaying and editing data in list

and combo boxes 15-10
Handling Boolean field values with

check boxes 15-12
Restricting field values with radio

controls 15-13
Displaying multiple records. 15-14

Viewing and editing data with TDBGrid . . . 15-15
Using a grid control in its default

state . 15-15
Creating a customized grid 15-16

Understanding persistent columns . . . 15-16
Creating persistent columns 15-17
Deleting persistent columns 15-18
Arranging the order of persistent

columns 15-19
Setting column properties at design

time . 15-19
Defining a lookup list column. 15-20
Putting a button in a column 15-21
Restoring default values to a

column 15-21
Displaying ADT and array fields 15-21
Setting grid options 15-23
Editing in the grid 15-25
Controlling grid drawing 15-25
Responding to user actions at runtime. . . 15-25

Creating a grid that contains other
data-aware controls 15-26

Navigating and manipulating records. 15-28
Choosing navigator buttons to

display . 15-28
Hiding and showing navigator

buttons at design time 15-29

Hiding and showing navigator
buttons at runtime 15-29

Displaying fly-over help 15-30
Using a single navigator for multiple

datasets 15-30

Chapter 16
Using decision support
components 16-1

Overview . 16-1
About crosstabs 16-2

One-dimensional crosstabs. 16-2
Multidimensional crosstabs 16-3

Guidelines for using decision support
components 16-3

Using datasets with decision support
components 16-4

Creating decision datasets with TQuery
or TTable 16-5

Creating decision datasets with the
Decision Query editor. 16-6

Using decision cubes 16-7
Decision cube properties and events 16-7
Using the Decision Cube editor 16-7

Viewing and changing dimension
settings 16-8

Setting the maximum available
dimensions and summaries. 16-8

Viewing and changing design
options 16-8

Using decision sources 16-9
Properties and events 16-9

Using decision pivots. 16-9
Decision pivot properties. 16-10

Creating and using decision grids 16-10
Creating decision grids 16-10
Using decision grids 16-11

Opening and closing decision grid
fields. 16-11

Reorganizing rows and columns in
decision grids. 16-11

Drilling down for detail in
decision grids. 16-11

Limiting dimension selection in
decision grids. 16-12

Decision grid properties 16-12
Creating and using decision graphs 16-13

Creating decision graphs 16-13
Using decision graphs 16-13

xii

The decision graph display 16-15
Customizing decision graphs 16-15

Setting decision graph template
defaults. 16-16

Customizing decision graph
series 16-17

Decision support components at
runtime . 16-18

Decision pivots at runtime 16-18
Decision grids at runtime 16-18
Decision graphs at runtime 16-19

Decision support components and
memory control 16-19

Setting maximum dimensions,
summaries, and cells 16-19

Setting dimension state 16-19
Using paged dimensions 16-20

Chapter 17
Connecting to databases 17-1
Using implicit connections 17-2
Controlling connections 17-2

Connecting to a database server 17-3
Disconnecting from a database server 17-3

Controlling server login 17-4
Managing transactions 17-5

Starting a transaction 17-6
Ending a transaction 17-7

Ending a successful transaction17-8
Ending an unsuccessful transaction . . .17-8

Specifying the transaction isolation
level . 17-9

Sending commands to the server 17-10
Working with associated datasets 17-11

Closing all datasets without dis-
connecting from the server 17-12

Iterating through the associated
datasets 17-12

Obtaining metadata 17-12
Listing available tables. 17-13
Listing the fields in a table 17-13
Listing available stored procedures 17-13
Listing available indexes 17-14
Listing stored procedure parameters. . . . 17-14

Chapter 18
Understanding datasets 18-1
Using TDataSet descendants 18-2
Determining dataset states 18-3

Opening and closing datasets 18-4
Navigating datasets. 18-5

Using the First and Last methods 18-6
Using the Next and Prior methods 18-6
Using the MoveBy method. 18-7
Using the Eof and Bof properties 18-7

Eof . 18-7
Bof . 18-8

Marking and returning to records 18-9
The Bookmark property. 18-9
The GetBookmark method 18-9
The GotoBookmark and Bookmark

Valid methods 18-9
The CompareBookmarks method 18-9
The FreeBookmark method. 18-9
A bookmarking example 18-10

Searching datasets 18-10
Using Locate 18-10
Using Lookup 18-11

Displaying and editing a subset of data
using filters 18-12

Enabling and disabling filtering 18-12
Creating filters 18-13

Setting the Filter property. 18-13
Writing an OnFilterRecord event

handler 18-14
Switching filter event handlers at

runtime 18-15
Setting filter options. 18-15
Navigating records in a filtered

dataset 18-16
Modifying data 18-16

Editing records. 18-17
Adding new records 18-18

Inserting records 18-19
Appending records 18-19

Deleting records 18-19
Posting data 18-20
Canceling changes. 18-20
Modifying entire records 18-21

Calculating fields 18-22
Types of datasets 18-23
Using table-type datasets 18-24

Advantages of using table-type
datasets 18-25

Sorting records with indexes 18-25
Obtaining information about

indexes 18-26

xiii

Specifying an index with
IndexName 18-26

Creating an index with Index
FieldNames 18-27

Using Indexes to search for records 18-27
Executing a search with Goto

methods 18-28
Executing a search with Find

methods 18-28
Specifying the current record after a

successful search 18-29
Searching on partial keys 18-29
Repeating or extending a search 18-29

Limiting records with ranges 18-30
Understanding the differences between

ranges and filters 18-30
Specifying Ranges 18-30
Modifying a range 18-33
Applying or canceling a range 18-33

Creating master/detail relationships. . . . 18-34
Making the table a detail of another

dataset 18-34
Using nested detail tables 18-36

Controlling Read/write access to
tables . 18-37

Creating and deleting tables 18-37
Creating tables 18-37
Deleting tables 18-40

Emptying tables 18-40
Synchronizing tables 18-40

Using query-type datasets 18-41
Specifying the query 18-42

Specifying a query using the SQL
property 18-42

Specifying a query using the
CommandText property 18-43

Using parameters in queries 18-43
Supplying parameters at design

time . 18-44
Supplying parameters at runtime 18-45

Establishing master/detail relationships
using parameters 18-46

Preparing queries. 18-47
Executing queries that don’t return a

result set 18-47
Using unidirectional result sets 18-48

Using stored procedure-type datasets 18-48
Working with stored procedure

parameters. 18-50

Setting up parameters at design
time 18-50

Using parameters at runtime 18-52
Preparing stored procedures 18-52
Executing stored procedures that don’t

return a result set 18-53
Fetching multiple result sets 18-53

Chapter 19
Working with field components 19-1
Dynamic field components 19-2
Persistent field components 19-3

Creating persistent fields 19-4
Arranging persistent fields 19-5
Defining new persistent fields 19-5

Defining a data field. 19-6
Defining a calculated field 19-7
Programming a calculated field 19-7
Defining a lookup field 19-8
Defining an aggregate field 19-10

Deleting persistent field components . . . 19-10
Setting persistent field properties

and events 19-10
Setting display and edit properties

at design time. 19-11
Setting field component properties

at runtime 19-12
Creating attribute sets for field

components 19-12
Associating attribute sets with field

components 19-13
Removing attribute associations 19-14
Controlling and masking user

input 19-14
Using default formatting for numeric,

date, and time fields 19-14
Handling events 19-15

Working with field component methods
at runtime 19-16

Displaying, converting, and accessing
field values. 19-17

Displaying field component values in
standard controls 19-17

Converting field values 19-17
Accessing field values with the default

dataset property 19-19
Accessing field values with a dataset’s

Fields property. 19-19

xiv

Accessing field values with a dataset’s
FieldByName method 19-20

Setting a default value for a field. 19-20
Working with constraints 19-21

Creating a custom constraint 19-21
Using server constraints 19-21

Using object fields 19-22
Displaying ADT and array fields 19-23
Working with ADT fields 19-23

Using persistent field components . . . 19-24
Using the dataset’s FieldByName

method 19-24
Using the dateset’s FieldValues

property 19-24
Using the ADT field’s FieldValues

property 19-24
Using the ADT field’s Fields

property 19-25
Working with array fields 19-25

Using persistent fields 19-25
Using the array field’s FieldValues

property 19-25
Using the array field’s Fields

property 19-26
Working with dataset fields 19-26

Displaying dataset fields 19-26
Accessing data in a nested dataset . . . 19-26

Working with reference fields 19-27
Displaying reference fields. 19-27
Accessing data in a reference field . . . 19-27

Chapter 20
Using the Borland Database
Engine 20-1

BDE-based architecture 20-1
Using BDE-enabled datasets 20-2

Associating a dataset with database
and session connections 20-3

Caching BLOBs 20-4
Obtaining a BDE handle 20-4

Using TTable 20-4
Specifying the table type for local

tables . 20-5
Controlling read/write access to

local tables 20-6
Specifying a dBASE index file 20-6
Renaming local tables 20-7
Importing data from another table 20-8

Using TQuery. 20-8

Creating heterogeneous queries 20-9
Obtaining an editable result set 20-10
Updating read-only result sets20-11

Using TStoredProc 20-11
Binding parameters 20-12
Working with Oracle overloaded

stored procedures 20-12
Connecting to databases with

TDatabase 20-12
Associating a database component

with a session. 20-13
Understanding database and session

component interactions 20-13
Identifying the database 20-13
Opening a connection using

TDatabase. 20-15
Using database components in

data modules 20-16
Managing database sessions 20-16

Activating a session 20-17
Specifying default database

connection behavior 20-18
Managing database connections 20-19
Working with password-protected

Paradox and dBASE tables 20-21
Specifying Paradox directory

locations. 20-24
Working with BDE aliases 20-24
Retrieving information about a

session. 20-26
Creating additional sessions 20-27
Naming a session 20-28
Managing multiple sessions 20-28

Using transactions with the BDE 20-30
Using passthrough SQL 20-30
Using local transactions 20-31

Using the BDE to cache updates 20-32
Enabling BDE-based cached updates . . . 20-33
Applying BDE-based cached updates. . . 20-33

Applying cached updates using
a database 20-35

Applying cached updates with dataset
component methods 20-35

Creating an OnUpdateRecord
event handler 20-36

Handling cached update errors 20-37
Using update objects to update a

dataset 20-39

xv

Creating SQL statements for update
components 20-40

Using multiple update objects. 20-43
Executing the SQL statements 20-44

Using TBatchMove. 20-47
Creating a batch move component 20-47
Specifying a batch move mode 20-49

Appending records 20-49
Updating records 20-49
Appending and updating

records 20-49
Copying datasets 20-49
Deleting records. 20-50

Mapping data types 20-50
Executing a batch move 20-51
Handling batch move errors 20-51

The Data Dictionary 20-52
Tools for working with the BDE 20-53

Chapter 21
Working with ADO components 21-1
Overview of ADO components 21-1
Connecting to ADO data stores 21-2

Connecting to a data store using
TADOConnection. 21-3

Accessing the connection object21-4
Fine-tuning a connection 21-4

Forcing asynchronous connections 21-5
Controlling timeouts 21-5
Indicating the types of operations the

connection supports 21-6
Specifying whether the connection

automatically initiates transactions . . . 21-6
Accessing the connection’s commands . . .21-7
ADO connection events 21-7

Events when establishing a
connection 21-7

Events when disconnecting 21-8
Events when managing transactions . . . 21-8
Other events21-8

Using ADO datasets 21-9
Connecting an ADO dataset to a

data store 21-9
Working with record sets 21-10
Filtering records based on

bookmarks 21-10
Fetching records asynchronously 21-11
Using batch updates 21-12

Loading data from and saving
data to files 21-14

Using TADODataSet 21-15
Using Command objects 21-16

Specifying the command 21-17
Using the Execute method 21-17
Canceling commands 21-18
Retrieving result sets with commands . . 21-18
Handling command parameters 21-19

Chapter 22
Using unidirectional datasets 22-1
Types of unidirectional datasets 22-2
Connecting to the database server 22-2

Setting up TSQLConnection 22-3
Identifying the driver 22-3
Specifying connection parameters 22-4
Naming a connection description 22-4
Using the Connection Editor 22-5

Specifying what data to display 22-5
Representing the results of a query 22-6
Representing the records in a table 22-6

Representing a table using
TSQLDataSet 22-6

Representing a table using
TSQLTable. 22-7

Representing the results of a stored
procedure. 22-7

Fetching the data 22-8
Preparing the dataset 22-8
Fetching multiple datasets 22-9

Executing commands that do not return
records . 22-9

Specifying the command to execute. 22-9
Executing the command 22-10
Creating and modifying server metadata. 22-10

Setting up master/detail linked cursors . . . 22-12
Accessing schema information 22-12

Fetching metadata into a unidirectional
dataset 22-12

Fetching data after using the dataset
for metadata 22-13

The structure of metadata datasets . . 22-13
Debugging dbExpress applications 22-17

Using TSQLMonitor to monitor SQL
commands 22-17

Using a callback to monitor SQL
commands 22-18

xvi

Chapter 23
Using client datasets 23-1
Working with data using a client dataset 23-2

Navigating data in client datasets 23-2
Limiting what records appear. 23-2
Editing data 23-5

Undoing changes 23-5
Saving changes 23-6

Constraining data values 23-6
Specifying custom constraints. 23-7

Sorting and indexing. 23-7
Adding a new index 23-8
Deleting and switching indexes23-9
Using indexes to group data. 23-9

Representing calculated values 23-10
Using internally calculated fields in

client datasets 23-10
Using maintained aggregates 23-11

 Specifying aggregates 23-11
Aggregating over groups of

records 23-12
Obtaining aggregate values 23-13

Copying data from another dataset 23-13
Assigning data directly. 23-13
Cloning a client dataset cursor 23-14

Adding application-specific information
to the data 23-14

Using a client dataset to cache updates 23-15
Overview of using cached updates. 23-16
Choosing the type of dataset for caching

updates 23-17
Indicating what records are modified . . . 23-18
Updating records 23-19

Applying updates. 23-19
Intervening as updates are applied . . . 23-20
Reconciling update errors 23-22

Using a client dataset with a provider 23-23
Specifying a provider 23-24
Requesting data from the source dataset

or document. 23-25
Incremental fetching 23-25
Fetch-on-demand 23-26

Getting parameters from the source
dataset . 23-26

Passing parameters to the source
dataset . 23-27

Sending query or stored procedure
parameters 23-27

Limiting records with parameters . . . 23-28

Handling constraints from the server . . . 23-28
Refreshing records. 23-29
Communicating with providers using

custom events 23-30
Overriding the source dataset 23-31

Using a client dataset with file-based data . . 23-31
Creating a new dataset 23-32
Loading data from a file or stream 23-32
Merging changes into data 23-33
Saving data to a file or stream 23-33

Chapter 24
Using provider components 24-1
Determining the source of data 24-2

Using a dataset as the source of the
data . 24-2

Using an XML document as the source
of the data 24-2

Communicating with the client dataset 24-3
Choosing how to apply updates using a

dataset provider 24-4
Controlling what information is included

in data packets. 24-4
Specifying what fields appear in

data packets 24-4
Setting options that influence the

data packets 24-5
Adding custom information to

data packets 24-6
Responding to client data requests 24-7
Responding to client update requests 24-8

Editing delta packets before updating the
database 24-9

Influencing how updates are applied 24-9
Screening individual updates 24-11
Resolving update errors on the

provider. 24-11
Applying updates to datasets that do

not represent a single table24-11
Responding to client-generated events 24-12
Handling server constraints 24-12

Chapter 25
Creating multi-tiered applications 25-1
Advantages of the multi-tiered database

model . 25-2
Understanding provider-based multi-tiered

applications 25-2
Overview of a three-tiered application . . . 25-3

xvii

The structure of the client application 25-4
The structure of the application server. . . . 25-5

The contents of the remote data
module 25-6

Using transactional data modules 25-6
Pooling remote data modules25-8

Choosing a connection protocol 25-8
Using DCOM connections 25-8
Using Socket connections 25-9
Using Web connections. 25-9
Using SOAP connections. 25-10
Using CORBA connections 25-10

Building a multi-tiered application 25-11
Creating the application server. 25-11

Setting up the remote data module. 25-13
Configuring TRemoteData-

Module 25-13
Configuring TMTSDataModule 25-14
Configuring TSoapDataModule. 25-15
Configuring TCorbaDataModule 25-15

Extending the application server ’s
interface 25-16

Adding callbacks to the application
server ’s interface 25-17

Extending a transactional application
server ’s interface 25-18

Managing transactions in multi-tiered
applications 25-18

Supporting master/detail
relationships. 25-19

Supporting state information in remote
data modules 25-19

Using multiple remote data modules . . . 25-21
Registering the application server 25-22
Creating the client application 25-23

Connecting to the application server. . . . 25-23
Specifying a connection using

DCOM 25-24
Specifying a connection using

sockets 25-25
Specifying a connection using

HTTP 25-26
Specifying a connection using

SOAP 25-26
Specifying a connection using

CORBA. 25-27
Brokering connections 25-27

Managing server connections 25-28
Connecting to the server 25-28

Dropping or changing a server
connection 25-28

Calling server interfaces 25-29
Connecting to an application server

that uses multiple data modules 25-30
Writing Web-based client applications 25-31

Distributing a client application as
an ActiveX control 25-32

Creating an Active Form for the client
application 25-33

Building Web applications using
InternetExpress 25-33

Building an InternetExpress
application 25-34

Using the javascript libraries 25-35
Granting permission to access and

launch the application server 25-36
Using an XML broker 25-36

Fetching XML data packets 25-36
Applying updates from XML delta

 packets 25-37
Creating Web pages with an InternetExpress

page producer 25-38
Using the Web page editor 25-39
Setting Web item properties 25-40
Customizing the InternetExpress page

producer template 25-41

Chapter 26
Using XML in database
applications 26-1

Defining transformations 26-1
Mapping between XML nodes and data

packet fields 26-2
Using XMLMapper 26-4

Loading an XML schema or data
packet 26-4

Defining mappings 26-4
Generating transformation files 26-5

Converting XML documents into data
packets . 26-6

Specifying the source XML document . . . 26-6
Specifying the transformation 26-7
Obtaining the resulting data packet 26-7
Converting user-defined nodes 26-7

Using an XML document as the source for a
provider . 26-8

Using an XML document as the client of
a provider . 26-9

xviii

Fetching an XML document from
a provider 26-9

Applying updates from an XML
document to a provider 26-10

Part III
Writing Internet applications

Chapter 27
Creating Internet applications 27-1
About Web Broker and WebSnap 27-1
Terminology and standards. 27-2

Parts of a Uniform Resource Locator. 27-3
URI vs. URL27-3

HTTP request header information 27-4
HTTP server activity. 27-4

Composing client requests 27-4
Serving client requests 27-5
Responding to client requests 27-5

Types of Web server applications 27-6
ISAPI and NSAPI 27-6
Apache . 27-6
CGI stand-alone. 27-6
Win-CGI stand-alone 27-7

Debugging server applications 27-7
Using the Web Application Debugger 27-7

Launching your application with the
Web Application Debugger 27-7

Converting your application to another
type of Web server application 27-8

Debugging Web applications that are
DLLs . 27-8

Debugging under Windows NT. 27-9
Debugging under Windows 2000 27-9

Chapter 28
Using Web Broker 28-1
Creating Web server applications with

Web Broker . 28-1
The Web module 28-2
The Web Application object 28-3

The structure of a Web Broker application . . .28-3
The Web dispatcher 28-4

Adding actions to the dispatcher 28-4
Dispatching request messages 28-5

Action items .28-5
Determining when action items fire 28-6

The target URL 28-6

The request method type 28-6
Enabling and disabling action items. . . 28-6
Choosing a default action item 28-7

Responding to request messages with
action items. 28-7

Sending the response 28-8
Using multiple action items 28-8

Accessing client request information 28-8
Properties that contain request header

information. 28-9
Properties that identify the target 28-9
Properties that describe the Web

client . 28-9
Properties that identify the purpose

of the request 28-9
Properties that describe the expected

response 28-10
Properties that describe the

content. 28-10
The content of HTTP request

messages 28-10
Creating HTTP response messages 28-10

Filling in the response header 28-11
Indicating the response status 28-11
Indicating the need for client

action 28-11
Describing the server application . . . 28-12
Describing the content 28-12

Setting the response content 28-12
Sending the response 28-12

Generating the content of response
messages . 28-13

Using page producer components. 28-13
HTML templates 28-13
Specifying the HTML template. 28-14
Converting HTML-transparent

tags 28-14
Using page producers from an

action item 28-15
Chaining page producers

together 28-16
Using database information in

responses . 28-17
Adding a session to the Web module . . . 28-17
Representing database information

in HTML 28-18
Using dataset page producers 28-18
Using table producers 28-18
Specifying the table attributes 28-18

xix

Specifying the row attributes 28-19
Specifying the columns. 28-19
Embedding tables in HTML

documents 28-19
Setting up a dataset table

producer 28-20
Setting up a query table producer . . . 28-20

Chapter 29
Using WebSnap 29-1
Creating Web server applications with

WebSnap . 29-2
Server type 29-2
Web application module types 29-3
Web application module options29-3
Application components 29-4

Web modules . 29-5
Web data modules 29-5

Structure of a Web data module
unit . 29-5

Interfaces implemented by a Web data
module 29-6

Web page modules 29-6
Page producer component 29-6
Page name 29-6
Producer template 29-6
Interfaces that the Web page module

implements 29-7
Web application modules 29-7

Interfaces implemented by a Web
application data module 29-7

Interfaces implemented by a Web
application page module 29-7

Adapters . 29-8
Fields. .29-8
Actions. . 29-8
Errors . 29-8
Records . 29-8

Page producers 29-9
Templates . 29-9

Server-side scripting in WebSnap 29-9
Active scripting29-9
Script engine 29-10
Script blocks. 29-10
Creating script 29-10

Wizard templates 29-10
TAdapterPageProducer 29-10

Editing and viewing script 29-10
Including script in a page 29-11

Script objects29-11
Dispatching requests 29-12

WebContext 29-13
Dispatcher components. 29-13
Adapter dispatcher operation 29-13

Using adapter components to generate
content. 29-13

Adapter requests and responses 29-15
Action request 29-15
Action response 29-15
Image request 29-16
Image response. 29-17

Dispatching action items 29-17
Page dispatcher operation 29-18

WebSnap tutorial 29-18
Create a new application 29-19

Step 1. Start the WebSnap
application wizard 29-19

Step 2. Save the generated files
and project 29-19

Step 3. Specify the application title . . 29-19
Create a CountryTable page 29-20

Step 1. Add a new module 29-20
Step 2. Save the new module 29-20

Add data components to the CountryTable
module 29-20

Step 1. Add data-aware
components 29-20

Step 2. Specify a key field 29-21
Step 3. Add an adapter component . . 29-21

Create a grid to display the data. 29-22
Step 1. Add a grid 29-22
Step 2. Add editing commands to

the grid 29-22
Add an edit form 29-23

Step 1. Add a new module 29-23
Step 2. Save the new module 29-23
Step 3. Use the CountryTableU

unit 29-23
Step 4. Add input fields 29-23
Step 5. Add buttons 29-24
Step 6. Link form actions to the

grid page 29-24
Step 7. Link grid actions to the

form page 29-24
Add error reporting 29-25

Step 1. Add error support to the
grid 29-25

xx

Step 2. Add error support to the
form 29-25

Step 3. Test the error-reporting
mechanism. 29-26

Run the completed application 29-26

Chapter 30
Working with XML documents 30-1
Using the Document Object Model 30-2
Working with XML components 30-3

Using TXMLDocument 30-3
Working with XML nodes30-4

Working with a node’s value 30-4
Working with a node’s attributes 30-5
Adding and deleting child nodes 30-5

Abstracting XML documents with the
Data Binding wizard. 30-5

Using the XML Data Binding wizard 30-7
Using code that the XML Data Binding

wizard generates 30-8

Chapter 31
Using Web Services 31-1
Writing Servers that support Web

Services . 31-2
Building a Web Service server 31-2

Defining invokable interfaces31-3
Using complex types in invokable

interfaces 31-5
Creating and registering the

implementation 31-6
Creating custom exception classes

for Web Services 31-7
Generating WSDL documents for a

Web Service application 31-7
Writing clients for Web Services 31-8

Importing WSDL documents 31-8
Calling invokable interfaces. 31-9

Chapter 32
Working with sockets 32-1
Implementing services 32-1

Understanding service protocols32-2
Communicating with applications 32-2

Services and ports 32-2
Types of socket connections. 32-2

Client connections 32-3
Listening connections 32-3
Server connections 32-3

Describing sockets 32-3
Describing the host 32-4

Choosing between a host name and
an IP address 32-4

Using ports 32-5
Using socket components 32-5

Getting information about the
connection 32-6

Using client sockets 32-6
Specifying the desired server 32-6
Forming the connection 32-6
Getting information about the

connection 32-6
Closing the connection 32-7

Using server sockets 32-7
Specifying the port. 32-7
Listening for client requests 32-7
Connecting to clients 32-7
Closing server connections 32-7

Responding to socket events. 32-8
Error events 32-8
Client events 32-8
Server events. 32-9

Events when listening 32-9
Events with client connections 32-9

Reading and writing over socket
connections 32-9

Non-blocking connections 32-9
Reading and writing events 32-10

Blocking connections 32-10

Part IV
Developing COM-based applications

Chapter 33
Overview of COM technologies 33-1

COM as a specification and
implementation 33-1

COM extensions 33-2
Parts of a COM application 33-3

COM interfaces 33-3
The fundamental COM interface,

IUnknown 33-4
COM interface pointers 33-4

COM servers 33-5
CoClasses and class factories 33-6
In-process, out-of-process, and remote

servers 33-6
The marshaling mechanism 33-8

xxi

Aggregation 33-9
COM clients 33-9

COM extensions 33-10
Automation servers 33-12
Active Server Pages 33-12
ActiveX controls 33-13
Active Documents 33-13
Transactional objects 33-14
Type libraries 33-15

The content of type libraries 33-15
Creating type libraries 33-16
When to use type libraries 33-16
Accessing type libraries 33-16
Benefits of using type libraries 33-17
Using type library tools 33-18

Implementing COM objects with
wizards . 33-18

Code generated by wizards 33-21

Chapter 34
Working with type libraries 34-1
Type Library editor 34-2

Parts of the Type Library editor. 34-3
Toolbar . 34-3
Object list pane 34-5
Status bar 34-5
Pages of type information 34-6

Type library elements 34-8
Interfaces. 34-8
Dispinterfaces 34-9
CoClasses 34-9
Type definitions 34-10
Modules 34-10

Using the Type Library editor. 34-11
Valid types 34-11
Using Object Pascal or IDL syntax . . . 34-13
Creating a new type library 34-19
Opening an existing type library 34-19
Adding an interface to the type

library 34-20
Modifying an interface using the

type library 34-20
Adding properties and methods to an

interface or dispinterface 34-21
Adding a CoClass to the type

library 34-22
Adding an interface to a CoClass 34-23

Adding an enumeration to the type
library 34-23

Adding an alias to the type library . . 34-23
Adding a record or union to the type

library 34-24
Adding a module to the type

library 34-24
Saving and registering type library

information 34-24
Apply Updates dialog. 34-25
Saving a type library 34-25
Refreshing the type library 34-26
Registering the type library. 34-26
Exporting an IDL file 34-26

Deploying type libraries 34-27

Chapter 35
Creating COM clients 35-1
Importing type library information 35-2

Using the Import Type Library dialog . . . 35-3
Using the Import ActiveX dialog 35-4
Code generated when you import type

library information 35-5
Controlling an imported object 35-6

Using component wrappers 35-6
ActiveX wrappers 35-6
Automation object wrappers 35-7

Using data-aware ActiveX controls 35-8
Example: Printing a document with

Microsoft Word 35-9
Step 1: Prepare Delphi for this

example 35-9
Step 2: Import the Word type

library 35-10
Step 3: Use a VTable or dispatch interface

object to control Microsoft Word . . . 35-10
Step 4: Clean up the example. 35-11

Writing client code based on type library
definitions 35-12

Connecting to a server 35-12
Controlling an Automation server

using a dual interface 35-12
Controlling an Automation server

using a dispatch interface 35-13
Handling events in an automation

controller 35-13
Creating Clients for servers that do not

have a type library 35-15

xxii

Chapter 36
Creating simple COM servers 36-1
Overview of creating a COM object 36-2
Designing a COM object 36-2
Using the COM object wizard 36-2
Using the Automation object wizard 36-4

COM object instancing types 36-5
Choosing a threading model 36-6

Writing an object that supports the free
threading model. 36-7

Writing an object that supports the
apartment threading model 36-8

Writing an object that supports the
neutral threading model 36-9

Defining a COM object’s interface 36-9
Adding a property to the object’s

interface . 36-9
Adding a method to the object’s

interface 36-10
Exposing events to clients 36-10

Managing events in your
Automation object 36-12

Automation interfaces 36-12
Dual interfaces 36-13
Dispatch interfaces 36-14
Custom interfaces 36-14

Marshaling data 36-15
Automation compatible types 36-15
Type restrictions for automatic

marshaling 36-16
Custom marshaling 36-16

Registering a COM object 36-16
Registering an in-process server 36-17
Registering an out-of-process server 36-17

Testing and debugging the application 36-17

Chapter 37
Creating an Active Server Page 37-1
Creating an Active Server Object. 37-2

Using the ASP intrinsics 37-3
Application 37-4
Request. 37-4
Response 37-5
Session . 37-5
Server .37-6

Creating ASPs for in-process or
out-of-process servers 37-7

Registering an Active Server Object37-7
Registering an in-process server 37-7

Registering an out-of-process server 37-8
Testing and debugging the Active Server

Page application. 37-8

Chapter 38
Creating an ActiveX control 38-1
Overview of ActiveX control creation 38-2

Elements of an ActiveX control 38-2
VCL control. 38-3
ActiveX wrapper. 38-3
Type library. 38-3
Property page 38-3

Designing an ActiveX control 38-4
Generating an ActiveX control from a

VCL control 38-4
Generating an ActiveX control based on

a VCL form. 38-5
Licensing ActiveX controls. 38-6
Customizing the ActiveX control’s

interface . 38-7
Adding additional properties, methods,

and events 38-8
Adding properties and methods 38-8
Adding events 38-9

Enabling simple data binding with the
type library 38-10

Creating a property page for an ActiveX
control .38-11

Creating a new property page 38-12
Adding controls to a property page 38-12
Associating property page controls with

ActiveX control properties 38-13
Updating the property page 38-13
Updating the object 38-13

Connecting a property page to an ActiveX
control. 38-14

Registering an ActiveX control 38-14
Testing an ActiveX control 38-14
Deploying an ActiveX control on the

Web . 38-15
Setting options 38-16

Chapter 39
Creating MTS or COM+ objects 39-1
Understanding transactional objects 39-2

Requirements for a transactional
object . 39-3

Managing resources 39-3
Accessing the object context 39-4

xxiii

Just-in-time activation39-4
Resource pooling 39-5

Database resource dispensers39-5
Shared property manager 39-6
Releasing resources 39-7

Object pooling 39-8
MTS and COM+ transaction support 39-8

Transaction attributes 39-9
Setting the transaction attribute 39-10

Stateful and stateless objects 39-11
Influencing how transactions end 39-11
Initiating transactions 39-12

Setting up a transaction object on
the client side 39-12

Setting up a transaction object on
the server side 39-13

Transaction timeout 39-14
Role-based security 39-14
Overview of creating transactional

objects . 39-15
Using the Transactional Object wizard 39-15

Choosing a threading model for a
transactional object 39-16

Activities 39-17
Generating events under COM+ 39-18

Using the Event Object wizard 39-19
Firing events using a COM+ event

object . 39-20
Passing object references 39-20

Using the SafeRef method 39-20
Callbacks. 39-21

Debugging and testing transactional
objects . 39-21

Installing transactional objects 39-22
Administering transactional objects 39-23

Part V
Creating custom components

Chapter 40
Overview of component creation 40-1
VCL and CLX. 40-1
Components and classes 40-2
How do you create components? 40-2

Modifying existing controls 40-3
Creating windowed controls 40-3
Creating graphic controls 40-4
Subclassing Windows controls 40-4

Creating nonvisual components 40-5
What goes into a component? 40-5

Removing dependencies 40-5
Properties, methods, and events 40-6

Properties 40-6
Events . 40-6
Methods. 40-6

Graphics encapsulation. 40-7
Registration 40-8

Creating a new component 40-8
Using the Component wizard 40-9
Creating a component manually. 40-11

Creating a unit file40-11
Deriving the component 40-11
 Registering the component. 40-12

Testing uninstalled components. 40-12
Testing installed components 40-14

Chapter 41
Object-oriented programming for
component writers 41-1

Defining new classes 41-1
Deriving new classes 41-2

To change class defaults to avoid
repetition 41-2

To add new capabilities to a class 41-2
Declaring a new component class 41-3

Ancestors, descendants, and class
hierarchies . 41-3

Controlling access. 41-4
Hiding implementation details 41-4
Defining the component writer ’s

interface. 41-5
Defining the runtime interface 41-6
Defining the design-time interface 41-6

Dispatching methods 41-7
Static methods 41-7

An example of static methods 41-7
Virtual methods 41-8

Overriding methods 41-8
Abstract class members 41-9
Classes and pointers 41-9

Chapter 42
Creating properties 42-1
Why create properties? 42-1
Types of properties 42-2
Publishing inherited properties 42-2

xxiv

Defining properties 42-3
The property declaration 42-3
Internal data storage 42-4
Direct access. 42-4
Access methods. 42-5

The read method 42-6
The write method 42-6

Default property values 42-7
Specifying no default value 42-7

Creating array properties42-8
Creating properties for subcomponents 42-8
Creating properties for interfaces 42-10
Storing and loading properties 42-11

Using the store-and-load mechanism . . . 42-11
Specifying default values 42-11
Determining what to store. 42-12
Initializing after loading 42-13
Storing and loading unpublished

properties 42-13
Creating methods to store and load

property values 42-14
Overriding the DefineProperties

method 42-14

Chapter 43
Creating events 43-1
What are events? 43-1

Events are method pointers 43-2
Events are properties. 43-2
Event types are method-pointer types 43-3

Event-handler types are procedures . . .43-3
Event handlers are optional 43-4

Implementing the standard events. 43-4
Identifying standard events 43-4

Standard events for all controls 43-4
Standard events for standard

controls 43-5
Making events visible 43-5
Changing the standard event handling . . .43-6

Defining your own events 43-6
Triggering the event 43-7

Two kinds of events 43-7
Defining the handler type43-7

Simple notifications. 43-7
Event-specific handlers. 43-7
Returning information from the

handler 43-8

Declaring the event 43-8
Event names start with “On” 43-8

Calling the event. 43-8

Chapter 44
Creating methods 44-1
Avoiding dependencies 44-1
Naming methods 44-2
Protecting methods 44-2

Methods that should be public. 44-3
Methods that should be protected. 44-3
Abstract methods 44-3

Making methods virtual 44-4
Declaring methods 44-4

Chapter 45
Using graphics in components 45-1
Overview of graphics. 45-1
Using the canvas 45-3
Working with pictures 45-3

Using a picture, graphic, or canvas 45-3
Loading and storing graphics 45-4
Handling palettes 45-5

Specifying a palette for a control 45-5
Off-screen bitmaps 45-6

Creating and managing off-screen
bitmaps . 45-6

Copying bitmapped images 45-6
Responding to changes. 45-7

Chapter 46
Handling messages 46-1
Understanding the message-handling

system . 46-1
What’s in a Windows message? 46-2
Dispatching messages. 46-2

Tracing the flow of messages 46-3
Changing message handling. 46-3

Overriding the handler method 46-3
Using message parameters 46-4
Trapping messages 46-4

Creating new message handlers. 46-5
Defining your own messages 46-5

Declaring a message identifier 46-6
Declaring a message-record type. 46-6

Declaring a new message-handling
method . 46-7

xxv

Chapter 47
Making components available at
design time 47-1

Registering components. 47-1
Declaring the Register procedure. 47-2
Writing the Register procedure 47-2

Specifying the components 47-2
Specifying the palette page 47-3
Using the RegisterComponents

function 47-3
Adding palette bitmaps 47-3
Providing Help for your component. 47-4

Creating the Help file 47-4
Creating the entries 47-4
Making component help

context-sensitive 47-6
Adding component help files 47-6

Adding property editors 47-6
Deriving a property-editor class 47-7
Editing the property as text 47-8

Displaying the property value. 47-8
Setting the property value 47-8

Editing the property as a whole 47-9
Specifying editor attributes 47-10
Registering the property editor 47-11

Property categories 47-12
Registering one property at a time 47-13
Registering multiple properties at

once . 47-13
Specifying property categories 47-14
Using the IsPropertyInCategory

function 47-15
Adding component editors 47-15

Adding items to the context menu 47-16
Specifying menu items 47-16
Implementing commands 47-16

Changing the double-click behavior 47-17
Adding clipboard formats 47-18
Registering the component editor 47-18

Compiling components into packages. 47-19

Chapter 48
Modifying an existing component 48-1
Creating and registering the component 48-1
Modifying the component class 48-2

Overriding the constructor 48-2
Specifying the new default property

value . 48-3

Chapter 49
Creating a graphic component 49-1
Creating and registering the component 49-1
Publishing inherited properties 49-2
Adding graphic capabilities 49-3

Determining what to draw 49-3
Declaring the property type 49-3
Declaring the property 49-4
Writing the implementation method . . 49-4

Overriding the constructor and
destructor. 49-4

Changing default property values 49-4
Publishing the pen and brush 49-5

Declaring the class fields 49-5
Declaring the access properties. 49-6
Initializing owned classes. 49-6
Setting owned classes’ properties 49-7

Drawing the component image 49-8
Refining the shape drawing 49-9

Chapter 50
Customizing a grid 50-1
Creating and registering the component 50-1
Publishing inherited properties 50-2
Changing initial values. 50-3
Resizing the cells 50-4
Filling in the cells 50-5

Tracking the date 50-5
Storing the internal date 50-6
Accessing the day, month, and year . . . 50-6
Generating the day numbers 50-8
Selecting the current day 50-9

Navigating months and years 50-10
Navigating days. 50-11

Moving the selection 50-11
Providing an OnChange event. 50-11
Excluding blank cells 50-12

Chapter 51
Making a control data aware 51-1
Creating a data-browsing control 51-1

Creating and registering the
component 51-2

Making the control read-only 51-2
Adding the ReadOnly property 51-3
Allowing needed updates. 51-3

Adding the data link 51-4
Declaring the class field 51-4

xxvi

Declaring the access properties 51-5
An example of declaring access

properties 51-5
Initializing the data link 51-6

Responding to data changes 51-6
Creating a data-editing control 51-7

Changing the default value of
FReadOnly 51-8

Handling mouse-down and key-down
messages. 51-8

Responding to mouse-down
messages 51-8

Responding to key-down messages . . .51-9
Updating the field datalink class 51-10

Modifying the Change method 51-11
Updating the dataset 51-11

Chapter 52
Making a dialog box a component 52-1
Defining the component interface. 52-1
Creating and registering the component 52-2
Creating the component interface. 52-3

Including the form unit 52-3
Adding interface properties 52-3
Adding the Execute method 52-4

Testing the component 52-6

Index I-1

xxvii

1.1 Typefaces and symbols 1-3
3.1 Important base classes 3-13
3.2 Graphic controls 3-17
3.3 Component palette pages 3-29
3.4 Text control properties 3-31
3.5 Components for creating and

managing lists 3-47
4.1 RTL exceptions 4-9
4.2 Object Pascal character types 4-40
4.3 String comparison routines 4-44
4.4 Case conversion routines 4-44
4.5 String modification routines 4-45
4.6 Sub-string routines 4-45
4.7 String handling routines 4-45
4.8 Compiler directives for strings 4-49
4.9 Attribute constants and values 4-51
4.10 File types for file I/O 4-53
4.11 Open modes 4-54
4.12 Shared modes 4-54
4.13 Shared modes available for each

open mode 4-55
5.1 Compiler directives for libraries 5-9
5.2 Database pages on the Component

palette . 5-10
5.3 Web server applications5-12
5.4 Context menu options for data

modules. 5-16
5.5 Help methods in TApplication 5-28
6.1 Action setup terminology. 6-16
6.2 Default values of the action manager’s

PrioritySchedule property 6-22
6.3 Action classes 6-27
6.4 Sample captions and their derived

names . 6-31
6.5 Menu Designer context menu

commands 6-36
6.6 Setting speed buttons’ appearance. 6-44
6.7 Setting tool buttons’ appearance6-46
6.8 Setting a cool button’s appearance. 6-47
7.1 Properties of selected text. 7-8
7.2 Fixed vs. variable owner-draw styles . . . 7-12
8.1 Graphic object types 8-3
8.2 Common properties of the Canvas

object . 8-4
8.3 Common methods of the Canvas

object . 8-4
8.4 Mouse-event parameters 8-24

8.5 Multimedia device types and their
functions 8-32

9.1 Thread priorities 9-3
9.2 WaitFor return values 9-10
10.1 Porting techniques 10-3
10.2 CLX parts 10-6
10.3 Changed or different features 10-9
10.4 VCL and equivalent CLX units 10-10
10.5 Units in CLX, not VCL10-11
10.6 VCL-only units 10-11
10.7 Differences in the Linux and Windows

operating environments 10-14
10.8 Common Linux directories 10-16
10.9 TWidgetControl protected methods

for responding to system events 10-21
10.10 Comparable data-access

components 10-24
10.11 Properties, methods, and events

for cached updates 10-28
11.1 Compiled package files 11-2
11.2 Package-specific compiler

directives 11-10
11.3 Package-specific command-line

compiler switches. 11-12
11.4 Compiled package files 11-12
12.1 VCL objects that support BiDi. 12-4
12.2 Estimating string lengths 12-9
13.1 Application files 13-3
13.2 Merge modules and their

dependencies 13-4
13.3 dbExpress deployment as standalone

executable 13-7
13.4 dbExpress deployment, driver DLLs . . . 13-7
13.5 SQL database client software files 13-9
15.1 Data controls 15-2
15.2 Column properties 15-19
15.3 Expanded TColumn Title

properties 15-20
15.4 Properties that affect the way

composite fields appear 15-23
15.5 Expanded TDBGrid Options

properties 15-24
15.6 Grid control events 15-26
15.7 Selected database control grid

properties 15-27
15.8 TDBNavigator buttons 15-28
17.1 Database connection components 17-1

Tables

xxviii

18.1 Values for the dataset State property . . .18-3
18.2 Navigational methods of datasets 18-5
18.3 Navigational properties of datasets 18-6
18.4 Comparison and logical operators

that can appear in a filter 18-14
18.5 FilterOptions values 18-15
18.6 Filtered dataset navigational

methods. 18-16
18.7 Dataset methods for inserting,

updating, and deleting data 18-17
18.8 Methods that work with entire

records 18-21
18.9 Index-based search methods 18-27
19.1 TFloatField properties that affect

data display 19-1
19.2 Special persistent field kinds 19-6
19.3 Field component properties 19-11
19.4 Field component formatting

routines 19-15
19.5 Field component events. 19-15
19.6 Selected field component methods . . . 19-16
19.7 Special conversion results. 19-19
19.8 Types of object field components 19-22
19.9 Common object field descendant

properties 19-23
20.1 Table types recognized by the BDE

based on file extension 20-5
20.2 TableType values. 20-5
20.3 BatchMove import modes 20-8
20.4 Database-related informational methods

for session components 20-26
20.5 TSessionList properties and

methods. 20-29
20.6 Properties, methods, and events for

cached updates. 20-32
20.7 UpdateKind values 20-38
20.8 Batch move modes. 20-49
20.9 Data Dictionary interface 20-52
21.1 ADO components 21-2
21.2 ADO connection modes 21-6
21.3 Execution options for ADO

datasets 21-12
21.4 Comparison of ADO and client dataset

cached updates. 21-12
22.1 Columns in tables of metadata listing

tables . 22-14
22.2 Columns in tables of metadata listing

stored procedures 22-14
22.3 Columns in tables of metadata listing

fields . 22-15
22.4 Columns in tables of metadata listing

indexes 22-16

22.5 Columns in tables of metadata listing
parameters. 22-16

23.1 Filter support in client datasets 23-3
23.2 Summary operators for maintained

aggregates23-11
23.3 Specialized client datasets for

caching updates. 23-17
24.1 AppServer interface members. 24-3
24.2 Provider options 24-5
24.3 UpdateStatus values 24-9
24.4 UpdateMode values 24-10
24.5 ProviderFlags values 24-10
25.1 Components used in multi-tiered

applications 25-3
25.2 Connection components 25-5
25.3 Javascript libraries 25-35
27.1 Web Broker versus WebSnap 27-2
27.2 Web server application components . . . 27-6
28.1 MethodType values. 28-6
33.1 COM object requirements 33-11
33.2 Delphi wizards for implementing COM,

Automation, and ActiveX objects 33-19
33.3 DAX Base classes for generated

implementation classes 33-21
34.1 Type Library editor files 34-2
34.2 Type Library editor parts 34-3
34.3 Type library pages 34-6
34.4 Valid types. 34-12
34.5 Attribute syntax. 34-14
36.1 Threading models for COM objects . . . 36-6
37.1 IApplicationObject interface

members 37-4
37.2 IRequest interface members 37-4
37.3 IResponse interface members 37-5
37.4 ISessionObject interface members 37-6
37.5 IServer interface members 37-6
39.1 IObjectContext methods for transaction

support. 39-11
39.2 Threading models for transactional

objects 39-17
39.3 Call synchronization options 39-18
40.1 Component creation starting points . . . 40-3
41.1 Levels of visibility within an object 41-4
42.1 How properties appear in the Object

Inspector 42-2
45.1 Canvas capability summary 45-3
45.2 Image-copying methods 45-7
47.1 Predefined property-editor types 47-7
47.2 Methods for reading and writing

property values 47-8
47.3 Property-editor attribute flags. 47-10
47.4 Property categories 47-14

xxix

3.1 A simple form 3-6
3.2 Objects, components, and controls. 3-12
3.3 A simplified hierarchy diagram 3-13
3.4 Three views of the track bar

component 3-33
3.5 A progress bar 3-42
6.1 A frame with data-aware controls

and a data source component 6-15
6.2 The Action Manager editor.. 6-20
6.3 Menu terminology. 6-29
6.4 MainMenu and PopupMenu

components 6-30
6.5 Menu Designer for a pop-up menu 6-31
6.6 Menu Designer for a main menu 6-31
6.7 Nested menu structures. 6-34
8.1 Bitmap-dimension dialog box from the

BMPDlg unit.. 8-20
12.1 TListBox set to bdLeftToRight 12-7
12.2 TListBox set to bdRightToLeft 12-7
12.3 TListBox set to bdRightToLeft-

NoAlign. 12-7
12.4 TListBox set to bdRightToLeft-

ReadingOnly 12-7
14.1 Generic Database Architecture 14-6
14.2 Connecting directly to the database

server . 14-8
14.3 A file-based database application 14-9
14.4 Architecture combining a client

dataset and another dataset 14-12
14.5 Multi-tiered database architecture 14-13
15.1 TDBGrid control 15-15
15.2 TDBGrid control with ObjectView

set to False 15-22
15.3 TDBGrid control with Expanded

set to False 15-23
15.4 TDBGrid control with Expanded

set to True. 15-23

15.5 TDBCtrlGrid at design time 15-27
15.6 Buttons on the TDBNavigator

control 15-28
16.1 Decision support components at

design time 16-2
16.2 One-dimensional crosstab 16-3
16.3 Three-dimensional crosstab 16-3
16.4 Decision graphs bound to different

decision sources. 16-14
20.1 Components in a BDE-based

application. 20-2
25.1 Web-based multi-tiered database

application. 25-31
27.1 Parts of a Uniform Resource

Locator . 27-3
28.1 Structure of a Server Application 28-3
29.1 Generating Content Flow 29-14
29.2 Action request and response 29-16
29.3 Image response to a request 29-17
29.4 Dispatching a page 29-18
33.1 A COM interface 33-3
33.2 Interface vtable 33-5
33.3 In-process server 33-7
33.4 Out-of-process and remote servers 33-8
33.5 COM-based technologies 33-11
33.6 Simple COM object interface 33-18
33.7 Automation object interface 33-19
33.8 ActiveX object interface 33-19
33.9 Delphi ActiveX framework 33-21
34.1 Type Library editor 34-3
34.2 Object list pane 34-5
36.1 Dual interface VTable 36-13
38.1 Mask Edit property page in design

mode . 38-12
40.1 Visual Component Library class

hierarchy. 40-2
40.2 Component wizard 40-9

Figures

xxx

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, writing custom components, and
creating Internet Web server applications. It allows you to build applications that
meet many industry-standard specifications such as SOAP, TCP/IP, COM+, and
ActiveX. Many of the advanced features that support Web development, advanced
XML technologies, and database development require components or wizards that
are not available in all versions of Delphi.

The Developer’s Guide assumes you are familiar with using Delphi and understand
fundamental Delphi programming techniques. For an introduction to Delphi
programming and the integrated development environment (IDE), see the Quick
Start manual or the online Help.

What’s in this manual?
This manual contains five parts, as follows:

• Part I, “Programming with Delphi,” describes how to build general-purpose
Delphi applications. This part provides details on programming techniques you
can use in any Delphi application. For example, it describes how to use common
Visual Component Library (VCL) or Component Library for Cross-platform (CLX)
objects that make user interface programming easy. Objects are available for
handling strings, manipulating text, implementing common dialogs, and so on.
This section also includes chapters on working with graphics, error and exception
handling, using DLLs, OLE automation, and writing international applications.

A chapter describes how to use objects in the Borland Component Library for
Cross-Platform (CLX) to develop applications that can be compiled and run on
either Windows or Linux platforms.

1-2 D e v e l o p e r ’ s G u i d e

W h a t ’ s i n t h i s m a n u a l ?

The chapter on deployment details the tasks involved in deploying your
application to your application users. For example, it includes information on
effective compiler options, using InstallShield Express, licensing issues, and how
to determine which packages, DLLs, and other libraries to use when building the
production-quality version of your application.

• Part II, “Developing database applications,” describes how to build database
applications using database tools and components. Delphi lets you access many
types of databases, including local databases such as Paradox and dBASE, and
network SQL server databases like InterBase, Oracle, and Sybase. You can choose
from a variety of data access mechanisms, including dbExpress, the Borland
Database Engine, InterbaseExpress, and ADO. To implement the more advanced
database applications, you need the Delphi features that are not available in all
versions.

• Part III, “Writing Internet applications,” describes how to create applications that
are distributed over the internet. Delphi includes a wide array of tools for writing
Web server applications, including the Web Broker architecture, which lets you
create cross-platform server applications, WebSnap, which lets you design Web
pages in a GUI environment, support for working with XML documents, and an
architecture for using SOAP-based Web Services. For lower-level support that
underlies much of the messaging in Internet applications, this section also
describes how to work with socket components. The components that implement
many of these features are not available in all versions of Delphi.

• Part IV, “Developing COM-based applications,” describes how to build
applications that can interoperate with other COM-based API objects on the
system such as Windows Shell extensions or multimedia applications. Delphi
contains components that support the ActiveX, COM+, and a COM-based library
for COM controls that can be used for general-purpose and Web-based
applications. Support for COM controls is not available in all editions of Delphi.
To create ActiveX controls, you need the Professional or Enterprise edition.

• Part V, “Creating custom components,” describes how to design and implement
your own components, and how to make them available on the Component
palette of the IDE. A component can be almost any program element that you
want to manipulate at design time. Implementing custom components entails
deriving a new class from an existing class type in the VCL or CLX class libraries.

I n t r o d u c t i o n 1-3

M a n u a l c o n v e n t i o n s

Manual conventions
This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Developer support services
Inprise also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support offerings for Delphi, refer to
http://www.borland.com/devsupport/delphi.

Additional Delphi Technical Information documents and answers to Frequently
Asked Questions (FAQs) are also available at this Web site.

From the Web site, you can access many newsgroups where Delphi developers
exchange information, tips, and techniques. The site also includes a list of books
about Delphi.

Ordering printed documentation
For information about ordering additional documentation, refer to the Web site at
shop.borland.com.

Table 1.1 Typefaces and symbols

Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears on screen or in Object Pascal
code. It also represents anything you must type.

[] Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent Object Pascal keywords
or compiler options.

Italics Italicized words in text represent Object Pascal identifiers, such as variable
or type names. Italics are also used to emphasize certain words, such as
new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to
exit a menu.”

http://www.borland.com/devsupport/delphi

1-4 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g w i t h D e l p h i

P a r t

I
Part IProgramming with Delphi

The chapters in “Programming with Delphi” introduce concepts and skills necessary
for creating Delphi applications using any edition of the product. They also introduce
the concepts discussed in later sections of the Developer’s Guide.

D e v e l o p i n g a p p l i c a t i o n s w i t h D e l p h i 2-1

C h a p t e r

2
Chapter 2Developing applications with Delphi

Borland Delphi is an object-oriented, visual programming environment for rapid
development of 32-bit applications for deployment on Windows and Linux. Using
Delphi, you can create highly efficient applications with a minimum of manual
coding.

Delphi provides a comprehensive class library called the Visual Component Library
(VCL), Borland Component Library for Cross Platform (CLX), and a suite of Rapid
Application Development (RAD) design tools, including application and form
templates, and programming wizards. Delphi supports truly object-oriented
programming:

• the VCL class library includes objects that encapsulate the Windows API as well as
other useful programming techniques (Windows)

• the CLX class library includes objects that encapsulate the Qt library (Windows or
Linux)

This chapter briefly describes the Delphi development environment and how it fits
into the development life cycle. The rest of this manual provides technical details on
developing general-purpose, database, Internet and Intranet applications, and
includes information on creating ActiveX and COM controls and writing your own
components.

Integrated development environment
When you start Delphi, you are immediately placed within the integrated
development environment, also called the IDE. This environment provides all the
tools you need to design, develop, test, debug, and deploy applications.

Delphi’s development environment includes a visual form designer, Object
Inspector, Object TreeView, Component palette, Project Manager, source code editor,
and debugger among other tools. Some tools may not be included in all versions of
the product. You can move freely from the visual representation of an object (in the

2-2 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a p p l i c a t i o n s

form designer), to the Object Inspector to edit the initial runtime state of the object, to
the source code editor to edit the execution logic of the object. Changing code-related
properties, such as the name of an event handler, in the Object Inspector
automatically changes the corresponding source code. In addition, changes to the
source code, such as renaming an event handler method in a form class declaration,
is immediately reflected in the Object Inspector.

The IDE supports application development throughout the stages of the product life
cycle—from design to deployment. Using the tools in the IDE allows for rapid
prototyping and shortens development time.

A more complete overview of the development environment is presented in the
Quick Start manual included with the product. In addition, the online Help system
provides help on all menus, dialogs, and windows.

Designing applications
Delphi includes all the tools necessary to start designing applications:

• A blank window, known as a form, on which to design the UI for your application.
• Extensive class libraries with many reusable objects.
• An Object Inspector for examining and changing object traits.
• A Code editor that provides direct access to the underlying program logic.
• A Project Manager for managing the files that make up one or more projects.
• Many other tools such as an image editor on the toolbar and an integrated

debugger on menus to support application development in the IDE.
• Command-line tools including compilers, linkers, and other utilities.

You can use Delphi to design any kind of 32-bit application—from general-purpose
utilities to sophisticated data access programs or distributed applications. Delphi’s
database tools and data-aware components let you quickly develop powerful
desktop database and client/server applications. Using Delphi’s data-aware controls,
you can view live data while you design your application and immediately see the
results of database queries and changes to the application interface.

Chapter 5, “Building applications, components, and libraries” introduces Delphi’s
support for different types of applications.

Many of the objects provided in the class library are accessible in the IDE from the
Component palette. The Component palette shows all of the controls, both visual and
nonvisual, that you can place on a form. Each tab contains components grouped by
functionality. By convention, the names of objects in the class library begin with a T,
such as TStatusBar.

One of the revolutionary things about Delphi is that you can create your own
components using Object Pascal. Most of the components provided are written in
Object Pascal. You can add components that you write to the Component palette and
customize the palette for your use by including new tabs if needed.

You can also use Delphi for cross platform development on both Linux and Windows
by using CLX. CLX contains a set of classes that, if used instead of those in the VCL,
allow your program to port between Windows and Linux.

D e v e l o p i n g a p p l i c a t i o n s w i t h D e l p h i 2-3

D e v e l o p i n g a p p l i c a t i o n s

Developing applications
As you visually design the user interface for your application, Delphi generates the
underlying Object Pascal code to support the application. As you select and modify
the properties of components and forms, the results of those changes appear
automatically in the source code, and vice versa. You can modify the source files
directly with any text editor, including the built-in Code editor. The changes you
make are immediately reflected in the visual environment as well.

Creating projects

All of Delphi’s application development revolves around projects. When you create
an application in Delphi you are creating a project. A project is a collection of files
that make up an application. Some of these files are created at design time. Others are
generated automatically when you compile the project source code.

You can view the contents of a project in a project management tool called the Project
Manager. The Project Manager lists, in a hierarchical view, the unit names, the forms
contained in the unit (if there is one), and shows the paths to the files in the project.
Although you can edit many of these files directly, it is often easier and more reliable
to use the visual tools in Delphi.

At the top of the project hierarchy, is a group file. You can combine multiple projects
into a project group. This allows you to open more than one project at a time in the
Project Manager. Project groups let you organize and work on related projects, such
as applications that function together or parts of a multi-tiered application. If you are
only working on one project, you do not need a project group file to create an
application.

Project files, which describe individual projects, files, and associated options, have a
.dpr extension. Project files contain directions for building an application or shared
object. When you add and remove files using the Project Manager, the project file is
updated. You specify project options using a Project Options dialog which has tabs
for various aspects of your project such as forms, application, compiler. These project
options are stored in the project file with the project.

Units and forms are the basic building blocks of a Delphi application. A project can
share any existing form and unit file including those that reside outside the project
directory tree. This includes custom procedures and functions that have been written
as standalone routines.

If you add a shared file to a project, realize that the file is not copied into the current
project directory; it remains in its current location. Adding the shared file to the
current project registers the file name and path in the uses clause of the project file.
Delphi automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the
project reside. The compiler treats shared files the same as those created by the
project itself.

2-4 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g a p p l i c a t i o n s

Editing code

The Delphi Code editor is a full-featured ASCII editor. If using the visual
programming environment, a form is automatically displayed as part of a new
project. You can start designing your application interface by placing objects on the
form and modifying how they work in the Object Inspector. But other programming
tasks, such as writing event handlers for objects, must be done by typing the code.

The contents of the form, all of its properties, its components, and their properties
can be viewed and edited as text in the Code editor. You can adjust the generated
code in the Code editor and add more components within the editor by typing code.
As you type code into the editor, the compiler is constantly scanning for changed and
updating the form with the new layout. You can then go back to the form, view and
test the changes you made in the editor and continue adjusting the form from there.

The Delphi code generation and property streaming systems are completely open to
inspection. The source code for everything that is included in your final executable
file—all of the VCL objects, CLX objects, RTL sources, all of the Delphi project files
can be viewed and edited in the Code editor.

Compiling applications

When you have finished designing your application interface on the form, writing
additional code so it does what you want, you can compile the project from the IDE
or from the command line.

All projects have as a target a single distributable executable file. You can view or test
your application at various stages of development by compiling, building, or
running it:

• When you compile, only units that have changed since the last compile are
recompiled.

• When you build, all units in the project are compiled, regardless of whether or not
they have changed since the last compile. This technique is useful when you are
unsure of exactly which files have or have not been changed, or when you simply
want to ensure that all files are current and synchronized. It's also important to use
Build when you've changed global compiler directives, to ensure that all code
compiles in the proper state. You can also test the validity of your source code
without attempting to compile the project.

• When you run, you compile and then execute your application. If you modified
the source code since the last compilation, the compiler recompiles those changed
modules and relinks your application.

If you have grouped several projects together, you can compile or build all projects in
a single project group at once. Choose Project|Compile All Projects or Project|Build
All Projects with the project group selected in the Project Manager.

D e v e l o p i n g a p p l i c a t i o n s w i t h D e l p h i 2-5

D e v e l o p i n g a p p l i c a t i o n s

Debugging applications

Delphi provides an integrated debugger that helps you find and fix errors in your
applications. The integrated debugger lets you control program execution, monitor
variable values and items in data structures, and modify data values while
debugging.

The integrated debugger can track down both runtime errors and logic errors. By
running to specific program locations and viewing the values of variables, the
functions on the call stack, and the program output, you can monitor how your
program behaves and find the areas where it is not behaving as designed. The
debugger is described in online Help.

You can also use exception handling to recognize, locate, and deal with errors.
Exceptions in Delphi are classes, like other classes in Delphi, except, by convention,
they begin with an E rather than the initial T for other classes.

Deploying applications

Delphi includes add-on tools to help with application deployment. For example,
InstallShield Express (not available in all versions) helps you to create an installation
package for your application that includes all of the files needed for running a
distributed application. Refer to Chapter 13, “Deploying applications” for specific
information on deployment.

Note Not all versions of Delphi have deployment capabilities.

TeamSource software (not available in all versions) is also available for tracking
application updates.

2-6 D e v e l o p e r ’ s G u i d e

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-1

C h a p t e r

3
Chapter 3Using the component libraries

This chapter presents an overview of the component libraries and introduces some of
the components that you can use while developing applications. Delphi includes
both the Visual Component Library (VCL) and the Borland Component Library for
Cross-Platform (CLX). The VCL is for Windows development and CLX is for cross-
platform development on Windows and Linux. They are two different class libraries
but they have many similarities. Objects, properties, methods, and events that are not
in CLX are marked “VCL only.”

Understanding the component libraries
VCL and CLX are class libraries made up of objects, some of which are also
components or controls, that you use when developing applications. Both libraries
look very similar and contain many of the same objects. Some objects in the VCL
implement features that are available on Windows only such as objects that appear
on the ADO, BDE, QReport, COM+, Web Services, and Servers tabs on the
Component palette. Virtually all CLX objects are available on both Windows and
Linux.

VCL and CLX objects are active entities that contain all necessary data and the
“methods” (code) that modify the data. The data is stored in the fields and properties
of the objects, and the code is made up of methods that act upon the field and
property values. Each object is declared as a “class.” All VCL and CLX objects
descend from the ancestor object TObject including objects that you develop in Object
Pascal.

A subset of objects are components. Components are objects that you can place on a
form or data module and manipulate at design time. Components appear on the
Component palette. You can specify their properties without writing code. All VCL
or CLX components descend from the TComponent object.

3-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t h e c o m p o n e n t l i b r a r i e s

Components are objects in the true object-oriented programming (OOP) sense
because they

• Encapsulate a set of data and data-access functions

• Inherit data and behavior from the objects they are derived from

• Operate interchangeably with other objects derived from a common ancestor,
through a concept called polymorphism

Unlike most components, objects do not appear on the Component palette. Instead, a
default instance variable is declared in the unit of the object, or you have to declare
one yourself.

Controls are a special kind of component that is visible to users at runtime. Controls
are a subset of components. Controls are visual components that you can see when
your application is running. All controls have properties in common that specify
their visual attributes, such as Height and Width. The properties, methods, and events
that all controls have in common are inherited from TControl.

Refer to Chapter 10, “Using CLX for cross-platform development” for details about
cross-platform programming and the differences between the Windows and Linux
environments. Detailed reference material on all of the objects in the VCL or CLX is
accessible using online Help while you are programming. From within the code
editor, place the cursor anywhere on the object and press F1 to display help on VCL
or CLX components.

If you are using Kylix while developing cross-platform applications, Kylix also
includes a Developer’s Guide that is tailored for the Linux environment. You can refer
to the manual both in the Kylix online Help or the printed manual provided with the
Kylix product.

Properties, methods, and events

Both the VCL and CLX form hierarchies of objects that are tied to the Delphi IDE,
where you can develop applications quickly. The objects in both component libraries
are based on properties, methods, and events. Each object includes data members
(properties), functions that operate on the data (methods), and a way to interact with
users of the class (events). The VCL is written in Object Pascal, whereas CLX is based
on Qt, a C++ class library.

Properties
Properties are characteristics of an object that influence either the visible behavior or
the operations of the object. For example, the Visible property determines whether an
object can be seen or not in an application interface. Well-designed properties make
your components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:

• Unlike methods, which are only available at runtime, you can see and change
properties at design time and get immediate feedback as the components change
in the IDE.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-3

U n d e r s t a n d i n g t h e c o m p o n e n t l i b r a r i e s

• Properties can be accessed in the Object Inspector where you can modify the
values of your object visually. Setting properties at design time is easier than
writing code and makes your code easier to maintain.

• Because the data is encapsulated, it is protected and private to the actual object.

• The actual calls to get and set the values are methods, so special processing can be
done that is invisible to the user of the object. For example, data could reside in a
table, but could appear as a normal data member to the programmer.

• You can implement logic that triggers events or modifies other data during the
access of the property. For example, changing the value of one property may
require the modification of another. You can make the change in the methods
created for the property.

• Properties can be virtual.

• A property is not restricted to a single object. Changing a one property on one
object could effect several objects. For example, setting the Checked property on a
radio button effects all of the radio buttons in the group.

Methods
A method is a procedure that is always associated with a class. Methods define the
behavior of an object. Class methods can access all the public, protected, and private
properties and data members of the class and are commonly referred to as member
functions.

Events
An event is an action or occurrence detected by a program. Most modern applications
are said to be event-driven, because they are designed to respond to events. In a
program, the programmer has no way of predicting the exact sequence of actions a
user will perform next. They may choose a menu item, click a button, or mark some
text. You can write code to handle the events you're interested in, rather than writing
code that always executes in the same restricted order.

Regardless of how an event is called, Delphi looks to see if you have written any code
to handle that event. If you have, that code is executed; otherwise, the default event
handling behavior takes place.

The kinds of events that can occur can be divided into two main categories:

• User events
• System events

Regardless of how the event was called, Delphi looks to see if you have assigned any
code to handle that event. If you have, then that code is executed; otherwise, nothing
is done.

User events
User events are actions that are initiated by the user. Examples of user events are
OnClick (the user clicked the mouse), OnKeyPress (the user pressed a key on the
keyboard), and OnDblClick (the user double-clicked a mouse button). These events
are always tied to a user's actions.

3-4 D e v e l o p e r ’ s G u i d e

O b j e c t P a s c a l a n d t h e c l a s s l i b r a r i e s

System events
System events are events that the operating system fires for you. For example, the
OnTimer event (the Timer component issues one of these events whenever a
predefined interval has elapsed), the OnCreate event (the component is being
created), the OnPaint event (a component or window needs to be redrawn), and so
on. Usually, system events are not directly initiated by a user action.

Object Pascal and the class libraries
Object Pascal, a set of object-oriented extensions to standard Pascal, is the language
of Delphi. Using Delphi’s Component palette and Object Inspector, you can place
VCL or CLX components on forms and manipulate their properties without writing
code.

All objects descend from TObject, an abstract class whose methods encapsulate
fundamental behavior like construction, destruction, and message handling. TObject
is the immediate ancestor of many simple classes.

Components in the VCL or CLX descend from the abstract class TComponent.
Components are objects that you can manipulate on forms at design time. Visual
components—that is, components like TForm and TSpeedButton that appear on the
screen at runtime—are called controls, and they descend from TControl.

In addition to the visual components, the component libraries contain many
nonvisual objects. The IDE allows you to add many nonvisual components to your
programs by dropping them onto forms. For example, if you were writing an
application that connects to a database, you might place a TDataSource component on
a form. Although TDataSource is nonvisual, it is represented on the form by an icon
(which doesn’t appear at runtime). You can manipulate the properties and events of
TDataSource in the Object Inspector just as you would those of a visual control.

When you write classes of your own in Object Pascal, they should descend from
TObject in the class library that you plan to use. Use VCL if you’re writing a Windows
application or CLX if writing a cross-platform application. By deriving new classes
from the appropriate base class (or one of its descendants), you provide your classes
with essential functionality and ensure that they work with the other classes in the
class library.

Using the object model

Object-oriented programming is an extension of structured programming that
emphasizes code reuse and encapsulation of data with functionality. Once you create
an object (or, more formally, a class), you and other programmers can use it in
different applications, thus reducing development time and increasing productivity.

If you want to create new components and put them on the Component palette, see
Chapter 40, “Overview of component creation.”

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-5

O b j e c t P a s c a l a n d t h e c l a s s l i b r a r i e s

What is an object?
An object, or class, is a data type that encapsulates data and operations on data in a
single unit. Before object-oriented programming, data and operations (functions)
were treated as separate elements.

You can begin to understand objects if you understand Object Pascal records or
structures in C. Records are made of up fields that contain data, where each field has
its own type. Records make it easy to refer to a collection of varied data elements.

Objects are also collections of data elements. But objects—unlike records—contain
procedures and functions that operate on their data. These procedures and functions
are called methods.

An object’s data elements are accessed through properties. The properties of VCL and
CLX objects have values that you can change at design time without writing code. If
you want a property value to change at runtime, you need to write only a small
amount of code.

The combination of data and functionality in a single unit is called encapsulation. In
addition to encapsulation, object-oriented programming is characterized by
inheritance and polymorphism. Inheritance means that objects derive functionality from
other objects (called ancestors); objects can modify their inherited behavior.
Polymorphism means that different objects derived from the same ancestor support
the same method and property interfaces, which often can be called interchangeably.

Examining a Delphi object
When you create a new project, Delphi displays a new form for you to customize. In
the Code editor, Delphi declares a new class type for the form and produces the code
that creates the new form instance. The code generated for a new Windows
application looks like this:

unit Unit1;
interface

uses Windows, Classes, Graphics, Forms, Controls, Dialogs;

type
 TForm1 = class(TForm){ The type declaration of the form begins here }

private
{ Private declarations }

public
{ Public declarations }

end;{ The type declaration of the form ends here }

var
Form1: TForm1;

implementation{ Beginning of implementation part }
{$R *.DFM}
end.{ End of implementation part and unit}

The new class type is TForm1, and it is derived from type TForm, which is also a class.

A class is like a record in that they both contain data fields, but a class also contains
methods—code that acts on the object’s data. So far, TForm1 appears to contain no

3-6 D e v e l o p e r ’ s G u i d e

O b j e c t P a s c a l a n d t h e c l a s s l i b r a r i e s

fields or methods, because you haven’t added to the form any components (the fields
of the new object) and you haven’t created any event handlers (the methods of the
new object). TForm1 does contain inherited fields and methods, even though you
don’t see them in the type declaration.

This variable declaration declares a variable named Form1 of the new type TForm1.

var
Form1: TForm1;

Form1 represents an instance, or object, of the class type TForm1. You can declare
more than one instance of a class type; you might want to do this, for example, to
create multiple child windows in a Multiple Document Interface (MDI) application.
Each instance maintains its own data, but all instances use the same code to execute
methods.

Although you haven’t added any components to the form or written any code, you
already have a complete Delphi application that you can compile and run. All it does
is display a blank form.

Suppose you add a button component to this form and write an OnClick event
handler that changes the color of the form when the user clicks the button. The result
might look like this:

Figure 3.1 A simple form

When the user clicks the button, the form’s color changes to green. This is the event-
handler code for the button’s OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin

Form1.Color := clGreen;
end;

Objects can contain other objects as data fields. Each time you place a component on
a form, a new field appears in the form’s type declaration. If you create the
application described above and look at the code in the Code editor, this is what you
see:

unit Unit1;

interface

uses Windows, Classes, Graphics, Forms, Controls;

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-7

O b j e c t P a s c a l a n d t h e c l a s s l i b r a r i e s

type
TForm1 = class(TForm)

Button1: TButton;{ New data field }
procedure Button1Click(Sender: TObject);{ New method declaration }

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);{ The code of the new method }
begin

Form1.Color := clGreen;
end;

end.

TForm1 has a Button1 field that corresponds to the button you added to the form.
TButton is a class type, so Button1 refers to an object.

All the event handlers you write in Delphi are methods of the form object. Each time
you create an event handler, a method is declared in the form object type. The
TForm1 type now contains a new method, the Button1Click procedure, declared
within the TForm1 type declaration. The code that implements the Button1Click
method appears in the implementation part of the unit.

Changing the name of a component
You should always use the Object Inspector to change the name of a component. For
example, suppose you want to change a form’s name from the default Form1 to a
more descriptive name, such as ColorBox. When you change the form’s Name
property in the Object Inspector, the new name is automatically reflected in the
form’s .dfm or .xfm file (which you usually don’t edit manually) and in the Object
Pascal source code that Delphi generates:

unit Unit1;

interface

uses Windows, Classes, Graphics, Forms, Controls;

type
TColorBox = class(TForm){ Changed from TForm1 to TColorBox }

Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

 end;

var

3-8 D e v e l o p e r ’ s G u i d e

O b j e c t P a s c a l a n d t h e c l a s s l i b r a r i e s

ColorBox: TColorBox;{ Changed from Form1 to ColorBox }

implementation

{$R *.DFM}

procedure TColorBox.Button1Click(Sender: TObject);
begin

Form1.Color := clGreen;{ The reference to Form1 didn't change! }
end;

end.

Note that the code in the OnClick event handler for the button hasn’t changed.
Because you wrote the code, you have to update it yourself and correct any
references to the form:

procedure TColorBox.Button1Click(Sender: TObject);
begin

ColorBox.Color := clGreen;
end;

Inheriting data and code from an object

The TForm1 object described seems simple. TForm1 appears to contain one field
(Button1), one method (Button1Click), and no properties. Yet you can show, hide, or
resize of the form, add or delete standard border icons, and set up the form to
become part of a Multiple Document Interface (MDI) application. You can do these
things because the form has inherited all the properties and methods of the
component TForm. When you add a new form to your project, you start with TForm
and customize it by adding components, changing property values, and writing
event handlers. To customize any object, you first derive a new object from the
existing one; when you add a new form to your project, Delphi automatically derives
a new form from the TForm type:

TForm1 = class(TForm)

A derived object inherits all the properties, events, and methods of the object it
derives from. The derived object is called a descendant and the object it derives from is
called an ancestor. If you look up TForm in the online Help, you’ll see lists of its
properties, events, and methods, including the ones that TForm inherits from its
ancestors. An object can have only one immediate ancestor, but it can have many
direct descendants.

Scope and qualifiers

Scope determines the accessibility of an object’s fields, properties, and methods. All
members declared within an object are available to that object and its descendants.
Although a method’s implementation code appears outside of the object declaration,
the method is still within the scope of the object because it is declared within the
object’s declaration.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-9

O b j e c t P a s c a l a n d t h e c l a s s l i b r a r i e s

When you write code to implement a method that refers to properties, methods, or
fields of the object where the method is declared, you don’t need to preface those
identifiers with the name of the object. For example, if you put a button on a new
form, you could write this event handler for the button’s OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin

Color := clFuchsia;
Button1.Color := clLime;

end;

The first statement is equivalent to

Form1.Color := clFuchsia

You don’t need to qualify Color with Form1 because the Button1Click method is part of
TForm1; identifiers in the method body therefore fall within the scope of the TForm1
instance where the method is called. The second statement, in contrast, refers to the
color of the button object (not of the form where the event handler is declared), so it
requires qualification.

Delphi creates a separate unit (source code) file for each form. If you want to access
one form’s components from another form’s unit file, you need to qualify the
component names, like this:

Form2.Edit1.Color := clLime;

In the same way, you can access a component’s methods from another form. For
example,

Form2.Edit1.Clear;

To access Form2’s components from Form1’s unit file, you must also add Form2’s unit
to the uses clause of Form1’s unit.

The scope of an object extends to the object’s descendants. You can, however,
redeclare a field, property, or method within a descendant object. Such redeclarations
either hide or override the inherited member.

For more information about scope, inheritance, and the uses clause, see the Object
Pascal Language Guide.

Private, protected, public, and published declarations
When you declare a field, property, or method, the new member has a visibility
indicated by one of the keywords private, protected, public, or published. The
visibility of a member determines its accessibility to other objects and units.

• A private member is accessible only within the unit where it is declared. Private
members are often used within a class to implement other (public or published)
methods and properties.

• A protected member is accessible within the unit where its class is declared and
within any descendant class, regardless of the descendant class’s unit.

• A public member is accessible from wherever the object it belongs to is
accessible—that is, from the unit where the class is declared and from any unit that
uses that unit.

3-10 D e v e l o p e r ’ s G u i d e

O b j e c t P a s c a l a n d t h e c l a s s l i b r a r i e s

• A published member has the same visibility as a public member, but the compiler
generates runtime type information for published members. Published properties
appear in the Object Inspector at design time.

For more information about visibility, see the Object Pascal Language Guide.

Using object variables

You can assign one object variable to another object variable if the variables are of the
same type or assignment compatible. In particular, you can assign an object variable
to another object variable if the type of the variable you are assigning to is an ancestor
of the type of the variable being assigned. For example, here is a TDataForm type
declaration (VCL only) and a variable declaration section declaring two variables,
AForm and DataForm:

type
TDataForm = class(TForm)
Button1: TButton;

Edit1: TEdit;
DataGrid1: TDataGrid;
Database1: TDatabase;

private
{ Private declarations }

public
{ Public declarations }

end;

var
AForm: TForm;
DataForm: TDataForm;

AForm is of type TForm, and DataForm is of type TDataForm. Because TDataForm is a
descendant of TForm, this assignment statement is legal:

AForm := DataForm;

Suppose you write an event handler for the OnClick event of a button. When the
button is clicked, the event handler for the OnClick event is called. Each event handler
has a Sender parameter of type TObject:

procedure TForm1.Button1Click(Sender: TObject);
begin
ƒ
end;

Because Sender is of type TObject, any object can be assigned to Sender. The value of
Sender is always the control or component that responds to the event. You can test
Sender to find the type of component or control that called the event handler using
the reserved word is. For example,

if Sender is TEdit then
DoSomething

else
DoSomethingElse;

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-11

O b j e c t P a s c a l a n d t h e c l a s s l i b r a r i e s

Creating, instantiating, and destroying objects

Many of the objects you use in Delphi, such as buttons and edit boxes, are visible at
both design time and runtime. Some, such as common dialog boxes, appear only at
runtime. Still others, such as timers and datasource components, have no visual
representation at runtime.

You may want to create your own objects. For example, you could create a TEmployee
object that contains Name, Title, and HourlyPayRate properties. You could then add a
CalculatePay method that uses the data in HourlyPayRate to compute a paycheck
amount. The TEmployee type declaration might look like this:

type
TEmployee = class(TObject)
private

FName: string;
FTitle: string;
FHourlyPayRate: Double;

public
property Name: string read FName write FName;
property Title: string read FTitle write FTitle;
property HourlyPayRate: Double read FHourlyPayRate write FHourlyPayRate;
function CalculatePay: Double;

end;

In addition to the fields, properties, and methods you’ve defined, TEmployee inherits
all the methods of TObject. You can place a type declaration like this one in either the
interface or implementation part of a unit, and then create instances of the new class
by calling the Create method that TEmployee inherits from TObject:

var
Employee: TEmployee;

begin
Employee := TEmployee.Create;

end;

The Create method is called a constructor. It allocates memory for a new instance
object and returns a reference to the object.

Components on a form are created and destroyed automatically by Delphi. But if you
write your own code to instantiate objects, you are responsible for disposing of them
as well. Every object inherits a Destroy method (called a destructor) from TObject. To
destroy an object, however, you should call the Free method (also inherited from
TObject), because Free checks for a nil reference before calling Destroy. For example,

Employee.Free

destroys the Employee object and deallocates its memory.

Components and ownership

Delphi has a built-in memory-management mechanism that allows one component
to assume responsibility for freeing another. The former component is said to own the
latter. The memory for an owned component is automatically freed when its owner's

3-12 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

memory is freed. The owner of a component—the value of its Owner property—is
determined by a parameter passed to the constructor when the component is created.
By default, a form owns all components on it and is in turn owned by the application.
Thus, when the application shuts down, the memory for all forms and the
components on them is freed.

Ownership applies only to TComponent and its descendants. If you create, for
example, a TStringList or TCollection object (even if it is associated with a form), you
are responsible for freeing the object.

Note Don’t confuse a component’s owner with its parent. See “Parent properties” on
page 3-19“.

Objects, components, and controls
Figure 3.2 is a greatly simplified view of the inheritance hierarchy that illustrates the
relationship between objects, components, and controls.

Figure 3.2 Objects, components, and controls

Every object inherits from TObject, and many objects inherit from TComponent.
Controls, which inherit from TControl, have the ability to display themselves at
runtime. A control like TCheckBox inherits all the functionality of TObject,
TComponent, and TControl, and adds specialized capabilities of its own.

Figure 3.3 is an overview of the Visual Component Library (VCL) that shows the
major branches of the inheritance tree. The Borland Component Library for Cross-
Platform (CLX) look very much the same at this level but TWinControl is replaced by
TWidgetControl.

TForm TButton TCheckBox TListBox

TObject

TComponent

TControl

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-13

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Figure 3.3 A simplified hierarchy diagram

Several important base classes are shown in the figure, and they are described in the
following table:

The next few sections present a general description of the types of classes that each
branch contains. For a complete overview of the VCL object hierarchy, refer to the
VCL Object Hierarchy wall chart that is included with this product. For details on
CLX, refer to the CLX Object Hierarchy wall chart included with the product and the
Kylix documentation.

Table 3.1 Important base classes

Class Description

TObject Signifies the base class and ultimate ancestor of everything in the VCL or
CLX. TObject encapsulates the fundamental behavior common to all VCL/
CLX objects by introducing methods that perform basic functions such as
creating, maintaining, and destroying an instance of an object.

Exception Specifies the base class of all classes that relate to exceptions. Exception
provides a consistent interface for error conditions, and enables applications
to handle error conditions gracefully.

TPersistent Specifies the base class for all objects that implement properties. Classes
under TPersistent deal with sending data to streams and allow for the
assignment of classes.

TComponent Specifies the base class for all nonvisual components such as TApplication.
TComponent is the common ancestor of all components. This class allows a
component to be displayed on the Component palette, lets the component
own other components, and allows the component to be manipulated
directly on a form.

TControl Represents the base class for all controls that are visible at runtime. TControl
is the common ancestor of all visual components and provides standard
visual controls like position and cursor. This class also provides events that
respond to mouse actions.

TWinControl Specifies the base class of all user interface objects also called widgets.
Controls under TWinControl are windowed controls that can capture
keyboard input. (In CLX, TWidgetControl replaces TWinControl.)

3-14 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

TObject branch

The TObject branch includes all objects that descend from TObject but not from
TPersistent. All VCL or CLX objects descend from TObject, an abstract class whose
methods define fundamental behavior like construction, destruction, and message or
system event handling. Much of the powerful capability of VCL and CLX objects are
established by the methods that TObject introduces. TObject encapsulates the
fundamental behavior common to all objects in the VCL and CLX by introducing
methods that provide:

• The ability to respond when object instances are created or destroyed.
• Class type and instance information on an object, and runtime type information

(RTTI) about its published properties.
• Support for message-handling (VCL only).

TObject is the immediate ancestor of many simple classes. Classes that are contained
within this branch have one common, important characteristic: they are transitory.
What this means is that these classes do not have a method to save the state that they
are in prior to destruction; they are not persistent.

One of the main groups of classes in this branch is the Exception class. This class
provides a large set of built-in exception classes for automatically handling divide-
by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions.

Another type of group in the TObject branch are classes that encapsulate data
structures, such as:

• TBits, a class that stores an “array” of Boolean values
• TList, a linked list class
• TStack, a class that maintains a last-in first-out array of pointers
• TQueue, a class that maintains a first-in first-out array of pointers

In the VCL, you can also find wrappers for external objects like TPrinter, which
encapsulates the Windows printer interface, and TRegistry, a low-level wrapper for
the system registry and functions that operate on the registry. These are specific to
the Windows environment.

TStream is good example of another type of class in this branch. TStream is the base
class type for stream objects that can read from or write to various kinds of storage
media, such as disk files, dynamic memory, and so on.

So you can see, this branch includes many different types of classes that are very
useful to you as a developer.

TPersistent branch

Objects in this branch of the VCL and CLX descend from TPersistent but not from
TComponent. TPersistent adds persistence to objects. Persistence determines what gets
saved with a form file or data module and what gets loaded into the form or data
module when it is retrieved from memory.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-15

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Objects in this branch implement properties for components. Properties are only
loaded and saved with a form if they have an owner. The owner must be some
component. This branch introduces the GetOwner function which lets you determine
the owner of the property.

Objects in this branch are also the first to include a published section where
properties can be automatically loaded and saved. A DefineProperties method also
allows you to indicate how to load and save properties.

Following are some of the other classes in the TPersistent branch of the hierarchy:

• TGraphicsObject, an abstract base class for graphics objects such as: TBrush, TFont,
and TPen.

• TGraphic, an abstract base class for objects such as icons and bitmaps that can store
and display visual images: TBitmap and TIcon (and for Windows development
only: TMetafile).

• TStrings, a base class for objects that represent a list of strings.
• TClipboard, a class that contains text or graphics that have been cut or copied from

an application.
• TCollection, TOwnedCollection, and TCollectionItem, classes that maintain indexed

collections of specially defined items.

TComponent branch

TComponent branch contains objects that descend from TComponent but not TControl.
Objects in this branch are components that you can manipulate on forms at design
time. They are persistent objects that can do the following:

• Appear on the Component palette and can be changed in the form designer.

• Own and manage other components.

• Load and save themselves.

Several methods in TComponent dictate how components act during design time and
what information gets saved with the component. Streaming is introduced in this
branch of the VCL and CLX. Delphi handles most streaming chores automatically.
Properties are persistent if they are published and published properties are
automatically streamed.

The TComponent class also introduces the concept of ownership that is propagated
throughout the VCL and CLX. Two properties support ownership: Owner and
Components. Every component has an Owner property that references another
component as its owner. A component may own other components. In this case, all
owned components are referenced in the component’s Array property.

A component's constructor takes a single parameter that is used to specify the new
component's owner. If the passed-in owner exists, the new component is added to
the owner's Components list. Aside from using the Components list to reference
owned components, this property also provides for the automatic destruction of
owned components. As long as the component has an owner, it will be destroyed
when the owner is destroyed. For example, since TForm is a descendant of
TComponent, all components owned by the form are destroyed and their memory

3-16 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

freed when the form is destroyed. This assumes that all of the components on the
form clean themselves up properly when their destructors are called.

If a property type is a TComponent or a descendant, the streaming system creates an
instance of that type when reading it in. If a property type is TPersistent but not
TComponent, the streaming system uses the existing instance available through the
property and read values for that instance’s properties.

When creating a form file (a file used to store information about the components on
the form), the form designer loops through its components array and saves all the
components on the form. Each component “knows” how to write its changed
properties out to a stream (in this case, a text file). Conversely, when loading the
properties of components in the form file, the form designer loops through the
components array and loads each component.

The types of classes you’ll find in this branch include:

• TMainMenu, a class that provides a menu bar and its accompanying drop-down
menus for a form.

• TTimer, a class that includes the timer functions.
• TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on,

provide commonly used dialog boxes.
• TActionList, a class that maintains a list of actions used with components and

controls, such as menu items and buttons.
• TScreen, a class that keeps track of what forms and data modules have been

instantiated by the application, the active form, and the active control within that
form, the size and resolution of the screen, and the cursors and fonts available for
the application to use.

Components that do not need a visual interface can be derived directly from
TComponent. To make a tool such as a TTimer device, you can derive from
TComponent. This type of component resides on the Component palette but performs
internal functions that are accessed through code rather than appearing in the user
interface at runtime.

In CLX, the TComponent branch also includes THandleComponent. This is the base
class for nonvisual components that require a handle to an underlying Qt object such
as dialogs and menus.

TControl branch

The TControl branch consists of components that descend from TControl but not
TWinControl (TWidgetControl in CLX). Objects in this branch are controls that are
visual objects which the application user can see and manipulate at runtime. All
controls have properties, methods, and events in common that relate to how the
control looks, such as its position, the cursor associated with the control’s window (or
widget in CLX), methods to paint or move the control, and events to respond to
mouse actions. Controls can never receive keyboard input.

Whereas TComponent defines behavior for all components, TControl defines behavior
for all visual controls. This includes drawing routines, standard events, and
containership.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-17

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

There are two basic types of control:

• Those that have a window (or widget) of their own
• Those that use the window (or widget) of their “parent”

Controls that have their own window are called “windowed” controls (VCL) or
“widget-based” controls (CLX) and descend from TWinControl (TWidgetControl in
CLX). Buttons and check boxes fall into this class.

Controls that use a parent window (or widget) are called “graphic” controls and
descend from TGraphicControl. Image and label controls fall into this class. In the
VCL, the main difference between these types of components is that graphic controls
do not maintain a window handle, and thus cannot receive the input focus. In CLX,
the main difference between these types of components is that graphic controls do
not have an associated widget, and thus cannot receive the input focus nor can they
contain other controls. Because a graphic control does not need a handle, its demand
on system resources is lessened, and painting a graphic control is quicker than
painting a widget-based control.

TGraphicControl controls must draw themselves and include controls such as:

Notice that these include common paint routines (Repaint, Invalidate, and so on) that
never need to receive focus.

TWinControl/TWidgetControl branch

The TWinControl branch(TWidgetControl replaces TWinControl in CLX) includes all
controls that descend from TWinControl. TWinControl is the base class for all
windowed controls, including many of the items that you will use in the user
interface of an application.

TWidgetControl is the base class for all widget-based controls or widgets. The term
widget comes from combining “window” and “gadget.” A widget is almost anything
you use in the user interface of an application. Examples of widgets are buttons,
labels, and scroll bars.

The following are features of windowed and widget-based controls:

• Both can receive focus while an application is running.
• Other controls may display data, but the user can use the keyboard to interact with

windowed or widget-based controls.
• Windowed or widget-based controls can contain other controls.

Table 3.2 Graphic controls

Control Description

TImage Displays graphical images.

TLabel Displays text on a form.

TBevel Represents a beveled outline.

TPaintBox Provides a canvas that applications can use for drawing or rendering an image.

3-18 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

• A control that contains other controls is called a parent. Only a windowed or
widget-based control can be a parent of one or more child controls.

• Windowed controls have a window handle. Widget-based controls have an
associated widget.

Descendants of TWinControl (TWidgetControl in CLX) are controls that can receive
focus, meaning they can receive keyboard input from the application user. This
implies that many more standard events apply to them.

This branch includes both controls that are drawn automatically (including TEdit,
TListBox, TComboBox, TPageControl, and so on) and custom controls that Delphi must
draw (such as TDBNavigator, TMediaPlayer (VCL only), TGauge (VCL only), and so
on). Direct descendants of TWinControl (TWidgetControl in CLX) typically implement
standard controls, like an edit field, a combo box, list box, or page control, and,
therefore, already know how to paint themselves.

The TCustomControl class is provided for components that require a window handle
but do not encapsulate a standard control that includes the ability to repaint itself.
You never have to worry about how the controls render themselves or how they
respond to events—Delphi completely encapsulates this behavior for you.

The following sections provide an overview of controls. Refer to Chapter 7,
“Working with controls” for more information on using controls.

Properties common to TControl

All visual controls (descendants of TControl) share certain properties including:

• Action properties
• Position, size, and alignment properties
• Display properties
• Parent properties
• A navigation property
• Drag-and-drop properties
• Drag-and-dock properties (VCL only)

While these properties are inherited from TControl, they are published—and hence
appear in the Object Inspector—only for components to which they are applicable.
For example, TImage does not publish the Color property, since its color is determined
by the graphic it displays.

Action properties
Actions let you share common code for performing actions (for example, when a tool
bar button and menu item do the same thing), as well as providing a single,
centralized way to enable and disable actions depending on the state of your
application.

• Action designates the action associated with the control.
• ActionLink contains the action link object associated with the control.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-19

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Position, size, and alignment properties
This set of properties defines the position and size of a control on the parent control:

• Height sets the vertical size.

• Width sets the horizontal size.

• Top positions the top edge.

• Left positions the left edge.

• AutoSize specifies whether the control sizes itself automatically to accommodate
its contents.

• Align determines how the control aligns within its container (parent control).

• Anchor specifies how the control is anchored to its parent (VCL only).

This set of properties determine the height, width, and overall size of the control’s
client area:

• ClientHeight specifies the height of the control's client area in pixels.
• ClientWidth specifies the width of the control's client area in pixels.

These properties aren’t accessible in nonvisual components, but Delphi does keep
track of where you place the component icons on your forms. Most of the time you’ll
set and alter these properties by manipulating the control’s image on the form or
using the Alignment palette. You can, however, alter them at runtime.

Display properties
The following properties govern the general appearance of a control:

• Color changes the background color of a control.
• Font changes the color, type family, style, or size of text.
• Cursor specifies the image used to represent the mouse pointer when it passes into

the region covered by the control.
• DesktopFont specifies whether the control uses the Windows icon font when

writing text (VCL only).

Parent properties
To maintain a consistent appearance across your application, you can make any
control look like its container—called its parent—by setting the parent properties to
True.

• ParentColor determines where a control looks for its color information.
• ParentFont determines where a control looks for its font information.
• ParentShowHint determines where a control looks to find out if its Help Hint

should be shown.

A navigation property
The following property determines how users navigate among the controls in a form:

• Caption contains the text string that labels a component. To underline a character
in a string, include an ampersand (&) before the character. This type of character is
called an accelerator key. The user can then select the control or menu item by
pressing Alt while typing the underlined character.

3-20 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Drag-and-drop properties
Two component properties affect drag-and-drop behavior:

• DragMode determines how dragging starts. By default, DragMode is dmManual,
and the application must call the BeginDrag method to start dragging. When
DragMode is dmAutomatic, dragging starts as soon as the mouse button goes down.

• DragCursor determines the shape of the mouse pointer when it is over a draggable
component (VCL only).

Drag-and-dock properties (VCL only)
The following properties control drag-and-dock behavior:

• Floating indicates whether the control is floating.

• DragKind specifies whether the control is being dragged normally or for docking.

• DragMode determines how the control initiates drag-and-drop or drag-and-dock
operations.

• FloatingDockSiteClass specifies the class of the temporary control that hosts the
control when it is floating.

• DragCursor is the cursor that is shown while dragging.

• DockOrientation specifies how the control is docked relative to other controls
docked in the same parent.

• HostDockSite specifies the control in which the control is docked.

For more information, see “Implementing drag-and-dock in controls” on page 7-4.

Standard events common to TControl

The VCL defines a set of standard events for its controls. The following events are
declared as part of the TControl class, and are therefore available for all classes
derived from TControl:

• OnClick occurs when the user clicks the control.

• OnContextPopup occurs when the user right-clicks the control or otherwise invokes
the popup menu (such as using the keyboard).

• OnCanResize occurs when an attempt is made to resize the control.

• OnResize occurs immediately after the control is resized.

• OnConstrainedResize occurs immediately after OnCanResize.

• OnStartDock occurs when the user begins to drag a control with a DragKind of
dkDock (VCL only).

• OnEndDock occurs when the dragging of an object ends, either by docking the
object or by canceling the dragging (VCL only).

• OnStartDrag occurs when the user begins to drag the control or an object it
contains by left-clicking on the control and holding the mouse button down.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-21

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

• OnEndDrag occurs when the dragging of an object ends, either by dropping the
object or by canceling the dragging.

• OnDragDrop occurs when the user drops an object being dragged.

• OnMouseMove occurs when the user moves the mouse pointer while the mouse
pointer is over a control.

• OnDblClick occurs when the user double-clicks the primary mouse button when
the mouse pointer is over the control.

• OnDragOver occurs when the user drags an object over a control (VCL only).

• OnMouseDown occurs when the user presses a mouse button with the mouse
pointer over a control.

• OnMouseUp occurs when the user releases a mouse button that was pressed with
the mouse pointer over a component.

Properties common to TWinControl and TWidgetControl

All windowed controls (descendants of TWinControl in the VCL and TWidgetControl
in CLX) share certain properties including:

• Information about the control
• Border style display properties
• Navigation properties
• Drag-and-dock properties (VCL only)

While these properties are inherited from TWinControl and TWidgetControl, they are
published—and hence appear in the Object Inspector—only for controls to which
they are applicable.

General information properties
The general information properties contain information about the appearance of the
TWinControl and TWidgetControl, client area size and origin, windows assigned
information, and help context information.

• ClientOrigin specifies the screen coordinates (in pixels) of the top left corner of a
control’s client area. The screen coordinates of a control that is descended from
TControl and not TWinControl are the screen coordinates of the control’s parent
added to its Left and Top properties.

• ClientRect returns a rectangle with its Top and Left properties set to zero, and its
Bottom and Right properties set to the control's Height and Width, respectively.
ClientRect is equivalent to Rect(0, 0, ClientWidth, ClientHeight).

• Brush determines the color and pattern used for painting the background of the
control.

• HelpContext provides a context number for use in calling context-sensitive online
Help.

• Handle provides access to the window or widget handle of the control.

3-22 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Border style display properties
The bevel properties control the appearance of the beveled lines, boxes, or frames on
the forms and windowed controls in your application.

Many more objects in the VCL publish these properties; they are not all available in
CLX and the border style properties are published on fewer objects.

• InnerBevel specifies whether the inner bevel has a raised, lowered, or flat look
(VCL only).

• BevelKind specifies the type of bevel if the control has beveled edges (VCL only).
• BevelOuter specifies whether the outer bevel has a raised, lowered, or flat look.
• BevelWidth specifies the width, in pixels, of the inner and outer bevels.
• BorderWidth is used to get or set the width of the control’s border.
• BevelEdges is used to get or set which edges of the control are beveled.

Navigation properties
Two additional properties determine how users navigate among the controls on a
form:

• TabOrder indicates the position of the control in its parent’s tab order, the order in
which controls receive focus when the user presses the Tab key. Initially, tab order
is the order in which the components are added to the form, but you can change
this by changing TabOrder. TabOrder is meaningful only if TabStop is True.

• TabStop determines whether the user can tab to a control. If TabStop is True, the
control is in the tab order.

Drag-and-dock properties (VCL only)
The following properties manage drag-and-dock behavior in VCL objects:

• UseDockManager specifies whether the dock manager is used in drag-and-dock
operations.

• VisibleDockClientCount specifies the number of visible controls that are docked on
the windowed control.

• DockManager specifies the control’s dock manager interface.
• DockClients lists the controls that are docked to the windowed control.
• DockSite specifies whether the control can be the target of drag-and-dock

operations.

For more information, see “Implementing drag-and-dock in controls” on page 7-4.

Events common to TWinControl and TWidgetControl

The following events exist for all controls derived from TWinControl in the VCL (this
also includes all the controls that Windows defines) and in TWidgetControl in CLX.
These events are in addition to those that exist in all controls.

• OnEnter occurs when the control is about to receive focus.
• OnKeyDown occurs on the down stroke of a key press.
• OnKeyPress occurs when a user presses a single character key.
• OnKeyUp occurs when the user releases a key that has been pressed.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-23

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

• OnExit occurs when the input focus shifts away from one control to another.
• OnMouseWheel occurs when the mouse wheel is rotated.
• OnMouseWheelDown occurs when the mouse wheel is rotated downward.
• OnMouseWheelUp occurs when the mouse wheel is rotated upward.

The following events relate to docking and are available in the VCL only:

• OnUnDock occurs when the application tries to undock a control that is docked to
a windowed control (VCL only).

• OnDockDrop occurs when another control is docked to the control (VCL only).
• OnDockOver occurs when another control is dragged over the control (VCL only).
• OnGetSiteInfo returns the control’s docking information (VCL only).

Creating the application user interface

All visual design work in Delphi takes place on forms. When you open Delphi or
create a new project, a blank form is displayed on the screen. You can use it to start
building your application interface including windows, menus, and common
dialogs.

You design the look and feel of the graphical user interface for an application by
placing and arranging visual components such as buttons and list boxes on the form.
Delphi takes care of the underlying programming details. You can also place
invisible components on forms to capture information from databases, perform
calculations, and manage other interactions.

Chapter 6, “Developing the application user interface” provides details on using
forms such as creating modal forms dynamically, passing parameters to forms, and
retrieving data from forms.

Using Delphi components

Many visual components are provided in the development environment itself on the
Component palette. All visual design work in Delphi takes place on forms. When
you open Kylix or create a new project, a blank form is displayed on the screen. You
select components from the Component palette and drop them onto the form. You
design the look and feel of the application’s user interface by arranging the visual
components such as buttons and list boxes on the form. Once a visual component is
on the form, you can adjust its position, size, and other design-time properties.
Delphi takes care of the underlying programming details.

Delphi components are grouped functionally on different pages of the Component
palette. For example, commonly used components such as those to create menus, edit
boxes, or buttons are located on the Standard page of the Component palette. Handy
VCL controls such as a timer, paint box, media player, and OLE container are on the
System page.

3-24 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

At first glance, Delphi’s components appear to be just like any other classes. But there
are differences between components in Delphi and the standard class hierarchies that
many programmers work with. Some differences are described here:

• All Delphi components descend from TComponent.

• Components are most often used as is and are changed through their properties,
rather than serving as “base classes” to be subclassed to add or change
functionality. When a component is inherited, it is usually to add specific code to
existing event handling member functions.

• Components can only be allocated on the heap, not on the stack.

• Properties of components intrinsically contain runtime type information.

• Components can be added to the Component palette in the Delphi user interface
and manipulated on a form.

Components often achieve a better degree of encapsulation than is usually found in
standard classes. For example, consider the use of a dialog containing a push button.
In a Windows program developed using VCL components, when a user clicks on the
button, the system generates a WM_LBUTTONDOWN message. The program must
catch this message (typically in a switch statement, a message map, or a response
table) and dispatch it to a routine that will execute in response to the message.

Most Windows messages (VCL) or system events (CLX) are handled by Delphi
components. When you want to respond to a message, you only need to provide an
event handler.

Setting component properties

Published properties can be set at design time in the Object Inspector and, in some
cases, with special property editors.

To set properties at runtime, assign them new values in your application source code.

For information about the properties of each component, see the online Help.

Using the Object Inspector
When you select a component on a form, the Object Inspector displays its published
properties and (when appropriate) allows you to edit them. Use the Tab key to toggle
between the Value column and the Property column. When the cursor is in the
Property column, you can navigate to any property by typing the first letters of its
name. For properties of Boolean or enumerated types, you can choose values from a
drop-down list or toggle their settings by double-clicking in Value column.

If a plus (+) symbol appears next to a property name, clicking the plus symbol or
typing ‘+’ when the property has focus displays a list of subvalues for the property.
Similarly, if a minus (-) symbol appears next to the property name, clicking the minus
symbol or typing ‘-’ hides the subvalues.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-25

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

By default, properties in the Legacy category are not shown; to change the display
filters, right-click in the Object Inspector and choose View. For more information, see
“property categories” in the online Help.

When more than one component is selected, the Object Inspector displays all
properties—except Name—that are shared by the selected components. If the value
for a shared property differs among the selected components, the Object Inspector
displays either the default value or the value from the first component selected.
When you change a shared property, the change applies to all selected components.

Using property editors
Some properties, such as Font, have special property editors. Such properties appear
with ellipsis marks (...) next to their values when the property is selected in the Object
Inspector. To open the property editor, double-click in the Value column, click the
ellipsis mark, or type Ctrl+Enter when focus is on the property or its value. With some
components, double-clicking the component on the form also opens a property editor.

Property editors let you set complex properties from a single dialog box. They
provide input validation and often let you preview the results of an assignment.

Setting properties at runtime
Any writable property can be set at runtime in your source code. For example, you
can dynamically assign a caption to a form:

Form1.Caption := MyString;

Calling methods

Methods are called just like ordinary procedures and functions. For example, visual
controls have a Repaint method that refreshes the control’s image on the screen. You
could call the Repaint method in a draw-grid object like this:

DrawGrid1.Repaint;

As with properties, the scope of a method name determines the need for qualifiers. If
you want, for example, to repaint a form within an event handler of one of the form’s
child controls, you don’t have to prepend the name of the form to the method call:

procedure TForm1.Button1Click(Sender: TObject);
begin

Repaint;
end;

For more information about scope, see “Scope and qualifiers” on page 3-8.

Working with events and event handlers

In Delphi, almost all the code you write is executed, directly or indirectly, in response
to events. An event is a special kind of property that represents a runtime occurrence,
often a user action. The code that responds directly to an event—called an event
handler—is an Object Pascal procedure. The sections that follow show how to

3-26 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

• Generate a new event handler
• Generate a handler for a component’s default event
• Locate event handlers
• Associate an event with an existing event handler
• Associate menu events with event handlers
• Delete event handlers

Generating a new event handler
Delphi can generate skeleton event handlers for forms and other components. To
create an event handler,

1 Select a component.

2 Click the Events tab in the Object Inspector. The Events page of the Object
Inspector displays all events defined for the component.

3 Select the event you want, then double-click the Value column or press Ctrl+Enter.
Delphi generates the event handler in the Code editor and places the cursor inside
the begin...end block.

4 Inside the begin...end block, type the code that you want to execute when the
event occurs.

Generating a handler for a component’s default event
Some components have a default event, which is the event the component most
commonly needs to handle. For example, a button’s default event is OnClick. To
create a default event handler, double-click the component in the Form Designer; this
generates a skeleton event-handling procedure and opens the Code editor with the
cursor in the body of the procedure, where you can easily add code.

Not all components have a default event. Some components, such as TBevel, don’t
respond to any events. Other components respond differently when you double-click
on them in the Form Designer. For example, many components open a default
property editor or other dialog when they are double-clicked at design time.

Locating event handlers
If you generated a default event handler for a component by double-clicking it in the
Form Designer, you can locate that event handler in the same way. Double-click the
component, and the Code editor opens with the cursor at the beginning of the event-
handler body.

To locate an event handler that’s not the default,

1 In the form, select the component whose event handler you want to locate.

2 In the Object Inspector, click the Events tab.

3 Select the event whose handler you want to view and double-click in the Value
column. The Code editor opens with the cursor at the beginning of the event-
handler body.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-27

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Associating an event with an existing event handler
You can reuse code by writing event handlers that respond to more than one event.
For example, many applications provide speed buttons that are equivalent to drop-
down menu commands. When a button initiates the same action as a menu
command, you can write a single event handler and assign it to both the button’s and
the menu item’s OnClick event.

To associate an event with an existing event handler,

1 On the form, select the component whose event you want to handle.

2 On the Events page of the Object Inspector, select the event to which you want to
attach a handler.

3 Click the down arrow in the Value column next to the event to open a list of
previously written event handlers. (The list includes only event handlers written
for events of the same name on the same form.) Select from the list by clicking an
event-handler name.

The procedure above is an easy way to reuse event handlers. Action lists and in the
VCL, action bands, however, provide powerful tools for centrally organizing the code
that responds to user commands. Action lists can be used in cross-platform
applications, whereas action bands cannot. For more information about action lists
and action bands, see “Organizing actions for toolbars and menus” on page 6-16.

Using the Sender parameter
In an event handler, the Sender parameter indicates which component received the
event and therefore called the handler. Sometimes it is useful to have several
components share an event handler that behaves differently depending on which
component calls it. You can do this by using the Sender parameter in an if...then...else
statement. For example, the following code displays the title of the application in the
caption of a dialog box only if the OnClick event was received by Button1.

procedure TMainForm.Button1Click(Sender: TObject);
begin
if Sender = Button1 then

AboutBox.Caption := 'About ' + Application.Title
else

AboutBox.Caption := '';
AboutBox.ShowModal;
end;

Displaying and coding shared events
When components share events, you can display their shared events in the Object
Inspector. First, select the components by holding down the Shift key and clicking on
them in the Form Designer; then choose the Events tab in the Object Inspector. From
the Value column in the Object Inspector, you can now create a new event handler
for, or assign an existing event handler to, any of the shared events.

3-28 D e v e l o p e r ’ s G u i d e

V C L a n d C L X c o m p o n e n t s

Associating menu events with event handlers
The Menu Designer, along with the MainMenu and PopupMenu components, make it
easy to supply your application with drop-down and pop-up menus. For the menus
to work, however, each menu item must respond to the OnClick event, which occurs
whenever the user chooses the menu item or presses its accelerator or shortcut key.
This section explains how to associate event handlers with menu items. For
information about the Menu Designer and related components, see “Creating and
managing menus” on page 6-29.

To create an event handler for a menu item,

1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu object.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 From the Menu Designer, double-click the menu item. Delphi generates an event
handler in the Code editor and places the cursor inside the begin...end block.

4 Inside the begin...end block, type the code that you want to execute when the user
selects the menu command.

To associate a menu item with an existing OnClick event handler,

1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu object.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 On the Events page of the Object Inspector, click the down arrow in the Value
column next to OnClick to open a list of previously written event handlers. (The
list includes only event handlers written for OnClick events on this form.) Select
from the list by clicking an event handler name.

Deleting event handlers
When you delete a component from a form using the Form Designer, Delphi removes
the component from the form’s type declaration. It does not, however, delete any
associated methods from the unit file, since these methods may still be called by
other components on the form. You can manually delete a method—such as an event
handler—but if you do so, be sure to delete both the method’s forward declaration
(in the interface section of the unit) and its implementation (in the implementation
section); otherwise you’ll get a compiler error when you build your project.

VCL and CLX components
The Component palette contains a selection of components that handle a wide
variety of programming tasks. You can add, remove, and rearrange components on
the palette, and you can create component templates and frames that group several
components.

The components on the palette are arranged in pages according to their purpose and
functionality. Which pages appear in the default configuration depends on the
version of Delphi you are running. Table 3.3 lists typical default pages and

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-29

V C L a n d C L X c o m p o n e n t s

components available for creating applications. Some of the tabs and components are
not cross platform and the table points them out. You can use some VCL-specific
nonvisual components in Windows-only CLX applications, however, the
applications will not be cross-platform unless you isolate these portions of the code.

Table 3.3 Component palette pages

Page name Description Cross platform?

Standard Standard controls, menus Yes

Additional Specialized controls Yes except ApplicationEvents and
CustomizeDlg

Win32 Windows common controls Many of the same components are on
the Common Controls tab that
appears instead when creating CLX
applications; RichEdit, UpDown,
HotKey, Animate, DataTimePicker,
MonthCalendar, Coolbar, PageScrol-
ler, and ComboBoxEx are not cross-
platform

System Components and controls for system-
level access, including timers, multime-
dia, and DDE

Timer is but PaintBox, MediaPlayer,
OleContainer, and the Dde compo-
nents are not

Data Access Components for working with database
data that are not tied to any particular
data access mechanism

Yes

Data Controls Visual, data-aware controls Yes except for DBRichEdit,
DBCtrlGrid, and DBChart

dbExpress Database controls that use dbExpress, a
cross-platform, database-independent
layer that provides methods for dynamic
SQL processing. It defines a common
interface for accessing SQL servers.

Yes

DataSnap Components used for creating multi-
tiered database applications

No but can be used in Windows CLX
applications

BDE Components that provide data access
through the Borland Database Engine

No but can be used in Windows CLX
applications

ADO Components that provide data access
through the ADO framework

No but can be used in Windows CLX
applications

InterBase Components that provide direct access
to InterBase

Yes

InternetExpress Components that are simultaneously a
Web Server application and the client of
a multi-tiered database application

No but can be used in Windows CLX
applications

Internet Components for Internet communication
protocols and Web applications

Yes except for ClientSocket, Server-
Socket, QueryTableProducer,
XMLDoc, and WebBrowser

WebSnap Components for building Web server
applications

No but can be used in Windows CLX
applications

FastNet NetMasters Internet controls No but can be used in Windows CLX
applications

3-30 D e v e l o p e r ’ s G u i d e

V C L a n d C L X c o m p o n e n t s

The online Help provides information about the components on the Component
palette. Some of the components on the ActiveX, Servers, and Samples pages,
however, are provided as examples only and are not documented.

Adding custom components to the Component palette

You can install custom components—written by yourself or third parties—on the
Component palette and use them in your applications. To write a component, see
Part V, “Creating custom components”. To install an existing component, see
“Installing component packages” on page 11-5.

QReport QuickReport components for creating
embedded reports

No but can be used in Windows CLX
applications

Dialogs Commonly used dialog boxes Yes except for OpenPictureDialog,
SavePictureDialog, PrinterSetup-
Dialog, and PageSetupDialog

Win 3.1 Old style Win 3.1 components No

Samples Sample custom components No

ActiveX Sample ActiveX controls; see Microsoft
documentation (msdn.microsoft.com)

No

COM+ Component for handling COM+ events No but can be used in Windows CLX
applications

WebServices Components for writing applications
that implement or use SOAP-based Web
services

No but can be used in Windows CLX
applications

Servers COM Server examples for Microsoft
Excel, Word, and so on (see Microsoft
MSDN documentation)

No but can be used in Windows CLX
applications

Indy Clients Cross-platform Internet components for
the client (open source Winshoes Inter-
net components)

Yes

Indy Servers Cross-platform Internet components for
the server (open source Winshoes Inter-
net components)

Yes

Indy Misc Additional cross-platform Internet com-
ponents (open source Winshoes Internet
components)

Yes

Table 3.3 Component palette pages (continued)

Page name Description Cross platform?

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-31

V C L a n d C L X c o m p o n e n t s

Text controls

Many applications present text to the user or allow the user to enter text. The type of
control used for this purpose depends on the size and format of the information.

TEdit and TMaskEdit are simple text controls that include a single line text edit box in
which you can type information. When the edit box has focus, a blinking insertion
point appears.

You can include text in the edit box by assigning a string value to its Text property.
You control the appearance of the text in the edit box by assigning values to its Font
property. You can specify the typeface, size, color, and attributes of the font. The
attributes affect all of the text in the edit box and cannot be applied to individual
characters.

An edit box can be designed to change its size depending on the size of the font it
contains. You do this by setting the AutoSize property to True. You can limit the
number of characters an edit box can contain by assigning a value to the MaxLength
property.

TMaskEdit is a special edit control that validates the text entered against a mask that
encodes the valid forms the text can take. The mask can also format the text that is
displayed to the user.

TMemo is for adding several lines of text.

Text control properties
Following are some of the important properties of text controls:

Properties of memo and rich text controls
Memo and rich text controls, which handle multiple lines of text, have several
properties in common. Note that rich text controls are not cross-platform.

Use this component: When you want users to do this:

TEdit Edit a single line of text

TMemo Edit multiple lines of text

TMaskEdit Adhere to a particular format, such as a postal code or phone number

TRichEdit Edit multiple lines of text using rich text format (VCL only)

Table 3.4 Text control properties

Property Description

Text Determines the text that appears in the edit box or memo control.

Font Controls the attributes of text written in the edit box or memo control.

AutoSize Enables the edit box to dynamically change its height depending on the
currently selected font.

ReadOnly Specifies whether the user is allowed to change the text.

MaxLength Limits the number of characters in simple text controls.

3-32 D e v e l o p e r ’ s G u i d e

V C L a n d C L X c o m p o n e n t s

TMemo is another type of edit box, which handles multiple lines of text. The lines in a
memo control can extend beyond the right boundary of the edit box, or they can
wrap onto the next line. You control whether the lines wrap using the WordWrap
property.

Memo and rich text controls include other properties such as the following:

• Alignment specifies how text is aligned (left, right, or center) in the component.
• The Text property contains the text in the control. Your application can tell if the

text changes by checking the Modified property.
• Lines contains the text as a list of strings.
• OEMConvert determines whether the text is temporarily converted from ANSI to

OEM as it is entered. This is useful for validating file names (VCL only).
• WordWrap determines whether the text will wrap at the right margin.
• WantReturns determines whether the user can insert hard returns in the text.
• WantTabs determines whether the user can insert tabs in the text.
• AutoSelect determines whether the text is automatically selected (highlighted)

when the control becomes active.
• SelText contains the currently selected (highlighted) part of the text.
• SelStart and SelLength indicate the position and length of the selected part of the

text.

At runtime, you can select all the text in the memo with the SelectAll method.

Rich text controls (VCL only)
The rich edit (TRichEdit) component is a memo control that supports rich text
formatting, printing, searching, and drag-and-drop of text. It allows you to specify
font properties, alignment, tabs, indentation, and numbering.

Specialized input controls

The following components provide additional ways of capturing input.

Scroll bars
The scroll bar component creates a scroll bar that you can use to scroll the contents of
a window, form, or other control. In the OnScroll event handler, you write code that
determines how the control behaves when the user moves the scroll bar.

The scroll bar component is not used very often, because many visual components
include scroll bars of their own and thus don’t require additional coding. For

Use this component: When you want users to do this:

TScrollBar Select values on a continuous range

TTrackBar Select values on a continuous range (more visually effective than a
scroll bar)

TUpDown Select a value from a spinner attached to an edit component (VCL only)

THotKey Enter Ctrl/Shift/Alt keyboard sequences (VCL only)

TSpinEdit Select a value from a spinner widget (CLX only)

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-33

V C L a n d C L X c o m p o n e n t s

example, TForm has VertScrollBar and HorzScrollBar properties that automatically
configure scroll bars on the form. To create a scrollable region within a form, use
TScrollBox.

Track bars
A track bar can set integer values on a continuous range. It is useful for adjusting
properties like color, volume and brightness. The user moves the slide indicator by
dragging it to a particular location or clicking within the bar.

• Use the Max and Min properties to set the upper and lower range of the track bar.
• Use SelEnd and SelStart to highlight a selection range. See Figure 3.4.
• The Orientation property determines whether the track bar is vertical or horizontal.
• By default, a track bar has one row of ticks along the bottom. Use the TickMarks

property to change their location. To control the intervals between ticks, use the
TickStyle property and SetTick method.

Figure 3.4 Three views of the track bar component

• Position sets a default position for the track bar and tracks the position at runtime.
• By default, users can move one tick up or down by pressing the up and down

arrow keys. Set LineSize to change that increment.
• Set PageSize to determine the number of ticks moved when the user presses Page Up

and Page Down.

Up-down controls (VCL only)
An up-down control (TUpDown) consists of a pair of arrow buttons that allow users
to change an integer value in fixed increments. The current value is given by the
Position property; the increment, which defaults to 1, is specified by the Increment
property. Use the Associate property to attach another component (such as an edit
control) to the up-down control.

Spin edit controls (CLX only)
A spin edit control (TSpinEdit) is also called an up-down widget, little arrows widget,
or spin button. This control lets the application user change an integer value in fixed
increments, either by clicking the up or down arrow buttons to increase or decrease
the value currently displayed, or by typing the value directly into the spin box.

The current value is given by the Value property; the increment, which defaults to 1,
is specified by the Increment property.

Hot key controls (VCL only)
Use the hot key component (THotKey) to assign a keyboard shortcut that transfers
focus to any control. The HotKey property contains the current key combination and
the Modifiers property determines which keys are available for HotKey.

3-34 D e v e l o p e r ’ s G u i d e

V C L a n d C L X c o m p o n e n t s

The hot key component can be assigned as the ShortCut property of a menu item.
Then, when a user enters the key combination specified by the HotKey and Modifiers
properties, Windows activates the menu item.

Splitter controls
A splitter (TSplitter) placed between aligned controls allows users to resize the
controls. Used with components like panels and group boxes, splitters let you divide
a form into several panes with multiple controls on each pane.

After placing a panel or other control on a form, add a splitter with the same
alignment as the control. The last control should be client-aligned, so that it fills up
the remaining space when the others are resized. For example, you can place a panel
at the left edge of a form, set its Alignment to alLeft, then place a splitter (also aligned
to alLeft) to the right of the panel, and finally place another panel (aligned to alLeft or
alClient) to the right of the splitter.

Set MinSize to specify a minimum size the splitter must leave when resizing its
neighboring control. Set Beveled to True to give the splitter’s edge a 3D look.

Buttons and similar controls

Aside from menus, buttons provide the most common way to invoke a command in
an application. Delphi offers several button-like controls:

Button controls
Users click button controls with the mouse to initiate actions. Buttons are labeled
with text that represent the action. The text is specified by assigning a string value to
the Caption property. Most buttons can also be selected by pressing a key on the
keyboard as a keyboard shortcut. The shortcut is shown as an underlined letter on
the button.

Users click button controls to initiate actions. You can assign an action to a TButton
component by creating an OnClick event handler for it. Double-clicking a button at
design time takes you to the button’s OnClick event handler in the Code editor.

• Set Cancel to True if you want the button to trigger its OnClick event when the user
presses Esc.

• Set Default to True if you want the Enter key to trigger the button’s OnClick event.

Use this component: To do this:

TButton Present command choices on buttons with text

TBitBtn Present command choices on buttons with text and glyphs

TSpeedButton Create grouped toolbar buttons

TCheckBox Present on/off options

TRadioButton Present a set of mutually exclusive choices

TToolBar Arrange tool buttons and other controls in rows and automatically adjust
their sizes and positions

TCoolBar Display a collection of windowed controls within movable, resizable
bands (VCL only)

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-35

V C L a n d C L X c o m p o n e n t s

Bitmap buttons
A bitmap button (BitBtn) is a button control that presents a bitmap image on its face.

• To choose a bitmap for your button, set the Glyph property.
• Use Kind to automatically configure a button with a glyph and default behavior.
• By default, the glyph is to the left of any text. To move it, use the Layout property.
• The glyph and text are automatically centered in the button. To move their

position, use the Margin property. Margin determines the number of pixels
between the edge of the image and the edge of the button.

• By default, the image and the text are separated by 4 pixels. Use Spacing to increase
or decrease the distance.

• Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs
property to 3 to show a different bitmap for each state.

Speed buttons
Speed buttons, which usually have images on their faces, can function in groups.
They are commonly used with panels to create toolbars.

• To make speed buttons act as a group, give the GroupIndex property of all the
buttons the same nonzero value.

• By default, speed buttons appear in an up (unselected) state. To initially display a
speed button as selected, set the Down property to True.

• If AllowAllUp is True, all of the speed buttons in a group can be unselected. Set
AllowAllUp to False if you want a group of buttons to act like a radio group.

For more information on speed buttons, refer to subtopics in the section “Adding a
toolbar using a panel component” on page 6-43.

Check boxes
A check box is a toggle that lets the user select an on or off state. When the choice is
turned on, the check box is checked. Otherwise, the check box is blank. You create
check boxes using TCheckBox.

• Set Checked to True to make the box appear checked by default.
• Set AllowGrayed to True to give the check box three possible states: checked,

unchecked, and grayed.
• The State property indicates whether the check box is checked (cbChecked),

unchecked (cbUnchecked), or grayed (cbGrayed).

Note Check box controls display one of two binary states. The indeterminate state is used
when other settings make it impossible to determine the current value for the check
box.

Radio buttons
Radio buttons present a set of mutually exclusive choices. You can create individual
radio buttons using TRadioButton or use the radio group component (TRadioGroup) to
arrange radio buttons into groups automatically. You can group radio buttons to let
the user select one from a limited set of choices. See “Grouping components” on
page 3-39 for more information.

3-36 D e v e l o p e r ’ s G u i d e

V C L a n d C L X c o m p o n e n t s

A selected radio button is displayed as a circle filled in the middle. When not
selected, the radio button shows an empty circle. Assign the value True or False to
the Checked property to change the radio button’s visual state.

Toolbars
Toolbars provide an easy way to arrange and manage visual controls. You can create
a toolbar out of a panel component and speed buttons, or you can use the ToolBar
component, then right-click and choose New Button to add buttons to the toolbar.

The TToolBar component has several advantages: buttons on a toolbar automatically
maintain uniform dimensions and spacing; other controls maintain their relative
position and height; controls can automatically wrap around to start a new row when
they do not fit horizontally; and TToolBar offers display options like transparency,
pop-up borders, and spaces and dividers to group controls.

You can use a centralized set of actions on toolbars and menus, by using action lists or
action bands. See “Using action lists” on page 6-23 for details on how to use action lists
with buttons and toolbars.

Toolbars can also parent other controls such as edit boxes, combo boxes, and so on.

Cool bars (VCL only)
A cool bar contains child controls that can be moved and resized independently.
Each control resides on an individual band. The user positions the controls by
dragging the sizing grip to the left of each band.

The cool bar requires version 4.70 or later of COMCTL32.DLL (usually located in the
Windows\System or Windows\System32 directory) at both design time and
runtime. Cool bars cannot be used in cross-platform applications.

• The Bands property holds a collection of TCoolBand objects. At design time, you
can add, remove, or modify bands with the Bands editor. To open the Bands
editor, select the Bands property in the Object Inspector, then double-click in the
Value column to the right, or click the ellipsis (...) button. You can also create
bands by adding new windowed controls from the palette.

• The FixedOrder property determines whether users can reorder the bands.
• The FixedSize property determines whether the bands maintain a uniform height.

Handling lists

Lists present the user with a collection of items to select from. Several components
display lists:

Use this component: To display:

TListBox A list of text strings

TCheckListBox A list with a check box in front of each item

TComboBox An edit box with a scrollable drop-down list

TTreeView A hierarchical list

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-37

V C L a n d C L X c o m p o n e n t s

Use the nonvisual TStringList and TImageList components to manage sets of strings
and images. For more information about string lists, see “Working with string lists”
on page 3-47.

List boxes and check-list boxes
List boxes (TListBox) and check-list boxes display lists from which users can select
items.

• Items uses a TStrings object to fill the control with values.
• ItemIndex indicates which item in the list is selected.
• MultiSelect specifies whether a user can select more than one item at a time.
• Sorted determines whether the list is arranged alphabetically.
• Columns specifies the number of columns in the list control.
• IntegralHeight specifies whether the list box shows only entries that fit completely

in the vertical space (VCL only).
• ItemHeight specifies the height of each item in pixels. The Style property can cause

ItemHeight to be ignored.
• The Style property determines how a list control displays its items. By default,

items are displayed as strings. By changing the value of Style, you can create
owner-draw list boxes that display items graphically or in varying heights. For
information on owner-draw controls, see “Adding graphics to controls” on
page 7-11.

To create a simple list box,

1 Within your project, drop a list box component from the Component palette onto a
form.

2 Size the list box and set its alignment as needed.

3 Double-click the right side of the Items property or choose the ellipsis button to
display the String List Editor.

4 Use the editor to enter free form text arranged in lines for the contents of the list
box.

5 Then choose OK.

To let users select multiple items in the list box, you can use the ExtendedSelect and
MultiSelect properties.

Combo boxes
A combo box (TComboBox) combines an edit box with a scrollable list. When users
enter data into the control—by typing or selecting from the list—the value of the Text
property changes. If AutoComplete is enabled, the application looks for and displays
the closest match in the list as the user types the data.

TListView A list of (draggable) items with optional icons, columns, and headings

TDateTimePicker A list box for entering dates or times (VCL only)

TMonthCalendar A calendar for selecting dates (VCL only)

Use this component: To display:

3-38 D e v e l o p e r ’ s G u i d e

V C L a n d C L X c o m p o n e n t s

Three types of combo boxes are: standard, drop-down (the default), and drop-down
list.

• Use the Style property to select the type of combo box you need.
• Use csDropDown if you want an edit box with a drop-down list. Use

csDropDownList to make the edit box read-only (forcing users to choose from the
list). Set the DropDownCount property to change the number of items displayed in
the list.

• Use csSimple to create a combo box with a fixed list that does not close. Be sure to
resize the combo box so that the list items are displayed.

• Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo boxes
that display items graphically or in varying heights. For information on owner-
draw controls, see “Adding graphics to controls” on page 7-11.

At runtime, CLX combo boxes work differently than VCL combo boxes. In CLX (but
not in the VCL combo box), you can add a item to a drop down by entering text and
pressing Enter in the edit field of a combo box. You can turn this feature off by setting
InsertMode to ciNone. It is also possible to add empty (no string) items to the list in
the combo box. Also, if you keep pressing the down arrow key, it does not stop at the
last item of the combo box list. It cycles around to the top again.

Tree views
A tree view (TTreeView) displays items in an indented outline. The control provides
buttons that allow nodes to be expanded and collapsed. You can include icons with
items’ text labels and display different icons to indicate whether a node is expanded
or collapsed. You can also include graphics, such as check boxes, that reflect state
information about the items.

• Indent sets the number of pixels horizontally separating items from their parents.
• ShowButtons enables the display of '+' and '–' buttons to indicate whether an item

can be expanded.
• ShowLines enables display of connecting lines to show hierarchical relationships

(VCL only).
• ShowRoot determines whether lines connecting the top-level items are displayed

(VCL only).

To add items to a tree view control at design time, double-click on the control to
display the TreeView Items editor. The items you add become the value of the Items
property. You can change the items at runtime by using the methods of the Items
property, which is an object of type TTreeNodes. TTreeNodes has methods for adding,
deleting, and navigating the items in the tree view.

Tree views can display columns and subitems similar to list views in vsReport mode.

List views
List views, created using TListView, display lists in various formats. Use the
ViewStyle property to choose the kind of list you want:

• vsIcon and vsSmallIcon display each item as an icon with a label. Users can drag
items within the list view window (VCL only).

• vsList displays items as labeled icons that cannot be dragged.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-39

V C L a n d C L X c o m p o n e n t s

• vsReport displays items on separate lines with information arranged in columns.
The leftmost column contains a small icon and label, and subsequent columns
contain subitems specified by the application. Use the ShowColumnHeaders
property to display headers for the columns.

Date-time pickers and month calendars (VCL only)
The DateTimePicker component displays a list box for entering dates or times, while
the MonthCalendar component presents a calendar for entering dates or ranges of
dates. To use these components, you must have version 4.70 or later of
COMCTL32.DLL (usually located in the Windows\System or Windows\System32
directory) at both design time and runtime. They are not available for use in cross-
platform applications.

Grouping components

A graphical interface is easier to use when related controls and information are
presented in groups. Delphi provides several components for grouping components:

Group boxes and radio groups
A group box (TGroupBox) arranges related controls on a form. The most commonly
grouped controls are radio buttons. After placing a group box on a form, select
components from the Component palette and place them in the group box. The
Caption property contains text that labels the group box at runtime.

The radio group component (TRadioGroup) simplifies the task of assembling radio
buttons and making them work together. To add radio buttons to a radio group, edit
the Items property in the Object Inspector; each string in Items makes a radio button
appear in the group box with the string as its caption. The value of the ItemIndex
property determines which radio button is currently selected. Display the radio
buttons in a single column or in multiple columns by setting the value of the Columns
property. To respace the buttons, resize the radio group component.

Panels
The TPanel component provides a generic container for other controls. Panels are
typically used to visually group components together on a form. Panels can be
aligned with the form to maintain the same relative position when the form is

Use this component: When you want this:

TGroupBox A standard group box with a title

TRadioGroup A simple group of radio buttons

TPanel A more visually flexible group of controls

TScrollBox A scrollable region containing controls

TTabControl A set of mutually exclusive notebook-style tabs

TPageControl A set of mutually exclusive notebook-style tabs with corresponding
pages, each of which may contain other controls

THeaderControl Resizable column headers

3-40 D e v e l o p e r ’ s G u i d e

V C L a n d C L X c o m p o n e n t s

resized. The BorderWidth property determines the width, in pixels, of the border
around a panel.

You can also place other controls onto a panel and use the Align property to ensure
proper positioning of all the controls in the group on the form. You can make a panel
alTop aligned so that its position will remain in place even if the form is resized.

The look of the panel can be changed to a raised or lowered look by using the
BevelOuter and BevelInner properties. You can vary the values of these properties to
create different visual 3-D effects. Note that if you merely want a raised or lowered
bevel, you can use the less resource intensive TBevel control instead.

You can also use one or more panels to build various status bars or information
display areas.

Scroll boxes
Scroll boxes (TScrollBox) create scrolling areas within a form. Applications often need to
display more information than will fit in a particular area. Some controls—such as
list boxes, memos, and forms themselves—can automatically scroll their contents.

Another use of scroll boxes is to create multiple scrolling areas (views) in a window.
Views are common in commercial word-processor, spreadsheet, and project
management applications. Scroll boxes give you the additional flexibility to define
arbitrary scrolling subregions of a form.

Like panels and group boxes, scroll boxes contain other controls, such as TButton and
TCheckBox objects. But a scroll box is normally invisible. If the controls in the scroll
box cannot fit in its visible area, the scroll box automatically displays scroll bars.

Another use of a scroll box is to restrict scrolling in areas of a window, such as a
toolbar or status bar (TPanel components). To prevent a toolbar and status bar from
scrolling, hide the scroll bars, and then position a scroll box in the client area of the
window between the toolbar and status bar. The scroll bars associated with the scroll
box will appear to belong to the window, but will scroll only the area inside the scroll
box.

Tab controls
The tab control component (TTabControl) creates a set of tabs that look like notebook
dividers. You can create tabs by editing the Tabs property in the Object Inspector;
each string in Tabs represents a tab. The tab control is a single panel with one set of
components on it. To change the appearance of the control when the tabs are clicked,
you need to write an OnChange event handler. To create a multipage dialog box, use a
page control instead.

Page controls
The page control component (TPageControl) is a page set suitable for multipage
dialog boxes. A page control displays multiple overlapping pages that are TTabSheet
objects. A page is selected in the user interface by clicking a tab on top of the control.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-41

V C L a n d C L X c o m p o n e n t s

To create a new page in a page control at design time, right-click the control and
choose New Page. At runtime, you add new pages by creating the object for the page
and setting its PageControl property:

NewTabSheet = TTabSheet.Create(PageControl1);
NewTabSheet.PageControl := PageControl1;

To access the active page, use the ActivePage property. To change the active page, you
can set either the ActivePage or the ActivePageIndex property.

Header controls
A header control (THeaderControl) is a is a set of column headers that the user can
select or resize at runtime. Edit the control’s Sections property to add or modify
headers. You can place the header sections above columns or fields. For example,
header sections might be placed over a list box (TListBox).

Providing visual feedback

There are many ways to provide users with information about the state of an
application. For example, some components—including TForm—have a Caption
property that can be set at runtime. You can also create dialog boxes to display
messages. In addition, the following components are especially useful for providing
visual feedback at runtime.

Labels and static text components
Labels (TLabel) display text and are usually placed next to other controls. You place a
label on a form when you need to identify or annotate another component such as an
edit box or when you want to include text on a form. The standard label component,
TLabel, is a non-windowed control (not widget-based in CLX), so it cannot receive
focus; when you need a label with a window handle, use TStaticText instead.

Label properties include the following:

• Caption contains the text string for the label.

• Font, Color, and other properties determine the appearance of the label. Each label
can use only one typeface, size, and color.

• FocusControl links the label to another control on the form. If Caption includes an
accelerator key, the control specified by FocusControl receives focus when the user
presses the accelerator key.

Use this component or
property: To do this:

TLabel and TStaticText Display non-editable text

TStatusBar Display a status region (usually at the bottom of a window)

TProgressBar Show the amount of work completed for a particular task

Hint and ShowHint Activate fly-by or “tooltip” help

HelpContext and HelpFile Link context-sensitive online Help

3-42 D e v e l o p e r ’ s G u i d e

V C L a n d C L X c o m p o n e n t s

• ShowAccelChar determines whether the label can display an underlined accelerator
character. If ShowAccelChar is True, any character preceded by an ampersand (&)
appears underlined and enables an accelerator key.

• Transparent determines whether items under the label (such as graphics) are
visible.

Labels usually display read-only static text that cannot be changed by the application
user. The application can change the text while it is executing by assigning a new
value to the Caption property. To add a text object to a form that a user can scroll or
edit, use TEdit.

Status bars
Although you can use a panel to make a status bar, it is simpler to use the status bar
component. By default, the status bar’s Align property is set to alBottom, which takes
care of both position and size.

If you only want to display one text string at a time in the status bar, set its
SimplePanel property to True and use the SimpleText property to control the text
displayed in the status bar.

You can also divide a status bar into several text areas, called panels. To create
panels, edit the Panels property in the Object Inspector, setting each panel’s Width,
Alignment, and Text properties from the Panels editor. Each panel’s Text property
contains the text displayed in the panel.

Progress bars
When your application performs a time-consuming operation, you can use a
progress bar to show how much of the task is completed. A progress bar displays a
dotted line that grows from left to right.

Figure 3.5 A progress bar

The Position property tracks the length of the dotted line. Max and Min determine the
range of Position. To make the line grow, increment Position by calling the StepBy or
StepIt method. The Step property determines the increment used by StepIt.

Help and hint properties
Most visual controls can display context-sensitive Help as well as fly-by hints at
runtime. The HelpContext and HelpFile properties establish a Help context number
and Help file for the control.

The Hint property contains the text string that appears when the user moves the
mouse pointer over a control or menu item. To enable hints, set ShowHint to True;
setting ParentShowHint to True causes the control’s ShowHint property to have the
same value as its parent’s.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-43

V C L a n d C L X c o m p o n e n t s

Grids

Grids display information in rows and columns. If you’re writing a database
application, use the TDBGrid or TDBCtrlGrid component described in Chapter 15,
“Using data controls.” Otherwise, use a standard draw grid or string grid.

Draw grids
A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an
OnDrawCell event handler to fill in the cells of the grid.

• The CellRect method returns the screen coordinates of a specified cell, while the
MouseToCell method returns the column and row of the cell at specified screen
coordinates. The Selection property indicates the boundaries of the currently
selected cells.

• The TopRow property determines which row is currently at the top of the grid. The
LeftCol property determines the first visible column on the left. VisibleColCount and
VisibleRowCount are the number of columns and rows visible in the grid.

• You can change the width or height of a column or row with the ColWidths and
RowHeights properties. Set the width of the grid lines with the GridLineWidth
property. Add scroll bars to the grid with the ScrollBars property.

• You can choose to have fixed or non-scrolling columns and rows with the
FixedCols and FixedRows properties. Assign a color to the fixed columns and rows
with the FixedColor property.

• The Options, DefaultColWidth, and DefaultRowHeight properties also affect the
appearance and behavior of the grid.

String grids
The string grid component is a descendant of TDrawGrid that adds specialized
functionality to simplify the display of strings. The Cells property lists the strings for
each cell in the grid; the Objects property lists objects associated with each string. All
the strings and associated objects for a particular column or row can be accessed
through the Cols or Rows property.

Value list editors (VCL only)

TValueListEditor is a specialized grid for editing string lists that contain name/value
pairs in the form Name=Value. The names and values are stored as a TStrings
descendant that is the value of the Strings property. You can look up the value for
any name using the Values property. TValueListEditor is not available for cross-
platform programming.

The grid contains two columns, one for the names and one for the values. By default,
the Name column is named “Key” and the Value column is named “Value”. You can
change these defaults by setting the TitleCaptions property. You can omit these titles
using the DisplayOptions property (which also controls resize when you resize the
control.)

3-44 D e v e l o p e r ’ s G u i d e

V C L a n d C L X c o m p o n e n t s

You can control whether users can edit the Name column using the KeyOptions
property. KeyOptions contains separate options to allow editing, adding new names,
deleting names, and controlling whether new names must be unique.

You can control how users edit the entries in the Value column using the ItemProps
property. Each item has a separate TItemProp object that lets you

• Supply an edit mask to limit the valid input.

• Specify a maximum length for values.

• Mark the value as read-only.

• Specify that the value list editor displays a drop-down arrow that opens a pick list
of values from which the user can choose or an ellipsis button that triggers an
event you can use for displaying a dialog in which users enter values.

If you specify that there is a drop-down arrow, you must supply the list of values
from which the user chooses. These can be a static list (the PickList property of the
TItemProp object) or they can be dynamically added at runtime using the value list
editor’s OnGetPickList event. You can also combine these approaches and have a
static list that the OnGetPickList event handler modifies.

If you specify that there is an ellipsis button, you must supply the response that
occurs when the user clicks that button (including the setting of a value, if
appropriate). You provide this response by writing an OnEditButtonClick event
handler.

Displaying graphics

The following components make it easy to incorporate graphics into an application.

Images
The image component displays a graphical image, like a bitmap, icon, or metafile.
The Picture property determines the graphic to be displayed. Use Center, AutoSize,
Stretch, and Transparent to set display options. For more information, see “Overview
of graphics programming” on page 8-1.

Shapes
The shape component displays a geometric shape. It is a nonwindowed control (not
widget-based in CLX) and therefore, cannot receive user input. The Shape property
determines which shape the control assumes. To change the shape’s color or add a
pattern, use the Brush property, which holds a TBrush object. How the shape is
painted depends on the Color and Style properties of TBrush.

Use this component: To display:

TImage Graphics files

TShape Geometric shapes

TBevel 3-D lines and frames

TPaintBox Graphics drawn by your program at runtime

TAnimate AVI files (VCL only)

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-45

V C L a n d C L X c o m p o n e n t s

Bevels
The bevel component (TBevel) is a line that can appear raised or lowered. Some
components, such as TPanel, have built-in properties to create beveled borders. When
such properties are unavailable, use TBevel to create beveled outlines, boxes, or
frames.

Paint boxes
The paint box (TPaintBox) allows your application to draw on a form. Write an
OnPaint event handler to render an image directly on the paint box's Canvas.
Drawing outside the boundaries of the paint box is prevented. For more information,
see“Overview of graphics programming” on page 8-1.

Animation control (VCL only)
The animation component is a window that silently displays an Audio Video
Interleaved (AVI) clip. An AVI clip is a series of bitmap frames, like a movie.
Although AVI clips can have sound, animation controls work only with silent AVI
clips. The files you use must be either uncompressed AVI files or AVI clips
compressed using run-length encoding (RLE). Animation control cannot be used in
cross-platform programming.

Following are some of the properties of an animation component:

• ResHandle is the Windows handle for the module that contains the AVI clip as a
resource. Set ResHandle at runtime to the instance handle or module handle of the
module that includes the animation resource. After setting ResHandle, set the
ResID or ResName property to specify which resource in the indicated module is
the AVI clip that should be displayed by the animation control.

• Set AutoSize to True to have the animation control adjust its size to the size of the
frames in the AVI clip.

• StartFrame and StopFrame specify in which frames to start and stop the clip.
• Set CommonAVI to display one of the common Windows AVI clips provided in

Shell32.DLL.
• Specify when to start and interrupt the animation by setting the Active property to

True and False, respectively, and how many repetitions to play by setting the
Repetitions property.

• The Timers property lets you display the frames using a timer. This is useful for
synchronizing the animation sequence with other actions, such as playing a sound
track.

Developing dialog boxes

The dialog box components on the Dialogs page of the Component palette make
various dialog boxes available to your applications. These dialog boxes provide
applications with a familiar, consistent interface that enables the user to perform
common file operations such as opening, saving, and printing files. Dialog boxes
display and/or obtain data.

3-46 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

Each dialog box opens when its Execute method is called. Execute returns a Boolean
value: if the user chooses OK to accept any changes made in the dialog box, Execute
returns True; if the user chooses Cancel to escape from the dialog box without
making or saving changes, Execute returns False.

If you are developing cross-platform applications, you can use the dialogs provided
with CLX in the QDialogs unit. For operating systems that have native dialog box
types for common tasks, such as for opening or saving a file or for changing font or
color, you can use the UseNativeDialog property. Set UseNativeDialog to True if your
application will run in such an environment, and if you want it to use the native
dialogs instead of the Qt dialogs.

Using open dialog boxes
One of the commonly used dialog box components is TOpenDialog. This component
is usually invoked by a New or Open menu item under the File option on the main
menu bar of a form. The dialog box contains controls that let you select groups of files
using a wildcard character and navigate through directories.

The TOpenDialog component makes an Open dialog box available to your
application. The purpose of this dialog box is to let a user specify a file to open. You
use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user’s file is stored in the
TOpenDialog FileName property, which you can then process as you want.

The following code snippet can be placed in an Action and linked to the Action
property of a TMainMenu subitem or be placed in the subitem’s OnClick event:

if OpenDialog1.Execute then
filename := OpenDialog1.FileName;

This code will show the dialog box and if the user presses the OK button, it will copy
the name of the file into a previously declared AnsiString variable named filename.

Using helper objects
The VCL and CLX include a variety of nonvisual objects that simplify common
programming tasks. This section describes a few Helper objects that make it easier to
perform the following tasks:

• Working with lists
• Working with string lists
• Changing the Windows registry and .INI files
• Using streams

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-47

U s i n g h e l p e r o b j e c t s

Working with lists

The following objects provide functionality for creating and managing lists:

For more information about these objects, see the online reference.

Working with string lists

Applications often need to manage lists of character strings. Examples include items
in a combo box, lines in a memo, names of fonts, and names of rows and columns in a
string grid. The VCL and CLX provide a common interface to any list of strings
through an object called TStrings and its descendant TStringList. TStringList
implements the abstract properties and methods introduced by TStrings, and
introduces properties, events, and methods to

• Sort the strings in the list.
• Prohibit duplicate strings in sorted lists.
• Respond to changes in the contents of the list.

In addition to providing functionality for maintaining string lists, these objects allow
easy interoperability; for example, you can edit the lines of a memo (which are an
instance of TStrings) and then use these lines as items in a combo box (also an
instance of TStrings).

A string-list property appears in the Object Inspector with TStrings in the Value
column. Double-click TStrings to open the String List editor, where you can edit, add,
or delete lines.

You can also work with string-list objects at runtime to perform such tasks as

• Loading and saving string lists
• Creating a new string list
• Manipulating strings in a list
• Associating objects with a string list

Table 3.5 Components for creating and managing lists

Object Maintains

TList A list of pointers

TObjectList A memory-managed list of instance objects

TComponentList A memory-managed list of components (that is, instances of classes
descended from TComponent)

TQueue A first-in first-out list of pointers

TStack A last-in first-out list of pointers

TObjectQueue A first-in first-out list of objects

TObjectStack A last-in first-out list of objects

TClassList A list of class types

TCollection,
TOwnedCollection, and
TCollectionItem

Indexed collections of specially defined items

TStringList A list of strings

3-48 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

Loading and saving string lists
String-list objects provide SaveToFile and LoadFromFile methods that let you store a
string list in a text file and load a text file into a string list. Each line in the text file
corresponds to a string in the list. Using these methods, you could, for example,
create a simple text editor by loading a file into a memo component, or save lists of
items for combo boxes.

The following example loads a copy of the WIN.INI file into a memo field and makes
a backup copy called WIN.BAK.

procedure EditWinIni;
var

FileName: string;{ storage for file name }
begin

FileName := 'C:\WINDOWS\WIN.INI';{ set the file name }
with Form1.Memo1.Lines do
begin

LoadFromFile(FileName);{ load from file }
SaveToFile(ChangeFileExt(FileName, '.BAK'));{ save into backup file }

end;
end;

Creating a new string list
A string list is typically part of a component. There are times, however, when it is
convenient to create independent string lists, for example to store strings for a lookup
table. The way you create and manage a string list depends on whether the list is
short-term (constructed, used, and destroyed in a single routine) or long-term
(available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists
If you use a string list only for the duration of a single routine, you can create it, use
it, and destroy it all in one place. This is the safest way to work with string lists.
Because the string-list object allocates memory for itself and its strings, you should
use a try...finally block to ensure that the memory is freed even if an exception
occurs.

1 Construct the string-list object.
2 In the try part of a try...finally block, use the string list.
3 In the finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list,
using it, and then destroying it.

procedure TForm1.Button1Click(Sender: TObject);
var

TempList: TStrings;{ declare the list }
begin

TempList := TStringList.Create;{ construct the list object }
try

{ use the string list }

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-49

U s i n g h e l p e r o b j e c t s

finally
TempList.Free;{ destroy the list object }

end;
end;

Long-term string lists
If a string list must be available at any time while your application runs, construct the
list at start-up and destroy it before the application terminates.

1 In the unit file for your application’s main form, add a field of type TStrings to the
form’s declaration.

2 Write an event handler for the main form’s constructor, which executes before the
form appears. It should create a string list and assign it to the field you declared in
the first step.

3 Write an event handler that frees the string list for the form’s OnClose event.

This example uses a long-term string list to record the user’s mouse clicks on the
main form, then saves the list to a file before the application terminates.

unit Unit1;
interface
uses Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;
{For CLX: uses SysUtils, Classes, QGraphics, QControls, QForms, Qialogs;}

type
TForm1 = class(TForm)

procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

private
{ Private declarations }

public
{ Public declarations }
ClickList: TStrings;{ declare the field }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin

ClickList := TStringList.Create;{ construct the list }
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin

ClickList.SaveToFile(ChangeFileExt(Application.ExeName, '.LOG'));{ save the list }

3-50 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

ClickList.Free;{ destroy the list object }
end;

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
ClickList.Add(Format('Click at (%d, %d)', [X, Y]));{ add a string to the list }

end;

end.

Manipulating strings in a list
Operations commonly performed on string lists include:

• Counting the strings in a list
• Accessing a particular string
• Finding the position of a string in the list
• Iterating through strings in a list
• Adding a string to a list
• Moving a string within a list
• Deleting a string from a list
• Copying a complete string list

Counting the strings in a list
The read-only Count property returns the number of strings in the list. Since string
lists use zero-based indexes, Count is one more than the index of the last string.

Accessing a particular string
The Strings array property contains the strings in the list, referenced by a zero-based
index. Because Strings is the default property for string lists, you can omit the Strings
identifier when accessing the list; thus

StringList1.Strings[0] := 'This is the first string.';

is equivalent to

StringList1[0] := 'This is the first string.';

Locating items in a string list
To locate a string in a string list, use the IndexOf method. IndexOf returns the index of
the first string in the list that matches the parameter passed to it, and returns –1 if the
parameter string is not found. IndexOf finds exact matches only; if you want to match
partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found
among the Items of a list box:

if FileListBox1.Items.IndexOf('WIN.INI') > -1 ...

Iterating through strings in a list
To iterate through the strings in a list, use a for loop that runs from zero to Count – 1.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-51

U s i n g h e l p e r o b j e c t s

This example converts each string in a list box to uppercase characters.

procedure TForm1.Button1Click(Sender: TObject);
var

Index: Integer;
begin

for Index := 0 to ListBox1.Items.Count - 1 do
ListBox1.Items[Index] := UpperCase(ListBox1.Items[Index]);

end;

Adding a string to a list
To add a string to the end of a string list, call the Add method, passing the new string
as the parameter. To insert a string into the list, call the Insert method, passing two
parameters: the string and the index of the position where you want it placed. For
example, to make the string “Three” the third string in a list, you would use:

Insert(2, 'Three');

To append the strings from one list onto another, call AddStrings:

StringList1.AddStrings(StringList2); { append the strings from StringList2 to StringList1 }

Moving a string within a list
To move a string in a string list, call the Move method, passing two parameters: the
current index of the string and the index you want assigned to it. For example, to
move the third string in a list to the fifth position, you would use:

Move(2, 4)

Deleting a string from a list
To delete a string from a string list, call the list’s Delete method, passing the index of
the string you want to delete. If you don’t know the index of the string you want to
delete, use the IndexOf method to locate it. To delete all the strings in a string list, use
the Clear method.

This example uses IndexOf and Delete to find and delete a string:

with ListBox1.Items do
begin

BIndex := IndexOf('bureaucracy');
if BIndex > -1 then

Delete(BIndex);
end;

Copying a complete string list
You can use the Assign method to copy strings from a source list to a destination list,
overwriting the contents of the destination list. To append strings without
overwriting the destination list, use AddStrings. For example,

Memo1.Lines.Assign(ComboBox1.Items); { overwrites original strings }

copies the lines from a combo box into a memo (overwriting the memo), while

Memo1.Lines.AddStrings(ComboBox1.Items); { appends strings to end }

appends the lines from the combo box to the memo.

3-52 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

When making local copies of a string list, use the Assign method. If you assign one
string-list variable to another—

StringList1 := StringList2;

—the original string-list object will be lost, often with unpredictable results.

Associating objects with a string list
In addition to the strings stored in its Strings property, a string list can maintain
references to objects, which it stores in its Objects property. Like Strings, Objects is an
array with a zero-based index. The most common use for Objects is to associate
bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to
the list in a single step. IndexOfObject returns the index of the first string in the list
associated with a specified object. Methods like Delete, Clear, and Move operate on
both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property
at the same index. You cannot add an object without adding a corresponding string.

Windows registry and INI files

The Windows system registry is a hierarchical database where applications store
configuration information. The VCL class TRegistry supplies methods that read and
write to the registry.

Until Windows 95, most applications stored configuration information in
initialization files, usually named with the extension .INI. The VCL provides the
following classes to facilitate maintenance and migration of programs that use INI
files:

• TRegistry to work with the registry (VCL only).
• TIniFile (VCL only) or TMemIniFile to work with INI files.
• TRegistryIniFile when you want to work with both the registry and INI files (VCL

only). TRegistryIniFile has properties and methods similar to those of TIniFile, but
it reads and writes to the system registry. By using a variable of type
TCustomIniFile (the common ancestor of TIniFile, TMemIniFile, and
TRegistryIniFile), you can write generic code that accesses either the registry or an
INI file, depending on where it is called.

Only TMemIniFile can be used in cross-platform programming.

Using TIniFile (VCL only)
The INI file format is still popular, many of the Delphi configuration files (such as the
DSK Desktop settings file) are in this format. Because this file format was and is
prevalent, VCL provides a class to make reading and writing these files very easy.
TIniFile is not available for cross-platform programming.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-53

U s i n g h e l p e r o b j e c t s

When you instantiate the TIniFile object, you pass as a parameter to the constructor
the name of the INI file. If the file does not exist, it is automatically created. You are
then free to read values using ReadString, ReadInteger, or ReadBool. Alternatively, if
you want to read an entire section of the INI file, you can use the ReadSection method.
Similarly, you can write values using WriteBool, WriteInteger, or WriteString.

Each of the Read routines takes three parameters. The first parameter identifies the
section of the INI file. The second parameter identifies the value you want to read,
and the third is a default value in case the section or value doesn't exist in the INI file.
Similarly, the Write routines will create the section and/or value if they do not exist.
The example code creates an INI file the first time it is run that looks like this:

[Form]
Top=185
Left=280
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the INI values are read in during
creation of the form and written back out in the OnClose event.

Using TRegistry
Most 32-bit applications store their information in the registry instead of INI files
because the registry is hierarchical, more robust, and doesn't suffer from the size
limitations of INI files. The TRegistry object contains methods to open, close, save,
move, copy, and delete keys.

TRegistry is not available for cross-platform programming.

For more information, see the TRegistry topic in the online help.

Using TRegIniFile
If you are accustomed to using INI files and want to move your configuration
information to the registry instead, you can use the TRegIniFile class. TRegIniFile is
designed to make registry entries look like INI file entries. All the methods from
TIniFile (read and write) exist in TRegIniFile.

When you construct a TRegIniFile object, the parameter you pass (the filename for an
IniFile object) becomes a key value under the user key in the registry, and all sections
and values branch from that root. In fact, this object simplifies the registry interface
considerably, so you may want to use it instead of the TRegistry component even if
you aren't porting existing code.

TRegIniFile is not available for cross-platform programming.

For more information, see the TRegIniFile topic in the VCL online reference.

3-54 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

Creating drawing spaces

The TCanvas encapsulates a Windows device context in the VCL and a paint device
(Qt painter) in CLX. which handles all drawing for both forms, visual containers
(such as panels) and the printer object (covered in“Printing” on page 3-54 “).

Using the canvas object, you no longer have to worry about allocating pens, brushes,
palettes, and so on—all the allocation and deallocation are handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes,
polygons, fonts, etc. onto any control that contains a canvas. For example, here is a
button event handler that draws a line from the upper left corner to the middle of the
form and outputs some raw text onto the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Canvas.Pen.Color := clBlue;
 Canvas.MoveTo(10, 10);
 Canvas.LineTo(100, 100);
 Canvas.Brush.Color := clBtnFace;
 Canvas.Font.Name := ‘Arial’;
 Canvas.TextOut(Canvas.PenPos.x, Canvas.PenPos.y,’This is the end of the line’);
end;

In Windows applications, the TCanvas object also protects you against common
Windows graphics errors, such as restoring device contexts, pens, brushes, and so on
to the value they had before the drawing operation. TCanvas is used everywhere in
Delphi that drawing is required or possible, and makes drawing graphics both fail-
safe and easy.

See TCanvas in the online help reference for a complete listing of properties and
methods.

Printing

The VCL TPrinter object encapsulates details of Windows printers. To get a list of
installed and available printers, use the Printers property. The CLX TPrinter object is a
paint device that paints on a printer. It generates postscript and sends that to lpr, lp,
or another print command.

Both printer objects use a TCanvas (which is identical to the form's TCanvas) which
means that anything that can be drawn on a form can be printed as well. To print an
image, call the BeginDoc method followed by whatever canvas graphics you want to
print (including text through the TextOut method) and send the job to the printer by
calling the EndDoc method.

This example uses a button and a memo on a form. When the user clicks the button,
the content of the memo is printed with a 200-pixel border around the page.

U s i n g t h e c o m p o n e n t l i b r a r i e s 3-55

U s i n g h e l p e r o b j e c t s

To run this example successfully, add Printers to your uses clause.

procedure TForm1.Button1Click(Sender: TObject);
var
 r: TRect;
 i: Integer;
begin
 with Printer do
 begin
 r := Rect(200,200,(Pagewidth - 200),(PageHeight - 200));
 BeginDoc;
 for i := 0 to Memo1.Lines.Count do
 Canvas.TextOut(200,200 + (i *
Canvas.TextHeight(Memo1.Lines.Strings[i])),
 Memo1.Lines.Strings[i]);
 Canvas.Brush.Color := clBlack;
 Canvas.FrameRect(r);
 EndDoc;
 end;
end;

For more information on the use of the TPrinter object, look in the online help under
TPrinter.

Using streams

Streams are just ways of reading and writing data. Steams provide a common
interface for reading and writing to different media such as memory, strings, sockets,
and blob streams.

In the following streaming example, one file is copied to another one using streams.
The application includes two edit controls (From and To) and a Copy File button.

procedure TForm1.CopyFileClick(Sender: TObject);
var
 stream1, stream2:TStream;
begin
 stream1:=TFileStream.Create(From.Text,fmOpenRead or fmShareDenyWrite);
 try
 stream2 := TFileStream.Create(To.Text fmOpenCreate or fmShareDenyRead);
 try
 stream2.CopyFrom(Stream1,Stream1.Size);

finally
 stream2.Free;

finally
stream1.Free

end;

Use specialized stream objects to read or write to storage media. Each descendant of
TStream implements methods for accessing a particular medium, such as disk files,
dynamic memory, and so on. TStream descendants include TFileStream,
TStringStream, and TMemoryStream. In addition to methods for reading and writing,
these objects permit applications to seek to an arbitrary position in the stream.
Properties of TStream provide information about the stream, such as size and current
position.

3-56 D e v e l o p e r ’ s G u i d e

C o m m o n p r o g r a m m i n g t a s k s 4-1

C h a p t e r

4
Chapter4Common programming tasks

This chapter discusses how to perform some of the common programming tasks in
Delphi:

• Understanding classes
• Defining classes
• Handling exceptions
• Using interfaces
• Defining custom variants
• Working with strings
• Working with files
• Converting measurements

Understanding classes
A class is an abstract definition of properties, methods, events, and class members
(such as variables local to the class). When you create an instance of a class, this
instance is called an object. The term object is often used more loosely in the Delphi
documentation and where the distinction between a class and an instance of the class
is not important, the term “object” may also refer to a class.

Although Delphi includes many classes in its object hierarchy, you are likely to need
to create additional classes if you are writing object-oriented programs. The classes
you write must descend from TObject or one of its descendants. A class type
declaration contains three possible sections that control the accessibility of its fields
and methods:

Type
TClassName = Class(TObject)

public
{public fields}
{public methods}

4-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g c l a s s e s

protected
{protected fields}
{protected methods}

private
{private fields}
{private methods}

end;

• The public section declares fields and methods with no access restrictions; class
instances and descendant classes can access these fields and methods.

• The protected section includes fields and methods with some access restrictions;
descendant classes can access these fields and methods.

• The private section declares fields and methods that have rigorous access
restrictions; they cannot be accessed by class instances or descendant classes.

The advantage of using classes comes from being able to create new classes as
descendants of existing ones. Each descendant class inherits the fields and methods
of its parent and ancestor classes. You can also declare methods in the new class that
override inherited ones, introducing new, more specialized behavior.

The general syntax of a descendant class is as follows:

Type
TClassName = Class (TParentClass)

public
{public fields}
{public methods}

protected
{protected fields}
{protected methods}

private
{private fields}
{private methods}

end;

If no parent class name is specified, the class inherits directly from TObject. TObject
defines only a handful of methods, including a basic constructor and destructor.

For more information about the syntax, language definitions, and rules for classes,
see the Object Pascal Language Guide online Help on Class types.

Defining classes
Delphi allows you to declare classes that implement the programming features you
need to use in your application. Some versions of Delphi include a feature called
class completion that simplifies the work of defining and implementing new classes
by generating skeleton code for the class members you declare.

To define a class,

1 In the IDE, start with a project open and choose File|New|Unit to create a new
unit where you can define the new class.

C o m m o n p r o g r a m m i n g t a s k s 4-3

D e f i n i n g c l a s s e s

2 Add the uses clause and type section to the interface section.

3 In the type section, write the class declaration. You need to declare all the member
variables, properties, methods, and events.

TMyClass = class; {This implicitly descends from TObject}
public

.

.

.

.

.

.
private

.

.

.
published {If descended from TPersistent or below}

.

.

.

Note The object that holds the custom variant’s data must be compiled with RTTI. This
means it must be compiled using the {$M+} compiler directive, or descend from
TPersistent or below.

If you want the class to descend from a specific class, you need to indicate that
class in the definition:

TMyClass = class(TParentClass); {This descends from TParentClass}

For example:

type TMyButton = class(TButton)
property Size: Integer;
procedure DoSomething;

end;

If your version of Delphi includes class completion: place the cursor within a
method definition in the interface section and press Ctrl+Shift+C (or right-click
and select Complete Class at Cursor). Delphi completes any unfinished property
declarations and creates the empty methods you need in the implementation
section. (If you do not have class completion, you’ll need to write the code
yourself, completing property declarations and writing the methods.)

Given the example above, if you have class completion, Delphi adds read and
write specifiers to your interface declaration, including any supporting fields or
methods:

type TMyButton = class(TButton)
property Size: Integer read FSize write SetSize;
procedure DoSomething;

private
FSize: Integer;
procedure SetSize(const Value: Integer);

It also adds the following code to the implementation section of the unit.

{ TMyButton }
procedure TMyButton.DoSomething;
begin

4-4 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

end;
procedure TMyButton.SetSize(const Value: Integer);
begin

FSize := Value;
end;

4 Fill in the methods. For example, to make it so the button beeps when you call the
DoSomething method, add the Beep between begin and end.

{ TMyButton }
procedure TMyButton.DoSomething;
begin

Beep;
end;

procedure TMyButton.SetSize(const Value: Integer);
begin

if fsize < > value then
begin
FSize := Value;
DoSomething;

end;
end;

Note that the button also beeps when you call SetSize to change the size of the
button.

For more information about the syntax, language definitions, and rules for classes
and methods, see the Object Pascal Language Guide online Help on Class types and
methods.

Handling exceptions
Delphi provides a mechanism to handle errors in a consistent manner. Exception
handling allows the application to recover from errors if possible and to shut down if
need be, without losing data or resources. Error conditions in Delphi are indicated by
exceptions. This section describes the following tasks for using exceptions to create
safe applications:

• Protecting blocks of code
• Protecting resource allocations
• Handling RTL exceptions
• Handling component exceptions
• Exception handling with external sources
• Silent exceptions
• Defining your own exceptions

Protecting blocks of code

To make your applications robust, your code needs to recognize exceptions when
they occur and respond to them. If you don't specify a response, the application will
present a message box describing the error. Your job, then, is to recognize places

C o m m o n p r o g r a m m i n g t a s k s 4-5

H a n d l i n g e x c e p t i o n s

where errors might happen, and define responses, particularly in areas where errors
could cause the loss of data or system resources.

When you create a response to an exception, you do so on blocks of code. When you
have a series of statements that all require the same kind of response to errors, you
can group them into a block and define error responses that apply to the whole block.

Blocks with specific responses to exceptions are called protected blocks because they
can guard against errors that might otherwise either terminate the application or
damage data.

To protect blocks of code you need to understand

• Responding to exceptions
• Exceptions and the flow of control
• Nesting exception responses

Responding to exceptions
When an error condition occurs, the application raises an exception, meaning it
creates an exception object. Once an exception is raised, your application can execute
cleanup code, handle the exception, or both.

Executing cleanup code
The simplest way to respond to an exception is to guarantee that some cleanup code
is executed. This kind of response doesn't correct the condition that caused the error
but lets you ensure that your application doesn't leave its environment in an unstable
state. You typically use this kind of response to ensure that the application frees
allocated resources, regardless of whether errors occur.

Handling an exception
This is a specific response to a specific kind of exception. Handling an exception
clears the error condition and destroys the exception object, which allows the
application to continue execution. You typically define exception handlers to allow
your applications to recover from errors and continue running. Types of exceptions
you might handle include attempts to open files that don't exist, writing to full disks,
or calculations that exceed legal bounds. Some of these, such as “File not found,” are
easy to correct and retry, while others, such as running out of memory, might be
more difficult for the application or the user to correct.

To handle exceptions effectively, you need to understand the following:

• Creating an exception handler
• Exception handling statements
• Using the exception instance
• Scope of exception handlers
• Providing default exception handlers
• Handling classes of exceptions
• Reraising the exception

4-6 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

Exceptions and the flow of control
Object Pascal makes it easy to incorporate error handling into your applications
because exceptions don't get in the way of the normal flow of your code. In fact, by
moving error checking and error handling out of the main flow of your algorithms,
exceptions can simplify the code you write.

When you declare a protected block, you define specific responses to exceptions that
might occur within that block. When an exception occurs in that block, execution
immediately jumps to the response you defined, then leaves the block.

Example The following code that includes a protected block. If any exception occurs in the
protected block, execution jumps to the exception-handling part, which beeps.
Execution resumes outside the block.

try
AssignFile(F, FileName);
Reset(F);
ƒ

except
on Exception do Beep;

end;
ƒ { execution resumes here, outside the protected block }

Nesting exception responses
Your code defines responses to exceptions that occur within blocks. Because Pascal
allows you to nest blocks of code inside other blocks, you can customize responses
even within blocks that already contain customized responses.

In the simplest case, for example, you can protect a resource allocation, and within
that protected block, define blocks that allocate and protect other resources.
Conceptually, that might look something like this:

C o m m o n p r o g r a m m i n g t a s k s 4-7

H a n d l i n g e x c e p t i o n s

You can also use nested blocks to define local handling for specific exceptions that
overrides the handling in the surrounding block. Conceptually, that looks something
like this:

You can also mix different kinds of exception-response blocks, nesting resource
protections within exception handling blocks and vice versa.

Protecting resource allocations

One key to having a robust application is ensuring that if it allocates resources, it also
releases them, even if an exception occurs. For example, if your application allocates
memory, you need to make sure it eventually releases the memory, too. If it opens a
file, you need to make sure it closes the file later.

Keep in mind that exceptions don't come just from your code. A call to an RTL
routine, for example, or another component in your application might raise an
exception. Your code needs to ensure that if these conditions occur, you release
allocated resources.

To protect resources effectively, you need to understand the following:

• What kind of resources need protection?

• Creating a resource protection block

What kind of resources need protection?
Under normal circumstances, you can ensure that an application frees allocated
resources by including code for both allocating and freeing. When exceptions occur,
however, you need to ensure that the application still executes the resource-freeing
code.

Some common resources that you should always be sure to release are:

• Files

• Memory

• Windows resources (VCL only)

• Objects

4-8 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

Example The following event handler allocates memory, then generates an error, so it never
executes the code to free the memory:

procedure TForm1.Button1Click(Sender: TComponent);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;
begin

ADividend := 0;
GetMem(APointer, 1024);{ allocate 1K of memory }
AnInteger := 10 div ADividend;{ this generates an error }
FreeMem(APointer, 1024);{ it never gets here }

end;

Although most errors are not that obvious, the example illustrates an important
point: When the division-by-zero error occurs, execution jumps out of the block, so
the FreeMem statement never gets to free the memory.

To guarantee that the FreeMem gets to free the memory allocated by GetMem, you
need to put the code in a resource-protection block.

Creating a resource protection block
To ensure that you free allocated resources, even in case of an exception, you embed
the resource-using code in a protected block, with the resource-freeing code in a
special part of the block. Here's an outline of a typical protected resource allocation:

{ allocate the resource }
try
 { statements that use the resource }
finally
 { free the resource }
end;

The key to the try..finally block is that the application always executes any
statements in the finally part of the block, even if an exception occurs in the
protected block. When any code in the try part of the block (or any routine called by
code in the try part) raises an exception, execution halts at that point. Once an
exception handler is found, execution jumps to the finally part, which is called the
cleanup code. After the finally part is executed, the exception handler is called. If no
exception occurs, the cleanup code is executed in the normal order, after all the
statements in the try part.

Example The following code illustrates an event handler that allocates memory and generates
an error, but still frees the allocated memory:

procedure TForm1.Button1Click(Sender: TComponent);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;

begin
ADividend := 0;
GetMem(APointer, 1024);{ allocate 1K of memory }
try

AnInteger := 10 div ADividend;{ this generates an error }

C o m m o n p r o g r a m m i n g t a s k s 4-9

H a n d l i n g e x c e p t i o n s

finally
FreeMem(APointer, 1024);{ execution resumes here, despite the error }

end;
end;

The statements in the finally block do not depend on an exception occurring. If no
statement in the try part raises an exception, execution continues through the finally
block.

Handling RTL exceptions

When you write code that calls routines in the runtime library (RTL), such as
mathematical functions or file-handling procedures, the RTL reports errors back to
your application in the form of exceptions. By default, RTL exceptions generate a
message that the application displays to the user. You can define your own exception
handlers to handle RTL exceptions in other ways.

There are also silent exceptions that do not, by default, display a message.

RTL exceptions are handled like any other exceptions. To handle RTL exceptions
effectively, you need to understand the following:

• What are RTL exceptions?
• Creating an exception handler
• Exception handling statements
• Using the exception instance
• Scope of exception handlers
• Providing default exception handlers
• Handling classes of exceptions
• Reraising the exception

What are RTL exceptions?
The runtime library's exceptions are defined in the SysUtils unit, and they all descend
from a generic exception-object type called Exception. Exception provides the string
for the message that RTL exceptions display by default.

Several kinds of exceptions can be raised by the RTL, as described in the following
table.

Table 4.1 RTL exceptions

Error type Cause Meaning

Input/output Error accessing a file
or I/O device

Most I/O exceptions are related to error codes
returned when accessing a file.

Heap Error using dynamic
memory

Heap errors can occur when there is insufficient
memory available, or when an application
disposes of a pointer that points outside the
heap.

Integer math Illegal operation on
integer-type
expressions

Errors include division by zero, numbers or
expressions out of range, and overflows.

4-10 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

For a list of the RTL exception types, see the code in the SysUtils unit.

Creating an exception handler
An exception handler is code that handles a specific exception or exceptions that
occur within a protected block of code. In cross-platform programming, it is very rare
that you will need to write an exception handler. Most exceptions can be handled
using try..finally blocks as described in “Protecting blocks of code” on page 4-4 and
“Protecting resource allocations” on page 4-7.

To define an exception handler, embed the code you want to protect in an exception-
handling block and specify the exception handling statements in the except part of
the block. Here is an outline of a typical exception-handling block:

try
 { statements you want to protect }
except
 { exception-handling statements }
end;

The application executes the statements in the except part only if an exception occurs
during execution of the statements in the try part. Execution of the try part
statements includes routines called by code in the try part. That is, if code in the try
part calls a routine that doesn't define its own exception handler, execution returns to
the exception-handling block, which handles the exception.

When a statement in the try part raises an exception, execution immediately jumps to
the except part, where it steps through the specified exception-handling statements,
or exception handlers, until it finds a handler that applies to the current exception.

Once the application locates an exception handler that handles the exception, it
executes the statement, then automatically destroys the exception object. Execution
continues at the end of the current block.

Floating-point math Illegal operation on
real-type expressions

Floating-point errors can come from either a
hardware coprocessor or the software emulator.
Errors include invalid instructions, division by
zero, and overflow or underflow.

Typecast Invalid typecasting
with the as operator

Objects can only be typecast to compatible types.

Conversion Invalid type
conversion

Type-conversion functions such as IntToStr,
StrToInt, and StrToFloat raise conversion
exceptions when the parameter cannot be
converted to the desired type.

Hardware System condition Hardware exceptions indicate that either the
processor or the user generated some kind of
error condition or interruption, such as an access
violation, stack overflow, or keyboard interrupt.

Variant Illegal type coercion Errors can occur when referring to variants in
expressions where the variant cannot be coerced
into a compatible type.

Table 4.1 RTL exceptions (continued)

Error type Cause Meaning

C o m m o n p r o g r a m m i n g t a s k s 4-11

H a n d l i n g e x c e p t i o n s

Exception handling statements
Each on statement in the except part of a try..except block defines code for handling a
particular kind of exception. The form of these exception-handling statements is as
follows:

on <type of exception> do <statement>;

Example You can define an exception handler for division by zero to provide a default result:

function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin

try
Result := Sum div NumberOfItems;{ handle the normal case }

except
on EDivByZero do Result := 0;{ handle the exception only if needed }

end;
end;

Note that this is clearer than having to test for zero every time you call the function.
Here's an equivalent function that doesn't take advantage of exceptions:

function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin

if NumberOfItems <> 0 then{ always test }
Result := Sum div NumberOfItems{ use normal calculation }

else Result := 0;{ handle exceptional case }
end;

The difference between these two functions really defines the difference between
programming with exceptions and programming without them. This example is
quite simple, but you can imagine a more complex calculation involving hundreds of
steps, any one of which could fail if one of dozens of inputs were invalid.

By using exceptions, you can spell out the “normal” expression of your algorithm,
then provide for those exceptional cases when it doesn't apply. Without exceptions,
you have to test every single time to make sure you're allowed to proceed with each
step in the calculation.

Using the exception instance
Most of the time, an exception handler doesn't need any information about an
exception other than its type, so the statements following on..do are specific only to
the type of exception. In some cases, however, you might need some of the
information contained in the exception instance.

To read specific information about an exception instance in an exception handler,
you use a special variation of on..do that gives you access to the exception instance.
The special form requires that you provide a temporary variable to hold the instance.

Example If you create a new project that contains a single form, you can add a scroll bar and a
command button to the form. Double-click the button and add the following line to
its click-event handler:

ScrollBar1.Max := ScrollBar1.Min - 1;

That line raises an exception because the maximum value of a scroll bar must always
exceed the minimum value. The default exception handler for the application opens a

4-12 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

dialog box containing the message in the exception object. You can override the
exception handling in this handler and create your own message box containing the
exception's message string:

try
ScrollBar1.Max := ScrollBar1.Min - 1;

except
on E: EInvalidOperation do

MessageDlg('Ignoring exception: ' + E.Message, mtInformation, [mbOK], 0);
end;

The temporary variable (E in this example) is of the type specified after the colon
(EInvalidOperation in this example). You can use the as operator to typecast the
exception into a more specific type if needed.

Note Never destroy the temporary exception object. Handling an exception automatically
destroys the exception object. If you destroy the object yourself, the application
attempts to destroy the object again, generating an access violation.

Scope of exception handlers
You do not need to provide handlers for every kind of exception in every block. In
fact, you only need handlers for exceptions that you want to handle specially within
a particular block.

If a block does not handle a particular exception, execution leaves that block and
returns to the block that contains the block (or returns to the code that called the
block), with the exception still raised. This process repeats with increasingly broad
scope until either execution reaches the outermost scope of the application or a block
at some level handles the exception.

Providing default exception handlers
You can provide a single default exception handler to handle any exceptions you
haven't provided specific handlers for. To do that, you add an else part to the except
part of the exception-handling block:

try
 { statements }
except

on ESomething do
{ specific exception-handling code };

else
{ default exception-handling code };

end;

Adding default exception handling to a block guarantees that the block handles
every exception in some way, thereby overriding all handling from the containing
block.

Caution It is not advisable to use this all-encompassing default exception handler. The else
clause handles all exceptions, including those you know nothing about. In general,
your code should handle only exceptions you actually know how to handle. If you
want to handle cleanup and leave the exception handling to code that has more

C o m m o n p r o g r a m m i n g t a s k s 4-13

H a n d l i n g e x c e p t i o n s

information about the exception and how to handle it, then you can do so use an
enclosing try..finally block:

try
try

 { statements }
except
on ESomething do { specific exception-handling code };

end;
finally

{cleanup code };
end;

For another approach to augmenting exception handling, see Reraising the
exception.

Handling classes of exceptions
Because exception objects are part of a hierarchy, you can specify handlers for entire
parts of the hierarchy by providing a handler for the exception class from which that
part of the hierarchy descends.

Example The following block outlines an example that handles all integer math exceptions
specially:

try
 { statements that perform integer math operations }
except

on EIntError do { special handling for integer math errors };
end;

You can still specify specific handlers for more specific exceptions, but you need to
place those handlers above the generic handler, because the application searches the
handlers in the order they appear in, and executes the first applicable handler it
finds. For example, this block provides special handling for range errors, and other
handling for all other integer math errors:

try
 { statements performing integer math }
except

on ERangeError do { out-of-range handling };
on EIntError do { handling for other integer math errors };

end;

Note that if the handler for EIntError came before the handler for ERangeError,
execution would never reach the specific handler for ERangeError.

Reraising the exception
Sometimes when you handle an exception locally, you actually want to augment the
handling in the enclosing block, rather than replacing it. Of course, when your local
handler finishes its handling, it destroys the exception instance, so the enclosing
block's handler never gets to act. You can, however, prevent the handler from
destroying the exception, giving the enclosing handler a chance to respond.

4-14 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

Example When an exception occurs, you might want to display a message to the user or record
the error in a log file, then proceed with the standard handling. To do that, you
declare a local exception handler that displays the message then calls the reserved
word raise. This is called reraising the exception, as shown in this example:

try
 { statements }

try
 { special statements }

except
on ESomething do
begin

 { handling for only the special statements }
raise;{ reraise the exception }

end;
end;

except
on ESomething do ...;{ handling you want in all cases }

end;

If code in the { statements } part raises an ESomething exception, only the handler in
the outer except part executes. However, if code in the { special statements } part
raises ESomething, the handling in the inner except part is executed, followed by the
more general handling in the outer except part.

By reraising exceptions, you can easily provide special handling for exceptions in
special cases without losing (or duplicating) the existing handlers.

Handling component exceptions

Delphi's components raise exceptions to indicate error conditions. Most component
exceptions indicate programming errors that would otherwise generate a runtime
error. The mechanics of handling component exceptions are no different than
handling RTL exceptions.

Example A common source of errors in components is range errors in indexed properties. For
example, if a list box has three items in its list (0..2) and your application attempts to
access item number 3, the list box raises a “List index out of bounds” exception.

The following event handler contains an exception handler to notify the user of
invalid index access in a list box:

procedure TForm1.Button1Click(Sender: TObject);
begin

ListBox1.Items.Add('a string');{ add a string to list box }
ListBox1.Items.Add('another string');{ add another string... }
ListBox1.Items.Add('still another string');{ ...and a third string }
try

Caption := ListBox1.Items[3];{ set form caption to fourth string in list box }
except

on EStringListError do
MessageDlg('List box contains fewer than four strings', mtWarning, [mbOK], 0);

end;
end;

C o m m o n p r o g r a m m i n g t a s k s 4-15

H a n d l i n g e x c e p t i o n s

If you click the button once, the list box has only three strings, so accessing the fourth
string (Items[3]) raises an exception. Clicking a second time adds more strings to the
list, so it no longer causes the exception.

Exception handling with external sources

HandleException provides default handling of exceptions for the application.
Normally when developing cross-platform applications, you do not need to call
TApplication.HandleException. However, you may need it when writing shared object
files or callback functions. You can use TApplication.HandleException to block an
exception from escaping from your code particularly when the code is being called
from an external source that does not support exceptions.

For example, if an exception passes through all the try blocks in the application code,
the application automatically calls the HandleException method, which displays a
dialog box indicating that an error has occurred. You can use HandleException in this
fashion:

try
 { statements }

except
Application.HandleException(Self);

end;

For all exceptions but EAbort, HandleException calls the OnException event handler, if
one exists. Therefore, if you want to both handle the exception, and provide this
default behavior as the built-in components do, you can add a call to HandleException
to your code:

try
 { special statements }

except
on ESomething do
begin

 { handling for only the special statements }
Application.HandleException(Self);{ call HandleException }

end;
end;

Note Do not call HandleException from within a thread’s exception handling code.

For more information, search for exception handling routines in the Help index.

Silent exceptions

Delphi applications handle most exceptions that your code doesn't specifically
handle by displaying a message box that shows the message string from the
exception object. You can also define “silent” exceptions that do not, by default,
cause the application to show the error message.

Silent exceptions are useful when you don't intend to report an exception to the user,
but you want to abort an operation. Aborting an operation is similar to using the

4-16 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

Break or Exit procedures to break out of a block, but can break out of several nested
levels of blocks.

Silent exceptions all descend from the standard exception type EAbort. The default
exception handler for Delphi VCL and CLX applications displays the error-message
dialog box for all exceptions that reach it except those descended from EAbort.

Note For console applications, an error-message dialog is displayed on any unhandled
EAbort exceptions.

There is a shortcut for raising silent exceptions. Instead of manually constructing the
object, you can call the Abort procedure. Abort automatically raises an EAbort
exception, which will break out of the current operation without displaying an error
message.

Example The following code shows a simple example of aborting an operation. On a form
containing an empty list box and a button, attach the following code to the button's
OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin

for I := 1 to 10 do{ loop ten times }
begin

ListBox1.Items.Add(IntToStr(I));{ add a numeral to the list }
if I = 7 then Abort;{ abort after the seventh one }

end;
end;

Defining your own exceptions

In addition to protecting your code from exceptions generated by the runtime library
and various components, you can use the same mechanism to manage exception
conditions in your own code.

To use exceptions in your code, you need to complete these steps:

• Declaring an exception object type
• Raising an exception

Declaring an exception object type
Because exceptions are objects, defining a new kind of exception is as simple as
declaring a new object type. Although you can raise any object instance as an
exception, the standard exception handlers handle only exceptions descended from
Exception.

As a convention, new exception types should be derived from Exception or one of the
other standard exceptions. That way, if you raise your new exception in a block of
code that isn't protected by a specific exception handler for that exception, one of the
standard handlers will handle it instead.

C o m m o n p r o g r a m m i n g t a s k s 4-17

U s i n g i n t e r f a c e s

Example For example, consider the following declaration:

type
EMyException = class(Exception);

If you raise EMyException but don't provide a specific handler for it, a handler for
Exception (or a default exception handler) will still handle it. Because the standard
handling for Exception displays the name of the exception raised, you can see that it is
your new exception that is raised.

Raising an exception
To indicate a disruptive error condition in an application, you can raise an exception
that involves constructing an instance of that type and calling the reserved word
raise.

To raise an exception, call the reserved word raise, followed by an instance of an
exception object. This allows you to establish an exception as coming from a
particular address. When an exception handler actually handles the exception, it
finishes by destroying the exception instance, so you never need to do that yourself.

Raising an exception address set the ErrorAddr variable in the System unit to the
address where the application raised the exception. You can refer to ErrorAddr in
your exception handlers, for example, to notify the user where the error occurred.
You can also specify a value in the raise clause which will appear in ErrorAddr when
an exception occurs.

Warning Do not assign a value to ErrorAddr yourself. It is intended as read-only.

To specify an error address for an exception, add the reserved word at after the
exception instance, followed by an address expression such as an identifier.

For example, given the following declaration,

type
EPasswordInvalid = class(Exception);

you can raise a “password invalid” exception at any time by calling raise with an
instance of EPasswordInvalid, like this:

if Password <> CorrectPassword then
raise EPasswordInvalid.Create('Incorrect password entered');

Using interfaces
Delphi’s interface keyword allows you to create and use interfaces in your
application. Interfaces are a way extending the single-inheritance model of Object
Pascal by allowing a single class to implement more than one interface, and by
allowing several classes descended from different bases to share the same interface.
Interfaces are useful when the same sets of operations, such as streaming, are used
across a broad range of objects. Interfaces are also a fundamental aspect of the COM
(the Component Object Model) and CORBA (Common Object Request Broker
Architecture) distributed object models.

4-18 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

Interfaces as a language feature

An interface is like a class that contains only abstract methods and a clear definition
of their functionality. Strictly speaking, interface method definitions include the
number and types of their parameters, their return type, and their expected behavior.
Interface methods are usually named to indicate the purpose of the interface. It is the
convention to name interfaces according to their behavior and to preface them with a
capital I. For example, an IMalloc interface would allocate, free, and manage memory.
Similarly, an IPersist interface could be used as a general base interface for
descendants, each of which defines specific method prototypes for loading and
saving the state of an object to a storage, stream, or file.

An interface has the following syntax:

IMyObject = interface
procedure MyProcedure;

end;

A simple example of declaring an interface is:

type
IEdit = interface

procedure Copy; stdcall;
procedure Cut; stdcall;
procedure Paste; stdcall;
function Undo: Boolean; stdcall;

end;

Like abstract classes, interfaces themselves can never be instantiated. To use an
interface, you need to obtain it from an implementing class.

To implement an interface, you must define a class that declares the interface in its
ancestor list, indicating that it will implement all of the methods of that interface:

TEditor = class(TInterfacedObject, IEdit)
procedure Copy; stdcall;
procedure Cut; stdcall;
procedure Paste; stdcall;
function Undo: Boolean; stdcall;

end;

While interfaces define the behavior and signature of their methods, they do not
define the implementations. As long as the class’s implementation conforms to the
interface definition, the interface is fully polymorphic, meaning that accessing and
using the interface is the same for any implementation of it.

Implementing interfaces across the hierarchy
Using interfaces offers a design approach to separating the way a class is used from
the way it is implemented. Two classes can implement the same interface without
requiring that they descend from the same base class. This polymorphic invocation of
the same methods on unrelated objects is possible as long as the objects implement
the same interface. For example, consider the interface,

C o m m o n p r o g r a m m i n g t a s k s 4-19

U s i n g i n t e r f a c e s

IPaint = interface
procedure Paint;

end;

and the two classes,

TSquare = class(TPolygonObject, IPaint)
procedure Paint;

end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;

end;

Whether or not the two classes share a common ancestor, they are still assignment
compatible with a variable of IPaint as in

var
Painter: IPaint;

begin
Painter := TSquare.Create;
Painter.Paint;
Painter := TCircle.Create;
Painter.Paint;

end;

This could have been accomplished by having TCircle and TSquare descend from say,
TFigure which implemented a virtual method Paint. Both TCircle and TSquare would
then have overridden the Paint method. The above IPaint would be replaced by
TFigure. However, consider the following interface:

IRotate = interface
procedure Rotate(Degrees: Integer);

end;

which makes sense for the rectangle to support but not the circle. The classes would
look like

TSquare = class(TRectangularObject, IPaint, IRotate)
procedure Paint;
procedure Rotate(Degrees: Integer);

end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;

end;

Later, you could create a class TFilledCircle that implements the IRotate interface to
allow rotation of a pattern used to fill the circle without having to add rotation to the
simple circle.

Note For these examples, the immediate base class or an ancestor class is assumed to have
implemented the methods of IInterface that manage reference counting. For more
information, see “Implementing IInterface” on page 4-20 and “Memory management
of interface objects” on page 4-24.

4-20 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

Using interfaces with procedures
Interfaces also allow you to write generic procedures that can handle objects without
requiring the objects to descend from a particular base class. Using the above IPaint
and IRotate interfaces you can write the following procedures,

procedure PaintObjects(Painters: array of IPaint);
var

I: Integer;
begin

for I := Low(Painters) to High(Painters) do
Painters[I].Paint;

end;

procedure RotateObjects(Degrees: Integer; Rotaters: array of IRotate);
var

I: Integer;
begin

for I := Low(Rotaters) to High(Rotaters) do
Rotaters[I].Rotate(Degrees);

end;

RotateObjects does not require that the objects know how to paint themselves and
PaintObjects does not require the objects know how to rotate. This allows the above
generic procedures to be used more often than if they were written to only work
against a TFigure class.

For details about the syntax, language definitions and rules for interfaces, see the
Object Pascal Language Guide online Help section on Object interfaces.

Implementing IInterface

All interfaces derive either directly or indirectly from the IInterface interface. This
interface provides the essential functionality of an interface, that is, dynamic
querying and lifetime management. This functionality is established in the three
IInterface methods:

• QueryInterface provides a method for dynamically querying a given object and
obtaining interface references for the interfaces the object supports.

• _AddRef is a reference counting method that increments the count each time the
call to QueryInterface succeeds. While the reference count is nonzero the object
must remain in memory.

• _Release is used with _AddRef to enable an object to track its own lifetime and to
determine when it is safe to delete itself. Once the reference count reaches zero, the
object is freed from memory.

Every class that implements interfaces must implement the three IInterface methods,
as well as all of the methods declared by any other ancestor interfaces, and all of the
methods declared by the interface itself. You can, however, inherit the
implementations of methods of interfaces declared in your class.

C o m m o n p r o g r a m m i n g t a s k s 4-21

U s i n g i n t e r f a c e s

By implementing these methods yourself, you can provide an alternative means of
life-time management, disabling reference-counting. This is a powerful technique
that lets you decouple interfaces from reference-counting.

TInterfacedObject

Delphi defines a simple class, TInterfacedObject, that serves as a convenient base
because it implements the methods of IInterface. TInterfacedObject class is declared in
the System unit as follows:

type
TInterfacedObject = class(TObject, IInterface)
protected
FRefCount: Integer;
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

public
procedure AfterConstruction; override;

 procedure BeforeDestruction; override;
 class function NewInstance: TObject; override;

property RefCount: Integer read FRefCount;
end;

Deriving directly from TInterfacedObject is straightforward. In the following example
declaration, TDerived is a direct descendant of TInterfacedObject and implements a
hypothetical IPaint interface.

type
TDerived = class(TInterfacedObject, IPaint)

 ...
end;

Because it implements the methods of IInterface, TInterfacedObject automatically
handles reference counting and memory management of interfaced objects. For more
information, see “Memory management of interface objects” on page 4-24, which
also discusses writing your own classes that implement interfaces but that do not
follow the reference-counting mechanism inherent in TInterfacedObject.

Using the as operator

Classes that implement interfaces can use the as operator for dynamic binding on the
interface. In the following example:

procedure PaintObjects(P: TInterfacedObject)
var

X: IPaint;

begin
X := P as IPaint;

{ statements }
end;

4-22 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

the variable P of type TInterfacedObject, can be assigned to the variable X, which is an
IPaint interface reference. Dynamic binding makes this assignment possible. For this
assignment, the compiler generates code to call the QueryInterface method of P’s
IInterface interface. This is because the compiler cannot tell from P’s declared type
whether P’s instance actually supports IPaint. At runtime, P either resolves to an
IPaint reference or an exception is raised. In either case, assigning P to X will not
generate a compile-time error as it would if P was of a class type that did not
implement IInterface.

When you use the as operator for dynamic binding on an interface, you should be
aware of the following requirements:

• Explicitly declaring IInterface: Although all interfaces derive from IInterface, it is
not sufficient, if you want to use the as operator, for a class to simply implement
the methods of IInterface. This is true even if it also implements the interfaces it
explicitly declares. The class must explicitly declare IInterface in its interface list.

• Using an IID: Interfaces can use an identifier that is based on a GUID (globally
unique identifier). GUIDs that are used to identify interfaces are referred to as
interface identifiers (IIDs). If you are using the as operator with an interface, it
must have an associated IID. To create a new GUID in your source code you can
use the Ctrl+Shift+G editor shortcut key.

Reusing code and delegation

One approach to reusing code with interfaces is to have an object contain, or be
contained by another. Using properties that are object types provides an approach to
containment and code reuse. To support this design for interfaces, Object Pascal has a
keyword implements, that makes if easy to write code to delegate all or part of the
implementation of an interface to a subobject. Aggregation is another way of reusing
code through containment and delegation. In aggregation, an outer object contains
an inner object that implements interfaces which are exposed only by the outer
object. The VCL and CLX have classes that support aggregation.

Using implements for delegation
Many classes have properties that are subobjects. You can also use interfaces as
property types. When a property is of an interface type (or a class type that
implements the methods of an interface) you can use the keyword implements to
specify that the methods of that interface are delegated to the object or interface
reference which is the property instance. The delegate only needs to provide
implementation for the methods. It does not have to declare the interface support.
The class containing the property must include the interface in its ancestor list.

By default using the keyword implements delegates all interface methods. However,
you can use methods resolution clauses or declare methods in your class that
implement some of the interface methods as a way of overriding this default
behavior.

C o m m o n p r o g r a m m i n g t a s k s 4-23

U s i n g i n t e r f a c e s

The following example uses the implements keyword in the design of a color adapter
object that converts an 8-bit RGB color value to a Color reference:

unit cadapt;

type
IRGB8bit = interface
 ['{1d76360a-f4f5-11d1-87d4-00c04fb17199}']

function Red: Byte;
function Green: Byte;
function Blue: Byte;

end;

IColorRef = interface
 ['{1d76360b-f4f5-11d1-87d4-00c04fb17199}']

function Color: Integer;
end;

{ TRGB8ColorRefAdapter map an IRGB8bit to an IColorRef }
 TRGB8ColorRefAdapter = class(TInterfacedObject, IRGB8bit, IColorRef)

private
FRGB8bit: IRGB8bit;
FPalRelative: Boolean;

public
constructor Create(rgb: IRGB8bit);
property RGB8Intf: IRGB8bit read FRGB8bit implements IRGB8bit;
property PalRelative: Boolean read FPalRelative write FPalRelative;
function Color: Integer;

end;

implementation

constructor TRGB8ColorRefAdapter.Create(rgb: IRGB8bit);
begin

FRGB8bit := rgb;
end;

function TRGB8ColorRefAdapter.Color: Integer;
begin

if FPalRelative then
Result := PaletteRGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue)

else
Result := RGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue);

end;
end.

For more information about the syntax, implementation details, and language rules
of the implements keyword, see the Object Pascal Language Guide online Help section
on Object interfaces.

Aggregation
Aggregation offers a modular approach to code reuse through sub-objects that define
the functionality of a containing object, but that hide the implementation details from
that object. In aggregation, an outer object implements one or more interfaces. The
only requirement is that it implement IInterface. The inner object, or objects, can
implement one or more interfaces, however only the outer object exposes the

4-24 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

interfaces. These include both the interfaces it implements and the ones implemented
by its contained objects. Clients know nothing about inner objects. While the outer
object provides access to the inner object interfaces, their implementation is
completely transparent. Therefore, the outer object class can exchange the inner
object class type for any class that implements the same interface. Correspondingly,
the code for the inner object classes can be shared by other classes that want to use it.

The implementation model for aggregation defines explicit rules for implementing
IInterface using delegation. The inner object must implement an IInterface on itself,
that controls the inner object’s reference count. This implementation of IInterface
tracks the relationship between the outer and the inner object. For example, when an
object of its type (the inner object) is created, the creation succeeds only for a
requested interface of type IInterface. The inner object also implements a second
IInterface for all the interfaces it implements. These are the interfaces exposed by the
outer object. This second IInterface delegates calls to QueryInterface, AddRef, and
Release to the outer object. The outer IInterface is referred to as the “controlling
Unknown.”

Refer to the MS online help for the rules about creating an aggregation. When writing
your own aggregation classes, you can also refer to the implementation details of
IInterface in TComObject. TComObject is a COM class that supports aggregation. If you
are writing COM applications, you can also use TComObject directly as a base class.

Memory management of interface objects

One of the concepts behind the design of interfaces is ensuring the lifetime
management of the objects that implement them. The _AddRef and _Release methods
of IInterface provide a way to implement this lifetime management. _AddRef and
_Release track the lifetime of an object by incrementing the reference count on the
object when an interface reference is passed to a client, and will destroy the object
when that reference count is zero.

If you are creating COM objects for distributed applications (in the Windows
environment only), then you should strictly adhere to the reference counting rules.
However, if you are using interfaces only internally in your application, then you
have a choice that depends upon the nature of your object and how you decide to use
it.

Using reference counting
Delphi provides most of the IInterface memory management for you by its
implementation of interface querying and reference counting. Therefore, if you have
an object that lives and dies by its interfaces, you can easily use reference counting by
deriving from these classes. TInterfacedObject is the non-CoClass that provides this
behavior. If you decide to use reference counting, then you must be careful to only
hold the object as an interface reference, and to be consistent in your reference
counting. For example:

procedure beep(x: ITest);

function test_func()
var

C o m m o n p r o g r a m m i n g t a s k s 4-25

U s i n g i n t e r f a c e s

y: ITest;
begin

y := TTest.Create; // because y is of type ITest, the reference count is one
beep(y); // the act of calling the beep function increments the reference count
// and then decrements it when it returns
y.something; // object is still here with a reference count of one

end;

This is the cleanest and safest approach to memory management; and if you use
TInterfacedObject it is handled automatically. If you do not follow this rule, your
object can unexpectedly disappear, as demonstrated in the following code:

function test_func()
var

x: TTest;
begin

x := TTest.Create; // no count on the object yet
beep(x as ITest); // count is incremented by the act of calling beep
// and decremented when it returns
x.something; // surprise, the object is gone

end;

Note In the examples above, the beep procedure, as it is declared, increments the reference
count (call _AddRef) on the parameter, whereas either of the following declarations
do not:

procedure beep(const x: ITest);

or

procedure beep(var x: ITest);

These declarations generate smaller, faster code.

One case where you cannot use reference counting, because it cannot be consistently
applied, is if your object is a component or a control owned by another component.
In that case, you can still use interfaces, but you should not use reference counting
because the lifetime of the object is not dictated by its interfaces.

Not using reference counting
If your object is a component or a control that is owned by another component, then
your object is part of a different memory management system that is based in
TComponent. You should not mix the object lifetime management approaches of VCL
or CLX components and interface reference counting. If you want to create a
component that supports interfaces, you can implement the IInterface _AddRef and
_Release methods as empty functions to bypass the interface reference counting
mechanism:

function TMyObject._AddRef: Integer;
begin

Result := -1;
end;

function TMyObject._Release: Integer;
begin

Result := -1;
end;

4-26 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

You would still implement QueryInterface as usual to provide dynamic querying on
your object.

Note that, because you do implement QueryInterface, you can still use the as operator
for interfaces on components, as long as you create an interface identifier (IID). You
can also use aggregation. If the outer object is a component, the inner object
implements reference counting as usual, by delegating to the “controlling
Unknown.” It is at the level of the outer, component object that the decision is made
to circumvent the _AddRef and _Release methods, and to handle memory
management via the component-based approach. In fact, you can use
TInterfacedObject as a base class for an inner object of an aggregation that has a
component as its containing outer object.

Note The “controlling Unknown” is the IUnknown implemented by the outer object and
the one for which the reference count of the entire object is maintained. IUnknown is
the same as IInterface, but is used instead in COM-based applications (Windows
only). For more information distinguishing the various implementations of the
IUnknown or IInterface interface by the inner and outer objects, see “Aggregation” on
page 4-23 and the Microsoft online Help topics on the “controlling Unknown.”

Using interfaces in distributed applications (VCL only)

Interfaces are a fundamental element in the COM, SOAP, and CORBA distributed
object models. Delphi provides base classes for these technologies that extend the
basic interface functionality in TInterfacedObject, which simply implements the
IInterface interface methods.

When using COM, classes and interfaces are defined in terms of IUnknown rather
than IInterface. There is no semantic difference between IUnknown and IInterface, the
use of IUnknown is simply a way to adapt Delphi interfaces to the COM definition.
COM classes add functionality for using class factories and class identifiers (CLSIDs).
Class factories are responsible for creating class instances via CLSIDs. The CLSIDs
are used to register and manipulate COM classes. COM classes that have class
factories and class identifiers are called CoClasses. CoClasses take advantage of the
versioning capabilities of QueryInterface, so that when a software module is updated
QueryInterface can be invoked at runtime to query the current capabilities of an object.

New versions of old interfaces, as well as any new interfaces or features of an object,
can become immediately available to new clients. At the same time, objects retain
complete compatibility with existing client code; no recompilation is necessary
because interface implementations are hidden (while the methods and parameters
remain constant). In COM applications, developers can change the implementation
to improve performance, or for any internal reason, without breaking any client code
that relies on that interface. For more information about COM interfaces, see Chapter
33, “Overview of COM technologies.”

When distributing an application using SOAP, interfaces are required to carry their
own runtime type information (RTTI). The compiler only adds RTTI to an interface
when it is compiled using the {$M+} switch. Such interfaces are called invokable
interfaces. The descendant of any invokable interface is also invokable. However, if an
invokable interface descends from another interface that is not invokable, client

C o m m o n p r o g r a m m i n g t a s k s 4-27

D e f i n i n g c u s t o m v a r i a n t s

applications can only call the methods defined in the invokable interface and its
descendants. Methods inherited from the non-invokable ancestors are not compiled
with type information and so can’t be called by clients.

The easiest way to define invokable interfaces is to define your interface so that it
descends from IInvokable. IInvokable is the same as IInterface, except that it is compiled
using the {$M+} switch. For more information about Web Service applications that
are distributed using SOAP, and about invokable interfaces, see Chapter 31, “Using
Web Services.”

Another distributed application technology is CORBA. The use of interfaces in
CORBA applications is mediated by stub classes on the client and skeleton classes on
the server. These stub and skeleton classes handle the details of marshaling interface
calls so that parameter values and return values can be transmitted correctly.
Applications must use either a stub or skeleton class, or employ the Dynamic
Invocation Interface (DII) which converts all parameters to special variants (so that
they carry their own type information).

Defining custom variants
One powerful built-in type of the Object Pascal language is the Variant type. Variants
represent values whose type is not determined at compile time. Instead, the type of
their value can change at runtime. Variants can mix with other variants and with
integer, real, string, and boolean values in expressions and assignments; the compiler
automatically performs type conversions.

By default, variants can’t hold values that are records, sets, static arrays, files, classes,
class references, or pointers. You can, however, extend the Variant type to work with
any particular example of these types. All you need to do is create a descendant of
the TCustomVariantType class that indicates how the Variant type performs standard
operations.

To create a Variant type,

1 Map the storage of the variant’s data on to the TVarData record.

2 Declare a class that descends from TCustomVariantType. Implement all required
behavior (including type conversion rules) in the new class.

3 Write utility methods for creating instances of your custom variant and
recognizing its type.

The above steps extend the Variant type so that the standard operators work with
your new type and the new Variant type can be cast to other data types. You can
further enhance your new Variant type so that it supports properties and methods
that you define. When creating a Variant type that supports properties or methods,
you use TInvokeableVariantType or TPublishableVariantType as a base class rather than
TCustomVariantType.

4-28 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

Storing a custom variant type’s data

Variants store their data in the TVarData record type. This type is a record that
contains 16 bytes. The first Word indicates the type of the variant, and the remaining
14 bytes are available to store the data. While your new Variant type can work
directly with a TVarData record, it is usually easier to define a record type whose
members have names that are meaningful for your new type, and cast that new type
onto the TVarData record type.

For example, the VarConv unit defines a custom variant type that represents a
measurement. The data for this type includes the units (TConvType) of measurement,
as well as the value (a double). The VarConv unit defines its own type to represent
such a value:

TConvertVarData = packed record
VType: TVarType;
VConvType: TConvType;
Reserved1, Reserved2: Word;
VValue: Double;

end;

This type is exactly the same size as the TVarData record. When working with a
custom variant of the new type, the variant (or its TVarData record) can be cast to
TConvertVarData, and the custom Variant type simply works with the TVarData
record as if it were a TConvertVarData type.

Note When defining a record that maps onto the TVarData record in this way, be sure to
define it as a packed record.

If your new custom Variant type needs more than 14 bytes to store its data, you can
define a new record type that includes a pointer or object instance. For example, the
VarCmplx unit uses an instance of the class TComplexData to represent the data in a
complex-valued variant. It therefore defines a record type the same size as TVarData
that includes a reference to a TComplexData object:

TComplexVarData = packed record
VType: TVarType;
Reserved1, Reserved2, Reserved3: Word;
VComplex: TComplexData;
Reserved4: LongInt;

end;

Object references are actually pointers (two Words), so this type is the same size as
the TVarData record. As before, a complex custom variant (or its TVarData record),
can be cast to TComplexVarData, and the custom variant type works with the
TVarData record as if it were a TComplexVarData type.

Creating a class to enable the custom variant type

Custom variants work by using a special helper class that indicates how variants of
the custom type can perform standard operations. You create this helper class by
writing a descendant of TCustomVariantType. This involves overriding the
appropriate virtual methods of TCustomVariantType.

C o m m o n p r o g r a m m i n g t a s k s 4-29

D e f i n i n g c u s t o m v a r i a n t s

Enabling casting
One of the most important features of the custom variant type for you to implement
is typecasting. The flexibility of variants arises, in part, from their implicit typecasts.

There are two methods for you to implement that enable the custom Variant type to
perform typecasts: Cast, which converts another variant type to your custom variant,
and CastTo, which converts your custom Variant type to another type of Variant.

When implementing either of these methods, it is relatively easy to perform the
logical conversions from the built-in variant types. You must consider, however, the
possibility that the variant to or from which you are casting may be another custom
Variant type. To handle this situation, you can try casting to one of the built-in
Variant types as an intermediate step.

For example, the following Cast method, from the TComplexVariantType class uses the
type Double as an intermediate type:

procedure TComplexVariantType.Cast(var Dest: TVarData; const Source: TVarData);
var
 LSource, LTemp: TVarData;
begin
 VarDataInit(LSource);
 try
 VarDataCopyNoInd(LSource, Source);
 if VarDataIsStr(LSource) then
 TComplexVarData(Dest).VComplex := TComplexData.Create(VarDataToStr(LSource))
 else
 begin
 VarDataInit(LTemp);
 try
 VarDataCastTo(LTemp, LSource, varDouble);
 TComplexVarData(Dest).VComplex := TComplexData.Create(LTemp.VDouble, 0);
 finally
 VarDataClear(LTemp);
 end;
 end;
 Dest.VType := VarType;
 finally
 VarDataClear(LSource);
 end;
end;

In addition to the use of Double as an intermediate Variant type, there are a few
things to note in this implementation:

• The last step of this method sets the VType member of the returned TVarData
record. This member gives the Variant type code. It is set to the VarType property
of TComplexVariantType, which is the Variant type code assigned to the custom
variant.

• The custom variant’s data (Dest) is typecast from TVarData to the record type that
is actually used to store its data (TComplexVarData). This makes the data easier to
work with.

• The method makes a local copy of the source variant rather than working directly
with its data. This prevents side effects that may affect the source data.

4-30 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

When casting from a complex variant to another type, the CastTo method also uses an
intermediate type of Double (for any destination type other than a string):

procedure TComplexVariantType.CastTo(var Dest: TVarData; const Source: TVarData;
 const AVarType: TVarType);
var
 LTemp: TVarData;
begin
 if Source.VType = VarType then
 case AVarType of
 varOleStr:
 VarDataFromOleStr(Dest, TComplexVarData(Source).VComplex.AsString);
 varString:
 VarDataFromStr(Dest, TComplexVarData(Source).VComplex.AsString);
 else
 VarDataInit(LTemp);
 try
 LTemp.VType := varDouble;
 LTemp.VDouble := TComplexVarData(LTemp).VComplex.Real;
 VarDataCastTo(Dest, LTemp, AVarType);
 finally
 VarDataClear(LTemp);
 end;
 end
 else
 RaiseCastError;
end;

Note that the CastTo method includes a case where the source variant data does not
have a type code that matches the VarType property. This case only occurs for empty
(unassigned) source variants.

Implementing binary operations
To allow the custom variant type to work with standard binary operators (+, -, *, /,
div, mod, shl, shr, and, or, xor listed in the System unit), you must override the
BinaryOp method. BinaryOp has three parameters: the value of the left-hand operand,
the value of the right-hand operand, and the operator. Implement this method to
perform the operation and return the result using the same variable that contained
the left-hand operand.

For example, the following BinaryOp method comes from the TComplexVariantType
defined in the VarCmplx unit:

procedure TComplexVariantType.BinaryOp(var Left: TVarData; const Right: TVarData;
const Operator: TVarOp);

begin
if Right.VType = VarType then

case Left.VType of
varString:

case Operator of
opAdd: Variant(Left) := Variant(Left) + TComplexVarData(Right).VComplex.AsString;

else
RaiseInvalidOp;

end;

C o m m o n p r o g r a m m i n g t a s k s 4-31

D e f i n i n g c u s t o m v a r i a n t s

else
if Left.VType = VarType then

case Operator of
opAdd:

TComplexVarData(Left).VComplex.DoAdd(TComplexVarData(Right).VComplex);
opSubtract:

TComplexVarData(Left).VComplex.DoSubtract(TComplexVarData(Right).VComplex);
opMultiply:

TComplexVarData(Left).VComplex.DoMultiply(TComplexVarData(Right).VComplex);
opDivide:

TComplexVarData(Left).VComplex.DoDivide(TComplexVarData(Right).VComplex);
else

RaiseInvalidOp;
end

else
RaiseInvalidOp;

end
else

RaiseInvalidOp;
end;

There are several things to note in this implementation:

This method only handles the case where the variant on the right side of the operator
is a custom variant that represents a complex number. If the left-hand operand is a
complex variant and the right-hand operand is not, the complex variant forces the
right-hand operand first to be cast to a complex variant. It does this by overriding the
RightPromotion method so that it always requires the type in the VarType property:

function TComplexVariantType.RightPromotion(const V: TVarData;
 const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
 { Complex Op TypeX }
 RequiredVarType := VarType;
 Result := True;
end;

The addition operator is implemented for a string and a complex number (by casting
the complex value to a string and concatenating), and the addition, subtraction,
multiplication, and division operators are implemented for two complex numbers
using the methods of the TComplexData object that is stored in the complex variant’s
data. This is accessed by casting the TVarData record to a TComplexVarData record
and using its VComplex member.

Attempting any other operator or combination of types causes the method to call the
RaiseInvalidOp method, which causes a runtime error. The TCustomVariantType class
includes a number of utility methods such as RaiseInvalidOp that can be used in the
implementation of custom variant types.

BinaryOp only deals with a limited number of types: strings and other complex
variants. It is possible, however, to perform operations between complex numbers
and other numeric types. For the BinaryOp method to work, the operands must be
cast to complex variants before the values are passed to this method. We have
already seen (above) how to use the RightPromotion method to force the right-hand
operand to be a complex variant if the left-hand operand is complex. A similar

4-32 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

method, LeftPromotion, forces a cast of the left-hand operand when the right-hand
operand is complex:

function TComplexVariantType.LeftPromotion(const V: TVarData;
 const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
 { TypeX Op Complex }
 if (Operator = opAdd) and VarDataIsStr(V) then
 RequiredVarType := varString
 else
 RequiredVarType := VarType;

Result := True;
end;

This LeftPromotion method forces the left-hand operand to be cast to another complex
variant, unless it is a string and the operation is addition, in which case LeftPromotion
allows the operand to remain a string.

Implementing comparison operations
There are two ways to enable a custom variant type to support comparison operators
(=, <>, <, <=, >, >=). You can override the Compare method, or you can override the
CompareOp method.

The Compare method is easiest if your custom variant type supports the full range of
comparison operators. Compare takes three parameters: the left-hand operand, the
right-hand operand, and a var Parameter that returns the relationship between the
two. For example, the TConvertVariantType object in the VarConv unit implements
the following Compare method:

procedure TConvertVariantType.Compare(const Left, Right: TVarData;
 var Relationship: TVarCompareResult);
const
 CRelationshipToRelationship: array [TValueRelationship] of TVarCompareResult =
 (crLessThan, crEqual, crGreaterThan);
var
 LValue: Double;
 LType: TConvType;
 LRelationship: TValueRelationship;
begin
 // supports...
 // convvar cmp number
 // Compare the value of convvar and the given number

// convvar1 cmp convvar2
 // Compare after converting convvar2 to convvar1's unit type

// The right can also be a string. If the string has unit info then it is
 // treated like a varConvert else it is treated as a double
 LRelationship := EqualsValue;
 case Right.VType of

varString:
if TryStrToConvUnit(Variant(Right), LValue, LType) then

if LType = CIllegalConvType then
LRelationship := CompareValue(TConvertVarData(Left).VValue, LValue)

else
LRelationship := ConvUnitCompareValue(TConvertVarData(Left).VValue,

C o m m o n p r o g r a m m i n g t a s k s 4-33

D e f i n i n g c u s t o m v a r i a n t s

TConvertVarData(Left).VConvType, LValue, LType)
else

RaiseCastError;
varDouble:
LRelationship := CompareValue(TConvertVarData(Left).VValue, TVarData(Right).VDouble);

else
if Left.VType = VarType then

LRelationship := ConvUnitCompareValue(TConvertVarData(Left).VValue,
TConvertVarData(Left).VConvType, TConvertVarData(Right).VValue,
TConvertVarData(Right).VConvType)

else
RaiseInvalidOp;

end;
Relationship := CRelationshipToRelationship[LRelationship];

end;

If the custom type does not support the concept of “greater than” or “less than,” only
“equal” or “not equal,” however, it is difficult to implement the Compare method,
because Compare must return crLessThan, crEqual, or crGreaterThan. When the only
valid response is “not equal,” it is impossible to know whether to return crLessThan
or crGreaterThan. Thus, for types that do not support the concept of ordering, you can
override the CompareOp method instead.

CompareOp has three parameters: the value of the left-hand operand, the value of the
right-hand operand, and the comparison operator. Implement this method to
perform the operation and return a boolean that indicates whether the comparison is
True. You can then call the RaiseInvalidOp method when the comparison makes no
sense.

For example, the following CompareOp method comes from the TComplexVariantType
object in the VarCmplx unit. It supports only a test of equality or inequality:

function TComplexVariantType.CompareOp(const Left, Right: TVarData;
 const Operator: Integer): Boolean;
begin
 Result := False;
 if (Left.VType = VarType) and (Right.VType = VarType) then
 case Operator of
 opCmpEQ:
 Result := TComplexVarData(Left).VComplex.Equal(TComplexVarData(Right).VComplex);
 opCmpNE:
 Result := not TComplexVarData(Left).VComplex.Equal(TComplexVarData(Right).VComplex);
 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
end;

Note that the types of operands that both these implementations support are very
limited. As with binary operations, you can use the RightPromotion and LeftPromotion
methods to limit the cases you must consider by forcing a cast before Compare or
CompareOp is called.

4-34 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

Implementing unary operations
To allow the custom variant type to work with standard unary operators (-, not), you
must override the UnaryOp method. UnaryOp has two parameters: the value of the
operand and the operator. Implement this method to perform the operation and
return the result using the same variable that contained the operand.

For example, the following UnaryOp method comes from the TComplexVariantType
defined in the VarCmplx unit:

procedure TComplexVariantType.UnaryOp(var Right: TVarData; const Operator: TVarOp);
begin
 if Right.VType = VarType then
 case Operator of
 opNegate:
 TComplexVarData(Right).VComplex.DoNegate;
 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
end;

Note that for the logical not operator, which does not make sense for complex values,
this method calls RaiseInvalidOp to cause a runtime error.

Copying and clearing custom variants
In addition to typecasting and the implementation of operators, you must indicate
how to copy and clear variants of your custom Variant type.

To indicate how to copy the variant’s value, implement the Copy method. Typically,
this is an easy operation, although you must remember to allocate memory for any
classes or structures you use to hold the variant’s value:

procedure TComplexVariantType.Copy(var Dest: TVarData; const Source: TVarData;
 const Indirect: Boolean);
begin
 if Indirect and VarDataIsByRef(Source) then
 VarDataCopyNoInd(Dest, Source)
 else
 with TComplexVarData(Dest) do
 begin
 VType := VarType;
 VComplex := TComplexData.Create(TComplexVarData(Source).VComplex);
 end;
end;

Note The Indirect parameter in the Copy method signals that the copy must take into
account the case when the variant holds only an indirect reference to its data.

Tip If your custom variant type does not allocate any memory to hold its data (if the data
fits entirely in the TVarData record), your implementation of the Copy method can
simply call the SimplisticCopy method.

C o m m o n p r o g r a m m i n g t a s k s 4-35

D e f i n i n g c u s t o m v a r i a n t s

To indicate how to clear the variant’s value, implement the Clear method. As with the
Copy method, the only tricky thing about doing this is ensuring that you free any
resources allocated to store the variant’s data:

procedure TComplexVariantType.Clear(var V: TVarData);
begin
 V.VType := varEmpty;
 FreeAndNil(TComplexVarData(V).VComplex);
end;

You will also need to implement the IsClear method. This way, you can detect any
invalid values or special values that represent “blank” data:

function TComplexVariantType.IsClear(const V: TVarData): Boolean;
begin
 Result := (TComplexVarData(V).VComplex = nil) or
 TComplexVarData(V).VComplex.IsZero;
end;

Loading and saving custom variant values
By default, when the custom variant is assigned as the value of a published property,
it is typecast to a string when that property is saved to a form file, and converted back
from a string when the property is read from a form file. You can, however, provide
your own mechanism for loading and saving custom variant values in a more natural
representation. To do so, the TCustomVariantType descendant must implement the
IVarStreamable interface from Classes.pas.

IVarStreamable defines two methods, StreamIn and StreamOut, for reading a variant’s
value from a stream and for writing the variant’s value to the stream. For example,
TComplexVariantType, in the VarCmplx unit, implements the IVarStreamable methods
as follows:

procedure TComplexVariantType.StreamIn(var Dest: TVarData; const Stream: TStream);
begin
 with TReader.Create(Stream, 1024) do
 try
 with TComplexVarData(Dest) do
 begin
 VComplex := TComplexData.Create;
 VComplex.Real := ReadFloat;
 VComplex.Imaginary := ReadFloat;
 end;
 finally
 Free;
 end;
end;

procedure TComplexVariantType.StreamOut(const Source: TVarData; const Stream: TStream);
begin
 with TWriter.Create(Stream, 1024) do
 try
 with TComplexVarData(Source).VComplex do
 begin
 WriteFloat(Real);
 WriteFloat(Imaginary);

4-36 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

 end;
 finally
 Free;
 end;
end;

Note how these methods create a Reader or Writer object for the Stream parameter to
handle the details of reading or writing values.

Using the TCustomVariantType descendant
In the initialization section of the unit that defines your TCustomVariantType
descendant, create an instance of your class. When you instantiate your object, it
automatically registers itself with the variant-handling system so that the new
Variant type is enabled. For example, here is the initialization section of the
VarCmplx unit:

initialization
 ComplexVariantType := TComplexVariantType.Create;

In the finalization section of the unit that defines your TCustomVariantType
descendant, free the instance of your class. This automatically unregisters the variant
type. Here is the finalization section of the VarCmplx unit:

finalization
 FreeAndNil(ComplexVariantType);

Writing utilities to work with a custom variant type

Once you have created a TCustomVariantType descendant to implement your custom
variant type, it is possible to use the new Variant type in applications. However,
without a few utilities, this is not as easy as it should be.

For example, without a utility function, the only way to create an instance of your
custom variant type is to use the global VarCast procedure on a source variant of
another type. It is a good idea to create a method that creates an instance of your
custom variant type from an appropriate value or set of values. This function or set of
functions fills out the structure you defined to store your custom variant’s data. For
example, the following function could be used to create a complex-valued variant:

function VarComplexCreate(const AReal, AImaginary: Double): Variant;
begin

VarClear(Result);
 TComplexVarData(Result).VType := ComplexVariantType.VarType;
 TComplexVarData(ADest).VComplex := TComplexData.Create(ARead, AImaginary);
end;

This function does not actually exist in the VarCmplx unit, but is a synthesis of
methods that do exist, provided to simplify the example. Note that the returned
variant is cast to the record that was defined to map onto the TVarData structure
(TComplexVarData), and then filled out.

Another useful utility to create is one that returns the variant type code for your new
Variant type. This type code is not a constant. It is automatically generated when you
instantiate your TCustomVariantType descendant. It is therefore useful to provide a

C o m m o n p r o g r a m m i n g t a s k s 4-37

D e f i n i n g c u s t o m v a r i a n t s

way to easily determine the type code for your custom variant type. The following
function from the VarCmplx unit illustrates how to write one, by simply returning
the VarType property of the TCustomVariantType descendant:

function VarComplex: TVarType;
begin
 Result := ComplexVariantType.VarType;
end;

Two other standard utilities provided for most custom variants check whether a
given variant is of the custom type and cast an arbitrary variant to the new custom
type. Here is the implementation of those utilities from the VarCmplx unit:

function VarIsComplex(const AValue: Variant): Boolean;
begin
 Result := (TVarData(AValue).VType and varTypeMask) = VarComplex;
end;

function VarAsComplex(const AValue: Variant): Variant;
begin
 if not VarIsComplex(AValue) then
 VarCast(Result, AValue, VarComplex)
 else
 Result := AValue;
end;

Note that these use standard features of all variants: the VType member of the
TVarData record and the VarCast function, which works because of the methods
implemented in the TCustomVariantType descendant for casting data.

In addition to the standard utilities mentioned above, you can write any number of
utilities specific to your new custom variant type. For example, the VarCmplx unit
defines a large number of functions that implement mathematical operations on
complex-valued variants.

Supporting properties and methods in custom variants

Some variants have properties and methods. For example, when the value of a
variant is an interface, you can use the variant to read or write the values of
properties on that interface and call its methods. Even if your custom variant type
does not represent an interface, you may want to give it properties and methods that
an application can use in the same way.

Using TInvokeableVariantType
To provide support for properties an methods, the class you create to enable the new
custom variant type should descend from TInvokeableVariantType instead of directly
from TCustomVariantType.

TInvokeableVariantType defines four methods:

• DoFunction
• DoProcedure
• GetProperty
• SetProperty

4-38 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

that you can implement to support properties and methods on your custom variant
type.

For example, the VarConv unit uses TInvokeableVariantType as the base class for
TConvertVariantType so that the resulting custom variants can support properties.
The following example shows the property getter for these properties:

function TConvertVariantType.GetProperty(var Dest: TVarData;
 const V: TVarData; const Name: String): Boolean;
var
 LType: TConvType;
begin
 // supports...
 // 'Value'
 // 'Type'
 // 'TypeName'
 // 'Family'
 // 'FamilyName'
 // 'As[Type]'
 Result := True;
 if Name = 'VALUE' then
 Variant(Dest) := TConvertVarData(V).VValue
 else if Name = 'TYPE' then
 Variant(Dest) := TConvertVarData(V).VConvType
 else if Name = 'TYPENAME' then
 Variant(Dest) := ConvTypeToDescription(TConvertVarData(V).VConvType)
 else if Name = 'FAMILY' then
 Variant(Dest) := ConvTypeToFamily(TConvertVarData(V).VConvType)
 else if Name = 'FAMILYNAME' then
 Variant(Dest) := ConvFamilyToDescription(ConvTypeToFamily(TConvertVarData(V).VConvType))
 else if System.Copy(Name, 1, 2) = 'AS' then
 begin
 if DescriptionToConvType(ConvTypeToFamily(TConvertVarData(V).VConvType),
 System.Copy(Name, 3, MaxInt), LType) then
 VarConvertCreateInto(Variant(Dest), Convert(TConvertVarData(V).VValue,
 TConvertVarData(V).VConvType, LType), LType)
 else
 Result := False;
 end
 else
 Result := False;
end;

The GetProperty method checks the Name parameter to determine what property is
wanted. It then retrieves the information from the TVarData record of the Variant (V),
and returns it as a Variant (Dest). Note that this method supports properties whose
names are dynamically generated at runtime (As[Type]), based on the current value
of the custom variant.

Similarly, the SetProperty, DoFunction, and DoProcedure methods are sufficiently
generic that you can dynamically generate method names, or respond to variable
numbers and types of parameters.

C o m m o n p r o g r a m m i n g t a s k s 4-39

W o r k i n g w i t h s t r i n g s

Using TPublishableVariantType
If the custom variant type stores its data using an object instance, then there is an
easier way to implement properties, as long as they are also properties of the object
that represents the variant’s data. If you use TPublishableVariantType as the base class
for your custom variant type, then you need only implement the GetInstance method,
and all the published properties of the object that represents the variant’s data are
automatically implemented for the custom variants.

For example, as was seen in “Storing a custom variant type’s data” on page 4-28,
TComplexVariantType stores the data of a complex-valued variant using an instance of
TComplexData. TComplexData has a number of published properties (Real, Imaginary,
Radius, Theta, and FixedTheta), that provide information about the complex value.
TComplexVariantType descends from TPublishableVariantType, and implements the
GetInstance method to return the TComplexData object (in TypInfo.pas) that is stored
in a complex-valued variant’s TVarData record:

function TComplexVariantType.GetInstance(const V: TVarData): TObject;
begin
 Result := TComplexVarData(V).VComplex;
end;

TPublishableVariantType does the rest. It overrides the GetProperty and SetProperty
methods to use the runtime type information (RTTI) of the TComplexData object for
getting and setting property values.

Note For TPublishableVariantType to work, the object that holds the custom variant’s data
must be compiled with RTTI. This means it must be compiled using the {$M+}
compiler directive, or descend from TPersistent.

Working with strings
Delphi has a number of different character and string types that have been
introduced throughout the development of the Object Pascal language. This section
is an overview of these types, their purpose, and usage. For language details, see the
Object Pascal Language online Help on String types.

Character types

Delphi has three character types: Char, AnsiChar, and WideChar.

The Char character type came from standard Pascal, and was used in Turbo Pascal
and then in Object Pascal. Later Object Pascal added AnsiChar and WideChar as
specific character types that were used to support standards for character
representation on the Windows operating system. AnsiChar was introduced to
support an 8-bit character ANSI standard, and WideChar was introduced to support a
16-bit Unicode standard. The name WideChar is used because Unicode characters are
also known as wide characters. Wide characters are two bytes instead of one, so that
the character set can represent many more different characters. When AnsiChar and
WideChar were implemented, Char became the default character type representing

4-40 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

the currently recommended implementation. If you use Char in your application,
remember that its implementation is subject to change in future versions of Delphi.

Note For cross-platform programming: The Linux wchar_t widechar is 32 bits per
character. The 16-bit Unicode standard that Object Pascal widechars support is a
subset of the 32-bit UCS standard supported by Linux and the GNU libraries. Pascal
widechar data must be widened to 32 bits per character before it can be passed to an
OS function as wchar_t.

The following table summarizes these character types:

For more information about using these character types, see the Object Pascal
Language Guide online Help on Character types For more information about Unicode
characters, see the Object Pascal Language Guide online Help on About extended
character sets.

String types

Delphi has three categories of types that you can use when working with strings:

• Character pointers
• String types
• String classes

This section summarizes string types, and discusses using them with character
pointers. For information about using string classes, see the online Help on TStrings.

Delphi has three string implementations: short strings, long strings, and wide strings.
Several different string types represent these implementations. In addition, there is a
reserved word string that defaults to the currently recommended string
implementation.

Short strings
String was the first string type used in Turbo Pascal. String was originally
implemented as a short string. Short strings are an allocation of between 1 and 256
bytes, of which the first byte contains the length of the string and the remaining bytes
contain the characters in the string:

S: string[0..n]// the original string type

When long strings were implemented, string was changed to a long string
implementation by default and ShortString was introduced as a backward
compatibility type. ShortString is a predefined type for a maximum length string:

S: string[255]// the ShortString type

Table 4.2 Object Pascal character types

Type Bytes Contents Purpose

Char 1 A single character Default character type

AnsiChar 1 A single character 8-bit characters

WideChar 2 A single Unicode character 16-bit Unicode standard.

C o m m o n p r o g r a m m i n g t a s k s 4-41

W o r k i n g w i t h s t r i n g s

The size of the memory allocated for a ShortString is static, meaning that it is
determined at compile time. However, the location of the memory for the ShortString
can be dynamically allocated, for example if you use a PShortString, which is a
pointer to a ShortString. The number of bytes of storage occupied by a short string
type variable is the maximum length of the short string type plus one. For the
ShortString predefined type the size is 256 bytes.

Both short strings, declared using the syntax string[0..n], and the ShortString
predefined type exist primarily for backward compatibility with earlier versions of
Delphi and Borland Pascal.

A compiler directive, $H, controls whether the reserved word string represents a
short string or a long string. In the default state, {$H+}, string represents a long
string. You can change it to a ShortString by using the {$H-} directive. The {$H-} state
is mostly useful for using code from versions of Object Pascal that used short strings
by default. However, short strings can be useful in data structures where you need a
fixed-size component or in DLLs when you don’t want to use the ShareMem unit (see
also the online Help on Memory Management). You can locally override the meaning
of string-type definitions to ensure generation of short strings. You can also change
declarations of short string types to string[255] or ShortString, which are
unambiguous and independent of the $H setting.

For details about short strings and the ShortString type, see the Object Pascal Language
Guide online Help on Short strings.

Long strings
Long strings are dynamically allocated strings with a maximum length of 2
Gigabytes, but the practical limit is usually dependent on the amount of available
memory. Like short strings, long strings use 8-bit Ansi characters and have a length
indicator. Unlike short strings, long strings have no zeroth element that contains the
dynamic string length. To find the length of a long string you must use the Length
standard function, and to set the length of a long string you must use the SetLength
standard procedure. Long strings are also reference-counted and, like PChars, long
strings are null-terminated. For details about the implementation of longs strings, see
the Object Pascal Language Guide online Help on Long strings.

Long strings are denoted by the reserved word string and by the predefined
identifier AnsiString. For new applications, it is recommended that you use the long
string type. All components in the VCL are compiled in this state, typically using
string. If you write components, they should also use long strings, as should any
code that receives data from string-type properties. If you want to write specific code
that always uses a long string, then you should use AnsiString. If you want to write
flexible code that allows you to easily change the type as new string implementations
become standard, then you should use string.

WideString
The WideChar type allows wide character strings to be represented as arrays of
WideChars. Wide strings are strings composed of 16-bit Unicode characters. As with
long strings, wide strings are dynamically allocated with a maximum length of two
Gigabytes, but the practical limit is usually dependent on the amount of available

4-42 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

memory. In Delphi, wide strings are not reference-counted. Every assignment of a
wide string to a wide string var creates a copy of the string data. In Kylix,
WideStrings are reference counted.

The dynamically allocated memory that contains the string is deallocated when the
wide string goes out of scope. In all other respects wide strings possess the same
attributes as long strings. The WideString type is denoted by the predefined identifier
WideString.

Since the 32-bit version of OLE (Windows only) uses Unicode for all strings, strings
must be of wide string type in any OLE automated properties and method
parameters. Also, most OLE API functions use null-terminated wide strings.

For more information, see the Object Pascal Language Guide topic on WideString.

PChar types
A PChar is a pointer to a null-terminated string of characters of the type Char. Each of
the three character types also has a built-in pointer type:

• A PChar is a pointer to a null-terminated string of 8-bit characters.
• A PAnsiChar is a pointer to a null-terminated string of 8-bit characters.
• A PWideChar is a pointer to a null-terminated string of 16-bit characters.

PChars are, with short strings, one of the original Object Pascal string types. They
were created primarily as a C language and Windows API compatibility type.

OpenString
An OpenString is obsolete, but you may see it in older code. It is for 16-bit
compatibility and is allowed only in parameters. OpenString was used, before long
strings were implemented, to allow a short string of an unspecified length string to
be passed as a parameter. For example, this declaration:

procedure a(v : openstring);

will allow any length string to be passed as a parameter, where normally the string
length of the formal and actual parameters must match exactly. You should not have
to use OpenString in any new applications you write.

Refer also to the {$P+/-} switch in “Compiler directives for strings” on page 4-49.

Runtime library string handling routines

The runtime library provides many specialized string handling routines specific to a
string type. These are routines for wide strings, longs strings, and null-terminated
strings (meaning PChars). Routines that deal with PChar types use the null-
termination to determine the length of the string. For more details about null-
terminated strings, see Working with null-terminated strings in the Object Pascal
Language Guide or online Help.

The runtime library also includes a category of string formatting routines. There are
no categories of routines listed for ShortString types. However, some built-in
compiler routines deal with the ShortString type. These include, for example, the Low
and High standard functions.

C o m m o n p r o g r a m m i n g t a s k s 4-43

W o r k i n g w i t h s t r i n g s

Because wide strings and long strings are the commonly used types, the remaining
sections discuss these routines.

Wide character routines
When working with strings you should make sure that the code in your application
can handle the strings it will encounter in the various target locales. Sometimes you
will need to use wide characters and wide strings. In fact, one approach to working
with ideographic character sets is to convert all characters to a wide character
encoding scheme such as Unicode. The runtime library includes the following wide
character string functions for converting between standard single-byte character
strings (or MBCS strings) and Unicode strings:

• StringToWideChar
• WideCharLenToString
• WideCharLenToStrVar
• WideCharToString
• WideCharToStrVar

Using a wide character encoding scheme has the advantage that you can make many
of the usual assumptions about strings that do not work for MBCS systems. There is a
direct relationship between the number of bytes in the string and the number of
characters in the string. You do not need to worry about cutting characters in half or
mistaking the second half of a character for the start of a different character.

A disadvantage of working with wide characters is that Windows 95 does not
support wide character API function calls. Because of this, the VCL components
represent all string values as single byte or MBCS strings. Translating between the
wide character system and the MBCS system every time you set a string property or
read its value would require tremendous amounts of extra code and slow your
application down. However, you may want to translate into wide characters for some
special string processing algorithms that need to take advantage of the 1:1 mapping
between characters and WideChars.

Note Typically, CLX components represent string values as wide strings.

Commonly used long string routines
The long string handling routines cover several functional areas. Within these areas,
some are used for the same purpose, the differences being whether or not they use a
particular criteria in their calculations. The following tables list these routines by
these functional areas:

• Comparison
• Case conversion
• Modification
• Sub-string

Where appropriate, the tables also provide columns indicating whether or not a
routine satisfies the following criteria.

• Uses case sensitivity: If locale settings are used, it determines the definition of case.
If the routine does not use locale settings, analyses are based upon the ordinal
values of the characters. If the routine is case-insensitive, there is a logical merging
of upper and lower case characters that is determined by a predefined pattern.

4-44 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

• Uses locale settings: Locale settings allow you to customize your application for
specific locales, in particular, for Asian language environments. Most locale
settings consider lowercase characters to be less than the corresponding uppercase
characters. This is in contrast to ASCII order, in which lowercase characters are
greater than uppercase characters. Routines that use the Windows locale are
typically prefaced with Ansi (that is, AnsiXXX).

• Supports the multi-byte character set (MBCS): MBCSs are used when writing code
for far eastern locales. Multi-byte characters are represented as a mix of one- and
two-byte character codes, so the length in bytes does not necessarily correspond to
the length of the string. The routines that support MBCS are written parse one-
and two-byte characters.

ByteType and StrByteType determine whether a particular byte is the lead byte of a
two-byte character. Be careful when using multi-byte characters not to truncate a
string by cutting a two-byte character in half. Do not pass characters as a parameter
to a function or procedure, since the size of a character cannot be predetermined.
Pass, instead, a pointer to a to a character or string. For more information about
MBCS, see “Enabling application code” on page 12-2 of Chapter 12, “Creating
international applications.”

The routines used for string file names: AnsiCompareFileName,
AnsiLowerCaseFileName, and AnsiUpperCaseFileName all use the Windows locale. You
should always use file names that are portable because the locale (character set) used
for file names can and might differ from the default user interface.

Table 4.3 String comparison routines

Routine Case-sensitive Uses locale settings Supports MBCS

AnsiCompareStr yes yes yes

AnsiCompareText no yes yes

AnsiCompareFileName no yes yes

CompareStr yes no no

CompareText no no no

Table 4.4 Case conversion routines

Routine Uses locale settings Supports MBCS

AnsiLowerCase yes yes

AnsiLowerCaseFileName yes yes

AnsiUpperCaseFileName yes yes

AnsiUpperCase yes yes

LowerCase no no

UpperCase no no

C o m m o n p r o g r a m m i n g t a s k s 4-45

W o r k i n g w i t h s t r i n g s

Table 4.5 String modification routines

Routine Case-sensitive Supports MBCS

AdjustLineBreaks NA yes

AnsiQuotedStr NA yes

StringReplace optional by flag yes

Trim NA yes

TrimLeft NA yes

TrimRight NA yes

WrapText NA yes

Table 4.6 Sub-string routines

Routine Case-sensitive Supports MBCS

AnsiExtractQuotedStr NA yes

AnsiPos yes yes

IsDelimiter yes yes

IsPathDelimiter yes yes

LastDelimiter yes yes

QuotedStr no no

Table 4.7 String handling routines

Routine Case-sensitive Supports MBCS

AnsiContainsText no yes

AnsiEndsText no no

AnsiIndexText no yes

AnsiMatchText no yes

AnsiResemblesText no no

AnsiStartsText no yes

IfThen NA yes

LeftStr yes no

RightStr yes no

SoundEx NA no

SoundExInt NA no

DecodeSoundExInt NA no

SoundExWord NA no

DecodeSoundExWord NA no

SoundExSimilar NA no

SoundExCompare NA no

4-46 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

Declaring and initializing strings

When you declare a long string:

S: string;

you do not need to initialize it. Long strings are automatically initialized to empty. To
test a string for empty you can either use the EmptyStr variable:

S = EmptyStr;

or test against an empty string:

S = ‘’;

An empty string has no valid data. Therefore, trying to index an empty string is like
trying to access nil and will result in an access violation:

var
S: string;

begin
S[i]; // this will cause an access violation
// statements

end;

Similarly, if you cast an empty string to a PChar, the result is a nil pointer. So, if you
are passing such a PChar to a routine that needs to read or write to it, be sure that the
routine can handle nil:

var
S: string; // empty string

begin
proc(PChar(S)); // be sure that proc can handle nil
// statements

end;

If it cannot, then you can either initialize the string:

S := ‘No longer nil’;
proc(PChar(S));// proc does not need to handle nil now

or set the length, using the SetLength procedure:

SetLength(S, 100);//sets the dynamic length of S to 100
proc(PChar(S));// proc does not need to handle nil now

When you use SetLength, existing characters in the string are preserved, but the
contents of any newly allocated space is undefined. Following a call to SetLength, S is
guaranteed to reference a unique string, that is a string with a reference count of one.
To obtain the length of a string, use the Length function.

Remember when declaring a string that:

S: string[n];

implicitly declares a short string, not a long string of n length. To declare a long string
of specifically n length, declare a variable of type string and use the SetLength
procedure.

S: string;
SetLength(S, n);

C o m m o n p r o g r a m m i n g t a s k s 4-47

W o r k i n g w i t h s t r i n g s

Mixing and converting string types

Short, long, and wide strings can be mixed in assignments and expressions, and the
compiler automatically generates code to perform the necessary string type
conversions. However, when assigning a string value to a short string variable, be
aware that the string value is truncated if it is longer than the declared maximum
length of the short string variable.

Long strings are already dynamically allocated. If you use one of the built-in pointer
types, such as PAnsiString, PString, or PWideString, remember that you are
introducing another level of indirection. Be sure this is what you intend.

Additional functions (CopyQStringListToTstrings, Copy TStringsToQStringList,
QStringListToTStringList) are provided for converting underlying Qt string types and
CLX string types. These functions are located in Qtypes.pas.

String to PChar conversions

Long string to PChar conversions are not automatic. Some of the differences between
strings and PChars can make conversions problematic:

• Long strings are reference-counted, while PChars are not.

• Assigning to a string copies the data, while a PChar is a pointer to memory.

• Long strings are null-terminated and also contain the length of the string, while
PChars are simply null-terminated.

Situations in which these differences can cause subtle errors are discussed in this
section.

String dependencies
Sometimes you will need convert a long string to a null-terminated string, for
example, if you are using a function that takes a PChar. If you must cast a string to a
PChar, be aware that you are responsible for the lifetime of the resulting PChar.
Because long strings are reference counted, typecasting a string to a PChar increases
the dependency on the string by one, without actually incrementing the reference
count. When the reference count hits zero, the string will be destroyed, even though
there is an extra dependency on it. The cast PChar will also disappear, while the
routine you passed it to may still be using it. For example:

procedure my_func(x: string);
begin

// do something with x
some_proc(PChar(x)); // cast the string to a PChar
// you now need to guarantee that the string remains
// as long as the some_proc procedure needs to use it

end;

4-48 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

Returning a PChar local variable
A common error when working with PChars is to store in a data structure, or return
as a value, a local variable. When your routine ends, the PChar will disappear
because it is simply a pointer to memory, and is not a reference counted copy of the
string. For example:

function title(n: Integer): PChar;
var

s: string;
begin

s := Format(‘title - %d’, [n]);
Result := PChar(s); // DON’T DO THIS

end;

This example returns a pointer to string data that is freed when the title function
returns.

Passing a local variable as a PChar
Consider that you have a local string variable that you need to initialize by calling a
function that takes a PChar. One approach is to create a local array of char and pass it
to the function, then assign that variable to the string:

// VCL version
// assume MAXSIZE is a predefined constant
var

i: Integer;
buf: array[0..MAX_SIZE] of char;
S: string;

begin
i := GetModuleFilename(0, @buf, SizeOf(buf));// treats @buf as a PChar
S := buf;
//statements

end;

Or, for cross-platform programs, the code is nearly identical:

// assume FillBuffer is a predefined function
function FillBuffer(Buf:PChar;Count:Integer):Integer
begin

. . .
end;

// assume MAX_SIZE is a predefined constant
var

i: Integer;
buf: array[0..MAX_SIZE] of char;
S: string;

begin
i := FillBuffer(0, @buf, SizeOf(buf));// treats @buf as a PChar
S := buf;
//statements

end;

This approach is useful if the size of the buffer is relatively small, since it is allocated
on the stack. It is also safe, since the conversion between an array of char and a string
is automatic. When GetModuleFilename (or FillBuffer in the cross-platform version)
returns, the Length of the string correctly indicates the number of bytes written to buf.

C o m m o n p r o g r a m m i n g t a s k s 4-49

W o r k i n g w i t h s t r i n g s

To eliminate the overhead of copying the buffer, you can cast the string to a PChar (if
you are certain that the routine does not need the PChar to remain in memory).
However, synchronizing the length of the string does not happen automatically, as it
does when you assign an array of char to a string. You should reset the string Length
so that it reflects the actual width of the string. If you are using a function that returns
the number of bytes copied, you can do this safely with one line of code:

var
S: string;

begin
SetLength(S, MAX_SIZE;// when casting to a PChar, be sure the string is not empty
SetLength(S, GetModuleFilename(0, PChar(S), Length(S)));
// statements

end;

Compiler directives for strings

The following compiler directives affect character and string types.

Table 4.8 Compiler directives for strings

Directive Description

{$H+/-} A compiler directive, $H, controls whether the reserved word string represents a
short string or a long string. In the default state, {$H+}, string represents a long
string. You can change it to a ShortString by using the {$H-} directive.

{$P+/-} The $P directive is meaningful only for code compiled in the {$H-} state, and is
provided for backwards compatibility. $P controls the meaning of variable
parameters declared using the string keyword in the {$H-} state.
In the {$P-} state, variable parameters declared using the string keyword are normal
variable parameters, but in the {$P+} state, they are open string parameters.
Regardless of the setting of the $P directive, the OpenString identifier can always be
used to declare open string parameters.

{$V+/-} The $V directive controls type checking on short strings passed as variable
parameters. In the {$V+} state, strict type checking is performed, requiring the formal
and actual parameters to be of identical string types.
In the {$V-} (relaxed) state, any short string type variable is allowed as an actual
parameter, even if the declared maximum length is not the same as that of the formal
parameter. Be aware that this could lead to memory corruption. For example:

var S: string[3];

procedure Test(var T: string);
begin
T := ‘1234’;

end;

begin
Test(S);

end.

{$X+/-} The {$X+} compiler directive enables support for null-terminated strings by
activating the special rules that apply to the built-in PChar type and zero-based
character arrays. (These rules allow zero-based arrays and character pointers to be
used with Write, Writeln, Val, Assign, and Rename from the System unit.)

4-50 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Strings and characters: related topics

The following Object Pascal Language Guide topics discuss strings and character sets.
Also see Chapter 12, “Creating international applications.”

• About extended character sets (Discusses international character sets)
• Working with null-terminated strings (Contains information about character

arrays)
• Character strings
• Character pointers
• String operators

Working with files
This section describes working with files and distinguishes between manipulating
files on disk, and input/output operations such as reading and writing to files. The
first section discusses the runtime library and Windows API routines you would use
for common programming tasks that involve manipulating files on disk. The next
section is an overview of file types used with file I/O. The last section focuses on the
recommended approach to working with file I/O, which is to use file streams.

Although the Object Pascal language is not case sensitive, the Linux operating system
is. Be attentive to case when working with files in cross-platform applications.

Note Previous versions of the Object Pascal language performed operations on files
themselves, rather than on the filename parameters commonly used now. With these
file types you had to locate a file and assign it to a file variable before you could, for
example, rename the file.

Manipulating files

Several common file operations are built into Object Pascal's runtime library. The
procedures and functions for working with files operate at a high level. For most
routines, you specify the name of the file and the routine makes the necessary calls to
the operating system for you. In some cases, you use file handles instead. Object
Pascal provides routines for most file manipulation. When it does not, alternative
routines are discussed.

Caution Although the Object Pascal language is not case sensitive, the Linux operating system
is. Be attentive to case when working with files in cross-platform applications.

Deleting a file
Deleting a file erases the file from the disk and removes the entry from the disk's
directory. There is no corresponding operation to restore a deleted file, so
applications should generally allow users to confirm deletions of files. To delete a
file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);

C o m m o n p r o g r a m m i n g t a s k s 4-51

W o r k i n g w i t h f i l e s

DeleteFile returns True if it deleted the file and False if it did not (for example, if the
file did not exist or if it was read-only). DeleteFile erases the file named by FileName
from the disk.

Finding a file
There are three routines used for finding a file: FindFirst, FindNext, and FindClose.
FindFirst searches for the first instance of a filename with a given set of attributes in a
specified directory. FindNext returns the next entry matching the name and attributes
specified in a previous call to FindFirst. FindClose releases memory allocated by
FindFirst. You should always use FindClose to terminates a FindFirst/FindNext
sequence. If you want to know if a file exists, a FileExists function returns True if the
file exists, False otherwise.

The three file find routines take a TSearchRec as one of the parameters. TSearchRec
defines the file information searched for by FindFirst or FindNext. The declaration for
TSearchRec is:

type
TFileName = string;
TSearchRec = record

Time: Integer;//Time contains the time stamp of the file.
Size: Integer;//Size contains the size of the file in bytes.
Attr: Integer;//Attr represents the file attributes of the file.
Name: TFileName;//Name contains the filename and extension.
ExcludeAttr: Integer;
FindHandle: THandle;
FindData: TWin32FindData;//FindData contains additional information such as
//file creation time, last access time, long and short filenames.

end;

If a file is found, the fields of the TSearchRec type parameter are modified to describe
the found file. You can test Attr against the following attribute constants or values to
determine if a file has a specific attribute:

To test for an attribute, combine the value of the Attr field with the attribute constant
with the and operator. If the file has that attribute, the result will be greater than 0.
For example, if the found file is a hidden file, the following expression will evaluate
to True: (SearchRec.Attr and faHidden > 0). Attributes can be combined by OR’ing their
constants or values. For example, to search for read-only and hidden files in addition
to normal files, pass (faReadOnly or faHidden) the Attr parameter.

Table 4.9 Attribute constants and values

Constant Value Description

faReadOnly $00000001 Read-only files

faHidden $00000002 Hidden files

faSysFile $00000004 System files

faVolumeID $00000008 Volume ID files

faDirectory $00000010 Directory files

faArchive $00000020 Archive files

faAnyFile $0000003F Any file

4-52 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Example: This example uses a label, a button named Search, and a button named Again on a
form. When the user clicks the Search button, the first file in the specified path is
found, and the name and the number of bytes in the file appear in the label's caption.
Each time the user clicks the Again button, the next matching filename and size is
displayed in the label:

var
SearchRec: TSearchRec;

procedure TForm1.SearchClick(Sender: TObject);
begin

FindFirst('c:\Program Files\delphi6\bin*.*', faAnyFile, SearchRec);
Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size';

end;

procedure TForm1.AgainClick(Sender: TObject);
begin

if (FindNext(SearchRec) = 0)
Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size';

else
FindClose(SearchRec);

end;

In cross-platform applications, you should replace any hardcoded pathnames such as
c:\Program Files\delphi6\bin*.* with the correct pathname for the system or use
environment variables (on the Environment Variables page when you choose Tools|
Environment Options) to represent them.

Renaming a file
To change a filename, simply use the RenameFile function:

function RenameFile(const OldFileName, NewFileName: string): Boolean;

which changes a filename, identified by OldFileName, to the name specified by
NewFileName. If the operation succeeds, RenameFile returns True. If it cannot rename
the file, for example, if a file called NewFileName already exists, it returns False. For
example:

if not RenameFile('OLDNAME.TXT','NEWNAME.TXT') then
ErrorMsg('Error renaming file!');

You cannot rename (move) a file across drives using RenameFile. You would need to
first copy the file and then delete the old one.

Note RenameFile in the VCL is a wrapper around the Windows API MoveFile function, so
MoveFile will not work across drives either.

File date-time routines
The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-
time values. FileAge returns the date-and-time stamp of a file, or -1 if the file does not
exist. FileSetDate sets the date-and-time stamp for a specified file, and returns zero on
success or an error code on failure. FileGetDate returns a date-and-time stamp for the
specified file or -1 if the handle is invalid.

C o m m o n p r o g r a m m i n g t a s k s 4-53

W o r k i n g w i t h f i l e s

As with most of the file manipulating routines, FileAge uses a string filename.
FileGetDate and FileSetDate, however, take a Handle type as a parameter. To get access
to a Windows file Handle either

• Call the Windows API CreateFile function. CreateFile is a 32-bit only function that
creates or opens a file and returns a Handle that can be used to access the file.

• Instantiate TFileStream to create or open a file. Then use the Handle property as you
would a Windows’ file Handle. See “Using file streams” on page 4-54 for more
information.

Copying a file
The runtime library does not provide any routines for copying a file. However, if you
are writing Windows-only applications, you can directly call the Windows API
CopyFile function to copy a file. Like most of the Delphi runtime library file routines,
CopyFile takes a filename as a parameter, not a Handle. When copying a file, be aware
that the file attributes for the existing file are copied to the new file, but the security
attributes are not. CopyFile is also useful when moving files across drives because
neither the Delphi RenameFile function nor the Windows API MoveFile function can
rename/move files across drives. For more information, see the Microsoft Windows
online Help.

File types with file I/O

You can use three file types when working with file I/O: Pascal file types, file
handles, and file stream objects. The following table summarizes these types.

Table 4.10 File types for file I/O

File type Description

Pascal file
types

In the System unit. These types are used with file variables, usually of the format
"F: Text:" or "F: File". The files have three types: typed, text, and untyped. A
number of file-handling routines, such as AssignPrn and writeln, use them. These
file types are obsolete and are incompatible with Windows file handles. If you
need to work with them, see the Object Pascal Language Guide.

File handles In the Sysutils unit. A number of routines use a handle to identify the file. You
get the handle when you open or create the file (for example, using FileOpen or
FileCreate). Once you have the handle, there are routines to work with the
contents of the file given its handle (write a line, read text, and so on).
In Windows programming, the Object Pascal file handles are wrappers for the
Windows file handle type. The runtime library file-handling routines that use
Windows file Handles are typically wrappers around Windows API functions.
For example, the FileRead calls the Windows ReadFile function. Because the
Delphi functions use Object Pascal syntax, and occasionally provide default
parameter values, they are a convenient interface to the Windows API. Using
these routines is straightforward, and if you are familiar and comfortable with
the Windows API file routines, you may want to use them when working with
file I/O.

File streams File streams are object instances of the TFileStream class used to access
information in disk files. File streams are a portable and high-level approach to
file I/O. TFileStream has a Handle property that lets you access the file handle.
The next section discusses TFileStream.

4-54 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Using file streams

TFileStream is a class that enables applications to read from and write to a file on disk.
It is used for high-level object representations of file streams. TFileStream offers
multiple functionality: persistence, interaction with other streams, and file I/O.

• TFileStream is a descendant of the stream classes. As such, one advantage of using
file streams is that they inherit the ability to persistently store component
properties. The stream classes work with the TFiler classes, TReader, and TWriter,
to stream objects out to disk. Therefore, when you have a file stream, you can use
that same code for the component streaming mechanism. For more information
about using the component streaming system, see the online Help on the TStream,
TFiler, TReader, TWriter, and TComponent classes.

• TFileStream can interact easily with other stream classes. For example, if you want
to dump a dynamic memory block to disk, you can do so using a TFileStream and a
TMemoryStream.

• TFileStream provides the basic methods and properties for file I/O. The remaining
sections focus on this aspect of file streams

Creating and opening files
To create or open a file and get access to a handle for the file, you simply instantiate a
TFileStream. This opens or creates a named file and provides methods to read from or
write to it. If the file cannot be opened, TFileStream raises an exception.

constructor Create(const filename: string; Mode: Word);

The Mode parameter specifies how the file should be opened when creating the file
stream. The Mode parameter consists of an open mode and a share mode or’ed
together. The open mode must be one of the following values:

The share mode can be one of the following values with the restrictions listed below:

Table 4.11 Open modes

Value Meaning

fmCreate TFileStream a file with the given name. If a file with the given name
exists, open the file in write mode.

fmOpenRead Open the file for reading only.

fmOpenWrite Open the file for writing only. Writing to the file completely replaces the
current contents.

fmOpenReadWrite Open the file to modify the current contents rather than replace them.

Table 4.12 Shared modes

Value Meaning

fmShareCompat Sharing is compatible with the way FCBs are opened.

fmShareExclusive Other applications can not open the file for any reason.

fmShareDenyWrite Other applications can open the file for reading but not for writing.

fmShareDenyRead Other applications can open the file for writing but not for reading.

fmShareDenyNone No attempt is made to prevent other applications from reading from or
writing to the file.

C o m m o n p r o g r a m m i n g t a s k s 4-55

W o r k i n g w i t h f i l e s

Note that which share mode you can use depends on which open mode you used.
The following table shows shared modes that are available for each open mode.

The file open and share mode constants are defined in the SysUtils unit.

Using the file handle
When you instantiate TFileStream you get access to the file handle. The file handle is
contained in the Handle property. Handle is read-only and indicates the mode in
which the file was opened. If you want to change the attributes of the file Handle, you
must create a new file stream object.

Some file manipulation routines take a window’s file handle as a parameter. Once
you have a file stream, you can use the Handle property in any situation in which you
would use a window’s file handle. Be aware that, unlike handle streams, file streams
close file handles when the object is destroyed.

Reading and writing to files
TFileStream has several different methods for reading from and writing to files. These
are distinguished by whether they perform the following:

• Return the number of bytes read or written.

• Require the number of bytes is known.

• Raise an exception on error.

Read is a function that reads up to Count bytes from the file associated with the file
stream, starting at the current Position, into Buffer. Read then advances the current
position in the file by the number of bytes actually transferred. The prototype for
Read is

function Read(var Buffer; Count: Longint): Longint; override;

Read is useful when the number of bytes in the file is not known. Read returns the
number of bytes actually transferred, which may be less than Count if the end of file
marker is encountered.

Write is a function that writes Count bytes from the Buffer to the file associated with
the file stream, starting at the current Position. The prototype for Write is:

function Write(const Buffer; Count: Longint): Longint; override;

After writing to the file, Write advances the current position by the number bytes
written, and returns the number of bytes actually written, which may be less than
Count if the end of the buffer is encountered.

Table 4.13 Shared modes available for each open mode

Open Mode fmShareCompat fmShareExclusive fmShareDenyWrite fmShareDenyRead fmShareDenyNone

fmOpenRead Can’t use Can’t use Available Can’t use Available

fmOpenWrite Available Available Can’t use Available Available

fmOpenReadWrite Available Available Available Available Available

4-56 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and
Write, do not return the number of bytes read or written. These procedures are useful
in cases where the number of bytes is known and required, for example when
reading in structures. ReadBuffer and WriteBuffer raise an exception on error
(EReadError and EWriteError) while the Read and Write methods do not. The
prototypes for ReadBuffer and WriteBuffer are:

procedure ReadBuffer(var Buffer; Count: Longint);

procedure WriteBuffer(const Buffer; Count: Longint);

These methods call the Read and Write methods, to perform the actual reading and
writing.

Reading and writing strings
If you are passing a string to a read or write function, you need to be aware of the
correct syntax. The Buffer parameters for the read and write routines are var and
const types, respectively. These are untyped parameters, so the routine takes the
address of a variable.

The most commonly used type when working with strings is a long string. However,
passing a long string as the Buffer parameter does not produce the correct result.
Long strings contain a size, a reference count, and a pointer to the characters in the
string. Consequently, dereferencing a long string does not result in only the pointer
element. What you need to do is first cast the string to a Pointer or PChar, and then
dereference it. For example:

procedure caststring;
var

fs: TFileStream;
const

s: string = 'Hello';
begin

fs := TFileStream.Create('temp.txt', fmCreate or fmOpenWrite);
fs.Write(s, Length(s));// this will give you garbage
fs.Write(PChar(s)^, Length(s));// this is the correct way

end;

Seeking a file
Most typical file I/O mechanisms have a process of seeking a file in order to read
from or write to a particular location within it. For this purpose, TFileStream has a
Seek method. The prototype for Seek is:

function Seek(Offset: Longint; Origin: Word): Longint; override;

C o m m o n p r o g r a m m i n g t a s k s 4-57

W o r k i n g w i t h f i l e s

The Origin parameter indicates how to interpret the Offset parameter. Origin should
be one of the following values:

Seek resets the current Position of the stream, moving it by the indicated offset. Seek
returns the new value of the Position property, the new current position in the
resource.

File position and size
TFileStream has properties that hold the current position and size of the file. These are
used by the Seek, read, and write methods.

The Position property of TFileStream is used to indicate the current offset, in bytes,
into the stream (from the beginning of the streamed data). The declaration for
Position is:

property Position: Longint;

The Size property indicates the size in bytes of the stream. It is used as an end of file
marker to truncate the file. The declaration for Size is:

property Size: Longint;

Size is used internally by routines that read and write to and from the stream.

Setting the Size property changes the size of the file. If the Size of the file cannot be
changed, an exception is raised. For example, trying to change the Size of a file that
was opened in fmOpenRead mode raises an exception.

Copying
CopyFrom copies a specified number of bytes from one (file) stream to another.

function CopyFrom(Source: TStream; Count: Longint): Longint;

Using CopyFrom eliminates the need to create, read into, write from, and free a buffer
when copying data.

CopyFrom copies Count bytes from Source into the stream. CopyFrom then moves the
current position by Count bytes, and returns the number of bytes copied. If Count is 0,
CopyFrom sets Source position to 0 before reading and then copies the entire contents
of Source into the stream. If Count is greater than or less than 0, CopyFrom reads from
the current position in Source.

Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position
Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position +
Offset.

soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a
number of bytes before the end of the file.

4-58 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

Converting measurements
The ConvUtils unit declares a general-purpose Convert function that you can use to
convert a measurement from one set of units to another. You can perform
conversions between compatible units of measurement such as feet and inches or
days and weeks. Units that measure the same types of things are said to be in the
same conversion family. The units you’re converting must be in the same conversion
family. For information on doing conversions, see the next section Performing
conversions and refer to Convert in the online Help.

The StdConvs unit defines several conversion families and measurement units
within each family. In addition, you can create customized conversion families and
associated units using the RegisterConversionType and RegisterConversionFamily
functions. For information on extending conversion and conversion units, see the
section Adding new measurement types and refer to Convert in the online Help.

Performing conversions

You can use the Convert function to perform both simple and complex conversions. It
includes a simple syntax and a second syntax for performing conversions between
complex measurement types.

Performing simple conversions
You can use the Convert function to convert a measurement from one set of units to
another. The Convert function converts between units that measure the same type of
thing (distance, area, time, temperature, and so on).

To use Convert, you must specify the units from which to convert and to which to
convert. You use the TConvType type to identify the units of measurement.

For example, this converts a temperature from degrees Fahrenheit to degrees Kelvin:

TempInKelvin := Convert(StrToFloat(Edit1.Text), tuFahrenheit, tuKelvin);

Performing complex conversions
You can also use the Convert function to perform more complex conversions between
the ratio of two measurement types. Examples of when you might need to use this
this are when converting miles per hour to meters per minute for calculating speed or
when converting gallons per minute to liters per hour for calculating flow.

For example, the following call converts miles per gallon to kilometers per liter:

nKPL := Convert(StrToFloat(Edit1.Text), duMiles, vuGallons, duKilometers, vuLiter);

The units you’re converting must be in the same conversion family (they must
measure the same thing). If the units are not compatible, Convert raises an
EConversionError exception. You can check whether two TConvType values are in the
same conversion family by calling CompatibleConversionTypes.

C o m m o n p r o g r a m m i n g t a s k s 4-59

C o n v e r t i n g m e a s u r e m e n t s

The StdConvs unit defines several families of TConvType values. See Conversion
family variables in the online Help for a list of the predefined families of
measurement units and the measurement units in each family.

Adding new measurement types

If you want to perform conversions between measurement units not already defined
in the StdConvs unit, you need to create a new conversion family to represent the
measurement units (TConvType values). When two TConvType values are registered
with the same conversion family, the Convert function can convert between
measurements made using the units represented by those TConvType values.

You first need to obtain TConvFamily values by registering a conversion family using
the RegisterConversionFamily function. After you get a TConvFamily value (by
registering a new conversion family or using one of the global variables in the
StdConvs unit), you can use the RegisterConversionType function to add the new units
to the conversion family. The following examples show how to do this.

For more examples, refer to the source code for the standard conversions unit
(stdconvs.pas). (Note that the source is not included in all versions of Delphi.)

Creating a simple conversion family and adding units
One example of when you could create a new conversion family and add new
measurement types might be when performing conversions between long periods of
time (such as months to centuries) where a loss of precision can occur.

To explain this further, the cbTime family uses a day as its base unit. The base unit is
the one that is used when performing all conversions within that family. Therefore,
all conversions must be done in terms of days. An inaccuracy can occur when
performing conversions using units of months or larger (months, years, decades,
centuries, millennia) because there is not an exact conversion between days and
months, days and years, and so on. Months have different lengths; years have
correction factors for leap years, leap seconds, and so on.

If you are only using units of measurement greater than or equal to months, you can
create a more accurate conversion family with years as its base unit. This example
creates a new conversion family called cbLongTime.

Declare variables
First, you need to declare variables for the identifiers. The identifiers are used in the
new LongTime conversion family, and the units of measurement that are its
members:

var
cbLongTime: TConvFamily;
ltMonths: TConvType;
ltYears: TConvType;
ltDecades: TConvType;
ltCenturies: TConvType;
ltMillennia: TConvType;

4-60 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

Register the conversion family
Next, register the conversion family:

cbLongTime := RegisterConversionFamily (‘Long Times’);

Although an UnregisterConversionFamily procedure is provided, you don’t need to
unregister conversion families unless the unit that defines them is removed at
runtime. They are automatically cleaned up when your application shuts down.

Register measurement units
Next, you need to register the measurement units within the conversion family that
you just created. You use the RegisterConversionType function, which registers units of
measurement within a specified family. You need to define the base unit which in the
example is years, and the other units are defined using a factor that indicates their
relation to the base unit. So, the factor for ltMonths is 1/12 because the base unit for
the LongTime family is years. You also include a description of the units to which
you are converting.

The code to register the measurement units is shown here:

ltMonths:=RegisterConversionType(cbLongTime,‘Months’,1/12);
ltYears:=RegisterConversionType(cbLongTime,’Years’,1);
ltDecades:=RegisterConversionType(cbLongTime,’Decades’,10);
ltCenturies:=RegisterConversionType(cbLongTime,’Centuries’,100);
ltMillennia:=RegisterConversionType(cbLongTime,’Millennia’,1000);

Use the new units
You can now use the newly registered units to perform conversions. The global
Convert function can convert between any of the conversion types that you registered
with the cbLongTime conversion family.

So instead of using the following Convert call,

Convert(StrToFloat(Edit1.Text),tuMonths,tuMillennia);

you can now use this one for greater accuracy:

Convert(StrToFloat(Edit1.Text),ltMonths,ltMillennia);

Using a conversion function
For cases when the conversion is more complex, you can use a different syntax to
specify a function to perform the conversion instead of using a conversion factor. For
example, you can’t convert temperature values using a conversion factor, because
different temperature scales have a different origins.

This example, which comes from the StdConvs unit, shows how to register a
conversion type by providing functions to convert to and from the base units.

C o m m o n p r o g r a m m i n g t a s k s 4-61

C o n v e r t i n g m e a s u r e m e n t s

Declare variables
First, declare variables for the identifiers. The identifiers are used in the cbTemperature
conversion family, and the units of measurement are its members:

var
cbTemperature: TConvFamily;
tuCelsius: TConvType;
tuKelvin: TConvType;
tuFahrenheit: TConvType;

Note The units of measurement listed here are a subset of the temperature units actually
registered in the StdConvs unit.

Register the conversion family
Next, register the conversion family:

cbTemperature := RegisterConversionFamily (‘Temperature’);

Register the base unit
Next, define and register the base unit of the conversion family, which in the example
is degrees Celsius. Note that in the case of the base unit, we can use a simple
conversion factor, because there is no actual conversion to make:

tuCelsius:=RegisterConversionType(cbTemperature,’Celsius’,1);

Write methods to convert to and from the base unit
You need to write the code that performs the conversion from each temperature scale
to and from degrees Celsius, because these do not rely on a simple conversion factor.
These functions are taken from the StdConvs unit:

function FahrenheitToCelsius(const AValue: Double): Double;
begin
 Result := ((AValue - 32) * 5) / 9;
end;

function CelsiusToFahrenheit(const AValue: Double): Double;
begin
 Result := ((AValue * 9) / 5) + 32;
end;

function KelvinToCelsius(const AValue: Double): Double;
begin
 Result := AValue - 273.15;
end;

function CelsiusToKelvin(const AValue: Double): Double;
begin
 Result := AValue + 273.15;
end;

Register the other units
Now that you have the conversion functions, you can register the other measurement
units within the conversion family. You also include a description of the units.

4-62 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

The code to register the other units in the family is shown here:

tuKelvin := RegisterConversionType(cbTemperature, 'Kelvin', KelvinToCelsius,
CelsiusToKelvin);
 tuFahrenheit := RegisterConversionType(cbTemperature, 'Fahrenheit', FahrenheitToCelsius,
CelsiusToFahrenheit);

Use the new units
You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the conversion
types that you registered with the cbTemperature conversion family. For example the
following code converts a value from degrees Fahrenheit to degrees Kelvin.

Convert(StrToFloat(Edit1.Text), tuFahrenheit, tuKelvin);

Using a class to manage conversions
You can always use conversion functions to register a conversion unit. There are
times, however, when this requires you to create an unnecessarily large number of
functions that all do essentially the same thing.

If you can write a set of conversion functions that differ only in the value of a
parameter or variable, you can create a class to handle those conversions. For
example, there is a set standard techniques for converting between the various
European currencies since the introduction of the Euro. Even though the conversion
factors remain constant (unlike the conversion factor between, say, dollars and
Euros), you can’t use a simple conversion factor approach to properly convert
between European currencies for two reasons:

• The conversion must round to a currency-specific number of digits.

• The conversion factor approach uses an inverse factor to the one specified by the
standard Euro conversions.

However, this can all be handled by the conversion functions such as the following:

function FromEuro(const AValue: Double, Factor, FRound): Double;
begin
 Result := RoundTo(AValue * Factor, FRound);
end;

function ToEuro(const AValue: Double, Factor): Double;
begin
 Result := AValue / Factor;
end;

The problem is, this approach requires extra parameters on the conversion function,
which means you can’t simply register the same function with every European
currency. In order to avoid having to write two new conversion functions for every
European currency, you can make use of the same two functions by making them the
members of a class.

Creating the conversion class
The class must be a descendant of TConvTypeFactor. TConvTypeFactor defines two
methods, ToCommon and FromCommon, for converting to and from the base units of a

C o m m o n p r o g r a m m i n g t a s k s 4-63

C o n v e r t i n g m e a s u r e m e n t s

conversion family (in this case, to and from Euros). Just as with the functions you use
directly when registering a conversion unit, these methods have no extra parameters,
so you must supply the number of digits to round off and the conversion factor as
private members of your conversion class. This is shown in the EuroConv example in
the demos\ConvertIt directory (see euroconv.pas):

type
 TConvTypeEuroFactor = class(TConvTypeFactor)
 private
 FRound: TRoundToRange;
 public
 constructor Create(const AConvFamily: TConvFamily;
 const ADescription: string; const AFactor: Double;
 const ARound: TRoundToRange);
 function ToCommon(const AValue: Double): Double; override;
 function FromCommon(const AValue: Double): Double; override;
 end;
end;

The constructor assigns values to those private members:

constructor TConvTypeEuroFactor.Create(const AConvFamily: TConvFamily;
 const ADescription: string; const AFactor: Double;
 const ARound: TRoundToRange);
begin
 inherited Create(AConvFamily, ADescription, AFactor);
 FRound := ARound;
end;

The two conversion functions simply use these private members:

function TConvTypeEuroFactor.FromCommon(const AValue: Double): Double;
begin
 Result := SimpleRoundTo(AValue * Factor, FRound);
end;

function TConvTypeEuroFactor.ToCommon(const AValue: Double): Double;
begin
 Result := AValue / Factor;
end;

Declare variables
Now that you have a conversion class, begin as with any other conversion family, by
declaring identifiers:

var
euEUR: TConvType; { EU euro }

 euBEF: TConvType; { Belgian francs }
 euDEM: TConvType; { German marks }
 euGRD: TConvType; { Greek drachmas }
 euESP: TConvType; { Spanish pesetas }
 euFFR: TConvType; { French francs }
 euIEP: TConvType; { Irish pounds }
 euITL: TConvType; { Italian lire }
 euLUF: TConvType; { Luxembourg francs }
 euNLG: TConvType; { Dutch guilders }

4-64 D e v e l o p e r ’ s G u i d e

D e f i n i n g d a t a t y p e s

 euATS: TConvType; { Austrian schillings }
 euPTE: TConvType; { Portuguese escudos }
 euFIM: TConvType; { Finnish marks }
 euUSD: TConvType; { US dollars }
 euGBP: TConvType; { British pounds }
 euJPY: TConvType; { Japanese yen }

Register the conversion family and the other units
Now you are ready to register the conversion family and the European monetary
units, using your new conversion class:

cbEuro := RegisterConversionFamily (‘European currency’);
...
// Euro's various conversion types
euEUR := RegisterEuroConversionType(cbEuro, SEURDescription, EURToEUR, EURSubUnit);
euBEF := RegisterEuroConversionType(cbEuro, SBEFDescription, BEFToEUR, BEFSubUnit);
euDEM := RegisterEuroConversionType(cbEuro, SDEMDescription, DEMToEUR, DEMSubUnit);
euGRD := RegisterEuroConversionType(cbEuro, SGRDDescription, GRDToEUR, GRDSubUnit);
euESP := RegisterEuroConversionType(cbEuro, SESPDescription, ESPToEUR, ESPSubUnit);
euFFR := RegisterEuroConversionType(cbEuro, SFFRDescription, FFRToEUR, FFRSubUnit);
euIEP := RegisterEuroConversionType(cbEuro, SIEPDescription, IEPToEUR, IEPSubUnit);
euITL := RegisterEuroConversionType(cbEuro, SITLDescription, ITLToEUR, ITLSubUnit);
euLUF := RegisterEuroConversionType(cbEuro, SLUFDescription, LUFToEUR, LUFSubUnit);
euNLG := RegisterEuroConversionType(cbEuro, SNLGDescription, NLGToEUR, NLGSubUnit);
euATS := RegisterEuroConversionType(cbEuro, SATSDescription, ATSToEUR, ATSSubUnit);
euPTE := RegisterEuroConversionType(cbEuro, SPTEDescription, PTEToEUR, PTESubUnit);
euFIM := RegisterEuroConversionType(cbEuro, SFIMDescription, FIMToEUR, FIMSubUnit);
euUSD := RegisterEuroConversionType(cbEuro, SUSDDescription,
 ConvertUSDToEUR, ConvertEURToUSD);
euGBP := RegisterEuroConversionType(cbEuro, SGBPDescription,
 ConvertGBPToEUR, ConvertEURToGBP);
euJPY := RegisterEuroConversionType(cbEuro, SJPYDescription,
 ConvertJPYToEUR, ConvertEURToJPY);

Note that RegisterEuroConversionType is a wrapper function that simplifies the
registering of the monetary types. See the example code for details.

Use the new units
You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the European
currencies you have registered with the new cbEuro family. For example, the
following code converts a value from Italian Lire to German Marks:

Edit2.Text = FloatToStr(Convert(StrToFloat(Edit1.Text), euITL, euDEM));

Defining data types
Object Pascal has many predefined data types. You can use these predefined types to
create new types that meet the specific needs of your application. For an overview of
types, see the Object Pascal Language Guide.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-1

C h a p t e r

5
Chapter 5Building applications, components,

and libraries
This chapter provides an overview of how to use Delphi to create applications,
libraries, and components.

Creating applications
The main use of Delphi is designing and building the following types of applications:

• GUI applications
• Console applications
• Service applications (for Windows applications only)
• Packages and DLLs

GUI applications generally have an easy-to-use interface. Console applications run
from a console window. Service applications are run as Windows services. These
types of applications compile as executables with start-up code.

You can create other types of projects such as packages and DLLs that result in
creating packages or dynamically linkable libraries. These applications produce
executable code without start-up code. Refer to “Creating packages and DLLs” on
page 5-9.

GUI applications

A graphical user interface (GUI) application is one that is designed using graphical
features such as windows, menus, dialog boxes, and features that make the
application easy to use. When you compile a GUI application, an executable file with
start-up code is created. The executable usually provides the basic functionality of
your program, and simple programs often consist of only an executable file. You can

5-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

extend the application by calling DLLs, packages, and other support files from the
executable.

Delphi offers two application UI models:

• Single document interface (SDI)
• Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE.

User interface models
Any form can be implemented as a multiple document interface (MDI) or single
document interface (SDI) form. In an MDI application, more than one document or
child window can be opened within a single parent window. This is common in
applications such as spreadsheets or word processors. An SDI application, in
contrast, normally contains a single document view. To make your form an SDI
application, set the FormStyle property of your Form object to fsNormal.

For more information on developing the UI for an application, see Chapter 6,
“Developing the application user interface.”

SDI applications
To create a new SDI application,

1 Select File|New|Other to bring up the New Items dialog.

2 Click on the Projects page and select SDI Application.

3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so Delphi
assumes that all new applications are SDI applications.

MDI applications
To create a new MDI application,

1 Select File|New|Other to bring up the New Items dialog.

2 Click on the Projects page and select MDI Application.

3 Click OK.

MDI applications require more planning and are somewhat more complex to design
than SDI applications. MDI applications spawn child windows that reside within the
client window; the main form contains child forms. Set the FormStyle property of the
TForm object to specify whether a form is a child (fsMDIForm) or main form
(fsMDIChild). It is a good idea to define a base class for your child forms and derive
each child form from this class, to avoid having to reset the child form’s properties.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-3

C r e a t i n g a p p l i c a t i o n s

Setting IDE, project, and compilation options
Choose Project|Options to specify various options for your project. For more
information, see the online Help.

Setting default project options
To change the default options that apply to all future projects, set the options in the
Project Options dialog box and check the Default box at the bottom right of the
window. All new projects will use the current options selected by default.

Programming templates

Programming templates are commonly used “skeleton“ structures that you can add
to your source code and then fill in. Some standard code templates such as those for
array, class, and function declarations, and many statements, are included with
Delphi.

You can also write your own templates for coding structures that you often use. For
example, if you want to use a for loop in your code, you could insert the following
template:

for := to do
begin

end;

To insert a code template in the Code editor, press Ctrl-j and select the template you
want to use. You can also add your own templates to this collection. To add a
template:

1 Select Tools|Editor Options.

2 Click the Code Insight tab.

3 In the Templates section, click Add.

4 Type a name for the template after Shortcut name and enter a brief description of
the new template.

5 Add the template code to the Code text box.

6 Click OK.

Console applications

Console applications are 32-bit programs that run without a graphical interface,
usually in a console window. These applications typically don’t require much user
input and perform a limited set of functions.

To create a new console application,

1 Choose File|New|Other and select Console Application from the New Items
dialog box.

Delphi then creates a project file for this type of source file and displays the code
editor.

5-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

Note When you create a new console application, the IDE does not create a new form.
Only the code editor is displayed.

Service applications

Service applications take requests from client applications, process those requests,
and return information to the client applications. They typically run in the
background, without much user input. A web, FTP, or e-mail server is an example of
a service application.

To create an application that implements a Win32 service, Choose File|New, and
select Service Application from the New Items page. This adds a global variable
named Application to your project, which is of type TServiceApplication.

Once you have created a service application, you will see a window in the designer
that corresponds to a service (TService). Implement the service by setting its
properties and event handlers in the Object Inspector. You can add additional
services to your service application by choosing Service from the new items dialog.
Do not add services to an application that is not a service application. While a
TService object can be added, the application will not generate the requisite events or
make the appropriate Windows calls on behalf of the service.

Once your service application is built, you can install its services with the Service
Control Manager (SCM). Other applications can then launch your services by
sending requests to the SCM.

To install your application’s services, run it using the /INSTALL option. The
application installs its services and exits, giving a confirmation message if the
services are successfully installed. You can suppress the confirmation message by
running the service application using the /SILENT option.

To uninstall the services, run it from the command line using the /UNINSTALL
option. (You can also use the /SILENT option to suppress the confirmation message
when uninstalling).

Example This service has a TServerSocket whose port is set to 80. This is the default port for
Web Browsers to make requests to Web Servers and for Web Servers to make
responses to Web Browsers. This particular example produces a text document in the
C:\Temp directory called WebLogxxx.log (where xxx is the ThreadID). There should
be only one Server listening on any given port, so if you have a web server, you
should make sure that it is not listening (the service is stopped).

To see the results: open up a web browser on the local machine and for the address,
type 'localhost' (with no quotes). The Browser will time out eventually, but you
should now have a file called weblogxxx.log in the C:\temp directory.

1 To create the example, choose File|New and select Service Application from the
New Items dialog. You will see a window appear named Service1. From the
Internet page of the Component palette, add a ServerSocket component to the
service window (Service1).

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-5

C r e a t i n g a p p l i c a t i o n s

2 Next, add a private data member of type TMemoryStream to the TService1 class.
The interface section of your unit should now look like this:

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, SvcMgr, Dialogs,
 ScktComp;

type
 TService1 = class(TService)
 ServerSocket1: TServerSocket;
 procedure ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
 procedure Service1Execute(Sender: TService);
 private
 { Private declarations }
 Stream: TMemoryStream; // Add this line here
 public
 function GetServiceController: PServiceController; override;
 { Public declarations }
 end;

var
 Service1: TService1;

3 Next, select ServerSocket1, the component you added in step 1. In the Object
Inspector, double click the OnClientRead event and add the following event
handler:

procedure TService1.ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
var
 Buffer: PChar;

begin
 Buffer := nil;

while Socket.ReceiveLength > 0 do begin
Buffer := AllocMem(Socket.ReceiveLength);
try
Socket.ReceiveBuf(Buffer^, Socket.ReceiveLength);

 Stream.Write(Buffer^, StrLen(Buffer));
finally

 FreeMem(Buffer);
end;

Stream.Seek(0, soFromBeginning);
Stream.SaveToFile('c:\Temp\Weblog' + IntToStr(ServiceThread.ThreadID) + '.log');

 end;
end;

4 Finally, select Service1 by clicking in the window’s client area (but not on the
ServiceSocket). In the Object Inspector, double click the OnExecute event and add
the following event handler:

procedure TService1.Service1Execute(Sender: TService);
begin
 Stream := TMemoryStream.Create;

try

5-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

 ServerSocket1.Port := 80; // WWW port
 ServerSocket1.Active := True;

while not Terminated do begin
 ServiceThread.ProcessRequests(True);
 end;

ServerSocket1.Active := False;
 finally
 Stream.Free;
 end;
end;

When writing your service application, you should be aware of:

• Service threads
• Service name properties
• Debugging services

Service threads
Each service has its own thread (TServiceThread), so if your service application
implements more than one service you must ensure that the implementation of your
services is thread-safe. TServiceThread is designed so that you can implement the
service in the TService OnExecute event handler. The service thread has its own
Execute method which contains a loop that calls the service’s OnStart and OnExecute
handlers before processing new requests.

Because service requests can take a long time to process and the service application
can receive simultaneous requests from more than one client, it is more efficient to
spawn a new thread (derived from TThread, not TServiceThread) for each request and
move the implementation of that service to the new thread’s Execute method. This
allows the service thread’s Execute loop to process new requests continually without
having to wait for the service’s OnExecute handler to finish. The following example
demonstrates.

Example This service beeps every 500 milliseconds from within the standard thread. It handles
pausing, continuing, and stopping of the thread when the service is told to pause,
continue, or stop.

1 Choose File|New|Other and select Service Application from the New Items
dialog. You will see a window appear named Service1.

2 In the interface section of your unit, declare a new descendant of TThread named
TSparkyThread. This is the thread that does the work for your service. The
declaration should appear as follows:

TSparkyThread = class(TThread)
 public
 procedure Execute; override;
 end;

3 Next, in the implementation section of your unit, create a global variable for a
TSparkyThread instance:

var
 SparkyThread: TSparkyThread;

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-7

C r e a t i n g a p p l i c a t i o n s

4 Add the following code to the implementation section for the TSparkyThread
Execute method (the thread function):

procedure TSparkyThread.Execute;
begin
 while not Terminated do
 begin
 Beep;
 Sleep(500);
 end;
end;

5 Select the Service window (Service1), and double-click the OnStart event in the
Object Inspector. Add the following OnStart event handler:

procedure TService1.Service1Start(Sender: TService; var Started: Boolean);
begin
 SparkyThread := TSparkyThread.Create(False);
 Started := True;
end;

6 Double-click the OnContinue event in the Object Inspector. Add the following
OnContinue event handler:

procedure TService1.Service1Continue(Sender: TService; var Continued: Boolean);
begin
 SparkyThread.Resume;
 Continued := True;
end;

7 Double-click the OnPause event in the Object Inspector. Add the following
OnPause event handler:

procedure TService1.Service1Pause(Sender: TService; var Paused: Boolean);
begin
 SparkyThread.Suspend;
 Paused := True;
end;

8 Finally, double-click the OnStop event in the Object Inspector and add the
following OnStop event handler:

procedure TService1.Service1Stop(Sender: TService; var Stopped: Boolean);
begin
 SparkyThread.Terminate;
 Stopped := True;
end;

When developing server applications, choosing to spawn a new thread depends on
the nature of the service being provided, the anticipated number of connections, and
the expected number of processors on the computer running the service.

Service name properties
The VCL provides classes for creating service applications on the Windows platform
(not available for cross-platform applications). These include TService and
TDependency. When using these classes, the various name properties can be
confusing. This section describes the differences.

5-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

Services have user names (called Service start names) that are associated with
passwords, display names for display in manager and editor windows, and actual
names (the name of the service). Dependencies can be services or they can be load
ordering groups. They also have names and display names. And because service
objects are derived from TComponent, they inherit the Name property. The following
sections summarize the name properties:

TDependency properties
The TDependency DisplayName is both a display name and the actual name of the
service. It is nearly always the same as the TDependency Name property.

TService name properties
The TService Name property is inherited from TComponent. It is the name of the
component, and is also the name of the service. For dependencies that are services,
this property is the same as the TDependency Name and DisplayName properties.

TService’s DisplayName is the name displayed in the Service Manager window. This
often differs from the actual service name (TService.Name, TDependency.DisplayName,
TDependency.Name). Note that the DisplayName for the Dependency and the
DisplayName for the Service usually differ.

Service start names are distinct from both the service display names and the actual
service names. A ServiceStartName is the user name input on the Start dialog selected
from the Service Control Manager.

Debugging services
Debugging service applications can be tricky, because it requires short time intervals:

1 First, launch the application in the debugger. Wait a few seconds until it has
finished loading.

2 Quickly start the service from the control panel or from the command line:
start MyServ

You must launch the service quickly (within 15-30 seconds of application startup)
because the application will terminate if no service is launched.

Another approach is to attach to the service application process when it is already
running. (That is, starting the service first, and then attaching to the debugger). To
attach to the service application process, choose Run|Attach To Process, and select
the service application in the resulting dialog.

In some cases, this second approach may fail, due to insufficient rights. If that
happens, you can use the Service Control Manager to enable your service to work
with the debugger:

1 First create a key called Image File Execution Options in the following registry
location:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

2 Create a subkey with the same name as your service (for example, MYSERV.EXE).
To this subkey, add a value of type REG_SZ, named Debugger. Use the full path to
Delphi32.exe as the string value.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-9

C r e a t i n g p a c k a g e s a n d D L L s

3 In the Services control panel applet, select your service, click Startup and check
Allow Service to Interact with Desktop.

Creating packages and DLLs
Dynamic link libraries (DLLs) are modules of compiled code that work in
conjunction with an executable to provide functionality to an application. You can
create DLLs in cross-platform programs. However, on Linux, DLLs (and packages)
recompile as shared objects.

Packages are special DLLs used by Delphi applications, the IDE, or both. There are
two kinds of packages: runtime packages and design-time packages. Runtime
packages provide functionality to a program while that program is running. Design-
time packages extend the functionality of the IDE.

The following compiler directives can be placed in library project files:

For more information on packages, see Chapter 11, “Working with packages and
components.”

When to use packages and DLLs

For most applications written in Delphi, packages provide greater flexibility and are
easier to create than DLLs. However, there are several situations where DLLs would
be better suited to your projects than packages:

• Your code module will be called from non-Delphi applications.
• You are extending the functionality of a web server.
• You are creating a code module to be used by third-party developers.
• Your project is an OLE container.

You cannot pass runtime type information (RTTI) across DLLs or from a DLL to an
executable. That’s because DLLs all maintain their own symbol information. If you
need to pass a TStrings object from a DLL then using an is or as operator, you need to
create a package rather than a DLL. Packages share symbol information.

Table 5.1 Compiler directives for libraries

Compiler Directive Description

{$LIBPREFIX 'string'} Adds a specified prefix to the output file name. For example, you could
specify {$LIBPREFIX 'dcl'} for a design-time package, or use
{$LIBPREFIX ' '} to eliminate the prefix entirely.

{$LIBSUFFIX 'string'} Adds a specified suffix to the output file name before the extension. For
example, use {$LIBSUFFIX '-2.1.3'} in something.pas to generate
something-2.1.3.bpl.

{$LIBVERSION
'string'}

Adds a second extension to the output file name after the .bpl
extension. For example, use {$LIBVERSION '2.1.3'} in something.pas to
generate something.bpl.2.1.3.

5-10 D e v e l o p e r ’ s G u i d e

W r i t i n g d a t a b a s e a p p l i c a t i o n s

Writing database applications
Note Not all versions of Delphi include database support.

One of Delphi’s strengths is its support for creating advanced database applications.
Delphi supports tools that allow you to connect to SQL servers and databases such as
Oracle, Sybase, InterBase, MySQL, MS-SQL, Informix, and DB2 while providing
transparent data sharing between applications.

Delphi includes many components for accessing databases and representing the
information they contain. On the Component palette, the database components are
grouped according to the data access mechanism and function.

When designing a database application, you must decide which data access
mechanism to use. Each data access mechanism differs in its range of functional
support, the ease of deployment, and the availability of drivers to support different
database servers.

See Part II, “Developing database applications” in this manual for details on how to
use Delphi to create both database client applications and application servers. Refer
to “Deploying database applications” on page 13-6 for deployment information.

Table 5.2 Database pages on the Component palette

Palette page Contents

BDE Components that use the Borland Database Engine (BDE), a large API for
interacting with databases. The BDE supports the broadest range of functions
and comes with the most supporting utilities including Database Desktop,
Database Explorer, SQL Monitor, and BDE Administrator. See Chapter 20,
“Using the Borland Database Engine” for details.

ADO Components that use ActiveX Data Objects (ADO), developed by Microsoft, to
access database information. Many ADO drivers are available for connecting to
different database servers. ADO-based components let you integrate your
application into an ADO-based environment. See Chapter 21, “Working with
ADO components” for details.

dbExpress Cross-platform components that use dbExpress to access database information.
dbExpress drivers provide fast access to databases but need to be used with
TClientDataSet and TDataSetProvider to perform updates. See Chapter 22, “Using
unidirectional datasets” for details.

InterBase Components that access InterBase databases directly, without going through a
separate engine layer. For more information about using the InterBase
components, see the online Help.

Data Access Components that can be used with any data access mechanism such as
TClientDataSet and TDataSetProvider. See Chapter 23, “Using client datasets” for
information about client datasets. See Chapter 24, “Using provider
components”for information about providers.

Data Controls Data-aware controls that can access information from a data source. See Chapter
15, “Using data controls” for details.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-11

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s

Distributing database applications

Delphi provides support for creating distributed database applications using a
coordinated set of components. Distributed database applications can be built on a
variety of communications protocols, including DCOM, CORBA, TCP/IP, and
SOAP.

For more information about building distributed database applications, see Chapter
25, “Creating multi-tiered applications.”

Distributing database applications often requires you to distribute the Borland
Database Engine (BDE) in addition to the application files. For information on
deploying the BDE, see “Deploying database applications” on page 13-6.

Creating Web server applications
Web server applications are applications that run on servers that deliver Web content
such as HTML Web pages or XML documents over the Internet. Examples of Web
server applications include those which control access to a Web site, generate
purchase orders, or respond to information requests.

You can create several different types of Web server applications using the following
Delphi technologies:

• Web Broker
• WebSnap
• InternetExpress
• Web Services

Using Web Broker

You can use Web Broker (also called NetCLX architecture) to create Web server
applications such as CGI applications or dynamic-link libraries (DLLs). These Web
server applications can contain any nonvisual component. Components on the
Internet page of the Component palette enable you to create event handlers,
programmatically construct HTML or XML documents, and transfer them to the
client.

5-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s

To create a new Web server application using the Web Broker architecture, select
File|New|Other and select Web Server Application in the New Items dialog box.
Then select the Web server application type:

CGI and Win-CGI applications use more system resources on the server, so complex
applications are better created as ISAPI , NSAPI, or Apache DLL applications. If
writing cross-platform applications, you should select CGI stand-alone or Apache
Shared Module (DLL) for Web server development. These are also the same options
you see when creating WebSnap and Web Service applications.

For more information on building Web server applications, see Chapter 27, “Creating
Internet applications.”

Table 5.3 Web server applications

Web server
application type Description

ISAPI and NSAPI
Dynamic Link Library

ISAPI and NSAPI Web server applications are DLLs that are loaded by
the Web server. Client request information is passed to the DLL as a
structure and evaluated by TISAPIApplication. Each request message is
handled in a separate execution thread.
Selecting this type of application adds the library header of the project
files and required entries to the uses list and exports clause of the project
file.

CGI Stand-alone
executable

CGI Web server applications are console applications that receive
requests from clients on standard input, process those requests, and
sends back the results to the server on standard output to be sent to the
client.
Selecting this type of application adds the required entries to the uses
clause of the project file and adds the appropriate $APPTYPE directive
to the source.

Win-CGI Stand-alone
executable

Win-CGI Web server applications are Windows applications that receive
requests from clients from a configuration settings (INI) file written by
the server and writes the results to a file that the server passes back to the
client. The INI file is evaluated by TCGIApplication. Each request
message is handled by a separate instance of the application.
Selecting this type of application adds the required entries to the uses
clause of the project file and adds the appropriate $APPTYPE directive
to the source.

Apache Shared
Module (DLL)

Selecting this type of application sets up your project as a DLL. Apache
Web server applications are DLLs loaded by the Web server. Information
is passed to the DLL, processed, and returned to the client by the Web
server.

Web App Debugger
Stand-alone
executable

Selecting this type of application sets up an environment for developing
and testing Web server applications. Web App Debugger applications
are executable files loaded by the Web server. This type of application is
not intended for deployment.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-13

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s

Creating WebSnap applications

WebSnap provides a set of components and wizards for building advanced Web
servers that interact with Web browsers. WebSnap components generate HTML or
other mime content for Web pages. WebSnap is for server side development.
WebSnap cannot be used in cross-platform applications at this time.

To create a new WebSnap application, select File|New|Other and select the
WebSnap tab in the New Items dialog box. Choose WebSnap Application. Then
select the Web server application type (ISAPI/NSAPI, CGI, Win-CGI, Apache). See
Table 5.3, “Web server applications” for details.

For more information on WebSnap, see Chapter 29, “Using WebSnap.”

Using InternetExpress

InternetExpress is a set of components that extends the basic Web server application
architecture to act as the client of an application server. You use InternetExpress for
applications wherein browser-based clients can fetch data from a provider, resolve
updates to the provider, while executing on a client.

InternetExpress applications generate HTML pages that contain a mixture of HTML,
XML, and javascript. The HTML determines the layout and appearance of the pages
displayed in end-user browsers. The XML encodes the data packets and delta packets
that represent database information. The javascript allows the HTML controls to
interpret and manipulate the data in the XML data packets on the client machine.

For more information on InternetExpress, see “Building Web applications using
InternetExpress” on page 25-33.

Creating Web Services applications

Web Services are self-contained modular applications that can be published and
invoked over a network (such as the World Wide Web). Web Services provide well-
defined interfaces that describe the services provided. You use Web Services to
produce or consume programmable services over the Internet using emerging
standards such as XML, XML Schema, SOAP (Simple Object Access Protocol), and
WSDL (Web Service Definition Language).

Web Services use SOAP, a standard lightweight protocol for exchanging information
in a distributed environment. It uses HTTP as a communications protocol and XML
to encode remote procedure calls.

You can use Delphi to build servers to implement Web Services and clients that call
on those services. You can write clients for arbitrary servers to implement Web
Services that respond to SOAP messages, and Delphi servers to publish Web Services
for use by arbitrary clients.

Refer to Chapter 31, “Using Web Services” for more information on Web Services.

5-14 D e v e l o p e r ’ s G u i d e

W r i t i n g a p p l i c a t i o n s u s i n g C O M

Writing applications using COM
COM is the Component Object Model, a Windows-based distributed object
architecture designed to provide object interoperability using predefined routines
called interfaces. COM applications use objects that are implemented by a different
process or, if you use DCOM, on a separate machine. You can also use COM+,
ActiveX and Active Server Pages.

COM is a language-independent software component model that enables interaction
between software components and applications running on a Windows platform.
The key aspect of COM is that it enables communication between components,
between applications, and between clients and servers through clearly defined
interfaces. Interfaces provide a way for clients to ask a COM component which
features it supports at runtime. To provide additional features for your component,
you simply add an additional interface for those features.

Using COM and DCOM

Delphi has classes and wizards that make it easy to create COM, OLE, or ActiveX
applications. You can create COM clients or servers that implement COM objects,
Automation servers (including Active Server Objects), ActiveX controls, or
ActiveForms. COM also severs as the basis for other technologies such as
Automation, ActiveX controls, Active Documents, and Active Directories.

Using Delphi to create COM-based applications offers a wide range of possibilities,
from improving software design by using interfaces internally in an application, to
creating objects that can interact with other COM-based API objects on the system,
such as the Win9x Shell extensions and DirectX multimedia support. Applications
can access the interfaces of COM components that exist on the same computer as the
application or that exist on another computer on the network using a mechanism
called Distributed COM (DCOM).

For more information on COM and Active X controls, see Chapter 33, “Overview of
COM technologies,” Chapter 38, “Creating an ActiveX control,” and “Distributing a
client application as an ActiveX control” on page 25-32.

For more information on DCOM, see “Using DCOM connections” on page 25-8.

Using MTS and COM+

COM applications can be augmented with special services for managing objects in a
large distributed environment. These services include transaction services, security,
and resource management supplied by Microsoft Transaction Server (MTS) on
versions of Windows prior to Windows 2000) or COM+ (for Windows 2000 and
later).

For more information on MTS and COM+, see Chapter 39, “Creating MTS or COM+
objects” and “Using transactional data modules” on page 25-6.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-15

U s i n g d a t a m o d u l e s

Using data modules
A data module is like a special form that contains nonvisual components. All the
components in a data module could be placed on ordinary forms alongside visual
controls. But if you plan on reusing groups of database and system objects, or if you
want to isolate the parts of your application that handle database connectivity and
business rules, then data modules provide a convenient organizational tool.

There are several types of data modules, including standard, remote, Web modules,
applet modules, and services, depending on which edition of Delphi you have. Each
type of data module serves a special purpose.

• Standard data modules are particularly useful for single- and two-tiered database
applications, but can be used to organize the nonvisual components in any
application. For more information, see “Creating and editing standard data
modules” on page 5-15.

• Remote data modules form the basis of an application server in a multi-tiered
database application. They are not available in all editions. In addition to holding
the nonvisual components in the application server, remote data modules expose
the interface that clients use to communicate with the application server. For more
information about using them, see “Adding a remote data module to an
application server project” on page 5-19.

• Web modules form the basis of Web server applications. In addition to holding the
components that create the content of HTTP response messages, they handle the
dispatching of HTTP messages from client applications. See Chapter 27, “Creating
Internet applications” for more information about using Web modules.

• Applet modules form the basis of control panel applets. In addition to holding the
nonvisual controls that implement the control panel applet, they define the
properties that determine how the applet’s icon appears in the control panel and
include the events that are called when users execute the applet. For more
information about applet modules, see the online Help.

• Services encapsulate individual services in an NT service application. In addition
to holding any nonvisual controls used to implement a service, services include
the events that are called when the service is started or stopped. For more
information about services, see “Service applications” on page 5-4.

Creating and editing standard data modules

To create a standard data module for a project, choose File|New|Data Module.
Delphi opens a data module container on the desktop, displays the unit file for the
new module in the Code editor, and adds the module to the current project.

At design time a data module looks like a standard Delphi form with a white
background and no alignment grid. As with forms, you can place nonvisual
components from the Component palette onto a module, and edit their properties in
the Object Inspector. You can resize a data module to accommodate the components
you add to it.

5-16 D e v e l o p e r ’ s G u i d e

U s i n g d a t a m o d u l e s

You can also right-click a module to display a context menu for it. The following
table summarizes the context menu options for a data module.

For more information about data modules, see the online Help.

Naming a data module and its unit file
The title bar of a data module displays the module’s name. The default name for a
data module is “DataModuleN” where N is a number representing the lowest
unused unit number in a project. For example, if you start a new project, and add a
module to it before doing any other application building, the name of the module
defaults to “DataModule2.” The corresponding unit file for DataModule2 defaults to
“Unit2.”

You should rename your data modules and their corresponding unit files at design
time to make them more descriptive. You should especially rename data modules
you add to the Object Repository to avoid name conflicts with other data modules in
the Repository or in applications that use your modules.

To rename a data module:

1 Select the module.

2 Edit the Name property for the module in the Object Inspector.

The new name for the module appears in the title bar when the Name property in the
Object Inspector no longer has focus.

Changing the name of a data module at design time changes its variable name in the
interface section of code. It also changes any use of the type name in procedure
declarations. You must manually change any references to the data module in code
you write.

Table 5.4 Context menu options for data modules

Menu item Purpose

Edit Displays a context menu with which you can cut, copy, paste,
delete, and select the components in the data module.

Position Aligns nonvisual components to the module’s invisible grid
(Align To Grid) or according to criteria you supply in the
Alignment dialog box (Align).

Tab Order Enables you to change the order that the focus jumps from
component to component when you press the tab key.

Creation Order Enables you to change the order that data access components are
created at start-up.

Revert to Inherited Discards changes made to a module inherited from another
module in the Object Repository, and reverts to the originally
inherited module.

Add to Repository Stores a link to the data module in the Object Repository.

View as Text Displays the text representation of the data module’s properties.

View DFM Toggles between the formats (binary or text) in which this
particular form file is saved.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-17

U s i n g d a t a m o d u l e s

To rename a unit file for a data module:

1 Select the unit file.

Placing and naming components
You place nonvisual components in a data module just as you place visual
components on a form. Click the desired component on the appropriate page of the
Component palette, then click in the data module to place the component. You
cannot place visual controls, such as grids, on a data module. If you attempt it, you
receive an error message.

For ease of use, components are displayed with their names in a data module. When
you first place a component, Delphi assigns it a generic name that identifies what
kind of component it is, followed by a 1. For example, the TDataSource component
adopts the name DataSource1. This makes it easy to select specific components whose
properties and methods you want to work with.

You may still want to name a component a different name that reflects the type of
component and what it is used for.

To change the name of a component in a data module:

1 Select the component.
2 Edit the component’s Name property in the Object Inspector.

The new name for the component appears under its icon in the data module as soon
as the Name property in the Object Inspector no longer has focus.

For example, suppose your database application uses the CUSTOMER table. To
access the table, you need a minimum of two data access components: a data source
component (TDataSource) and a table component (TClientDataSet). When you place
these components in your data module, Delphi assigns them the names DataSource1
and ClientDataSet1. To reflect the type of component and the database they access,
CUSTOMER, you could change these names to CustomerSource and CustomerTable.

Using component properties and events in a data module
Placing components in a data module centralizes their behavior for your entire
application. For example, you can use the properties of dataset components, such as
TClientDataSet, to control the data available to the data source components that use
those datasets. Setting the ReadOnly property to True for a dataset prevents users
from editing the data they see in a data-aware visual control on a form. You can also
invoke the Fields editor for a dataset, by double-clicking on ClientDataSet1, to restrict
the fields within a table or query that are available to a data source and therefore to
the data-aware controls on forms. The properties you set for components in a data
module apply consistently to all forms in your application that use the module.

In addition to properties, you can write event handlers for components. For example,
a TDataSource component has three possible events: OnDataChange, OnStateChange,
and OnUpdateData. A TClientDataSet component has over 20 potential events. You
can use these events to create a consistent set of business rules that govern data
manipulation throughout your application.

5-18 D e v e l o p e r ’ s G u i d e

U s i n g d a t a m o d u l e s

Creating business rules in a data module
Besides writing event handlers for the components in a data module, you can code
methods directly in the unit file for a data module. These methods can be applied to
the forms that use the data module as business rules. For example, you might write a
procedure to perform month-, quarter-, or year-end bookkeeping. You might call the
procedure from an event handler for a component in the data module. The
prototypes for the procedures and functions you write for a data module should
appear in the module’s type declaration:

type
TCustomerData = class(TDataModule)

Customers: TClientDataSet;
Orders: TClientDataSet;
ƒ

private
{ Private declarations }

public
{ Public declarations }
procedure LineItemsCalcFields(DataSet: TDataSet); { A procedure you add }

end;

var
CustomerData: TCustomerData;

The procedures and functions you write should follow in the implementation section
of the code for the module.

Accessing a data module from a form

To associate visual controls on a form with a data module, you must first add the
data module to the form’s uses clause. You can do this in several ways:

• In the Code editor, open the form’s unit file and add the name of the data module
to the uses clause in the interface section.

• Click the form’s unit file, choose File|Use Unit, and enter the name of the module
or pick it from the list box in the Use Unit dialog.

• For database components, in the data module click a dataset or query component
to open the Fields editor and drag any existing fields from the editor onto the
form. Delphi prompts you to confirm that you want to add the module to the
form’s uses clause, then creates controls (such as edit boxes) for the fields.

For example, if you’ve added the TClientDataSet component to your data module,
double-click it to open the Fields editor. Select a field and drag it to the form. An edit
box component appears.

Because the data source is not yet defined, Delphi adds a new data source
component, DataSource1, to the form and sets the edit box’s DataSource property to
DataSource1. The data source automatically sets its DataSet property to the dataset
component, ClientDataSet1, in the data module.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-19

U s i n g t h e O b j e c t R e p o s i t o r y

You can define the data source before you drag a field to the form by adding a
TDataSource component to the data module. Set the data source’s DataSet property to
ClientDataSet1. After you drag a field to the form, the edit box appears with its
TDataSource property already set to DataSource1. This method keeps your data access
model cleaner.

Adding a remote data module to an application server project

Some editions of Delphi allow you to add remote data modules to application server
projects. A remote data module has an interface that clients in a multi-tiered
application can access across networks.

To add a remote data module to a project:

1 Choose File|New|Other.

2 Select the Multitier page in the New Items dialog box.

3 Double-click the desired type of module (CORBA Data Module, Remote Data
Module, or Transactional Data Module) to open the Remote Data Module wizard.

Once you add a remote data module to a project, you use it just like a standard data
module.

For more information about multi-tiered database applications, see Chapter 25,
“Creating multi-tiered applications.”

Using the Object Repository
The Object Repository (Tools|Repository) makes it easy share forms, dialog boxes,
frames, and data modules. It also provides templates for new projects and wizards
that guide the user through the creation of forms and projects. The repository is
maintained in DELPHI32.DRO (by default in the BIN directory), a text file that
contains references to the items that appear in the Repository and New Items dialogs.

Sharing items within a project

You can share items within a project without adding them to the Object Repository.
When you open the New Items dialog box (File|New|Other), you'll see a page tab
with the name of the current project. This page lists all the forms, dialog boxes, and
data modules in the project. You can derive a new item from an existing item and
customize it as needed.

Adding items to the Object Repository

You can add your own projects, forms, frames, and data modules to those already
available in the Object Repository. To add an item to the Object Repository,

1 If the item is a project or is in a project, open the project.

5-20 D e v e l o p e r ’ s G u i d e

U s i n g t h e O b j e c t R e p o s i t o r y

2 For a project, choose Project|Add To Repository. For a form or data module, right-
click the item and choose Add To Repository.

3 Type a description, title, and author.

4 Decide which page you want the item to appear on in the New Items dialog box,
then type the name of the page or select it from the Page combo box. If you type
the name of a page that doesn’t exist, Delphi creates a new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.

6 Choose OK.

Sharing objects in a team environment

You can share objects with your workgroup or development team by making a
repository available over a network. To use a shared repository, all team members
must select the same Shared Repository directory in the Environment Options dialog:

1 Choose Tools|Environment Options.

2 On the Preferences page, locate the Shared Repository panel. In the Directory edit
box, enter the directory where you want to locate the shared repository. Be sure to
specify a directory that’s accessible to all team members.

The first time an item is added to the repository, Delphi creates a DELPHI32.DRO file
in the Shared Repository directory if one doesn’t exist already.

Using an Object Repository item in a project

To access items in the Object Repository, choose File|New|Other. The New Items
dialog appears, showing all the items available. Depending on the type of item you
want to use, you have up to three options for adding the item to your project:

• Copy
• Inherit
• Use

Copying an item
Choose Copy to make an exact copy of the selected item and add the copy to your
project. Future changes made to the item in the Object Repository will not be
reflected in your copy, and alterations made to your copy will not affect the original
Object Repository item.

Copy is the only option available for project templates.

Inheriting an item
Choose Inherit to derive a new class from the selected item in the Object Repository
and add the new class to your project. When you recompile your project, any changes
that have been made to the item in the Object Repository will be reflected in your

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-21

U s i n g t h e O b j e c t R e p o s i t o r y

derived class, in addition to changes you make to the item in your project. Changes
made to your derived class do not affect the shared item in the Object Repository.

Inherit is available for forms, dialog boxes, and data modules, but not for project
templates. It is the only option available for reusing items within the same project.

Using an item
Choose Use when you want the selected item itself to become part of your project.
Changes made to the item in your project will appear in all other projects that have
added the item with the Inherit or Use option. Select this option with caution.

The Use option is available for forms, dialog boxes, and data modules.

Using project templates

Templates are predesigned projects that you can use as starting points for your own
work. To create a new project from a template,

1 Choose File|New|Other to display the New Items dialog box.

2 Choose the Projects tab.

3 Select the project template you want and choose OK.

4 In the Select Directory dialog, specify a directory for the new project’s files.

Delphi copies the template files to the specified directory, where you can modify
them. The original project template is unaffected by your changes.

Modifying shared items

If you modify an item in the Object Repository, your changes will affect all future
projects that use the item as well as existing projects that have added the item with
the Use or Inherit option. To avoid propagating changes to other projects, you have
several alternatives:

• Copy the item and modify it in your current project only.
• Copy the item to the current project, modify it, then add it to the Repository under

a different name.
• Create a component, DLL, component template, or frame from the item. If you

create a component or DLL, you can share it with other developers.

Specifying a default project, new form, and main form

By default, when you choose File|New|Application or File|New|Form, Delphi
displays a blank form. You can change this behavior by reconfiguring the Repository:

1 Choose Tools|Repository

2 If you want to specify a default project, select the Projects page and choose an item
under Objects. Then select the New Project check box.

5-22 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

3 If you want to specify a default form, select a Repository page (such as Forms),
them choose a form under Objects. To specify the default new form (File|New|
Form), select the New Form check box. To specify the default main form for new
projects, select the Main Form check box.

4 Click OK.

Enabling Help in applications
Both the VCL and CLX support displaying Help from applications using an object-
based mechanism that allows Help requests to be passed on to one of multiple
external Help viewers. To support this, an application must include a class that
implements the ICustomHelpViewer interface (and, optionally, one of several
interfaces descended from it), and registers itself with the global Help Manager.

The VCL provides to all applications an instance of TWinHelpViewer, which
implements all of these interfaces and provides a link between applications and
WinHelp; CLX requires that application developers provide their own
implementation.

The Help Manager maintains a list of registered viewers and passes requests to them
in a two-phase process: it first asks each viewer if it can provide support for a
particular Help keyword or context, and then it passes the Help request on to the
viewer which says it can provide such support. (If more than one viewer supports the
keyword, as would be the case in an application which had registered viewers for
both Man and Info, the Help Manager can display a selection box through which the
user of the application can determine which Help viewer to invoke. Otherwise, it
displays the first responding Help system encountered).

Help system interfaces

The Help system allows communication between your application and Help viewers
through a series of interfaces. These interfaces are all defined in HelpIntfs.pas, which
also contains the implementation of the Help Manager.

ICustomHelpViewer provides support for displaying Help based upon a provided
keyword and for displaying a table of contents listing all Help available in a
particular viewer.

IExtendedHelpViewer provides support for displaying Help based upon a numeric
Help context and for displaying topics; in most Help systems, topics function as
high-level keywords (for example, “IntToStr” might be a keyword in the Help
system, but “String manipulation routines” could be the name of a topic).

ISpecialWinHelpViewer provides support for responding to specialized WinHelp
messages that an application running under Windows may receive and which are
not easily generalizable. In general, only applications operating in the Windows
environment need to implement this interface, and even then it is only required for
applications that make extensive use of non-standard WinHelp messages.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-23

E n a b l i n g H e l p i n a p p l i c a t i o n s

IHelpManager provides a mechanism for the Help viewer to communicate back to the
application’s Help Manager and request additional information. An IHelpManager is
obtained at the time the Help viewer registers itself.

IHelpSystem provides a mechanism through which TApplication passes Help requests
on to the Help system. TApplication obtains an instance of an object which
implements both IHelpSystem and IHelpManager at application load time and exports
that instance as a property; this allows other code within the application to file Help
requests directly when appropriate.

IHelpSelector provides a mechanism through which the Help system can invoke the
user interface to ask which Help viewer should be used in cases where more than one
viewer is capable of handling a Help request, and to display a Table of Contents. This
display capability is not built into the Help Manager directly to allow the Help
Manager code to be identical regardless of which widget set or class library is in use.

Implementing ICustomHelpViewer

The ICustomHelpViewer interface contains three types of methods: methods used to
communicate system-level information (for example, information not related to a
particular Help request) with the Help Manager; methods related to showing Help
based upon a keyword provided by the Help Manager; and methods for displaying a
table of contents.

Communicating with the Help Manager

ICustomHelpViewer provides four functions that can be used to communicate system
information with the Help Manager:

• GetViewerName
• NotifyID
• ShutDown
• SoftShutDown

The Help Manager calls through these functions in the following circumstances:

• ICustomHelpViewer.GetViewerName : String is called when the Help Manager wants
to know the name of the viewer (for example, if the application is asked to display
a list of all registered viewers). This information is returned via a string, and is
required to be logically static (that is, it cannot change during the operation of the
application). Multibyte character sets are not supported.

• ICustomHelpViewer.NotifyID(const ViewerID: Integer) is called immediately
following registration to provide the viewer with a unique cookie that identifies it.
This information must be stored off for later use; if the viewer shuts down on its
own (as opposed to in response to a notification from the Help Manager), it must
provide the Help Manager with the identifying cookie so that the Help Manager
can release all references to the viewer. (Failing to provide the cookie, or providing
the wrong one, causes the Help Manager to potentially release references to the
wrong viewer.)

5-24 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

• ICustomHelpViewer.ShutDown is called by the Help Manager to notify the Help
viewer that the Manager is shutting down and that any resources the Help viewer
has allocated should be freed. It is recommended that all resource freeing be
delegated to this method.

• ICustomHelpViewer.SoftShutDown is called by the Help Manager to ask the Help
viewer to close any externally visible manifestations of the help system (for
example, windows displaying help information) without unloading the viewer.

Asking the Help Manager for information

Help viewers communicate with the Help Manager through the IHelpManager
interface, an instance of which is returned to them when they register with the Help
Manager. IHelpManager allows the Help viewer to communicate four things: a
request for the window handle of the currently active control; a request for the name
of the Help file which the Help Manager believes should contain help for the
currently active control; a request for the path to that Help file; and a notification that
the Help viewer is shutting itself down in response to something other than a request
from the Help Manager that it do so.

IHelpManager.GetHandle : LongInt is called by the Help viewer if it needs to know the
handle of the currently active control; the result is a window handle.

IHelpManager.GetHelpFile: String is called by the Help viewer if it wishes to know the
name of the Help file which the currently active control believes contains its help.

IHelpManager.Release is called to notify the Help Manager when a Help viewer is
disconnecting. It should never be called in response to a request through
ICustomHelpViewer.ShutDown; it is only used to notify the Help Manager of
unexpected disconnects.

Displaying keyword-based Help

Help requests typically come through to the Help viewer as either keyword-based
Help, in which case the viewer is asked to provide help based upon a particular
string, or as context-based Help, in which case the viewer is asked to provide help
based upon a particular numeric identifier. (Numeric help contexts are the default
form of Help requests in applications running under Windows, which use the
WinHelp system; while CLX supports them, they are not recommended for use in
CLX applications because most Linux Help systems do not understand them.)
ICustomHelpViewer implementations are required to provide support for keyword-
based Help requests, while IExtendedHelpViewer implementations are required to
support context-based Help requests.

ICustomHelpViewer provides three methods for handling keyword-based Help:

• UnderstandsKeyword
• GetHelpStrings
• ShowHelp

ICustomHelpViewer.UnderstandsKeyword(const HelpString: String): Integer

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-25

E n a b l i n g H e l p i n a p p l i c a t i o n s

is the first of the three methods called by the Help Manager, which will call each
registered Help viewer with the same string to ask if the viewer provides help for
that string; the viewer is expected to respond with an integer indicating how many
different Help pages it can display in response to that Help request. The viewer can
use any method it wants to determine this — inside the IDE, the HyperHelp viewer
maintains its own index and searches it. If the viewer does not support help on this
keyword, it should return zero. Negative numbers are currently interpreted as
meaning zero, but this behavior is not guaranteed in future releases.

ICustomHelpViewer.GetHelpStrings(const HelpString: String): TStringList

is called by the Help Manager if more than one viewer can provide help on a topic.
The viewer is expected to return a TStringList. The strings in the returned list should
map to the pages available for that keyword, but the characteristics of that mapping
can be determined by the viewer. In the case of the HyperHelp viewer, the string list
always contains exactly one entry (HyperHelp provides its own indexing, and
duplicating that elsewhere would be pointless duplication); in the case of the Man
page viewer, the string list consists of multiple strings, one for each section of the
manual which contains a page for that keyword.

ICustomHelpViewer.ShowHelp(const HelpString: String)

is called by the Help Manager if it needs the Help viewer to display help for a
particular keyword. This is the last method call in the operation; it is guaranteed to
never be called unless CanShowKeyword is invoked first.

Displaying tables of contents

ICustomHelpViewer provides two methods relating to displaying tables of contents:

• CanShowTableOfContents
• ShowTableOfContents

The theory behind their operation is similar to the operation of the keyword Help
request functions: the Help Manager first queries all Help viewers by calling
ICustomHelpViewer.CanShowTableOfContents : Boolean and then invokes a particular
Help viewer by calling ICustomHelpViewer.ShowTableOfContents.

It is reasonable for a particular viewer to refuse to allow requests to support a table of
contents. The Man page viewer does this, for example, because the concept of a table
of contents does not map well to the way Man pages work; the HyperHelp viewer
supports a table of contents, on the other hand, by passing the request to display a
table of contents directly to HyperHelp. It is not reasonable, however, for an
implementation of ICustomHelpViewer to respond to queries through
CanShowTableOfContents with the answer true, and then ignore requests through
ShowTableOfContents.

5-26 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

Implementing IExtendedHelpViewer

ICustomHelpViewer only provides direct support for keyword-based Help. Some
Help systems (especially WinHelp) work by associating numbers (known as context
IDs) with keywords in a fashion which is internal to the Help system and therefore
not visible to the application. Such systems require that the application support
context-based Help in which the application invokes the Help system with that
context, rather than with a string, and the Help system translates the number itself.

Applications written in CLX can talk to systems requiring context-based Help by
extending the object which implements ICustomHelpViewer to also implement
IExtendedHelpViewer. IExtendedHelpViewer also provides support for talking to Help
systems that allow you to jump directly to high-level topics instead of using keyword
searches.

IExtendedHelpViewer exposes four functions. Two of them — UnderstandsContext and
DisplayHelpByContext — are used to support context-based Help; the other two —
UnderstandsTopic and DisplayTopic — are used to support topics.

When an application user presses F1, the Help Manager calls

IExtendedHelpViewer.UnderstandsContext(const ContextID: Integer;
const HelpFileName: String): Boolean

and the currently activated control supports context-based, rather than keyword-
based Help. As with ICustomHelpViewer.CanShowKeyword, the Help Manager queries
all registered Help viewers iteratively. Unlike the case with
ICustomHelpViewer.CanShowKeyword, however, if more than one viewer supports a
specified context, the first registered viewer with support for a given context is
invoked.

The Help Manager calls

IExtendedHelpViewer.DisplayHelpByContext(const ContextID: Integer;
const HelpFileName: String)

after it has polled the registered Help viewers.

The topic support functions work the same way:

IExtendedHelpViewer.UnderstandsTopic(const Topic: String): Boolean

is used to poll the Help viewers asking if they support a topic;

IExtendedHelpViewer.DisplayTopic(const Topic: String)

is used to invoke the first registered viewer which reports that it is able to provide
help for that topic.

Implementing IHelpSelector

IHelpSelector is a companion to ICustomHelpViewer. When more than one registered
viewer claims to provide support for a given keyword, context, or topic, or provides
a table of contents, the Help Manager must choose between them. In the case of
contexts or topics, the Help Manager always selects the first Help viewer that claims

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-27

E n a b l i n g H e l p i n a p p l i c a t i o n s

to provide support. In the case of keywords or the table of context, the Help Manager
will, by default, select the first Help viewer. This behavior can be overridden by an
application.

To override the decision of the Help Manager in such cases, an application must
register a class that provides an implementation of the IHelpSelector interface.
IHelpSelector exports two functions: SelectKeyword, and TableOfContents. Both take as
arguments a TStrings containing, one by one, either the possible keyword matches or
the names of the viewers claiming to provide a table of contents. The implementor is
required to return the index (in the TStrings) that represents the selected string.

Note The Help Manager may get confused if the strings are re-arranged; it is
recommended that implementors of IHelpSelector refrain from doing this. The Help
system only supports one HelpSelector; when new selectors are registered, any
previously existing selectors are disconnected.

Registering Help system objects

For the Help Manager to communicate with them, objects that implement
ICustomHelpViewer, IExtendedHelpViewer, ISpecialWinHelpViewer, and IHelpSelector
must register with the Help Manager.

To register Help system objects with the Help Manager, you need to

• Register the Help viewer
• Register the Help Selector

Registering Help viewers
The unit that contains the object implementation must use HelpIntfs. An instance of
the object must be declared in the var section of the implementing unit.

The initialization section of the implementing unit must assign the instance variable
and pass it to the function RegisterViewer. RegisterViewer is a flat function exported by
HelpIntfs.pas which takes as an argument an ICustomHelpViewer and returns an
IHelpManager. The IHelpManager should be stored for future use.

Registering Help selectors
The unit that contains the object implementation must use HelpIntfs and QForms. An
instance of the object must be declared in the var section of the implementing unit.

The initialization section of the implementing unit must register the Help selector
through the HelpSystem property of the global Application object:

Application.HelpSystem.AssignHelpSelector(myHelpSelectorInstance)

This procedure does not return a value.

5-28 D e v e l o p e r ’ s G u i d e

U s i n g H e l p i n a V C L A p p l i c a t i o n

Using Help in a VCL Application
The following sections explain how to use Help within a VCL application.

• How TApplication processes VCL Help
• How VCL controls process Help
• Calling a Help system directly
• Using IHelpSystem

How TApplication processes VCL Help

TApplication in the VCL provides four methods that are accessible from application
code:

All four functions take the data passed to them and forward it through a data
member of TApplication which represents the Help System. That data member is
directly accessible through the property HelpSystem.

How VCL controls process Help

All controls that derive from TControl expose three properties which are used by the
Help system: HelpSystem, HelpType, HelpContext, and HelpKeyword.

The HelpType property contains an instance of an enumerated type that determines if
the control’s designer expects help to be provided via keyword-based Help or
context-based Help. If the HelpType is set to htKeyword, then the Help system expects
the control to use keyword-based Help, and the Help system only looks at the
contents of the HelpKeyword property. Conversely, if the HelpType is set to htContext,
the Help system expects the control to use context-based Help and only looks at the
contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, that can be
called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of Help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWinControl calls InvokeHelp.

Table 5.5 Help methods in TApplication

HelpCommand Takes a Windows Help style HELP_COMMAND and passes it off to
WinHelp. Help requests forwarded through this mechanism are passed only
to implementations of IspecialWinHelpViewer.

HelpContext Invokes the Help System with a request for context-based Help.

HelpKeyword Invokes the HelpSystem with a request for keyword-based Help.

HelpJump Requests the display of a particular topic.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-29

U s i n g H e l p i n a C L X A p p l i c a t i o n

Using Help in a CLX Application
The following sections explain how to use Help within a CLX application.

• How TApplication processes CLX Help
• How CLX controls process Help
• Calling a Help system directly
• Using IHelpSystem

How TApplication processes CLX Help

TApplication in CLX provides two methods that are accessible from application code:

• ContextHelp, which invokes the Help system with a request for context-based Help

• KeywordHelp, which invokes the Help system with a request for keyword-based
Help

Both functions take as an argument the context or keyword being passed and
forward the request on through a data member of TApplication, which represents the
Help system. That data member is directly accessible through the read-only property
HelpSystem.

How CLX controls process Help

All controls that derive from TControl expose four properties which are used by the
Help system: HelpType, HelpFile, HelpContext, and HelpKeyword. HelpFile is supposed
to contain the name of the file in which the control’s help is located; if the help is
located in an external Help system that does not care about file names (say, for
example, the Man page system), then the property should be left blank.

The HelpType property contains an instance of an enumerated type which determines
if the control’s designer expects help to be provided via keyword-based Help or
context-based Help; the other two properties are linked to it. If the HelpType is set to
htKeyword, then the Help system expects the control to use keyword-based Help, and
the Help system only looks at the contents of the HelpKeyword property. Conversely,
if the HelpType is set to htContext, the Help system expects the control to use context-
based Help and only looks at the contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, which can
be called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWidgetControl calls InvokeHelp.

5-30 D e v e l o p e r ’ s G u i d e

C a l l i n g a H e l p s y s t e m d i r e c t l y

Calling a Help system directly
For additional Help system functionality not provided by the VCL or CLX,
TApplication provides a read-only property that allows direct access to the Help
system. This property is an instance of an implementation of the interface
IHelpSystem. IHelpSystem and IHelpManager are implemented by the same object, but
one interface is used to allow the application to talk to the Help Manager, and one is
used to allow the Help viewers to talk to the Help Manager.

Using IHelpSystem
IHelpSystem allows a VCL or CLX application to do three things:

• Provides path information to the Help Manager

• Provides a new Help selector

• Asks the Help Manager to display help

Assigning a Help selector allows the Help Manager to delegate decision-making in
cases where multiple external Help systems can provide help for the same keyword.
For more information, see the section “Implementing IHelpSelector” on page 5-26.

IHelpSystem exports four procedures and one function to request the Help Manager
to display help:

• ShowHelp
• ShowContextHelp
• ShowTopicHelp
• ShowTableOfContents
• Hook

Hook is intended entirely for WinHelp compatibility and should not be used in a CLX
application; it allows processing of WM_HELP messages that cannot be mapped
directly onto requests for keyword-based, context-based, or topic-based Help. The
other methods each take two arguments: the keyword, context ID, or topic for which
help is being requested, and the Help file in which it is expected that help can be
found.

In general, unless you are asking for topic-based help, it is equally effective and more
clear to pass help requests to the Help Manager through the InvokeHelp method of
your control.

Customizing the IDE Help system
The Delphi IDE supports multiple Help viewers in exactly the same way that a VCL
or CLX application does: it delegates Help requests to the Help Manager, which
forwards them to registered Help viewers. The IDE makes use of the same
WinHelpViewer that the VCL uses.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 5-31

C u s t o m i z i n g t h e I D E H e l p s y s t e m

To install a new Help viewer in the IDE, you do exactly what you would do in a CLX
application, with one difference. You write an object that implements
ICustomHelpViewer (and, if desired, IExtendedHelpViewer) to forward Help requests to
the external viewer of your choice, and you register the ICustomHelpViewer with the
IDE.

To register a custom Help viewer with the IDE,

1 Make sure that the unit implementing the Help viewer contains HelpIntfs.pas.

2 Build the unit into a design-time package registered with the IDE, and build the
package with runtime packages turned on. (This is necessary to ensure that the
Help Manager instance used by the unit is the same as the Help Manager instance
used by the IDE.)

3 Make sure that the Help viewer exists as a global instance within the unit.

4 In the initialization section of the unit, make sure that the instance is passed to the
RegisterHelpViewer function.

5-32 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-1

C h a p t e r

6
Chapter6Developing the application user

interface
With Delphi, you design a user interface (UI) by selecting components from the
component palette and dropping them onto forms. You get the components to do
what you want by setting their properties and coding their event handlers.

Controlling application behavior
TApplication, TScreen, and TForm are the classes that form the backbone of all Delphi
applications by controlling the behavior of your project. The TApplication class forms
the foundation of an application by providing properties and methods that
encapsulate the behavior of a standard program. TScreen is used at runtime to keep
track of forms and data modules that have been loaded as well as maintaining
system-specific information such as screen resolution and available display fonts.
Instances of the TForm class are the building blocks of your application’s user
interface. The windows and dialog boxes in your application are based on TForm.

Using the main form

TForm is the key class for creating GUI applications. When you open Delphi
displaying a default project or when you create a new project, a form is displayed on
which you can begin your UI design.

The first form you create and save in a project becomes, by default, the project’s main
form, which is the first form created at runtime. As you add forms to your projects,
you might decide to designate a different form as your application’s main form. Also,
specifying a form as the main form is an easy way to test it at runtime, because unless
you change the form creation order, the main form is the first form displayed in the
running application.

6-2 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a p p l i c a t i o n b e h a v i o r

To change the project main form,

1 Choose Project|Options and select the Forms page.

2 In the Main Form combo box, select the form you want to use as the project’s main
form and choose OK.

Now if you run the application, the form you selected as the main form is displayed.

Adding forms

To add a form to your project, select File|New Form. You can see all your project’s
forms and their associated units listed in the Project Manager (View|Project
Manager) and you can display a list of the forms alone by choosing View|Forms.

Linking forms
Adding a form to a project adds a reference to it in the project file, but not to any
other units in the project. Before you can write code that references the new form,
you need to add a reference to it in the referencing forms’ unit files. This is called form
linking.

A common reason to link forms is to provide access to the components in that form.
For example, you’ll often use form linking to enable a form that contains data-aware
components to connect to the data-access components in a data module.

To link a form to another form,

1 Select the form that needs to refer to another.
2 Choose File|Use Unit.
3 Select the name of the form unit for the form to be referenced.
4 Choose OK.

Linking a form to another just means that the uses clauses of one form unit contains a
reference to the other’s form unit, meaning that the linked form and its components
are now in scope for the linking form.

Avoiding circular unit references
When two forms must reference each other, it’s possible to cause a “Circular
reference” error when you compile your program. To avoid such an error, do one of
the following:

• Place both uses clauses, with the unit identifiers, in the implementation parts of
the respective unit files. (This is what the File|Use Unit command does.)

• Place one uses clause in an interface part and the other in an implementation
part. (You rarely need to place another form’s unit identifier in this unit’s interface
part.)

Do not place both uses clauses in the interface parts of their respective unit files. This
will generate the “Circular reference” error at compile time.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-3

C o n t r o l l i n g a p p l i c a t i o n b e h a v i o r

Hiding the main form

You can prevent the main form from displaying when your application first starts
up. To do so, you must use the global Application variable (described in the next
topic).

To hide the main form at startup,

1 Choose Project|View Source to display the main project file.

2 Add the following lines after the call to Application.CreateForm and before the call
to Application.Run.

Application.ShowMainForm := False;
Form1.Visible := False; { the name of your main form may differ }

Note You can set the form’s Visible property to False using the Object Inspector at design
time rather than setting it at runtime as shown above.

Working at the application level

The global variable Application, of type TApplication, is in every VCL or CLX based
application. Application encapsulates your application as well as providing many
functions that occur in the background of the program. For instance, Application
would handle how you would call a help file from the menu of your program.
Understanding how TApplication works is more important to a component writer
than to developers of stand-alone applications, but you should set the options that
Application handles in the Project|Options Application page when you create a
project.

In addition, Application receives many events that apply to the application as a whole.
For example, the OnActivate event lets you perform actions when the application first
starts up, the OnIdle event lets you perform background processes when the
application is not busy, the OnMessage event lets you intercept Windows messages
(on Windows only), the OnEvent event lets you intercept events, and so on. Although
you can’t use the IDE to examine the properties and events of the global Application
variable, another component, TApplicationEvents, intercepts the events and lets you
supply event-handlers using the IDE.

Handling the screen

A global variable of type TScreen called Screen is created when you create a project.
Screen encapsulates the state of the screen on which your application is running.
Common tasks performed by Screen include specifying

• the look of the cursor
• the size of the window in which your application is running
• a list of fonts available to the screen device
• multiple screen behavior (not available for cross-platform)

6-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a p p l i c a t i o n b e h a v i o r

If your Windows application runs on multiple monitors, Screen maintains a list of
monitors and their dimensions so that you can effectively manage the layout of your
user interface.

If using CLX for cross-platform programming, the default behavior is that
applications create a screen component based on information about the current
screen device and assign it to Screen.

Managing layout

At its simplest, you control the layout of your user interface by where you place
controls in your forms. The placement choices you make are reflected in the control’s
Top, Left, Width, and Height properties. You can change these values at runtime to
change the position and size of the controls in your forms.

Controls have a number of other properties, however, that allow them to
automatically adjust to their contents or containers. This allows you to lay out your
forms so that the pieces fit together into a unified whole.

Two properties affect how a control is positioned and sized in relation to its parent.
The Align property lets you force a control to fit perfectly within its parent along a
specific edge or filling up the entire client area after any other controls have been
aligned. When the parent is resized, the controls aligned to it are automatically
resized and remain positioned so that they fit against a particular edge.

If you want to keep a control positioned relative to a particular edge of its parent, but
don’t want it to necessarily touch that edge or be resized so that it always runs along
the entire edge, you can use the Anchors property.

If you want to ensure that a control does not grow too big or too small, you can use
the Constraints property. Constraints lets you specify the control’s maximum height,
minimum height, maximum width, and minimum width. Set these to limit the size
(in pixels) of the control’s height and width. For example, by setting the MinWidth
and MinHeight of the constraints on a container object, you can ensure that child
objects are always visible.

The value of Constraints propagates through the parent/child hierarchy so that an
object’s size can be constrained because it contains aligned children that have size
constraints. Constraints can also prevent a control from being scaled in a particular
dimension when its ChangeScale method is called.

TControl introduces a protected event, OnConstrainedResize, of type
TConstrainedResizeEvent:

TConstrainedResizeEvent = procedure(Sender: TObject; var MinWidth, MinHeight, MaxWidth,
MaxHeight: Integer) of object;

This event allows you to override the size constraints when an attempt is made to
resize the control. The values of the constraints are passed as var parameters which
can be changed inside the event handler. OnConstrainedResize is published for
container objects (TForm, TScrollBox, TControlBar, and TPanel). In addition,
component writers can use or publish this event for any descendant of TControl.

Controls that have contents that can change in size have an AutoSize property that
causes the control to adjust its size to its font or contained objects.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-5

R e s p o n d i n g t o e v e n t n o t i f i c a t i o n

Responding to event notification
The operating system will notify your application when an event has occurred (such
as a mouse click, keystrokes entered, and so on) while it is running. The underlying
way that event notifications are handled by VCL and CLX objects is different, but the
way you work with event notifications at the component level is typically the same.
Components have events and methods built-in for the most commonly occurring
events. You can use the methods provided with the component in most cases. If you
need to write additional event handling, you can override an existing method to
write your own. Unless you are writing your own components, you do not need to
change the underlying event notification schema.

VCL If developing applications for Windows only, you need to understand that Windows
is a message-based operating system. System messages are handled by a message
handler that translates the message to an event or event handler. The message itself is
a record passed to a control by Windows. For instance, when you click a mouse
button on a dialog box, Windows sends a message to the active control and the
application containing that control reacts to this new event. If the click occurs over a
button, the OnClick event could be activated upon receipt of the message. If the click
occurs just in the form, the application can ignore the message.

The record type passed to the application by Windows is called a TMsg. Windows
predefines a constant for each message, and these values are stored in the message
field of the TMsg record. Each of these constants begin with the letters wm.

The VCL automatically handles messages unless you override the message handling
system and create your own message handlers. For more information on messages
and message handling, see “Understanding the message-handling system” on
page 46-1, “Changing message handling” on page 46-3, and “Creating new message
handlers” on page 46-5.

CLX For cross-platform programming: The operating system notification that an event
occurred is sent to the underlying Qt widget layer where it is translated into an event
and eventually into event objects by HookEvents. EventFilter is called automatically
when a CLX control needs to handle a Qt mouse or keyboard event.

EventFilter responds to event notifications by performing the default response.
Typically, this involves dispatching the event to the appropriate virtual method
(such as the Click method, which generates an OnClick event).

CLX Note When overriding the EventFilter method, you need to call the inherited method so
that the default event processing can occur.

Using forms
When you create a form in Delphi from the IDE, Delphi automatically creates the
form in memory by including code in the main entry point of your application
function. Usually, this is the desired behavior and you don’t have to do anything to
change it. That is, the main window persists through the duration of your program,
so you would likely not change the default Delphi behavior when creating the form
for your main window.

6-6 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

However, you may not want all your application’s forms in memory for the duration
of the program execution. That is, if you do not want all your application’s dialogs in
memory at once, you can create the dialogs dynamically when you want them to
appear.

Forms can be modal or modeless. Modal forms are forms with which the user must
interact before switching to another form (for example, a dialog box requiring user
input). Modeless forms are windows that are displayed until they are either obscured
by another window or until they are closed or minimized by the user.

Controlling when forms reside in memory

By default, Delphi automatically creates the application’s main form in memory by
including the following code in the application’s main entry point:

Application.CreateForm(TForm1, Form1);

This function creates a global variable with the same name as the form. So, every
form in an application has an associated global variable. This variable is a pointer to
an instance of the form’s class and is used to reference the form while the application
is running. Any unit that includes the form’s unit in its uses clause can access the
form via this variable.

All forms created in this way in the project unit appear when the program is invoked
and exist in memory for the duration of the application.

Displaying an auto-created form
If you choose to create a form at startup, and do not want it displayed until sometime
later during program execution, the form’s event handler uses the ShowModal
method to display the form that is already loaded in memory:

procedure TMainForm.Button1Click(Sender: TObject);
begin

ResultsForm.ShowModal;
end;

In this case, since the form is already in memory, there is no need to create another
instance or destroy that instance.

Creating forms dynamically
You may not always want all your application’s forms in memory at once. To reduce
the amount of memory required at load time, you may want to create some forms
only when you need to use them. For example, a dialog box needs to be in memory
only during the time a user interacts with it.

To create a form at a different stage during execution using the IDE, you:

1 Select the File|New Form from the main menu to display the new form.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-7

U s i n g f o r m s

2 Remove the form from the Auto-create forms list of the Project|Options|Forms
page.

This removes the form’s invocation. As an alternative, you can manually remove
the following line from program’s main entry point:

Application.CreateForm(TResultsForm, ResultsForm);

3 Invoke the form when desired by using the form’s Show method, if the form is
modeless, or ShowModal method, if the form is modal.

An event handler for the main form must create an instance of the result form and
destroy it. One way to invoke the result form is to use the global variable as follows.
Note that ResultsForm is a modal form so the handler uses the ShowModal method.

procedure TMainForm.Button1Click(Sender: TObject);
begin
ResultsForm:=TResultForm.Create(self);
try

ResultsForm.ShowModal;
finally

ResultsForm.Free;
end;

In the above example, note the use of try..finally. Putting in the line ResultsForm.Free; in
the finally clause ensures that the memory for the form is freed even if the form
raises an exception.

The event handler in the example deletes the form after it is closed, so the form
would need to be recreated if you needed to use ResultsForm elsewhere in the
application. If the form were displayed using Show you could not delete the form
within the event handler because Show returns while the form is still open.

Note If you create a form using its constructor, be sure to check that the form is not in the
Auto-create forms list on the Project Options|Forms page. Specifically, if you create
the new form without deleting the form of the same name from the list, Delphi
creates the form at startup and this event-handler creates a new instance of the form,
overwriting the reference to the auto-created instance. The auto-created instance still
exists, but the application can no longer access it. After the event-handler terminates,
the global variable no longer points to a valid form. Any attempt to use the global
variable will likely crash the application.

Creating modeless forms such as windows
You must guarantee that reference variables for modeless forms exist for as long as
the form is in use. This means that these variables should have global scope. In most
cases, you use the global reference variable that was created when you made the
form (the variable name that matches the name property of the form). If your
application requires additional instances of the form, declare separate global
variables for each instance.

Using a local variable to create a form instance
A safer way to create a unique instance of a modal form is to use a local variable in the
event handler as a reference to a new instance. If a local variable is used, it does not

6-8 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

matter whether ResultsForm is auto-created or not. The code in the event handler
makes no reference to the global form variable. For example:

procedure TMainForm.Button1Click(Sender: TObject);
var

RF:TResultForm;
begin

RF:=TResultForm.Create(self)
RF.ShowModal;
RF.Free;

end;

Notice how the global instance of the form is never used in this version of the event
handler.

Typically, applications use the global instances of forms. However, if you need a new
instance of a modal form, and you use that form in a limited, discrete section of the
application, such as a single function, a local instance is usually the safest and most
efficient way of working with the form.

Of course, you cannot use local variables in event handlers for modeless forms
because they must have global scope to ensure that the forms exist for as long as the
form is in use. Show returns as soon as the form opens, so if you used a local variable,
the local variable would go out of scope immediately.

Passing additional arguments to forms

Typically, you create forms for your application from within the IDE. When created
this way, the forms have a constructor that takes one argument, Owner, which is the
owner of the form being created. (The owner is the calling application object or form
object.) Owner can be nil.

To pass additional arguments to a form, create a separate constructor and instantiate
the form using this new constructor. The example form class below shows an
additional constructor, with the extra argument whichButton. This new constructor is
added to the form class manually.

TResultsForm = class(TForm)
ResultsLabel: TLabel;
OKButton: TButton;
procedure OKButtonClick(Sender: TObject);

private
public

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
end;

Here’s the manually coded constructor that passes the additional argument,
whichButton. This constructor uses the whichButton parameter to set the Caption
property of a Label control on the form.

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
begin

inherited Create(Owner);
case whichButton of

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-9

U s i n g f o r m s

1: ResultsLabel.Caption := 'You picked the first button.';
2: ResultsLabel.Caption := 'You picked the second button.';
3: ResultsLabel.Caption := 'You picked the third button.';

end;
end;

When creating an instance of a form with multiple constructors, you can select the
constructor that best suits your purpose. For example, the following OnClick handler
for a button on a form calls creates an instance of TResultsForm that uses the extra
parameter:

procedure TMainForm.SecondButtonClick(Sender: TObject);
var

rf: TResultsForm;
begin

rf := TResultsForm.CreateWithButton(2, self);
rf.ShowModal;
rf.Free;

end;

Retrieving data from forms

Most real-world applications consist of several forms. Often, information needs to be
passed between these forms. Information can be passed to a form by means of
parameters to the receiving form’s constructor, or by assigning values to the form’s
properties. The way you get information from a form depends on whether the form is
modal or modeless.

Retrieving data from modeless forms
You can easily extract information from modeless forms by calling public member
functions of the form or by querying properties of the form. For example, assume an
application contains a modeless form called ColorForm that contains a listbox called
ColorListBox with a list of colors (“Red”, “Green”, “Blue”, and so on). The selected
color name string in ColorListBox is automatically stored in a property called
CurrentColor each time a user selects a new color. The class declaration for the form is
as follows:

TColorForm = class(TForm)
ColorListBox:TListBox;
procedure ColorListBoxClick(Sender: TObject);

private
FColor:String;

public
property CurColor:String read FColor write FColor;

end;

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the
CurrentColor property each time a new item in the listbox is selected. The event
handler gets the string from the listbox containing the color name and assigns it to
CurrentColor. The CurrentColor property uses the setter function, SetColor, to store the

6-10 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

actual value for the property in the private data member FColor:

procedure TColorForm.ColorListBoxClick(Sender: TObject);
var

Index: Integer;
begin

Index := ColorListBox.ItemIndex;
if Index >= 0 then

CurrentColor := ColorListBox.Items[Index]
else

CurrentColor := '';
end;

Now suppose that another form within the application, called ResultsForm, needs to
find out which color is currently selected on ColorForm whenever a button (called
UpdateButton) on ResultsForm is clicked. The OnClick event handler for UpdateButton
might look like this:

procedure TResultForm.UpdateButtonClick(Sender: TObject);
var

MainColor: String;
begin

if Assigned(ColorForm) then
begin

MainColor := ColorForm.CurrentColor;
{do something with the string MainColor}

end;
end;

The event handler first verifies that ColorForm exists using the Assigned function. It
then gets the value of ColorForm’s CurrentColor property.

Alternatively, if ColorForm had a public function named GetColor, another form could
get the current color without using the CurrentColor property (for example, MainColor
:= ColorForm.GetColor;). In fact, there’s nothing to prevent another form from getting
the ColorForm’s currently selected color by checking the listbox selection directly:

with ColorForm.ColorListBox do
MainColor := Items[ItemIndex];

However, using a property makes the interface to ColorForm very straightforward
and simple. All a form needs to know about ColorForm is to check the value of
CurrentColor.

Retrieving data from modal forms
Just like modeless forms, modal forms often contain information needed by other
forms. The most common example is form A launches modal form B. When form B is
closed, form A needs to know what the user did with form B to decide how to
proceed with the processing of form A. If form B is still in memory, it can be queried
through properties or member functions just as in the modeless forms example
above. But how do you handle situations where form B is deleted from memory
upon closing? Since a form does not have an explicit return value, you must preserve
important information from the form before it is destroyed.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-11

U s i n g f o r m s

To illustrate, consider a modified version of the ColorForm form that is designed to be
a modal form. The class declaration is as follows:

TColorForm = class(TForm)
ColorListBox:TListBox;
SelectButton: TButton;
CancelButton: TButton;
procedure CancelButtonClick(Sender: TObject);
procedure SelectButtonClick(Sender: TObject);

private
FColor: Pointer;

public
constructor CreateWithColor(Value: Pointer; Owner: TComponent);

end;

The form has a listbox called ColorListBox with a list of names of colors. When
pressed, the button called SelectButton makes note of the currently selected color
name in ColorListBox then closes the form. CancelButton is a button that simply closes
the form.

Note that a user-defined constructor was added to the class that takes a Pointer
argument. Presumably, this Pointer points to a string that the form launching
ColorForm knows about. The implementation of this constructor is as follows:

constructor TColorForm(Value: Pointer; Owner: TComponent);
begin

FColor := Value;
String(FColor^) := '';

end;

The constructor saves the pointer to a private data member FColor and initializes the
string to an empty string.

Note To use the above user-defined constructor, the form must be explicitly created. It
cannot be auto-created when the application is started. For details, see “Controlling
when forms reside in memory” on page 6-6.

In the application, the user selects a color from the listbox and presses SelectButton to
save the choice and close the form. The OnClick event handler for SelectButton might
look like this:

procedure TColorForm.SelectButtonClick(Sender: TObject);
begin

with ColorListBox do
if ItemIndex >= 0 then
String(FColor^) := ColorListBox.Items[ItemIndex];

end;
Close;

end;

Notice that the event handler stores the selected color name in the string referenced
by the pointer that was passed to the constructor.

To use ColorForm effectively, the calling form must pass the constructor a pointer to
an existing string. For example, assume ColorForm was instantiated by a form called
ResultsForm in response to a button called UpdateButton on ResultsForm being clicked.

6-12 D e v e l o p e r ’ s G u i d e

R e u s i n g c o m p o n e n t s a n d g r o u p s o f c o m p o n e n t s

The event handler would look as follows:

procedure TResultsForm.UpdateButtonClick(Sender: TObject);
var

MainColor: String;
begin

GetColor(Addr(MainColor));
if MainColor <> '' then

{do something with the MainColor string}
else

{do something else because no color was picked}
end;

procedure GetColor(PColor: Pointer);
begin

ColorForm := TColorForm.CreateWithColor(PColor, Self);
ColorForm.ShowModal;
ColorForm.Free;

end;

UpdateButtonClick creates a String called MainColor. The address of MainColor is
passed to the GetColor function which creates ColorForm, passing the pointer to
MainColor as an argument to the constructor. As soon as ColorForm is closed it is
deleted, but the color name that was selected is still preserved in MainColor,
assuming that a color was selected. Otherwise, MainColor contains an empty string
which is a clear indication that the user exited ColorForm without selecting a color.

This example uses one string variable to hold information from the modal form. Of
course, more complex objects can be used depending on the need. Keep in mind that
you should always provide a way to let the calling form know if the modal form was
closed without making any changes or selections (such as having MainColor default
to an empty string).

Reusing components and groups of components
Delphi offers several ways to save and reuse work you’ve done with components:

• Component templates provide a simple, quick way of configuring and saving
groups of components. See “Creating and using component templates” on
page 6-13.

• You can save forms, data modules, and projects in the Repository. This gives you a
central database of reusable elements and lets you use form inheritance to
propagate changes. See “Using the Object Repository” on page 5-19.

• You can save frames on the component palette or in the repository. Frames use
form inheritance and can be embedded into forms or other frames. See “Working
with frames” on page 6-13.

• Creating a custom component is the most complicated way of reusing code, but it
offers the greatest flexibility. See Chapter 40, “Overview of component creation.”

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-13

C r e a t i n g a n d u s i n g c o m p o n e n t t e m p l a t e s

Creating and using component templates
You can create templates that are made up of one or more components. After
arranging components on a form, setting their properties, and writing code for them,
save them as a component template. Later, by selecting the template from the
component palette, you can place the preconfigured components on a form in a
single step; all associated properties and event-handling code are added to your
project at the same time.

Once you place a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

To create a component template,

1 Place and arrange components on a form. In the Object Inspector, set their
properties and events as desired.

2 Select the components. The easiest way to select several components is to drag the
mouse over all of them. Gray handles appear at the corners of each selected
component.

3 Choose Component|Create Component Template.

4 Specify a name for the component template in the Component Name edit box. The
default proposal is the component type of the first component selected in step 2
followed by the word “Template”. For example, if you select a label and then an
edit box, the proposed name will be “TLabelTemplate”. You can change this name,
but be careful not to duplicate existing component names.

5 In the Palette Page edit box, specify the component palette page where you want
the template to reside. If you specify a page that does not exist, a new page is
created when you save the template.

6 Under Palette Icon, select a bitmap to represent the template on the palette. The
default proposal will be the bitmap used by the component type of the first
component selected in step 2. To browse for other bitmaps, click Change. The
bitmap you choose must be no larger than 24 pixels by 24 pixels.

7 Click OK.

To remove templates from the component palette, choose Component|Configure
Palette.

Working with frames
A frame (TFrame), like a form, is a container for other components. It uses the same
ownership mechanism as forms for automatic instantiation and destruction of the
components on it, and the same parent-child relationships for synchronization of
component properties.

In some ways, however, a frame is more like a customized component than a form.
Frames can be saved on the component palette for easy reuse, and they can be nested

6-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f r a m e s

within forms, other frames, or other container objects. After a frame is created and
saved, it continues to function as a unit and to inherit changes from the components
(including other frames) it contains. When a frame is embedded in another frame or
form, it continues to inherit changes made to the frame from which it derives.

Frames are useful to organize groups of controls that are used in multiple places in
your application. For example, if you have a bitmap that is used on multiple forms,
you can put it in a frame and only one copy of that bitmap is included in the
resources of your application. You could also describe a set of edit fields that are
intended to edit a table with a frame and use that whenever you want to enter data
into the table.

Creating frames

To create an empty frame, choose File|New|Frame, or choose File|New and double-
click on Frame. You can then drop components (including other frames) onto your
new frame.

It is usually best—though not necessary—to save frames as part of a project. If you
want to create a project that contains only frames and no forms, choose File|New|
Application, close the new form and unit without saving them, then choose File|
New|Frame and save the project.

Note When you save frames, avoid using the default names Unit1, Project1, and so forth,
since these are likely to cause conflicts when you try to use the frames later.

At design time, you can display any frame included in the current project by
choosing View|Forms and selecting a frame. As with forms and data modules, you
can toggle between the Form Designer and the frame’s form file by right-clicking and
choosing View as Form or View as Text.

Adding frames to the component palette

Frames are added to the component palette as component templates. To add a frame
to the component palette, open the frame in the Form Designer (you cannot use a
frame embedded in another component for this purpose), right-click on the frame,
and choose Add to Palette. When the Component Template Information dialog
opens, select a name, palette page, and icon for the new template.

Using and modifying frames

To use a frame in an application, you must place it, directly or indirectly, on a form.
You can add frames directly to forms, to other frames, or to other container objects
such as panels and scroll boxes.

The Form Designer provides two ways to add a frame to an application:

• Select a frame from the component palette and drop it onto a form, another frame,
or another container object. If necessary, the Form Designer asks for permission to
include the frame’s unit file in your project.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-15

W o r k i n g w i t h f r a m e s

• Select Frames from the Standard page of the component palette and click on a form
or another frame. A dialog appears with a list of frames that are already included
in your project; select one and click OK.

When you drop a frame onto a form or other container, Delphi declares a new class
that descends from the frame you selected. (Similarly, when you add a new form to a
project, Delphi declares a new class that descends from TForm.) This means that
changes made later to the original (ancestor) frame propagate to the embedded
frame, but changes to the embedded frame do not propagate backward to the
ancestor.

Suppose, for example, that you wanted to assemble a group of data-access
components and data-aware controls for repeated use, perhaps in more than one
application. One way to accomplish this would be to collect the components into a
component template; but if you started to use the template and later changed your
mind about the arrangement of the controls, you would have to go back and
manually alter each project where the template was placed.

If, on the other hand, you put your database components into a frame, later changes
would need to be made in only one place; changes to an original frame automatically
propagate to its embedded descendants when your projects are recompiled. At the
same time, you are free to modify any embedded frame without affecting the original
frame or other embedded descendants of it. The only limitation on modifying
embedded frames is that you cannot add components to them.

Figure 6.1 A frame with data-aware controls and a data source component

In addition to simplifying maintenance, frames can help you to use resources more
efficiently. For example, to use a bitmap or other graphic in an application, you might
load the graphic into the Picture property of a TImage control. If, however, you use
the same graphic repeatedly in one application, each Image object you place on a
form will result in another copy of the graphic being added to the form’s resource
file. (This is true even if you set TImage.Picture once and save the Image control as a
component template.) A better solution is to drop the Image object onto a frame, load
your graphic into it, then use the frame where you want the graphic to appear. This
results in smaller form files and has the added advantage of letting you change the
graphic everywhere it occurs simply by modifying the Image on the original frame.

Sharing frames

You can share a frame with other developers in two ways:

• Add the frame to the Object Repository.
• Distribute the frame’s unit (.pas) and form (.dfm or .xfm) files.

6-16 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

To add a frame to the Repository, open any project that includes the frame, right-
click in the Form Designer, and choose Add to Repository For more information, see
“Using the Object Repository” on page 5-19.

If you send a frame’s unit and form files to other developers, they can open them and
add them to the component palette. If the frame has other frames embedded in it,
they will have to open it as part of a project.

Organizing actions for toolbars and menus
Delphi provides several features that simplify the work of creating, customizing, and
maintaining menus and toolbars. These features allow you to organize lists of actions
that users of your application can initiate by pressing a button on a toolbar, choosing
a command on a menu, or pointing and clicking on an icon.

Often a set of actions is used in more than one user interface element. For example,
the Cut, Copy, and Paste commands often appear on both an Edit menu and on a
toolbar. You only need to add the action once to use it in multiple UI elements in
your application.

On the Windows platform, tools are provided to make it easy to define and group
actions, create different layouts, and customize menus at design time or runtime.
These tools are known collectively as ActionBand tools, and the menus and toolbars
you create with them are known as action bands. In general, you can create an
ActionBand user interface as follows:

• Build the action list to create a set of actions that will be available for your
application (use the Action Manager, TActionManager)

• Add the user interface elements to the application (use ActionBand components
such as TActionMainMenuBar and TActionToolBar)

• Drag and drop actions from the Action Manager onto the user interface elements

The following table defines the terminology related to setting up menus and toolbars:

Table 6.1 Action setup terminology

Term Definition

Action A response to something a user does, such as clicking a menu item. Many
standard actions that are frequently required are provided for you to use
in your applications as is. For example, file operations such as File Open,
File Save As, File Run, and File Exit are included along with many others
for editing, formatting, searches, help, dialogs, and window actions. You
can also program custom actions and access them using action lists and
the Action Manager.

Action band A container for a set of actions associated with a customizable menu or
toolbar. The ActionBand components for main menus and toolbars
(TActionMainMenuBar and TActionToolBar) are examples of action bands.

Action category Lets you group actions and drop them as a group onto a menu or toolbar.
For example, one of the standard action categories is Search which
includes Find, FindFirst, FindNext, and Replace actions all at once.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-17

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

If you are doing cross-platform development, refer to “Using action lists” on
page 6-23.

What is an action?

As you are developing your application, you can create a set of actions that you can
use on various UI elements. You can organize them into categories that can be
dropped onto a menu as a set (for example, Cut, Copy, and Paste) or one at a time
(for example, Tools|Customize).

An action corresponds to one or more elements of the user interface, such as menu
commands or toolbar buttons. Actions serve two functions: (1) they represent
properties common to the user interface elements, such as whether a control is
enabled or checked, and (2) they respond when a control fires, for example, when the
application user clicks a button or chooses a menu item. You can create a repertoire
of actions that are available to your application through menus, through buttons,
through toolbars, context menus, and so on.

Actions are associated with other components:

• Clients: One or more clients use the action. The client most often represents a
menu item or a button (for example, TToolButton, TSpeedButton, TMenuItem,
TButton, TCheckBox, TRadioButton, and so on). Actions also reside on ActionBand
components such as TActionMainMenuBar and TActionToolBar. When the client
receives a user command (such as a mouse click), it initiates an associated action.
Typically, a client’s OnClick event is associated with its action’s Execute event.

Action classes Classes that perform the actions used in your application. All of the
standard actions are defined in action classes such as TEditCopy, TEditCut,
and TEditUndo. You can use these classes by dragging and dropping them
from the Customize dialog onto an action band.

Action client Most often represents a menu item or a button that receives a notification
to initiate an action. When the client receives a user command (such as a
mouse click), it initiates an associated action.

Action list Maintains a list of actions that your application can take in response to
something a user does.

Action Manager Groups and organizes logical sets of actions that can be reused on
ActionBand components. See TActionManager.

Menu Lists commands that the user of the application can execute by clicking on
them. You can create menus by using the ActionBand menu class
TActionMainMenuBar, or by using cross-platform components such as
TMainMenu or TPopupMenu.

Target Represents the item an action does something to. The target is usually a
control, such as a memo or a data control. Not all actions require a target.
For example, the standard help actions ignore the target and simply
launch the help system.

Toolbar Displays a visible row of button icons which, when clicked, cause the
program to perform some action, such as printing the current document.
You can create toolbars by using the ActionBand toolbar component
TActionToolBar, or by using the cross-platform component TToolBar.

Table 6.1 Action setup terminology (continued)

Term Definition

6-18 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

• Target: The action acts on the target. The target is usually a control, such as a
memo or a data control. Component writers can create actions specific to the needs
of the controls they design and use, and then package those units to create more
modular applications. Not all actions use a target. For example, the standard help
actions ignore the target and simply launch the help system.

A target can also be a component. For example, data controls change the target to
an associated dataset.

The client influences the action—the action responds when a client fires the action.
The action also influences the client—action properties dynamically update the client
properties. For example, if at runtime an action is disabled (by setting its Enabled
property to False), every client of that action is disabled, appearing grayed.

You can add, delete, and rearrange actions using the Action Manager or the Action
List editor (displayed by double-clicking an action list object, TActionList). These
actions are later connected to client controls.

Setting up action bands

Because actions do not maintain any “layout” (either appearance or positional)
information, Delphi provides action bands which are capable of storing this data.
Action bands provide a mechanism that allows you to specify layout information and
a set of controls. You can render actions as UI elements such as toolbars and menus.

You organize sets of actions using the Action Manager (TActionManager). You can
use standard actions provided or create new actions of your own.

You then create the action bands:

• Use TActionMainMenuBar to create a main menu.

• Use TActionToolBar to create a toolbar.

The action bands act as containers that hold and render sets of actions. You can drag
and drop items from the Action Manager editor onto the action band at design time.
At runtime, application users can also customize the application’s menus or toolbars
using a dialog box similar to the Action Manager editor.

Creating toolbars and menus

Note This section describes the recommended method for creating menus and toolbars in
Windows applications. For cross-platform development, you need to use TToolBar
and the menu components, such as TMainMenu, organizing them using action lists
(TActionList). See “Setting up action lists” on page 6-23.

You use the Action Manager to automatically generate toolbars and main menus
based on the actions contained in your application. The Action Manager manages
standard actions and any custom actions that you have written. You then create UI
elements based on these actions and use action bands to render the actions items as
either menu items or as buttons on a toolbar.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-19

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

The general procedure for creating menus, toolbars, and other action bands involves
these steps:

• Drop an Action Manager onto a form.

• Add actions to the Action Manager, which organizes them into appropriate action
lists.

• Create the action bands (that is, the menu or the toolbar) for the user interface.

• Drag and drop the actions into the application interface.

The following procedure explains these steps in more detail.

To create menus and toolbars using action bands:

1 From the Additional page of the component palette, drop an Action Manager
component (TActionManager) onto the form where you want to create the toolbar
or menu.

2 If you want images on the menu or toolbar, drop an ImageList component from
the Win32 page of the component palette onto a form. (You need to add the
images you want to use to the ImageList or use the one provided.)

3 From the Additional page of the component palette, drop one or more of the
following action bands onto the form:

• TActionMainMenuBar (for designing main menus)
• TActionToolBar (for designing toolbars)

4 Connect the ImageList to the Action Manager: with focus on the Action Manager
and in the Object Inspector, select the name of the ImageList from the Images
property.

5 Add actions to the Action Manager editor’s action pane:

• Double-click the Action Manager to display the Action Manager editor.

• Click the drop-down arrow next to the New Action button (the leftmost button
at the top right corner of the Actions tab, as shown in Figure 6.2) and select
“New Action...” or “New Standard Action...”. A tree view is displayed. Add
one or more actions or categories of actions to the Action Manager’s actions
pane. The Action Manager adds the actions to its action lists.

6-20 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

Figure 6.2 The Action Manager editor.

6 Drag and drop single actions or categories of actions from the Action Manager
editor onto the menu or toolbar you are designing.

To add user-defined actions, create a new TAction by pressing the New Action button
and writing an event handler that defines how it will respond when fired. See “What
happens when an action fires” on page 6-24 for details. Once you’ve defined the
actions, you can drag and drop them onto menus or toolbars like the standard
actions.

Adding color, patterns, or pictures to menus, buttons, and toolbars
You can use the Background and BackgroundLayout properties to specify a color,
pattern, or bitmap to use on a menu item or button. These properties also let you set
up a banner the runs up the left or right side of a menu.

You assign backgrounds and layouts to subitems from their action client objects. If
you want to set the background of the items in a menu, in the form designer click on
the menu item that contains the items. For example, selecting File lets you change the
background of items appearing on the File menu. You can assign a color, pattern, or
bitmap in the Background property in the Object Inspector.

Use the BackgroundLayout property to describe how to place the background on the
element. Colors or images can be placed behind the caption normally, stretched to fit
the item area, or tiled in small squares to cover the area.

Items with normal (blNormal), stretched (blStretch), or tiled (blTile) backgrounds are
rendered with a transparent background. If you create a banner, the full image is
placed on the left (blLeftBanner) or the right (blRightBanner) of the item. You need to
make sure it is the correct size because it is not stretched or shrunk to fit.

To change the background of an action band (that is, on a main menu or toolbar),
select the action band and choose the TActionClientBar through the action band
collection editor. You can set Background and BackgroundLayout properties to specify a
color, pattern, or bitmap to use on the entire toolbar or menu.

New Action button & dropdown
button

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-21

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

Adding icons to menus and toolbars
You can add icons next to menu items or replace captions on toolbars with icons. You
organize bitmaps or icons using an ImageList.

1 Drop an ImageList component from the Win32 page of the component palette onto
a form.

2 Add the images you want to use to the ImageList: Double-click the ImageList.
Click Add and navigate to the images you want to use and click OK when done.
Some sample images are included in Program Files\Common Files\Borland
Shared\Images. (The buttons images include two views of each for active and
inactive buttons.)

3 From the Additional page of the component palette, drop one or more of the
following action bands onto the form:

• TActionMainMenuBar (for designing main menus)
• TActionToolBar (for designing toolbars)

4 Connect the ImageList to the Action Manager. First, set the focus on the Action
Manager. Next, in the Object Inspector, select the name of the ImageList from the
Images property.

5 Use the Action Manager editor to add actions to the Action Manager. You can
associate an image with an action by setting its ImageIndex property to its number
in the ImageList.

6 Drag and drop single actions or categories of actions from the Action Manager
editor onto the menu or toolbar.

7 For toolbars where you only want to display the icon and no caption: select the
Toolbar action band and double-click its Items property. In the collection editor,
you can select one or more items and set their Caption properties.

8 The images automatically appear on the menu or toolbar.

Creating toolbars and menus that users can customize
You can use action bands with the Action Manager to create customizable toolbars
and menus. At runtime, users of your application can customize the toolbars and
menus (action bands) in the application user interface using a customization dialog
similar to the Action Manager editor.

To allow the user of your application to customize an action band in your
application:

1 Drop an Action Manager component onto a form.

2 Drop your action band components (TActionMainMenuBar, TActionToolBar).

3 Double-click the Action Manager to display the Action Manager editor:

• Add the actions you want to use in your application. Also add the Customize
action, which appears at the bottom of the standard actions list.

6-22 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

• Drop a TCustomizeDlg component from the Dialogs tab onto the form, and
connect it to the Action Manager using its ActionManager property. You
specify a filename for where to stream customizations made by users.

• Drag and drop the actions onto the action band components. (Make sure you
add the Customize action to the toolbar or menu.)

4 Complete your application.

When you compile and run the application, users can access a Customize command
that displays a customization dialog box similar to the Action Manager editor. They
can drag and drop menu items and create toolbars using the same actions you
supplied in the Action Manager.

Hiding unused items and categories in action bands
One benefit of using ActionBands is that unused items and categories can be hidden
from the user. Over time, the action bands become customized for the application
users, showing only the items that they use and hiding the rest from view. Hidden
items can become visible again when the user presses a dropdown button. Also, the
user can restore the visibility of all action band items by resetting the usage statistics
from the customization dialog. Item hiding is the default behavior of action bands,
but that behavior can be changed to prevent hiding of individual items, all the items
in a particular collection (like the File menu), or all of the items in a given action
band.

The action manager keeps track of the number of times an action has been called by
the user, which is stored in the associated TActionClientItem’s UsageCount field. The
action manager also records the number of times the application has been run, which
we shall call the session number, as well as the session number of the last time an
action was used. The value of UsageCount is used to look up the maximum number of
sessions the item can go unused before it becomes hidden, which is then compared
with the difference between the current session number and the session number of
the last use of the item. If that difference is greater than the number determined in
PrioritySchedule, the item is hidden. The default values of PrioritySchedule are shown
in the table below:

Table 6.2 Default values of the action manager’s PrioritySchedule property

Number of sessions in which
an action band item was used

Number of sessions an item will remain unhidden after
its last use

0, 1 3

2 6

3 9

4, 5 12

6-8 17

9-13 23

14-24 29

25 or more 31

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-23

U s i n g a c t i o n l i s t s

It is possible to disable item hiding at design time. To prevent a specific action (and
all the collections containing it) from becoming hidden, find its TActionClientItem
object and set its UsageCount to -1. To prevent hiding for an entire collection of items,
such as the File menu or even the main menu bar, find the TActionClients object
associated with the collection and set its HideUnused property to False.

Using action lists
Note The contents of this section apply to setting up toolbars and menus for cross-platform

development. For Windows development you can also use the methods described
here. However, using action bands instead is simpler and offers more options. The
action lists will be handled automatically by the Action Manager. See “Organizing
actions for toolbars and menus” on page 6-16 for information on using action bands
and the Action Manager.

Action lists maintain a list of actions that your application can take in response to
something a user does. By using action objects, you centralize the functions
performed by your application from the user interface. This lets you share common
code for performing actions (for example, when a toolbar button and menu item do
the same thing), as well as providing a single, centralized way to enable and disable
actions depending on the state of your application.

Setting up action lists

Setting up action lists is fairly easy once you understand the basic steps involved:

• Create the action list.

• Add actions to the action list.

• Set properties on the actions.

• Attach clients to the action.

Here are the steps in more detail:

1 Drop a TActionList object onto your form or data module. (ActionList is on the
Standard page of the component palette.)

2 Double-click the TActionList object to display the Action List editor.

a Use one of the predefined actions listed in the editor: right-click and choose
New Standard Action.

b The predefined actions are organized into categories (such as Dataset, Edit,
Help, and Window) in the Standard Action Classes dialog box. Select all the
standard actions you want to add to the action list and click OK.

or

c Create a new action of your own: right-click and choose New Action.

6-24 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

3 Set the properties of each action in the Object Inspector. (The properties you set
affect every client of the action.)

The Name property identifies the action, and the other properties and events
(Caption, Checked, Enabled, HelpContext, Hint, ImageIndex, ShortCut, Visible, and
Execute) correspond to the properties and events of its client controls. The client’s
corresponding properties are typically, but not necessarily, the same name as the
corresponding client property. For example, an action’s Enabled property
corresponds to a TToolButton’s Enabled property. However, an action’s Checked
property corresponds to a TToolButton’s Down property.

4 If you use the predefined actions, the action includes a standard response that
occurs automatically. If creating your own action, you need to write an event
handler that defines how the action responds when fired. See “What happens
when an action fires” on page 6-24 for details.

5 Attach the actions in the action list to the clients that require them:

• Click on the control (such as the button or menu item) on the form or data
module. In the Object Inspector, the Action property lists the available actions.

• Select the one you want.

The standard actions, such as TEditDelete or TDataSetPost, all perform the action you
would expect. You can look at the online reference Help for details on how all of the
standard actions work if you need to. If writing your own actions, you’ll need to
understand more about what happens when the action is fired.

What happens when an action fires

When an event fires, a series of events intended primarily for generic actions occurs.
Then if the event doesn’t handle the action, another sequence of events occurs.

Responding with events
When a client component or control is clicked or otherwise acted on, a series of
events occurs to which you can respond. For example, the following code illustrates
the event handler for an action that toggles the visibility of a toolbar when the action
is executed:

procedure TForm1.Action1Execute(Sender: TObject);
begin

{ Toggle Toolbar1’s visibility }
ToolBar1.Visible := not ToolBar1.Visible;

end;

Note For general information about events and event handlers, see Working with events
and event handlers“Working with events and event handlers” on page 25.

You can supply an event handler that responds at one of three different levels: the
action, the action list, or the application. This is only a concern if you are using a new
generic action rather than a predefined standard action. You do not have to worry
about this if using the standard actions because standard actions have built-in
behavior that executes when these events occur.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-25

U s i n g a c t i o n l i s t s

The order in which the event handlers will respond to events is as follows:

• Action list
• Application
• Action

When the user clicks on a client control, Delphi calls the action's Execute method
which defers first to the action list, then the Application object, then the action itself if
neither action list nor Application handles it. To explain this in more detail, Delphi
follows this dispatching sequence when looking for a way to respond to the user
action:

1 If you supply an OnExecute event handler for the action list and it handles the
action, the application proceeds.

The action list’s event handler has a parameter called Handled, that returns False by
default. If the handler is assigned and it handles the event, it returns True, and the
processing sequence ends here. For example:

procedure TForm1.ActionList1ExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin

Handled := True;
end;

If you don’t set Handled to True in the action list event handler, then processing
continues.

2 If you did not write an OnExecute event handler for the action list or if the event
handler doesn’t handle the action, the application’s OnActionExecute event handler
fires. If it handles the action, the application proceeds.

The global Application object receives an OnActionExecute event if any action list in
the application fails to handle an event. Like the action list’s OnExecute event
handler, the OnActionExecute handler has a parameter Handled that returns False
by default. If an event handler is assigned and handles the event, it returns True,
and the processing sequence ends here. For example:

procedure TForm1.ApplicationExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin
 { Prevent execution of all actions in Application }
 Handled := True;
end;

3 If the application’s OnExecute event handler doesn’t handle the action, the action’s
OnExecute event handler fires.

You can use built-in actions or create your own action classes that know how to
operate on specific target classes (such as edit controls). When no event handler is
found at any level, the application next tries to find a target on which to execute the
action. When the application locates a target that the action knows how to address, it
invokes the action. See the next section for details on how the application locates a
target that can respond to a predefined action class.

6-26 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

How actions find their targets
“What happens when an action fires” on page 6-24 describes the execution cycle that
occurs when a user invokes an action. If no event handler is assigned to respond to
the action, either at the action list, application, or action level, then the application
tries to identify a target object to which the action can apply itself.

The application looks for the target using the following sequence:

1 Active control: The application looks first for an active control as a potential target.

2 Active form: If the application does not find an active control or if the active
control can’t act as a target, it looks at the screen’s ActiveForm.

3 Controls on the form: If the active form is not an appropriate target, the
application looks at the other controls on the active form for a target.

If no target is located, nothing happens when the event is fired.

Some controls can expand the search to defer the target to an associated component;
for example, data-aware controls defer to the associated dataset component. Also,
some predefined actions do not use a target; for example, the File Open dialog.

Updating actions

When the application is idle, the OnUpdate event occurs for every action that is linked
to a control or menu item that is showing. This provides an opportunity for
applications to execute centralized code for enabling and disabling, checking and
unchecking, and so on. For example, the following code illustrates the OnUpdate
event handler for an action that is “checked” when the toolbar is visible:

procedure TForm1.Action1Update(Sender: TObject);
begin

{ Indicate whether ToolBar1 is currently visible }
(Sender as TAction).Checked := ToolBar1.Visible;

end;

Warning Do not add time-intensive code to the OnUpdate event handler. This executes
whenever the application is idle. If the event handler takes too much time, it will
adversely affect performance of the entire application.

Predefined action classes

You can add predefined actions to your application by right-clicking on the Action
Manager and choosing New Standard Action. The New Standard Action Classes
dialog box is displayed listing the predefined action classes and the associated
standard actions. These are actions that are included with Delphi and they are objects

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-27

U s i n g a c t i o n l i s t s

that automatically perform actions. The predefined actions are organized within the
following classes:

All of the action objects are described under the action object names in the online
reference Help. Refer to the Help for details on how they work.

Writing action components

You can also create your own predefined action classes. When you write your own
action classes, you can build in the ability to execute on certain target classes of

Table 6.3 Action classes

Class Description

Edit Standard edit actions: Used with an edit control target. TEditAction is the
base class for descendants that each override the ExecuteTarget method to
implement copy, cut, and paste tasks by using the clipboard.

Format Standard formatting actions: Used with rich text to apply text formatting
options such as bold, italic, underline, strikeout, and so on.
TRichEditAction is the base class for descendants that each override the
ExecuteTarget and UpdateTarget methods to implement formatting of the
target.

Help Standard Help actions: Used with any target. THelpAction is the base
class for descendants that each override the ExecuteTarget method to pass
the command onto a Help system.

Window Standard window actions: Used with forms as targets in an MDI
application. TWindowAction is the base class for descendants that each
override the ExecuteTarget method to implement arranging, cascading,
closing, tiling, and minimizing MDI child forms.

File File actions: Used with operations on files such as File Open, File Run, or
File Exit.

Search Search actions: Used with search options. TSearchAction implements the
common behavior for actions that display a modeless dialog where the
user can enter a search string for searching an edit control.

Tab Tab control actions: Used to move between tabs on a tab control such as
the Prev and Next buttons on a wizard.

List List control actions: Used for managing items in a list view.

Dialog Dialog actions: Used with dialog components. TDialogAction implements
the common behavior for actions that display a dialog when executed.
Each descendant class represents a specific dialog.

Internet Internet actions: Used for functions such as Internet browsing,
downloading, and sending mail.

DataSet DataSet actions: Used with a dataset component target. TDataSetAction is
the base class for descendants that each override the ExecuteTarget and
UpdateTarget methods to implement navigation and editing of the target.
TDataSetAction introduces a DataSource property that ensures actions are
performed on that dataset. If DataSource is nil, the currently focused
data-aware control is used.

Tools Tools: Additional tools such as TCustomizeActionBars for automatically
displaying the customization dialog for action bands.

6-28 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

object. Then, you can use your custom actions in the same way you use pre-defined
action classes. That is, when the action can recognize and apply itself to a target class,
you can simply assign the action to a client control, and it acts on the target with no
need to write an event handler.

Component writers can use the classes in the QStdActns and DBActns units as
examples for deriving their own action classes to implement behaviors specific to
certain controls or components. The base classes for these specialized actions
(TEditAction, TWindowAction, and so on) generally override HandlesTarget,
UpdateTarget, and other methods to limit the target for the action to a specific class of
objects. The descendant classes typically override ExecuteTarget to perform a
specialized task. These methods are described here:

Registering actions

When you write your own actions, you can register actions to enable them to appear
in the Action List editor. You register and unregister actions by using the global
routines in the Actnlist unit:

procedure RegisterActions(const CategoryName: string; const AClasses: array of
TBasicActionClass; Resource: TComponentClass);

procedure UnRegisterActions(const AClasses: array of TBasicActionClass);

When you call RegisterActions, the actions you register appear in the Action List
editor for use by your applications. You can supply a category name to organize your
actions, as well as a Resource parameter that lets you supply default property values.

For example, the following code registers the standard actions with the IDE:

{ Standard action registration }

RegisterActions('', [TAction], nil);

RegisterActions('Edit', [TEditCut, TEditCopy, TEditPaste], TStandardActions);

RegisterActions('Window', [TWindowClose, TWindowCascade, TWindowTileHorizontal,
TWindowTileVertical, TWindowMinimizeAll, TWindowArrange], TStandardActions);

When you call UnRegisterActions, the actions no longer appear in the Action List
editor.

Method Description

HandlesTarget Called automatically when the user invokes an object (such as a toolbutton
or menu item) that is linked to the action. The HandlesTarget method lets the
action object indicate whether it is appropriate to execute at this time with
the object specified by the Target parameter as a “target”. See “How actions
find their targets” on page 6-26 for details.

UpdateTarget Called automatically when the application is idle so that actions can update
themselves according to current conditions. Use in place of OnUpdateAction.
See “Updating actions” on page 6-26 for details.

ExecuteTarget Called automatically when the action fires in response to a user action in
place of OnExecute (for example, when the user selects a menu item or
presses a tool button that is linked to this action). See “What happens when
an action fires” on page 6-24 for details.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-29

C r e a t i n g a n d m a n a g i n g m e n u s

Creating and managing menus
Menus provide an easy way for your users to execute logically grouped commands.
The Menu Designer enables you to easily add a menu—either predesigned or custom
tailored—to your form. You add a menu component to the form, open the Menu
Designer, and type menu items directly into the Menu Designer window. You can
add or delete menu items, or drag and drop them to rearrange them during design
time.

You don't even need to run your program to see the results—your design is
immediately visible in the form, appearing just as it will during runtime. Your code
can also change menus at runtime, to provide more information or options to the
user.

This chapter explains how to use the Menu Designer to design menu bars and pop-
up (local) menus. It discusses the following ways to work with menus at design time
and runtime:

• Opening the Menu Designer
• Building menus
• Editing menu items in the Object Inspector
• Using the Menu Designer context menu
• Using menu templates
• Saving a menu as a template
• Adding images to menu items

Figure 6.3 Menu terminology

For information about hooking up menu items to the code that executes when they
are selected, see “Associating menu events with event handlers” on page 3-28.

Opening the Menu Designer

You design menus for your application using the Menu Designer. Before you can
start using the Menu Designer, first add either a MainMenu or PopupMenu
component to your form. Both menu components are located on the Standard page of
the component palette.

Accelerator key

Separator bar

Menu items on the menu bar

Menu items in a menu list

Keyboard shortcut

6-30 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Figure 6.4 MainMenu and PopupMenu components

A MainMenu component creates a menu that’s attached to the form’s title bar. A
PopupMenu component creates a menu that appears when the user right-clicks in
the form. Pop-up menus do not have a menu bar.

To open the Menu Designer, select a menu component on the form, and then either:

• Double-click the menu component.

or

• From the Properties page of the Object Inspector, select the Items property, and
then either double-click [Menu] in the Value column, or click the ellipsis (...)
button.

The Menu Designer appears, with the first (blank) menu item highlighted in the
Designer, and the Caption property selected in the Object Inspector.

MainMenu component

PopupMenu component

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-31

C r e a t i n g a n d m a n a g i n g m e n u s

Figure 6.5 Menu Designer for a pop-up menu

Figure 6.6 Menu Designer for a main menu

Building menus

You add a menu component to your form, or forms, for every menu you want to
include in your application. You can build each menu structure entirely from scratch,
or you can start from one of the predesigned menu templates.

This section discusses the basics of creating a menu at design time. For more
information about menu templates, see “Using menu templates” on page 6-38.

Placeholder for first
menu item

Title bar (shows Name property
for Menu component)

Menu bar

Placeholder for
menu item

Menu Designer displays WYSIWYG
menu items as you build the menu.

A TMenuItem object is created and the
Name property set to the menu item
Caption you specify (minus any illegal
characters and plus a numeric suffix).

6-32 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Naming menus
As with all components, when you add a menu component to the form, Delphi gives
it a default name; for example, MainMenu1. You can give the menu a more
meaningful name that follows Object Pascal naming conventions.

Delphi adds the menu name to the form’s type declaration, and the menu name then
appears in the Component list.

Naming the menu items
In contrast to the menu component itself, you need to explicitly name menu items as
you add them to the form. You can do this in one of two ways:

• Directly type the value for the Name property.

• Type the value for the Caption property first, and let Delphi derive the Name
property from the caption.

For example, if you give a menu item a Caption property value of File, Delphi
assigns the menu item a Name property of File1. If you fill in the Name property
before filling in the Caption property, Delphi leaves the Caption property blank
until you type a value.

Note If you enter characters in the Caption property that are not valid for Object Pascal
identifiers, Delphi modifies the Name property accordingly. For example, if you
want the caption to start with a number, Delphi precedes the number with a
character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items
shown appear in the same menu bar.

As with the menu component, Delphi adds any menu item names to the form’s type
declaration, and those names then appear in the Component list.

Adding, inserting, and deleting menu items
The following procedures describe how to perform the basic tasks involved in
building your menu structure. Each procedure assumes you have the Menu Designer
window open.

To add menu items at design time,

Table 6.4 Sample captions and their derived names

Component caption Derived name Explanation

&File File1 Removes ampersand

&File (2nd occurrence) File2 Numerically orders duplicate items

1234 N12341 Adds a preceding letter and numerical order

1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived name

$@@@# N1 Removes all non-standard characters, adding
preceding letter and numerical order

- (hyphen) N2 Numerical ordering of second occurrence of
caption with no standard characters

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-33

C r e a t i n g a n d m a n a g i n g m e n u s

1 Select the position where you want to create the menu item.

If you’ve just opened the Menu Designer, the first position on the menu bar is
already selected.

2 Begin typing to enter the caption. Or enter the Name property first by specifically
placing your cursor in the Object Inspector and entering a value. In this case, you
then need to reselect the Caption property and enter a value.

3 Press Enter.

The next placeholder for a menu item is selected.

If you entered the Caption property first, use the arrow keys to return to the menu
item you just entered. You’ll see that Delphi has filled in the Name property based
on the value you entered for the caption. (See “Naming the menu items” on
page 6-32.)

4 Continue entering values for the Name and Caption properties for each new item
you want to create, or press Esc to return to the menu bar.

Use the arrow keys to move from the menu bar into the menu, and to then move
between items in the list; press Enter to complete an action. To return to the menu
bar, press Esc.

To insert a new, blank menu item,

1 Place the cursor on a menu item.
2 Press Ins.

Menu items are inserted to the left of the selected item on the menu bar, and above
the selected item in the menu list.

To delete a menu item or command,

1 Place the cursor on the menu item you want to delete.
2 Press Del.

Note You cannot delete the default placeholder that appears below the item last entered in
a menu list, or next to the last item on the menu bar. This placeholder does not
appear in your menu at runtime.

Adding separator bars
Separator bars insert a line between menu items. You can use separator bars to
indicate groupings within the menu list, or simply to provide a visual break in a list.

To make the menu item a separator bar, type a hyphen (-) for the caption.

Specifying accelerator keys and keyboard shortcuts
Accelerator keys enable the user to access a menu command from the keyboard by
pressing Alt+ the appropriate letter, indicated in your code by the preceding
ampersand. The letter after the ampersand appears underlined in the menu.

Delphi automatically checks for duplicate accelerators and adjusts them at runtime.
This ensures that menus built dynamically at runtime contain no duplicate
accelerators and that all menu items have an accelerator. You can turn off this
automatic checking by setting the AutoHotkeys property of a menu item to maManual.

6-34 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

To specify an accelerator,

• Add an ampersand in front of the appropriate letter.

For example, to add a Save menu command with the S as an accelerator key, type
&Save.

Keyboard shortcuts enable the user to perform the action without using the menu
directly, by typing in the shortcut key combination.

To specify a keyboard shortcut,

• Use the Object Inspector to enter a value for the ShortCut property, or select a key
combination from the drop-down list.

This list is only a subset of the valid combinations you can type in.

When you add a shortcut, it appears next to the menu item caption.

Caution Keyboard shortcuts, unlike accelerator keys, are not checked automatically for
duplicates. You must ensure uniqueness yourself.

Creating submenus

Many application menus contain drop-down lists that appear next to a menu item to
provide additional, related commands. Such lists are indicated by an arrow to the
right of the menu item. Delphi supports as many levels of such submenus as you
want to build into your menu.

Organizing your menu structure this way can save vertical screen space. However,
for optimal design purposes you probably want to use no more than two or three
menu levels in your interface design. (For pop-up menus, you might want to use only
one submenu, if any.)

Figure 6.7 Nested menu structures

To create a submenu,

1 Select the menu item under which you want to create a submenu.

2 Press Ctrl→ to create the first placeholder, or right-click and choose Create
Submenu.

3 Type a name for the submenu item, or drag an existing menu item into this
placeholder.

Menu item on
the menu bar

Menu item in
a menu list

Nested
menu item

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-35

C r e a t i n g a n d m a n a g i n g m e n u s

4 Press Enter, or ↓, to create the next placeholder.

5 Repeat steps 3 and 4 for each item you want to create in the submenu.

6 Press Esc to return to the previous menu level.

Creating submenus by demoting existing menus
You can create a submenu by inserting a menu item from the menu bar (or a menu
template) between menu items in a list. When you move a menu into an existing
menu structure, all its associated items move with it, creating a fully intact submenu.
This pertains to submenus as well—moving a menu item into an existing submenu
just creates one more level of nesting.

Moving menu items
During design time, you can move menu items simply by dragging and dropping.
You can move menu items along the menu bar, or to a different place in the menu
list, or into a different menu entirely.

The only exception to this is hierarchical: you cannot demote a menu item from the
menu bar into its own menu; nor can you move a menu item into its own submenu.
However, you can move any item into a different menu, no matter what its original
position is.

While you are dragging, the cursor changes shape to indicate whether you can
release the menu item at the new location. When you move a menu item, any items
beneath it move as well.

To move a menu item along the menu bar,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new location.

2 Release the mouse button to drop the menu item at the new location.

To move a menu item into a menu list,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.

2 Drag the menu item into the list, releasing the mouse button to drop the menu
item at the new location.

Adding images to menu items
Images can help users navigate in menus by matching glyphs and images to menu
item action, similar to toolbar images. You can add single bitmaps to menu items, or
you can organize images for your application into an image list and add them to a
menu from the image list. If you’re using several bitmaps of the same size in your
application, it’s useful to put them into an image list.

To add a single image to a menu or menu item, set its Bitmap property to reference
the name of the bitmap to use on the menu or menu item.

6-36 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

To add an image to a menu item using an image list:

1 Drop a TMainMenu or TPopupMenu object on a form.

2 Drop a TImageList object on the form.

3 Open the ImageList editor by double clicking on the TImageList object.

4 Click Add to select the bitmap or bitmap group you want to use in the menu. Click
OK.

5 Set the TMainMenu or TPopupMenu object’s Images property to the ImageList you
just created.

6 Create your menu items and submenu items as described previously.

7 Select the menu item you want to have an image in the Object Inspector and set the
ImageIndex property to the corresponding number of the image in the ImageList
(the default value for ImageIndex is -1, which doesn’t display an image).

Note Use images that are 16 by 16 pixels for proper display in the menu. Although you can
use other sizes for the menu images, alignment and consistency problems may result
when using images greater than or smaller than 16 by 16 pixels.

Viewing the menu
You can view your menu in the form at design time without first running your
program code. (Pop-up menu components are visible in the form at design time, but
the pop-up menus themselves are not. Use the Menu Designer to view a pop-up
menu at design time.)

To view the menu,

1 If the form is visible, click the form, or from the View menu, choose the form
whose menu you want to view.

2 If the form has more than one menu, select the menu you want to view from the
form’s Menu property drop-down list.

The menu appears in the form exactly as it will when you run the program.

Editing menu items in the Object Inspector

This section has discussed how to set several properties for menu items—for
example, the Name and Caption properties—by using the Menu Designer.

The section has also described how to set menu item properties, such as the ShortCut
property, directly in the Object Inspector, just as you would for any component
selected in the form.

When you edit a menu item by using the Menu Designer, its properties are still
displayed in the Object Inspector. You can switch focus to the Object Inspector and
continue editing the menu item properties there. Or you can select the menu item
from the Component list in the Object Inspector and edit its properties without ever
opening the Menu Designer.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-37

C r e a t i n g a n d m a n a g i n g m e n u s

To close the Menu Designer window and continue editing menu items,

1 Switch focus from the Menu Designer window to the Object Inspector by clicking
the properties page of the Object Inspector.

2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing
properties for the selected menu item. To edit another menu item, select it from the
Component list.

Using the Menu Designer context menu

The Menu Designer context menu provides quick access to the most common Menu
Designer commands, and to the menu template options. (For more information about
menu templates, refer to “Using menu templates” on page 6-38.)

To display the context menu, right-click the Menu Designer window, or press Alt+F10
when the cursor is in the Menu Designer window.

Commands on the context menu
The following table summarizes the commands on the Menu Designer context menu.

Switching between menus at design time
If you’re designing several menus for your form, you can use the Menu Designer
context menu or the Object Inspector to easily select and move among them.

To use the context menu to switch between menus in a form,

1 Right-click in the Menu Designer and choose Select Menu.

The Select Menu dialog box appears.

Table 6.5 Menu Designer context menu commands

Menu command Action

Insert Inserts a placeholder above or to the left of the cursor.

Delete Deletes the selected menu item (and all its sub-items, if any).

Create Submenu Creates a placeholder at a nested level and adds an arrow to the right of
the selected menu item.

Select Menu Opens a list of menus in the current form. Double-clicking a menu name
opens the designer window for the menu.

Save As Template Opens the Save Template dialog box, where you can save a menu for
future reuse.

Insert From
Template

Opens the Insert Template dialog box, where you can select a template to
reuse.

Delete Templates Opens the Delete Templates dialog box, where you can choose to delete
any existing templates.

Insert From
Resource

Opens the Insert Menu from Resource file dialog box, where you can
choose an .mnu file to open in the current form.

6-38 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Figure 6.8 Select Menu dialog box

This dialog box lists all the menus associated with the form whose menu is
currently open in the Menu Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or
edit.

To use the Object Inspector to switch between menus in a form,

1 Give focus to the form whose menus you want to choose from.

2 From the Component list, select the menu you want to edit.

3 On the Properties page of the Object Inspector, select the Items property for this
menu, and then either click the ellipsis button, or double-click [Menu].

Using menu templates

Delphi provides several predesigned menus, or menu templates, that contain
frequently used commands. You can use these menus in your applications without
modifying them (except to write code), or you can use them as a starting point,
customizing them as you would a menu you originally designed yourself. Menu
templates do not contain any event handler code.

The menu templates shipped with Delphi are stored in the BIN subdirectory in a
default installation. These files have a .DMT (Delphi menu template) extension.

You can also save as a template any menu that you design using the Menu Designer.
After saving a menu as a template, you can use it as you would any predesigned
menu. If you decide you no longer want a particular menu template, you can delete it
from the list.

To add a menu template to your application,

1 Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the
context menu.)

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-39

C r e a t i n g a n d m a n a g i n g m e n u s

The Insert Template dialog box opens, displaying a list of available menu
templates.

Figure 6.9 Sample Insert Template dialog box for menus

2 Select the menu template you want to insert, then press Enter or choose OK.

This inserts the menu into your form at the cursor’s location. For example, if your
cursor is on a menu item in a list, the menu template is inserted above the selected
item. If your cursor is on the menu bar, the menu template is inserted to the left of
the cursor.

To delete a menu template,

1 Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the
context menu.)

The Delete Templates dialog box opens, displaying a list of available templates.

2 Select the menu template you want to delete, and press Del.

Delphi deletes the template from the templates list and from your hard disk.

Saving a menu as a template

Any menu you design can be saved as a template so you can use it again. You can use
menu templates to provide a consistent look to your applications, or use them as a
starting point which you then further customize.

The menu templates you save are stored in your BIN subdirectory as .DMT files.

To save a menu as a template,

1 Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like;
everything in the active Menu Designer window will be saved as one reusable
menu.

2 Right-click in the Menu Designer and choose Save As Template.

6-40 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

The Save Template dialog box appears.

Figure 6.10 Save Template dialog box for menus

3 In the Template Description edit box, type a brief description for this menu, and
then choose OK.

The Save Template dialog box closes, saving your menu design and returning you
to the Menu Designer window.

Note The description you enter is displayed only in the Save Template, Insert Template,
and Delete Templates dialog boxes. It is not related to the Name or Caption property
for the menu.

Naming conventions for template menu items and event handlers
When you save a menu as a template, Delphi does not save its Name property, since
every menu must have a unique name within the scope of its owner (the form).
However, when you insert the menu as a template into a new form by using the
Menu Designer, Delphi then generates new names for it and all of its items.

For example, suppose you save a File menu as a template. In the original menu, you
name it MyFile. If you insert it as a template into a new menu, Delphi names it File1. If
you insert it into a menu with an existing menu item named File1, Delphi names it
File2.

Delphi also does not save any OnClick event handlers associated with a menu saved
as a template, since there is no way to test whether the code would be applicable in
the new form. When you generate a new event handler for the menu template item,
Delphi still generates the event handler name.

You can easily associate items in the menu template with existing OnClick event
handlers in the form For more information, see “Associating an event with an
existing event handler” on page 3-27.

Manipulating menu items at runtime

Sometimes you want to add menu items to an existing menu structure while the
application is running, to provide more information or options to the user. You can

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-41

C r e a t i n g a n d m a n a g i n g m e n u s

insert a menu item by using the menu item’s Add or Insert method, or you can
alternately hide and show the items in a menu by changing their Visible property.
The Visible property determines whether the menu item is displayed in the menu. To
dim a menu item without hiding it, use the Enabled property.

For examples that use the menu item’s Visible and Enabled properties, see “Disabling
menu items” on page 7-10.

In multiple document interface (MDI) and Object Linking and Embedding (OLE)
applications, you can also merge menu items into an existing menu bar. The
following section discusses this in more detail.

Merging menus

For MDI applications, such as the text editor sample application, and for OLE client
applications, your application’s main menu needs to be able to receive menu items
either from another form or from the OLE server object. This is often called merging
menus. Note that OLE technology is limited to Windows applications only and is not
available for use in cross-platform programming.

You prepare menus for merging by specifying values for two properties:

• Menu, a property of the form
• GroupIndex, a property of menu items in the menu

Specifying the active menu: Menu property
The Menu property specifies the active menu for the form. Menu-merging operations
apply only to the active menu. If the form contains more than one menu component,
you can change the active menu at runtime by setting the Menu property in code. For
example,

Form1.Menu := SecondMenu;

Determining the order of merged menu items: GroupIndex property
The GroupIndex property determines the order in which the merging menu items
appear in the shared menu bar. Merging menu items can replace those on the main
menu bar, or can be inserted.

The default value for GroupIndex is 0. Several rules apply when specifying a value for
GroupIndex:

• Lower numbers appear first (farther left) in the menu.

For instance, set the GroupIndex property to 0 (zero) for a menu that you always
want to appear leftmost, such as a File menu. Similarly, specify a high number (it
needn’t be in sequence) for a menu that you always want to appear rightmost,
such as a Help menu.

• To replace items in the main menu, give items on the child menu the same
GroupIndex value.

6-42 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

This can apply to groupings or to single items. For example, if your main form has
an Edit menu item with a GroupIndex value of 1, you can replace it with one or
more items from the child form's menu by giving them a GroupIndex value of 1 as
well.

Giving multiple items in the child menu the same GroupIndex value keeps their
order intact when they merge into the main menu.

• To insert items without replacing items in the main menu, leave room in the
numeric range of the main menu’s items and “plug in” numbers from the child
form.

For example, number the items in the main menu 0 and 5, and insert items from
the child menu by numbering them 1, 2, 3, and 4.

Importing resource files

Delphi supports use of menus built with other applications, so long as they are in the
standard Windows resource (.RC) file format. You can import such menus directly
into your Delphi project, saving you the time and effort of rebuilding menus that you
created elsewhere.

To load existing .RC menu files,

1 In the Menu Designer, place your cursor where you want the menu to appear.

The imported menu can be part of a menu you are designing, or an entire menu in
itself.

2 Right-click and choose Insert From Resource.

The Insert Menu From Resource dialog box appears.

3 In the dialog box, select the resource file you want to load, and choose OK.

The menu appears in the Menu Designer window.

Note If your resource file contains more than one menu, you first need to save each menu
as a separate resource file before importing it.

Designing toolbars and cool bars
A toolbar is a panel, usually across the top of a form (under the menu bar), that holds
buttons and other controls. A cool bar (also called a rebar) is a kind of toolbar that
displays controls on movable, resizable bands. If you have multiple panels aligned to
the top of the form, they stack vertically in the order added.

Note Cool bars are not available in CLX for cross-platform applications.

You can put controls of any sort on a toolbar. In addition to buttons, you may want to
put use color grids, scroll bars, labels, and so on.

You can add a toolbar to a form in several ways:

• Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-43

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

• Use a toolbar component (TToolBar) instead of TPanel, and add controls to it.
TToolBar manages buttons and other controls, arranging them in rows and
automatically adjusting their sizes and positions. If you use tool button
(TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons
functionally and provides other display options.

• Use a cool bar (TCoolBar) component and add controls to it. The cool bar displays
controls on independently movable and resizable bands.

How you implement your toolbar depends on your application. The advantage of
using the Panel component is that you have total control over the look and feel of the
toolbar.

By using the toolbar and cool bar components, you are ensuring that your
application has the look and feel of a Windows application because you are using the
native Windows controls. If these operating system controls change in the future,
your application could change as well. Also, since the toolbar and cool bar rely on
common components in Windows, your application requires the COMCTL32.DLL.
Toolbars and cool bars are not supported in WinNT 3.51 applications.

The following sections describe how to

• Add a toolbar and corresponding speed button controls using the panel
component

• Add a toolbar and corresponding tool button controls using the Toolbar
component

• Add a cool bar using the cool bar component

• Respond to clicks

• Add hidden toolbars and cool bars

• Hide and show toolbars and cool bars

Adding a toolbar using a panel component

To add a toolbar to a form using the panel component,

1 Add a panel component to the form (from the Standard page of the component
palette).

2 Set the panel’s Align property to alTop. When aligned to the top of the form, the
panel maintains its height, but matches its width to the full width of the form’s
client area, even if the window changes size.

3 Add speed buttons or other controls to the panel.

Speed buttons are designed to work on toolbar panels. A speed button usually has no
caption, only a small graphic (called a glyph), which represents the button’s function.

Speed buttons have three possible modes of operation. They can

• Act like regular pushbuttons
• Toggle on and off when clicked

6-44 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

• Act like a set of radio buttons

To implement speed buttons on toolbars, do the following:

• Add a speed button to a toolbar panel
• Assign a speed button’s glyph
• Set the initial condition of a speed button
• Create a group of speed buttons
• Allow toggle buttons

Adding a speed button to a panel
To add a speed button to a toolbar panel, place the speed button component (from the
Additional page of the component palette) on the panel.

The panel, rather than the form, “owns” the speed button, so moving or hiding the
panel also moves or hides the speed button.

The default height of the panel is 41, and the default height of speed buttons is 25. If
you set the Top property of each button to 8, they’ll be vertically centered. The default
grid setting snaps the speed button to that vertical position for you.

Assigning a speed button’s glyph
Each speed button needs a graphic image called a glyph to indicate to the user what
the button does. If you supply the speed button only one image, the button
manipulates that image to indicate whether the button is pressed, unpressed,
selected, or disabled. You can also supply separate, specific images for each state if
you prefer.

You normally assign glyphs to speed buttons at design time, although you can assign
different glyphs at runtime.

To assign a glyph to a speed button at design time,

1 Select the speed button.

2 In the Object Inspector, select the Glyph property.

3 Double-click the Value column beside Glyph to open the Picture Editor and select
the desired bitmap.

Setting the initial condition of a speed button
Speed buttons use their appearance to give the user clues as to their state and
purpose. Because they have no caption, it’s important that you use the right visual
cues to assist users.

Table 6.6 lists some actions you can set to change a speed button’s appearance:

Table 6.6 Setting speed buttons’ appearance

To make a speed button: Set the toolbar’s:

Appear pressed GroupIndex property to a value other than zero and its
Down property to True.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-45

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

If your application has a default drawing tool, ensure that its button on the toolbar is
pressed when the application starts. To do so, set its GroupIndex property to a value
other than zero and its Down property to True.

Creating a group of speed buttons
A series of speed buttons often represents a set of mutually exclusive choices. In that
case, you need to associate the buttons into a group, so that clicking any button in the
group causes the others in the group to pop up.

To associate any number of speed buttons into a group, assign the same number to
each speed button’s GroupIndex property.

The easiest way to do this is to select all the buttons you want in the group, and, with
the whole group selected, set GroupIndex to a unique value.

Allowing toggle buttons
Sometimes you want to be able to click a button in a group that’s already pressed and
have it pop up, leaving no button in the group pressed. Such a button is called a
toggle. Use AllowAllUp to create a grouped button that acts as a toggle: click it once,
it’s down; click it again, it pops up.

To make a grouped speed button a toggle, set its AllowAllUp property to True.

Setting AllowAllUp to True for any speed button in a group automatically sets the
same property value for all buttons in the group. This enables the group to act as a
normal group, with only one button pressed at a time, but also allows every button to
be up at the same time.

Adding a toolbar using the toolbar component

The toolbar component (TToolBar) offers button management and display features
that panel components do not. To add a toolbar to a form using the toolbar
component,

1 Add a toolbar component to the form (from the Win32 page of the component
palette). The toolbar automatically aligns to the top of the form.

2 Add tool buttons or other controls to the bar.

Tool buttons are designed to work on toolbar components. Like speed buttons, tool
buttons can

• Act like regular pushbuttons
• Toggle on and off when clicked
• Act like a set of radio buttons

Appear disabled Enabled property to False.

Have a left margin Indent property to a value greater than 0.

Table 6.6 Setting speed buttons’ appearance (continued)

To make a speed button: Set the toolbar’s:

6-46 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

To implement tool buttons on a toolbar, do the following:

• Add a tool button
• Assign images to tool buttons
• Set the tool buttons’ appearance
• Create a group of tool buttons
• Allow toggled tool buttons

Adding a tool button
To add a tool button to a toolbar, right-click on the toolbar and choose New Button.

The toolbar “owns” the tool button, so moving or hiding the toolbar also moves or
hides the button. In addition, all tool buttons on the toolbar automatically maintain
the same height and width. You can drop other controls from the component palette
onto the toolbar, and they will automatically maintain a uniform height. Controls
will also wrap around and start a new row when they do not fit horizontally on the
toolbar.

Assigning images to tool buttons
Each tool button has an ImageIndex property that determines what image appears on
it at runtime. If you supply the tool button only one image, the button manipulates
that image to indicate whether the button is disabled. To assign images to tool
buttons at design time,

1 Select the toolbar on which the buttons appear.

2 In the Object Inspector, assign a TImageList object to the toolbar’s Images property.
An image list is a collection of same-sized icons or bitmaps.

3 Select a tool button.

4 In the Object Inspector, assign an integer to the tool button’s ImageIndex property
that corresponds to the image in the image list that you want to assign to the
button.

You can also specify separate images to appear on the tool buttons when they are
disabled and when they are under the mouse pointer. To do so, assign separate
image lists to the toolbar’s DisabledImages and HotImages properties.

Setting tool button appearance and initial conditions
Table 6.7 lists some actions you can set to change a tool button’s appearance:

Table 6.7 Setting tool buttons’ appearance

To make a tool button: Set the toolbar’s:

Appear pressed (on tool button) Style property to tbsCheck and Down
property to True.

Appear disabled Enabled property to False.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-47

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Note Using the Flat property of TToolBar requires version 4.70 or later of COMCTL32.DLL.

To force a new row of controls after a specific tool button, Select the tool button that
you want to appear last in the row and set its Wrap property to True.

To turn off the auto-wrap feature of the toolbar, set the toolbar’s Wrapable property to
False.

Creating groups of tool buttons
To create a group of tool buttons, select the buttons you want to associate and set
their Style property to tbsCheck; then set their Grouped property to True. Selecting a
grouped tool button causes other buttons in the group to pop up, which is helpful to
represent a set of mutually exclusive choices.

Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and
Grouped set to True forms a single group. To break up a group of tool buttons,
separate the buttons with any of the following:

• A tool button whose Grouped property is False.

• A tool button whose Style property is not set to tbsCheck. To create spaces or
dividers on the toolbar, add a tool button whose Style is tbsSeparator or tbsDivider.

• Another control besides a tool button.

Allowing toggled tool buttons
Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is
down; click it again, it pops up. To make a grouped tool button a toggle, set its
AllowAllUp property to True.

As with speed buttons, setting AllowAllUp to True for any tool button in a group
automatically sets the same property value for all buttons in the group.

Have a left margin Indent property to a value greater than 0.

Appear to have “pop-up” borders,
thus making the toolbar appear
transparent

Flat property to True.

Table 6.7 Setting tool buttons’ appearance (continued)

To make a tool button: Set the toolbar’s:

6-48 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Adding a cool bar component

Note The TCoolBar component requires version 4.70 or later of COMCTL32.DLL and is not
available in CLX.

The cool bar component (TCoolBar)—also called a rebar—displays windowed controls
on independently movable, resizable bands. The user can position the bands by
dragging the resizing grips on the left side of each band.

To add a cool bar to a form in a Windows application,

1 Add a cool bar component to the form (from the Win32 page of the component
palette). The cool bar automatically aligns to the top of the form.

2 Add windowed controls from the component palette to the bar.

Only VCL components that descend from TWinControl are windowed controls. You
can add graphic controls—such as labels or speed buttons—to a cool bar, but they
will not appear on separate bands.

Setting the appearance of the cool bar
The cool bar component offers several useful configuration options. Table 6.8 lists
some actions you can set to change a tool button’s appearance:

To assign images to individual bands, select the cool bar and double-click on the
Bands property in the Object Inspector. Then select a band and assign a value to its
ImageIndex property.

Table 6.8 Setting a cool button’s appearance

To make the cool bar: Set the toolbar’s:

Resize automatically to
accommodate the bands it contains

AutoSize property to True.

Bands maintain a uniform height FixedSize property to True.

Reorient to vertical rather than
horizontal

Vertical property to True. This changes the effect of the
FixedSize property.

Prevent the Text properties of the
bands from displaying at runtime

ShowText property to False. Each band in a cool bar has
its own Text property.

Remove the border around the bar BandBorderStyle to bsNone.

Keep users from changing the
bands’ order at runtime. (The user
can still move and resize the bands.)

FixedOrder to True.

Create a background image for the
cool bar

Bitmap property to TBitmap object.

Choose a list of images to appear on
the left of any band

Images property to TImageList object.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-49

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Responding to clicks

When the user clicks a control, such as a button on a toolbar, the application
generates an OnClick event which you can respond to with an event handler. Since
OnClick is the default event for buttons, you can generate a skeleton handler for the
event by double-clicking the button at design time. For more information, see
“Working with events and event handlers” on page 3-25 and “Generating a handler
for a component’s default event” on page 3-26.

Assigning a menu to a tool button
If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can
associate menu with a specific button:

1 Select the tool button.

2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button’s
DropDownMenu property.

If the menu’s AutoPopup property is set to True, it will appear automatically when the
button is pressed.

Adding hidden toolbars

Toolbars do not have to be visible all the time. In fact, it is often convenient to have a
number of toolbars available, but show them only when the user wants to use them.
Often you create a form that has several toolbars, but hide some or all of them.

To create a hidden toolbar,

1 Add a toolbar, cool bar, or panel component to the form.
2 Set the component’s Visible property to False.

Although the toolbar remains visible at design time so you can modify it, it remains
hidden at runtime until the application specifically makes it visible.

Hiding and showing toolbars

Often, you want an application to have multiple toolbars, but you do not want to
clutter the form with them all at once. Or you may want to let users decide whether
to display toolbars. As with all components, toolbars can be shown or hidden at
runtime as needed.

To hide or show a toolbar at runtime, set its Visible property to False or True,
respectively. Usually you do this in response to particular user events or changes in
the operating mode of the application. To do this, you typically have a close button
on each toolbar. When the user clicks that button, the application hides the
corresponding toolbar.

6-50 D e v e l o p e r ’ s G u i d e

You can also provide a means of toggling the toolbar. In the following example, a
toolbar of pens is toggled from a button on the main toolbar. Since each click presses
or releases the button, an OnClick event handler can show or hide the Pen toolbar
depending on whether the button is up or down.

procedure TForm1.PenButtonClick(Sender: TObject);
begin

PenBar.Visible := PenButton.Down;
end;

Demo programs

For examples of Windows applications that use actions and action lists, refer to
Demos\RichEdit. In addition, the Application wizard (File|New Project page), MDI
Application, SDI Application, and Winx Logo Applications can use the action and
action list objects. For examples of cross-platform applications, refer to Demos\CLX.

W o r k i n g w i t h c o n t r o l s 7-1

C h a p t e r

7
Chapter 7Working with controls

Controls are visual components that the user can interact with at runtime. This
chapter describes a variety of features common to many controls.

Implementing drag-and-drop in controls
Drag-and-drop is often a convenient way for users to manipulate objects. You can let
users drag an entire control, or let them drag items from one control—such as a list
box or tree view—into another.

• Starting a drag operation
• Accepting dragged items
• Dropping items
• Ending a drag operation
• Customizing drag and drop with a drag object
• Changing the drag mouse pointer

Starting a drag operation

Every control has a property called DragMode that determines how drag operations
are initiated. If DragMode is dmAutomatic, dragging begins automatically when the
user presses a mouse button with the cursor on the control. Because dmAutomatic can
interfere with normal mouse activity, you may want to set DragMode to dmManual
(the default) and start the dragging by handling mouse-down events.

To start dragging a control manually, call the control’s BeginDrag method. BeginDrag
takes a Boolean parameter called Immediate and, optionally, an integer parameter
called Threshold. If you pass True for Immediate, dragging begins immediately. If you
pass False, dragging does not begin until the user moves the mouse the number of
pixels specified by Threshold. Calling

BeginDrag False)

allows the control to accept mouse clicks without beginning a drag operation.

7-2 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g d r a g - a n d - d r o p i n c o n t r o l s

You can place other conditions on whether to begin dragging, such as checking
which mouse button the user pressed, by testing the parameters of the mouse-down
event before calling BeginDrag. The following code, for example, handles a mouse-
down event in a file list box by initiating a drag operation only if the left mouse
button was pressed.

procedure TFMForm.FileListBox1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
if Button = mbLeft then { drag only if left button pressed }

with Sender as TFileListBox do { treat Sender as TFileListBox }
begin

if ItemAtPos(Point(X, Y), True) >= 0 then { is there an item here? }
BeginDrag(False); { if so, drag it }

end;
end;

Accepting dragged items

When the user drags something over a control, that control receives an OnDragOver
event, at which time it must indicate whether it can accept the item if the user drops it
there. The drag cursor changes to indicate whether the control can accept the
dragged item. To accept items dragged over a control, attach an event handler to the
control’s OnDragOver event.

The drag-over event has a parameter called Accept that the event handler can set to
True if it will accept the item. If Accept is True, the application sends a drag-and-drop
event to the control.

The drag-over event has other parameters, including the source of the dragging and
the current location of the mouse cursor, that the event handler can use to determine
whether to accept the drop. In the following example, a directory tree view accepts
dragged items only if they come from a file list box.

procedure TFMForm.DirectoryOutline1DragOver(Sender, Source: TObject; X,
Y: Integer; State: TDragState; var Accept: Boolean);

begin
if Source is TFileListBox then

Accept := True
else

Accept := False;
end;

Dropping items

If a control indicates that it can accept a dragged item, it needs to handle the item
should it be dropped. To handle dropped items, attach an event handler to the
OnDragDrop event of the control accepting the drop. Like the drag-over event, the
drag-and-drop event indicates the source of the dragged item and the coordinates of
the mouse cursor over the accepting control. The latter parameter allows you to
monitor the path an item takes while being dragged; you might, for example, want to
use this information to change the color of components as they are passed over.

W o r k i n g w i t h c o n t r o l s 7-3

I m p l e m e n t i n g d r a g - a n d - d r o p i n c o n t r o l s

In the following example, a directory tree view, accepting items dragged from a file
list box, responds by moving files to the directory on which they are dropped.

procedure TFMForm.DirectoryOutline1DragDrop(Sender, Source: TObject; X,
Y: Integer);

begin
if Source is TFileListBox then

with DirectoryOutline1 do
ConfirmChange('Move', FileListBox1.FileName, Items[GetItem(X, Y)].FullPath);

end;

Ending a drag operation

A drag operation ends when the item is either successfully dropped or released over
a control that cannot accept it. At this point an end-drag event is sent to the control
from which the item was dragged. To enable a control to respond when items have
been dragged from it, attach an event handler to the control’s OnEndDrag event.

The most important parameter in an OnEndDrag event is called Target, which
indicates which control, if any, accepts the drop. If Target is nil, it means no control
accepts the dragged item. The OnEndDrag event also includes the coordinates on the
receiving control.

In this example, a file list box handles an end-drag event by refreshing its file list.

procedure TFMForm.FileListBox1EndDrag(Sender, Target: TObject; X, Y: Integer);
begin

if Target <> nil then FileListBox1.Update;
end;

Customizing drag and drop with a drag object

You can use a TDragObject descendant to customize an object’s drag-and-drop
behavior. The standard drag-over and drag-and-drop events indicate the source of
the dragged item and the coordinates of the mouse cursor over the accepting control.
To get additional state information, derive a custom drag object from TDragObject or
TDragObjectEx and override its virtual methods. Create the custom drag object in the
OnStartDrag event.

Normally, the source parameter of the drag-over and drag-and-drop events is the
control that starts the drag operation. If different kinds of control can start an
operation involving the same kind of data, the source needs to support each kind of
control. When you use a descendant of TDragObject, however, the source is the drag
object itself; if each control creates the same kind of drag object in its OnStartDrag
event, the target needs to handle only one kind of object. The drag-over and drag-
and-drop events can tell if the source is a drag object, as opposed to the control, by
calling the IsDragObject function.

TDragObjectEx descendants are freed automatically whereas descendants of
TDragObject are not. If you have TDragObject descendants that you are not explicitly
freeing, you can change them so they descend from TDragObjectEx instead to prevent
memory loss.

7-4 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g d r a g - a n d - d o c k i n c o n t r o l s

Drag objects let you drag items between a form implemented in the application’s
main executable file and a form implemented using a DLL, or between forms that are
implemented using different DLLs.

Changing the drag mouse pointer

You can customize the appearance of the mouse pointer during drag operations by
setting the source component’s DragCursor property (VCL only).

Implementing drag-and-dock in controls
Note Drag and dock properties are available in the VCL but not CLX.

Descendants of TWinControl can act as docking sites and descendants of TControl can
act as child windows that are docked into docking sites. For example, to provide a
docking site at the left edge of a form window, align a panel to the left edge of the
form and make the panel a docking site. When dockable controls are dragged to the
panel and released, they become child controls of the panel.

• Making a windowed control a docking site
• Making a control a dockable child
• Controlling how child controls are docked
• Controlling how child controls are undocked
• Controlling how child controls respond to drag-and-dock operations

Making a windowed control a docking site

Note Drag and dock properties are available in the VCL but not CLX.

To make a windowed control a docking site,

1 Set the DockSite property to True.

2 If the dock site object should not appear except when it contains a docked client,
set its AutoSize property to True. When AutoSize is True, the dock site is sized to 0
until it accepts a child control for docking. Then it resizes to fit around the child
control.

Making a control a dockable child

Note Drag and dock properties are available in the VCL but not CLX.

To make a control a dockable child,

1 Set its DragKind property to dkDock. When DragKind is dkDock, dragging the
control moves the control to a new docking site or undocks the control so that it
becomes a floating window. When DragKind is dkDrag (the default), dragging the
control starts a drag-and-drop operation which must be implemented using the
OnDragOver, OnEndDrag, and OnDragDrop events.

W o r k i n g w i t h c o n t r o l s 7-5

I m p l e m e n t i n g d r a g - a n d - d o c k i n c o n t r o l s

2 Set its DragMode to dmAutomatic. When DragMode is dmAutomatic, dragging (for
drag-and-drop or docking, depending on DragKind) is initiated automatically
when the user starts dragging the control with the mouse. When DragMode is
dmManual, you can still begin a drag-and-dock (or drag-and-drop) operation by
calling the BeginDrag method.

3 Set its FloatingDockSiteClass property to indicate the TWinControl descendant that
should host the control when it is undocked and left as a floating window. When
the control is released and not over a docking site, a windowed control of this class
is created dynamically, and becomes the parent of the dockable child. If the
dockable child control is a descendant of TWinControl, it is not necessary to create
a separate floating dock site to host the control, although you may want to specify
a form in order to get a border and title bar. To omit a dynamic container window,
set FloatingDockSiteClass to the same class as the control, and it will become a
floating window with no parent.

Controlling how child controls are docked

Note Drag and dock properties are available in the VCL but not CLX.

A docking site automatically accepts child controls when they are released over the
docking site. For most controls, the first child is docked to fill the client area, the
second splits that into separate regions, and so on. Page controls dock children into
new tab sheets (or merge in the tab sheets if the child is another page control).

Three events allow docking sites to further constrain how child controls are docked:

property OnGetSiteInfo: TGetSiteInfoEvent;
TGetSiteInfoEvent = procedure(Sender: TObject; DockClient: TControl; var InfluenceRect:
TRect; var CanDock: Boolean) of object;

OnGetSiteInfo occurs on the docking site when the user drags a dockable child over
the control. It allows the site to indicate whether it will accept the control specified by
the DockClient parameter as a child, and if so, where the child must be to be
considered for docking. When OnGetSiteInfo occurs, InfluenceRect is initialized to the
screen coordinates of the docking site, and CanDock is initialized to True. A more
limited docking region can be created by changing InfluenceRect and the child can be
rejected by setting CanDock to False.

property OnDockOver: TDockOverEvent;
TDockOverEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer; State:
TDragState; var Accept: Boolean) of object;

OnDockOver occurs on the docking site when the user drags a dockable child over the
control. It is analogous to the OnDragOver event in a drag-and-drop operation. Use it
to signal that the child can be released for docking, by setting the Accept parameter. If
the dockable control is rejected by the OnGetSiteInfo event handler (perhaps because
it is the wrong type of control), OnDockOver does not occur.

property OnDockDrop: TDockDropEvent;
TDockDropEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer) of
object;

7-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

OnDockDrop occurs on the docking site when the user releases the dockable child
over the control. It is analogous to the OnDragDrop event in a normal drag-and-drop
operation. Use this event to perform any necessary accommodations to accepting the
control as a child control. Access to the child control can be obtained using the
Control property of the TDockObject specified by the Source parameter.

Controlling how child controls are undocked

Note Drag and dock properties are available in the VCL but not CLX.

A docking site automatically allows child controls to be undocked when they are
dragged and have a DragMode property of dmAutomatic. Docking sites can respond
when child controls are dragged off, and even prevent the undocking, in an
OnUnDock event handler:

property OnUnDock: TUnDockEvent;
TUnDockEvent = procedure(Sender: TObject; Client: TControl; var Allow: Boolean) of
object;

The Client parameter indicates the child control that is trying to undock, and the
Allow parameter lets the docking site (Sender) reject the undocking. When
implementing an OnUnDock event handler, it can be useful to know what other
children (if any) are currently docked. This information is available in the read-only
DockClients property, which is an indexed array of TControl. The number of dock
clients is given by the read-only DockClientCount property.

Controlling how child controls respond to drag-and-dock operations

Note Drag and dock properties are available in the VCL but not CLX.

Dockable child controls have two events that occur during drag-and-dock
operations: OnStartDock, analogous to the OnStartDrag event of a drag-and-drop
operation, allows the dockable child control to create a custom drag object.
OnEndDock, like OnEndDrag, occurs when the dragging terminates.

Working with text in controls
The following sections explain how to use various features of rich edit and memo
controls. Some of these features work with edit controls as well.

• Setting text alignment
• Adding scrollbars at runtime
• Adding the clipboard object
• Selecting text
• Selecting all text
• Cutting, copying, and pasting text
• Deleting selected text
• Disabling menu items
• Providing a pop-up menu
• Handling the OnPopup event

W o r k i n g w i t h c o n t r o l s 7-7

W o r k i n g w i t h t e x t i n c o n t r o l s

Setting text alignment

In a rich edit or memo component, text can be left- or right-aligned or centered. To
change text alignment, set the edit component’s Alignment property. Alignment takes
effect only if the WordWrap property is True; if word wrapping is turned off, there is
no margin to align to.

For example, the following code attaches an OnClick event handler to the Character|
Left menu item, then attaches the same event handler to both the Right and Center
menu items on the Character menu.

procedure TEditForm.AlignClick(Sender: TObject);
begin

Left1.Checked := False; { clear all three checks }
Right1.Checked := False;
Center1.Checked := False;
with Sender as TMenuItem do Checked := True; { check the item clicked }
with Editor do { then set Alignment to match }

if Left1.Checked then
Alignment := taLeftJustify

else if Right1.Checked then
Alignment := taRightJustify

else if Center1.Checked then
Alignment := taCenter;

end;

Adding scroll bars at runtime

Rich edit and memo components can contain horizontal or vertical scroll bars, or
both, as needed. When word-wrapping is enabled, the component needs only a
vertical scroll bar. If the user turns off word-wrapping, the component might also
need a horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime,

1 Determine whether the text might exceed the right margin. In most cases, this
means checking whether word wrapping is enabled. You might also check
whether any text lines actually exceed the width of the control.

2 Set the rich edit or memo component’s ScrollBars property to include or exclude
scroll bars.

The following example attaches an OnClick event handler to a Character|WordWrap
menu item.

procedure TEditForm.WordWrap1Click(Sender: TObject);
begin

with Editor do
begin

WordWrap := not WordWrap; { toggle word-wrapping }
if WordWrap then
ScrollBars := ssVertical { wrapped requires only vertical }

else

7-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

ScrollBars := ssBoth; { unwrapped might need both }
WordWrap1.Checked := WordWrap; { check menu item to match property }

end;
end;

The rich edit and memo components handle their scroll bars in a slightly different
way. The rich edit component can hide its scroll bars if the text fits inside the bounds
of the component. The memo always shows scroll bars if they are enabled.

Adding the clipboard object

Most text-handling applications provide users with a way to move selected text
between documents, including documents in different applications. The Clipboard
object in Delphi encapsulates a clipboard (such as the Windows Clipboard) and
includes methods for cutting, copying, and pasting text (and other formats, including
graphics). The Clipboard object is declared in the Clipbrd unit.

To add the Clipboard object to an application,

1 Select the unit that will use the clipboard.

2 Search for the implementation reserved word.

3 Add Clipbrd to the uses clause below implementation.

• If there is already a uses clause in the implementation part, add Clipbrd to the end
of it.

• If there is not already a uses clause, add one that says

uses Clipbrd;

For example, in an application with a child window, the uses clause in the unit's
implementation part might look like this:

uses
MDIFrame, Clipbrd;

Selecting text

Before you can send any text to the clipboard, that text must be selected. Highlighting
of selected text is built into the edit components. When the user selects text, it
appears highlighted.

Table 7.1 lists properties commonly used to handle selected text.

Table 7.1 Properties of selected text

Property Description

SelText Contains a string representing the selected text in the component.

SelLength Contains the length of a selected string.

SelStart Contains the starting position of a string.

W o r k i n g w i t h c o n t r o l s 7-9

W o r k i n g w i t h t e x t i n c o n t r o l s

Selecting all text

The SelectAll method selects the entire contents of the rich edit or memo component.
This is especially useful when the component’s contents exceed the visible area of the
component. In most other cases, users select text with either keystrokes or mouse
dragging.

To select the entire contents of a rich edit or memo control, call the RichEdit1 control’s
SelectAll method.

For example,

procedure TMainForm.SelectAll(Sender: TObject);
begin

RichEdit1.SelectAll; { select all text in RichEdit }
end;

Cutting, copying, and pasting text

Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and
objects through the clipboard. The edit components that encapsulate the standard
text-handling controls all have methods built into them for interacting with the
clipboard. (See “Using the clipboard with graphics” on page 8-21 for information on
using the clipboard with graphics.)

To cut, copy, or paste text with the clipboard, call the edit component’s
CutToClipboard, CopyToClipboard, and PasteFromClipboard methods, respectively.

For example, the following code attaches event handlers to the OnClick events of the
Edit|Cut, Edit|Copy, and Edit|Paste commands, respectively:

procedure TEditForm.CutToClipboard(Sender: TObject);
begin

Editor.CutToClipboard;
end;
procedure TEditForm.CopyToClipboard(Sender: TObject);
begin

Editor.CopyToClipboard;
end;
procedure TEditForm.PasteFromClipboard(Sender: TObject);
begin

Editor.PasteFromClipboard;
end;

Deleting selected text

You can delete the selected text in an edit component without cutting it to the
clipboard. To do so, call the ClearSelection method. For example, if you have a Delete
item on the Edit menu, your code could look like this:

procedure TEditForm.Delete(Sender: TObject);
begin

RichEdit1.ClearSelection;
end;

7-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

Disabling menu items

It is often useful to disable menu commands without removing them from the menu.
For example, in a text editor, if there is no text currently selected, the Cut, Copy, and
Delete commands are inapplicable. An appropriate time to enable or disable menu
items is when the user selects the menu. To disable a menu item, set its Enabled
property to False.

In the following example, an event handler is attached to the OnClick event for the
Edit item on a child form’s menu bar. It sets Enabled for the Cut, Copy, and Delete
menu items on the Edit menu based on whether RichEdit1 has selected text. The Paste
command is enabled or disabled based on whether any text exists on the clipboard.

procedure TEditForm.Edit1Click(Sender: TObject);
var

HasSelection: Boolean; { declare a temporary variable }
begin

Paste1.Enabled := Clipboard.HasFormat(CF_TEXT); {enable or disable the Paste
menu item}

HasSelection := Editor.SelLength > 0; { True if text is selected }
Cut1.Enabled := HasSelection; { enable menu items if HasSelection is True }
Copy1.Enabled := HasSelection;
Delete1.Enabled := HasSelection;

end;

The HasFormat method of the clipboard returns a Boolean value based on whether
the clipboard contains objects, text, or images of a particular format. By calling
HasFormat with the parameter CF_TEXT, you can determine whether the clipboard
contains any text, and enable or disable the Paste item as appropriate.

Chapter 8, “Working with graphics and multimedia” provides more information
about using the clipboard with graphics.

Providing a pop-up menu

Pop-up, or local, menus are a common ease-of-use feature for any application. They
enable users to minimize mouse movement by clicking the right mouse button in the
application workspace to access a list of frequently used commands.

In a text editor application, for example, you can add a pop-up menu that repeats the
Cut, Copy, and Paste editing commands. These pop-up menu items can use the same
event handlers as the corresponding items on the Edit menu. You don’t need to
create accelerator or shortcut keys for pop-up menus because the corresponding
regular menu items generally already have shortcuts.

A form’s PopupMenu property specifies what pop-up menu to display when a user
right-clicks any item on the form. Individual controls also have PopupMenu
properties that can override the form’s property, allowing customized menus for
particular controls.

To add a pop-up menu to a form,

1 Place a pop-up menu component on the form.

W o r k i n g w i t h c o n t r o l s 7-11

A d d i n g g r a p h i c s t o c o n t r o l s

2 Use the Menu Designer to define the items for the pop-up menu.

3 Set the PopupMenu property of the form or control that displays the menu to the
name of the pop-up menu component.

4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup event

You may want to adjust pop-up menu items before displaying the menu, just as you
may want to enable or disable items on a regular menu. With a regular menu, you
can handle the OnClick event for the item at the top of the menu, as described in
“Disabling menu items” on page 7-10.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-
up menu commands, you handle the event in the menu component itself. The pop-up
menu component provides an event just for this purpose, called OnPopup.

To adjust menu items on a pop-up menu before displaying them,

1 Select the pop-up menu component.
2 Attach an event handler to its OnPopup event.
3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the Edit1Click event handler described previously in
“Disabling menu items” on page 7-10 is attached to the pop-up menu component’s
OnPopup event. A line of code is added to Edit1Click for each item in the pop-up
menu.

procedure TEditForm.Edit1Click(Sender: TObject);
var

HasSelection: Boolean;
begin

Paste1.Enabled := Clipboard.HasFormat(CF_TEXT);
Paste2.Enabled := Paste1.Enabled;{Add this line}
HasSelection := Editor.SelLength <> 0;
Cut1.Enabled := HasSelection;
Cut2.Enabled := HasSelection;{Add this line}
Copy1.Enabled := HasSelection;
Copy2.Enabled := HasSelection;{Add this line}
Delete1.Enabled := HasSelection;

end;

Adding graphics to controls
Several controls let you customize the way the control is rendered. These include list
boxes, combo boxes, menus, headers, tab controls, list views, status bars, tree views,
and tool bars. Instead of using the standard method of drawing a control or its items,
the control’s owner (generally, the form) draws them at runtime. The most common
use for owner-draw controls is to provide graphics instead of, or in addition to, text
for items. For information on using owner-draw to add images to menus, see
“Adding images to menu items” on page 6-35.

7-12 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c s t o c o n t r o l s

All owner-draw controls contain lists of items. Usually, those lists are lists of strings
that are displayed as text, or lists of objects that contain strings that are displayed as
text. You can associate an object with each item in a list to make it easy to use that
object when drawing items.

In general, creating an owner-draw control in Delphi involves these steps:

1 Indicating that a control is owner-drawn
2 Adding graphical objects to a string list
3 Drawing owner-drawn items

Indicating that a control is owner-drawn

To customize the drawing of a control, you must supply event handlers that render
the control’s image when it needs to be painted. Some controls receive these events
automatically. For example, list views, tree views, and tool bars all receive events at
various stages in the drawing process without your having to set any properties.
These events have names such as “OnCustomDraw” or
“OnAdvancedCustomDraw”.

Other controls, however, require you to set a property before they receive owner-
draw events. List boxes, combo boxes, header controls, and status bars have a
property called Style. Style determines whether the control uses the default drawing
(called the “standard” style) or owner drawing. Grids use a property called
DefaultDrawing to enable or disable the default drawing. List views and tab controls
have a property called OwnerDraw that enables or disabled the default drawing.

List boxes and combo boxes have additional owner-draw styles, called fixed and
variable, as Table 7.2 describes. Other controls are always fixed, although the size of
the item that contains the text may vary, the size of each item is determined before
drawing the control.

Adding graphical objects to a string list

Every string list has the ability to hold a list of objects in addition to its list of strings.

For example, in a file manager application, you may want to add bitmaps indicating
the type of drive along with the letter of the drive. To do that, you need to add the
bitmap images to the application, then copy those images into the proper places in
the string list as described in the following sections.

Table 7.2 Fixed vs. variable owner-draw styles

Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height
determined by the ItemHeight property.

lbOwnerDrawFixed,
csOwnerDrawFixed

Variable Each item might have a different height,
determined by the data at runtime.

lbOwnerDrawVariable,
csOwnerDrawVariable

W o r k i n g w i t h c o n t r o l s 7-13

A d d i n g g r a p h i c s t o c o n t r o l s

Adding images to an application
An image control is a nonvisual control that contains a graphical image, such as a
bitmap. You use image controls to display graphical images on a form. You can also
use them to hold hidden images that you’ll use in your application. For example, you
can store bitmaps for owner-draw controls in hidden image controls, like this:

1 Add image controls to the main form.
2 Set their Name properties.
3 Set the Visible property for each image control to False.
4 Set the Picture property of each image to the desired bitmap using the Picture

editor from the Object Inspector.

The image controls are invisible when you run the application.

Adding images to a string list
Once you have graphical images in an application, you can associate them with the
strings in a string list. You can either add the objects at the same time as the strings,
or associate objects with existing strings. The preferred method is to add objects and
strings at the same time, if all the needed data is available.

The following example shows how you might want to add images to a string list.
This is part of a file manager application where, along with a letter for each valid
drive, it adds a bitmap indicating each drive’s type. The OnCreate event handler looks
like this:

procedure TFMForm.FormCreate(Sender: TObject);
var

Drive: Char;
AddedIndex: Integer;

begin
for Drive := 'A' to 'Z' do { iterate through all possible drives }
begin

case GetDriveType(Drive + ':/') of { positive values mean valid drives }
DRIVE_REMOVABLE: { add a tab }

AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Floppy.Picture.Graphic);
DRIVE_FIXED: { add a tab }

AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Fixed.Picture.Graphic);
DRIVE_REMOTE: { add a tab }

AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Network.Picture.Graphic);
end;
if UpCase(Drive) = UpCase(DirectoryOutline.Drive) then { current drive? }
DriveTabSet.TabIndex := AddedIndex; { then make that current tab }

end;
end;

Drawing owner-drawn items
When you indicate that a control is owner-drawn, either by setting a property or
supplying a custom draw event handler, the control is no longer drawn on the
screen. Instead, the operating system generates events for each visible item in the
control. Your application handles the events to draw the items.

7-14 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c s t o c o n t r o l s

To draw the items in an owner-draw control, do the following for each visible item in
the control. Use a single event handler for all items.

1 Size the item, if needed.

Items of the same size (for example, with a list box style of lsOwnerDrawFixed), do not
require sizing.

2 Draw the item.

Sizing owner-draw items

Before giving your application the chance to draw each item in a variable owner-
draw control, the operating system generates a measure-item event. The measure-
item event tells the application where the item appears on the control.

Delphi determines the size of the item (generally, it is just large enough to display the
item’s text in the current font). Your application can handle the event and change the
rectangle chosen. For example, if you plan to substitute a bitmap for the item’s text,
change the rectangle to be the size of the bitmap. If you want a bitmap and text, adjust
the rectangle to be big enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-
item event in the owner-draw control. Depending on the control, the name of the
event can vary. List boxes and combo boxes use OnMeasureItem. Grids have no
measure-item event.

The sizing event has two important parameters: the index number of the item and the
size of that item. The size is variable: the application can make it either smaller or
larger. The positions of subsequent items depend on the size of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of
the first item to five pixels, the second item starts at the sixth pixel down from the
top, and so on. In list boxes and combo boxes, the only aspect of the item the
application can alter is the height of the item. The width of the item is always the
width of the control.

Owner-draw grids cannot change the sizes of their cells as they draw. The size of
each row and column is set before drawing by the ColWidths and RowHeights
properties.

The following code, attached to the OnMeasureItem event of an owner-draw list box,
increases the height of each list item to accommodate its associated bitmap.

procedure TFMForm.DriveTabSetMeasureTab(Sender: TObject; Index: Integer;
var TabWidth: Integer); { note that TabWidth is a var parameter}

var
BitmapWidth: Integer;

begin
BitmapWidth := TBitmap(DriveTabSet.Tabs.Objects[Index]).Width;
{ increase tab width by the width of the associated bitmap plus two }
Inc(TabWidth, 2 + BitmapWidth);

end;

W o r k i n g w i t h c o n t r o l s 7-15

A d d i n g g r a p h i c s t o c o n t r o l s

Note You must typecast the items from the Objects property in the string list. Objects is a
property of type TObject so that it can hold any kind of object. When you retrieve
objects from the array, you need to typecast them back to the actual type of the items.

Drawing owner-draw items

When an application needs to draw or redraw an owner-draw control, the operating
system generates draw-item events for each visible item in the control. Depending on
the control, the item may also receive draw events for the item as a whole or
subitems.

To draw each item in an owner-draw control, attach an event handler to the draw-
item event for that control.

The names of events for owner drawing typically start with one of the following:

• OnDraw, such as OnDrawItem or OnDrawCell

• OnCustomDraw, such as OnCustomDrawItem

• OnAdvancedCustomDraw, such as OnAdvancedCustomDrawItem

The draw-item event contains parameters identifying the item to draw, the rectangle
in which to draw, and usually some information about the state of the item (such as
whether the item has focus). The application handles each event by rendering the
appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has
bitmaps associated with each string. It attaches this handler to the OnDrawItem event
for the list box:

procedure TFMForm.DriveTabSetDrawTab(Sender: TObject; TabCanvas: TCanvas;
R: TRect; Index: Integer; Selected: Boolean);

var
Bitmap: TBitmap;

begin
Bitmap := TBitmap(DriveTabSet.Tabs.Objects[Index]);
with TabCanvas do
begin
Draw(R.Left, R.Top + 4, Bitmap); { draw bitmap }
TextOut(R.Left + 2 + Bitmap.Width, { position text }

R.Top + 2, DriveTabSet.Tabs[Index]); { and draw it to the right of the
bitmap }

end;
end;

7-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-1

C h a p t e r

8
Chapter 8Working with graphics and

multimedia
Graphics and multimedia elements can add polish to your applications. Delphi offers
a variety of ways to introduce these features into your application. To add graphical
elements, you can insert pre-drawn pictures at design time, create them using
graphical controls at design time, or draw them dynamically at runtime. To add
multimedia capabilities, Delphi includes special components that can play audio and
video clips. Note that multimedia components are not available for cross-platform
programming.

Overview of graphics programming
The VCL graphics components defined in the Graphics unit encapsulate the
Windows Graphics Device Interface (GDI), making it easy to add graphics to your
Windows applications. CLX graphics components defined in the QGraphics unit
encapsulate the Qt graphics widgets for adding graphics to cross-platform
applications.

To draw graphics in a Delphi application, you draw on an object’s canvas, rather than
directly on the object. The canvas is a property of the object, and is itself an object. A
main advantage of the canvas object is that it handles resources effectively and it
takes care of device context, so your programs can use the same methods regardless
of whether you are drawing on the screen, to a printer, or on bitmaps or metafiles
(drawings in CLX). Canvases are available only at runtime, so you do all your work
with canvases by writing code.

VCL Note Since TCanvas is a wrapper resource manager around the Windows device context,
you can also use all Windows GDI functions on the canvas. The Handle property of
the canvas is the device context Handle.

8-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

CLX Note TCanvas is a wrapper resource manager around a Qt painter. The Handle property of
the canvas is typed pointer to an instance of a Qt painter object. Having this instance
pointer exposed allows you to use low-level Qt graphics library functions that
require an instance pointer to a painter object.

How graphic images appear in your application depends on the type of object whose
canvas you draw on. If you are drawing directly onto the canvas of a control, the
picture is displayed immediately. However, if you draw on an offscreen image such
as a TBitmap canvas, the image is not displayed until a control copies from the bitmap
onto the control’s canvas. That is, when drawing bitmaps and assigning them to an
image control, the image appears only when the control has an opportunity to
process its OnPaint message (VCL) or event (CLX).

When working with graphics, you often encounter the terms drawing and painting:

• Drawing is the creation of a single, specific graphic element, such as a line or a
shape, with code. In your code, you tell an object to draw a specific graphic in a
specific place on its canvas by calling a drawing method of the canvas.

• Painting is the creation of the entire appearance of an object. Painting usually
involves drawing. That is, in response to OnPaint events, an object generally
draws some graphics. An edit box, for example, paints itself by drawing a
rectangle and then drawing some text inside. A shape control, on the other hand,
paints itself by drawing a single graphic.

The examples in the beginning of this chapter demonstrate how to draw various
graphics, but they do so in response to OnPaint events. Later sections show how to do
the same kind of drawing in response to other events.

Refreshing the screen

At certain times, the operating system determines that objects onscreen need to
refresh their appearance, so it generates WM_PAINT messages on Windows, which
the VCL routes to OnPaint events. (If you are using CLX for cross-platform
development, a paint event is generated, which CLX routes to OnPaint events.) If you
have written an OnPaint event handler for that object, it is called when you use the
Refresh method. The default name generated for the OnPaint event handler in a form
is FormPaint. You may want to use the Refresh method at times to refresh a
component or form. For example, you might call Refresh in the form’s OnResize event
handler to redisplay any graphics or if using the VCL, you want to paint a
background on a form.

While some operating systems automatically handle the redrawing of the client area
of a window that has been invalidated, Windows does not. In the Windows
operating system anything drawn on the screen is permanent. When a form or
control is temporarily obscured, for example during window dragging, the form or
control must repaint the obscured area when it is re-exposed. For more information
about the WM_PAINT message, see the Windows online Help.

If you use the TImage control to display a graphical image on a form, the painting and
refreshing of the graphic contained in the TImage is handled automatically. The
Picture property specifies the actual bitmap, drawing, or other graphic object that

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-3

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

TImage displays. You can also set the Proportional property to ensure that the image
can be fully displayed in the image control without any distortion. Drawing on a
TImage creates a persistent image. Consequently, you do not need to do anything to
redraw the contained image. In contrast, TPaintBox’s canvas maps directly onto the
screen device (VCL) or the painter (CLX), so that anything drawn to the PaintBox’s
canvas is transitory. This is true of nearly all controls, including the form itself.
Therefore, if you draw or paint on a TPaintBox in its constructor, you will need to add
that code to your OnPaint event handler in order for the image to be repainted each
time the client area is invalidated.

Types of graphic objects

The VCL/CLX provides the graphic objects shown in Table 8.1. These objects have
methods to draw on the canvas, which are described in “Using Canvas methods to
draw graphic objects” on page 8-9 and to load and save to graphics files, as described
in “Loading and saving graphics files” on page 8-18.

Table 8.1 Graphic object types

Object Description

Picture Used to hold any graphic image. To add additional graphic file
formats, use the Picture Register method. Use this to handle
arbitrary files such as displaying images in an image control.

Bitmap A powerful graphics object used to create, manipulate (scale, scroll,
rotate, and paint), and store images as files on a disk. Creating
copies of a bitmap is fast since the handle is copied, not the image.

Clipboard Represents the container for any text or graphics that are cut,
copied, or pasted from or to an application. With the clipboard, you
can get and retrieve data according to the appropriate format;
handle reference counting, and opening and closing the clipboard;
manage and manipulate formats for objects in the clipboard.

Icon Represents the value loaded from an icon file (::ICO file).

Metafile (VCL only)
Drawing (CLX only)

Contains a file that records the operations required to construct an
image, rather than contain the actual bitmap pixels of the image.
Metafiles or drawings are extremely scalable without the loss of
image detail and often require much less memory than bitmaps,
particularly for high-resolution devices, such as printers. However,
metafiles and drawings do not display as fast as bitmaps. Use a
metafile or drawing when versatility or precision is more important
than performance.

8-4 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Common properties and methods of Canvas

Table 8.2 lists the commonly used properties of the Canvas object. For a complete list
of properties and methods, see the TCanvas component in online Help.

These properties are described in more detail in “Using the properties of the Canvas
object” on page 8-5.

Table 8.3 is a list of several methods you can use:

Table 8.2 Common properties of the Canvas object

Properties Descriptions

Font Specifies the font to use when writing text on the image. Set the
properties of the TFont object to specify the font face, color, size,
and style of the font.

Brush Determines the color and pattern the canvas uses for filling
graphical shapes and backgrounds. Set the properties of the
TBrush object to specify the color and pattern or bitmap to use
when filling in spaces on the canvas.

Pen Specifies the kind of pen the canvas uses for drawing lines and
outlining shapes. Set the properties of the TPen object to specify
the color, style, width, and mode of the pen.

PenPos Specifies the current drawing position of the pen.

Pixels Specifies the color of the area of pixels within the current
ClipRect.

Table 8.3 Common methods of the Canvas object

Method Descriptions

Arc Draws an arc on the image along the perimeter of the ellipse
bounded by the specified rectangle.

Chord Draws a closed figure represented by the intersection of a line
and an ellipse.

CopyRect Copies part of an image from another canvas into the canvas.

Draw Renders the graphic object specified by the Graphic parameter
on the canvas at the location given by the coordinates (X, Y).

Ellipse Draws the ellipse defined by a bounding rectangle on the canvas.

FillRect Fills the specified rectangle on the canvas using the current
brush.

FloodFill (VCL only) Fills an area of the canvas using the current brush.

FrameRect Draws a rectangle using the Brush of the canvas to draw the
border.

LineTo Draws a line on the canvas from PenPos to the point specified by
X and Y, and sets the pen position to (X, Y).

MoveTo Changes the current drawing position to the point (X,Y).

Pie Draws a pie-shaped the section of the ellipse bounded by the
rectangle (X1, Y1) and (X2, Y2) on the canvas.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-5

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

These methods are described in more detail in “Using Canvas methods to draw
graphic objects” on page 8-9.

Using the properties of the Canvas object

With the Canvas object, you can set the properties of a pen for drawing lines, a brush
for filling shapes, a font for writing text, and an array of pixels to represent the image.

This section describes

• Using pens
• Using brushes
• Reading and setting pixels

Using pens
The Pen property of a canvas controls the way lines appear, including lines drawn as
the outlines of shapes. Drawing a straight line is really just changing a group of pixels
that lie between two points.

The pen itself has four properties you can change: Color, Width, Style, and Mode.

• Color property: Changes the pen color

• Width property: Changes the pen width

• Style property: Changes the pen style

• Mode property: Changes the pen mode

Polygon Draws a series of lines on the canvas connecting the points
passed in and closing the shape by drawing a line from the last
point to the first point.

Polyline Draws a series of lines on the canvas with the current pen,
connecting each of the points passed to it in Points.

Rectangle Draws a rectangle on the canvas with its upper left corner at the
point (X1, Y1) and its lower right corner at the point (X2, Y2). Use
Rectangle to draw a box using Pen and fill it using Brush.

RoundRect Draws a rectangle with rounded corners on the canvas.

StretchDraw Draws a graphic on the canvas so that the image fits in the
specified rectangle. The graphic image may need to change its
magnitude or aspect ratio to fit.

TextHeight,
TextWidth

Returns the height and width, respectively, of a string in the
current font. Height includes leading between lines.

TextOut Writes a string on the canvas, starting at the point (X,Y), and then
updates the PenPos to the end of the string.

TextRect Writes a string inside a region; any portions of the string that fall
outside the region do not appear.

Table 8.3 Common methods of the Canvas object (continued)

Method Descriptions

8-6 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The values of these properties determine how the pen changes the pixels in the line.
By default, every pen starts out black, with a width of 1 pixel, a solid style, and a
mode called copy that overwrites anything already on the canvas.

You can use TPenRecall for quick saving off and restoring the properties of pens.

Changing the pen color

You can set the color of a pen as you would any other Color property at runtime. A
pen’s color determines the color of the lines the pen draws, including lines drawn as
the boundaries of shapes, as well as other lines and polylines. To change the pen
color, assign a value to the Color property of the pen.

To let the user choose a new color for the pen, put a color grid on the pen’s toolbar. A
color grid can set both foreground and background colors. For a non-grid pen style,
you must consider the background color, which is drawn in the gaps between line
segments. Background color comes from the Brush color property.

Since the user chooses a new color by clicking the grid, this code changes the pen’s
color in response to the OnClick event:

procedure TForm1.PenColorClick(Sender: TObject);
begin
 Canvas.Pen.Color := PenColor.ForegroundColor;
end;

Changing the pen width

A pen’s width determines the thickness, in pixels, of the lines it draws.

Note When the thickness is greater than 1, Windows 95/98 always draw solid lines,
regardless of the value of the pen’s Style property.

To change the pen width, assign a numeric value to the pen’s Width property.

Suppose you have a scroll bar on the pen’s toolbar to set width values for the pen.
And suppose you want to update the label next to the scroll bar to provide feedback
to the user. Using the scroll bar’s position to determine the pen width, you update the
pen width every time the position changes.

This is how to handle the scroll bar’s OnChange event:

procedure TForm1.PenWidthChange(Sender: TObject);
begin
 Canvas.Pen.Width := PenWidth.Position;{ set the pen width directly }
 PenSize.Caption := IntToStr(PenWidth.Position);{ convert to string for caption }
end;

Changing the pen style

A pen’s Style property allows you to set solid lines, dashed lines, dotted lines, and so
on.

VCL Note If developing a cross-platform application for deployment under Windows,
Windows 95/98 does not support dashed or dotted line styles for pens wider than
one pixel and makes all larger pens solid, no matter what style you specify.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-7

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The task of setting the properties of pen is an ideal case for having different controls
share same event handler to handle events. To determine which control actually got
the event, you check the Sender parameter.

To create one click-event handler for six pen-style buttons on a pen’s toolbar, do the
following:

1 Select all six pen-style buttons and select the Object Inspector|Events|OnClick
event and in the Handler column, type SetPenStyle.

Delphi generates an empty click-event handler called SetPenStyle and attaches it to
the OnClick events of all six buttons.

2 Fill in the click-event handler by setting the pen’s style depending on the value of
Sender, which is the control that sent the click event:

procedure TForm1.SetPenStyle(Sender: TObject);
begin
 with Canvas.Pen do
 begin
 if Sender = SolidPen then Style := psSolid
 else if Sender = DashPen then Style := psDash
 else if Sender = DotPen then Style := psDot
 else if Sender = DashDotPen then Style := psDashDot
 else if Sender = DashDotDotPen then Style := psDashDotDot
 else if Sender = ClearPen then Style := psClear;
 end;
end;

Changing the pen mode

A pen’s Mode property lets you specify various ways to combine the pen’s color with
the color on the canvas. For example, the pen could always be black, be an inverse of
the canvas background color, inverse of the pen color, and so on. See TPen in online
Help for details.

Getting the pen position

The current drawing position—the position from which the pen begins drawing its
next line—is called the pen position. The canvas stores its pen position in its PenPos
property. Pen position affects the drawing of lines only; for shapes and text, you
specify all the coordinates you need.

To set the pen position, call the MoveTo method of the canvas. For example, the
following code moves the pen position to the upper left corner of the canvas:

Canvas.MoveTo(0, 0);

Note Drawing a line with the LineTo method also moves the current position to the
endpoint of the line.

8-8 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Using brushes
The Brush property of a canvas controls the way you fill areas, including the interior
of shapes. Filling an area with a brush is a way of changing a large number of
adjacent pixels in a specified way.

The brush has three properties you can manipulate:

• Color property: Changes the fill color

• Style property: Changes the brush style

• Bitmap property: Uses a bitmap as a brush pattern

The values of these properties determine the way the canvas fills shapes or other
areas. By default, every brush starts out white, with a solid style and no pattern
bitmap.

You can use TBrushRecall for quick saving off and restoring the properties of brushes.

Changing the brush color

A brush’s color determines what color the canvas uses to fill shapes. To change the
fill color, assign a value to the brush’s Color property. Brush is used for background
color in text and line drawing so you typically set the background color property.

You can set the brush color just as you do the pen color, in response to a click on a
color grid on the brush’s toolbar (see “Changing the pen color” on page 8-6):

procedure TForm1.BrushColorClick(Sender: TObject);
begin
 Canvas.Brush.Color := BrushColor.ForegroundColor;
end;

Changing the brush style

A brush style determines what pattern the canvas uses to fill shapes. It lets you
specify various ways to combine the brush’s color with any colors already on the
canvas. The predefined styles include solid color, no color, and various line and
hatch patterns.

To change the style of a brush, set its Style property to one of the predefined values:
bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal, bsCross, or
bsDiagCross.

This example sets brush styles by sharing a click-event handler for a set of eight
brush-style buttons. All eight buttons are selected, the Object Inspector|Events|
OnClick is set, and the OnClick handler is named SetBrushStyle. Here is the handler
code:

procedure TForm1.SetBrushStyle(Sender: TObject);
begin
 with Canvas.Brush do
 begin
 if Sender = SolidBrush then Style := bsSolid
 else if Sender = ClearBrush then Style := bsClear

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-9

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

 else if Sender = HorizontalBrush then Style := bsHorizontal
 else if Sender = VerticalBrush then Style := bsVertical
 else if Sender = FDiagonalBrush then Style := bsFDiagonal
 else if Sender = BDiagonalBrush then Style := bsBDiagonal
 else if Sender = CrossBrush then Style := bsCross
 else if Sender = DiagCrossBrush then Style := bsDiagCross;
 end;
end;

Setting the Brush Bitmap property

A brush’s Bitmap property lets you specify a bitmap image for the brush to use as a
pattern for filling shapes and other areas.

The following example loads a bitmap from a file and assigns it to the Brush of the
Canvas of Form1:

var
 Bitmap: TBitmap;
begin
 Bitmap := TBitmap.Create;
 try
 Bitmap.LoadFromFile('MyBitmap.bmp');
 Form1.Canvas.Brush.Bitmap := Bitmap;
 Form1.Canvas.FillRect(Rect(0,0,100,100));
 finally
 Form1.Canvas.Brush.Bitmap := nil;
 Bitmap.Free;
 end;
end;

Note The brush does not assume ownership of a bitmap object assigned to its Bitmap
property. You must ensure that the Bitmap object remains valid for the lifetime of the
Brush, and you must free the Bitmap object yourself afterwards.

Reading and setting pixels
You will notice that every canvas has an indexed Pixels property that represents the
individual colored points that make up the image on the canvas. You rarely need to
access Pixels directly, it is available only for convenience to perform small actions
such as finding or setting a pixel’s color.

Note Setting and getting individual pixels is thousands of times slower than performing
graphics operations on regions. Do not use the Pixel array property to access the
image pixels of a general array. For high-performance access to image pixels, see the
TBitmap.ScanLine property.

Using Canvas methods to draw graphic objects

This section shows how to use some common methods to draw graphic objects. It
covers:

• Drawing lines and polylines

8-10 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

• Drawing shapes

• Drawing rounded rectangles

• Drawing polygons

Drawing lines and polylines
A canvas can draw straight lines and polylines. A straight line is just a line of pixels
connecting two points. A polyline is a series of straight lines, connected end-to-end.
The canvas draws all lines using its pen.

Drawing lines

To draw a straight line on a canvas, use the LineTo method of the canvas.

LineTo draws a line from the current pen position to the point you specify and makes
the endpoint of the line the current position. The canvas draws the line using its pen.

For example, the following method draws crossed diagonal lines across a form
whenever the form is painted:

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 begin
 MoveTo(0, 0);
 LineTo(ClientWidth, ClientHeight);
 MoveTo(0, ClientHeight);
 LineTo(ClientWidth, 0);
 end;
end;

Drawing polylines

In addition to individual lines, the canvas can also draw polylines, which are groups
of any number of connected line segments.

To draw a polyline on a canvas, call the Polyline method of the canvas.

The parameter passed to the Polyline method is an array of points. You can think of a
polyline as performing a MoveTo on the first point and LineTo on each successive
point. For drawing multiple lines, Polyline is faster than using the MoveTo method
and the LineTo method because it eliminates a lot of call overhead.

The following method, for example, draws a rhombus in a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 Polyline([Point(0, 0), Point(50, 0), Point(75, 50), Point(25, 50), Point(0, 0)]);
end;

This example takes advantage of Delphi's ability to create an open-array parameter
on-the-fly. You can pass any array of points, but an easy way to construct an array
quickly is to put its elements in brackets and pass the whole thing as a parameter. For
more information, see online Help.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-11

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Drawing shapes
Canvases have methods for drawing different kinds of shapes. The canvas draws the
outline of a shape with its pen, then fills the interior with its brush. The line that
forms the border for the shape is controlled by the current Pen object.

This section covers:

• Drawing rectangles and ellipses
• Drawing rounded rectangles
• Drawing polygons

Drawing rectangles and ellipses

To draw a rectangle or ellipse on a canvas, call the canvas’s Rectangle method or
Ellipse method, passing the coordinates of a bounding rectangle.

The Rectangle method draws the bounding rectangle; Ellipse draws an ellipse that
touches all sides of the rectangle.

The following method draws a rectangle filling a form’s upper left quadrant, then
draws an ellipse in the same area:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Rectangle(0, 0, ClientWidth div 2, ClientHeight div 2);
 Canvas.Ellipse(0, 0, ClientWidth div 2, ClientHeight div 2);
end;

Drawing rounded rectangles

To draw a rounded rectangle on a canvas, call the canvas’s RoundRect method.

The first four parameters passed to RoundRect are a bounding rectangle, just as for
the Rectangle method or the Ellipse method. RoundRect takes two more parameters
that indicate how to draw the rounded corners.

The following method, for example, draws a rounded rectangle in a form’s upper left
quadrant, rounding the corners as sections of a circle with a diameter of 10 pixels:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.RoundRect(0, 0, ClientWidth div 2, ClientHeight div 2, 10, 10);
end;

Drawing polygons

To draw a polygon with any number of sides on a canvas, call the Polygon method of
the canvas.

Polygon takes an array of points as its only parameter and connects the points with
the pen, then connects the last point to the first to close the polygon. After drawing
the lines, Polygon uses the brush to fill the area inside the polygon.

8-12 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

For example, the following code draws a right triangle in the lower left half of a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Polygon([Point(0, 0), Point(0, ClientHeight),
 Point(ClientWidth, ClientHeight)]);
end;

Handling multiple drawing objects in your application

Various drawing methods (rectangle, shape, line, and so on) are typically available
on the toolbar and button panel. Applications can respond to clicks on speed buttons
to set the desired drawing objects. This section describes how to:

• Keep track of which drawing tool to use
• Changing the tool with speed buttons
• Using drawing tools

Keeping track of which drawing tool to use
A graphics program needs to keep track of what kind of drawing tool (such as a line,
rectangle, ellipse, or rounded rectangle) a user might want to use at any given time.
You could assign numbers to each kind of tool, but then you would have to
remember what each number stands for. You can do that more easily by assigning
mnemonic constant names to each number, but your code won't be able to
distinguish which numbers are in the proper range and of the right type. Fortunately,
Object Pascal provides a means to handle both of these shortcomings. You can
declare an enumerated type.

An enumerated type is really just a shorthand way of assigning sequential values to
constants. Since it's also a type declaration, you can use Object Pascal's type-checking
to ensure that you assign only those specific values.

To declare an enumerated type, use the reserved work type, followed by an identifier
for the type, then an equal sign, and the identifiers for the values in the type in
parentheses, separated by commas.

For example, the following code declares an enumerated type for each drawing tool
available in a graphics application:

type
 TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);

By convention, type identifiers begin with the letter T, and groups of similar
constants (such as those making up an enumerated type) begin with a 2-letter prefix
(such as dt for “drawing tool”).

The declaration of the TDrawingTool type is equivalent to declaring a group of
constants:

const
dtLine = 0;
dtRectangle = 1;
dtEllipse = 2;
dtRoundRect = 3;

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-13

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The main difference is that by declaring the enumerated type, you give the constants
not just a value, but also a type, which enables you to use Object Pascal's type-
checking to prevent many errors. A variable of type TDrawingTool can be assigned
only one of the constants dtLine..dtRoundRect. Attempting to assign some other
number (even one in the range 0..3) generates a compile-time error.

In the following code, a field added to a form keeps track of the form’s drawing tool:

type
 TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);
 TForm1 = class(TForm)
 ...{ method declarations }
 public
 Drawing: Boolean;
 Origin, MovePt: TPoint;
 DrawingTool: TDrawingTool;{ field to hold current tool }
 end;

Changing the tool with speed buttons
Each drawing tool needs an associated OnClick event handler. Suppose your
application had a toolbar button for each of four drawing tools: line, rectangle,
ellipse, and rounded rectangle. You would attach the following event handlers to the
OnClick events of the four drawing-tool buttons, setting DrawingTool to the
appropriate value for each:

procedure TForm1.LineButtonClick(Sender: TObject);{ LineButton }
begin
 DrawingTool := dtLine;
end;

procedure TForm1.RectangleButtonClick(Sender: TObject);{ RectangleButton }
begin
 DrawingTool := dtRectangle;
end;

procedure TForm1.EllipseButtonClick(Sender: TObject);{ EllipseButton }
begin
 DrawingTool := dtEllipse;
end;

procedure TForm1.RoundedRectButtonClick(Sender: TObject);{ RoundRectButton }
begin
 DrawingTool := dtRoundRect;
end;

Using drawing tools
Now that you can tell what tool to use, you must indicate how to draw the different
shapes. The only methods that perform any drawing are the mouse-move and
mouse-up handlers, and the only drawing code draws lines, no matter what tool is
selected.

To use different drawing tools, your code needs to specify how to draw, based on the
selected tool. You add this instruction to each tool’s event handler.

8-14 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

This section describes

• Drawing shapes

• Sharing code among event handlers

Drawing shapes
Drawing shapes is just as easy as drawing lines: Each one takes a single statement;
you just need the coordinates.

Here’s a rewrite of the OnMouseUp event handler that draws shapes for all four tools:

procedure TForm1.FormMouseUp(Sender: TObject; Button TMouseButton; Shift: TShiftState;
X,Y: Integer);

begin
 case DrawingTool of
 dtLine:
 begin
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(X, Y)
 end;
 dtRectangle: Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
 dtEllipse: Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 dtRoundRect: Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 end;
 Drawing := False;
end;

Of course, you also need to update the OnMouseMove handler to draw shapes:

procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.Pen.Mode := pmNotXor;
 case DrawingTool of
 dtLine: begin
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(MovePt.X, MovePt.Y);
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(X, Y);
 end;
 dtRectangle: begin
 Canvas.Rectangle(Origin.X, Origin.Y, MovePt.X, MovePt.Y);
 Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
 end;
 dtEllipse: begin
 Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 end;
 dtRoundRect: begin
 Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-15

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

 end;
 end;
 MovePt := Point(X, Y);
 end;
 Canvas.Pen.Mode := pmCopy;
end;

Typically, all the repetitious code that is in the above example would be in a separate
routine. The next section shows all the shape-drawing code in a single routine that all
mouse-event handlers can call.

Sharing code among event handlers

Any time you find that many your event handlers use the same code, you can make
your application more efficient by moving the repeated code into a routine that all
event handlers can share.

To add a method to a form,

1 Add the method declaration to the form object.

You can add the declaration in either the public or private parts at the end of the
form object’s declaration. If the code is just sharing the details of handling some
events, it’s probably safest to make the shared method private.

2 Write the method implementation in the implementation part of the form unit.

The header for the method implementation must match the declaration exactly, with
the same parameters in the same order.

The following code adds a method to the form called DrawShape and calls it from
each of the handlers. First, the declaration of DrawShape is added to the form object’s
declaration:

type
 TForm1 = class(TForm)
 ...{ fields and methods declared here}
 public
 { Public declarations }
 procedure DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);
 end;

Then, the implementation of DrawShape is written in the implementation part of the
unit:

implementation
{$R *.FRM}
...{ other method implementations omitted for brevity }
procedure TForm1.DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);
begin
 with Canvas do
 begin
 Pen.Mode := AMode;
 case DrawingTool of
 dtLine:
 begin
 MoveTo(TopLeft.X, TopLeft.Y);

8-16 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

 LineTo(BottomRight.X, BottomRight.Y);
 end;
 dtRectangle: Rectangle(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
 dtEllipse: Ellipse(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
 dtRoundRect: RoundRect(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y,
 (TopLeft.X - BottomRight.X) div 2, (TopLeft.Y - BottomRight.Y) div 2);
 end;
 end;
end;

The other event handlers are modified to call DrawShape.

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 DrawShape(Origin, Point(X, Y), pmCopy);{ draw the final shape }
 Drawing := False;
end;
procedure TForm1.FormMouseMove(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 DrawShape(Origin, MovePt, pmNotXor);{ erase the previous shape }
 MovePt := Point(X, Y);{ record the current point }
 DrawShape(Origin, MovePt, pmNotXor);{ draw the current shape }
 end;
end;

Drawing on a graphic

You don’t need any components to manipulate your application’s graphic objects.
You can construct, draw on, save, and destroy graphic objects without ever drawing
anything on screen. In fact, your applications rarely draw directly on a form. More
often, an application operates on graphics and then uses an image control component
to display the graphic on a form.

Once you move the application’s drawing to the graphic in the image control, it is
easy to add printing, clipboard, and loading and saving operations for any graphic
objects. graphic objects can be bitmap files, drawings, icons or whatever other
graphics classes that have been installed such as jpeg graphics.

Note Because you are drawing on an offscreen image such as a TBitmap canvas, the image
is not displayed until a control copies from a bitmap onto the control’s canvas. That
is, when drawing bitmaps and assigning them to an image control, the image
appears only when the control has an opportunity to process its paint message. But if
you are drawing directly onto the canvas property of a control, the picture object is
displayed immediately.

Making scrollable graphics
The graphic need not be the same size as the form: it can be either smaller or larger.
By adding a scroll box control to the form and placing the graphic image inside it,

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-17

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

you can display graphics that are much larger than the form or even larger than the
screen. To add a scrollable graphic first you add a TScrollBox component and then
you add the image control.

Adding an image control
An image control is a container component that allows you to display your bitmap
objects. You use an image control to hold a bitmap that is not necessarily displayed
all the time, or which an application needs to use to generate other pictures.

Note “Adding graphics to controls” on page 7-11 shows how to use graphics in controls.

Placing the control
You can place an image control anywhere on a form. If you take advantage of the
image control’s ability to size itself to its picture, you need to set the top left corner
only. If the image control is a nonvisible holder for a bitmap, you can place it
anywhere, just as you would a nonvisual component.

If you drop the image control on a scroll box already aligned to the form’s client area,
this assures that the scroll box adds any scroll bars necessary to access offscreen
portions of the image’s picture. Then set the image control’s properties.

Setting the initial bitmap size
When you place an image control, it is simply a container. However, you can set the
image control’s Picture property at design time to contain a static graphic. The control
can also load its picture from a file at runtime, as described in “Loading and saving
graphics files” on page 8-18.

To create a blank bitmap when the application starts,

1 Attach a handler to the OnCreate event for the form that contains the image.

2 Create a bitmap object, and assign it to the image control’s Picture.Graphic
property.

In this example, the image is in the application’s main form, Form1, so the code
attaches a handler to Form1’s OnCreate event:

procedure TForm1.FormCreate(Sender: TObject);
var
 Bitmap: TBitmap;{ temporary variable to hold the bitmap }
begin
 Bitmap := TBitmap.Create;{ construct the bitmap object }
 Bitmap.Width := 200;{ assign the initial width... }
 Bitmap.Height := 200;{ ...and the initial height }
 Image.Picture.Graphic := Bitmap;{ assign the bitmap to the image control }
Bitmap.Free; {We are done with the bitmap, so free it }

end;

Assigning the bitmap to the picture’s Graphic property copies the bitmap to the
picture object. However, the picture object does not take ownership of the bitmap, so
after making the assignment, you must free it.

8-18 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

If you run the application now, you see that client area of the form has a white region,
representing the bitmap. If you size the window so that the client area cannot display
the entire image, you’ll see that the scroll box automatically shows scroll bars to
allow display of the rest of the image. But if you try to draw on the image, you don’t
get any graphics, because the application is still drawing on the form, which is now
behind the image and the scroll box.

Drawing on the bitmap
To draw on a bitmap, use the image control’s canvas and attach the mouse-event
handlers to the appropriate events in the image control. Typically, you would use
region operations (fills, rectangles, polylines, and so on). These are fast and efficient
methods of drawing.

An efficient way to draw images when you need to access individual pixels is to use
the bitmap ScanLine property. For general-purpose usage, you can set up the bitmap
pixel format to 24 bits and then treat the pointer returned from ScanLine as an array
of RGB. Otherwise, you will need to know the native format of the ScanLine property.
This example shows how to use ScanLine to get pixels one line at a time.

procedure TForm1.Button1Click(Sender: TObject);
// This example shows drawing directly to the Bitmap
var
 x,y : integer;
 Bitmap : TBitmap;
 P : PByteArray;
begin
 Bitmap := TBitmap.create;
 try
 Bitmap.LoadFromFile('C:\Program Files\Borland\Delphi 4\Images\Splash\256color\
factory.bmp');
 for y := 0 to Bitmap.height -1 do
 begin
 P := Bitmap.ScanLine[y];
 for x := 0 to Bitmap.width -1 do
 P[x] := y;
 end;
 canvas.draw(0,0,Bitmap);
 finally
 Bitmap.free;
 end;
end;

Loading and saving graphics files

Graphic images that exist only for the duration of one running of an application are
of very limited value. Often, you either want to use the same picture every time, or
you want to save a created picture for later use. The image component makes it easy
to load pictures from a file and save them again.

The components you use to load, save, and replace graphic images support many
graphic formats including bitmap files, metafiles, glyphs, and so on. They also
support installable graphic classes.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-19

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The way to load and save graphics files is the similar to any other files and is
described in the following sections:

• Loading a picture from a file

• Saving a picture to a file

• Replacing the picture

Loading a picture from a file
Your application should provide the ability to load a picture from a file if your
application needs to modify the picture or if you want to store the picture outside the
application so a person or another application can modify the picture.

To load a graphics file into an image control, call the LoadFromFile method of the
image control’s Picture object.

The following code gets a file name from an open picture file dialog box, and then
loads that file into an image control named Image:

procedure TForm1.Open1Click(Sender: TObject);
begin
 if OpenPictureDialog1.Execute then
 begin
 CurrentFile := OpenPictureDialog1.FileName;
 Image.Picture.LoadFromFile(CurrentFile);
 end;
end;

Saving a picture to a file
The picture object can load and save graphics in several formats, and you can create
and register your own graphic-file formats so that picture objects can load and store
them as well.

To save the contents of an image control in a file, call the SaveToFile method of the
image control’s Picture object.

The SaveToFile method requires the name of a file in which to save. If the picture is
newly created, it might not have a file name, or a user might want to save an existing
picture in a different file. In either case, the application needs to get a file name from
the user before saving, as shown in the next section.

The following pair of event handlers, attached to the File|Save and File|Save As
menu items, respectively, handle the resaving of named files, saving of unnamed
files, and saving existing files under new names.

procedure TForm1.Save1Click(Sender: TObject);
begin
 if CurrentFile <> '' then
 Image.Picture.SaveToFile(CurrentFile){ save if already named }
 else SaveAs1Click(Sender);{ otherwise get a name }
end;
procedure TForm1.Saveas1Click(Sender: TObject);
begin
 if SaveDialog1.Execute then{ get a file name }
 begin

8-20 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

 CurrentFile := SaveDialog1.FileName;{ save the user-specified name }
 Save1Click(Sender);{ then save normally }
 end;
end;

Replacing the picture
You can replace the picture in an image control at any time. If you assign a new
graphic to a picture that already has a graphic, the new graphic replaces the existing
one.

To replace the picture in an image control, assign a new graphic to the image
control’s Picture object.

Creating the new graphic is the same process you used to create the initial graphic
(see “Setting the initial bitmap size” on page 8-17), but you should also provide a
way for the user to choose a size other than the default size used for the initial
graphic. An easy way to provide that option is to present a dialog box, such as the
one in Figure 8.1.

Figure 8.1 Bitmap-dimension dialog box from the BMPDlg unit.

This particular dialog box is created in the BMPDlg unit included with the GraphEx
project (in the EXAMPLES\DOC\GRAPHEX directory).

With such a dialog box in your project, add it to the uses clause in the unit for your
main form. You can then attach an event handler to the File|New menu item’s
OnClick event. Here’s an example:

procedure TForm1.New1Click(Sender: TObject);
var
 Bitmap: TBitmap;{ temporary variable for the new bitmap }
begin
 with NewBMPForm do
 begin
 ActiveControl := WidthEdit;{ make sure focus is on width field }
 WidthEdit.Text := IntToStr(Image.Picture.Graphic.Width);{ use current dimensions... }
 HeightEdit.Text := IntToStr(Image.Picture.Graphic.Height);{ ...as default }
 if ShowModal <> idCancel then{ continue if user doesn't cancel dialog box }
 begin
 Bitmap := TBitmap.Create;{ create fresh bitmap object }
 Bitmap.Width := StrToInt(WidthEdit.Text);{ use specified width }
 Bitmap.Height := StrToInt(HeightEdit.Text);{ use specified height }
 Image.Picture.Graphic := Bitmap;{ replace graphic with new bitmap }
 CurrentFile := '';{ indicate unnamed file }

Bitmap.Free;
 end;
 end;
end;

WidthEdit

HeightEdit

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-21

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Note Assigning a new bitmap to the picture object’s Graphic property causes the picture
object to copy the new graphic, but it does not take ownership of it. The picture object
maintains its own internal graphic object. Because of this, the previous code frees the
bitmap object after making the assignment.

Using the clipboard with graphics

You can use the Windows clipboard to copy and paste graphics within your
applications or to exchange graphics with other applications. The VCL’s clipboard
object makes it easy to handle different kinds of information, including graphics.

Before you can use the clipboard object in your application, you must add the
Clipbrd (QClipbrd in CLX) unit to the uses clause of any unit that needs to access
clipboard data.

For cross-platform applications, data that is stored on the clipboard when using CLX
is stored as a mime type with an associated TStream object. CLX provides the
following predefined mime source and mime type string constants for the following
CLX objects:

• TBitmap = ‘image/delphi.bitmap’

• TComponent = ‘application/delphi.component’

• TPicture = ‘image/delphi.picture’

• TDrawing = ‘image/delphi.drawing’

Copying graphics to the clipboard
You can copy any picture, including the contents of image controls, to the clipboard.
Once on the clipboard, the picture is available to all applications.

To copy a picture to the clipboard, assign the picture to the clipboard object using the
Assign method.

This code shows how to copy the picture from an image control named Image to the
clipboard in response to a click on an Edit|Copy menu item:

procedure TForm1.Copy1Click(Sender: TObject);
begin

Clipboard.Assign(Image.Picture)
end.

Cutting graphics to the clipboard
Cutting a graphic to the clipboard is exactly like copying it, but you also erase the
graphic from the source.

To cut a graphic from a picture to the clipboard, first copy it to the clipboard, then
erase the original.

8-22 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

In most cases, the only issue with cutting is how to show that the original image is
erased. Setting the area to white is a common solution, as shown in the following
code that attaches an event handler to the OnClick event of the Edit|Cut menu item:

procedure TForm1.Cut1Click(Sender: TObject);
var
 ARect: TRect;
begin
 Copy1Click(Sender);{ copy picture to clipboard }
 with Image.Canvas do
 begin
 CopyMode := cmWhiteness;{ copy everything as white }
 ARect := Rect(0, 0, Image.Width, Image.Height);{ get bitmap rectangle }
 CopyRect(ARect, Image.Canvas, ARect);{ copy bitmap over itself }
 CopyMode := cmSrcCopy;{ restore normal mode }
 end;
end;

Pasting graphics from the clipboard
If the clipboard contains a bitmapped graphic, you can paste it into any image object,
including image controls and the surface of a form.

To paste a graphic from the clipboard,

1 Call the clipboard’s HasFormat method (if using the VCL) or Provides method (if
using CLX) to see whether the clipboard contains a graphic.

HasFormat (or Provides in CLX) is a Boolean function. It returns True if the
clipboard contains an item of the type specified in the parameter. To test for
graphics on the Windows platform, you pass CF_BITMAP. In cross-platform
applications, you pass SDelphiBitmap.

2 Assign the clipboard to the destination.

This code shows how to paste a picture from the clipboard into an image control in
response to a click on an Edit|Paste menu item:

procedure TForm1.PasteButtonClick(Sender: TObject);
var
 Bitmap: TBitmap;
begin
 if Clipboard.HasFormat(CF_BITMAP) then { is there a bitmap on the Windows clipboard?)
 begin
 Image1.Picture.Bitmap.Assign(Clipboard);
end;

end;

The same example in CLX for cross-platform development would look as follows:

procedure TForm1.PasteButtonClick(Sender: TObject);
var
 Bitmap: TBitmap;
begin
 if Clipboard.Provides(SDelphiBitmap) then { is there a bitmap on the clipboard?)

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-23

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

 begin
 Image1.Picture.Bitmap.Assign(Clipboard);
end;

end;

The graphic on the clipboard could come from this application, or it could have been
copied from another application, such as Microsoft Paint. You do not need to check
the clipboard format in this case because the paste menu should be disabled when
the clipboard does not contain a supported format.

Rubber banding example

This example describes the details of implementing the “rubber banding” effect in an
graphics application that tracks mouse movements as the user draws a graphic at
runtime. The example code in this section is taken from a sample application located
in the Demos\DOC\Graphexdirectory. The application draws lines and shapes on a
window’s canvas in response to clicks and drags: pressing a mouse button starts
drawing, and releasing the button ends the drawing.

To start with, the example code shows how to draw on the surface of the main form.
Later examples demonstrate drawing on a bitmap.

The following topics describe the example:

• Responding to the mouse
• Adding a field to a form object to track mouse actions
• Refining line drawing

Responding to the mouse
Your application can respond to the mouse actions: mouse-button down, mouse
moved, and mouse-button up. It can also respond to a click (a complete press-and-
release, all in one place) that can be generated by some kinds of keystrokes (such as
pressing Enter in a modal dialog box).

This section covers:

• What’s in a mouse event
• Responding to a mouse-down action
• Responding to a mouse-up action
• Responding to a mouse move

What’s in a mouse event?
The VCL has three mouse events: OnMouseDown event, OnMouseMove event, and
OnMouseUp event.

When an application detects a mouse action, it calls whatever event handler you’ve
defined for the corresponding event, passing five parameters. Use the information in

8-24 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

those parameters to customize your responses to the events. The five parameters are as
follows:

Most of the time, you need the coordinates returned in a mouse-event handler, but
sometimes you also need to check Button to determine which mouse button caused
the event.

Note Delphi uses the same criteria as Microsoft Windows in determining which mouse
button has been pressed. Thus, if you have switched the default “primary” and
“secondary” mouse buttons (so that the right mouse button is now the primary
button), clicking the primary (right) button will record mbLeft as the value of the
Button parameter.

Responding to a mouse-down action
Whenever the user presses a button on the mouse, an OnMouseDown event goes to
the object the pointer is over. The object can then respond to the event.

To respond to a mouse-down action, attach an event handler to the OnMouseDown
event.

The VCL generates an empty handler for a mouse-down event on the form:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
end;

Responding to a mouse-down action
The following code displays the string 'Here!' at the location on a form clicked with
the mouse:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.TextOut(X, Y, 'Here!');{ write text at (X, Y) }
end;

When the application runs, you can press the mouse button down with the mouse
cursor on the form and have the string, “Here!” appear at the point clicked. This code
sets the current drawing position to the coordinates where the user presses the
button:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(X, Y);{ set pen position }
end;

Table 8.4 Mouse-event parameters

Parameter Meaning

Sender The object that detected the mouse action

Button Indicates which mouse button was involved: mbLeft, mbMiddle, or mbRight
Shift Indicates the state of the Alt, Ctrl, and Shift keys at the time of the mouse action

X, Y The coordinates where the event occurred

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-25

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Pressing the mouse button now sets the pen position, setting the line’s starting point.
To draw a line to the point where the user releases the button, you need to respond to
a mouse-up event.

Responding to a mouse-up action
An OnMouseUp event occurs whenever the user releases a mouse button. The event
usually goes to the object the mouse cursor is over when the user presses the button,
which is not necessarily the same object the cursor is over when the button is
released. This enables you, for example, to draw a line as if it extended beyond the
border of the form.

To respond to mouse-up actions, define a handler for the OnMouseUp event.

Here’s a simple OnMouseUp event handler that draws a line to the point of the
mouse-button release:

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y);{ draw line from PenPos to (X, Y) }
end;

This code lets a user draw lines by clicking, dragging, and releasing. In this case, the
user cannot see the line until the mouse button is released.

Responding to a mouse move
An OnMouseMove event occurs periodically when the user moves the mouse. The
event goes to the object that was under the mouse pointer when the user pressed the
button. This allows you to give the user some intermediate feedback by drawing
temporary lines while the mouse moves.

To respond to mouse movements, define an event handler for the OnMouseMove
event. This example uses mouse-move events to draw intermediate shapes on a form
while the user holds down the mouse button, thus providing some feedback to the
user. The OnMouseMove event handler draws a line on a form to the location of the
OnMouseMove event:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y);{ draw line to current position }
end;

With this code, moving the mouse over the form causes drawing to follow the mouse,
even before the mouse button is pressed.

Mouse-move events occur even when you haven’t pressed the mouse button.

If you want to track whether there is a mouse button pressed, you need to add an
object field to the form object.

8-26 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Adding a field to a form object to track mouse actions
To track whether a mouse button was pressed, you must add an object field to the
form object. When you add a component to a form, Delphi adds a field that
represents that component to the form object, so that you can refer to the component
by the name of its field. You can also add your own fields to forms by editing the
type declaration in the form unit’s header file.

In the following example, the form needs to track whether the user has pressed a
mouse button. To do that, it adds a Boolean field and sets its value when the user
presses the mouse button.

To add a field to an object, edit the object’s type definition, specifying the field
identifier and type after the public directive at the bottom of the declaration.

Delphi “owns” any declarations before the public directive: that’s where it puts the
fields that represent controls and the methods that respond to events.

The following code gives a form a field called Drawing of type Boolean, in the form
object’s declaration. It also adds two fields to store points Origin and MovePt of
typeTPoint.

type
 TForm1 = class(TForm)
 procedure FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure FormMouseMove(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 public
 Drawing: Boolean;{ field to track whether button was pressed }
 Origin, MovePt: TPoint;{ fields to store points }
 end;

When you have a Drawing field to track whether to draw, set it to True when the user
presses the mouse button, and False when the user releases it:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;{ set the Drawing flag }
 Canvas.MoveTo(X, Y);
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y);
 Drawing := False;{ clear the Drawing flag }
end;

Then you can modify the OnMouseMove event handler to draw only when Drawing is
True:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-27

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

begin
 if Drawing then{ only draw if Drawing flag is set }
 Canvas.LineTo(X, Y);
end;

This results in drawing only between the mouse-down and mouse-up events, but
you still get a scribbled line that tracks the mouse movements instead of a straight
line.

The problem is that each time you move the mouse, the mouse-move event handler
calls LineTo, which moves the pen position, so by the time you release the button,
you’ve lost the point where the straight line was supposed to start.

Refining line drawing
With fields in place to track various points, you can refine an application’s line
drawing.

Tracking the origin point
When drawing lines, track the point where the line starts with the Origin field.

Origin must be set to the point where the mouse-down event occurs, so the mouse-up
event handler can use Origin to place the beginning of the line, as in this code:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
 Origin := Point(X, Y);{ record where the line starts }
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(Origin.X, Origin.Y);{ move pen to starting point }
 Canvas.LineTo(X, Y);
 Drawing := False;
end;

Those changes get the application to draw the final line again, but they do not draw
any intermediate actions--the application does not yet support “rubber banding.”

Tracking movement
The problem with this example as the OnMouseMove event handler is currently
written is that it draws the line to the current mouse position from the last mouse
position, not from the original position. You can correct this by moving the drawing
position to the origin point, then drawing to the current point:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.MoveTo(Origin.X, Origin.Y);{ move pen to starting point }

8-28 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

 Canvas.LineTo(X, Y);
 end;
end;

The above tracks the current mouse position, but the intermediate lines do not go
away, so you can hardly see the final line. The example needs to erase each line
before drawing the next one, by keeping track of where the previous one was. The
MovePt field allows you to do this.

MovePt must be set to the endpoint of each intermediate line, so you can use MovePt
and Origin to erase that line the next time a line is drawn:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
 Origin := Point(X, Y);
 MovePt := Point(X, Y);{ keep track of where this move was }
end;
procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.Pen.Mode := pmNotXor;{ use XOR mode to draw/erase }
 Canvas.MoveTo(Origin.X, Origin.Y);{ move pen back to origin }
 Canvas.LineTo(MovePt.X, MovePt.Y);{ erase the old line }
 Canvas.MoveTo(Origin.X, Origin.Y);{ start at origin again }
 Canvas.LineTo(X, Y);{ draw the new line }
 end;
 MovePt := Point(X, Y);{ record point for next move }
 Canvas.Pen.Mode := pmCopy;
end;

Now you get a “rubber band” effect when you draw the line. By changing the pen’s
mode to pmNotXor, you have it combine your line with the background pixels. When
you go to erase the line, you’re actually setting the pixels back to the way they were.
By changing the pen mode back to pmCopy (its default value) after drawing the lines,
you ensure that the pen is ready to do its final drawing when you release the mouse
button.

Working with multimedia
Delphi allows you to add multimedia components to your applications. To do this,
you can use either the TAnimate component on the Win32 page or the TMediaPlayer
component on the System page of the Component palette. Use the animate
component when you want to add silent video clips to your application. Use the
media player component when you want to add audio and/or video clips to an
application.

For more information on the TAnimate and TMediaPlayer components, see the VCL
on-line help.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-29

W o r k i n g w i t h m u l t i m e d i a

The following topics are discussed in this section:

• Adding silent video clips to an application
• Adding audio and/or video clips to an application

Adding silent video clips to an application

The animation control in Delphi allows you to add silent video clips to your
application.

To add a silent video clip to an application:

1 Double-click the animate icon on the Win32 page of the Component palette. This
automatically puts an animation control on the form window in which you want
to display the video clip.

2 Using the Object Inspector, select the Name property and enter a new name for
your animation control. You will use this name when you call the animation
control. (Follow the standard rules for naming Delphi identifiers).

Always work directly with the Object Inspector when setting design time
properties and creating event handlers.

3 Do one of the following:

• Select the Common AVI property and choose one of the AVIs available from the
drop down list; or

• Select the FileName property and click the ellipsis (…) button, choose an AVI file
from any available local or network directories and click Open in the Open AVI
dialog; or

• Select the resource of an AVI using the ResName or ResID properties. Use
ResHandle to indicate the module that contains the resource identified by
ResName or ResID.

This loads the AVI file into memory. If you want to display the first frame of the
AVI clip on-screen until it is played using the Active property or the Play method,
then set the Open property to True.

4 Set the Repetitions property to the number of times you want to the AVI clip to
play. If this value is 0, then the sequence is repeated until the Stop method is called.

5 Make any other changes to the animation control settings. For example, if you
want to change the first frame displayed when animation control opens, then set
the StartFrame property to the desired frame value.

6 Set the Active property to True using the drop down list or write an event handler
to run the AVI clip when a specific event takes place at runtime. For example, to
activate the AVI clip when a button object is clicked, write the button’s OnClick
event specifying that. You may also call the Play method to specify when to play
the AVI.

8-30 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

Note If you make any changes to the form or any of the components on the form after
setting Active to True, the Active property becomes False and you have to reset it to
True. Do this either just before runtime or at runtime.

Example of adding silent video clips
Suppose you want to display an animated logo as the first screen that appears when
your application starts. After the logo finishes playing the screen disappears.

To run this example, create a new project and save the Unit1.pas file as Frmlogo.pas
and save the Project1.dpr file as Logo.dpr. Then:

1 Double-click the animate icon from the Win32 page of the Component palette.

2 Using the Object Inspector, set its Name property to Logo1.

3 Select its FileName property, click the ellipsis (…) button, choose the cool.avi file
from your ..\Demos\Coolstuf directory. Then click Open in the Open AVI dialog.

This loads the cool.avi file into memory.

4 Position the animation control box on the form by clicking and dragging it to the
top right hand side of the form.

5 Set its Repetitions property to 5.

6 Click the form to bring focus to it and set its Name property to LogoForm1 and its
Caption property to Logo Window. Now decrease the height of the form to right-
center the animation control on it.

7 Double-click the form’s OnActivate event and write the following code to run the
AVI clip when the form is in focus at runtime:

Logo1.Active := True;

8 Double-click the Label icon on the Standard page of the Component palette. Select
its Caption property and enter Welcome to Cool Images 4.0. Now select its Font
property, click the ellipsis (…) button and choose Font Style: Bold, Size: 18, Color:
Navy from the Font dialog and click OK. Click and drag the label control to center
it on the form.

9 Click the animation control to bring focus back to it. Double-click its OnStop event
and write the following code to close the form when the AVI file stops:

LogoForm1.Close;

10 Select Run|Run to execute the animated logo window.

Adding audio and/or video clips to an application

The media player component in Delphi allows you to add audio and/or video clips
to your application. It opens a media device and plays, stops, pauses, records, etc.,
the audio and/or video clips used by the media device. The media device may be
hardware or software.

Note Audio and video clip support is not provided for cross-platform programming.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-31

W o r k i n g w i t h m u l t i m e d i a

 To add an audio and/or video clip to an application:

1 Double-click the media player icon on the System page of the Component palette.
This automatically put a media player control on the form window in which you
want the media feature.

2 Using the Object Inspector, select the Name property and enter a new name for
your media player control. You will use this when you call the media player
control. (Follow the standard rules for naming Delphi identifiers.)

Always work directly with the Object Inspector when setting design time
properties and creating event handlers.

3 Select the DeviceType property and choose the appropriate device type to open
using the AutoOpen property or the Open method. (If DeviceType is dtAutoSelect
the device type is selected based on the file extension of the media file specified by
the FileName property.) For more information on device types and their functions,
see Table 8.5.

4 If the device stores its media in a file, specify the name of the media file using the
FileName property. Select the FileName property, click the ellipsis (…) button, and
choose a media file from any available local or network directories and click Open
in the Open dialog. Otherwise, insert the hardware the media is stored in (disk,
cassette, and so on) for the selected media device, at runtime.

5 Set the AutoOpen property to True. This way the media player automatically opens
the specified device when the form containing the media player control is created
at runtime. If AutoOpen is False, the device must be opened with a call to the Open
method.

6 Set the AutoEnable property to True to automatically enable or disable the media
player buttons as required at runtime; or, double-click the EnabledButtons property
to set each button to True or False depending on which ones you want to enable or
disable.

The multimedia device is played, paused, stopped, and so on when the user clicks
the corresponding button on the media player component. The device can also be
controlled by the methods that correspond to the buttons (Play, Pause, Stop, Next,
Previous, and so on).

7 Position the media player control bar on the form by either clicking and dragging
it to the appropriate place on the form or by selecting the Align property and
choosing the appropriate align position from the drop down list.

If you want the media player to be invisible at runtime, set the Visible property to
False and control the device by calling the appropriate methods (Play, Pause, Stop,
Next, Previous, Step, Back, Start Recording, Eject).

8 Make any other changes to the media player control settings. For example, if the
media requires a display window, set the Display property to the control that

8-32 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

displays the media. If the device uses multiple tracks, set the Tracks property to the
desired track.

Example of adding audio and/or video clips (VCL only)
This example runs an AVI video clip of a multimedia advertisement for Delphi. To
run this example, create a new project and save the Unit1.pas file to FrmAd.pas and
save the Project1.dpr file to DelphiAd.dpr. Then:

1 Double-click the media player icon on the System page of the Component palette.

2 Using the Object Inspector, set the Name property of the media player to
VideoPlayer1.

3 Select its DeviceType property and choose dtAVIVideo from the drop down list.

4 Select its FileName property, click the ellipsis (…) button, choose the speedis.avi
file from your ..\Demos\Coolstuf directory. Click Open in the Open dialog.

5 Set its AutoOpen property to True and its Visible property to False.

6 Double-click the Animate icon from the Win32 page of the Component palette. Set
its AutoSize property to False, its Height property to 175 and Width property to
200. Click and drag the animation control to the top left corner of the form.

7 Click the media player to bring back focus to it. Select its Display property and
choose Animate1 from the drop down list.

Table 8.5 Multimedia device types and their functions

Device Type Software/Hardware used Plays
Uses
Tracks

Uses a
Display
Window

dtAVIVideo AVI Video Player for
Windows

 AVI Video files No Yes

dtCDAudio CD Audio Player for
Windows or a CD Audio
Player

CD Audio Disks Yes No

dtDAT Digital Audio Tape Player Digital Audio Tapes Yes No

dtDigitalVideo Digital Video Player for
Windows

AVI, MPG, MOV files No Yes

dtMMMovie MM Movie Player MM film No Yes

dtOverlay Overlay device Analog Video No Yes

dtScanner Image Scanner N/A for Play (scans
images on Record)

No No

dtSequencer MIDI Sequencer for
Windows

MIDI files Yes No

dtVCR Video Cassette Recorder Video Cassettes No Yes

dtWaveAudio Wave Audio Player for
Windows

WAV files No No

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 8-33

W o r k i n g w i t h m u l t i m e d i a

8 Click the form to bring focus to it and select its Name property and enter
Delphi_Ad. Now resize the form to the size of the animation control.

9 Double-click the form’s OnActivate event and write the following code to run the
AVI video when the form is in focus:

VideoPlayer1.Play;

10 Choose Run|Run to execute the AVI video.

8-34 D e v e l o p e r ’ s G u i d e

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-1

C h a p t e r

9
Chapter 9Writing multi-threaded applications

Delphi provides several objects that make writing multi-threaded applications easier.
Multi-threaded applications are applications that include several simultaneous paths
of execution. While using multiple threads requires careful thought, it can enhance
your programs by

• Avoiding bottlenecks. With only one thread, a program must stop all execution
when waiting for slow processes such as accessing files on disk, communicating
with other machines, or displaying multimedia content. The CPU sits idle until the
process completes. With multiple threads, your application can continue execution
in separate threads while one thread waits for the results of a slow process.

• Organizing program behavior. Often, a program’s behavior can be organized into
several parallel processes that function independently. Use threads to launch a
single section of code simultaneously for each of these parallel cases. Use threads
to assign priorities to various program tasks so that you can give more CPU time
to more critical tasks.

• Multiprocessing. If the system running your program has multiple processors,
you can improve performance by dividing the work into several threads and
letting them run simultaneously on separate processors.

Note Not all operating systems implement true multi-processing, even when it is
supported by the underlying hardware. For example, Windows 9x only simulates
multiprocessing, even if the underlying hardware supports it.

Defining thread objects
For most applications, you can use a thread object to represent an execution thread in
your application. Thread objects simplify writing multi-threaded applications by
encapsulating the most commonly needed uses of threads.

9-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

Note Thread objects do not allow you to control the security attributes or stack size of your
threads. If you need to control these, you must use the BeginThread function. Even
when using BeginThread, you can still benefit from some of the thread
synchronization objects and methods described in “Coordinating threads” on
page 9-7. For more information on using BeginThread, see the online help.

To use a thread object in your application, you must create a new descendant of
TThread. To create a descendant of TThread, choose File|New from the main menu. In
the new objects dialog box, select Thread Object. You are prompted to provide a class
name for your new thread object. After you provide the name, Delphi creates a new
unit file to implement the thread.

Note Unlike most dialog boxes in the IDE that require a class name, the New Thread
Object dialog does not automatically prepend a ‘T’ to the front of the class name you
provide.

The automatically generated unit file contains the skeleton code for your new thread
object. If you named your thread TMyThread, it would look like the following:

unit Unit2;
interface
uses
 Classes;
type
 TMyThread = class(TThread)
 private
 { Private declarations }
 protected
 procedure Execute; override;
 end;
implementation
{ TMyThread }
procedure TMyThread.Execute;
begin
 { Place thread code here }
end;
end.

You must fill in the code for the Execute method. These steps are described in the
following sections.

Initializing the thread

If you want to write initialization code for your new thread class, you must override
the Create method. Add a new constructor to the declaration of your thread class and
write the initialization code as its implementation. This is where you can assign a
default priority for your thread and indicate whether it should be freed automatically
when it finishes executing.

Assigning a default priority
Priority indicates how much preference the thread gets when the operating system
schedules CPU time among all the threads in your application. Use a high priority

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-3

D e f i n i n g t h r e a d o b j e c t s

thread to handle time critical tasks, and a low priority thread to perform other tasks.
To indicate the priority of your thread object, set the Priority property.

If writing a Windows application, Priority values fall along a seven-point scale, as
described in Table 9.1:

Note If writing a cross-platform application, you must use separate code for assigning
priorities on Windows and Linux. On Linux, Priority is a numeric value that depends
on the threading policy which can only be changed by root. See the CLX version of
TThread and Priority online Help for details.

Warning Boosting the thread priority of a CPU intensive operation may “starve” other threads
in the application. Only apply priority boosts to threads that spend most of their time
waiting for external events.

The following code shows the constructor of a low-priority thread that performs
background tasks which should not interfere with the rest of the application’s
performance:

constructor TMyThread.Create(CreateSuspended: Boolean);
begin
 inherited Create(CreateSuspended);
 Priority := tpIdle;
end;

Indicating when threads are freed
Usually, when threads finish their operation, they can simply be freed. In this case, it
is easiest to let the thread object free itself. To do this, set the FreeOnTerminate
property to True.

There are times, however, when the termination of a thread must be coordinated
with other threads. For example, you may be waiting for one thread to return a value
before performing an action in another thread. To do this, you do not want to free the
first thread until the second has received the return value. You can handle this
situation by setting FreeOnTerminate to False and then explicitly freeing the first
thread from the second.

Table 9.1 Thread priorities

Value Priority

tpIdle The thread executes only when the system is idle. Windows won't interrupt
other threads to execute a thread with tpIdle priority.

tpLowest The thread's priority is two points below normal.

tpLower The thread's priority is one point below normal.

tpNormal The thread has normal priority.

tpHigher The thread's priority is one point above normal.

tpHighest The thread's priority is two points above normal.

tpTimeCritical The thread gets highest priority.

9-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

Writing the thread function

The Execute method is your thread function. You can think of it as a program that is
launched by your application, except that it shares the same process space. Writing
the thread function is a little trickier than writing a separate program because you
must make sure that you don’t overwrite memory that is used by other threads in
your application. On the other hand, because the thread shares the same process
space with other threads, you can use the shared memory to communicate between
threads.

Using the main VCL/CLX thread
When you use objects from the VCL or CLX object hierarchies, their properties and
methods are not guaranteed to be thread-safe. That is, accessing properties or
executing methods may perform some actions that use memory which is not
protected from the actions of other threads. Because of this, a main thread is set aside
for access of VCL and CLX objects. This is the thread that handles all Windows
messages received by components in your application.

If all objects access their properties and execute their methods within this single
thread, you need not worry about your objects interfering with each other. To use the
main thread, create a separate routine that performs the required actions. Call this
separate routine from within your thread’s Synchronize method. For example:

procedure TMyThread.PushTheButton;
begin
 Button1.Click;
end;
ƒ
procedure TMyThread.Execute;
begin
 ƒ
 Synchronize(PushTheButton);
 ƒ
end;

Synchronize waits for the main thread to enter the message loop and then executes the
passed method.

Note Because Synchronize uses the message loop, it does not work in console applications.
You must use other mechanisms, such as critical sections, to protect access to VCL or
CLX objects in console applications.

You do not always need to use the main thread. Some objects are thread-aware.
Omitting the use of the Synchronize method when you know an object’s methods are
thread-safe will improve performance because you don’t need to wait for the VCL or
CLX thread to enter its message loop. You do not need to use the Synchronize method
in the following situations:

• Data access components are thread-safe as follows: For BDE-enabled datasets,
each thread must have its own database session component. The one exception to
this is when you are using Access drivers, which are built using a Microsoft library
that is not thread-safe. For dbDirect, as long as the vendor client library is thread-

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-5

D e f i n i n g t h r e a d o b j e c t s

safe, the dbDirect components will be thread-safe. ADO and InterbaseExpress
components are thread-safe.

When using data access components, you must still wrap all calls that involve
data-aware controls in the Synchronize method. Thus, for example, you need to
synchronize calls that link a data control to a dataset by setting the DataSet
property of the data source object, but you don’t need to synchronize to access the
data in a field of the dataset.

For more information about using database sessions with threads in BDE-enabled
applications, see “Managing multiple sessions” on page 20-28.

• VisualCLX objects are not thread-safe.

• DataCLX objects are thread-safe.

• Graphics objects are thread-safe. You do not need to use the main VCL or CLX
thread to access TFont, TPen, TBrush, TBitmap, TMetafile (VCL only), TDrawing
(CLX only), or TIcon. Canvas objects can be used outside the Synchronize method
by locking them (see “Locking objects” on page 9-7).

• While list objects are not thread-safe, you can use a thread-safe version,
TThreadList, instead of TList.

Call the CheckSynchronize routine periodically within the main thread of your
application so that background threads can synchronize their execution with the
main thread. The best place to call CheckSynchronize is when the application is idle
(for example, from an OnIdle event handler). This ensures that it is safe to make
method calls in the background thread.

Using thread-local variables
Your Execute method and any of the routines it calls have their own local variables,
just like any other Object Pascal routines. These routines also can access any global
variables. In fact, global variables provide a powerful mechanism for communicating
between threads.

Sometimes, however, you may want to use variables that are global to all the routines
running in your thread, but not shared with other instances of the same thread class.
You can do this by declaring thread-local variables. Make a variable thread-local by
declaring it in a threadvar section. For example,

threadvar
 x : integer;

declares an integer type variable that is private to each thread in the application, but
global within each thread.

The threadvar section can only be used for global variables. Pointer and Function
variables can’t be thread variables. Types that use copy-on-write semantics, such as
long strings don’t work as thread variables either.

Checking for termination by other threads
Your thread begins running when the Execute method is called (see “Executing
thread objects” on page 9-10) and continues until Execute finishes. This reflects the

9-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

model that the thread performs a specific task, and then stops when it is finished.
Sometimes, however, an application needs a thread to execute until some external
criterion is satisfied.

You can allow other threads to signal that it is time for your thread to finish
executing by checking the Terminated property. When another thread tries to
terminate your thread, it calls the Terminate method. Terminate sets your thread’s
Terminated property to True. It is up to your Execute method to implement the
Terminate method by checking and responding to the Terminated property. The
following example shows one way to do this:

procedure TMyThread.Execute;
begin
 while not Terminated do
 PerformSomeTask;
end;

Handling exceptions in the thread function
The Execute method must catch all exceptions that occur in the thread. If you fail to
catch an exception in your thread function, your application can cause access
violations. This may not be obvious when you are developing your application,
because the IDE catches the exception, but when you run your application outside of
the debugger, the exception will cause a runtime error and the application will stop
running.

To catch the exceptions that occur inside your thread function, add a try...except
block to the implementation of the Execute method:

procedure TMyThread.Execute;
begin

try
while not Terminated do

 PerformSomeTask;
except

{ do something with exceptions }
end;

end;

Writing clean-up code

You can centralize the code that cleans up when your thread finishes executing. Just
before a thread shuts down, an OnTerminate event occurs. Put any clean-up code in
the OnTerminate event handler to ensure that it is always executed, no matter what
execution path the Execute method follows.

The OnTerminate event handler is not run as part of your thread. Instead, it is run in
the context of the main VCL or CLX thread of your application. This has two
implications:

• You can’t use any thread-local variables in an OnTerminate event handler (unless
you want the main VCL or CLX thread values).

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-7

C o o r d i n a t i n g t h r e a d s

• You can safely access any components and VCL or CLX objects from the
OnTerminate event handler without worrying about clashing with other threads.

For more information about the main VCL or CLX thread, see “Using the main VCL/
CLX thread” on page 9-4.

Coordinating threads
When writing the code that runs when your thread is executed, you must consider
the behavior of other threads that may be executing simultaneously. In particular,
care must be taken to avoid two threads trying to use the same global object or
variable at the same time. In addition, the code in one thread can depend on the
results of tasks performed by other threads.

Avoiding simultaneous access

To avoid clashing with other threads when accessing global objects or variables, you
may need to block the execution of other threads until your thread code has finished
an operation. Be careful not to block other execution threads unnecessarily. Doing so
can cause performance to degrade seriously and negate most of the advantages of
using multiple threads.

Locking objects
Some objects have built-in locking that prevents the execution of other threads from
using that object instance.

For example, canvas objects (TCanvas and descendants) have a Lock method that
prevents other threads from accessing the canvas until the Unlock method is called.

The VCL and CLX also both include a thread-safe list object, TThreadList. Calling
TThreadList.LockList returns the list object while also blocking other execution threads
from using the list until the UnlockList method is called. Calls to TCanvas.Lock or
TThreadList.LockList can be safely nested. The lock is not released until the last locking
call is matched with a corresponding unlock call in the same thread.

Using critical sections
If objects do not provide built-in locking, you can use a critical section. Critical
sections work like gates that allow only a single thread to enter at a time. To use a
critical section, create a global instance of TCriticalSection. TCriticalSection has two
methods, Acquire (which blocks other threads from executing the section) and Release
(which removes the block).

Each critical section is associated with the global memory you want to protect. Every
thread that accesses that global memory should first use the Acquire method to
ensure that no other thread is using it. When finished, threads call the Release method
so that other threads can access the global memory by calling Acquire.

9-8 D e v e l o p e r ’ s G u i d e

C o o r d i n a t i n g t h r e a d s

Warning Critical sections only work if every thread uses them to access the associated global
memory. Threads that ignore the critical section and access the global memory
without calling Acquire can introduce problems of simultaneous access.

For example, consider an application that has a global critical section variable,
LockXY, that blocks access to global variables X and Y. Any thread that uses X or Y
must surround that use with calls to the critical section such as the following:

LockXY.Acquire; { lock out other threads }
try
 Y := sin(X);
finally
 LockXY.Release;
end;

Using the multi-read exclusive-write synchronizer
When you use critical sections to protect global memory, only one thread can use the
memory at a time. This can be more protection than you need, especially if you have
an object or variable that must be read often but to which you very seldom write.
There is no danger in multiple threads reading the same memory simultaneously, as
long as no thread is writing to it.

When you have some global memory that is read often, but to which threads
occasionally write, you can protect it using TMultiReadExclusiveWriteSynchronizer.
This object acts like a critical section, but allows multiple threads to read the memory
it protects as long as no thread is writing to it. Threads must have exclusive access to
write to memory protected by TMultiReadExclusiveWriteSynchronizer.

To use a multi-read exclusive-write synchronizer, create a global instance of
TMultiReadExclusiveWriteSynchronizer that is associated with the global memory you
want to protect. Every thread that reads from this memory must first call the
BeginRead method. BeginRead ensures that no other thread is currently writing to the
memory. When a thread finishes reading the protected memory, it calls the EndRead
method. Any thread that writes to the protected memory must call BeginWrite first.
BeginWrite ensures that no other thread is currently reading or writing to the
memory. When a thread finishes writing to the protected memory, it calls the
EndWrite method, so that threads waiting to read the memory can begin.

Warning Like critical sections, the multi-read exclusive-write synchronizer only works if every
thread uses it to access the associated global memory. Threads that ignore the
synchronizer and access the global memory without calling BeginRead or BeginWrite
introduce problems of simultaneous access.

Other techniques for sharing memory
When using objects in the VCL or CLX, use the main thread to execute your code.
Using the main thread ensures that the object does not indirectly access any memory
that is also used by VCL or CLX objects in other threads. See “Using the main VCL/
CLX thread” on page 9-4 for more information on the main thread.

If the global memory does not need to be shared by multiple threads, consider using
thread-local variables instead of global variables. By using thread-local variables,
your thread does not need to wait for or lock out any other threads. See “Using
thread-local variables” on page 9-5 for more information about thread-local
variables.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-9

C o o r d i n a t i n g t h r e a d s

Waiting for other threads

If your thread must wait for another thread to finish some task, you can tell your
thread to temporarily suspend execution. You can either wait for another thread to
completely finish executing, or you can wait for another thread to signal that it has
completed a task.

Waiting for a thread to finish executing
To wait for another thread to finish executing, use the WaitFor method of that other
thread. WaitFor doesn’t return until the other thread terminates, either by finishing
its own Execute method or by terminating due to an exception. For example, the
following code waits until another thread fills a thread list object before accessing the
objects in the list:

if ListFillingThread.WaitFor then
begin
 with ThreadList1.LockList do
 begin
 for I := 0 to Count - 1 do
 ProcessItem(Items[I]);
 end;
 ThreadList1.UnlockList;
end;

In the previous example, the list items were only accessed when the WaitFor method
indicated that the list was successfully filled. This return value must be assigned by
the Execute method of the thread that was waited for. However, because threads that
call WaitFor want to know the result of thread execution, not code that calls Execute,
the Execute method does not return any value. Instead, the Execute method sets the
ReturnValue property. ReturnValue is then returned by the WaitFor method when it is
called by other threads. Return values are integers. Your application determines their
meaning.

Waiting for a task to be completed
Sometimes, you need to wait for a thread to finish some operation rather than
waiting for a particular thread to complete execution. To do this, use an event object.
Event objects (TEvent) should be created with global scope so that they can act like
signals that are visible to all threads.

When a thread completes an operation that other threads depend on, it calls
TEvent.SetEvent. SetEvent turns on the signal, so any other thread that checks will
know that the operation has completed. To turn off the signal, use the ResetEvent
method.

For example, consider a situation where you must wait for several threads to
complete their execution rather than a single thread. Because you don’t know which
thread will finish last, you can’t simply use the WaitFor method of one of the threads.
Instead, you can have each thread increment a counter when it is finished, and have
the last thread signal that they are all done by setting an event.

9-10 D e v e l o p e r ’ s G u i d e

E x e c u t i n g t h r e a d o b j e c t s

The following code shows the end of the OnTerminate event handler for all of the
threads that must complete. CounterGuard is a global critical section object that
prevents multiple threads from using the counter at the same time. Counter is a global
variable that counts the number of threads that have completed.

procedure TDataModule.TaskThreadTerminate(Sender: TObject);
begin
 ƒ
 CounterGuard.Acquire; { obtain a lock on the counter }
 Dec(Counter); { decrement the global counter variable }
 if Counter = 0 then
 Event1.SetEvent; { signal if this is the last thread }
 CounterGuard.Release; { release the lock on the counter }
 ƒ
end;

The main thread initializes the Counter variable, launches the task threads, and waits
for the signal that they are all done by calling the WaitFor method. WaitFor waits for a
specified time period for the signal to be set, and returns one of the values from Table
9.2.

The following shows how the main thread launches the task threads and then
resumes when they have all completed:

Event1.ResetEvent; { clear the event before launching the threads }
for i := 1 to Counter do
 TaskThread.Create(False); { create and launch task threads }
if Event1.WaitFor(20000) <> wrSignaled then
 raise Exception;
{ now continue with the main thread. All task threads have finished }

Note If you do not want to stop waiting for an event after a specified time period, pass the
WaitFor method a parameter value of INFINITE. Be careful when using INFINITE,
because your thread will hang if the anticipated signal is never received.

Executing thread objects
Once you have implemented a thread class by giving it an Execute method, you can
use it in your application to launch the code in the Execute method. To use a thread,
first create an instance of the thread class. You can create a thread instance that starts
running immediately, or you can create your thread in a suspended state so that it
only begins when you call the Resume method. To create a thread so that it starts up

Table 9.2 WaitFor return values

Value Meaning

wrSignaled The signal of the event was set.

wrTimeout The specified time elapsed without the signal being set.

wrAbandoned The event object was destroyed before the timeout period elapsed.

wrError An error occurred while waiting.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-11

E x e c u t i n g t h r e a d o b j e c t s

immediately, set the constructor’s CreateSuspended parameter to False. For example,
the following line creates a thread and starts its execution:

SecondProcess := TMyThread.Create(false); {create and run the thread }

Warning Do not create too many threads in your application. The overhead in managing
multiple threads can impact performance. The recommended limit is 16 threads per
process on single processor systems. This limit assumes that most of those threads
are waiting for external events. If all threads are active, you will want to use fewer.

You can create multiple instances of the same thread type to execute parallel code.
For example, you can launch a new instance of a thread in response to some user
action, allowing each thread to perform the expected response.

Overriding the default priority

When the amount of CPU time the thread should receive is implicit in the thread’s
task, its priority is set in the constructor. This is described in “Initializing the thread”
on page 9-2. However, if the thread priority varies depending on when the thread is
executed, create the thread in a suspended state, set the priority, and then start the
thread running:

SecondProcess := TMyThread.Create(True); { create but don’t run }
SecondProcess.Priority := tpLower; { set the priority lower than normal }
SecondProcess.Resume; { now run the thread }

Note If writing a cross-platform application, you must use separate code for assigning
priorities on Windows and Linux. On Linux, Priority is a numeric value that depends
on the threading policy which can only be changed by root. See the CLX version of
TThread and Priority online Help for details.

Starting and stopping threads

A thread can be started and stopped any number of times before it finishes executing.
To stop a thread temporarily, call its Suspend method. When it is safe for the thread to
resume, call its Resume method. Suspend increases an internal counter, so you can nest
calls to Suspend and Resume. The thread does not resume execution until all
suspensions have been matched by a call to Resume.

You can request that a thread end execution prematurely by calling the Terminate
method. Terminate sets the thread’s Terminated property to True. If you have
implemented the Execute method properly, it checks the Terminated property
periodically, and stops execution when Terminated is True.

9-12 D e v e l o p e r ’ s G u i d e

D e b u g g i n g m u l t i - t h r e a d e d a p p l i c a t i o n s

Debugging multi-threaded applications
When debugging multi-threaded applications, it can be confusing trying to keep
track of the status of all the threads that are executing simultaneously, or even to
determine which thread is executing when you stop at a breakpoint. You can use the
Thread Status box to help you keep track of and manipulate all the threads in your
application. To display the Thread status box, choose View|Threads from the main
menu.

When a debug event occurs (breakpoint, exception, paused), the thread status view
indicates the status of each thread. Right-click the Thread Status box to access
commands that locate the corresponding source location or make a different thread
current. When a thread is marked as current, the next step or run operation is relative
to that thread.

The Thread Status box lists all your application’s execution threads by their thread
ID. If you are using thread objects, the thread ID is the value of the ThreadID
property. If you are not using thread objects, the thread ID for each thread is returned
by the call to BeginThread.

For additional details on the Thread Status box, see online Help.

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-1

C h a p t e r

10
Chapter10Using CLX for cross-platform

development
You can use Delphi to develop cross-platform 32-bit applications that run on both the
Windows and Linux operating systems. To do this, you can start with an existing
Windows application and modify it, or you can create a new application by following
the recommended practices for writing platform-independent code. Kylix is
Borland’s Delphi for Linux software that allows you to compile and develop
applications on Linux. If you want to develop and deploy applications on Linux and
Windows, you’ll need to use Kylix as well as Delphi.

This chapter describes how to change Delphi applications so they will compile on
Linux and includes information on the differences between developing applications
on Windows and Linux. It also provides guidelines for writing code that is portable
between the different environments.

Note Most applications developed using CLX (with no operating system specific API calls)
will run on both Linux and Windows platforms. The application must be compiled
on the platform on which you want it to run.

Creating cross-platform applications
You create cross-platform applications much as you create any Delphi application.
You need to use CLX visual components, and you should not use operating system
specific APIs if you want the application to be completely cross-platform. (See
“Writing portable code” on page 10-17 for tips on writing cross-platform
applications.)

To create a cross-platform application:

1 In the IDE, choose File|New|CLX application.
The Component palette shows components that can be used in CLX applications.

10-2 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

Note Some Windows only nonvisual components can be used in CLX applications. The
Component palette includes ADO, BDE, System, DataSnap, InterBase, Site
Express, FastNet, QReport, COM+, BizSnap, and Servers tabs which include
functionality that will only work in Windows CLX applications. If you plan to
compile your application on Linux as well, do not use the components on these
tabs or use $IFDEFs to mark these sections of the code as Windows only.

2 Develop your application within the IDE. Remember to use only CLX components
in your application.

3 Compile and test the application on each platform on which you want to run the
application. Review any error messages to see where additional changes need to
be made.

When moving an application to Kylix, you need to reset your project options. That’s
because the .dof file which stores the project options is recreated on Kylix and called
.kof (with the default options set). You can also store many of the compiler options
with the application by typing Ctrl+O+O. The options are placed at the beginning of
the currently open file.

The form file in cross-platform applications will have an extension of xfm instead of
dfm. This is to distinguish cross-platform forms that use CLX components from
forms that use VCL components. An xfm form file will work on both Windows or
Linux but a dfm form only works on Windows.

You could also begin development of a cross-platform application by starting on
Kylix instead of Delphi:

1 Develop, compile and test the application on Linux using Kylix.

2 Move the application source files over to Windows.

3 Reset your project options.

4 Recompile the application on Windows using Delphi.

For information on writing platform-independent database or internet applications,
see “Cross-platform database applications” on page 10-23 and “Cross-platform
Internet applications” on page 10-29.

Porting VCL applications to CLX
If you have Delphi applications that were written for the Windows environment, you
can make them cross platform. How easy it will be depends on the nature and
complexity of the application and how many Windows dependencies there are.

The following sections describe some of the major differences between the Windows
and Linux environments and provide guidelines on how to get started porting an
application.

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-3

P o r t i n g V C L a p p l i c a t i o n s t o C L X

Porting techniques

The following are different approaches you can take to port an application from one
platform to another:

Platform-specific ports
Platform-specific ports tend to be time-consuming, expensive, and only produce a
single targeted result. They create different code bases, which makes them
particularly difficult to maintain. However, each port is designed for the specific
operating system and can take advantage of platform-specific functionality. So, the
application typically runs faster.

Cross-platform ports
Cross-platform ports generally provide the quickest technique and the ported
applications target multiple platforms. In reality, the amount of work involved in
developing cross-platform applications is highly dependent on the existing code. If
code has been developed without regard for platform independence, you may run
into scenarios where platform-independent “logic” and platform-dependent
“implementation” are mixed together.

The cross-platform approach is the preferable approach because business logic is
expressed in platform-independent terms. Some services are abstracted behind an
internal interface that looks the same on all platforms, but has a specific
implementation on each. Delphi’s runtime library is an example of this: The interface
is very similar on both platforms, although the implementation may be vastly
different. You should separate cross-platform parts, then implement specific services
on top. In the end, this approach is the least expensive solution, because of reduced
maintenance costs due to a largely shared source base and an improved application
architecture.

Windows emulation ports
Windows emulation is the most complex method and it can be very costly, but the
resulting Linux application will look most similar to an existing Windows
application. This approach involves implementing Windows functionality on Linux.
From an engineering point of view, this is solution is very hard to maintain.

Where you want to emulate Windows APIs, you can include two distinct sections
using $IFDEFs to indicate sections of the code that apply specifically to Windows or
Linux.

Table 10.1 Porting techniques

Technique Description

Platform-specific port Targets an operating system and underlying APIs

Cross-platform port Targets a cross-platform API

Windows emulation Leave the code alone and port the API it uses

10-4 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

Porting your application

If you are porting an application that you want to run on both Windows and Linux,
you need to modify your code or use $IFDEFs to indicate sections of the code that
apply specifically to Windows or Linux.

Follow these general steps to port your VCL application to CLX:

1 Open the project containing the application you want to change in Delphi.

2 Copy .dfm files to .xfm files of the same name (for example, rename unit1.dfm to
unit1.xfm). Rename (or $IFDEF) the reference to the .dfm file in the unit file(s)
from {$R *.dfm} to {$R *.xfm}. (The .xfm file will work in both Kylix and Delphi.)

For example, change the form reference in the implementation section from

{$R *.dfm}

to

{$R *.xfm}

3 Change (or $IFDEF) all uses clauses so they refer to the correct units in CLX. (See
“CLX and VCL unit comparison” on page 10-9 for information.)

For example, change the following uses clause in a Windows application

uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

to the following for a CLX application:

uses Windows, Messages, SysUtils, Variants, Classes, QForms, QControls, QStdCtrls;

4 Save the project and reopen it. Now the Component palette shows components
that can be used in CLX applications.

Note Some Windows only nonvisual components can be used in CLX applications. The
Component palette includes ADO, BDE, System, DataSnap, InterBase, Internet
Express, Site Express, FastNet, QReport, COM+, Web Services, and Servers tabs
which include functionality that will only work in Windows CLX applications. If
you plan to compile your application on Linux as well, do not use the components
on these tabs or use $IFDEFs to mark these sections of the code as Windows only.

5 Rewrite any code that does not require Windows dependencies making the code
more platform-independent. Do this using the runtime library routines and
constants. (See “Writing portable code” on page 10-17 for information.)

6 Find equivalent functionality for features that are different on Linux. Use $IFDEFs
(sparingly) to delimit Windows-specific information. (See “Using conditional
directives” on page 10-18 for information.)

For example, you can $IFDEF platform-specific code in your source files:

[$IFDEF MSWINDOWS]
IniFile.LoadfromFile(‘c:\x.txt’);
[$ENDIF]

[$IFDEF LINUX]
IniFile.LoadfromFile(‘/home/name/x.txt’);
[$ENDIF]

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-5

P o r t i n g V C L a p p l i c a t i o n s t o C L X

7 Search for references to pathnames in all the project files.

• Pathnames in Linux use a forward slash / as a delimiter (for example, /usr/lib)
and files may be located in different directories on the Linux system. Use the
PathDelim constant (in SysUtils) to specify the path delimiter that is
appropriate for the system. Determine the correct location for any files on
Linux.

• Change references to drive letters (for example, C:\) and code that looks for
drive letters by looking for a colon at position 2 in the string. Use the
DriveDelim constant (in SysUtils) to specify the location in terms that are
appropriate for the system.

• In places where you specify multiple paths, change the path separator from
semicolon (;) to colon (:). Use the PathSep constant (in SysUtils) to specify the
path separator that is appropriate for the system.

• Because file names are case-sensitive in Linux, make sure that your application
doesn’t change the case of file names or assume a certain case.

8 Compile, text and debug your application.

To transfer the application to Linux:

1 Move your Delphi Windows application source files and other project-related files
onto your Linux computer. (You can share source files between Linux and
Windows if you want the program to run on both platforms. Or you can transfer
the files using a tool such as ftp using the ASCII mode.)

Source files should include your unit files (.pas files), project file (.dpr file), and
any package files (.dpk files). Project-related files include form files (.xfm files),
resource files (.res files), and project options files (.dof files–in Kylix these change
to .kof files). If you want to compile your application from the command line only
(rather than using the IDE), you’ll need the configuration file (.cfg file–in Kylix this
changes to .conf).

2 Open the project in Kylix. You will receive warnings on Windows-specific features
that are in use.

3 Compile the project using Kylix. Review any error messages to see where
additional changes need to be made.

CLX versus VCL

Kylix uses the Borland Component Library for Cross Platform (CLX) in place of the
Visual Component Library (VCL). Within the VCL, many controls provide an easy
way to access Windows controls. Similarly, CLX provides access to Qt widgets (from
window + gadget) in the Qt shared libraries. Delphi includes both CLX and the VCL.

CLX looks much like the VCL. Most of the component names are the same, many
properties have the same names. In addition, CLX, as well as the VCL, will be
available on Windows (check the latest release of Delphi to determine availability).

10-6 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

CLX components can be grouped into the following parts:

Widgets in VisualCLX replace Windows controls. In CLX, TWidgetControl replaces
the VCL's TWinControl. Other components (such as TScrollingWidget) have
corresponding names. However, you do not need to change occurrences of
TWinControl to TWidgetControl. Type declarations, such as the following

TWinControl = TWidgetControl;

appear in the QControls.pas source file to simplify sharing of source code.
TWidgetControl and its descendants all have a Handle property that is a reference to
the Qt object; and a Hooks property, which is a reference to the hook objects that
handle the event mechanism.

Unit names and locations of some classes are different for CLX. You will need to
modify uses clauses to eliminate references to units that don’t exist in CLX and to
change the names to CLX units. (Most project files and the interface sections of most
units contain a uses clause. The implementation section of a unit can also contain its
own uses clause.)

What CLX does differently

Although much of CLX is implemented so that it is consistent with the VCL, some
features are implemented differently. This section provides an overview of some of
the differences between CLX and VCL implementations to be aware of when writing
cross-platform applications.

Look and feel
The visual environment in Linux looks somewhat different than it does in Windows.
The look of dialogs may differ depending on which window manager is in use (for
example, if using KDE or Gnome).

Styles
Application-wide “styles” can be used in addition to the OwnerDraw properties. You
can use the TApplication.Style property to specify the look and feel of an application's
graphical elements. Using styles, a widget or an application can take on a whole new
look. You can still use owner draw on Linux but using styles is recommended.

Table 10.2 CLX parts

Part Description

VisualCLX Native cross-platform GUI components and graphics. The components
in this area may differ on Linux and Windows.

DataCLX Client data-access components. The components in this area are a subset
of the local, client/server, and n-tier based on client datasets. The code is
the same on Linux and Windows.

NetCLX Internet components including Apache DSO and CGI Web Broker.
These are the same on Linux and Windows.

RTL Runtime Library up to and including Classes.pas. The code is the same
on Linux and Windows.

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-7

P o r t i n g V C L a p p l i c a t i o n s t o C L X

Variants
All of the variant/safe array code that was in System is in two new units:

• Variants.pas

• VarUtils.pas

The operating system dependent code is now isolated in VarUtils.pas, and it also
contains generic versions of everything needed by Variants.pas. If you are converting
a VCL application that included Windows calls to a CLX application, you need to
replace these calls to calls into VarUtils.pas.

If you want to use variants, you must include the Variants unit to your uses clause.

VarIsEmpty does a simple test against varEmpty to see if a variant is clear, and on
Linux you need to use the VarIsClear function to clear a variant.

Custom variant data handler
You can define custom data types for variants. This introduces operator overloading
while the type is assigned to the variant. To create a new variant type, descend from
the class, TCustomVariantType, and instantiate your new variant type.

For an example, see VarCmplx.pas. This unit implements complex mathematics
support via custom variants. It supports the following variant operations: addition,
subtraction, multiplication, division (not integer division), and negation. It also
handles conversion to and from: SmallInt, Integer, Single, Double, Currency, Date,
Boolean, Byte, OleStr, and String. Any of the float/ordinal conversion will lose any
imaginary portion of the complex value.

Registry
Linux does not use a registry to store configuration information. Instead, you use text
configuration files and environment variables instead of using the registry. System
configuration files on Linux are often located in /etc, for example, /etc/hosts. Other
user profiles are located in hidden files (preceded with a dot), such as .bashrc, which
holds bash shell settings or .XDefaults, which is used to set defaults for X programs.

Registry-dependent code may be changed to using a local configuration text file
instead stored, for example, in the same directory as the application. Writing a unit
containing all the registry functions but diverting all output to a local configuration
file is one way you could handle a former dependency on the registry.

To place information in a global location on Linux, you could store a global
configuration file in the root directory. This makes it so all of your applications can
access the same configuration file. However, you must be sure that the file
permissions and access rights are set up correctly.

You can also use ini files in cross-platform applications. However, in CLX, you need
to use TMemIniFile instead of TRegIniFile.

Other differences
CLX implementation also has some other differences that affect the way your
application works. This section describes some of those differences.

10-8 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

ToggleButton doesn't get toggled by the Enter key. Pressing Enter doesn't simulate a
click event on Kylix as it does in Delphi.

TColorDialog does not have a TColorDialog.Options property to set. Therefore, you
cannot customize the appearance and functionality of the color selection dialog. Also,
TColorDialog is not always modal. You can manipulate the title bar of an application
with a modal dialog on Kylix (that is, you can select the parent form of the color
dialog and do things like maximizing it while the color dialog is open).

At runtime, combo boxes work differently on Kylix than they do in Delphi. On Kylix
(but not on Delphi), you can add a item to a drop down by entering text and pressing
Enter in the edit field of a combo box. You can turn this feature off by setting
InsertMode to ciNone. It is also possible to add empty (no string) items to the list in
the combo box. Also, if you keep pressing the down arrow key, it does not stop at the
last item of the combo box list. It cycles around to the top again.

TCustomEdit does not implement Undo, ClearUndo, or CanUndo. So there is no way to
programmatically undo edits. But application users can undo their edits in an edit
box (TEdit) at runtime by right-clicking on the edit box and choosing the Undo
command.

The key value in a OnKeyDown event or KeyUp event for the Enter key on Windows is
13. On Linux, this value is 4100. If you check for a hardcoded numeric value for a key,
such as checking for a value of 13 for the Enter key, you need to change this when
porting a Delphi application to Kylix.

Additional differences exist. Refer to the CLX online documentation for details on all
of the CLX objects or in versions of Delphi that include the source code you can refer
to the code, it is located in ..\Delphi6\Source\VCL\CLX.

Missing in CLX

When using CLX instead of the VCL, many of the objects are the same. However, the
objects may be missing some features (such as properties, methods, or events). The
following general features are missing in CLX:

• Bi-directional properties (BidiMode) for right-to-left text output or input

• Generic bevel properties on common controls (note that some objects still have
bevel properties)

• Docking properties and methods

• Backward compatibility features such components on the Win3.1 tab and Ctl3D

• DragCursor and DragKind (but drag and drop is included)

Features that will not port

Some Windows-specific features supported on Delphi will not transport directly to
Linux environments. Features, such as COM, ActiveX, OLE, BDE, and ADO are
dependent on Windows technology and are not available in Kylix. The following

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-9

P o r t i n g V C L a p p l i c a t i o n s t o C L X

table lists features that are different on the two platforms and lists the equivalent
Kylix feature, if one is available.

The Linux equivalent of Windows DLLs are shared object libraries (.so files), which
contain position-independent code (PIC). This has the following consequences:

• Variables referring to an absolute address in memory (using the absolute
directive) are not allowed.

• Global memory references and calls to external functions are made relative to the
EBX register, which must be preserved across calls.

You only need to worry about global memory references and calls to external
functions if using assembler—Kylix or Delphi generates the correct code. (For
information, see “Including inline assembler code” on page 10-20.)

Kylix library modules and packages are implemented using .so files.

CLX and VCL unit comparison

All of the objects in the VCL or CLX are defined in unit files (.pas source files). For
example, you can find the implementation of TObject in the System unit, and the
Classes unit defines the base TComponent class. When you drop an object onto a form

Table 10.3 Changed or different features

Delphi/Windows feature Kylix/Linux feature

ADO components Regular database components

Automation Servers Not available

BDE dbExpress and regular database components

COM+ components (including
ActiveX)

Not available

DataSnap Not yet available

FastNet Not available

Internet Express Not yet available

Legacy components (such as items on
the Win 3.1 Component palette tab)

Not available

Messaging Application Programming
Interface (MAPI) includes a standard
library of Windows messaging
functions.

SMTP/POP3 let you send, receive, and save email
messages

Quick Reports Not available

Web Services (SOAP) Not yet available

WebSnap Not yet available

Windows API calls CLX methods, Qt calls, libc calls, or calls to other system
libraries

Windows messaging Qt events

Winsock BSD sockets

10-10 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

or use an object within your application, the name of the unit is added to the uses
clause which tells the compiler which units to link into the project.

This section provides tables that list the CLX units and the comparable VCL unit, list
the units that are for CLX only, and list the units that are for VCL only.

The following table lists VCL units and the comparable CLX units:

Table 10.4 VCL and equivalent CLX units

VCL units CLX units

ActnList QActnList

Buttons QButtons

CheckLst QCheckLst

Classes Classes

Clipbrd QClipbrd

ComCtrls QComCtrls

Consts Consts, QConsts, and RTLConsts

Contnrs Contnrs

Controls QControls

DateUtils DateUtils

DB DB

DBActns QDBActns

DBClient DBClient

DBCommon DBCommon

DBConnAdmin DBConnAdmin

DBConsts DBConsts

DBCtrls QDBCtrls

DBGrids QDBGrids

DBLocal DBLocal

DBLocalS DBLocalS

DBLogDlg DBLogDlg

DBXpress DBXpress

Dialogs QDialogs

DSIntf DSIntf

ExtCtrls QExtCtrls

FMTBCD FMTBCD

Forms QForms

Graphics QGraphics

Grids QGrids

HelpIntfs HelpIntfs

ImgList QImgList

IniFiles IniFiles

Mask QMask

MaskUtils MaskUtils

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-11

P o r t i n g V C L a p p l i c a t i o n s t o C L X

The following units are in CLX but not VCL:

The following Windows VCL units are not included in CLX mostly because they
concern Windows-specific features that are not available on Linux such as ADO,
COM, and the BDE. The reason for the unit’s exclusion is listed.

Masks Masks

Math Math

Menus QMenus

Midas Midas

MidConst MidConst

Printers QPrinters

Provider Provider

Qt Qt

Search QSearch

Sockets Sockets

StdActns QStdActns

StdCtrls QStdCtrls

SqlConst SqlConst

SqlExpr SqlExpr

SqlTimSt SqlTimSt

SyncObjs SyncObjs

SysConst SysConst

SysInit SysInit

System System

SysUtils SysUtils

Types Types and QTypes

TypInfo TypInfo

Variants Variants

VarUtils VarUtils

Table 10.5 Units in CLX, not VCL

Unit Description

DirSel Directory selection

QStyle GUI look and feel

Table 10.6 VCL-only units

Unit Reason for exclusion

ADOConst No ADO feature

ADODB No ADO feature

AppEvnts No TApplicationEvent object

Table 10.4 VCL and equivalent CLX units (continued)

VCL units CLX units

10-12 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

AxCtrls No COM feature

BdeConst No BDE feature

ComStrs No COM feature

ConvUtils New feature for Delphi 6

CorbaCon No Corba feature

CorbaStd No Corba feature

CorbaVCL No Corba feature

CtlPanel No Windows Control Panel support

DataBkr May appear later in upsell

DBCGrids No BDE feature

DBExcept No BDE feature

DBInpReq No BDE feature

DBLookup Obsolete

DbOleCtl No COM feature

DBPWDlg No BDE feature

DBTables No BDE feature

DdeMan No DDE feature

DRTable No BDE feature

ExtActns New feature to Delphi 6

ExtDlgs No picture dialogs

FileCtrl Obsolete

ListActns New feature to Delphi 6

MConnect No COM feature

Messages Windows-specific area

MidasCon Obsolete

MPlayer Windows-specific media player

Mtsobj No COM feature

MtsRdm No COM feature

Mtx No COM feature

mxConsts No COM feature

ObjBrkr May appear later in upsell

OleConstMay No COM feature

OleCtnrs No COM feature

OleCtrls No COM feature

OLEDB No COM feature

OleServer No COM feature

Outline Obsolete

Registry Windows-specific registry support

ScktCnst Replaced by Sockets

ScktComp Replaced by Sockets

Table 10.6 VCL-only units (continued)

Unit Reason for exclusion

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-13

P o r t i n g V C L a p p l i c a t i o n s t o C L X

Differences in CLX object constructors

When a CLX object is created, either implicitly in the Forms Designer by placing that
object on the form or explicitly in code by using the Create method of the object, an
instance of the underlying associated widget is created also. The instance of the
widget is owned by this CLX object. When the CLX object is deleted by calling the
Free method or automatically deleted by the CLX object's parent container, the
underlying widget is also deleted. This is the same type of functionality that you see
in the VCL in Windows applications.

When you explicitly create a CLX object in code, by calling into the Qt interface
library such as QWidget_Create(), you are creating an instance of a Qt widget that is
not owned by a CLX object. This passes the instance of an existing Qt widget to the
CLX object to use during its construction. This CLX object does not own the Qt
widget that is passed to it. Therefore, when you call the Free method after creating the
object in this manner, only the CLX object is destroyed and not the underlying Qt
widget instance. This is different from the VCL.

Some CLX objects let you assume ownership of the underlying widget using the
OwnHandle method. After calling OwnHandle, if you delete the CLX object, the
underlying widget is destroyed as well.

Sharing source files between Windows and Linux

If you want your application to run on both Windows and Linux, you can share the
source files making them accessible to both operating systems. You can do this many
ways such as placing the source files on a server that is accessible to both computers
or by using Samba on the Linux machine to provide access to files through Microsoft
network file sharing for both Linux and Windows. You can choose to keep the source
on Linux and create a shared drive on Linux. Or you can keep the source on
Windows and create a share on Windows for the Linux machine to access.

SConnect Unsupported connection protocols

StdConvs New feature to Delphi 6

SvcMgr NT Services support

Tabnotbk Obsolete

Tabs Obsolete

ToolWin No docking feature

VarCmplx New feature to Delphi 6

VarConv New feature to Delphi 6

VCLCom No COM feature

WebConst Windows-specific constants

Windows Windows-specific (API)

Table 10.6 VCL-only units (continued)

Unit Reason for exclusion

10-14 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

You can continue to develop and compile the file on Kylix using objects that are
supported by both VCL and CLX. When you are finished, you can compile on both
Linux and Windows.

Form files (.dfm files in Delphi) are called .xfm files in Kylix. If you create a new CLX
application in Delphi or Kylix, an .xfm is created instead of a .dfm. If you plan to
write cross-platform applications, the .xfm will work both on Delphi and Kylix.

Environmental differences between Windows and Linux

Currently, cross-platform means an application that can run virtually unchanged on
both the Windows and Linux operating systems. The following table lists some of the
differences between Linux and the Windows operating environments.

Table 10.7 Differences in the Linux and Windows operating environments

Difference Description

File name case sensitivity In Linux, a capital letter is not the same as a lowercase letter. The file
Test.txt is not the same file as test.txt. You need to pay close attention
to capitalization of file names on Linux.

Line ending characters On Windows, lines of text are terminated by CR/LF (that is, ASCII 13
+ ASCII 10), but on Linux it is LF. While the code editor in Kylix can
handle the difference, you should be aware of this when importing
code from Windows.

End of file character In DOS and Windows, the character value #26 (Ctrl-Z) is treated as
the end of the text file, even if there is data in the file after that
character. Linux has no special end of file character; the text data ends
at the end of the file.

Batch files/shell scripts The Linux equivalent of .bat files are shell scripts. A script is a text file
containing instructions, saved and made executable with the
command, chmod +x <scriptfile>. To execute it, type its name. (The
scripting language depends on the shell you are using on Linux. Bash
is commonly used.)

Command confirmation In DOS or Windows, if you try to delete a file or folder, it asks for
confirmation (“Are you sure you want to do that?”). Generally, Linux
won't ask; it will just do it. This makes it easy to accidentally destroy a
file or the entire file system. There is no way to undo a deletion on
Linux unless a file is backed up on another media.

Command feedback If a command succeeds on Linux, it redisplays the command prompt
without a status message.

Command switches Linux uses a dash (-) to indicate command switches or a double dash
(--) for multiple character options where DOS uses a slash (/) or dash
(-).

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-15

P o r t i n g V C L a p p l i c a t i o n s t o C L X

Configuration files On Windows, configuration is done in the registry or in files such as
autoexec.bat.
On Linux, configuration files are created as hidden files starting with
a dot (.). Many are placed in the /etc directory and your home
directory.
Linux also uses environment variables such as LD_LIBRARY_PATH
(search path for libraries). Other important environment variables:
HOME Your home directory (/home/sam)
TERM Terminal type (xterm, vt100, console)
SHELL Path to your shell (/bin/bash)
USER Your login name (sfuller)
PATH List to search for programs
They are specified in the shell or in rc files such as the .bashrc.

DLLs On Linux, you use shared object files (.so). In Windows, these are
dynamic link libraries (DLLs).

Drive letters Linux doesn't have drive letters. An example Linux pathname is
/lib/security. See DriveDelim in the runtime library.

Exceptions Operating system exceptions are called signals on Linux.

Executable files On Linux, executable files require no extension. On Windows,
executable files have an exe extension.

File name extensions Linux does not use file name extensions to identify file types or to
associate files with applications.

File permissions On Linux, files (and directories) are assigned read, write, and execute
permissions for the file owner, group, and others. For example,
-rwxr-xr-x means, from left to right:
- is the file type (- = ordinary file, d = directory, l = link); rwx are the
permissions for the file owner (read, write, execute); r-x are the
permissions for the group of the file owner (read, execute); and r-x are
the permissions for all other users (read, execute). The root user
(superuser) can override these permissions.
You need to make sure that your application runs under the correct
user and has proper access to required files.

Make utility Borland's make utility is not available on the Linux platform. Instead,
you can use Linux's own GNU make utility.

Multitasking Linux fully supports multitasking. You can run several programs (in
Linux, called processes) at the same time. You can launch processes in
the background (using & after the command) and continue working
straight away. Linux also lets you have several sessions.

Pathnames Linux uses a forward slash (/) wherever DOS uses a backslash (\). A
PathDelim constant can be used to specify the appropriate character
for the platform. See PathDelim in the runtime library.

Search path When executing programs, Windows always checks the current
directory first, then looks at the PATH environment variable. Linux
never looks in the current directory but searches only the directories
listed in PATH. To run a program in the current directory, you
usually have to type ./ before it.
You can also modify your PATH to include ./ as the first path to
search.

Table 10.7 Differences in the Linux and Windows operating environments (continued)

Difference Description

10-16 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

Directory structure on Linux

Directories are different in Linux. Any file or device can be mounted anywhere on
the file system.

Note Linux pathnames use forward slashes as opposed to Windows use of backslashes.
The initial slash stands for the root directory.

Following are some commonly used directories in Linux.

Note Different distributions of Linux sometimes place files in different locations. A utility
program may be placed in /bin in a Red Hat distribution but in /usr/local/bin in a
Debian distribution.

Refer to www.pathname.com for additional details on the organization of the UNIX/
Linux hierarchical file system and to read the Filesystem Hierarchy Standard.

Search path separator Windows uses the semicolon as a search path separator. Linux uses a
colon. See PathDelim in the runtime library.

Symbolic links On Linux, a symbolic link is a special file that points to another file on
disk. Place symbolic links in the global bin directory that points to
your application's main files and you don't have to modify the system
search path. A symbolic link is created with the ln (link) command.
Windows has shortcuts for the GUI desktop. To make a program
available at the command line, Windows install programs typically
modify the system search path.

Table 10.7 Differences in the Linux and Windows operating environments (continued)

Difference Description

Table 10.8 Common Linux directories

Directory Contents

/ The root or top directory of the entire Linux file system

/root The root file system; the Superuser's home directory

/bin Commands, utilities

/sbin System utilities

/dev Devices shown as files

/lib Libraries

/home/username Files owned by the user where username is the user's login name.

/opt Optional

/boot Kernel that gets called when the system starts up

/etc Configuration files

/usr Applications, programs. Usually includes directories like /usr/spool, /
usr/man, /usr/include, /usr/local

/mnt Other media mounted on the system such as a CD or a floppy disk drive

/var Logs, messages, spool files

/proc Virtual file system and reporting system statistics

/tmp Temporary files

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-17

P o r t i n g V C L a p p l i c a t i o n s t o C L X

Writing portable code

If you are writing cross-platform applications that are meant to run on Windows and
Linux, you can write code that compiles under different conditions. Using
conditional compilation, you can maintain your Windows coding, yet also make
allowances for Linux operating system differences.

To create applications that are easily portable between Windows and Linux,
remember to

• reduce or isolate calls to platform-specific (Win32 or Linux) APIs; use CLX
methods instead.

• eliminate Windows messaging (PostMessage, SendMessage) constructs within an
application.

• use TMemIniFile instead of TRegIniFile.

• observe and preserve case-sensitivity in file and directory names.

• port any external assembler TASM code. The GNU assembler, “as,” does not
support the TASM syntax. (See “Including inline assembler code” on page 10-20.)

Try to write the code to use platform-independent runtime library routines and use
constants found in System, SysUtils, and other runtime library units. For example,
use the PathDelim constant to insulate your code from ‘/’ versus ‘\’ platform
differences.

Another example involves the use of multibyte characters on both platforms.
Windows code traditionally expects only 2 bytes per multibyte character. In Linux,
multibyte character encoding can have many more bytes per char (up to 6 bytes for
UTF-8). Both platforms can be accommodated using the StrNextChar function in
SysUtils. Existing Windows code such as the following

while p^ <> #0 do
begin
 if p^ in LeadBytes then
 inc(p);
 inc(p);
end;

can be replaced with platform-independent code like this:

while p^ <> #0 do
begin
 if p^ in LeadBytes then
 p := StrNextChar(p)
 else
 inc(p);
end;

This example is platform portable and supports multibyte characters longer than 2
bytes, but still avoids the performance cost of a procedure call for non-multibyte
locales.

10-18 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

If using runtime library functions is not a workable solution, try to isolate the
platform-specific code in your routine into one chunk or into a subroutine. Try to
limit the number of $IFDEF blocks to maintain source code readability and
portability. The conditional symbol WIN32 is not defined on Linux. The conditional
symbol LINUX is defined, indicating the source code is being compiled for the Linux
platform.

Using conditional directives
Using $IFDEF compiler directives is a reasonable way to conditionalize your code for
the Windows and Linux platforms. However, because $IFDEFs make source code
harder to understand and maintain, you need to understand when it is reasonable to
use $IFDEFs. When considering the use of $IFDEFs, the top questions should be
“Why does this code require an $IFDEF?” and “Can this be written without an
$IFDEF?”

Follow these guidelines for using $IFDEFs within cross-platform applications:

• Try not to use $IFDEFs unless absolutely necessary. $IFDEFs in a source file are
only evaluated when source code is compiled. Unlike C/C++, Delphi does not
require unit sources (header files) to compile a project. Full rebuilds of all source
code is an uncommon event for most Delphi projects.

• Do not use $IFDEFs in package (.dpk) files. Limit their use to source files.
Component writers need to create two design-time packages when doing cross-
platform development, not one package using $IFDEFs.

• In general, use $IFDEF MSWINDOWS to test for any Windows platform
including WIN32. Reserve the use of $IFDEF WIN32 for distinguishing between
specific Windows platforms, such as 32-bit versus 64-bit Windows. Don’t limit
your code to WIN32 unless you know for sure that it will not work in WIN64.

• Avoid negative tests like $IFNDEF unless absolutely required. $IFNDEF LINUX
is not equivalent to $IFDEF MSWINDOWS.

• Avoid $IFNDEF/$ELSE combinations. Use a positive test instead ($IFDEF) for
better readability.

• Avoid $ELSE clauses on platform-sensitive $IFDEFs. Use separate $IFDEF blocks
for LINUX- and MSWINDOWS-specific code instead of $IFDEF LINUX/$ELSE or
$IFDEF MSWINDOWS/$ELSE.

For example, old code may contain

{$IFDEF WIN32}
 (32-bit Windows code)
{$ELSE}
 (16-bit Windows code) //!! By mistake, Linux could fall into this code.
{$ENDIF}

For any non-portable code in $IFDEFs, it is better for the source code to fail to
compile than to have the platform fall into an $ELSE clause and fail mysteriously
at runtime. Compile failures are easier to find than runtime failures.

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-19

P o r t i n g V C L a p p l i c a t i o n s t o C L X

• Use the $IF syntax for complicated tests. Replace nested $IFDEFs with a boolean
expression in an $IF directive. You should terminate the $IF directive using
$IFEND, not $ENDIF. This allows you to place $IF expressions within $IFDEFs to
hide the new $IF syntax from previous compilers.

All of the conditional directives are documented in the online Help. Also see, the
topic “Conditional Compilation” in Help for more information.

Terminating conditional directives
Use the $IFEND directive to terminate $IF and $ELSEIF conditional directives. This
allows $IF/$IFEND blocks to be hidden from older compilers inside of using $IFDEF/
$ENDIF. Older compilers won't recognize the $IFEND directive. $IF can only be
terminated with $IFEND. You can only terminate old-style directives ($IFDEF,
$IFNDEF, $IFOPT) with $ENDIF.

Note When nesting an $IF inside of $IFDEF/$ENDIF, do not use $ELSE with the $IF.
Older compilers will see the $ELSE and think it is part of the $IFDEF, producing a
compile error down the line. You can use {$ELSEIF True} as a substitute for {$ELSE}
in this situation, since the $ELSEIF won't be taken if the $IF is taken first, and the
older compilers won't know $ELSEIF. Hiding $IF for backwards compatibility is
primarily an issue for third party vendors and application developers who want their
code to run on several different versions.

$ELSEIF is a combination of $ELSE and $IF. The $ELSEIF directive allows you to
write multi-part conditional blocks where only one of the conditional blocks will be
taken. For example:

{$IFDEF doit}
 do_doit
{$ELSEIF RTLVersion >= 14}
 goforit
{$ELSEIF somestring = 'yes'}
 beep
{$ELSE}
 last chance
{$IFEND}

Of these four cases, only one is taken. If none of the first three conditions is true, the
$ELSE clause is taken. $ELSEIF must be terminated by $IFEND. $ELSEIF cannot
appear after $ELSE. Conditions are evaluated top to bottom like a normal
$IF...$ELSE sequence. In the example, if doit is not defined, RTLVersion is 15, and
somestring = 'yes', only the “goforit” block will be taken not the “beep” block, even
though the conditions for both are true.

If you forget to use an $ENDIF to end one of your $IFDEFs, the compiler reports the
following error message at the end of the source file:

Missing ENDIF

If you have more than a few $IF/$IFDEF directives in your source file, it can be
difficult to determine which one is causing the problem. Kylix or Delphi reports the

10-20 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

following error message on the source line of the last $IF/$IFDEF compiler directive
with no matching $ENDIF/$IFEND:

Unterminated conditional directive

You can start looking for the problem at that location.

Emitting messages
The $MESSAGE compiler directive allows source code to emit hints, warnings, and
errors just as the compiler does.

{$MESSAGE HINT|WARN|ERROR|FATAL 'text string' }

The message type is optional. If no message type is indicated, the default is HINT.
The text string is required and must be enclosed in single quotes.

Examples:

{$MESSAGE 'Boo!'} emits a hint.

{$Message Hint 'Feed the cats'} emits a hint.

{$Message Warn 'Looks like rain.'} emits a warning.

{$Message Error 'Not implemented'} emits an error, continues compiling.

{$Message Fatal 'Bang. Yer dead.'} emits an error, terminates the compiler.

Including inline assembler code
If you include inline assembler code in your Windows applications, you may not be
able to use the same code on Linux because of position-independent code (PIC)
requirements on Linux. Linux shared object libraries (DLL equivalents) require that
all code be relocatable in memory without modification. This primarily affects inline
assembler routines that use global variables or other absolute addresses, or that call
external functions.

For units that contain only Object Pascal code, the compiler automatically generates
PIC when required. PIC units have a .dpu extension (instead of .dcu). It's a good idea
to compile every Pascal unit source file into both PIC and non-PIC formats; use the -p
compiler switch to generate PIC. Precompiled units are available in both forms.

You may want to code assembler routines differently depending on whether you'll
be compiling to an executable or a shared library; use {$IFDEF PIC} to branch the two
versions of your assembler code. Or you can consider rewriting the routine in Object
Pascal to avoid the issue.

Following are the PIC rules for inline assembler code:

• PIC requires all memory references be made relative to the EBX register, which
contains the current module's base address pointer (in Linux called the Global
Offset Table or GOT). So, instead of

MOV EAX,GlobalVar

use

MOV EAX,[EBX].GlobalVar

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-21

P o r t i n g V C L a p p l i c a t i o n s t o C L X

• PIC requires that you preserve the EBX register across calls into your assembly
code (same as on Win32), and also that you restore the EBX register before making
calls to external functions (different from Win32).

• While PIC code will work in base executables, it may slow the performance and
generate more code. You don't have any choice in shared objects, but in
executables you probably still want to get the highest level of performance that
you can.

Messages and system events

Message loops and events work differently on Linux and in CLX, but this primarily
affects component writing. Most component and property editors port easily.
TObject.Dispatch and message method syntax on classes work fine on Linux; under
Linux, however, operating system notifications are handled using system events
rather than messages.

To create an event handler in a cross-platform application, you can override one of
the methods described in Table 10.9 to write your own custom message instead of
responding to Windows messages. In the override, call the inherited method so any
default processes still take place.

Table 10.9 TWidgetControl protected methods for responding to system events

Method Description

ChangeBounds Used when a TWidgetControl is resized. Roughly analogous to WM_SIZE or
WM_MOVE in Windows. Qt sets the “geometry” of a widget based on the
client area, VCL uses the entire control size, which includes what Qt refers
to as the frame.

ChangeScale Called automatically when resizing controls. Used to change the scale of a
form and all its controls for a different screen resolution or font size. Because
ChangeScale modifies the control’s Top, Left, Width, and Height properties,
it changes the position of the control and its children as well as their size.

ColorChanged Called when the color of the control has been changed.

CursorChanged Called when the cursor changes shape. The mouse cursor assumes this
shape when it's over this widget.

EnabledChanged Called when an application changes the enabled state of a window or
control.

FontChanged Called when the collection of font resources changed. It sets the font for the
widget and informs all children about the change. Roughly analogous to the
WM_FONTCHANGE message.

PaletteChanged Called when the system palette has been changed. .

ShowHintChanged Called when Help hints are displayed or hidden on a control.

StyleChanged Called when the window or control’s GUI styles have changed.

TabStopChanged Called when the tab order on the form has been changed.

VisibleChanged Called when a control is hidden or shown.

WidgetDestroyed Called when a widget underlying a control is destroyed.

10-22 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s t o C L X

Qt is a C++ toolkit, so all of its widgets are C++ objects. CLX is written in Object
Pascal, and Object Pascal does not interact directly with C++ objects. In addition, Qt
uses multiple inheritance in a few places. So Delphi includes an interface layer that
converts all of the Qt classes to a series of straight C functions. These are then
wrapped in a shared object in Linux and a DLL in Windows.

Every TWidgetControl has CreateWidget, InitWidget, and HookEvents virtual methods
that almost always have to be overridden. CreateWidget creates the Qt widget, and
assigns the Handle to the FHandle private field variable. InitWidget gets called after
the widget is constructed, and the Handle is valid.

Some property assignments in Delphi CLX have moved from the Create constructor
to InitWidget. This will allow delayed construction of the Qt object until it's really
needed. For example, say you have a property named Color. In SetColor, you can
check with HandleAllocated to see if you have a Qt handle. If the Handle is allocated,
you can make the proper call to Qt to set the color. If not, you can store the value in a
private field variable, and, in InitWidget, you set the property.

Linux supports two types of events: Widget and System. HookEvents is a virtual
method that hooks the CLX controls event methods to a special hook object that
communicates with the Qt object. The hook object is really just a set of method
pointers. System events on Kylix go through EventHandler, which is basically a
replacement for WndProc.

Programming differences on Linux

The Linux wchar_t widechar is 32 bits per character. The 16-bit Unicode standard
that Object Pascal widechars support is a subset of the 32-bit UCS standard
supported by Linux and the GNU libraries. Pascal widechar data must be widened to
32 bits per character before it can be passed to an OS function as wchar_t.

In Linux, widestrings are reference counted like long strings (in Windows, they're
not).

Multibyte handling differs in Linux. In Windows, multibyte characters (MBCS) are
represented as 1- and 2-byte char codes. In Linux, they are represented in 1 to 6 bytes.

AnsiStrings can carry multibyte character sequences, dependent upon the user's
locale settings. The Linux encoding for multibyte characters such as Japanese,
Chinese, Hebrew, and Arabic may not be compatible with the Windows encoding for
the same locale. Unicode is portable, whereas multibyte is not.

In Linux, you cannot use variables on absolute addresses. The syntax var X: Integer
absolute $1234; is not supported in PIC and is not allowed in Delphi.

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-23

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

Cross-platform database applications
On Windows, Delphi provides several choices for how to access database
information. These include using ADO, the Borland Database Engine (BDE), and
InterBase Express. These three choices are not available on Kylix, however. Instead,
you can use dbExpress, a new, cross-platform data access technology, which is also
available on Windows, starting with Delphi version 6.

Before you port a database application to dbExpress so that it will run on Linux, you
should understand the differences between using dbExpress and the data access
mechanism you were using. These differences occur at different levels.

• At the lowest level, there is a layer that communicates between your application
and the database server. This could be ADO, the BDE, or the InterBase client
software. This layer is replaced by dbExpress, which is a set of lightweight drivers
for dynamic SQL processing.

• The low-level data access is wrapped in a set of components that you add to data
modules or forms. These components include database connection components,
which represent the connection to a database server, and datasets, which represent
the data fetched from the server. Although there are some very important
differences, due to the unidirectional nature of dbExpress cursors, the differences
are less pronounced at this level, because datasets all share a common ancestor, as
do database connection components.

• At the user-interface level, there are the fewest differences. CLX data-aware
controls are designed to be as similar as possible to the corresponding Windows
controls. The major differences at the user interface level arise from changes
needed to accommodate the use of cached updates.

For information on porting existing database applications to dbExpress, see “Porting
database applications to Linux” on page 10-25. For information on designing new
dbExpress applications, see Chapter 14, “Designing database applications.”

dbExpress differences

On Linux, dbExpress manages the communication with database servers. dbExpress
consists of a set of lightweight drivers that implement a set of common interfaces.
Each driver is a shared object (.so file) that must be linked to your application.
Because dbExpress is designed to be cross-platform, it will also be available on
Windows as a set of dynamic-link libraries (.dlls).

As with any data-access layer, dbExpress requires the client-side software provided
by the database vendor. In addition, it uses a database-specific driver, plus two
configuration files, dbxconnections and dbxdrivers. This is markedly less than you
need for, say, the BDE, which requires the main Borland Database Engine library
(Idapi32.dll) plus a database-specific driver and a number of other supporting
libraries.

10-24 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

Here are some other differences between dbExpress and the other data-access layers
from which you need to port your application:

• dbExpress allows for a simpler and faster path to remote databases. As a result, you
can expect a noticeable performance increase for simple, straight-through data
access.

• dbExpress can process queries and stored procedures, but does not support the
concept of opening tables.

• dbExpress returns only unidirectional cursors.

• dbExpress has no built-in update support other than the ability to execute an
INSERT, DELETE, or UPDATE query.

• dbExpress does no metadata caching, and the design time metadata access interface
is implemented using the core data-access interface.

• dbExpress executes only queries requested by the user, thereby optimizing
database access by not introducing any extra queries.

• dbExpress manages a record buffer or a block of record buffers internally. This
differs from the BDE, where clients are required to allocate the memory used to
buffer records.

• dbExpress does not support local tables that are not SQL-based (such as Paradox,
dBase, or FoxPro).

• dbExpress drivers exist for InterBase, Oracle, DB2, and MySQL. If you are using a
different database server, you must either port your data to one of these databases,
write a dbExpress driver for the database server you are using, or obtain a third-
party dbExpress driver for your database server.

Component-level differences

When you write a dbExpress application, it requires a different set of data-access
components than those used in your existing database applications. The dbExpress
components share the same base classes as other data-access components (TDataSet
and TCustomConnection), which means that many of the properties, methods, and
events are the same as the components used in your existing applications.

Table 10.10 lists some of the important database components used in InterBase
Express, BDE, and ADO in the Windows environment and shows the comparable
dbExpress components for use on Linux and in cross-platform applications.

Table 10.10 Comparable data-access components

InterBase Express
components BDE components ADO components

dbExpress
components

TIBDatabase TDatabase TADOConnection TSQLConnection

TIBTable TTable TADOTable TSQLTable

TIBQuery TQuery TADOQuery TSQLQuery

TIBStoredProc TStoredProc TADOStoredProc TSQLStoredProc

TIBDataSet TADODataSet TSQLDataSet

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-25

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

The dbExpress datasets (TSQLTable, TSQLQuery, TSQLStoredProc, and TSQLDataSet)
are more limited than their counterparts, however, because they do not support
editing and only allow forward navigation. For details on the differences between the
dbExpress datasets and the other datasets that are available on Windows, see Chapter
22, “Using unidirectional datasets.”.

Because of the lack of support for editing and navigation, most dbExpress applications
do not work directly with the dbExpress datasets. Rather, they connect the dbExpress
dataset to a client dataset, which buffers records in memory and provides support for
editing and navigation. For more information about this architecture, see “Database
architecture” on page 14-5.

Note For very simple applications, you can use TSQLClientDataSet instead of a dbExpress
dataset connected to a client dataset. This has the benefit of simplicity, because there
is a 1:1 correspondence between the dataset in the application you are porting and
the dataset in the ported application, but is less flexible that explicitly connecting a
dbExpress dataset to a client dataset. For most applications, it is recommended that
you use a dbExpress dataset connected to a TClientDataSet component.

User interface-level differences

CLX data-aware controls are designed to be as similar as possible to the
corresponding Windows controls. As a result, porting the user-interface portion of
your database applications introduces few additional considerations beyond those
involved in porting any Windows application to CLX.

The major differences at the user interface level arise from differences in the way
dbExpress datasets or client datasets supply data.

If you are using only dbExpress datasets, then you must adjust your user interface to
accommodate the fact that the datasets do not support editing and only support
forward navigation. Thus, for example, you may need to remove controls that allow
users to move to a previous record. Because dbExpress datasets do not buffer data,
you can’t display data in a data-aware grid: only one record can be displayed at a
time.

If you have connected the dbExpress dataset to a client dataset, then the user interface
elements associated with editing and navigation should still work. You need only
reconnect them to the client dataset. The main consideration in this case is handling
how updates are written to the database. By default, most datasets on Windows write
updates to the database server automatically when they are posted (for example,
when the user moves to a new record). Client datasets, on the other hand, always
cache updates in memory. For information on how to accommodate this difference,
see “Updating data in dbExpress applications” on page 10-27.

Porting database applications to Linux

Porting your database application to dbExpress allows you to create a cross-platform
application that runs both on Windows and Linux. The porting process involves
making changes to your application because the technology is different. How
difficult it is to port depends on the type of application it is, how complex it is, and

10-26 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

what it needs to accomplish. An application that heavily uses Windows-specific
technologies such as ADO will be more difficult to port than one that uses Delphi
database technology.

Follow these general steps to port your Windows/VCL database application to
Kylix/CLX:

1 Consider where database data is stored. dbExpress provides drivers for Oracle,
Interbase, DB2, and MySQL. The data needs to reside on one of these SQL servers.

Some versions of Delphi include the Data Pump utility which you can use to move
local database data from platforms such as Paradox, dBase, and FoxPro onto one
of the supported platforms. (See the datapump.hlp file in Program Files\Common
Files\Borland\Shared\BDE for information on using the utility.)

2 If you have not isolated your user interface forms from data modules containing
the datasets and connection components, you may want to consider doing so
before you start the port. That way, you isolate the portions of your application
that require a completely new set of components into data modules. Forms that
represent the user interface can then be ported like any other application. For
details, see “Porting your application” on page 10-4.

The remaining steps assume that your datasets and connection components are
isolated in their own data modules.

3 Create a new data module to hold the CLX versions of your datasets and
connection components.

4 For each dataset in the original application, add a dbExpress dataset,
TDataSetProvider component, and TClientDataSet component. Use the
correspondences in Table 10.10 to decide which dbExpress dataset to use. Give
these components meaningful names.

• Set the ProviderName property of the TClientDataSet component to the name of
the TDataSetProvider component.

• Set the DataSet property of the TDataSetProvider component to the dbExpress
dataset.

• Change the DataSet property of any data source components that referred to the
original dataset so that it now refers to the client dataset.

5 Set properties on the new dataset to match the original dataset:

• If the original dataset was a TTable, TADOTable, or TIBTable component, set the
new TSQLTable’s TableName property to the original dataset’s TableName. Also
copy any properties used to set up master/detail relationships or specify
indexes. Properties specifying ranges and filters should be set on the client
dataset rather than the new TSQLTable component.

• If the original dataset was a TQuery, TADOQuery, or TIBQuery component, set
the new TSQLQuery component’s SQL property to the original dataset’s SQL
property. Set the Params property of the new TSQLQuery to match the value of
the original dataset’s Params or Parameters property. If you have set the
DataSource property to establish a master/detail relationship, copy this as well.

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-27

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

• If the original dataset was a TStoredProc, TADOStoredProc, or TIBStoredProc
component, set the new TSQLStoredProc component’s StoredProcName to the
StoredProcName or ProcedureName property of the original dataset. Set the
Params property of the new TSQLStoredProc to match the value of the original
dataset’s Params or Parameters property.

6 For any database connection components in the original application (TDatabase,
TIBDatabase, or TADOConnection), add a TSQLConnection component to the new
data module. You must also add a TSQLConnection component for every database
server to which you connected without a connection component (for example, by
using the ConnectionString property on an ADO dataset or by setting the
DatabaseName property of a BDE dataset to a BDE alias).

7 For each dbExpress dataset placed in step 4, set its SQLConnection property to the
TSQLConnection component that corresponds to the appropriate database
connection.

8 On each TSQLConnection component, specify the information needed to establish a
database connection. To do so, double-click the TSQLConnection component to
display the Connection Editor and set parameter values to indicate the
appropriate settings. If you had to transfer data to a new database server in step 1,
then specify settings appropriate to the new server. If you are using the same
server as before, you can look up some of this information on the original
connection component:

• If the original application used TDatabase, you must transfer the information
that appears in the Params and TransIsolation properties.

• If the original application used TADOConnection, you must transfer the
information that appears in the ConnectionString and IsolationLevel properties.

• If the original application used TIBDatabase, you must transfer the information
that appears in the DatabaseName and Params properties.

• If there was no original connection component, you must transfer the
information associated with the BDE alias or that appeared in the dataset’s
ConnectionString property.

You may want to save this set of parameters under a new connection name. For
more details on this process, see “Controlling connections” on page 17-2.

Updating data in dbExpress applications

dbExpress applications use client datasets to support editing. When you post edits to a
client dataset, the changes are written to the client dataset’s in-memory snapshot of
the data, but are not automatically written to the database server. If your original
application used a client dataset for caching updates, then you do not need to change
anything to support editing on Linux. However, if you relied on the default behavior
of most datasets on Windows, which is to write edits to the database server when
you post records, you must make changes to accommodate the use of a client dataset.

10-28 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

There are two ways to convert an application that did not previously cache updates:

• You can mimic the behavior of the dataset on Windows by writing code to apply
each updated record to the database server as soon as it is posted. To do this,
supply the client dataset with an AfterPost event handler that applies update to the
database server:

procedure TForm1.ClientDataSet1AfterPost(DataSet: TDataSet);
begin

with DataSet as TClientDataSet do
ApplyUpdates(1);

end;

• You can adjust your user interface to deal with cached updates. This approach has
certain advantages, such as reducing the amount of network traffic and
minimizing transaction times. However, if you switch to using cached updates,
you must decide when to apply those updates back to the database server, and
probably make user interface changes to let users initiate the application of
updates or inform provide them with feedback about whether their edits have
been written to the database. Further, because update errors are not detected when
the user posts a record, you will need to change the way you report such errors to
the user, so that they can see which update caused a problem as well as what type
of problem occurred.

If your original application used the support provided by the BDE or ADO for
caching updates, you will need to make some adjustments in your code to switch to
using a client dataset. The following table lists the properties, events, and methods
that support cached updates on BDE and ADO datasets, and the corresponding
properties, methods and events on TClientDataSet:

Table 10.11 Properties, methods, and events for cached updates

On BDE datasets
(or TDatabase) On ADO datasets On TClientDataSet Purpose

CachedUpdates LockType Not needed, client
datasets always
cache updates.

Determines whether cached
updates are in effect.

Not supported. CursorType Not supported. Specifies how isolated the dataset
is from changes on the server.

UpdatesPending Not supported. ChangeCount Indicates whether the local cache
contains updated records that
need to be applied to the
database.

UpdateRecordTypes FilterGroup StatusFilter Indicates the kind of updated
records to make visible when
applying cached updates.

UpdateStatus RecordStatus UpdateStatus Indicates if a record is unchanged,
modified, inserted, or deleted.

OnUpdateError Not supported. OnReconcileError An event for handling update
errors on a record-by-record basis.

ApplyUpdates
(on dataset or
database)

UpdateBatch ApplyUpdates Applies records in the local cache
to the database.

U s i n g C L X f o r c r o s s - p l a t f o r m d e v e l o p m e n t 10-29

C r o s s - p l a t f o r m I n t e r n e t a p p l i c a t i o n s

Cross-platform Internet applications
An Internet application is a client/server application that uses standard Internet
protocols for connecting the client to the server. Because your applications use
standard Internet protocols for client/server communications, you can make your
applications cross-platform. For example, a server-side program for an Internet
application communicates with the client through the Web server software for the
machine. The server application is typically written for Linux or Windows, but can
also be cross-platform. The clients can be on either platform.

You can use Delphi or Kylix to create Web server applications as CGI or Apache
applications for deployment on Linux. On Windows, you can create other types of
Web servers such as Microsoft Server DLLs (ISAPI), Netscape Server DLLs (NSAPI),
and Windows CGI applications. Only straight CGI applications and some
applications that use Web Broker will run on both Windows and Linux.

Porting Internet applications to Linux

If you have existing Internet applications that you want to make cross-platform, you
should consider whether you want to port your Web server application or if you
want to create a new application on Linux. See Chapter 27, “Creating Internet
applications” for information on writing Web servers. If your application uses Web
Broker and writes to the Web Broker interface and does not use native API calls, it
will not be as difficult to port it to Linux.

If your application writes to ISAPI, NSAPI, Windows CGI, or other Web APIs, it will
be more difficult to port. You will need to search through your source files and
translate these API calls into Apache (see httpd.pas in the Internet directory for
function prototypes for Apache APIs) or CGI calls. You also need to make all other
suggested changes described in “Porting VCL applications to CLX” on page 10-2.

CancelUpdates CancelUpdates or
CancelBatch

CancelUpdates Removes pending updates from
the local cache without applying
them.

CommitUpdates Handled
automatically

Reconcile Clears the update cache following
successful application of updates.

FetchAll Not supported GetNextPacket
(and PacketRecords)

Copies database records to the
local cache for editing and
updating.

RevertRecord CancelBatch RevertRecord Undoes updates to the current
record if updates are not yet
applied.

Table 10.11 Properties, methods, and events for cached updates (continued)

On BDE datasets
(or TDatabase) On ADO datasets On TClientDataSet Purpose

10-30 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-1

C h a p t e r

11
Chapter 11Working with packages and

components
A package is a special dynamic-link library used by Delphi applications, the IDE, or
both. Runtime packages provide functionality when a user runs an application. Design-
time packages are used to install components in the IDE and to create special property
editors for custom components. A single package can function at both design time
and runtime, and design-time packages frequently work by calling runtime
packages. To distinguish them from other DLLs, package libraries are stored in files
that end with the .bpl (Borland package library) extension.

Like other runtime libraries, packages contain code that can be shared among
applications. For example, the most frequently used Delphi components reside in a
package called vcl. Each time you create an application, it automatically uses vcl.
When you compile an application created this way, the application’s executable
image contains only the code and data unique to it; the common code is in the
runtime package called vcl60.bpl. A computer with several package-enabled
applications installed on it needs only a single copy of vcl60.bpl, which is shared by
all the applications and the Delphi IDE itself.

Delphi ships with several precompiled runtime packages that encapsulate VCL and
CLX components. Delphi also uses design-time packages to manipulate components
in the IDE.

You can build applications with or without packages. However, if you want to add
custom components to the IDE, you must install them as design-time packages.

You can create your own runtime packages to share among applications. If you write
Delphi components, you can compile your components into design-time packages
before installing them.

11-2 D e v e l o p e r ’ s G u i d e

W h y u s e p a c k a g e s ?

Why use packages?
Design-time packages simplify the tasks of distributing and installing custom
components. Runtime packages, which are optional, offer several advantages over
conventional programming. By compiling reused code into a runtime library, you
can share it among applications. For example, all of your applications—including
Delphi itself—can access standard components through packages. Since the
applications don’t have separate copies of the component library bound into their
executables, the executables are much smaller—saving both system resources and
hard disk storage. Moreover, packages allow faster compilation because only code
unique to the application is compiled with each build.

Packages and standard DLLs

Create a package when you want to make a custom component that’s available
through the IDE. Create a standard DLL when you want to build a library that can be
called from any application, regardless of the development tool used to build the
application.

The following table lists the file types associated with packages:

You can include VCL or CLX or both types of components in a package. Packages
meant to be cross-platform should include CLX components only.

Note Packages share their global data with other modules in an application.

For more information about DLLs and packages, see the Object Pascal Language Guide.

Runtime packages
Runtime packages are deployed with Delphi applications. They provide
functionality when a user runs the application.

To run an application that uses packages, a computer must have both the
application’s executable file and all the packages (.bpl files) that the application uses.

Table 11.1 Compiled package files

File extension Contents

dpk The source file listing the units contained in the package.

dcp A binary image containing a package header and the concatenation of all dcu
files in the package, including all symbol information required by the compiler.
A single dcp file is created for each package. The base name for the dcp is the
base name of the dpk source file. You must have a .dcp file to build an
application with packages.

dcu A binary image for a unit file contained in a package. One dcu is created, when
necessary, for each unit file.

bpl The runtime package. This file is a Windows DLL with special Delphi-specific
features. The base name for the bpl is the base name of the dpk source file.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-3

R u n t i m e p a c k a g e s

The .bpl files must be on the system path for an application to use them. When you
deploy an application, you must make sure that users have correct versions of any
required .bpls.

Using packages in an application

To use packages in an application,

1 Load or create a project in the IDE.

2 Choose Project|Options.

3 Choose the Packages tab.

4 Select the “Build with Runtime Packages” check box, and enter one or more
package names in the edit box underneath. (Runtime packages associated with
installed design-time packages are already listed in the edit box.)

5 To add a package to an existing list, click the Add button and enter the name of the
new package in the Add Runtime Package dialog. To browse from a list of
available packages, click the Add button, then click the Browse button next to the
Package Name edit box in the Add Runtime Package dialog.

If you edit the Search Path edit box in the Add Runtime Package dialog, you will
be changing Delphi’s global Library Path.

You do not need to include file extensions with package names (or the number
representing the Delphi release); that is, vcl60.bpl is written as vcl. If you type
directly into the Runtime Packages edit box, be sure to separate multiple names
with semicolons. For example:

rtl;vcl;vcldb;vclado;vclx;Vclbde;

Packages listed in the Runtime Packages edit box are automatically linked to your
application when you compile. Duplicate package names are ignored, and if the edit
box is empty the application is compiled without packages.

Runtime packages are selected for the current project only. To make the current
choices into automatic defaults for new projects, select the “Defaults” check box at
the bottom of the dialog.

Note When you create an application with packages, you still need to include the names of
the original Delphi units in the uses clause of your source files. For example, the
source file for your main form might begin like this:

unit MainForm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
 Dialogs;

The units referenced in this example are contained in the vcl and rtl packages.
Nonetheless, you must keep these references in the uses clause, even if you use vcl
and rtl in your application, or you will get compiler errors. In generated source files,
Delphi adds these units to the uses clause automatically.

11-4 D e v e l o p e r ’ s G u i d e

R u n t i m e p a c k a g e s

Dynamically loading packages

To load a package at runtime, call the LoadPackage function. LoadPackage loads the
package, checks for duplicate units, and calls the initialization blocks of all units
contained in the package. For example, the following code could be executed when a
file is chosen in a file-selection dialog.

with OpenDialog1 do
if Execute then

with PackageList.Items do
AddObject(FileName, Pointer(LoadPackage(FileName)));

To unload a package dynamically, call UnloadPackage. Be careful to destroy any
instances of classes defined in the package and to unregister classes that were
registered by it.

Deciding which runtime packages to use

Delphi ships with several precompiled runtime packages, including rtl and vcl,
which supply basic language and component support.

The vcl package contains the most commonly used components; the rtl package
includes all the non-component system functions and Windows interface elements. It
does not include database or other special components, which are available in
separate packages.

To create a client/server database application that uses packages, you need at least
three runtime packages: vcl and vcldb. If you want to use Outline components in
your application, you also need vclx. To use these packages, choose Project|Options,
select the Packages tab, and enter the following list in the Runtime Packages edit box.

rtl;vcl;Vcldb;vclx;

Actually, you don’t have to include vcl and rtl, because they are referenced in the
Requires clause of vcldb. (See “Requires clause” on page 11-8.) Your application will
compile just the same whether or not vcl and rtl are included in the Runtime
Packages edit box.

Custom packages

A custom package is either a bpl you code and compile yourself or a precompiled
package from a third-party vendor. To use a custom runtime package with an
application, choose Project|Options and add the name of the package to the Runtime
Packages edit box on the Packages page. For example, suppose you have a statistical
package called stats.bpl. To use it in an application, the line you enter in the Runtime
Packages edit box might look like this:

rtl;vcl;vcldb;stats

If you create your own packages, you can add them to the list as needed.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-5

D e s i g n - t i m e p a c k a g e s

Design-time packages
Design-time packages are used to install components on the IDE’s Component
palette and to create special property editors for custom components.

Delphi ships with many design-time component packages preinstalled in the IDE.
Which ones are installed depends on which version of Delphi you are using and
whether or not you have customized it. You can view a list of what packages are
installed on your system by choosing Component|Install Packages.

The design-time packages work by calling runtime packages, which they reference in
their Requires clauses. (See “Requires clause” on page 11-8.) For example, dclstd
references vcl. Dclstd itself contains additional functionality that makes most of the
standard components available on the Component palette.

In addition to preinstalled packages, you can install your own component packages,
or component packages from third-party developers, in the IDE. The dclusr design-
time package is provided as a default container for new components.

Installing component packages

All components are installed in the IDE as packages. If you’ve written your own
components, create and compile a package that contains them. (See “Creating and
editing packages” on page 11-6.) Your component source code must follow the
model described in Part V, “Creating custom components”.

To install or uninstall your own components, or components from a third-party
vendor, follow these steps:

1 If you are installing a new package, copy or move the package files to a local
directory. If the package is shipped with .bpl, .dcp, and .dcu files, be sure to copy
all of them. (For information about these files, see , “Package files created by a
successful compilation.”)

The directory where you store the .dcp file—and the .dcu files, if they are included
with the distribution—must be in the Delphi Library Path.

If the package is shipped as a .dpc (package collection) file, only the one file needs
to be copied; the .dpc file contains the other files. (For more information about
package collection files, see “Package collection files” on page 11-13.)

2 Choose Component|Install Packages from the IDE menu, or choose Project|
Options and click the Packages tab.

3 A list of available packages appears under “Design packages.”

• To install a package in the IDE, select the check box next to it.

• To uninstall a package, deselect its check box.

• To see a list of components included in an installed package, select the package
and click Components.

11-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

• To add a package to the list, click Add and browse in the Open Package dialog
box for the directory where the .bpl or .dpc file resides (see step 1). Select the
.bpl or .dpc file and click Open. If you select a .dpc file, a new dialog box
appears to handle the extraction of the .bpl and other files from the package
collection.

• To remove a package from the list, select the package and click Remove.

4 Click OK.

The components in the package are installed on the Component palette pages
specified in the components’ RegisterComponents procedure, with the names they
were assigned in the same procedure.

New projects are created with all available packages installed, unless you change the
default settings. To make the current installation choices into the automatic default
for new projects, check the Default check box at the bottom of the Packages tab of the
Project Options dialog box.

To remove components from the Component palette without uninstalling a package,
select Component|Configure Palette, or select Tools|Environment Options and click
the Palette tab. The Palette options tab lists each installed component along with the
name of the Component palette page where it appears. Selecting any component and
clicking Hide removes the component from the palette.

Creating and editing packages
Creating a package involves specifying

• A name for the package.

• A list of other packages to be required by, or linked to, the new package.

• A list of unit files to be contained by, or bound into, the package when it is
compiled. The package is essentially a wrapper for these source-code units, which
contain the functionality of the compiled .bpl. The Contains clause is where you
put the source-code units for custom components that you want to compile into a
package.

Package source files, which end with the .dpk extension, are generated by the
Package editor.

Creating a package

To create a package, follow the procedure below. Refer to “Understanding the
structure of a package” on page 11-8 for more information about the steps outlined
here.

Note Do not use IFDEFs in a package file (.dpk) such as when doing cross-platform
development. You can use them in the source code, however.

1 Choose File|New, select the Package icon, and click OK.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-7

C r e a t i n g a n d e d i t i n g p a c k a g e s

2 The generated package is displayed in the Package editor.

3 The Package editor shows a Requires node and a Contains node for the new
package.

4 To add a unit to the contains clause, click the Add to package speed button. In the
Add unit page, type a .pas file name in the Unit file name edit box, or click Browse
to browse for the file, and then click OK. The unit you’ve selected appears under
the Contains node in the Package editor. You can add additional units by
repeating this step.

5 To add a package to the requires clause, click the Add to package speed button. In
the Requires page, type a .dcp file name in the Package name edit box, or click
Browse to browse for the file, and then click OK. The package you’ve selected
appears under the Requires node in the Package editor. You can add additional
packages by repeating this step.

6 Click the Options speed button, and decide what kind of package you want to
build.

• To create a design-time only package (a package that cannot be used at
runtime), select the Designtime only radio button. (Or add the
{$DESIGNONLY} compiler directive to the dpk file.)

• To create a runtime-only package (a package that cannot be installed), select the
Runtime only radio button. (Or add the {$RUNONLY} compiler directive to the
dpk file.)

• To create a package that is available at both design time and runtime, select the
Designtime and runtime radio button.

7 In the Package editor, click the Compile package speed button to compile your
package.

Editing an existing package

You can open an existing package for editing in several ways:

• Choose File|Open (or File|Reopen) and select a dpk file.

• Choose Component|Install Packages, select a package from the Design Packages
list, and click the Edit button.

• When the Package editor is open, select one of the packages in the Requires node,
right-click, and choose Open.

To edit a package’s description or set usage options, click the Options speed button in
the Package editor and select the Description tab.

The Project Options dialog has a Default check box in the lower left corner. If you
click OK when this box is checked, the options you’ve chosen are saved as default
settings for new projects. To restore the original defaults, delete or rename the
defproj.dof file.

11-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

Editing package source files manually

Package source files, like project files, are generated by Delphi from information you
supply. Like project files, they can also be edited manually. A package source file
should be saved with the .dpk (Delphi package) extension to avoid confusion with
other files containing Object Pascal source code.

To open a package source file in the Code editor,

1 Open the package in the Package editor.

2 Right-click in the Package editor and select View Source.

• The package heading specifies the name for the package.

• The requires clause lists other, external packages used by the current package.
If a package does not contain any units that use units in another package, then it
doesn’t need a requires clause.

• The contains clause identifies the unit files to be compiled and bound into the
package. All units used by contained units which do not exist in required
packages will also be bound into the package, although they won’t be listed in
the contains clause (the compiler will give a warning).

For example, the following code declares the vcldb package (in the source file
vcldb60.bpl):

package vcldb;
requires vcldb;
contains rtl, vcl, Db, DBActns, DBOleCtl, Dbcgrids, dbCommon, dbConsts, Dbctrls,

Dbgrids, Dblogdlg, SQLTimSt, FmtBcd;
end.

Understanding the structure of a package

Packages include the following parts:

• Package name
• Requires clause
• Contains clause

Naming packages
Package names must be unique within a project. If you name a package STATS, the
Package editor generates a source file for it called STATS.dpk; the compiler generates
an executable and a binary image called STATS.bpl and STATS.dcp, respectively.
Use STATS to refer to the package in the requires clause of another package, or when
using the package in an application.

Requires clause
The requires clause specifies other, external packages that are used by the current
package. An external package included in the requires clause is automatically linked

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-9

C r e a t i n g a n d e d i t i n g p a c k a g e s

at compile time into any application that uses both the current package and one of
the units contained in the external package.

If the unit files contained in your package make references to other packaged units,
the other packages should appear in your package’s requires clause or you should
add them. If the other packages are omitted from the requires clause, the compiler
will import them into your package ‘implicitly contained units’.

Note Most packages that you create will require rtl. If using VCL components, you’ll also
need to include the vcl package. If using CLX components for cross-platform
programming, you need to include VisualCLX.

Avoiding circular package references

Packages cannot contain circular references in their requires clause. This means that

• A package cannot reference itself in its own requires clause.

• A chain of references must terminate without rereferencing any package in the
chain. If package A requires package B, then package B cannot require package A;
if package A requires package B and package B requires package C, then package
C cannot require package A.

Handling duplicate package references

Duplicate references in a package’s requires clause—or in the Runtime Packages edit
box—are ignored by the compiler. For programming clarity and readability,
however, you should catch and remove duplicate package references.

Contains clause
The contains clause identifies the unit files to be bound into the package. If you are
writing your own package, put your source code in pas files and include them in the
contains clause.

Avoiding redundant source code uses

A package cannot appear in the contains clause of another package.

All units included directly in a package’s contains clause, or included indirectly in
any of those units, are bound into the package at compile time.

A unit cannot be contained (directly or indirectly) in more than one package used by
the same application, including the Delphi IDE. This means that if you create a package
that contains one of the units in vcl you won’t be able to install your package in the
IDE. To use an already-packaged unit file in another package, put the first package in
the second package’s requires clause.

11-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

Compiling packages

You can compile a package from the IDE or from the command line. To recompile a
package by itself from the IDE,

1 Choose File|Open.

2 Select Delphi package (*.dpk) from the Files of Type drop-down list.

3 Select a .dpk file in the dialog.

4 When the Package editor opens, click the Compile speed button.

You can insert compiler directives into your package source code. For more
information, see “Package-specific compiler directives”, below.

If you compile from the command line, several package-specific switches are
available. For more information, see “Using the command-line compiler and linker”
on page 11-12.

Package-specific compiler directives
The following table lists package-specific compiler directives that you can insert into
your source code.

Note Including {$DENYPACKAGEUNIT ON} in your source code prevents the unit file
from being packaged. Including {$G-} or {$IMPORTEDDATA OFF} may prevent a
package from being used in the same application with other packages. Packages
compiled with the {$DESIGNONLY ON} directive should not ordinarily be used in
applications, since they contain extra code required by the IDE. Other compiler
directives may be included, if appropriate, in package source code. See Compiler
directives in the online help for information on compiler directives not discussed
here.

Refer to “Creating packages and DLLs” on page 5-9 for additional directives that can
be used in all libraries.

Table 11.2 Package-specific compiler directives

Directive Purpose

{$IMPLICITBUILD OFF} Prevents a package from being implicitly recompiled later.
Use in .dpk files when compiling packages that provide
low-level functionality, that change infrequently between
builds, or whose source code will not be distributed.

{$G-} or {IMPORTEDDATA OFF} Disables creation of imported data references. This directive
increases memory-access efficiency, but prevents the unit
where it occurs from referencing variables in other
packages.

{$WEAKPACKAGEUNIT ON} Packages unit “weakly.” See “Weak packaging” on
page 11-11 below.

{$DENYPACKAGEUNIT ON} Prevents unit from being placed in a package.

{$DESIGNONLY ON} Compiles the package for installation in the IDE. (Put in
.dpk file.)

{$RUNONLY ON} Compiles the package as runtime only. (Put in .dpk file.)

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-11

C r e a t i n g a n d e d i t i n g p a c k a g e s

Weak packaging
The $WEAKPACKAGEUNIT directive affects the way a .dcu file is stored in a
package’s .dcp and .bpl files. (For information about files generated by the compiler,
see “Package files created by a successful compilation” on page 11-12.) If
{$WEAKPACKAGEUNIT ON} appears in a unit file, the compiler omits the unit
from bpls when possible, and creates a non-packaged local copy of the unit when it is
required by another application or package. A unit compiled with this directive is
said to be “weakly packaged.”

For example, suppose you’ve created a package called PACK that contains only one
unit, UNIT1. Suppose UNIT1 does not use any further units, but it makes calls to
RARE.dll. If you put {$WEAKPACKAGEUNIT ON} in UNIT1.pas when you
compile your package, UNIT1 will not be included in PACK.bpl; you will not have to
distribute copies of RARE.dll with PACK. However, UNIT1 will still be included in
PACK.dcp. If UNIT1 is referenced by another package or application that uses
PACK, it will be copied from PACK.dcp and compiled directly into the project.

Now suppose you add a second unit, UNIT2, to PACK. Suppose that UNIT2 uses
UNIT1. This time, even if you compile PACK with {$WEAKPACKAGEUNIT ON} in
UNIT1.pas, the compiler will include UNIT1 in PACK.bpl. But other packages or
applications that reference UNIT1 will use the (non-packaged) copy taken from
PACK.dcp.

Note Unit files containing the {$WEAKPACKAGEUNIT ON} directive must not have
global variables, initialization sections, or finalization sections.

The $WEAKPACKAGEUNIT directive is an advanced feature intended for
developers who distribute their packages to other Delphi programmers. It can help
you to avoid distribution of infrequently used DLLs, and to eliminate conflicts
among packages that may depend on the same external library.

For example, Delphi’s PenWin unit references PenWin.dll. Most projects don’t use
PenWin, and most computers don’t have PenWin.dll installed on them. For this
reason, the PenWin unit is weakly packaged in vcl. When you compile a project that
uses PenWin and the vcl package, PenWin is copied from VCL60.dcp and bound
directly into your project; the resulting executable is statically linked to PenWin.dll.

If PenWin were not weakly packaged, two problems would arise. First, vcl itself
would be statically linked to PenWin.dll, and so you could not load it on any
computer which didn’t have PenWin.dll installed. Second, if you tried to create a
package that contained PenWin, a compiler error would result because the PenWin
unit would be contained in both vcl and your package. Thus, without weak
packaging, PenWin could not be included in standard distributions of vcl.

11-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

Using the command-line compiler and linker
When you compile from the command line, you can use the package-specific
switches listed in the following table.

Note Using the -$G- switch may prevent a package from being used in the same
application with other packages. Other command-line options may be used, if
appropriate, when compiling packages. See “The Command-line compiler” in the
online help for information on command-line options not discussed here.

Package files created by a successful compilation
To create a package, you compile a source file that has a .dpk extension. The base
name of the .dpk file becomes the base name of the files generated by the compiler.
For example, if you compile a package source file called traypak.dpk, the compiler
creates a package called traypak.bpl.

The following table lists the files produced by the successful compilation of a
package.

When compiled, the bpi, bpl, and lib files are generated by default in the directories
specified in Library page of the Tools|Environment Options dialog. You can
override the default settings by clicking the Options speed button in the Package
editor to display the Project Options dialog; make any changes on the Directories/
Conditionals page.

Table 11.3 Package-specific command-line compiler switches

Switch Purpose

-$G- Disables creation of imported data references. Using this switch increases
memory-access efficiency, but prevents packages compiled with it from
referencing variables in other packages.

-LEpath Specifies the directory where the package bpl file will be placed.

-LNpath Specifies the directory where the package dcp file will be placed.

-LUpackage Use packages.

-Z Prevents a package from being implicitly recompiled later. Use when compiling
packages that provide low-level functionality, that change infrequently between
builds, or whose source code will not be distributed.

Table 11.4 Compiled package files

File extension Contents

dcp A binary image containing a package header and the concatenation of all dcu
files in the package. A single dcp file is created for each package. The base name
for the dcp is the base name of the dpk source file.

dcu A binary image for a unit file contained in a package. One dcu is created, when
necessary, for each unit file.

bpl The runtime package. This file is a Windows DLL with special Delphi-specific
features. The base name for the bpl is the base name of the dpk source file.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-13

D e p l o y i n g p a c k a g e s

Deploying packages
You deploy packages much like you deploy other applications. For general
deployment information, refer to Chapter 13, “Deploying applications”.

Deploying applications that use packages

When distributing an application that uses runtime packages, make sure that your
users have the application’s .exe file as well as all the library (.bpl or .dll) files that the
application calls. If the library files are in a different directory from the .exe file, they
must be accessible through the user’s Path. You may want to follow the convention of
putting library files in the Windows\System directory. If you use InstallShield
Express, your installation script can check the user’s system for any packages it
requires before blindly reinstalling them.

Distributing packages to other developers

If you distribute runtime or design-time packages to other Delphi developers, be sure
to supply both .dcp and .bpl files. You will probably want to include .dcu files as
well.

Package collection files

Package collections (.dpc files) offer a convenient way to distribute packages to other
developers. Each package collection contains one or more packages, including bpls
and any additional files you want to distribute with them. When a package collection
is selected for IDE installation, its constituent files are automatically extracted from
their .pce container; the Installation dialog box offers a choice of installing all
packages in the collection or installing packages selectively.

To create a package collection,

1 Choose Tools|Package Collection Editor to open the Package Collection editor.

2 Click the Add a Package speed button, then select a bpl in the Select Package
dialog and click Open. To add more bpls to the collection, click the Add a Package
speed button again. A tree diagram on the left side of the Package editor displays
the bpls as you add them. To remove a package, select it and click the Remove
Package speed button.

3 Select the Collection node at the top of the tree diagram. On the right side of the
Package Collection editor, two fields will appear:

• In the Author/Vendor Name edit box, you can enter optional information
about your package collection that will appear in the Installation dialog when
users install packages.

11-14 D e v e l o p e r ’ s G u i d e

D e p l o y i n g p a c k a g e s

• Under Directory List, list the default directories where you want the files in
your package collection to be installed. Use the Add, Edit, and Delete buttons to
edit this list. For example, suppose you want all source code files to be copied to
the same directory. In this case, you might enter Source as a Directory Name
with C:\MyPackage\Source as the Suggested Path. The Installation dialog box will
display C:\MyPackage\Source as the suggested path for the directory.

4 In addition to bpls, your package collection can contain .dcp, .dcu, and .pas (unit)
files, documentation, and any other files you want to include with the distribution.
Ancillary files are placed in file groups associated with specific packages (bpls);
the files in a group are installed only when their associated bpl is installed. To
place ancillary files in your package collection, select a bpl in the tree diagram and
click the Add File Group speed button; type a name for the file group. Add more
file groups, if desired, in the same way. When you select a file group, new fields
will appear on the right in the Package Collection editor,

• In the Install Directory list box, select the directory where you want files in this
group to be installed. The drop-down list includes the directories you entered
under Directory List in step 3, above.

• Check the Optional Group check box if you want installation of the files in this
group to be optional.

• Under Include Files, list the files you want to include in this group. Use the
Add, Delete, and Auto buttons to edit the list. The Auto button allows you to
select all files with specified extensions that are listed in the contains clause of
the package; the Package Collection editor uses Delphi’s global Library Path to
search for these files.

5 You can select installation directories for the packages listed in the requires clause
of any package in your collection. When you select a bpl in the tree diagram, four
new fields appear on the right side of the Package Collection editor:

• In the Required Executables list box, select the directory where you want the
.bpl files for packages listed in the requires clause to be installed. (The drop-
down list includes the directories you entered under Directory List in step 3,
above.) The Package Collection Editor searches for these files using Delphi’s
global Library Path and lists them under Required Executable Files.

• In the Required Libraries list box, select the directory where you want the .dcp
files for packages listed in the requires clause to be installed. (The drop-down
list includes the directories you entered under Directory List in step 3, above.)
The Package Collection Editor searches for these files using Delphi’s global
Library Path and lists them under Required Library Files.

6 To save your package collection source file, choose File|Save. Package collection
source files should be saved with the .pce extension.

7 To build your package collection, click the Compile speed button. The Package
Collection editor generates a .dpc file with the same name as your source (.pce)
file. If you have not yet saved the source file, the editor queries you for a file name
before compiling.

To edit or recompile an existing .pce file, select File|Open in the Package Collection
editor and locate the file you want to work with.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-1

C h a p t e r

12
Chapter 12Creating international applications

This chapter discusses guidelines for writing applications that you plan to distribute
to an international market. By planning ahead, you can reduce the amount of time
and code necessary to make your application function in its foreign market as well as
in its domestic market.

Internationalization and localization
To create an application that you can distribute to foreign markets, there are two
major steps that need to be performed:

• Internationalization
• Localization

If your version of Delphi includes the Translation Tools, you can use the them to
manage localization. For more information, see the online Help for the Translation
Tools (ETM.hlp).

Internationalization

Internationalization is the process of enabling your program to work in multiple
locales. A locale is the user’s environment, which includes the cultural conventions of
the target country as well as the language. Windows supports a large set of locales,
each of which is described by a language and country pair.

12-2 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Localization

Localization is the process of translating an application so that it functions in a
specific locale. In addition to translating the user interface, localization may include
functionality customization. For example, a financial application may be modified to
be aware of the different tax laws in different countries.

Internationalizing applications
You need to complete the following steps to create internationalized applications:

• You must enable your code to handle strings from international character sets.

• You need to design your user interface so that it can accommodate the changes
that result from localization.

• You need to isolate all resources that need to be localized.

Enabling application code

You must make sure that the code in your application can handle the strings it will
encounter in the various target locales.

Character sets
The United States edition of Windows uses the ANSI Latin-1 (1252) character set.
However, other editions of Windows use different character sets. For example, the
Japanese version of Windows uses the Shift-JIS character set (code page 932), which
represents Japanese characters as multibyte character codes.

There are generally three types of characters sets:

• Single-byte
• Multibyte
• Fixed-width multibyte

Windows and Linux both support single-byte and multibyte character sets as well as
Unicode. With a single-byte character set, each byte in a string represents one
character. The ANSI character set used by many Western operating systems is a
single-byte character set.

In a multibyte character set, some characters are represented by one byte and others
by more than one byte. The first byte of a multibyte character is called the lead byte.
In general, the lower 128 characters of a multibyte character set map to the 7-bit
ASCII characters, and any byte whose ordinal value is greater than 127 is the lead
byte of a multibyte character. Only single-byte characters can contain the null value
(#0). Multibyte character sets—especially double-byte character sets (DBCS)—are
widely used for Asian languages, while the UTF-8 character set used by Linux is a
multibyte encoding of Unicode.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-3

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

OEM and ANSI character sets
It is sometimes necessary to convert between the Windows character set (ANSI) and
the character set specified by the code page of the user’s machine (called the OEM
character set).

Multibyte character sets
The ideographic character sets used in Asia cannot use the simple 1:1 mapping
between characters in the language and the one byte (8-bit) char type. These
languages have too many characters to be represented using the 1-byte char. Instead,
a multibyte string can contain one or more bytes per character. AnsiStrings can
contain a mix of single-byte and multibyte characters.

The lead byte of every multibyte character code is taken from a reserved range that
depends on the specific character set. The second and subsequent bytes can
sometimes be the same as the character code for a separate 1-byte character, or it can
fall in the range reserved for the first byte of multibyte characters. Thus, the only way
to tell whether a particular byte in a string represents a single character or is part of a
multibyte character is to read the string, starting at the beginning, parsing it into 2 or
more byte characters when a lead byte from the reserved range is encountered.

When writing code for Asian locales, you must be sure to handle all string
manipulation using functions that are enabled to parse strings into multibyte
characters. Delphi provides you with many runtime library functions that allow you
to do this, many of which are listed here:

Remember that the length of the strings in bytes does not necessarily correspond to
the length of the string in characters. Be careful not to truncate strings by cutting a
multibyte character in half. Do not pass characters as a parameter to a function or
procedure, since the size of a character can’t be known up front. Instead, always pass
a pointer to a character or a string.

AdjustLineBreaks AnsiStrLower ExtractFileDir

AnsiCompareFileName AnsiStrPos ExtractFileExt

AnsiExtractQuotedStr AnsiStrRScan ExtractFileName

AnsiLastChar AnsiStrScan ExtractFilePath

AnsiLowerCase AnsiStrUpper ExtractRelativePath

AnsiLowerCaseFileName AnsiUpperCase FileSearch

AnsiPos AnsiUpperCaseFileName IsDelimiter

AnsiQuotedStr ByteToCharIndex IsPathDelimiter

AnsiStrComp ByteToCharLen LastDelimiter

AnsiStrIComp ByteType StrByteType

AnsiStrLastChar ChangeFileExt StringReplace

AnsiStrLComp CharToByteIndex WrapText

AnsiStrLIComp CharToByteLen

12-4 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Wide characters
Another approach to working with ideographic character sets is to convert all
characters to a wide character encoding scheme such as Unicode. Unicode characters
and strings are also called wide characters and wide character strings. In the Unicode
character set, each character is represented by two bytes. Thus a Unicode string is a
sequence not of individual bytes but of two-byte words.

The first 256 Unicode characters map to the ANSI character set. The Windows
operating system supports Unicode (UCS-2). The Linux operating system supports
UCS-4, a superset of UCS-2. Delphi/Kylix supports UCS-2 on both platforms.
Because wide characters are two bytes instead of one, the character set can represent
many more different characters.

Using a wide character encoding scheme has the advantage that you can make many
of the usual assumptions about strings that do not work for MBCS systems. There is a
direct relationship between the number of bytes in the string and the number of
characters in the string. You do not need to worry about cutting characters in half or
mistaking the second half of a character for the start of a different character.

The biggest disadvantage of working with wide characters is that Windows 9x only
supports a few wide character API function calls. Because of this, the VCL
components represent all string values as single byte or MBCS strings. Translating
between the wide character system and the MBCS system every time you set a string
property or read its value would require additional code and slow your application
down. However, you may want to translate into wide characters for some special
string processing algorithms that need to take advantage of the 1:1 mapping between
characters and WideChars.

Including bi-directional functionality in applications
Some languages do not follow the left to right reading order commonly found in
western languages, but rather read words right to left and numbers left to right.
These languages are termed bi-directional (BiDi) because of this separation. The most
common bi-directional languages are Arabic and Hebrew, although other Middle
East languages are also bi-directional.

TApplication has two properties, BiDiKeyboard and NonBiDiKeyboard, that allow you
to specify the keyboard layout. In addition, the VCL supports bi-directional
localization through the BiDiMode and ParentBiDiMode properties. The following
table lists VCL objects that have these properties:

Table 12.1 VCL objects that support BiDi

Component palette page VCL object

Standard TButton

 TCheckBox

 TComboBox

 TEdit

 TGroupBox

 TLabel

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-5

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

 TListBox

 TMainMenu

 TMemo

 TPanel

 TPopupMenu

 TRadioButton

 TRadioGroup

 TScrollBar

Additional TActionMainMenuBar

TActionToolBar

TBitBtn

 TCheckListBox

TColorBox

 TDrawGrid

TLabeledEdit

 TMaskEdit

 TScrollBox

 TSpeedButton

 TStaticLabel

TStaticText

TStringGrid

TValueListEditor

Win32 TComboBoxEx

TDateTimePicker

 THeaderControl

THotKey

 TListView

 TMonthCalendar

 TPageControl

 TRichEdit

 TStatusBar

 TTreeView

Data Controls TDBCheckBox

 TDBComboBox

 TDBEdit

 TDBGrid

 TDBListBox

 TDBLookupComboBox

 TDBLookupListBox

 TDBMemo

Table 12.1 VCL objects that support BiDi (continued)

Component palette page VCL object

12-6 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Notes THintWindow picks up the BiDiMode of the control that activated the hint.

Bi-directional properties
The objects listed in Table 12.1, “VCL objects that support BiDi,” on page 12-4 have
the properties BiDiMode and ParentBiDiMode. These properties, along with
TApplication‘s BiDiKeyboard and NonBiDiKeyboard, support bi-directional localization.

Note Bi-directional properties are not available in CLX for cross-platform programming.

BiDiMode property
The property BiDiMode is a new enumerated type, TBiDiMode, with four states:
bdLeftToRight, bdRightToLeft, bdRightToLeftNoAlign, and bdRightToLeftReadingOnly.

bdLeftToRight
bdLeftToRight draws text using left to right reading order, and the alignment and
scroll bars are not changed. For instance, when entering right to left text, such as
Arabic or Hebrew, the cursor goes into push mode and the text is entered right to left.
Latin text, such as English or French, is entered left to right. bdLeftToRight is the
default value.

 TDBRadioGroup

 TDBRichEdit

 TDBText

QReport TQRDBText

 TQRExpr

 TQRLabel

 TQRMemo

TQRPreview

 TQRSysData

Other classes TApplication (has no ParentBiDiMode)

TBoundLabel

TControl (has no ParentBiDiMode)

TCustomHeaderControl (has no ParentBiDiMode)

 TForm

TFrame

THeaderSection

 THintWindow (has no ParentBiDiMode)

TMenu

TStatusPanel

TTabControl

 TValueListEditor

Table 12.1 VCL objects that support BiDi (continued)

Component palette page VCL object

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-7

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Figure 12.1 TListBox set to bdLeftToRight

bdRightToLeft
bdRightToLeft draws text using right to let reading order, the alignment is changed
and the scroll bar is moved. Text is entered as normal for right-to-left languages such
as Arabic or Hebrew. When the keyboard is changed to a Latin language, the cursor
goes into push mode and the text is entered left-to-right.

Figure 12.2 TListBox set to bdRightToLeft

bdRightToLeftNoAlign
bdRightToLeftNoAlign draws text using right to left reading order, the alignment is
not changed, and the scroll bar is moved.

Figure 12.3 TListBox set to bdRightToLeftNoAlign

bdRightToLeftReadingOnly
bdRightToLeftReadingOnly draws text using right to left reading order, and the
alignment and scroll bars are not changed.

Figure 12.4 TListBox set to bdRightToLeftReadingOnly

ParentBiDiMode property
ParentBiDiMode is a Boolean property. When True (the default) the control looks to its
parent to determine what BiDiMode to use. If the control is a TForm object, the form
uses the BiDiMode setting from Application. If all the ParentBiDiMode properties are
True, when you change Application’s BiDiMode property, all forms and controls in the
project are updated with the new setting.

FlipChildren method
The FlipChildren method allows you to flip the position of a container control’s
children. Container controls are controls that can accept other controls, such as
TForm, TPanel, and TGroupBox. FlipChildren has a single boolean parameter, AllLevels.
When False, only the immediate children of the container control are flipped. When
True, all the levels of children in the container control are flipped.

Delphi flips the controls by changing the Left property and the alignment of the
control. If a control’s left side is five pixels from the left edge of its parent control,

12-8 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

after it is flipped the edit control’s right side is five pixels from the right edge of the
parent control. If the edit control is left aligned, calling FlipChildren will make the
control right aligned.

To flip a control at design-time select Edit|Flip Children and select either All or
Selected, depending on whether you want to flip all the controls, or just the children
of the selected control. You can also flip a control by selecting the control on the form,
right-clicking, and selecting Flip Children from the context menu.

Note Selecting an edit control and issuing a Flip Children|Selected command does
nothing. This is because edit controls are not containers.

Additional methods
There are several other methods useful for developing applications for bi-directional
users.

Locale-specific features
You can add extra features to your application for specific locales. In particular, for
Asian language environments, you may want your application to control the input
method editor (IME) that is used to convert the keystrokes typed by the user into
character strings.

VCL components offer support in programming the IME. Most windowed controls
that work directly with text input have an ImeName property that allows you to
specify a particular IME that should be used when the control has input focus. They
also provide an ImeMode property that specifies how the IME should convert

Method Description

OkToChangeFieldAlignment Used with database controls. Checks to see if the
alignment of a control can be changed.

DBUseRightToLeftAlignment A wrapper for database controls for checking
alignment.

ChangeBiDiModeAlignment Changes the alignment parameter passed to it. No check
is done for BiDiMode setting, it just converts left
alignment into right alignment and vice versa, leaving
center-aligned controls alone.

IsRightToLeft Returns True if any of the right to left options are
selected. If it returns False the control is in left to right
mode.

UseRightToLeftReading Returns True if the control is using right to left reading.

UseRightToLeftAlignment Returns True if the control is using right to left
alignment. It can be overridden for customization.

UseRightToLeftScrollBar Returns True if the control is using a left scroll bar.

DrawTextBiDiModeFlags Returns the correct draw text flags for the BiDiMode of
the control.

DrawTextBiDiModeFlagsReadingOnly Returns the correct draw text flags for the BiDiMode of
the control, limiting the flag to its reading order.

AddBiDiModeExStyle Adds the appropriate ExStyle flags to the control that is
being created.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-9

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

keyboard input. TWinControl introduces several protected methods that you can use
to control the IME from classes you define. In addition, the global Screen variable
provides information about the IMEs available on the user’s system.

The global Screen variable (available in VCL and CLX) also provides information
about the keyboard mapping installed on the user’s system. You can use this to
obtain locale-specific information about the environment in which your application
is running.

Designing the user interface

When creating an application for several foreign markets, it is important to design
your user interface so that it can accommodate the changes that occur during
translation.

Text
All text that appears in the user interface must be translated. English text is almost
always shorter than its translations. Design the elements of your user interface that
display text so that there is room for the text strings to grow. Create dialogs, menus,
status bars, and other user interface elements that display text so that they can easily
display longer strings. Avoid abbreviations—they do not exist in languages that use
ideographic characters.

Short strings tend to grow in translation more than long phrases. Table 12.2 provides
a rough estimate of how much expansion you should plan for given the length of
your English strings:

Graphic images
Ideally, you will want to use images that do not require translation. Most obviously,
this means that graphic images should not include text, which will always require
translation. If you must include text in your images, it is a good idea to use a label
object with a transparent background over an image rather than including the text as
part of the image.

There are other considerations when creating graphic images. Try to avoid images
that are specific to a particular culture. For example, mailboxes in different countries
look very different from each other. Religious symbols are not appropriate if your

Table 12.2 Estimating string lengths

Length of English string (in characters) Expected increase

1-5 100%

6-12 80%

13-20 60%

21-30 40%

31-50 20%

over 50 10%

12-10 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

application is intended for countries that have different dominant religions. Even
color can have different symbolic connotations in different cultures.

Formats and sort order
The date, time, number, and currency formats used in your application should be
localized for the target locale. If you use only the Windows formats, there is no need
to translate formats, as these are taken from the user’s Windows Registry. However,
if you specify any of your own format strings, be sure to declare them as resourced
constants so that they can be localized.

The order in which strings are sorted also varies from country to country. Many
European languages include diacritical marks that are sorted differently, depending
on the locale. In addition, in some countries, 2-character combinations are treated as a
single character in the sort order. For example, in Spanish, the combination ch is
sorted like a single unique letter between c and d. Sometimes a single character is
sorted as if it were two separate characters, such as the German eszett.

Keyboard mappings
Be careful with key-combinations shortcut assignments. Not all the characters
available on the US keyboard are easily reproduced on all international keyboards.
Where possible, use number keys and function keys for shortcuts, as these are
available on virtually all keyboards.

Isolating resources

The most obvious task in localizing an application is translating the strings that
appear in the user interface. To create an application that can be translated without
altering code everywhere, the strings in the user interface should be isolated into a
single module. Delphi automatically creates a .dfm (.xfm in CLX applications) file
that contains the resources for your menus, dialogs, and bitmaps.

In addition to these obvious user interface elements, you will need to isolate any
strings, such as error messages, that you present to the user. String resources are not
included in the form file. You can isolate them by declaring constants for them using
the resourcestring keyword. For more information about resource string constants,
see the Object Pascal Language Guide. It is best to include all resource strings in a
single, separate unit.

Creating resource DLLs

Isolating resources simplifies the translation process. The next level of resource
separation is the creation of a resource DLL. A resource DLL contains all the
resources and only the resources for a program. Resource DLLs allow you to create a
program that supports many translations simply by swapping the resource DLL.

Use the Resource DLL wizard to create a resource DLL for your program. The
Resource DLL wizard requires an open, saved, compiled project. It will create an RC
file that contains the string tables from used RC files and resourcestring strings of the

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-11

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

project, and generate a project for a resource only DLL that contains the relevant
forms and the created RES file. The RES file is compiled from the new RC file.

You should create a resource DLL for each translation you want to support. Each
resource DLL should have a file name extension specific to the target locale. The first
two characters indicate the target language, and the third character indicates the
country of the locale. If you use the Resource DLL wizard, this is handled for you.
Otherwise, use the following code to obtain the locale code for the target translation:

unit locales;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForm1 = class(TForm)

Button1: TButton;
LocaleList: TListBox;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

function GetLocaleData(ID: LCID; Flag: DWORD): string;
var

BufSize: Integer;
begin

BufSize := GetLocaleInfo(ID, Flag, nil, 0);
SetLength(Result, BufSize);
GetLocaleinfo(ID, Flag, PChar(Result), BufSize);
SetLength(Result, BufSize - 1);

end;

{ Called for each supported locale. }
function LocalesCallback(Name: PChar): Bool; stdcall;
var

LCID: Integer;
begin

LCID := StrToInt('$' + Copy(Name, 5, 4));
Form1.LocaleList.Items.Add(GetLocaleData(LCID, LOCALE_SLANGUAGE));
Result := Bool(1);

end;

procedure TForm1.Button1Click(Sender: TObject);
var

I: Integer;
begin

12-12 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

 with Languages do
 begin
 for I := 0 to Count - 1 do
 begin
 ListBox1.Items.Add(Name[I]);
 end;
 end;
end;

Using resource DLLs

The executable, DLLs, and packages that make up your application contain all the
necessary resources. However, to replace those resources by localized versions, you
need only ship your application with localized resource DLLs that have the same
name as your EXE, DLL, or BPL files.

When your application starts up, it checks the locale of the local system. If it finds any
resource DLLs with the same name as the EXE, DLL, or BPL files it is using, it checks
the extension on those DLLs. If the extension of the resource module matches the
language and country of the system locale, your application will use the resources in
that resource module instead of the resources in the executable, DLL, or package. If
there is not a resource module that matches both the language and the country, your
application will try to locate a resource module that matches just the language. If
there is no resource module that matches the language, your application will use the
resources compiled with the executable, DLL, or package.

If you want your application to use a different resource module than the one that
matches the locale of the local system, you can set a locale override entry in the
Windows registry. Under the HKEY_CURRENT_USER\Software\Borland\Locales
key, add your application’s path and file name as a string value and set the data
value to the extension of your resource DLLs. At startup, the application will look for
resource DLLs with this extension before trying the system locale. Setting this
registry entry allows you to test localized versions of your application without
changing the locale on your system.

For example, the following procedure can be used in an install or setup program to
set the registry key value that indicates the locale to use when loading Delphi
applications:

procedure SetLocalOverrides(FileName: string, LocaleOverride: string);
var
 Reg: TRegistry;
begin
 Reg := TRegistry.Create;
 try
 if Reg.OpenKey(‘Software\Borland\Locales’, True) then
 Reg.WriteString(LocalOverride, FileName);
 finally
 Reg.Free;
end;

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-13

L o c a l i z i n g a p p l i c a t i o n s

Within your application, use the global FindResourceHInstance function to obtain the
handle of the current resource module. For example:

LoadStr(FindResourceHInstance(HInstance), IDS_AmountDueName, szQuery, SizeOf(szQuery));

You can ship a single application that adapts itself automatically to the locale of the
system it is running on, simply by providing the appropriate resource DLLs.

Dynamic switching of resource DLLs

In addition to locating a resource DLL at application startup, it is possible to switch
resource DLLs dynamically at runtime. To add this functionality to your own
applications, you need to include the ReInit unit in your uses statement. (ReInit is
located in the Richedit sample in the Demos directory.) To switch languages, you
should call LoadResourceModule, passing the LCID for the new language, and then call
ReinitializeForms.

For example, the following code switches the interface language to French:

const
FRENCH = (SUBLANG_FRENCH shl 10) or LANG_FRENCH;

if LoadNewResourceModule(FRENCH) <> 0 then
ReinitializeForms;

The advantage of this technique is that the current instance of the application and all
of its forms are used. It is not necessary to update the registry settings and restart the
application or reacquire resources required by the application, such as logging in to
database servers.

When you switch resource DLLs the properties specified in the new DLL overwrite
the properties in the running instances of the forms.

Note Any changes made to the form properties at runtime will be lost. Once the new DLL
is loaded, default values are not reset. Avoid code that assumes that the form objects
are reinitialized to the their startup state, apart from differences due to localization.

Localizing applications
Once your application is internationalized, you can create localized versions for the
different foreign markets in which you want to distribute it.

Localizing resources

Ideally, your resources have been isolated into a resource DLL that contains form
files (.dfm or .xfm) and a resource file. You can open your forms in the IDE and
translate the relevant properties.

12-14 D e v e l o p e r ’ s G u i d e

L o c a l i z i n g a p p l i c a t i o n s

Note In a resource DLL project, you cannot add or delete components. It is possible,
however, to change properties in ways that could cause runtime errors, so be careful
to modify only those properties that require translation. To avoid mistakes, you can
configure the Object Inspector to display only localizable properties; to do so, right-
click in the Object Inspector and use the View menu to filter out unwanted property
categories.

You can open the RC file and translate relevant strings. Use the StringTable editor by
opening the RC file from the Project Manager.

D e p l o y i n g a p p l i c a t i o n s 13-1

C h a p t e r

13
Chapter 13Deploying applications

Once your Delphi application is up and running, you can deploy it. That is, you can
make it available for others to run. A number of steps must be taken to deploy an
application to another computer so that the application is completely functional.
What is required by a given application varies, depending on the type of application.
The following sections describe considerations when deploying different types of
applications:

• Deploying general applications
• Deploying CLX applications
• Deploying database applications
• Deploying Web applications
• Programming for varying host environments
• Software license requirements

Note Information included in these sections is for deploying applications on Windows. If
writing cross-platform applications for deployment on Linux, you need to refer to
deployment information provided in your Kylix documentation.

Deploying general applications
Beyond the executable file, an application may require a number of supporting files,
such as DLLs, package files, and helper applications. In addition, the Windows
registry may need to contain entries for an application, from specifying the location
of supporting files to simple program settings. The process of copying an
application’s files to a computer and making any needed registry settings can be
automated by an installation program, such as InstallShield Express. These are the
main deployment concerns common to nearly all types of applications:

• Using installation programs
• Identifying application files

13-2 D e v e l o p e r ’ s G u i d e

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

Delphi applications that access databases and those that run across the Web require
additional installation steps beyond those that apply to general applications. For
additional information on installing database applications, see “Deploying database
applications” on page 13-6. For more information on installing Web applications, see
“Deploying Web applications” on page 13-9. For more information on installing
ActiveX controls, see “Deploying an ActiveX control on the Web” on page 38-15.

Using installation programs

Simple Delphi applications that consist of only an executable file are easy to install on
a target computer. Just copy the executable file onto the computer. However, more
complex applications that comprise multiple files require more extensive installation
procedures. These applications require dedicated installation programs.

Setup toolkits automate the process of creating installation programs, often without
needing to write any code. Installation programs created with Setup toolkits perform
various tasks inherent to installing Delphi applications, including: copying the
executable and supporting files to the host computer, making Windows registry
entries, and installing the Borland Database Engine for BDE database applications.

InstallShield Express is a setup toolkit that is bundled with Delphi. InstallShield
Express is certified for use with Delphi and the Borland Database Engine. It is based
on Windows Installer (MSI) technology.

InstallShield Express is not automatically installed when Delphi is installed, so it
must be manually installed if you want to use it to create installation programs. Run
the installation program from the Delphi CD to install InstallShield Express. For
more information on using InstallShield Express to create installation programs, see
the InstallShield Express online help.

Other setup toolkits are available. However, if deploying BDE database applications,
you should only use toolkits based on MSI technology and those which are certified
to deploy the Borland Database Engine.

Identifying application files
Besides the executable file, a number of other files may need to be distributed with an
application.

• Application files
• Package files
• Merge modules
• ActiveX controls

D e p l o y i n g a p p l i c a t i o n s 13-3

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

Application files
The following types of files may need to be distributed with an application.

Package files
If the application uses runtime packages, those package files need to be distributed
with the application. InstallShield Express handles the installation of package files
the same as DLLs, copying the files and making necessary entries in the Windows
registry. You can also use merge modules for deploying runtime packages with MSI-
based setup tools including InstallShield Express. See the next section for details.

Borland recommends installing the runtime package files supplied by Borland in the
Windows\System directory. This serves as a common location so that multiple
applications would have access to a single instance of the files. For packages you
created, it is recommended that you install them in the same directory as the
application. Only the .BPL files need to be distributed.

Note If deploying packages with CLX applications, you need to include clx60.bpl rather
than vcl60.bpl.

If you are distributing packages to other developers, supply both the .BPL and the
.DCP files.

Merge modules
InstallShield Express 3.0 is based on Windows Installer (MSI) technology. That is
why Delphi includes merge modules. Merge modules provide a standard method
that you can use to deliver shared code, files, resources, Registry entries, and setup
logic to applications as a single compound file. You can use merge modules for
deploying runtime packages with MSI-based setup tools including InstallShield
Express.

The runtime libraries have some interdependencies because of the way they are
grouped together. The result of this is that when one package is added to an install
project, the install tool will automatically add or report a dependency on one or more
other packages.For example, if you add the VCLInternet merge module to an install
project, the install tool should also automatically add or report a dependency on the
VCLDatabase and StandardVCL modules.

The dependencies for each merge module are listed in the table below. The various
install tools may react to these dependencies differently. The InstallShield for
Windows Installer automatically adds the required modules if it can find them.

Table 13.1 Application files

Type File name extension

Program files .exe and .dll

Package files .bpl and .dcp

Help files .hlp, .cnt, and .toc (if used) or any other help files your application supports

ActiveX files .ocx (sometimes supported by a DLL)

Local table files .dbf, .mdx, .dbt, .ndx, .db, .px, .y*, .x*, .mb, .val, .qbe, .gd*

13-4 D e v e l o p e r ’ s G u i d e

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

Other tools may simply report a dependency or may generate a build failure if all
required modules are not included in the project.

Table 13.2 Merge modules and their dependencies

Merge module BPLs included Dependencies

ADORTL adortl60.bpl DatabaseRTL, BaseRTL

BaseClientDataSet cds60.bpl DatabaseRTL, BaseRTL, DataSnap,
dbExpress

BaseRTL rtl60.bpl No dependencies

BaseVCL vcl60.bpl, vclx60.bpl BaseRTL

BDEClientDataSet bdecds60.bpl BaseClientDataSet, DataBaseRTL, BaseRTL,
DataSnap, dbExpress, BDERTL

BDEInternet inetdbbde60.bpl Internet, DatabaseRTL, BaseRTL, BDERTL

BDERTL bdertl60.bpl DatabaseRTL, BaseRTL

DatabaseRTL dbrtl60.bpl BaseRTL

DatabaseVCL vcldb60.bpl BaseVCL, DatabaseRTL, BaseRTL

DataSnap dsnap60.bpl DatabaseRTL, BaseRTL

DataSnapConnection dsnapcon60.bpl DataSnap, DatabaseRTL, BaseRTL

DataSnapCorba dsnapcrba60.bpl DataSnapConnection, DataSnap,
DatabaseRTL, BaseRTL, BaseVCL

DataSnapEntera dsnapent60.bpl DataSnap, DatabaseRTL, BaseRTL,
BaseVCL

DBCompatVCL vcldbx60.bpl DatabaseVCL, BaseVCL, BaseRTL

dbExpress dbexpress60.bpl DatabaseRTL, BaseRTL

dbExpressClientDataSet dbxcds60.bpl BaseClientDataSet, DataBaseRTL, BaseRTL,
DataSnap, dbExpress

DBXInternet inetdbxpress60.bpl Internet, DatabaseRTL, BaseRTL,
dbExpress, DatabaseVCL, BaseVCL

DecisionCube dss60.bpl TeeChart, BaseVCL, BaseRTL,
DatabaseVCL, DatabaseRTL, BDERTL

FastNet nmfast60.bpl BaseVCL, BaseRTL

InterbaseVCL vclib60.bpl BaseClientDataSet, DatabaseRTL, BaseRTL,
DataSnap, dbExpress, BaseVCL

Internet inet60.bpl, inetdb60.bpl DatabaseRTL, BaseRTL

InternetDirect indy60.bpl BaseVCL, BaseRTL

Office2000Components dcloffice2k60.bpl DatabaseVCL, BaseVCL, DatabaseRTL,
BaseRTL

QuickReport qrpt60.bpl BaseVCL, BaseRTL, BDERTL, DatabaseRTL

SampleVCL vclsmp60.bpl BaseVCL, BaseRTL

TeeChart tee60.bpl, teedb60.bpl,
teeqr60.bpl, teeui60.bpl

BaseVCL, BaseRTL

VCLIE vclie60.bpl BaseVCL, BaseRTL

VisualCLX visualclx60.bpl BaseRTL

WebDataSnap webdsnap60.bpl XMLRTL, Internet, DataSnapConnection,
DataSnap, DatabaseRTL, BaseRTL

D e p l o y i n g a p p l i c a t i o n s 13-5

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

ActiveX controls
Certain components bundled with Delphi are ActiveX controls. The component
wrapper is linked into the application’s executable file (or a runtime package), but
the .OCX file for the component also needs to be deployed with the application.
These components include

• Chart FX, copyright SoftwareFX Inc.
• VisualSpeller Control, copyright Visual Components, Inc.
• Formula One (spreadsheet), copyright Visual Components, Inc.
• First Impression (VtChart), copyright Visual Components, Inc.
• Graph Custom Control, copyright Bits Per Second Ltd.

ActiveX controls of your own creation need to be registered on the deployment
computer before use. Installation programs such as InstallShield Express automate
this registration process. To manually register an ActiveX control, use the TRegSvr
demo application or the Microsoft utility REGSRV32.EXE (not included with all
Windows versions).

DLLs that support an ActiveX control also need to be distributed with an application.

Helper applications
Helper applications are separate programs without which your Delphi application
would be partially or completely unable to function. Helper applications may be
those supplied with the operating system, by Borland, or they might be third-party
products. An example of a helper application is the InterBase utility program Server
Manager, which administers InterBase databases, users, and security.

If an application depends on a helper program, be sure to deploy it with your
application, where possible. Distribution of helper programs may be governed by
redistribution license agreements. Consult the documentation for the helper for
specific information.

DLL locations
You can install .dll files used only by a single application in the same directory as the
application. DLLs that will be used by a number of applications should be installed in
a location accessible to all of those applications. A common convention for locating
such community DLLs is to place them either in the Windows or the Windows\
System directory. A better way is to create a dedicated directory for the common .dll
files, similar to the way the Borland Database Engine is installed.

WebSnap websnap60.bpl,
vcljpg60.bpl

WebDataSnap, XMLRTL, Internet,
DataSnapConnection, DataSnap,
DatabaseRTL, BaseRTL, BaseVCL

XMLRTL xmlrtl60.bpl Internet, DatabaseRTL, BaseRTL

Table 13.2 Merge modules and their dependencies (continued)

Merge module BPLs included Dependencies

13-6 D e v e l o p e r ’ s G u i d e

D e p l o y i n g C L X a p p l i c a t i o n s

Deploying CLX applications
If you are writing cross-platform applications that will be deployed on both
Windows and Linux, you need to compile and deploy the applications on both
platforms. The steps for deploying CLX applications are the same as those for general
applications. For information on deploying general applications, see “Deploying
general applications” on page 13-1. For information on installing database CLX
applications, see “Deploying database applications” on page 13-6.

Note When deploying CLX applications on Windows, you need to include qtintf.dll with
the application to include the CLX runtime. If deploying packages with CLX
applications, you need to include clx60.bpl rather than vcl60.bpl.

See Chapter 10, “Using CLX for cross-platform development” for information on
writing CLX applications.

Deploying database applications
Applications that access databases involve special installation considerations beyond
copying the application’s executable file onto the host computer. Database access is
most often handled by a separate database engine, the files of which cannot be linked
into the application’s executable file. The data files, when not created beforehand,
must be made available to the application. Multi-tier database applications require
even more specialized handling on installation, because the files that make up the
application are typically located on multiple computers.

Since several different database technologies (ADO, BDE, dbExpress, and InterBase
Express) are supported, deployment requirements differ for each. Regardless of
which you are using, you need to make sure that the client side software is installed
on the system where you plan to run the database application. BDE, ADO, and
dbExpress also require drivers to interact with the client-side software of the
database. InterBase does not require drivers because the IBX components
communicate directly with the database.

Specific information on how to deploy dbExpress, BDE, and multi-tiered database
applications is described in the following sections:

• Deploying dbExpress database applications
• Deploying BDE applications
• Deploying multi-tiered database applications (DataSnap)

Database applications that use client datasets such as TClientDataSet or
TSQLClientDataSet or dataset providers require you to include libmidas.dcu and
crtl.dcu (for static linking when providing a standalone executable); if you are
packaging your application (with the executable and any needed DLLs), you need to
include Midas.dll.

If deploying database applications that use ADO, you need to be sure that MDAC
version 2.1 or later is installed on the system where you plan to run the application.
MDAC is automatically installed with software such as Windows 2000 and Internet
Explorer version 5 or later. You also need to be sure the drivers for the database

D e p l o y i n g a p p l i c a t i o n s 13-7

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

server you want to connect to are installed on the client. No other deployment steps
are required.

If deploying database applications that use InterBase Express, you need to be sure
that the InterBase client is installed on the system where you plan to run the
application. InterBase requires gd32.dll and interbase.msg to be located in an
accessible directory. No other deployment steps are required. InterBase Express
components communicate directly with the database and do not require additional
drivers. For more information, refer to the Embedded Installation Guide posted on
the Borland Web site.

In addition to the technologies described here, you can also use third-party database
engines to provide database access for Delphi applications. Consult the
documentation or vendor for the database engine regarding redistribution rights,
installation, and configuration.

Deploying dbExpress database applications

dbExpress is a set of drivers that provide fast access to database information.
dbExpress components support cross-platform development because they are also
available on Linux. Refer to Chapter 22, “Using unidirectional datasets” for more
information about using the dbExpress components.

You can deploy dbExpress applications either as a stand-alone executable file or as
an executable file that includes associated dbExpress driver DLLs.

To deploy dbExpress applications as standalone executable files, the dbExpress
object files must be statically linked into your executable. You do this by including
the following DCUs, located in the lib directory:

If you are not deploying a standalone executable, you can deploy associated
dbExpress drivers and DataSnap DLLs with your executable. The following table
lists the appropriate DLLs and when to include them:

Table 13.3 dbExpress deployment as standalone executable

Database unit When to include

dbExpInt Applications connecting to InterBase databases

dbExpOra Applications connecting to Oracle databases

dbExpDb2 Applications connecting to DB2 databases

dbExpMy Applications connecting to MySQL databases

Crtl, MidasLib Required by dbExpress executables that use client datasets such as
TSQLClientDataSet

Table 13.4 dbExpress deployment with driver DLLs

Database DLL When to deploy

dbexpint.dll Applications connecting to InterBase databases

dbexpora.dll Applications connecting to Oracle databases

dbexpdb2.dll. Applications connecting to DB2 databases

dbexpmy.dll Applications connecting to MySQL databases

Midas.dll Required by database applications that use client datasets

13-8 D e v e l o p e r ’ s G u i d e

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

Deploying BDE applications

The Borland Database Engine (BDE) defines a large API for interacting with
databases. Of all the data access mechanisms, the BDE supports the broadest range of
functions and comes with the most supporting utilities. It is the best way to work
with data in Paradox or dBASE tables.

Database access for an application is provided by various database engines. An
application can use the BDE or a third-party database engine. SQL Links is provided
(not available in all versions) to enable native access to SQL database systems. The
following sections describe installation of the database access elements of an
application:

• Borland Database Engine
• SQL Links

Borland Database Engine
For standard Delphi data components to have database access, the Borland Database
Engine (BDE) must be present and accessible. See the BDEDEPLOY document for
specific rights and limitations on redistributing the BDE.

Borland recommends use of InstallShield Express (or other certified installation
program) for installing the BDE. InstallShield Express will create the necessary
registry entries and define any aliases the application may require. Using a certified
installation program to deploy the BDE files and subsets is important because:

• Improper installation of the BDE or BDE subsets can cause other applications
using the BDE to fail. Such applications include not only Borland products, but
many third-party programs that use the BDE.

• Under Windows 9x and Windows NT, BDE configuration information is stored in
the Windows registry instead of .INI files, as was the case under 16-bit Windows.
Making the correct entries and deletions for install and uninstall is a complex task.

It is possible to install only as much of the BDE as an application actually needs. For
instance, if an application only uses Paradox tables, it is only necessary to install that
portion of the BDE required to access Paradox tables. This reduces the disk space
needed for an application. Certified installation programs, like InstallShield Express,
are capable of performing partial BDE installations. Be sure to leave BDE system files
that are not used by the deployed application, but that are needed by other
programs.

SQL Links
SQL Links provides the drivers that connect an application (through the Borland
Database Engine) with the client software for an SQL database. See the DEPLOY
document for specific rights and limitations on redistributing SQL Links. As is the
case with the Borland Database Engine (BDE), SQL Links must be deployed using
InstallShield Express (or other certified installation program).

Note SQL Links only connects the BDE to the client software, not to the SQL database
itself. It is still necessary to install the client software for the SQL database system

D e p l o y i n g a p p l i c a t i o n s 13-9

D e p l o y i n g W e b a p p l i c a t i o n s

used. See the documentation for the SQL database system or consult the vendor that
supplies it for more information on installing and configuring client software.

Table 13.5 shows the names of the driver and configuration files SQL Links uses to
connect to the different SQL database systems. These files come with SQL Links and
are redistributable in accordance with the Delphi license agreement.

Install SQL Links using InstallShield Express or other certified installation program.
For specific information concerning the installation and configuration of SQL Links,
see the help file SQLLNK32.HLP, by default installed into the main BDE directory.

Deploying multi-tiered database applications (DataSnap)

DataSnap provides multi-tier database capability to Delphi applications by allowing
client applications to connect to providers in an application server.

Install DataSnap along with a multi-tier application using InstallShield Express (or
other Borland-certified installation scripting utility). See the DEPLOY document
(found in the main Delphi directory) for details on the files that need to be
redistributed with an application. Also see the REMOTE document for related
information on what DataSnap files can be redistributed and how.

Deploying Web applications
Some Delphi applications are designed to be run over the World Wide Web, such as
those in the form of Server-side Extension DLLs (ISAPI and Apache), CGI
applications, and ActiveForms.

The steps for deploying Web applications are the same as those for general
applications, except the application’s files are deployed on the Web server. For
information on installing general applications, see “Deploying general applications”
on page 13-1. For information on deploying database Web applications, see
“Deploying database applications” on page 13-6.

Table 13.5 SQL database client software files

Vendor Redistributable files

Oracle 7 SQLORA32.DLL and SQL_ORA.CNF

Oracle8 SQLORA8.DLL and SQL_ORA8.CNF

Sybase Db-Lib SQLSYB32.DLL and SQL_SYB.CNF

Sybase Ct-Lib SQLSSC32.DLL and SQL_SSC.CNF

Microsoft SQL Server SQLMSS32.DLL and SQL_MSS.CNF

Informix 7 SQLINF32.DLL and SQL_INF.CNF

Informix 9 SQLINF9.DLL and SQL_INF9.CNF

DB/2 SQLDB232.DLL and SQL_DB2.CNF

InterBase SQLINT32.DLL and SQL_INT.CNF

13-10 D e v e l o p e r ’ s G u i d e

D e p l o y i n g W e b a p p l i c a t i o n s

Here are some special considerations for deploying Web applications:

• For BDE database applications, the Borland Database Engine (or alternate
database engine) is installed with the application files on the Web server.

• For dbExpress applications, the dbExpress DLLs must be included in the path. If
included, the dbExpress driver is installed with the application files on the Web
server.

• Security for the directories should be set so that the application can access all
needed database files.

• The directory containing an application must have read and execute attributes.

• The application should not use hard-coded paths for accessing database or other
files.

• The location of an ActiveX control is indicated by the CODEBASE parameter of
the <OBJECT> HTML tag.

Deployment on Apache is described in the next section.

Deployment on Apache

WebBroker supports Apache version 1.3.9 and later for DLLs and CGI applications.
Apache is configured by files in the conf directory.

If creating Apache DLLs, you need to be sure to set appropriate directives in the
Apache server configuration file, called httpd.conf. The DLL should be physically
located in the Modules subdirectory of the Apache software.

If creating CGI applications, the physical directory (specified in the Directory
directive of the httpd.conf file) must have the ExecCGI option set to allow execution
of programs so the CGI script can be executed. To ensure that permissions are set up
properly, you need to either use the ScriptAlias directive or set Options ExecCGI to
on.

The ScriptAlias directive creates a virtual directory on your server and marks the
target directory as containing CGI scripts. For example, you could add the following
line to your httpd.conf file:

ScriptAlias /cgi-bin ”c:\inetpub\cgi-bin”

This would cause requests such as /cgi-bin/mycgi to be satisfied by running the
script c:\inetpub\cgi-bin\mycgi.

You can also set Options to All or to ExecCGI using the Directory directive in
httpd.conf. The Options directive controls which server features are available in a
particular directory. Directory directives are used to enclose a set of directives that
apply to the named directory and its subdirectories. An example of the Directory
directive is shown below:

<Directory <apache-root-dir>\cgi-bin>
 AllowOverride None
 Options ExecCGI
 Order allow,deny
 Allow from all
</Directory>

D e p l o y i n g a p p l i c a t i o n s 13-11

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

In this example, Options is set to ExecCGI permitting execution of CGI scripts in the
directory cgi-bin.

Note Apache executes locally on the server within the account specified in the User
directive in the httpd.conf file. Make sure that the user has the appropriate rights to
access the resources needed by the application.

Information concerning the deployment of Apache software can be found in the
Apache LICENSE file, which is included in the Apache distribution. You can also
find configuration information on the Apache Web site at www.apache.org.

Programming for varying host environments
Due to the nature of various operating system environments, there are a number of
factors that vary with user preference or configuration. The following factors can
affect an application deployed to another computer:

• Screen resolutions and color depths
• Fonts
• Operating systems versions
• Helper applications
• DLL locations

Screen resolutions and color depths

The size of the desktop and number of available colors on a computer is configurable
and dependent on the hardware installed. These attributes are also likely to differ on
the deployment computer compared to those on the development computer.

An application’s appearance (window, object, and font sizes) on computers
configured for different screen resolutions can be handled in various ways:

• Design the application for the lowest resolution users will have (typically,
640x480). Take no special actions to dynamically resize objects to make them
proportional to the host computer’s screen display. Visually, objects will appear
smaller the higher the resolution is set.

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize all forms and objects proportional to the difference between
the screen resolutions for the development and deployment computers (a screen
resolution difference ratio).

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize only the application’s forms. Depending on the location of
visual controls on the forms, this may require the forms be scrollable for the user
to be able to access all controls on the forms.

Considerations when not dynamically resizing
If the forms and visual controls that make up an application are not dynamically
resized at runtime, design the application’s elements for the lowest resolution.

13-12 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

Otherwise, the forms of an application run on a computer configured for a lower
screen resolution than the development computer may overlap the boundaries of the
screen.

For example, if the development computer is set up for a screen resolution of
1024x768 and a form is designed with a width of 700 pixels, not all of that form will
be visible within the desktop on a computer configured for a 640x480 screen
resolution.

Considerations when dynamically resizing forms and controls
If the forms and visual controls for an application are dynamically resized,
accommodate all aspects of the resizing process to ensure optimal appearance of the
application under all possible screen resolutions. Here are some factors to consider
when dynamically resizing the visual elements of an application:

• The resizing of forms and visual controls is done at a ratio calculated by
comparing the screen resolution of the development computer to that of the
computer onto which the application installed. Use a constant to represent one
dimension of the screen resolution on the development computer: either the
height or the width, in pixels. Retrieve the same dimension for the user’s computer
at runtime using the TScreen.Height or the TScreen.Width property. Divide the
value for the development computer by the value for the user’s computer to derive
the difference ratio between the two computers’ screen resolutions.

• Resize the visual elements of the application (forms and controls) by reducing or
increasing the size of the elements and their positions on forms. This resizing is
proportional to the difference between the screen resolutions on the development
and user computers. Resize and reposition visual controls on forms automatically
by setting the CustomForm.Scaled property to True and calling the
TWinControl.ScaleBy method (TWidgetControl.ScaleBy for cross-platform
applications). The ScaleBy method does not change the form’s height and width,
though. Do this manually by multiplying the current values for the Height and
Width properties by the screen resolution difference ratio.

• The controls on a form can be resized manually, instead of automatically with the
TWinControl.ScaleBy method (TWidgetControl.ScaleBy for cross-platform
applications), by referencing each visual control in a loop and setting its
dimensions and position. The Height and Width property values for visual controls
are multiplied by the screen resolution difference ratio. Reposition visual controls
proportional to screen resolution differences by multiplying the Top and Left
property values by the same ratio.

• If an application is designed on a computer configured for a higher screen
resolution than that on the user’s computer, font sizes will be reduced in the
process of proportionally resizing visual controls. If the size of the font at design
time is too small, the font as resized at runtime may be unreadable. For example,
the default font size for a form is 8. If the development computer has a screen
resolution of 1024x768 and the user’s computer 640x480, visual control dimensions
will be reduced by a factor of 0.625 (640 / 1024 = 0.625). The original font size of 8
is reduced to 5 (8 * 0.625 = 5). Text in the application appears jagged and
unreadable as it is displayed in the reduced font size.

D e p l o y i n g a p p l i c a t i o n s 13-13

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

• Some visual controls, such as TLabel and TEdit, dynamically resize when the size
of the font for the control changes. This can affect deployed applications when
forms and controls are dynamically resized. The resizing of the control due to font
size changes are in addition to size changes due to proportional resizing for screen
resolutions. This effect is offset by setting the AutoSize property of these controls to
False.

• Avoid making use of explicit pixel coordinates, such as when drawing directly to a
canvas. Instead, modify the coordinates by a ratio proportionate to the screen
resolution difference ratio between the development and user computers. For
example, if the application draws a rectangle to a canvas ten pixels high by twenty
wide, instead multiply the ten and twenty by the screen resolution difference ratio.
This ensures that the rectangle visually appears the same size under different
screen resolutions.

Accommodating varying color depths
To account for all deployment computers not being configured with the same color
availability, the safest way is to use graphics with the least possible number of colors.
This is especially true for control glyphs, which should typically use 16-color
graphics. For displaying pictures, either provide multiple copies of the images in
different resolutions and color depths or explain in the application the minimum
resolution and color requirements for the application.

Fonts

The Windows and Linux operating systems come with a standard sets of fonts. When
designing an application to be deployed on other computers, realize that not all
computers will have fonts outside the standard sets.

Text components used in the application should all use fonts that are likely to be
available on all deployment computers.

When use of a nonstandard font is absolutely necessary in an application, you need
to distribute that font with the application. Either the installation program or the
application itself must install the font on the deployment computer. Distribution of
third-party fonts may be subject to limitations imposed by the font creator.

Windows has a safety measure to account for attempts to use a font that does not
exist on the computer. It substitutes another, existing font that it considers the closest
match. While this may circumvent errors concerning missing fonts, the end result
may be a degradation of the visual appearance of the application. It is better to
prepare for this eventuality at design time.

To make a nonstandard font available to a Windows application, use the Windows
API functions AddFontResource and DeleteFontResource. Deploy the .fot file for the
nonstandard font with the application.

13-14 D e v e l o p e r ’ s G u i d e

S o f t w a r e l i c e n s e r e q u i r e m e n t s

Operating systems versions

When using operating system APIs or accessing areas of the operating system from
an application, there is the possibility that the function, operation, or area may not be
available on computers with different operating system versions.

To account for this possibility, you have a few options:

• Specify in the application’s system requirements the versions of the operating
system on which the application can run. It is the user’s responsibility to install
and use the application only under compatible operating system versions.

• Check the version of the operating system as the application is installed. If an
incompatible version of the operating system is present, either halt the installation
process or at least warn the installer of the problem.

• Check the operating system version at runtime, just prior to executing an
operation not applicable to all versions. If an incompatible version of the operating
system is present, abort the process and alert the user. Alternately, provide
different code to run dependent on different operating system versions. For
example, some operations are performed differently on Windows 95/98 than on
Windows NT/2000. Use the Windows API function GetVersionEx to determine the
Windows version.

Software license requirements
The distribution of some files associated with Delphi applications is subject to
limitations or cannot be redistributed at all. The following documents describe the
legal stipulations regarding the distribution of these files:

• DEPLOY

• README

• No-nonsense license agreement

• Third-party product documentation

DEPLOY

DEPLOY covers the some of the legal aspects of distributing of various components
and utilities, and other product areas that can be part of or associated with a Delphi
application. DEPLOY is a document installed in the main Delphi directory. The
topics covered include

• .exe, .dll, and .bpl files
• Components and design-time packages
• Borland Database Engine (BDE)
• ActiveX controls
• Sample Images
• SQL Links

D e p l o y i n g a p p l i c a t i o n s 13-15

S o f t w a r e l i c e n s e r e q u i r e m e n t s

README

README contains last minute information about Delphi, possibly including
information that could affect the redistribution rights for components, or utilities, or
other product areas. README is a document installed into the main Delphi
directory.

No-nonsense license agreement

The Delphi no-nonsense license agreement, a printed document, covers other legal
rights and obligations concerning Delphi.

Third-party product documentation

Redistribution rights for third-party components, utilities, helper applications,
database engines, and other products are governed by the vendor supplying the
product. Consult the documentation for the product or the vendor for information
regarding the redistribution of the product with Delphi applications prior to
distribution.

13-16 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g d a t a b a s e a p p l i c a t i o n s

P a r t

II
Part IIDeveloping database applications

The chapters in “Developing Database Applications” present concepts and skills
necessary for creating Delphi database applications.

Note You need the Professional or Enterprise edition of Delphi to develop database
applications. To implement more advanced Client/Server databases, you need the
Delphi features available in the Enterprise edition.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-1

C h a p t e r

14
Chapter 14Designing database applications

Database applications let users interact with information that is stored in databases.
Databases provide structure for the information, and allow it to be shared among
different applications.

Delphi provides support for relational database applications. Relational databases
organize information into tables, which contain rows (records) and columns (fields).
These tables can be manipulated by simple operations known as the relational
calculus.

When designing a database application, you must understand how the data is
structured. Based on that structure, you can then design a user interface to display
data to the user and allow the user to enter new information or modify existing data.

This chapter introduces some common considerations for designing a database
application and the decisions involved in designing a user interface.

Using databases
Delphi includes many components for accessing databases and representing the
information they contain. They are grouped according to the data access mechanism:

• The BDE page of the component palette contains components that use the Borland
Database Engine (BDE). The BDE defines a large API for interacting with
databases. Of all the data access mechanisms, the BDE supports the broadest range
of functions and comes with the most supporting utilities. It is the best way to
work with data in Paradox or dBASE tables. However, it is also the most
complicated mechanism to deploy. For more information about using the BDE
components, see Chapter 20, “Using the Borland Database Engine.”

• The ADO page of the component palette contains components that use ActiveX
Data Objects (ADO) to access database information through OLEDB. ADO is a
Microsoft Standard. There is a broad range of ADO drivers available for
connecting to different database servers. Using ADO-based components lets you

14-2 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e s

integrate your application into an ADO-based environment (for example, making
use of ADO-based application servers). For more information about using the
ADO components, see Chapter 21, “Working with ADO components”.

• The dbExpress page of the component palette contains components that use
dbExpress to access database information. dbExpress is a lightweight set of drivers
that provide the fastest access to database information. In addition, dbExpress
components support cross-platform development because they are also available
on Linux. However, dbExpress database components also support the narrowest
range of data manipulation functions. For more information about using the
dbExpress components, see Chapter 22, “Using unidirectional datasets”.

• The InterBase page of the Component palette contains components that access
InterBase databases directly, without going through a separate engine layer.

• The Data Access page of the component palette contains components that can be
used with any data access mechanism. This page includes TClientDataset, which
can work with data stored on disk or, using the TDataSetProvider component also
on this page, with components from one of the other groups. For more information
about using client datasets, see Chapter 23, “Using client datasets”. For more
information about TDataSetProvider, see Chapter 24, “Using provider
components”.

Note Different versions of Delphi include different drivers for accessing database servers
using the BDE, ADO, or dbExpress.

When designing a database application, you must decide which set of components to
use. Each data access mechanism differs in its range of functional support, the ease of
deployment, and the availability of drivers to support different database servers.

In addition to choosing a data access mechanism, you must choose a database server.
There are different types of databases and you will want to consider the advantages
and disadvantages of each type before settling on a particular database server.

All types of databases contain tables which store information. In addition, most (but
not all) servers support additional features such as

• Database security
• Transactions
• Referential integrity, stored procedures, and triggers

Types of databases

Relational database servers vary in the way they store information and in the way
they allow multiple users to access that information simultaneously. Delphi provides
support for two types of relational database server:

• Remote database servers reside on a separate machine. Sometimes, the data from
a remote database server does not even reside on a single machine, but is
distributed over several servers. Although remote database servers vary in the
way they store information, they provide a common logical interface to clients.
This common interface is Structured Query Language (SQL). Because you access
them using SQL, they are sometimes called SQL servers. (Another name is Remote

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-3

U s i n g d a t a b a s e s

Database Management system, or RDBMS.) In addition to the common commands
that make up SQL, most remote database servers support a unique “dialect” of
SQL. Examples of SQL servers include InterBase, Oracle, Sybase, Informix,
Microsoft SQL server, and DB2.

• Local databases reside on your local drive or on a local area network. They often
have proprietary APIs for accessing the data. When they are shared by several
users, they use file-based locking mechanisms. Because of this, they are sometimes
called file-based databases. Examples of local databases include Paradox, dBASE,
FoxPro, and Access.

Applications that use local databases are called single-tiered applications because
the application and the database share a single file system. Applications that use
remote database servers are called two-tiered applications or multi-tiered
applications because the application and the database operate on independent
systems (or tiers).

Choosing the type of database to use depends on several factors. For example, your
data may already be stored in an existing database. If you are creating the database
tables your application uses, you may want to consider the following questions:

• How many users will be sharing these tables? Remote database servers are
designed for access by several users at the same time. They provide support for
multiple users through a mechanism called transactions. Some local databases
(such as Local InterBase) also provide transaction support, but many only provide
file-based locking mechanisms, and some (such as client dataset files) provide no
multi-user support at all.

• How much data will the tables hold? Remote database servers can hold more data
than local databases. Some remote database servers are designed for warehousing
large quantities of data while others are optimized for other criteria (such as fast
updates).

• What type of performance (speed) do you require from the database? Local
databases are usually faster than remote database servers because they reside on
the same system as the database application. Different remote database servers are
optimized to support different types of operations, so you may want to consider
performance when choosing a remote database server.

• What type of support will be available for database administration? Local
databases require less support than remote database servers. Typically, they are
less expensive to operate because they do not require separately installed servers
or expensive site licenses.

Database security

Databases often contain sensitive information. Different databases provide security
schemes for protecting that information. Some databases, such as Paradox and
dBASE, only provide security at the table or field level. When users try to access
protected tables, they are required to provide a password. Once users have been
authenticated, they can see only those fields (columns) for which they have
permission.

14-4 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e s

Most SQL servers require a password and user name to use the database server at all.
Once the user has logged in to the database, that username and password determine
which tables can be used. For information on providing passwords to SQL servers,
see “Controlling server login” on page 17-4.

When designing database applications, you must consider what type of
authentication is required by your database server. Often, applications are designed
to hide the explicit database login from users, who need only log in to the application
itself. If you do not want to require your users to provide a database password, you
must either use a database that does not require one or you must provide the
password and username to the server programmatically. When providing the
password programmatically, care must be taken that security can’t be breached by
reading the password from the application.

If you require your user to supply a password, you must consider when the
password is required. If you are using a local database but intend to scale up to a
larger SQL server later, you may want to prompt for the password at the point when
you will eventually log in to the SQL database, rather than when opening individual
tables.

If your application requires multiple passwords because you must log in to several
protected systems or databases, you can have your users provide a single master
password that is used to access a table of passwords required by the protected
systems. The application then supplies passwords programmatically, without
requiring the user to provide multiple passwords.

In multi-tiered applications, you may want to use a different security model
altogether. You can use HTTPs, CORBA, or COM+ to control access to middle tiers,
and let the middle tiers handle all details of logging into database servers.

Transactions

A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If any of the
actions in the group fails, then all actions are rolled back (undone).

Transactions ensure that

• All updates in a single transaction are either committed or aborted and rolled back
to their previous state. This is referred to as atomicity.

• A transaction is a correct transformation of the system state, preserving the state
invariants. This is referred to as consistency.

• Concurrent transactions do not see each other's partial or uncommitted results,
which might create inconsistencies in the application state. This is referred to as
isolation.

• Committed updates to records survive failures, including communication failures,
process failures, and server system failures. This is referred to as durability.

Thus, transactions protect against hardware failures that occur in the middle of a
database command or set of commands. Transactional logging allows you to recover

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-5

D a t a b a s e a r c h i t e c t u r e

the durable state after disk media failures. Transactions also form the basis of multi-
user concurrency control on SQL servers. When each user interacts with the database
only through transactions, one user’s commands can’t disrupt the unity of another
user’s transaction. Instead, the SQL server schedules incoming transactions, which
either succeed as a whole or fail as a whole.

Transaction support is not part of most local databases, although it is provided by
local InterBase. In addition, the BDE drivers provide limited transaction support for
some local databases. Database transaction support is provided by the component
that represents the database connection. For details on managing transactions using a
database connection component, see “Managing transactions” on page 17-5.

In multi-tiered applications, you can create transactions that include actions other
than database operations or that span multiple databases. For details on using
transactions in multi-tiered applications, see “Managing transactions in multi-tiered
applications” on page 25-18.

Referential integrity, stored procedures, and triggers

All relational databases have certain features in common that allow applications to
store and manipulate data. In addition, databases often provide other, database-
specific, features that can prove useful for ensuring consistent relationships between
the tables in a database. These include

• Referential integrity. Referential integrity provides a mechanism to prevent
master/detail relationships between tables from being broken. When the user
attempts to delete a field in a master table which would result in orphaned detail
records, referential integrity rules prevent the deletion or automatically delete the
orphaned detail records.

• Stored procedures. Stored procedures are sets of SQL statements that are named
and stored on an SQL server. Stored procedures usually perform common
database-related tasks on the server, and sometimes return sets of records
(datasets).

• Triggers. Triggers are sets of SQL statements that are automatically executed in
response to a particular command.

Database architecture
Database applications are built from user interface elements, components that
represent database information (datasets), and components that connect these to each
other and to the source of the database information. How you organize these pieces is
the architecture of your database application.

14-6 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

General structure

While there are many distinct ways to organize the components in a database
application, most follow the general scheme illustrated in Figure 14.1:

Figure 14.1 Generic Database Architecture

The user interface form
It is a good idea to isolate the user interface on a form that is completely separate
from the rest of the application. This has several advantages. By isolating the user
interface from the components that represent the database information itself, you
introduce a greater flexibility into your design: Changes to the way you manage the
database information do not require you to rewrite your user interface, and changes
to the user interface do not require you to change the portion of your application that
works with the database. In addition, this type of isolation lets you develop common
forms that you can share between multiple applications, thereby providing a
consistent user interface. By storing links to well-designed forms in the Object
Repository, you and other developers can build on existing foundations rather than
starting over from scratch for each new project. Sharing forms also makes it possible
for you to develop corporate standards for application interfaces. For more
information about creating the user interface for a database application, see
“Designing the user interface” on page 14-15.

The data module
If you have isolated your user interface into its own form, you can use a data module
to house the components that represent database information (datasets), and the
components that connect these datasets to the other parts of your application. Like
the user interface forms, you can share data modules in the Object Repository so that
they can be reused or shared between applications.

The data source
The first item in the data module is a data source. The data source acts as a conduit
between the user interface and a dataset that represents information from a database.
Several data-aware controls on a form can share a single data source, in which case
the display in each control is synchronized so that as the user scrolls through records,
the corresponding value in the fields for the current record is displayed in each
control.

Data module

Dataset
UI

Data source Connection
to data

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-7

D a t a b a s e a r c h i t e c t u r e

The dataset
The heart of your database application is the dataset. This component represents a set
of records from the underlying database. These records can be the data from a single
database table, a subset of the fields or records in a table, or information from more
than one table joined into a single view. By using datasets, your application logic is
buffered from restructuring of the physical tables in your databases. When the
underlying database changes, you might need to alter the way the dataset
component specifies the data it contains, but the rest of your application can continue
to work without alteration. For more information on the common properties and
methods of datasets, see Chapter 18, “Understanding datasets”.

The data connection
Different types of datasets use different mechanisms for connecting to the underlying
database information. These different mechanisms, in turn, make up the major
differences in the architecture of the database applications you can build. There are
four basic mechanisms for connecting to the data:

• Connecting directly to a database server. Most datasets use a descendant of
TCustomConnection to represent the connection to a database server.

• Using a dedicated file on disk. Client datasets support the ability to work with a
dedicated file on disk. No separate connection component is needed when
working with a dedicated file because the client dataset itself knows how to read
from and write to the file.

• Connecting to another dataset. Client datasets can work with data provided by
another dataset. A TDataSetProvider component serves as an intermediary between
the client dataset and its source dataset. This dataset provider can reside in the
same data module as the client dataset, or it can be part of an application server
running on another machine. If the provider is part of an application server, you
also need a special descendant of TCustomConnection to represent the connection
to the application server.

• Obtaining data from an RDS DataSpace object. ADO datasets can use a
TRDSConnection component to marshal data in multi-tier database applications
that are built using ADO-based application servers.

Sometimes, these mechanisms can be combined in a single application.

Connecting directly to a database server

The most common database architecture is the one where the dataset uses a
connection component to establish a connection to a database server. The dataset
then fetches data directly from the server and posts edits directly to the server. This is
illustrated in Figure 14.2.

14-8 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

Figure 14.2 Connecting directly to the database server

Each type of dataset uses its own type of connection component, which represents a
single data access mechanism:

• If the dataset is a BDE dataset such as TTable, TQuery, or TStoredProc, the
connection component is a TDataBase object. You connect the dataset to the
database component by setting its Database property. You do not need to explicitly
add a database component when using BDE dataset. If you set the dataset’s
DatabaseName property, a database component is created for you automatically at
runtime.

• If the dataset is an ADO dataset such as TADODataSet, TADOTable, TADOQuery,
or TADOStoredProc, the connection component is a TADOConnection object. You
connect the dataset to the ADO connection component by setting its
ADOConnection property. As with BDE datasets, you do not need to explicitly add
the connection component: instead you can set the dataset’s ConnectionString
property.

• If the dataset is a dbExpress dataset such as TSQLDataSet, TSQLTable, TSQLQuery,
or TSQLStoredProc, the connection component is a TSQLConnection object. You
connect the dataset to the SQL connection component by setting its SQLConnection
property. When using dbExpress datasets, you must explicitly add the connection
component. Another difference between dbExpress datasets and the other datasets
is that dbExpress datasets are always read-only and unidirectional: This means
you can only navigate by iterating through the records in order, and you can’t use
the dataset methods that support editing.

• If the dataset is an InterBase Express dataset such as TIBDataSet, TIBTable,
TIBQuery, or TIBStoredProc, the connection component is a TIBDatabase object. You
connect the dataset to the IB database component by setting its Database property.
As with dbExpress datasets, you must explicitly add the connection component.

Client application

Data module

Dataset
UI

Data source

Database server

Connection
component

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-9

D a t a b a s e a r c h i t e c t u r e

In addition to the components listed above, you can use a specialized client dataset
such as TBDEClientDataSet, TSQLClientDataSet, or TIBClientDataSet with a database
connection component. When using one of these client datasets, specify the
appropriate type of connection component as the value of the DBConnection
property.

Although each type of dataset uses a different connection component, they all
perform many of the same tasks and surface many of the same properties, methods,
and events. For more information on the commonalities among the various database
connection components, see Chapter 17, “Connecting to databases”.

This architecture represents either a single-tiered or two-tiered application,
depending on whether the database server is a local database such or a remote
database server. The logic that manipulates database information is in the same
application that implements the user interface, although isolated into a data module.

Note The connection components or drivers needed to create two-tiered applications are
not available in all version of Delphi.

Using a dedicated file on disk

The simplest form of database application you can write does not use a database
server at all. Instead, it uses MyBase, the ability of client datasets to save themselves
to a file and to load the data from a file. This architecture is illustrated in Figure 14.3:

Figure 14.3 A file-based database application

When using this file-based approach, your application writes changes to disk using
the client dataset’s SaveToFile method. SaveToFile takes one parameter, the name of
the file which is created (or overwritten) containing the table. When you want to read
a table previously written using the SaveToFile method, use the LoadFromFile method.
LoadFromFile also takes one parameter, the name of the file containing the table.

If you always load to and save from the same file, you can use the FileName property
instead of the SaveToFile and LoadFromFile methods. When FileName is set to a valid
file name, the data is automatically loaded from the file when the client dataset is
opened and saved to the file when the client dataset is closed.

This simple file-based architecture is a single-tiered application. The logic that
manipulates database information is in the same application that implements the
user interface, although isolated into a data module.

Data module

Client dataset
UI

Data source
File

14-10 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

The file-based approach has the benefit of simplicity. There is no database server to
install, configure, or deploy (If you do not statically link in midaslib.dcu, the client
dataset does require midas.dll). There is no need for site licenses or database
administration.

In addition, some versions of Delphi let you convert between arbitrary XML
documents and the data packets that are used by a client dataset. Thus, the file-based
approach can be used to work with XML documents as well as dedicated datasets.
For information about converting between XML documents and client dataset data
packets, see Chapter 26, “Using XML in database applications”.

The file-based approach offers no support for multiple users. The dataset should be
dedicated entirely to the application. Data is saved to files on disk, and loaded at a
later time, but there is no built-in protection to prevent multiple users from
overwriting each other’s data files.

For more information about using a client dataset with data stored on disk, see
“Using a client dataset with file-based data” on page 23-31.

Connecting to another dataset

There are specialized client datasets that use the BDE or dbExpress to connect to a
database server. These specialized client datasets are, in fact, composite components
that include another dataset internally to access the data and an internal provider
component to package the data from the source dataset and to apply updates back to
the database server. These composite components require some additional overhead,
but provide certain benefits:

• Client datasets provide the most robust way to work with cached updates. By
default, other types of datasets post edits directly to the database server. You can
reduce network traffic by using a dataset that caches updates locally and applies
them all later in a single transaction. For information on the advantages of using
client datasets to cache updates, see “Using a client dataset to cache updates” on
page 23-15.

• Client datasets can apply edits directly to a database server when the dataset is
read-only. When using dbExpress, this is the only way to edit the data in the dataset
(it is also the only way to navigate freely in the data when using dbExpress). Even
when not using dbExpress, the results of some queries and all stored procedures
are read-only. Using a client dataset provides a standard way to make such data
editable.

• Because client datasets can work directly with dedicated files on disk, using a
client dataset can be combined with a file-based model to allow for a flexible
“briefcase” application. For information on the briefcase model, see “Combining
approaches” on page 14-14.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-11

D a t a b a s e a r c h i t e c t u r e

In addition to these specialized client datasets, there is a generic client dataset
(TClientDataSet), which does not include an internal dataset and dataset provider.
Although TClientDataSet has no built-in database access mechanism, you can connect
it to another, external, dataset from which it fetches data and to which it sends
updates. Although this approach is a bit more complicated, there are times when it is
preferable:

• Because the source dataset and dataset provider are external, you have more
control over how they fetch data and apply updates. For example, the provider
component surfaces a number of events that are not available when using a
specialized client dataset to access data.

• When the source dataset is external, you can link it in a master/detail relationship
with another dataset. An external provider automatically converts this
arrangement into a single dataset with nested details. When the source dataset is
internal, you can’t create nested detail sets this way.

• Connecting a client dataset to an external dataset is an architecture that easily
scales up to multiple tiers. Because the development process can get more
involved and expensive as the number of tiers increases, you may want to start
developing your application as a single-tiered or two-tiered application. As the
amount of data, the number of users, and the number of different applications
accessing the data grows, you may later need to scale up to a multi-tiered
architecture. If you think you may eventually use a multi-tiered architecture, it can
be worthwhile to start by using a client dataset with an external source dataset.
This way, when you move the data access and manipulation logic to a middle tier,
you protect your development investment because the code can be reused as your
application grows.

• TClientDataSet can link to any source dataset. This means you can use custom
datasets (third-party components) for which there is no corresponding specialized
client dataset. Some versions of Delphi even include special provider components
that connect a client dataset to an XML document rather than another dataset.
(This works the same way as connecting a client dataset to another (source)
dataset, except that the XML provider uses an XML document rather than a
dataset. For information about these XML providers, see “Using an XML
document as the source for a provider” on page 26-8.)

There are two versions of the architecture that connects a client dataset to an external
dataset:

• Connecting a client dataset to another dataset in the same application.

• Using a multi-tiered architecture.

Connecting a client dataset to another dataset in the same application
By using a provider component, you can connect TClientDataSet to another (source)
dataset. The provider packages database information into transportable data packets
(which can be used by client datasets) and applies updates received in delta packets

14-12 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

(which client datasets create) back to a database server. The architecture for this is
illustrated in Figure 14.4:

Figure 14.4 Architecture combining a client dataset and another dataset

This architecture represents either a single-tiered or two-tiered application,
depending on whether the database server is a local database or a remote database
server. The logic that manipulates database information is in the same application
that implements the user interface, although isolated into a data module.

To link the client dataset to the provider, set its ProviderName property to the name of
the provider component. The provider must be in the same data module as the client
dataset. To link the provider to the source dataset, set its DataSet property.

Once the client dataset is linked to the provider and the provider is linked to the
source dataset, these components automatically handle all the details necessary for
fetching, displaying, and navigating through the database records (assuming the
source dataset is connected to a database). To apply user edits back to the database,
you need only call the client dataset’s ApplyUpdates method.

For more information on using a client dataset with a provider, see “Using a client
dataset with a provider” on page 23-23.

Using a multi-tiered architecture
When the database information includes complicated relationships between several
tables, or when the number of clients grows, you may want to use a multi-tiered

Client application

Data module

Client dataset

UI
Data source

DatasetConnection
component Provider

Database server

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-13

D a t a b a s e a r c h i t e c t u r e

application. Multi-tiered applications have middle tiers between the client
application and database server. The architecture for this is illustrated in Figure 14.5:

Figure 14.5 Multi-tiered database architecture

The preceding figure represents three-tiered application. The logic that manipulates
database information is on a separate system, or tier. This middle tier centralizes the
logic that governs your database interactions so there is centralized control over data
relationships. This allows different client applications to use the same data, while
ensuring consistent data logic. It also allows for smaller client applications because
much of the processing is off-loaded onto the middle tier. These smaller client
applications are easier to install, configure, and maintain. Multi-tiered applications
can also improve performance by spreading data-processing over several systems.

The multi-tiered architecture is very similar to the previous model. It differs mainly
in that source dataset that connects to the database server and the provider that acts
as an intermediary between that source dataset and the client dataset have both
moved to a separate application. That separate application is called the application
server (or sometimes the “remote data broker”).

Because the provider has moved to a separate application, the client dataset can no
longer connect to the source dataset by simply setting its ProviderName property. In
addition, it must use some type of connection component to locate and connect to the
application server.

Client dataset

UI

Data source

Database server

Connection
component

Unidirectional
dataset

SQL
connectionProvider

Application server

14-14 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

There are several types of connection components that can connect a client dataset to
an application server. They are all descendants of TCustomRemoteServer, and differ
primarily in the communication protocol they use (TCP/IP, HTTP, DCOM, SOAP, or
CORBA). Link the client dataset to its connection component by setting the
RemoteServer property.

The connection component establishes a connection to the application server and
returns an interface that the client dataset uses to call the provider specified by its
ProviderName property. Each time the client dataset calls the application server, it
passes the value of ProviderName, and the application server forwards the call to the
provider.

For more information about connecting a client dataset to an application server, see
Chapter 25, “Creating multi-tiered applications”.

Combining approaches

The previous sections describe several architectures you can use when writing
database applications. There is no reason, however, why you can’t combine two or
more of the available architectures in a single application. In fact, some combinations
can be extremely powerful.

For example, you can combine the disk-based architecture described in “Using a
dedicated file on disk” on page 14-9 with another approach such as those described
in “Connecting a client dataset to another dataset in the same application” on
page 14-11 or “Using a multi-tiered architecture” on page 14-12. These combinations
are easy because all models use a client dataset to represent the data that appears in
the user interface. The result is called the briefcase model (or sometimes the
disconnected model, or mobile computing).

The briefcase model is useful in a situation such as the following: An onsite company
database contains customer contact data that sales representatives can use and
update in the field. While onsite, sales representatives download information from
the database. Later, they work with it on their laptops as they fly across the country,
and even update records at existing or new customer sites. When the sales reps
return onsite, they upload their data changes to the company database for everyone
to use.

When operating on site, the client dataset in a briefcase model application fetches its
data from a provider. The client dataset is therefore connected to the database server
and can, through the provider, fetch server data and send updates back to the server.
Before disconnecting from the provider, the client dataset saves its snapshot of the
information to a file on disk. While offsite, the client dataset loads its data from the
file, and saves any changes back to that file. Finally, back onsite, the client dataset
reconnects to the provider so that it can apply its updates to the database server or
refresh its snapshot of the data.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-15

D e s i g n i n g t h e u s e r i n t e r f a c e

Designing the user interface
The Data Controls page of the Component palette provides a set of data-aware
controls that represent data from fields in a database record, and can permit users to
edit that data and post changes back to the database. Using data-aware controls, you
can build your database application’s user interface (UI) so that information is visible
and accessible to users. For more information on data-aware controls see Chapter 15,
“Using data controls.”

In addition to the basic data controls, you may also want to introduce other elements
into your user interface:

• You may want your application to analyze the data contained in a database.
Applications that analyze data do more than just display the data in a database,
they also summarize the information in useful formats to help users grasp the
impact of that data.

• You may want to print reports that provide a hard copy of the information
displayed in your user interface.

• You may want to create a user interface that can be viewed from Web browsers.
The simplest Web-based database applications are described in “Using database
information in responses” on page 28-17. In addition, you can combine the Web-
based approach with the multi-tiered architecture, as described in “Writing Web-
based client applications.”

Analyzing data

Some database applications do not present database information directly to the user.
Instead, they analyze and summarize information from databases so that users can
draw conclusions from the data.

The TDBChart component on the Data Controls page of the Component palette lets
you present database information in a graphical format that enables users to quickly
grasp the import of database information.

In addition, some versions of Delphi include a Decision Cube page on the
Component palette. It contains six components that let you perform data analysis
and cross-tabulations on data when building decision support applications. For more
information about using the Decision Cube components, see Chapter 16, “Using
decision support components”.

If you want to build your own components that display data summaries based on
various grouping criteria, you can use maintained aggregates with a client dataset.
For more information about using maintained aggregates, see “Using maintained
aggregates” on page 23-11.

14-16 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t h e u s e r i n t e r f a c e

Writing reports

If you want to let your users print database information from the datasets in your
application, you can use the report components on the QReport page of the
Component palette. Using these components you can visually build banded reports
to present and summarize the information in your database tables. You can add
summaries to group headers or footers to analyze the data based on grouping
criteria.

Start a report for your application by selecting the QuickReport icon from the New
Items dialog. Select File|New from the main menu, and go to the page labeled
Business. Double-click the QuickReport Wizard icon to launch the wizard.

Note See the QuickReport demo that ships with Delphi for an example of how to use the
components on the QReport page.

U s i n g d a t a c o n t r o l s 15-1

C h a p t e r

15
Chapter 15Using data controls

The Data Controls page of the Component palette provides a set of data-aware
controls that represent data from fields in a database record, and, if the dataset allows
it, enable users to edit that data and post changes back to the database. By placing
data controls onto the forms in your database application, you can build your
database application’s user interface (UI) so that information is visible and accessible
to users.

The data-aware controls you add to your user interface depend on several factors,
including the following:

• The type of data you are displaying. You can choose between controls that are
designed to display and edit plain text, controls that work with formatted text,
controls for graphics, multimedia elements, and so on. Controls that display
different types of information are described in “Displaying a single record” on
page 15-7.

• How you want to organize the information. You may choose to display
information from a single record on the screen, or list the information from
multiple records using a grid. “Choosing how to organize the data” on page 15-7
describes some of the possibilities.

• The type of dataset that supplies data to the controls. You want to use controls that
reflect the limitations of the underlying dataset. For example, you would not use a
grid with a unidirectional dataset because unidirectional datasets can only supply
a single record at a time.

• How (or if) you want to let users navigate through the records of datasets and add
or edit data. You may want to add your own controls or mechanisms to navigate
and edit, or you may want to use a built-in control such as a data navigator. For
more information about using a data navigator, see “Navigating and
manipulating records” on page 15-28.

15-2 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Note More complex data-aware controls for decision support are discussed in Chapter 16,
“Using decision support components.”

Regardless of the data-aware controls you choose to add to your interface, certain
common features apply. These are described below.

Using common data control features
The following tasks are common to most data controls:

• Associating a data control with a dataset
• Editing and updating data
• Disabling and enabling data display
• Refreshing data display
• Enabling mouse, keyboard, and timer events

Data controls let you display and edit fields of data associated with the current
record in a dataset. Table 15.1 summarizes the data controls that appear on the Data
Controls page of the Component palette.

Table 15.1 Data controls

Data control Description

TDBGrid Displays information from a data source in a tabular format. Columns in
the grid correspond to columns in the underlying table or query’s
dataset. Rows in the grid correspond to records.

TDBNavigator Navigates through data records in a dataset. updating records, posting
records, deleting records, canceling edits to records, and refreshing data
display.

TDBText Displays data from a field as a label.

TDBEdit Displays data from a field in an edit box.

TDBMemo Displays data from a memo or BLOB field in a scrollable, multi-line edit
box.

TDBImage Displays graphics from a data field in a graphics box.

TDBListBox Displays a list of items from which to update a field in the current data
record.

TDBComboBox Displays a list of items from which to update a field, and also permits
direct text entry like a standard data-aware edit box.

TDBCheckBox Displays a check box that indicates the value of a Boolean field.

TDBRadioGroup Displays a set of mutually exclusive options for a field.

TDBLookupListBox Displays a list of items looked up from another dataset based on the
value of a field.

TDBLookupComboBox Displays a list of items looked up from another dataset based on the
value of a field, and also permits direct text entry like a standard data-
aware edit box.

TDBCtrlGrid Displays a configurable, repeating set of data-aware controls within a
grid.

TDBRichEdit Displays formatted data from a field in an edit box.

U s i n g d a t a c o n t r o l s 15-3

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Data controls are data-aware at design time. When you associate the data control
with an active dataset while building an application, you can immediately see live
data in the control. You can use the Fields editor to scroll through a dataset at design
time to verify that your application displays data correctly without having to compile
and run the application. For more information about the Fields editor, see “Creating
persistent fields” on page 19-4.

At runtime, data controls display data and, if your application, the control, and the
dataset all permit it, a user can edit data through the control.

Associating a data control with a dataset

Data controls connect to datasets by using a data source. A data source component
(TDataSource) acts as a conduit between the control and a dataset containing data.
Each data-aware control must be associated with a data source component to have
data to display and manipulate. Similarly, all datasets must be associated with a data
source component in order for their data to be displayed and manipulated in data-
aware controls on a form.

Note Data source components are also required for linking unnested datasets in master-
detail relationships.

To associate a data control with a dataset,

1 Place a dataset in a data module (or on a form), and set its properties as
appropriate.

2 Place a data source in the same data module (or form). Using the Object Inspector,
set its DataSet property to the dataset you placed in step 1.

3 Place a data control from the Data Access page of the Component palette onto a
form.

4 Using the Object Inspector, set the DataSource property of the control to the data
source component you placed in step 2.

5 Set the DataField property of the control to the name of a field to display, or select a
field name from the drop-down list for the property. This step does not apply to
TDBGrid, TDBCtrlGrid, and TDBNavigator because they access all available fields
in the dataset.

6 Set the Active property of the dataset to True to display data in the control.

Changing the associated dataset at runtime
In the preceding example, the datasource was associated with its dataset by setting
the DataSet property at design time. At runtime, you can switch the dataset for a data
source component as needed. For example, the following code swaps the dataset for
the CustSource data source component between the dataset components named
Customers and Orders:

with CustSource do begin
if (DataSet = Customers) then

DataSet := Orders

15-4 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

else
DataSet := Customers;

end;

You can also set the DataSet property to a dataset on another form to synchronize the
data controls on two forms. For example:

procedure TForm2.FormCreate (Sender : TObject);
begin

DataSource1.Dataset := Form1.Table1;
end;

Enabling and disabling the data source
The data source has an Enabled property that determines if it is connected to its
dataset. When Enabled is True, the data source is connected to a dataset.

You can temporarily disconnect a single data source from its dataset by setting
Enabled to False. When Enabled is False, all data controls attached to the data source
component go blank and become inactive until Enabled is set to True. It is
recommended, however, to control access to a dataset through a dataset component’s
DisableControls and EnableControls methods because they affect all attached data
sources.

Responding to changes mediated by the data source
Because the data source provides the link between the data control and its dataset, it
mediates all of the communication that occurs between the two. Typically, the data-
aware control automatically responds to changes in the dataset. However, if your
user interface is using controls that are not data-aware, you can use the events of a
data source component to manually provide the same sort of response.

The OnDataChange event occurs whenever the data in a record may have changed,
including field edits or when the cursor moves to a new record. This event is useful
for making sure the control reflects the current field values in the dataset, because it
is triggered by all changes. Typically, an OnDataChange event handler refreshes the
value of a non-data-aware control that displays field data.

The OnUpdateData event occurs when the data in the current record is about to be
posted. For instance, an OnUpdateData event occurs after Post is called, but before the
data is actually posted to the underlying database server or local cache.

The OnStateChange event occurs when the state of the dataset changes. When this
event occurs, you can examine the dataset’s State property to determine its current
state.

For example, the following OnStateChange event handler enables or disables buttons
or menu items based on the current state:

procedure Form1.DataSource1.StateChange(Sender: TObject);
begin

CustTableEditBtn.Enabled := (CustTable.State = dsBrowse);
CustTableCancelBtn.Enabled := CustTable.State in [dsInsert, dsEdit, dsSetKey];
CustTableActivateBtn.Enabled := CustTable.State in [dsInactive];
ƒ

end;

U s i n g d a t a c o n t r o l s 15-5

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Note For more information about dataset states, see “Determining dataset states” on
page 18-3.

Editing and updating data

All data controls except the navigator display data from a database field. In addition,
you can use them to edit and update data as long as the underlying dataset allows it.

Note Unidirectional datasets never permit users to edit and update data.

Enabling editing in controls on user entry
A dataset must be in dsEdit state to permit editing to its data. If the data source’s
AutoEdit property is True (the default), the data control handles the task of putting
the dataset into dsEdit mode as soon as the user tries to edit its data.

If AutoEdit is False, you must provide an alternate mechanism for putting the dataset
into edit mode. One such mechanism is to use a TDBNavigator control with an Edit
button, which lets users explicitly put the dataset into edit mode. For more
information about TDBNavigator, see “Navigating and manipulating records” on
page 15-28. Alternately, you can write code that calls the dataset’s Edit method when
you want to put the dataset into edit mode.

Editing data in a control
A data control can only post edits to its associated dataset if the dataset’s CanModify
property is True. CanModify is always False for unidirectional datasets. Some datasets
have a ReadOnly property that lets you specify whether CanModify is True.

Note Whether a dataset can update data depends on whether the underlying database
table permits updates.

Even if the dataset’s CanModify property is True, the Enabled property of the data
source that connects the dataset to the control must be True as well before the control
can post updates back to the database table. The Enabled property of the data source
determines whether the control can display field values from the dataset, and
therefore also whether a user can edit and post values. If Enabled is True (the default),
controls can display field values.

Finally, you can control whether the user can even enter edits to the data that is
displayed in the control. The ReadOnly property of the data control determines if a
user can edit the data displayed by the control. If False (the default), users can edit
data. Clearly, you will want to ensure that the control’s ReadOnly property is True
when the dataset’s CanModify property is False. Otherwise, you give users the false
impression that they can affect the data in the underlying database table.

In all data controls except TDBGrid, when you modify a field, the modification is
copied to the underlying dataset when you Tab from the control. If you press Esc
before you Tab from a field, the data control abandons the modifications, and the
value of the field reverts to the value it held before any modifications were made.

15-6 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

In TDBGrid, modifications are posted when you move to a different record; you can
press Esc in any record of a field before moving to another record to cancel all
changes to the record.

When a record is posted, Delphi checks all data-aware controls associated with the
dataset for a change in status. If there is a problem updating any fields that contain
modified data, Delphi raises an exception, and no modifications are made to the
record.

Note If your application caches updates (for example, using a client dataset), all
modifications are posted to an internal cache. These modifications are not applied to
the underlaying database table until you call the dataset’s ApplyUpdates method.

Disabling and enabling data display

When your application iterates through a dataset or performs a search, you should
temporarily prevent refreshing of the values displayed in data-aware controls each
time the current record changes. Preventing refreshing of values speeds the iteration
or search and prevents annoying screen-flicker.

DisableControls is a dataset method that disables display for all data-aware controls
linked to a dataset. As soon as the iteration or search is over, your application should
immediately call the dataset’s EnableControls method to re-enable display for the
controls.

Usually you disable controls before entering an iterative process. The iterative
process itself should take place inside a try...finally statement so that you can re-
enable controls even if an exception occurs during processing. The finally clause
should call EnableControls. The following code illustrates how you might use
DisableControls and EnableControls in this manner:

CustTable.DisableControls;
try
 CustTable.First; { Go to first record, which sets EOF False }
 while not CustTable.EOF do { Cycle until EOF is True }
 begin
 { Process each record here }

ƒ
 CustTable.Next; { EOF False on success; EOF True when Next fails on last record }
 end;
finally
 CustTable.EnableControls;
end;

Refreshing data display

The Refresh method for a dataset flushes local buffers and refetches data for an open
dataset. You can use this method to update the display in data-aware controls if you
think that the underlying data has changed because other applications have
simultaneous access to the data used in your application. If you are using cached
updates, before you refresh the dataset you must apply any updates the dataset has
currently cached.

U s i n g d a t a c o n t r o l s 15-7

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Refreshing can sometimes lead to unexpected results. For example, if a user is
viewing a record deleted by another application, then the record disappears the
moment your application calls Refresh. Data can also appear to change if another user
changes a record after you originally fetched the data and before you call Refresh.

Enabling mouse, keyboard, and timer events

The Enabled property of a data control determines whether it responds to mouse,
keyboard, or timer events, and passes information to its data source. The default
setting for this property is True.

To prevent mouse, keyboard, or timer events from reaching a data control, set its
Enabled property to False. When Enabled is False, the data source that connects the
control to its dataset does not receive information from the data control. The data
control continues to display data, but the text displayed in the control is dimmed.

Choosing how to organize the data
When you build the user interface for your database application, you have choices to
make about how you want to organize the display of information and the controls
that manipulate that information.

One of the first decisions to make is whether you want to display a single record at a
time, or multiple records.

In addition, you will want to add controls to navigate and manipulate records. The
TDBNavigator control provides built-in support for many of the functions you may
want to perform.

Displaying a single record

In many applications, you may only want to provide information about a single
record of data at a time. For example, an order-entry application may display the
information about a single order without indicating what other orders are currently
logged. This information probably comes from a single record in an orders dataset.

Applications that display a single record are usually easy to read and understand,
because all database information is about the same thing (in the previous case, the
same order). The data-aware controls in these user interfaces represent a single field
from a database record. The Data Controls page of the Component palette provides a
wide selection of controls to represent different kinds of fields. These controls are
typically data-aware versions of other controls that are available on the component
palette. For example, the TDBEdit control is a data-aware version of the standard
TEdit control which enables users to see and edit a text string.

Which control you use depends on the type of data (text, formatted text, graphics,
boolean information, and so on) contained in the field.

15-8 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Displaying data as labels
TDBText is a read-only control similar to the TLabel component on the Standard page
of the Component palette. A TDBText control is useful when you want to provide
display-only data on a form that allows user input in other controls. For example,
suppose a form is created around the fields in a customer list table, and that once the
user enters a street address, city, and state or province information in the form, you
use a dynamic lookup to automatically determine the zip code field from a separate
table. A TDBText component tied to the zip code table could be used to display the
zip code field that matches the address entered by the user.

TDBText gets the text it displays from a specified field in the current record of a
dataset. Because TDBText gets its text from a dataset, the text it displays is dynamic—
the text changes as the user navigates the database table. Therefore you cannot
specify the display text of TDBText at design time as you can with TLabel.

Note When you place a TDBText component on a form, make sure its AutoSize property is
True (the default) to ensure that the control resizes itself as necessary to display data
of varying widths. If AutoSize is False, and the control is too small, data display is
clipped.

Displaying and editing fields in an edit box
TDBEdit is a data-aware version of an edit box component. TDBEdit displays the
current value of a data field to which it is linked and permits it to be edited using
standard edit box techniques.

For example, suppose CustomersSource is a TDataSource component that is active and
linked to an open TClientDataSet called CustomersTable. You can then place a TDBEdit
component on a form and set its properties as follows:

• DataSource: CustomersSource

• DataField: CustNo

The data-aware edit box component immediately displays the value of the current
row of the CustNo column of the CustomersTable dataset, both at design time and at
runtime.

Displaying and editing text in a memo control
TDBMemo is a data-aware component—similar to the standard TMemo component—
that can display lengthy text data. TDBMemo displays multi-line text, and permits a
user to enter multi-line text as well. You can use TDBMemo controls to display large
text fields or text data contained in binary large object (BLOB) fields.

By default, TDBMemo permits a user to edit memo text. To prevent editing, set the
ReadOnly property of the memo control to True. To display tabs and permit users to
enter them in a memo, set the WantTabs property to True. To limit the number of
characters users can enter into the database memo, use the MaxLength property. The
default value for MaxLength is 0, meaning that there is no character limit other than
that imposed by the operating system.

Several properties affect how the database memo appears and how text is entered.
You can supply scroll bars in the memo with the ScrollBars property. To prevent

U s i n g d a t a c o n t r o l s 15-9

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

word wrap, set the WordWrap property to False. The Alignment property determines
how the text is aligned within the control. Possible choices are taLeftJustify (the
default), taCenter, and taRightJustify. To change the font of the text, use the Font
property.

At runtime, users can cut, copy, and paste text to and from a database memo control.
You can accomplish the same task programmatically by using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

Because the TDBMemo can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes to scroll through data records,
TDBMemo has an AutoDisplay property that controls whether the accessed data
should be displayed automatically. If you set AutoDisplay to False, TDBMemo
displays the field name rather than actual data. Double-click inside the control to
view the actual data.

Displaying and editing text in a rich edit memo control
TDBRichEdit is a data-aware component—similar to the standard TRichEdit
component—that can display formatted text stored in a binary large object (BLOB)
field. TDBRichEdit displays formatted, multi-line text, and permits a user to enter
formatted multi-line text as well.

Note While TDBRichEdit provides properties and methods to enter and work with rich
text, it does not provide any user interface components to make these formatting
options available to the user. Your application must implement the user interface to
surface rich text capabilities.

By default, TDBRichEdit permits a user to edit memo text. To prevent editing, set the
ReadOnly property of the rich edit control to True. To display tabs and permit users to
enter them in a memo, set the WantTabs property to True. To limit the number of
characters users can enter into the database memo, use the MaxLength property. The
default value for MaxLength is 0, meaning that there is no character limit other than
that imposed by the operating system.

Because the TDBRichEdit can display large amounts of data, it can take time to
populate the display at runtime. To reduce the time it takes to scroll through data
records, TDBRichEdit has an AutoDisplay property that controls whether the accessed
data should be displayed automatically. If you set AutoDisplay to False, TDBRichEdit
displays the field name rather than actual data. Double-click inside the control to
view the actual data.

Displaying and editing graphics fields in an image control
TDBImage is a data-aware control that displays graphics contained in BLOB fields.

By default, TDBImage permits a user to edit a graphics image by cutting and pasting
to and from the Clipboard using the CutToClipboard, CopyToClipboard, and
PasteFromClipboard methods. You can, instead, supply your own editing methods
attached to the event handlers for the control.

By default, an image control displays as much of a graphic as fits in the control,
cropping the image if it is too big. You can set the Stretch property to True to resize
the graphic to fit within an image control as it is resized.

15-10 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Because the TDBImage can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes scroll through data records,
TDBImage has an AutoDisplay property that controls whether the accessed data
should automatically displayed. If you set AutoDisplay to False, TDBImage displays
the field name rather than actual data. Double-click inside the control to view the
actual data.

Displaying and editing data in list and combo boxes
There are four data controls that provide the user with a set of default data values to
choose from at runtime. These are data-aware versions of standard list and combo
box controls:

• TDBListBox, which displays a scrollable list of items from which a user can choose
to enter in a data field. A data-aware list box displays a default value for a field in
the current record and highlights its corresponding entry in the list. If the current
row’s field value is not in the list, no value is highlighted in the list box. When a
user selects a list item, the corresponding field value is changed in the underlying
dataset.

• TDBComboBox, which combines the functionality of a data-aware edit control and
a drop-down list. At runtime it can display a drop-down list from which a user can
pick from a predefined set of values, and it can permit a user to enter an entirely
different value.

• TDBLookupListBox, which behaves like TDBListBox except the list of display items
is looked up in another dataset.

• TDBLookupComboBox, which behaves like TDBComboBox except the list of display
items is looked up in another dataset.

Note At runtime, users can use an incremental search to find list box items. When the
control has focus, for example, typing ‘ROB’ selects the first item in the list box
beginning with the letters ‘ROB’. Typing an additional ‘E’ selects the first item
starting with ‘ROBE’, such as ‘Robert Johnson’. The search is case-insensitive.
Backspace and Esc cancel the current search string (but leave the selection intact), as
does a two second pause between keystrokes.

Using TDBListBox and TDBComboBox
When using TDBListBox or TDBComboBox, you must use the String List editor at
design time to create the list of items to display. To bring up the String List editor,
click the ellipsis button for the Items property in the Object Inspector. Then type in
the items that you want to have appear in the list. At runtime, use the methods of the
Items property to manipulate its string list.

When a TDBListBox or TDBComboBox control is linked to a field through its DataField
property, the field value appears selected in the list. If the current value is not in the
list, no item appears selected. However, TDBComboBox displays the current value for
the field in its edit box, regardless of whether it appears in the Items list.

For TDBListBox, the Height property determines how many items are visible in the
list box at one time. The IntegralHeight property controls how the last item can
appear. If IntegralHeight is False (the default), the bottom of the list box is determined

U s i n g d a t a c o n t r o l s 15-11

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

by the ItemHeight property, and the bottom item may not be completely displayed. If
IntegralHeight is True, the visible bottom item in the list box is fully displayed.

For TDBComboBox, the Style property determines user interaction with the control. By
default, Style is csDropDown, meaning a user can enter values from the keyboard, or
choose an item from the drop-down list. The following properties determine how the
Items list is displayed at runtime:

• Style determines the display style of the component:

• csDropDown (default): Displays a drop-down list with an edit box in which the
user can enter text. All items are strings and have the same height.

• csSimple: Combines an edit control with a fixed size list of items that is always
displayed. When setting Style to csSimple, be sure to increase the Height
property so that the list is displayed.

• csDropDownList: Displays a drop-down list and edit box, but the user cannot
enter or change values that are not in the drop-down list at runtime.

• csOwnerDrawFixed and csOwnerDrawVariable: Allows the items list to display
values other than strings (for example, bitmaps) or to use different fonts for
individual items in the list.

• DropDownCount: the maximum number of items displayed in the list. If the
number of Items is greater than DropDownCount, the user can scroll the list. If the
number of Items is less than DropDownCount, the list will be just large enough to
display all the Items.

• ItemHeight: The height of each item when style is csOwnerDrawFixed.

• Sorted: If True, then the Items list is displayed in alphabetical order.

Displaying and editing data in lookup list and combo boxes
Lookup list boxes and lookup combo boxes (TDBLookupListBox and
TDBLookupComboBox) present the user with a restricted list of choices from which to
set a valid field value. When a user selects a list item, the corresponding field value is
changed in the underlying dataset.

For example, consider an order form whose fields are tied to the OrdersTable.
OrdersTable contains a CustNo field corresponding to a customer ID, but OrdersTable
does not have any other customer information. The CustomersTable, on the other
hand, contains a CustNo field corresponding to a customer ID, and also contains
additional information, such as the customer’s company and mailing address. It
would be convenient if the order form enabled a clerk to select a customer by
company name instead of customer ID when creating an invoice. A
TDBLookupListBox that displays all company names in CustomersTable enables a user
to select the company name from the list, and set the CustNo on the order form
appropriately.

These lookup controls derive the list of display items from one of two sources:

• A lookup field defined for a dataset.
To specify list box items using a lookup field, the dataset to which you link the

15-12 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

control must already define a lookup field. (This process is described in “Defining
a lookup field” on page 19-8). To specify the lookup field for the list box items,

1 Set the DataSource property of the list box to the data source for the dataset
containing the lookup field to use.

2 Choose the lookup field to use from the drop-down list for the DataField
property.

When you activate a table associated with a lookup control, the control recognizes
that its data field is a lookup field, and displays the appropriate values from the
lookup.

• A secondary data source, data field, and key.
If you have not defined a lookup field for a dataset, you can establish a similar
relationship using a secondary data source, a field value to search on in the
secondary data source, and a field value to return as a list item. To specify a
secondary data source for list box items,

1 Set the DataSource property of the list box to the data source for the control.

2 Choose a field into which to insert looked-up values from the drop-down list
for the DataField property. The field you choose cannot be a lookup field.

3 Set the ListSource property of the list box to the data source for the dataset that
contain the field whose values you want to look up.

4 Choose a field to use as a lookup key from the drop-down list for the KeyField
property. The drop-down list displays fields for the dataset associated with
data source you specified in Step 3. The field you choose need not be part of an
index, but if it is, lookup performance is even faster.

5 Choose a field whose values to return from the drop-down list for the ListField
property. The drop-down list displays fields for the dataset associated with the
data source you specified in Step 3.

When you activate a table associated with a lookup control, the control recognizes
that its list items are derived from a secondary source, and displays the
appropriate values from that source.

To specify the number of items that appear at one time in a TDBLookupListBox
control, use the RowCount property. The height of the list box is adjusted to fit this
row count exactly.

To specify the number of items that appear in the drop-down list of
TDBLookupComboBox, use the DropDownRows property instead.

Note You can also set up a column in a data grid to act as a lookup combo box. For
information on how to do this, see “Defining a lookup list column” on page 15-20.

Handling Boolean field values with check boxes
TDBCheckBox is a data-aware check box control. It can be used to set the values of
Boolean fields in a dataset. For example, a customer invoice form might have a check
box control that when checked indicates the customer is tax-exempt, and when
unchecked indicates that the customer is not tax-exempt.

U s i n g d a t a c o n t r o l s 15-13

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

The data-aware check box control manages its checked or unchecked state by
comparing the value of the current field to the contents of ValueChecked and
ValueUnchecked properties. If the field value matches the ValueChecked property, the
control is checked. Otherwise, if the field matches the ValueUnchecked property, the
control is unchecked.

Note The values in ValueChecked and ValueUnchecked cannot be identical.

Set the ValueChecked property to a value the control should post to the database if the
control is checked when the user moves to another record. By default, this value is set
to “true,” but you can make it any alphanumeric value appropriate to your needs.
You can also enter a semicolon-delimited list of items as the value of ValueChecked. If
any of the items matches the contents of that field in the current record, the check box
is checked. For example, you can specify a ValueChecked string like:

DBCheckBox1.ValueChecked := 'True;Yes;On';

If the field for the current record contains values of “true,” “Yes,” or “On,” then the
check box is checked. Comparison of the field to ValueChecked strings is case-
insensitive. If a user checks a box for which there are multiple ValueChecked strings,
the first string is the value that is posted to the database.

Set the ValueUnchecked property to a value the control should post to the database if
the control is not checked when the user moves to another record. By default, this
value is set to “false,” but you can make it any alphanumeric value appropriate to
your needs. You can also enter a semicolon-delimited list of items as the value of
ValueUnchecked. If any of the items matches the contents of that field in the current
record, the check box is unchecked.

A data-aware check box is disabled whenever the field for the current record does
not contain one of the values listed in the ValueChecked or ValueUnchecked properties.

If the field with which a check box is associated is a logical field, the check box is
always checked if the contents of the field is True, and it is unchecked if the contents
of the field is False. In this case, strings entered in the ValueChecked and
ValueUnchecked properties have no effect on logical fields.

Restricting field values with radio controls
TDBRadioGroup is a data-aware version of a radio group control. It enables you to set
the value of a data field with a radio button control where there is a limited number
of possible values for the field. The radio group includes one button for each value a
field can accept. Users can set the value for a data field by selecting the desired radio
button.

The Items property determines the radio buttons that appear in the group. Items is a
string list. One radio button is displayed for each string in Items, and each string
appears to the right of a radio button as the button’s label.

If the current value of a field associated with a radio group matches one of the strings
in the Items property, that radio button is selected. For example, if three strings,
“Red,” “Yellow,” and “Blue,” are listed for Items, and the field for the current record
contains the value “Blue,” then the third button in the group appears selected.

15-14 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Note If the field does not match any strings in Items, a radio button may still be selected if
the field matches a string in the Values property. If the field for the current record
does not match any strings in Items or Values, no radio button is selected.

The Values property can contain an optional list of strings that can be returned to the
dataset when a user selects a radio button and posts a record. Strings are associated
with buttons in numeric sequence. The first string is associated with the first button,
the second string with the second button, and so on. For example, suppose Items
contains “Red,” “Yellow,” and “Blue,” and Values contains “Magenta,” “Yellow,”
and “Cyan.” If a user selects the button labeled “Red,” “Magenta” is posted to the
database.

If strings for Values are not provided, the Item string for a selected radio button is
returned to the database when a record is posted.

Displaying multiple records

Sometimes you want to display many records in the same form. For example, an
invoicing application might show all the orders made by a single customer on the
same form.

To display multiple records, use a grid control. Grid controls provide a multi-field,
multi-record view of data that can make your application’s user interface more
compelling and effective. They are discussed in “Viewing and editing data with
TDBGrid” on page 15-15 and “Creating a grid that contains other data-aware
controls” on page 15-26.

Note You can’t display multiple records when using a unidirectional dataset.

You may want to design a user interface that displays both fields from a single record
and grids that represent multiple records. There are two models that combine these
two approaches:

• Master-detail forms: You can represent information from both a master table and
a detail table by including both controls that display a single field and grid
controls. For example, you could display information about a single customer with
a detail grid that displays the orders for that customer. For information about
linking the underlying tables in a master-detail form, see “Creating master/detail
relationships” on page 18-34 and “Establishing master/detail relationships using
parameters” on page 18-46.

• Drill-down forms: In a form that displays multiple records, you can include single
field controls that display detailed information from the current record only. This
approach is particularly useful when the records include long memos or graphic
information. As the user scrolls through the records of the grid, the memo or
graphic updates to represent the value of the current record. Setting this up is very
easy. The synchronization between the two displays is automatic if the grid and
the memo or image control share a common data source.

Tip It is generally not a good idea to combine these two approaches on a single form. It is
usually confusing for users to understand the data relationships in such forms.

U s i n g d a t a c o n t r o l s 15-15

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Viewing and editing data with TDBGrid
A TDBGrid control lets you view and edit records in a dataset in a tabular grid
format.

Figure 15.1 TDBGrid control

Three factors affect the appearance of records displayed in a grid control:

• Existence of persistent column objects defined for the grid using the Columns
editor. Persistent column objects provide great flexibility setting grid and data
appearance. For information on using persistent columns, see “Creating a
customized grid” on page 15-16.

• Creation of persistent field components for the dataset displayed in the grid. For
more information about creating persistent field components using the Fields
editor, see Chapter 19, “Working with field components.”

• The dataset’s ObjectView property setting for grids displaying ADT and array
fields. See “Displaying ADT and array fields” on page 15-21.

A grid control has a Columns property that is itself a wrapper on a TDBGridColumns
object. TDBGridColumns is a collection of TColumn objects representing all of the
columns in a grid control. You can use the Columns editor to set up column
attributes at design time, or use the Columns property of the grid to access the
properties, events, and methods of TDBGridColumns at runtime.

Using a grid control in its default state

The State property of the grid’s Columns property indicates whether persistent
column objects exist for the grid. Columns.State is a runtime-only property that is
automatically set for a grid. The default state is csDefault, meaning that persistent
column objects do not exist for the grid. In that case, the display of data in the grid is
determined primarily by the properties of the fields in the grid’s dataset, or, if there
are no persistent field components, by a default set of display characteristics.

When the grid’s Columns.State property is csDefault, grid columns are dynamically
generated from the visible fields of the dataset and the order of columns in the grid
matches the order of fields in the dataset. Every column in the grid is associated with

Current field Column titles

Record
indicator

15-16 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

a field component. Property changes to field components immediately show up in
the grid.

Using a grid control with dynamically-generated columns is useful for viewing and
editing the contents of arbitrary tables selected at runtime. Because the grid’s
structure is not set, it can change dynamically to accommodate different datasets. A
single grid with dynamically-generated columns can display a Paradox table at one
moment, then switch to display the results of an SQL query when the grid’s
DataSource property changes or when the DataSet property of the data source itself is
changed.

You can change the appearance of a dynamic column at design time or runtime, but
what you are actually modifying are the corresponding properties of the field
component displayed in the column. Properties of dynamic columns exist only so
long as a column is associated with a particular field in a single dataset. For example,
changing the Width property of a column changes the DisplayWidth property of the
field associated with that column. Changes made to column properties that are not
based on field properties, such as Font, exist only for the lifetime of the column.

If a grid’s dataset consists of dynamic field components, the fields are destroyed each
time the dataset is closed. When the field components are destroyed, all dynamic
columns associated with them are destroyed as well. If a grid’s dataset consists of
persistent field components, the field components exist even when the dataset is
closed, so the columns associated with those fields also retain their properties when
the dataset is closed.

Note Changing a grid’s Columns.State property to csDefault at runtime deletes all column
objects in the grid (even persistent columns), and rebuilds dynamic columns based
on the visible fields of the grid’s dataset.

Creating a customized grid

A customized grid is one for which you define persistent column objects that
describe how a column appears and how the data in the column is displayed. A
customized grid lets you configure multiple grids to present different views of the
same dataset (different column orders, different field choices, and different column
colors and fonts, for example). A customized grid also enables you to let users
modify the appearance of the grid at runtime without affecting the fields used by the
grid or the field order of the dataset.

Customized grids are best used with datasets whose structure is known at design
time. Because they expect field names established at design time to exist in the
dataset, customized grids are not well suited to browsing arbitrary tables selected at
runtime.

Understanding persistent columns
When you create persistent column objects for a grid, they are only loosely associated
with underlying fields in a grid’s dataset. Default property values for persistent
columns are dynamically fetched from a default source (the associated field or the
grid itself) until a value is assigned to the column property. Until you assign a

U s i n g d a t a c o n t r o l s 15-17

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

column property a value, its value changes as its default source changes. Once you
assign a value to a column property, it no longer changes when its default source
changes.

For example, the default source for a column title caption is an associated field’s
DisplayLabel property. If you modify the DisplayLabel property, the column title
reflects that change immediately. If you then assign a string to the column title’s
caption, the tile caption becomes independent of the associated field’s DisplayLabel
property. Subsequent changes to the field’s DisplayLabel property no longer affect the
column’s title.

Persistent columns exist independently from field components with which they are
associated. In fact, persistent columns do not have to be associated with field objects
at all. If a persistent column’s FieldName property is blank, or if the field name does
not match the name of any field in the grid’s current dataset, the column’s Field
property is NULL and the column is drawn with blank cells. If you override the cell’s
default drawing method, you can display your own custom information in the blank
cells. For example, you can use a blank column to display aggregated values on the
last record of a group of records that the aggregate summarizes. Another possibility
is to display a bitmap or bar chart that graphically depicts some aspect of the record’s
data.

Two or more persistent columns can be associated with the same field in a dataset.
For example, you might display a part number field at the left and right extremes of a
wide grid to make it easier to find the part number without having to scroll the grid.

Note Because persistent columns do not have to be associated with a field in a dataset, and
because multiple columns can reference the same field, a customized grid’s
FieldCount property can be less than or equal to the grid’s column count. Also note
that if the currently selected column in a customized grid is not associated with a
field, the grid’s SelectedField property is NULL and the SelectedIndex property is –1.

Persistent columns can be configured to display grid cells as a combo box drop-down
list of lookup values from another dataset or from a static pick list, or as an ellipsis
button (…) in a cell that can be clicked upon to launch special data viewers or dialogs
related to the current cell.

Creating persistent columns
To customize the appearance of grid at design time, you invoke the Columns editor
to create a set of persistent column objects for the grid. At runtime, the State property
for a grid with persistent column objects is automatically set to csCustomized.

To create persistent columns for a grid control,

1 Select the grid component in the form.

2 Invoke the Columns editor by double clicking on the grid’s Columns property in
the Object Inspector.

The Columns list box displays the persistent columns that have been defined for the
selected grid. When you first bring up the Columns editor, this list is empty because
the grid is in its default state, containing only dynamic columns.

15-18 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

You can create persistent columns for all fields in a dataset at once, or you can create
persistent columns on an individual basis. To create persistent columns for all fields:

1 Right-click the grid to invoke the context menu and choose Add All Fields. Note
that if the grid is not already associated with a data source, Add All Fields is
disabled. Associate the grid with a data source that has an active dataset before
choosing Add All Fields.

2 If the grid already contains persistent columns, a dialog box asks if you want to
delete the existing columns, or append to the column set. If you choose Yes, any
existing persistent column information is removed, and all fields in the current
dataset are inserted by field name according to their order in the dataset. If you
choose No, any existing persistent column information is retained, and new
column information, based on any additional fields in the dataset, are appended to
the dataset.

3 Click Close to apply the persistent columns to the grid and close the dialog box.

To create persistent columns individually:

1 Choose the Add button in the Columns editor. The new column will be selected in
the list box. The new column is given a sequential number and default name (for
example, 0 - TColumn).

2 To associate a field with this new column, set the FieldName property in the Object
Inspector.

3 To set the title for the new column, expand the Title property in the Object
Inspector and set its Caption property.

4 Close the Columns editor to apply the persistent columns to the grid and close the
dialog box.

At runtime, you can switch to persistent columns by assigning csCustomized to the
Columns.State property. Any existing columns in the grid are destroyed and new
persistent columns are built for each field in the grid’s dataset. You can then add a
persistent column at runtime by calling the Add method for the column list:

DBGrid1.Columns.Add;

Deleting persistent columns
Deleting a persistent column from a grid is useful for eliminating fields that you do
not want to display. To remove a persistent column from a grid,

1 Double-click the grid to display the Columns editor.

2 Select the field to remove in the Columns list box.

3 Click Delete (you can also use the context menu or Del key, to remove a column).

Note If you delete all the columns from a grid, the Columns.State property reverts to its
csDefault state and automatically build dynamic columns for each field in the dataset.

You can delete a persistent column at runtime by simply freeing the column object:

DBGrid1.Columns[5].Free;

U s i n g d a t a c o n t r o l s 15-19

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Arranging the order of persistent columns
The order in which columns appear in the Columns editor is the same as the order
the columns appear in the grid. You can change the column order by dragging and
dropping columns within the Columns list box.

To change the order of a column,

1 Select the column in the Columns list box.

2 Drag it to a new location in the list box.

You can also change the column order by clicking on the column title of the actual
grid and dragging the column to a new position, just as you can at runtime.

Note Reordering persistent fields in the Fields editor also reorders columns in a default
grid, but not a custom grid.

Important You cannot reorder columns in grids containing both dynamic columns and dynamic
fields at design time, since there is nothing persistent to record the altered field or
column order.

At runtime, a user can use the mouse to drag a column to a new location in the grid if
its DragMode property is set to dmManual. Reordering the columns of a grid with a
State property of csDefault state also reorders field components in the dataset
underlying the grid. The order of fields in the physical table is not affected. To
prevent a user from rearranging columns at runtime, set the grid’s DragMode
property to dmAutomatic.

At runtime, the grid’s OnColumnMoved event fires after a column has been moved.

Setting column properties at design time
Column properties determine how data is displayed in the cells of that column. Most
column properties obtain their default values from properties associated with
another component (called the default source) such as a grid or an associated field
component.

To set a column’s properties, select the column in The Columns editor and set its
properties in the Object Inspector. The following table summarizes key column
properties you can set.

Table 15.2 Column properties

Property Purpose

Alignment Left justifies, right justifies, or centers the field data in the column. Default
source: TField.Alignment.

ButtonStyle cbsAuto: (default) Displays a drop-down list if the associated field is a lookup
field, or if the column’s PickList property contains data.
cbsEllipsis: Displays an ellipsis (...) button to the right of the cell. Clicking on
the button fires the grid’s OnEditButtonClick event.
cbsNone: The column uses only the normal edit control to edit data in the
column.

Color Specifies the background color of the cells of the column. Default source:
TDBGrid.Color. (For text foreground color, see the Font property.)

15-20 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

The following table summarizes the options you can specify for the Title property.

Defining a lookup list column
You can create a column that displays a drop-down list of values, similar to a lookup
combo box control. To specify that the column acts like a combo box, set the column’s
ButtonStyle property to cbsAuto. Once you populate the list with values, the grid
automatically displays a combo box-like drop-down button when a cell of that
column is in edit mode.

There are two ways to populate that list with the values for users to select:

• You can fetch the values from a lookup table. To make a column display a drop-
down list of values drawn from a separate lookup table, you must define a lookup
field in the dataset. For information about creating lookup fields, see “Defining a
lookup field” on page 19-8. Once the lookup field is defined, set the column’s
FieldName to the lookup field name. The drop-down list is automatically
populated with lookup values defined by the lookup field.

• You can specify a list of values explicitly at design time. To enter the list values at
design time, double-click the PickList property for the column in the Object
Inspector. This brings up the String List editor, where you can enter the values that
populate the pick list for the column.

DropDownRows The number of lines of text displayed by the drop-down list. Default: 7.

Expanded Specifies whether the column is expanded. Only applies to columns
representing ADT or array fields.

FieldName Specifies the field name associated with this column. This can be blank.

ReadOnly True: The data in the column cannot be edited by the user.
False: (default) The data in the column can be edited.

Width Specifies the width of the column in screen pixels. Default source:
TField.DisplayWidth.

Font Specifies the font type, size, and color used to draw text in the column. Default
source: TDBGrid.Font.

PickList Contains a list of values to display in a drop-down list in the column.

Title Sets properties for the title of the selected column.

Table 15.3 Expanded TColumn Title properties

Property Purpose

Alignment Left justifies (default), right justifies, or centers the caption text in the column title.

Caption Specifies the text to display in the column title. Default source: TField.DisplayLabel.

Color Specifies the background color used to draw the column title cell. Default source:
TDBGrid.FixedColor.

Font Specifies the font type, size, and color used to draw text in the column title. Default
source: TDBGrid.TitleFont.

Table 15.2 Column properties (continued)

Property Purpose

U s i n g d a t a c o n t r o l s 15-21

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

By default, the drop-down list displays 7 values. You can change the length of this list
by setting the DropDownRows property.

Note To restore a column with an explicit pick list to its normal behavior, delete all the text
from the pick list using the String List editor.

Putting a button in a column
A column can display an ellipsis button (…) to the right of the normal cell editor.
Ctrl+Enter or a mouse click fires the grid’s OnEditButtonClick event. You can use the
ellipsis button to bring up forms containing more detailed views of the data in the
column. For example, in a table that displays summaries of invoices, you could set up
an ellipsis button in the invoice total column to bring up a form that displays the
items in that invoice, or the tax calculation method, and so on. For graphic fields, you
could use the ellipsis button to bring up a form that displays an image.

To create an ellipsis button in a column:

1 Select the column in the Columns list box.

2 Set ButtonStyle to cbsEllipsis.

3 Write an OnEditButtonClick event handler.

Restoring default values to a column
At runtime you can test a column’s AssignedValues property to determine whether a
column property has been explicitly assigned. Values that are not explicitly defined
are dynamically based on the associated field or the grid’s defaults.

You can undo property changes made to one or more columns. In the Columns
editor, select the column or columns to restore, and then select Restore Defaults from
the context menu. Restore defaults discards assigned property settings and restores a
column’s properties to those derived from its underlying field component

At runtime, you can reset all default properties for a single column by calling the
column’s RestoreDefaults method. You can also reset default properties for all
columns in a grid by calling the column list’s RestoreDefaults method:

DBGrid1.Columns.RestoreDefaults;

Displaying ADT and array fields

Sometimes the fields of the grid’s dataset do not represent simple values such as text,
graphics, numerical values, and so on. Some database servers allow fields that are a
composite of simpler data types, such as ADT fields or array fields.

There are two ways a grid can display composite fields:

• It can “flatten out” the field so that each of the simpler types that make up the field
appears as a separate field in the dataset. When a composite field is flattened out,
its constituents appear as separate fields that reflect their common source only in
that each field name is preceded by the name of the common parent field in the
underlying database table.

15-22 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

To display composite fields as if they were flattened out, set the dataset’s
ObjectView property to False. The dataset stores composite fields as a set of
separate fields, and the grid reflects this by assigning each constituent part a
separate column.

• It can display composite fields in a single column, reflecting the fact that they are a
single field. When displaying composite fields in a single column, the column can
be expanded and collapsed by clicking on the arrow in the title bar of the field, or
by setting the Expanded property of the column:

• When a column is expanded, each child field appears in its own sub-column
with a title bar that appears below the title bar of the parent field. That is, the
title bar for the grid increases in height, with the first row giving the name of
the composite field, and the second row subdividing that for the individual
parts. Fields that are not composites appear with title bars that are extra high.
This expansion continues for constituents that are in turn composite fields (for
example, a detail table nested in a detail table), with the title bar growing in
height accordingly.

• When the field is collapsed, only one column appears with an uneditable
comma delimited string containing the child fields.

To display a composite field in an expanding and collapsing column, set the
dataset’s ObjectView property to True. The dataset stores the composite field as a
single field component that contains a set of nested sub-fields. The grid reflects
this in a column that can expand or collapse

Figure 15.2 shows a grid with an ADT field and an array field. The dataset’s
ObjectView property is set to False so that each child field has a column.

Figure 15.2 TDBGrid control with ObjectView set to False

Figure 15.3 and 15.4 show the grid with an ADT field and an array field. Figure 15.3
shows the fields collapsed. In this state they cannot be edited. Figure 15.4 shows the
fields expanded. The fields are expanded and collapsed by clicking on the arrow in
the fields title bar.

ADT child fields Array child fields

U s i n g d a t a c o n t r o l s 15-23

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Figure 15.3 TDBGrid control with Expanded set to False

Figure 15.4 TDBGrid control with Expanded set to True

The following table lists the properties that affect the way ADT and array fields
appear in a TDBGrid:

Note In addition to ADT and array fields, some datasets include fields that refer to another
dataset (dataset fields) or a record in another dataset (reference) fields. Data-aware
grids display such fields as “(DataSet)” or “(Reference)”, respectively. At runtime an
ellipsis button appears to the right. Clicking on the ellipsis brings up a new form with
a grid displaying the contents of the field. For dataset fields, this grid displays the
dataset that is the field’s value. For reference fields, this grid contains a single row
that displays the record from another dataset.

Setting grid options

You can use the grid Options property at design time to control basic grid behavior
and appearance at runtime. When a grid component is first placed on a form at
design time, the Options property in the Object Inspector is displayed with a + (plus)
sign to indicate that the Options property can be expanded to display a series of

Table 15.4 Properties that affect the way composite fields appear

Property Object Purpose

Expandable TColumn Indicates whether the column can be expanded to show child
fields in separate, editable columns. (read-only)

Expanded TColumn Specifies whether the column is expanded.

MaxTitleRows TDBGrid Specifies the maximum number of title rows that can appear in
the grid

ObjectView TDataSet Specifies whether fields are displayed flattened out, or in object
mode, where each object field can be expanded and collapsed.

ParentColumn TColumn Refers to the TColumn object that owns the child field’s column.

ADT child field columns Array child field columns

15-24 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Boolean properties that you can set individually. To view and set these properties,
click on the + sign. The list of options in the Object Inspector below the Options
property. The + sign changes to a – (minus) sign, that collapses the list back when
you click it.

The following table lists the Options properties that can be set, and describes how
they affect the grid at runtime.

Table 15.5 Expanded TDBGrid Options properties

Option Purpose

dgEditing True: (Default). Enables editing, inserting, and deleting records in the
grid.
False: Disables editing, inserting, and deleting records in the grid.

dgAlwaysShowEditor True: When a field is selected, it is in Edit state.
False: (Default). A field is not automatically in Edit state when
selected.

dgTitles True: (Default). Displays field names across the top of the grid.
False: Field name display is turned off.

dgIndicator True: (Default). The indicator column is displayed at the left of the
grid, and the current record indicator (an arrow at the left of the grid)
is activated to show the current record. On insert, the arrow becomes
an asterisk. On edit, the arrow becomes an I-beam.
False: The indicator column is turned off.

dgColumnResize True: (Default). Columns can be resized by dragging the column rulers
in the title area. Resizing changes the corresponding width of the
underlying TField component.
False: Columns cannot be resized in the grid.

dgColLines True: (Default). Displays vertical dividing lines between columns.
False: Does not display dividing lines between columns.

dgRowLines True: (Default). Displays horizontal dividing lines between records.
False: Does not display dividing lines between records.

dgTabs True: (Default). Enables tabbing between fields in records.
False: Tabbing exits the grid control.

dgRowSelect True: The selection bar spans the entire width of the grid.
False: (Default). Selecting a field in a record selects only that field.

dgAlwaysShowSelection True: (Default). The selection bar in the grid is always visible, even if
another control has focus.
False: The selection bar in the grid is only visible when the grid has
focus.

dgConfirmDelete True: (Default). Prompt for confirmation to delete records (Ctrl+Del).
False: Delete records without confirmation.

dgCancelOnExit True: (Default). Cancels a pending insert when focus leaves the grid.
This option prevents inadvertent posting of partial or blank records.
False: Permits pending inserts.

dgMultiSelect True: Allows user to select noncontiguous rows in the grid using
Ctrl+Shift or Shift+ arrow keys.
False: (Default). Does not allow user to multi-select rows.

U s i n g d a t a c o n t r o l s 15-25

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Editing in the grid

At runtime, you can use a grid to modify existing data and enter new records, if the
following default conditions are met:

• The CanModify property of the Dataset is True.

• The ReadOnly property of grid is False.

When a user edits a record in the grid, changes to each field are posted to an internal
record buffer, but are not posted until the user moves to a different record in the grid.
Even if focus is changed to another control on a form, the grid does not post changes
until another the cursor for the dataset is moved to another record. When a record is
posted, the dataset checks all associated data-aware components for a change in
status. If there is a problem updating any fields that contain modified data, the grid
raises an exception, and does not modify the record.

Note If your application caches updates, posting record changes only adds them to an
internal cache. They are not posted back to the underlying database table until your
application applies the updates.

You can cancel all edits for a record by pressing Esc in any field before moving to
another record.

Controlling grid drawing

Your first level of control over how a grid control draws itself is setting column
properties. The grid automatically uses the font, color, and alignment properties of a
column to draw the cells of that column. The text of data fields is drawn using the
DisplayFormat or EditFormat properties of the field component associated with the
column.

You can augment the default grid display logic with code in a grid’s
OnDrawColumnCell event. If the grid’s DefaultDrawing property is True, all the
normal drawing is performed before your OnDrawColumnCell event handler is
called. Your code can then draw on top of the default display. This is primarily useful
when you have defined a blank persistent column and want to draw special graphics
in that column’s cells.

If you want to replace the drawing logic of the grid entirely, set DefaultDrawing to
False and place your drawing code in the grid’s OnDrawColumnCell event. If you
want to replace the drawing logic only in certain columns or for certain field data
types, you can call the DefaultDrawColumnCell inside your OnDrawColumnCell event
handler to have the grid use its normal drawing code for selected columns. This
reduces the amount of work you have to do if you only want to change the way
Boolean field types are drawn, for example.

Responding to user actions at runtime

You can modify grid behavior by writing event handlers to respond to specific
actions within the grid at runtime. Because a grid typically displays many fields and

15-26 D e v e l o p e r ’ s G u i d e

C r e a t i n g a g r i d t h a t c o n t a i n s o t h e r d a t a - a w a r e c o n t r o l s

records at once, you may have very specific needs to respond to changes to
individual columns. For example, you might want to activate and deactivate a button
elsewhere on the form every time a user enters and exits a specific column.

The following table lists the grid events available in the Object Inspector.

There are many uses for these events. For example, you might write a handler for the
OnDblClick event that pops up a list from which a user can choose a value to enter in
a column. Such a handler would use the SelectedField property to determine to
current row and column.

Creating a grid that contains other data-aware controls
A TDBCtrlGrid control displays multiple fields in multiple records in a tabular grid
format. Each cell in a grid displays multiple fields from a single row. To use a
database control grid:

1 Place a database control grid on a form.

2 Set the grid’s DataSource property to the name of a data source.

Table 15.6 Grid control events

Event Purpose

OnCellClick Occurs when a user clicks on a cell in the grid.

OnColEnter Occurs when a user moves into a column on the grid.

OnColExit Occurs when a user leaves a column on the grid.

OnColumnMoved Occurs when the user moves a column to a new location.

OnDblClick Occurs when a user double clicks in the grid.

OnDragDrop Occurs when a user drags and drops in the grid.

OnDragOver Occurs when a user drags over the grid.

OnDrawColumnCell Occurs when application needs to draw individual cells.

OnDrawDataCell (obsolete) Occurs when application needs to draw individual cells if State
is csDefault.

OnEditButtonClick Occurs when the user clicks on an ellipsis button in a column.

OnEndDrag Occurs when a user stops dragging on the grid.

OnEnter Occurs when the grid gets focus.

OnExit Occurs when the grid loses focus.

OnKeyDown Occurs when a user presses any key or key combination on the keyboard
when in the grid.

OnKeyPress Occurs when a user presses a single alphanumeric key on the keyboard
when in the grid.

OnKeyUp Occurs when a user releases a key when in the grid.

OnStartDrag Occurs when a user starts dragging on the grid.

OnTitleClick Occurs when a user clicks the title for a column.

U s i n g d a t a c o n t r o l s 15-27

C r e a t i n g a g r i d t h a t c o n t a i n s o t h e r d a t a - a w a r e c o n t r o l s

3 Place individual data controls within the design cell for the grid. The design cell
for the grid is the top or leftmost cell in the grid, and is the only cell into which you
can place other controls.

4 Set the DataField property for each data control to the name of a field. The data
source for these data controls is already set to the data source of the database
control grid.

5 Arrange the controls within the cell as desired.

When you compile and run an application containing a database control grid, the
arrangement of data controls you set in the design cell at runtime is replicated in each
cell of the grid. Each cell displays a different record in a dataset.

Figure 15.5 TDBCtrlGrid at design time

The following table summarizes some of the unique properties for database control
grids that you can set at design time:

For more information about database control grid properties and methods, see the
online VCL Reference.

Table 15.7 Selected database control grid properties

Property Purpose

AllowDelete True (default): Permits record deletion.
False: Prevents record deletion.

AllowInsert True (default): Permits record insertion.
False: Prevents record insertion.

ColCount Sets the number of columns in the grid. Default = 1.

Orientation goVertical (default): Display records from top to bottom.
goHorizontal: Displays records from left to right.

PanelHeight Sets the height for an individual panel. Default = 72.

PanelWidth Sets the width for an individual panel. Default = 200.

RowCount Sets the number of panels to display. Default = 3.

ShowFocus True (default): Displays a focus rectangle around the current record’s panel at
runtime.
False: Does not display a focus rectangle.

15-28 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

Navigating and manipulating records
TDBNavigator provides users a simple control for navigating through records in a
dataset, and for manipulating records. The navigator consists of a series of buttons
that enable a user to scroll forward or backward through records one at a time, go to
the first record, go to the last record, insert a new record, update an existing record,
post data changes, cancel data changes, delete a record, and refresh record display.

Figure 15.6 shows the navigator that appears by default when you place it on a form
at design time. The navigator consists of a series of buttons that let a user navigate
from one record to another in a dataset, and edit, delete, insert, and post records. The
VisibleButtons property of the navigator enables you to hide or show a subset of these
buttons dynamically.

Figure 15.6 Buttons on the TDBNavigator control

The following table describes the buttons on the navigator.

Choosing navigator buttons to display

When you first place a TDBNavigator on a form at design time, all its buttons are
visible. You can use the VisibleButtons property to turn off buttons you do not want to
use on a form. For example, when working with a unidirectional dataset, only the

Table 15.8 TDBNavigator buttons

Button Purpose

First Calls the dataset’s First method to set the current record to the first record.

Prior Calls the dataset’s Prior method to set the current record to the previous record.

Next Calls the dataset’s Next method to set the current record to the next record.

Last Calls the dataset’s Last method to set the current record to the last record.

Insert Calls the dataset’s Insert method to insert a new record before the current record, and
set the dataset in Insert state.

Delete Deletes the current record. If the ConfirmDelete property is True it prompts for
confirmation before deleting.

Edit Puts the dataset in Edit state so that the current record can be modified.

Post Writes changes in the current record to the database.

Cancel Cancels edits to the current record, and returns the dataset to Browse state.

Refresh Clears data control display buffers, then refreshes its buffers from the physical table or
query. Useful if the underlying data may have been changed by another application.

First record

Insert record Delete current record

Post record edits

Refresh records

Cancel record edits

Edit current recordLast record

Prior record

Next record

U s i n g d a t a c o n t r o l s 15-29

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

First, Next, and Refresh buttons are meaningful. On a form that is intended for
browsing rather than editing, you might want to disable the Edit, Insert, Delete, Post,
and Cancel buttons.

Hiding and showing navigator buttons at design time
The VisibleButtons property in the Object Inspector is displayed with a + sign to
indicate that it can be expanded to display a Boolean value for each button on the
navigator. To view and set these values, click on the + sign. The list of buttons that
can be turned on or off appears in the Object Inspector below the VisibleButtons
property. The + sign changes to a – (minus) sign, which you can click to collapse the
list of properties.

Button visibility is indicated by the Boolean state of the button value. If a value is set
to True, the button appears in the TDBNavigator. If False, the button is removed from
the navigator at design time and runtime.

Note As button values are set to False, they are removed from the TDBNavigator on the
form, and the remaining buttons are expanded in width to fill the control. You can
drag the control’s handles to resize the buttons.

Hiding and showing navigator buttons at runtime
At runtime you can hide or show navigator buttons in response to user actions or
application states. For example, suppose you provide a single navigator for
navigating through two different datasets, one of which permits users to edit records,
and the other of which is read-only. When you switch between datasets, you want to
hide the navigator’s Insert, Delete, Edit, Post, Cancel, and Refresh buttons for the read-
only dataset, and show them for the other dataset.

For example, suppose you want to prevent edits to the OrdersTable by hiding the
Insert, Delete, Edit, Post, Cancel, and Refresh buttons on the navigator, but that you also
want to allow editing for the CustomersTable. The VisibleButtons property controls
which buttons are displayed in the navigator. Here’s one way you might code the
OnEnter event handler:

procedure TForm1.CustomerCompanyEnter(Sender :TObject);
begin

if Sender = CustomerCompany then
begin

DBNavigatorAll.DataSource := CustomerCompany.DataSource;
DBNavigatorAll.VisibleButtons := [nbFirst,nbPrior,nbNext,nbLast];

end
else
begin

DBNavigatorAll.DataSource := OrderNum.DataSource;
DBNavigatorAll.VisibleButtons := DBNavigatorAll.VisibleButtons + [nbInsert,
nbDelete,nbEdit,nbPost,nbCancel,nbRefresh];

end;
end;

15-30 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

Displaying fly-over help

To display fly-over help for each navigator button at runtime, set the navigator
ShowHint property to True. When ShowHint is True, the navigator displays fly-by
Help Hints whenever you pass the mouse cursor over the navigator buttons.
ShowHint is False by default.

The Hints property controls the fly-over help text for each button. By default Hints is
an empty string list. When Hints is empty, each navigator button displays default
help text. To provide customized fly-over help for the navigator buttons, use the
String list editor to enter a separate line of hint text for each button in the Hints
property. When present, the strings you provide override the default hints provided
by the navigator control.

Using a single navigator for multiple datasets

As with other data-aware controls, a navigator’s DataSource property specifies the
data source that links the control to a dataset. By changing a navigator’s DataSource
property at runtime, a single navigator can provide record navigation and
manipulation for multiple datasets.

Suppose a form contains two edit controls linked to the CustomersTable and
OrdersTable datasets through the CustomersSource and OrdersSource data sources
respectively. When a user enters the edit control connected to CustomersSource, the
navigator should also use CustomersSource, and when the user enters the edit control
connected to OrdersSource, the navigator should switch to OrdersSource as well. You
can code an OnEnter event handler for one of the edit controls, and then share that
event with the other edit control. For example:

procedure TForm1.CustomerCompanyEnter(Sender :TObject);
begin

if Sender = CustomerCompany then
DBNavigatorAll.DataSource := CustomerCompany.DataSource

else
DBNavigatorAll.DataSource := OrderNum.DataSource;

end;

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-1

C h a p t e r

16
Chapter 16Using decision support components

The decision support components help you create cross-tabulated—or, crosstab—
tables and graphs. You can then use these tables and graphs to view and summarize
data from different perspectives. For more information on cross-tabulated data, see
“About crosstabs” on page 16-2.

Overview
The decision support components appear on the Decision Cube page of the
component palette:

• The decision cube, TDecisionCube, is a multidimensional data store.

• The decision source, TDecisionSource, defines the current pivot state of a decision
grid or a decision graph.

• The decision query, TDecisionQuery, is a specialized form of TQuery used to define
the data in a decision cube.

• The decision pivot, TDecisionPivot, lets you open or close decision cube
dimensions, or fields, by pressing buttons.

• The decision grid, TDecisionGrid, displays single- and multidimensional data in
table form.

• The decision graph, TDecisionGraph, displays fields from a decision grid as a
dynamic graph that changes when data dimensions are modified.

Figure 16.1 shows all the decision support components placed on a form at design
time.

16-2 D e v e l o p e r ’ s G u i d e

A b o u t c r o s s t a b s

Figure 16.1 Decision support components at design time

About crosstabs
Cross-tabulations, or crosstabs, are a way of presenting subsets of data so that
relationships and trends are more visible. Table fields become the dimensions of the
crosstab while field values define categories and summaries within a dimension.

You can use the decision support components to set up crosstabs in forms.
TDecisionGrid shows data in a table, while TDecisionGraph charts it graphically.
TDecisionPivot has buttons that make it easier to display and hide dimensions and
move them between columns and rows.

Crosstabs can be one-dimensional or multidimensional.

One-dimensional crosstabs

One-dimensional crosstabs show a summary row (or column) for the categories of a
single dimension. For example, if Payment is the chosen column dimension and

Decision query
Decision cube

Decision grid

Decision pivot

Decision graph

Decision source

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-3

G u i d e l i n e s f o r u s i n g d e c i s i o n s u p p o r t c o m p o n e n t s

Amount Paid is the summary category, the crosstab in Figure 16.2 shows the amount
paid using each method.

Figure 16.2 One-dimensional crosstab

Multidimensional crosstabs

Multidimensional crosstabs use additional dimensions for the rows and/or columns.
For example, a two-dimensional crosstab could show amounts paid by payment
method for each country.

A three-dimensional crosstab could show amounts paid by payment method and
terms by country, as shown in Figure 16.3.

Figure 16.3 Three-dimensional crosstab

Guidelines for using decision support components
The decision support components listed on page 16-1 can be used together to present
multidimensional data as tables and graphs. More than one grid or graph can be
attached to each dataset. More than one instance of TDecisionPivot can be used to
display the data from different perspectives at runtime.

To create a form with tables and graphs of multidimensional data, follow these steps:

1 Create a form.

2 Add these components to the form and use the Object Inspector to bind them as
indicated:

• A dataset, usually TDecisionQuery (for details, see “Creating decision datasets
with the Decision Query editor” on page 16-6) or TQuery

16-4 D e v e l o p e r ’ s G u i d e

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

• A decision cube, TDecisionCube, bound to the dataset by setting its DataSet
property to the dataset’s name

• A decision source, TDecisionSource, bound to the decision cube by setting its
DecisionCube property to the decision cube’s name

3 Add a decision pivot, TDecisionPivot, and bind it to the decision source with the
Object Inspector by setting its DecisionSource property to the appropriate decision
source name. The decision pivot is optional but useful; it lets the form developer
and end users change the dimensions displayed in decision grids or decision
graphs by pushing buttons.

In its default orientation, horizontal, buttons on the left side of the decision pivot
apply to fields on the left side of the decision grid (rows); buttons on the right side
apply to fields at the top of the decision grid (columns).

You can determine where the decision pivot’s buttons appear by setting its
GroupLayout property to xtVertical, xtLeftTop, or xtHorizontal (the default). For
more information on decision pivot properties, see “Using decision pivots” on
page 16-9.

4 Add one or more decision grids and graphs, bound to the decision source. For
details, see “Creating and using decision grids” on page 16-10 and “Creating and
using decision graphs” on page 16-13.

5 Use the Decision Query editor or SQL property of TDecisionQuery (or TQuery) to
specify the tables, fields, and summaries to display in the grid or graph. The last
field of the SQL SELECT should be the summary field. The other fields in the
SELECT must be GROUP BY fields. For instructions, see “Creating decision
datasets with the Decision Query editor” on page 16-6.

6 Set the Active property of the decision query (or alternate dataset component) to
True.

7 Use the decision grid and graph to show and chart different data dimensions. See
“Using decision grids” on page 16-11 and “Using decision graphs” on page 16-13
for instructions and suggestions.

For an illustration of all decision support components on a form, see Figure 16.1 on
page 16-2.

Using datasets with decision support components
The only decision support component that binds directly to a dataset is the decision
cube, TDecisionCube. TDecisionCube expects to receive data with groups and
summaries defined by an SQL statement of an acceptable format. The GROUP BY
phrase must contain the same non-summarized fields (and in the same order) as the
SELECT phrase, and summary fields must be identified.

The decision query component, TDecisionQuery, is a specialized form of TQuery. You
can use TDecisionQuery to more simply define the setup of dimensions (rows and
columns) and summary values used to supply data to decision cubes
(TDecisionCube). You can also use an ordinary TQuery or other BDE-enabled dataset

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-5

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

as a dataset for TDecisionCube, but the correct setup of the dataset and TDecisionCube
are then the responsibility of the designer.

To work correctly with the decision cube, all projected fields in the dataset must
either be dimensions or summaries. The summaries should be additive values (like
sum or count), and should represent totals for each combination of dimension values.
For maximum ease of setup, sums should be named “Sum...” in the dataset while
counts should be named “Count...”.

The Decision Cube can pivot, subtotal, and drill-in correctly only for summaries
whose cells are additive. (SUM and COUNT are additive, while AVERAGE, MAX,
and MIN are not.) Build pivoting crosstab displays only for grids that contain only
additive aggregators. If you are using non-additive aggregators, use a static decision
grid that does not pivot, drill, or subtotal.

Since averages can be calculated using SUM divided by COUNT, a pivoting average
is added automatically when SUM and COUNT dimensions for a field are included
in the dataset. Use this type of average in preference to an average calculated using
an AVERAGE statement.

Averages can also be calculated using COUNT(*). To use COUNT(*) to calculate
averages, include a "COUNT(*) COUNTALL" selector in the query. If you use
COUNT(*) to calculate averages, the single aggregator can be used for all fields. Use
COUNT(*) only in cases where none of the fields being summarized include blank
values, or where a COUNT aggregator is not available for every field.

Creating decision datasets with TQuery or TTable

If you use an ordinary TQuery component as a decision dataset, you must manually
set up the SQL statement, taking care to supply a GROUP BY phrase which contains
the same fields (and in the same order) as the SELECT phrase.

The SQL should look similar to this:

SELECT ORDERS."Terms", ORDERS."ShipVIA",
ORDERS."PaymentMethod", SUM(ORDERS."AmountPaid")

FROM "ORDERS.DB" ORDERS
GROUP BY ORDERS."Terms", ORDERS."ShipVIA", ORDERS."PaymentMethod"

The ordering of the SELECT fields should match the ordering of the GROUP BY
fields.

With TTable, you must supply information to the decision cube about which of the
fields in the query are grouping fields, and which are summaries. To do this, Fill in
the Dimension Type for each field in the DimensionMap of the Decision Cube. You
must indicate whether each field is a dimension or a summary, and if a summary,
you must provide the summary type. Since pivoting averages depend on SUM/
COUNT calculations, you must also provide the base field name to allow the decision
cube to match pairs of SUM and COUNT aggregators.

16-6 D e v e l o p e r ’ s G u i d e

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

Creating decision datasets with the Decision Query editor

All data used by the decision support components passes through the decision cube,
which accepts a specially formatted dataset most easily produced by an SQL query.
See “Using datasets with decision support components” on page 16-4 for more
information.

While both TTable and TQuery can be used as decision datasets, it is easier to use
TDecisionQuery; the Decision Query editor supplied with it can be used to specify
tables, fields, and summaries to appear in the decision cube and will help you set up
the SELECT and GROUP BY portions of the SQL correctly.

To use the Decision Query editor:

1 Select the decision query component on the form, then right-click and choose
Decision Query editor. The Decision Query editor dialog box appears.

2 Choose the database to use.

3 For single-table queries, click the Select Table button.

For more complex queries involving multi-table joins, click the Query Builder
button to display the SQL Builder or type the SQL statement into the edit box on
the SQL tab page.

4 Return to the Decision Query editor dialog box.

5 In the Decision Query editor dialog box, select fields in the Available Fields list
box and assign them to be either Dimensions or Summaries by clicking the
appropriate right arrow button. As you add fields to the Summaries list, select
from the menu displayed the type of summary to use: sum, count, or average.

6 By default, all fields and summaries defined in the SQL property of the decision
query appear in the Active Dimensions and Active Summaries list boxes. To
remove a dimension or summary, select it in the list and click the left arrow beside
the list, or double-click the item to remove. To add it back, select it in the Available
Fields list box and click the appropriate right arrow.

Once you define the contents of the decision cube, you can further manipulate
dimension display with its DimensionMap property and the buttons of TDecisionPivot.
For more information, see the next section, “Using decision cubes,” “Using decision
sources” on page 16-9, and “Using decision pivots” on page 16-9.

Note When you use the Decision Query editor, the query is initially handled in ANSI-92
SQL syntax, then translated (if necessary) into the dialect used by the server. The
Decision Query editor reads and displays only ANSI standard SQL. The dialect
translation is automatically assigned to the TDecisionQuery’s SQL property. To
modify a query, edit the ANSI-92 version in the Decision Query rather then the SQL
property.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-7

U s i n g d e c i s i o n c u b e s

Using decision cubes
The decision cube component, TDecisionCube, is a multidimensional data store that
fetches its data from a dataset (typically a specially structured SQL statement entered
through TDecisionQuery or TQuery). The data is stored in a form that makes its easy
to pivot (that is, change the way in which the data is organized and summarized)
without needing to run the query a second time.

Decision cube properties and events

The DimensionMap properties of TDecisionCube not only control which dimensions
and summaries appear but also let you set date ranges and specify the maximum
number of dimensions the decision cube may support. You can also indicate whether
or not to display data during design. You can display names, (categories) values,
subtotals, or data. Display of data at design time can be time consuming, depending
on the data source.

When you click the ellipsis next to DimensionMap in the Object Inspector, the
Decision Cube editor dialog box appears. You can use its pages and controls to set
the DimensionMap properties.

The OnRefresh event fires whenever the decision cube cache is rebuilt. Developers can
access the new dimension map and change it at that time to free up memory, change
the maximum summaries or dimensions, and so on. OnRefresh is also useful if users
access the Decision Cube editor; application code can respond to user changes at that
time.

Using the Decision Cube editor

You can use the Decision Cube editor to set the DimensionMap properties of decision
cubes. You can display the Decision Cube editor through the Object Inspector, as
described in the previous section, or by right-clicking a decision cube on a form at
design time and choosing Decision Cube editor.

The Decision Cube Editor dialog box has two tabs:

• Dimension Settings, used to activate or disable available dimensions, rename and
reformat dimensions, put dimensions in a permanently drilled state, and set date
ranges to display.

• Memory Control, used to set the maximum number of dimensions and summaries
that can be active at one time, to display information about memory usage, and to
determine the names and data that appear at design time.

16-8 D e v e l o p e r ’ s G u i d e

U s i n g d e c i s i o n c u b e s

Viewing and changing dimension settings
To view the dimension settings, display the Decision Cube editor and click the
Dimension Settings tab. Then, select a dimension or summary in the Available Fields
list. Its information appears in the boxes on the right side of the editor:

• To change the dimension or summary name that appears in the decision pivot,
decision grid, or decision graph, enter a new name in the Display Name edit box.

• To determine whether the selected field is a dimension or summary, read the text
in the Type edit box. If the dataset is a TTable component, you can use Type to
specify whether the selected field is a dimension or summary.

• To disable or activate the selected dimension or summary, change the setting in
the Active Type drop-down list box: Active, As Needed, or Inactive. Disabling a
dimension or setting it to As Needed saves memory.

• To change the format of that dimension or summary, enter a format string in the
Format edit box.

• To display that dimension or summary by Year, Quarter, or Month, change the
setting in the Binning drop-down list box. Note that you can choose Set in the
Binning list box to put the selected dimension or summary in a permanently
“drilled down” state. This can be useful for saving memory when a dimension has
many values. For more information, see “Decision support components and
memory control” on page 16-19.

• To determine the starting value for ranges, or the drill-down value for a “Set”
dimension, first choose the appropriate Grouping value in the Grouping drop-
down, and then enter the starting range value or permanent drill-down value in
the Initial Value drop-down list.

Setting the maximum available dimensions and summaries
To determine the maximum number of dimensions and summaries available for
decision pivots, decision grids, and decision graphs bound to the selected decision
cube, display the Decision Cube editor and click the Memory Control tab. Use the
edit controls to adjust the current settings, if necessary. These settings help to control
the amount of memory required by the decision cube. For more information, see
“Decision support components and memory control” on page 16-19.

Viewing and changing design options
To determine how much information appears at design time, display the Decision
Cube editor and click the Memory Control tab. Then, check the setting that indicates
which names and data to display. Display of data or field names at design time can
cause performance delays in some cases because of the time needed to fetch the data.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-9

U s i n g d e c i s i o n s o u r c e s

Using decision sources
The decision source component, TDecisionSource, defines the current pivot state of
decision grids or decision graphs. Any two objects which use the same decision
source also share pivot states.

Properties and events

The following are some special properties and events that control the appearance and
behavior of decision sources:

• The ControlType property of TDecisionSource indicates whether the decision pivot
buttons should act like check boxes (multiple selections) or radio buttons
(mutually exclusive selections).

• The SparseCols and SparseRows properties of TDecisionSource indicate whether to
display columns or rows with no values; if True, sparse columns or rows are
displayed.

• TDecisionSource has the following events:

• OnLayoutChange occurs when the user performs pivots or drill-downs that
reorganize the data.

• OnNewDimensions occurs when the data is completely altered, such as when the
summary or dimension fields are altered.

• OnSummaryChange occurs when the current summary is changed.

• OnStateChange occurs when the Decision Cube activates or deactivates.

• OnBeforePivot occurs when changes are committed but not yet reflected in the
user interface. Developers have an opportunity to make changes, for example,
in capacity or pivot state, before application users see the result of their
previous action.

• OnAfterPivot fires after a change in pivot state. Developers can capture
information at that time.

Using decision pivots
The decision pivot component, TDecisionPivot, lets you open or close decision cube
dimensions, or fields, by pressing buttons. When a row or column is opened by
pressing a TDecisionPivot button, the corresponding dimension appears on the
TDecisionGrid or TDecisionGraph component. When a dimension is closed, its detailed
data doesn’t appear; it collapses into the totals of other dimensions. A dimension
may also be in a “drilled” state, where only the summaries for a particular value of
the dimension field appear.

16-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

You can also use the decision pivot to reorganize dimensions displayed in the
decision grid and decision graph. Just drag a button to the row or column area or
reorder buttons within the same area.

For illustrations of decision pivots at design time, see Figures 16.1, 16.2, and 16.3.

Decision pivot properties

The following are some special properties that control the appearance and behavior
of decision pivots:

• The first properties listed for TDecisionPivot define its overall behavior and
appearance. You might want to set ButtonAutoSize to False for TDecisionPivot to
keep buttons from expanding and contracting as you adjust the size of the
component.

• The Groups property of TDecisionPivot defines which dimension buttons appear.
You can display the row, column, and summary selection button groups in any
combination. Note that if you want more flexibility over the placement of these
groups, you can place one TDecisionPivot on your form which contains only rows
in one location, and a second which contains only columns in another location.

• Typically, TDecisionPivot is added above TDecisionGrid. In its default orientation,
horizontal, buttons on the left side of TDecisionPivot apply to fields on the left side
of TDecisionGrid (rows); buttons on the right side apply to fields at the top of
TDecisionGrid (columns).

• You can determine where TDecisionPivot’s buttons appear by setting its
GroupLayout property to xtVertical, xtLeftTop, or xtHorizontal (the default, described
in the previous paragraph).

Creating and using decision grids
Decision grid components, TDecisionGrid, present cross-tabulated data in table form.
These tables are also called crosstabs, described on page 16-2. Figure 16.1 on
page 16-2 shows a decision grid on a form at design time.

Creating decision grids

To create a form with one or more tables of cross-tabulated data,

1 Follow steps 1–3 listed under “Guidelines for using decision support components”
on page 16-3.

2 Add one or more decision grid components (TDecisionGrid) and bind them to the
decision source, TDecisionSource, with the Object Inspector by setting their
DecisionSource property to the appropriate decision source component.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-11

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

3 Continue with steps 5–7 listed under “Guidelines for using decision support
components.”

For a description of what appears in the decision grid and how to use it, see “Using
decision grids” on page 16-11.

To add a graph to the form, follow the instructions in “Creating decision graphs” on
page 16-13.

Using decision grids

The decision grid component, TDecisionGrid, displays data from decision cubes
(TDecisionCube) bound to decision sources (TDecisionSource).

By default, the grid appears with dimension fields at its left side and/or top,
depending on the grouping instructions defined in the dataset. Categories, one for
each data value, appear under each field. You can

• Open and close dimensions

• Reorganize, or pivot, rows and columns

• Drill down for detail

• Limit dimension selection to a single dimension for each axis

For more information about special properties and events of the decision grid, see
“Decision grid properties” on page 16-12.

Opening and closing decision grid fields
If a plus sign (+) appears in a dimension or summary field, one or more fields to its
right are closed (hidden). You can open additional fields and categories by clicking
the sign. A minus sign (-) indicates a fully opened (expanded) field. When you click
the sign, the field closes. This outlining feature can be disabled; see “Decision grid
properties” on page 16-12 for details.

Reorganizing rows and columns in decision grids
You can drag row and column headings to new locations within the same axis or to
the other axis. In this way, you can reorganize the grid and see the data from new
perspectives as the data groupings change. This pivoting feature can be disabled; see
“Decision grid properties” on page 16-12 for details.

If you included a decision pivot, you can push and drag its buttons to reorganize the
display. See “Using decision pivots” on page 16-9 for instructions.

Drilling down for detail in decision grids
You can drill down to see more detail in a dimension.

For example, if you right-click a category label (row heading) for a dimension with
others collapsed beneath it, you can choose to drill down and only see data for that
category. When a dimension is drilled, you do not see the category labels for that
dimension displayed on the grid, since only the records for a single category value

16-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

are being displayed. If you have a decision pivot on the form, it displays category
values and lets you change to other values if you want.

To drill down into a dimension,

• Right-click a category label and choose Drill In To This Value, or

• Right-click a pivot button and choose Drilled In.

To make the complete dimension active again,

• Right-click the corresponding pivot button, or right-click the decision grid in the
upper-left corner and select the dimension.

Limiting dimension selection in decision grids
You can change the ControlType property of the decision source to determine whether
more than one dimension can be selected for each axis of the grid. For more
information, see “Using decision sources” on page 16-9.

Decision grid properties

The decision grid component, TDecisionGrid, displays data from the TDecisionCube
component bound to TDecisionSource. By default, data appears in a grid with
category fields on the left side and top of the grid.

The following are some special properties that control the appearance and behavior
of decision grids:

• TDecisionGrid has unique properties for each dimension. To set these, choose
Dimensions in the Object Inspector, then select a dimension. Its properties then
appear in the Object Inspector: Alignment defines the alignment of category labels
for that dimension, Caption can be used to override the default dimension name,
Color defines the color of category labels, FieldName displays the name of the active
dimension, Format can hold any standard format for that data type, and Subtotals
indicates whether to display subtotals for that dimension. With summary fields,
these same properties are used to changed the appearance of the data that appears
in the summary area of the grid. When you’re through setting dimension
properties, either click a component in the form or choose a component in the
drop-down list box at the top of the Object Inspector.

• The Options property of TDecisionGrid lets you control display of grid lines
(cgGridLines = True), enabling of outline features (collapse and expansion of
dimensions with + and - indicators; cgOutliner = True), and enabling of drag-and-
drop pivoting (cgPivotable = True).

• The OnDecisionDrawCell event of TDecisionGrid gives you a chance to change the
appearance of each cell as it is drawn. The event passes the String, Font, and Color
of the current cell as reference parameters. You are free to alter those parameters to
achieve effects such as special colors for negative values. In addition to the
DrawState which is passed by TCustomGrid, the event passes TDecisionDrawState,
which can be used to determine what type of cell is being drawn. Further
information about the cell can be fetched using the Cells, CellValueArray, or
CellDrawState functions.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-13

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

• The OnDecisionExamineCell event of TDecisionGrid lets you hook the right-click-on-
event to data cells, and is intended to allow a program to display information
(such as detail records) about that particular data cell. When the user right-clicks a
data cell, the event is supplied with all the information which is was used to
compose the data value, including the currently active summary value and a
ValueArray of all the dimension values which were used to create the summary
value.

Creating and using decision graphs
Decision graph components, TDecisionGraph, present cross-tabulated data in graphic
form. Each decision graph shows the value of a single summary, such as Sum, Count,
or Avg, charted for one or more dimensions. For more information on crosstabs, see
page 16-2. For illustrations of decision graphs at design time, see Figure 16.1 on
page 16-2 and Figure 16.4 on page 16-14.

Creating decision graphs

To create a form with one or more decision graphs,

1 Follow steps 1–3 listed under “Guidelines for using decision support components”
on page 16-3.

2 Add one or more decision graph components (TDecisionGraph) and bind them to
the decision source, TDecisionSource, with the Object Inspector by setting their
DecisionSource property to the appropriate decision source component.

3 Continue with steps 5–7 listed under “Guidelines for using decision support
components.”

4 Finally, right-click the graph and choose Edit Chart to modify the appearance of
the graph series. You can set template properties for each graph dimension, then
set individual series properties to override these defaults. For details, see
“Customizing decision graphs” on page 16-15.

For a description of what appears in the decision graph and how to use it, see the
next section, “Using decision graphs.”

To add a decision grid—or crosstab table—to the form, follow the instructions in
“Creating and using decision grids” on page 16-10.

Using decision graphs

The decision graph component, TDecisionGraph, displays fields from the decision
source (TDecisionSource) as a dynamic graph that changes when data dimensions are
opened, closed, dragged and dropped, or rearranged with the decision pivot
(TDecisionPivot).

16-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

Graphed data comes from a specially formatted dataset such as TDecisionQuery. For
an overview of how the decision support components handle and arrange this data,
see page 16-1.

By default, the first row dimension appears as the x-axis and the first column
dimension appears as the y-axis.

You can use decision graphs instead of or in addition to decision grids, which present
cross-tabulated data in tabular form. Decision grids and decision graphs that are
bound to the same decision source present the same data dimensions. To show
different summary data for the same dimensions, you can bind more than one
decision graph to the same decision source. To show different dimensions, bind
decision graphs to different decision sources.

For example, in Figure 16.4 the first decision pivot and graph are bound to the first
decision source and the second decision pivot and graph are bound to the second. So,
each graph can show different dimensions.

Figure 16.4 Decision graphs bound to different decision sources

For more information about what appears in a decision graph, see the next section,
“The decision graph display.”

To create a decision graph, see the previous section, “Creating decision graphs.”

For a discussion of decision graph properties and how to change the appearance and
behavior of decision graphs, see “Customizing decision graphs” on page 16-15.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-15

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

The decision graph display

By default, the decision graph plots summary values for categories in the first active
row field (along the y-axis) against values in the first active column field (along the x-
axis). Each graphed category appears as a separate series.

If only one dimension is selected—for example, by clicking only one TDecisionPivot
button—only one series is graphed.

If you used a decision pivot, you can push its buttons to determine which decision
cube fields (dimensions) are graphed. To exchange graph axes, drag the decision
pivot dimension buttons from one side of the separator space to the other. If you
have a one-dimensional graph with all buttons on one side of the separator space,
you can use the Row or Column icon as a drop target for adding buttons to the other
side of the separator and making the graph multidimensional.

If you only want one column and one row to be active at a time, you can set the
ControlType property for TDecisionSource to xtRadio. Then, there can be only one
active field at a time for each decision cube axis, and the decision pivot’s
functionality will correspond to the graph’s behavior. xtRadioEx works the same as
xtRadio, but does not allow the state where all row or all columns dimensions are
closed.

When you have both a decision grid and graph connected to the same
TDecisionSource, you’ll probably want to set ControlType back to xtCheck to
correspond to the more flexible behavior of TDecisionGrid.

Customizing decision graphs

The decision graph component, TDecisionGraph, displays fields from the decision
source (TDecisionSource) as a dynamic graph that changes when data dimensions are
opened, closed, dragged and dropped, or rearranged with the decision pivot
(TDecisionPivot). You can change the type, colors, marker types for line graphs, and
many other properties of decision graphs.

To customize a graph,

1 Right-click it and choose Edit Chart. The Chart Editing dialog box appears.

2 Use the Chart page of the Chart Editing dialog box to view a list of visible series,
select the series definition to use when two or more are available for the same
series, change graph types for a template or series, and set overall graph
properties.

The Series list on the Chart page shows all decision cube dimensions (preceded by
Template:) and currently visible categories. Each category, or series, is a separate
object. You can:

• Add or delete series derived from existing decision-graph series. Derived series
can provide annotations for existing series or represent values calculated from
other series.

• Change the default graph type, and change the title of templates and series.

16-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

For a description of the other Chart page tabs, search for the following topic in
online Help: “Chart page (Chart Editing dialog box).”

3 Use the Series page to establish dimension templates, then customize properties
for each individual graph series.

By default, all series are graphed as bar graphs and up to 16 default colors are
assigned. You can edit the template type and properties to create a new default.
Then, as you pivot the decision source to different states, the template is used to
dynamically create the series for each new state. For template details, see “Setting
decision graph template defaults” on page 16-16.

To customize individual series, follow the instructions in “Customizing decision
graph series” on page 16-17.

For a description of each Series page tab, search for the following topic in online
Help: “Series page (Chart Editing dialog box).”

Setting decision graph template defaults
Decision graphs display the values from two dimensions of the decision cube: one
dimension is displayed as an axis of the graph, and the other is used to create a set of
series. The template for that dimension provides default properties for those series
(such as whether the series are bar, line, area, and so on). As users pivot from one
state to another, any required series for the dimension are created using the series
type and other defaults specified in the template.

A separate template is provided for cases where users pivot to a state where only one
dimension is active. A one-dimensional state is often represented with a pie chart, so
a separate template is provided for this case.

You can

• Change the default graph type.
• Change other graph template properties.
• View and set overall graph properties.

Changing the default decision graph type
To change the default graph type,

1 Select a template in the Series list on the Chart page of the Chart Editing dialog
box.

2 Click the Change button.

3 Select a new type and close the Gallery dialog box.

Changing other decision graph template properties
To change color or other properties of a template,

1 Select the Series page at the top of the Chart Editing dialog box.

2 Choose a template in the drop-down list at the top of the page.

3 Choose the appropriate property tab and select settings.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-17

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

Viewing overall decision graph properties
To view and set decision graph properties other than type and series,

1 Select the Chart page at the top of the Chart Editing dialog box.

2 Choose the appropriate property tab and select settings.

Customizing decision graph series
The templates supply many defaults for each decision cube dimension, such as graph
type and how series are displayed. Other defaults, such as series color, are defined by
TDecisionGraph. If you want you can override the defaults for each series.

The templates are intended for use when you want the program to create the series
for categories as they are needed, and discard them when they are no longer needed.
If you want, you can set up custom series for specific category values. To do this,
pivot the graph so its current display has a series for the category you want to
customize. When the series is displayed on the graph, you can use the Chart editor to

• Change the graph type.
• Change other series properties.
• Save specific graph series that you have customized.

To define series templates and set overall graph defaults, see “Setting decision graph
template defaults” on page 16-16.

Changing the series graph type
By default, each series has the same graph type, defined by the template for its
dimension. To change all series to the same graph type, you can change the template
type. See “Changing the default decision graph type” on page 16-16 for instructions.

To change the graph type for a single series,

1 Select a series in the Series list on the Chart page of the Chart editor.

2 Click the Change button.

3 Select a new type and close the Gallery dialog box.

4 Check the Save Series check box.

Changing other decision graph series properties
To change color or other properties of a decision graph series,

1 Select the Series page at the top of the Chart Editing dialog box.

2 Choose a series in the drop-down list at the top of the page.

3 Choose the appropriate property tab and select settings.

4 Check the Save Series check box.

Saving decision graph series settings
By default, only settings for templates are saved at design time. Changes made to
specific series are only saved if the Save box is checked for that series in the Chart
Editing dialog box.

16-18 D e v e l o p e r ’ s G u i d e

D e c i s i o n s u p p o r t c o m p o n e n t s a t r u n t i m e

Saving series can be memory intensive, so if you don’t need to save them you can
uncheck the Save box.

Decision support components at runtime
At runtime, users can perform many operations by left-clicking, right-clicking, and
dragging visible decision support components. These operations, discussed earlier in
this chapter, are summarized below.

Decision pivots at runtime

Users can:

• Left-click the summary button at the left end of the decision pivot to display a list
of available summaries. They can use this list to change the summary data
displayed in decision grids and decision graphs.

• Right-click a dimension button and choose to:

• Move it from the row area to the column area or the reverse.

• Drill In to display detail data.

• Left-click a dimension button following the Drill In command and choose:

• Open Dimension to move back to the top level of that dimension.

• All Values to toggle between displaying just summaries and summaries plus all
other values in decision grids.

• From a list of available categories for that dimension, a category to drill into for
detail values.

• Left-click a dimension button to open or close that dimension.

• Drag and drop dimension buttons from the row area to the column area and the
reverse; they can drop them next to existing buttons in that area or onto the row or
column icon.

Decision grids at runtime

Users can:

• Right-click within the decision grid and choose to:

• Toggle subtotals on and off for individual data groups, for all values of a
dimension, or for the whole grid.

• Display the Decision Cube editor, described on page 16-7.

• Toggle dimensions and summaries open and closed.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 16-19

D e c i s i o n s u p p o r t c o m p o n e n t s a n d m e m o r y c o n t r o l

• Click + and – within the row and column headings to open and close dimensions.

• Drag and drop dimensions from rows to columns and the reverse.

Decision graphs at runtime

Users can drag from side to side or up and down in the graph grid area to scroll
through off-screen categories and values.

Decision support components and memory control
When a dimension or summary is loaded into the decision cube, it takes up memory.
Adding a new summary increases memory consumption linearly: that is, a decision
cube with two summaries uses twice as much memory as the same cube with only
one summary, a decision cube with three summaries uses three times as much
memory as the same cube with one summary, and so on. Memory consumption for
dimensions increases more quickly. Adding a dimension with 10 values increases
memory consumption by a factor of 10. Adding a dimension with 100 values
increases memory consumption 100 times. Thus adding dimensions to a decision
cube can have a dramatic effect on memory use, and can quickly lead to performance
problems. This effect is especially pronounced when adding dimensions that have
many values.

The decision support components have a number of settings to help you control how
and when memory is used. For more information on the properties and techniques
mentioned here, look up TDecisionCube in the online Help.

Setting maximum dimensions, summaries, and cells

The decision cube’s MaxDimensions and MaxSummaries properties can be used with
the CubeDim.ActiveFlag property to control how many dimensions and summaries
can be loaded at a time. You can set the maximum values on the Cube Capacity page
of the Decision Cube editor to place some overall control on how many dimensions
or summaries can be brought into memory at the same time.

Limiting the number of dimensions or summaries provides a rough limit on the
amount of memory used by the decision cube. However, it does not distinguish
between dimensions with many values and those with only a few. For greater control
of the absolute memory demands of the decision cube, you can also limit the number
of cells in the cube. Set the maximum number of cells on the Cube Capacity page of
the Decision Cube editor.

Setting dimension state

The ActiveFlag property controls which dimensions get loaded. You can set this
property on the Dimension Settings tab of the Decision Cube editor using the
Activity Type control. When this control is set to Active, the dimension is loaded

16-20 D e v e l o p e r ’ s G u i d e

D e c i s i o n s u p p o r t c o m p o n e n t s a n d m e m o r y c o n t r o l

unconditionally, and will always take up space. Note that the number of dimensions
in this state must always be less than MaxDimensions, and the number of summaries
set to Active must be less than MaxSummaries. You should set a dimension or
summary to Active only when it is critical that it be available at all times. An Active
setting decreases the ability of the cube to manage the available memory.

When ActiveFlag is set to AsNeeded, a dimension or summary is loaded only if it can
be loaded without exceeding the MaxDimensions, MaxSummaries, or MaxCells limit.
The decision cube will swap dimensions and summaries that are marked AsNeeded in
and out of memory to keep within the limits imposed by MaxCells, MaxDimensions,
and MaxSummaries. Thus, a dimension or summary may not be loaded in memory if
it is not currently being used. Setting dimensions that are not used frequently to
AsNeeded results in better loading and pivoting performance, although there will be a
time delay to access dimensions which are not currently loaded.

Using paged dimensions

When Binning is set to Set on the Dimension Settings tab of the Decision cube editor
and Start Value is not NULL, the dimension is said to be “paged,” or “permanently
drilled down.” You can access data for just a single value of that dimension at a time,
although you can programmatically access a series of values sequentially. Such a
dimension may not be pivoted or opened.

It is extremely memory intensive to include dimensional data for dimensions that
have very large numbers of values. By making such dimensions paged, you can
display summary information for one value at a time. Information is usually easier to
read when displayed this way, and memory consumption is much easier to manage.

C o n n e c t i n g t o d a t a b a s e s 17-1

C h a p t e r

17
Chapter 17Connecting to databases

Most dataset components can connect directly to a database server. Once connected,
the dataset communicates with the server automatically. When you open the dataset,
it populates itself with data from the server, and when you post records, they are sent
back the server and applied. A single connection component can be shared by
multiple datasets, or each dataset can use its own connection.

Each type of dataset connects to the database server using its own type of connection
component, which is designed to work with a single data access mechanism. The
following table lists these data access mechanisms and the associated connection
components:

Note For a discussion of some pros and cons of each of these mechanisms, see “Using
databases” on page 14-1.

The connection component provides all the information necessary to establish a
database connection. This information is different for each type of connection
component:

• For information about describing a BDE-based connection, see “Identifying the
database” on page 20-13.

• For information about describing an ADO-based connection, see “Connecting to a
data store using TADOConnection” on page 21-3

• For information about describing a dbExpress connection, see “Setting up
TSQLConnection” on page 22-3

Table 17.1 Database connection components

Data access mechanism Connection component

The Borland Database Engine (BDE). TDatabase

ActiveX Data Objects (ADO). TADOConnection

dbExpress. TSQLConnection

InterBase Express. TIBDatabase

17-2 D e v e l o p e r ’ s G u i d e

U s i n g i m p l i c i t c o n n e c t i o n s

• For information about describing an InterBase Express connection, see the online
help for TIBDatabase.

Although each type of dataset uses a different connection component, they are all
descendants of TCustomConnection. They all perform many of the same tasks and
surface many of the same properties, methods, and events. This chapter discusses
many of these common tasks.

Using implicit connections
No matter what data access mechanism you are using, you can always create the
connection component explicitly and use it to manage the connection to and
communication with a database server. For BDE-enabled and ADO-based datasets,
you also have the option of describing the database connection through properties of
the dataset and letting the dataset generate an implicit connection. For BDE-enabled
datasets, you specify an implicit connection using the DatabaseName property. For
ADO-based datasets, you use the ConnectionString property.

When using an implicit connection, you do not need to explicitly create a connection
component. This can simplify your application development, and the default
connection you specify can cover a wide variety of situations. For complex, mission-
critical client/server applications with many users and different requirements for
database connections, however, you should create your own connection components
to tune each database connection to your application’s needs. Explicit connection
components give you greater control. For example, you need to access the connection
component to perform the following tasks:

• Customize database server login support. (Implicit connections display a default
login dialog to prompt the user for a user name and password.)

• Control transactions and specify transaction isolation levels.

• Execute SQL commands on the server without using a dataset.

• Perform actions on all open datasets that are connected to the same database.

In addition, if you have multiple datasets that all use the same server, it can be easier
to use an connection component, so that you only have to specify the server to use in
one place. That way, if you later change the server, you do not need to update several
dataset components: only the connection component.

Controlling connections
Before you can establish a connection to a database server, your application must
provide certain key pieces of information that describe the desired server. Each type
of connection component surfaces a different set of properties to let you identify the
server. In general, however, they all provide a way for you to name the server you
want and supply a set of connection parameters that control how the connection is
formed. Connection parameters vary from server to server. They can include
information such as user name and password, the maximum size of BLOB fields,
SQL roles, and so on.

C o n n e c t i n g t o d a t a b a s e s 17-3

C o n t r o l l i n g c o n n e c t i o n s

Once you have identified the desired server and any connection parameters, you can
use the connection component to explicitly open or close a connection. The
connection component generates events when it opens or closes a connection that
you can use to customize the response of your application to changes in the database
connection.

Connecting to a database server

There are two ways to connect to a database server using a connection component:

• Call the Open method.

• Set the Connected property to True.

Calling the Open method sets Connected to True.

Note When a connection component is not connected to a server and an application
attempts to open one of its associated datasets, the dataset automatically calls the
connection component’s Open method.

When you set Connected to True, the connection component first generates a
BeforeConnect event, where you can perform any initialization. For example, you can
use this event to alter connection parameters.

After the BeforeConnect event, the connection component may display a default login
dialog, depending on how you choose to control server login. It then passes the user
name and password to the driver, opening a connection.

Once the connection is open, the connection component generates an AfterConnect
event, where you can perform any tasks that require an open connection.

Note Some connection components generate additional events as well when establishing a
connection.

Once a connection is established, it is maintained as long as there is at least one active
dataset using it. When there are no more active datasets, the connection component
drops the connection. Some connection components surface a KeepConnection
property that allows the connection to remain open even if all the datasets that use it
are closed. If KeepConnection is True, the connection is maintained. For connections to
remote database servers, or for applications that frequently open and close datasets,
setting KeepConnection to True reduces network traffic and speeds up the application.
If KeepConnection is False, the connection is dropped when there are no active datasets
using the database. If a dataset that uses the database is later opened, the connection
must be reestablished and initialized.

Disconnecting from a database server

There are two ways to disconnect a server using a connection component:

• Set the Connected property to False.

• Call the Close method.

Calling Close sets Connected to False.

17-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g s e r v e r l o g i n

When Connected is set to False, the connection component generates a BeforeDisconnect
event, where you can perform any cleanup before the connection closes. For example,
you can use this event to cache information about all open datasets before they are
closed.

After the BeforeConnect event, the connection component closes all open datasets and
disconnects from the server.

Finally, the connection component generates an AfterDisconnect event, where you can
respond to the change in connection status, such as enabling a Connect button in
your user interface.

Note Calling Close or setting Connected to False disconnects from a database server even if
the connection component has a KeepConnection property that is True.

Controlling server login
Most remote database servers include security features to prohibit unauthorized
access. Usually, the server requires a user name and password login before
permitting database access.

At design time, if a server requires a login, a standard login dialog box prompts for a
user name and password when you first attempt to connect to the database.

At runtime, there are three ways you can handle a server’s request for a login:

• Let the default login dialog and processes handle the login. This is the default
approach. Set the LoginPrompt property of the connection component to True (the
default) and add DBLogDlg to the uses clause of the unit that declares the
connection component. Your application displays the standard login dialog box
when the server requests a user name and password.

• Supply the login information before the login attempt. Each type of connection
component uses a different mechanism for specifying the user name and
password:

• For BDE, dbExpress, and InterBase express datasets, the user name and
password connection parameters can be accessed through the Params property.
(For BDE datasets, the parameter values can also be associated with a BDE alias,
while for dbExpress datasets, they can also be associated with a connection
name).

• For ADO datasets, the user name and password can be included in the
ConnectionString property (or provided as parameters to the Open method).

If you specify the user name and password before the server requests them, be
sure to set the LoginPrompt to False, so that the default login dialog does not
appear. For example, the following code sets the user name and password on a
SQL connection component in the BeforeConnect event handler, decrypting an
encrypted password that is associated with the current connection name:

procedure TForm1.SQLConnectionBeforeConnect(Sender: TObject);
begin

with Sender as TSQLConnection do
begin

C o n n e c t i n g t o d a t a b a s e s 17-5

M a n a g i n g t r a n s a c t i o n s

if LoginPrompt = False then
begin
Params.Values['User_Name'] := 'SYSDBA';
Params.Values['Password'] := Decrypt(Params.Values['Password']);

end;
end;

end;

Note that setting the user name and password at design-time or using hard-coded
strings in code causes the values to be embedded in the application’s executable
file. This still leaves them easy to find, compromising server security.

• Provide your own custom handling for the login event. The connection
component generates an event when it needs the user name and password.

• For TDatabase, TSQLConnection, and TIBDatabase, this is an OnLogin event. The
event handler has two parameters, the connection component, and a local copy
of the user name and password parameters in a string list. (TSQLConnection
includes the database parameter as well). You must set the LoginPrompt
property to True for this event to occur. Having a LoginPrompt value of False and
assigning a handler for the OnLogin event creates a situation where it is
impossible to log in to the database because the default dialog does not appear
and the OnLogin event handler never executes.

• For TADOConnection, the event is an OnWillConnect event. The event handler
has five parameters, the connection component and four parameters that return
values to influence the connection (including two for user name and password).
This event always occurs, regardless of the value of LoginPrompt.

Write an event handler for the event in which you set the login parameters. Here is
an example where the values for the USER NAME and PASSWORD parameters
are provided from a global variable (UserName) and a method that returns a
password given a user name (PasswordSearch)

procedure TForm1.Database1Login(Database: TDatabase; LoginParams: TStrings);
begin

LoginParams.Values['USER NAME'] := UserName;
LoginParams.Values['PASSWORD'] := PasswordSearch(UserName);

end;

As with the other methods of providing login parameters, when writing an
OnLogin or OnWillConnect event handler, avoid hard coding the password in your
application code. It should appear only as an encrypted value, an entry in a secure
database your application uses to look up the value, or be dynamically obtained
from the user.

Managing transactions
A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If one of the
actions in the group fails, then all actions are rolled back (undone). By using
transactions, you ensure that the database is not left in an inconsistent state when a
problem occurs completing one of the actions that make up the transaction.

17-6 D e v e l o p e r ’ s G u i d e

M a n a g i n g t r a n s a c t i o n s

For example, in a banking application, transferring funds from one account to
another is an operation you would want to protect with a transaction. If, after
decrementing the balance in one account, an error occurred incrementing the balance
in the other, you want to roll back the transaction so that the database still reflects the
correct total balance.

It is always possible to manage transactions by sending SQL commands directly to
the database. Most databases provide their own transaction management model,
although some have no transaction support at all. For servers that support it, you
may want to code your own transaction management directly, taking advantage of
advanced transaction management capabilities on a particular database server, such
as schema caching.

If you do not need to use any advanced transaction management capabilities,
connection components provide a set of methods and properties you can use to
manage transactions without explicitly sending any SQL commands. Using these
properties and methods has the advantage that you do not need to customize your
application for each type of database server you use, as long as the server supports
transactions. (The BDE also provides limited transaction support for local tables with
no server transaction support. When not using the BDE, trying to start transactions
on a database that does not support them causes connection components to raise an
exception.)

Warning When a dataset provider component applies updates, it implicitly generates
transactions for any updates. Be careful that any transactions you explicitly start do
not conflict with those generated by the provider.

Starting a transaction

When you start a transaction, all subsequent statements that read from or write to the
database occur in the context of that transaction, until the transaction is explicitly
terminated or (in the case of overlapping transactions) until another transaction is
started. Each statement is considered part of a group. Changes must be successfully
committed to the database, or every change made in the group must be undone.

While the transaction is in process, your view of the data in database tables is
determined by your transaction isolation level. For information about transaction
isolation levels, see “Specifying the transaction isolation level” on page 17-9.

For TADOConnection, start a transaction by calling the BeginTrans method:

Level := ADOConnection1.BeginTrans;

BeginTrans returns the level of nesting for the transaction that started. A nested
transaction is one that is nested within another, parent, transaction. After the server
starts the transaction, the ADO connection receives an OnBeginTransComplete event.

For TDatabase, use the StartTransactionmethod instead. TDataBase does not support
nested or overlapped transactions: If you call a TDatabase component’s
StartTransaction method while another transaction is underway, it raises an

C o n n e c t i n g t o d a t a b a s e s 17-7

M a n a g i n g t r a n s a c t i o n s

exception. To avoid calling StartTransaction, you can check the InTransaction
property:

if not Database1.InTransaction then
Database1.StartTransaction;

TSQLConnection also uses the StartTransactionmethod, but it uses a version that gives
you a lot more control. Specifically, StartTransaction takes a transaction descriptor,
which lets you manage multiple simultaneous transactions and specify the
transaction isolation level on a per-transaction basis. (For more information on
transaction levels, see “Specifying the transaction isolation level” on page 17-9.) In
order to manage multiple simultaneous transactions, set the TransactionID field of the
transaction descriptor to a unique value. TransactionID can be any value you choose,
as long as it is unique (does not conflict with any other transaction currently
underway). Depending on the server, transactions started by TSQLConnection can be
nested (as they can be when using ADO) or they can be overlapped.

var
TD: TTransactionDesc;

begin
TD.TransactionID := 1;
TD.IsolationLevel := xilREADCOMMITTED;
SQLConnection1.StartTransaction(TD);

By default, with overlapped transactions, the first transaction becomes inactive when
the second transaction starts, although you can postpone committing or rolling back
the first transaction until later. If you are using TSQLConnection with an InterBase
database, you can identify each dataset in your application with a particular active
transaction, by setting its TransactionLevel property. That is, after starting a second
transaction, you can continue to work with both transactions simultaneously, simply
by associating a dataset with the transaction you want.

Note Unlike TADOConnection, TSQLConnection and TDatabase do not receive any events
when the transactions starts.

InterBase express offers you even more control than TSQLConnection by using a
separate transaction component rather than starting transactions using the
connection component. You can, however, use TIBDatabase to start a default
transaction:

if not IBDatabase1.DefaultTransaction.InTransaction then
IBDatabase1.DefaultTransaction.StartTransaction;

You can have overlapped transactions by using two separate transaction
components. Each transaction component has a set of parameters that let you
configure the transaction. These let you specify the transaction isolation level, as well
as other properties of the transaction.

Ending a transaction

Ideally, a transaction should only last as long as necessary. The longer a transaction is
active, the more simultaneous users that access the database, and the more
concurrent, simultaneous transactions that start and end during the lifetime of your
transaction, the greater the likelihood that your transaction will conflict with another
when you attempt to commit any changes.

17-8 D e v e l o p e r ’ s G u i d e

M a n a g i n g t r a n s a c t i o n s

Ending a successful transaction
When the actions that make up the transaction have all succeeded, you can make the
database changes permanent by committing the transaction. For TDatabase, you
commit a transaction using the Commit method:

MyOracleConnection.Commit;

For TSQLConnection, you also use the Commit method, but you must specify which
transaction you are committing by supplying the transaction descriptor you gave to
the StartTransaction method:

MyOracleConnection.Commit(TD);

For TIBDatabase, you commit a transaction object using its Commit method:

IBDatabase1.DefaultTransaction.Commit;

For TADOConnection, you commit a transaction using the CommitTrans method:

ADOConnection1.CommitTrans;

Note It is possible for a nested transaction to be committed, only to have the changes rolled
back later if the parent transaction is rolled back.

After the transaction is successfully committed, an ADO connection component
receives an OnCommitTransComplete event. Other connection components do not
receive any similar events.

A call to commit the current transaction is usually attempted in a try...except
statement. That way, if the transaction cannot commit successfully, you can use the
except block to handle the error and retry the operation or to roll back the
transaction.

Ending an unsuccessful transaction
If an error occurs when making the changes that are part of the transaction or when
trying to commit the transaction, you will want to discard all changes that make up
the transaction. Discarding these changes is called rolling back the transaction.

For TDatabase, you roll back a transaction by calling the Rollback method:

MyOracleConnection.Rollback;

For TSQLConnection, you also use the Rollback method, but you must specify which
transaction you are rolling back by supplying the transaction descriptor you gave to
the StartTransaction method:

MyOracleConnection.Rollback(TD);

For TIBDatabase, you roll back a transaction object by calling its Rollback method:

IBDatabase1.DefaultTransaction.Rollback;

For TADOConnection, you roll back a transaction by calling the RollbackTrans method:

ADOConnection1.RollbackTrans;

After the transaction is successfully rolled back, an ADO connection component
receives an OnRollbackTransComplete event. Other connection components do not
receive any similar events.

C o n n e c t i n g t o d a t a b a s e s 17-9

M a n a g i n g t r a n s a c t i o n s

A call to roll back the current transaction usually occurs in

• Exception handling code when you can’t recover from a database error.

• Button or menu event code, such as when a user clicks a Cancel button.

Specifying the transaction isolation level

Transaction isolation level determines how a transaction interacts with other
simultaneous transactions when they work with the same tables. In particular, it
affects how much a transaction “sees” of other transactions’ changes to a table.

Each server type supports a different set of possible transaction isolation levels.
There are three possible transaction isolation levels:

• DirtyRead: When the isolation level is DirtyRead, your transaction sees all changes
made by other transactions, even if they have not been committed. Uncommitted
changes are not permanent, and might be rolled back at any time. This value
provides the least isolation, and is not available for many database servers (such as
Oracle, Sybase, MS-SQL, and InterBase).

• ReadCommitted: When the isolation level is ReadCommitted, only committed
changes made by other transactions are visible. Although this setting protects
your transaction from seeing uncommitted changes that may be rolled back, you
may still receive an inconsistent view of the database state if another transaction is
committed while you are in the process of reading. This level is available for all
transactions except local transactions managed by the BDE.

• RepeatableRead: When the isolation level is RepeatableRead, your transaction is
guaranteed to see a consistent state of the database data. Your transaction sees a
single snapshot of the data. It cannot see any subsequent changes to data by other
simultaneous transactions, even if they are committed. This isolation level
guarantees that once your transaction reads a record, its view of that record will
not change. At this level your transaction is most isolated from changes made by
other transactions. This level is not available on some servers, such as Sybase and
MS-SQL and is unavailable on local transactions managed by the BDE.

In addition, TSQLConnection lets you specify database-specific custom isolation
levels. Custom isolation levels are defined by the dbExpress driver. See you driver
documentation for details.

Note For a detailed description of how each isolation level is implemented, see your server
documentation.

TDatabase and TADOConnection let you specify the transaction isolation level by
setting the TransIsolation property. When you set TransIsolation to a value that is not
supported by the database server, you get the next highest level of isolation (if
available). If there is no higher level available, the connection component raises an
exception when you try to start a transaction.

When using TSQLConnection, transaction isolation level is controlled by the
IsolationLevel field of the transaction descriptor.

When using InterBase express, transaction isolation level is controlled by a
transaction parameter.

17-10 D e v e l o p e r ’ s G u i d e

S e n d i n g c o m m a n d s t o t h e s e r v e r

Sending commands to the server
All database connection components except TIBDatabase let you execute SQL
statements on the associated server by calling the Execute method. Although Execute
can return a cursor when the statement is a SELECT statement, this use is not
recommended. The preferred method for executing statements that return data is to
use a dataset.

The Execute method is very convenient for executing simple SQL statements that do
not return any records. Such statements include Data Definition Language (DDL)
statements, which operate on or create a database’s metadata, such as CREATE
INDEX, ALTER TABLE, and DROP DOMAIN. Some Data Manipulation Language
(DML) SQL statements also do not return a result set. The DML statements that
perform an action on data but do not return a result set are: INSERT, DELETE, and
UPDATE.

The syntax for the Execute method varies with the connection type:

• For TDatabase, Execute takes four parameters: a string that specifies a single SQL
statement that you want to execute, a TParams object that supplies any parameter
values for that statement, a boolean that indicates whether the statement should be
cached because you will call it again, and a pointer to a BDE cursor that can be
returned (It is recommended that you pass nil).

• For TADOConnection, there are two versions of Execute. The first takes a
WideString that specifies the SQL statement and a second parameter that specifies
a set of options that control whether the statement is executed asynchronously and
whether it returns any records. This first syntax returns an interface for the
returned records. The second syntax takes a WideString that specifies the SQL
statement, a second parameter that returns the number of records affected when
the statement executes, and a third that specifies options such as whether the
statement executes asynchronously. Note that neither syntax provides for passing
parameters.

• For TSQLConnection, Execute takes three parameters: a string that specifies a single
SQL statement that you want to execute, a TParams object that supplies any
parameter values for that statement, and a pointer that can receive a
TCustomSQLDataSet that is created to return records.

Note Execute can only execute one SQL statement at a time. It is not possible to execute
multiple SQL statements with a single call to Execute, as you can with SQL scripting
utilities. To execute more than one statement, call Execute repeatedly.

It is relatively easy to execute a statement that does not include any parameters. For
example, the following code executes a CREATE TABLE statement (DDL) without
any parameters on a TSQLConnection component:

procedure TForm1.CreateTableButtonClick(Sender: TObject);
var

SQLstmt: String;
begin

SQLConnection1.Connected := True;
SQLstmt := 'CREATE TABLE NewCusts ' +

C o n n e c t i n g t o d a t a b a s e s 17-11

W o r k i n g w i t h a s s o c i a t e d d a t a s e t s

'(' +
' CustNo INTEGER, ' +
' Company CHAR(40), ' +
' State CHAR(2), ' +
' PRIMARY KEY (CustNo) ' +
')';

SQLConnection1.Execute(SQLstmt, nil, nil);
end;

To use parameters, you must create a TParams object. For each parameter value, use
the TParams.CreateParam method to add a TParam object. Then use properties of
TParam to describe the parameter and set its value.

This process is illustrated in the following example, which uses TDatabase to execute
an INSERT statement. The INSERT statement has a single parameter named
:StateParam. A TParams object (called stmtParams) is created to supply a value of
“CA” for that parameter.

procedure TForm1.INSERT_WithParamsButtonClick(Sender: TObject);
var

SQLstmt: String;
stmtParams: TParams;

begin
stmtParams := TParams.Create;
try

Database1.Connected := True;
stmtParams.CreateParam(ftString, 'StateParam', ptInput);
stmtParams.ParamByName('StateParam').AsString := 'CA';
SQLstmt := 'INSERT INTO "Custom.db" '+
'(CustNo, Company, State) ' +
'VALUES (7777, "Robin Dabank Consulting", :StateParam)';

Database1.Execute(SQLstmt, stmtParams, False, nil);
finally

stmtParams.Free;
end;

end;

If the SQL statement includes a parameter but you do not supply a TParam object to
provide its value, the SQL statement may cause an error when executed (this
depends on the particular database back-end used). If a TParam object is provided
but there is no corresponding parameter in the SQL statement, an exception is raised
when the application attempts to use the TParam.

Working with associated datasets
All database connection components maintain a list of all datasets that use them to
connect to a database. A connection component uses this list, for example, to close all
of the datasets when it closes the database connection.

You can use this list as well, to perform actions on all the datasets that use a specific
connection component to connect to a particular database.

17-12 D e v e l o p e r ’ s G u i d e

O b t a i n i n g m e t a d a t a

Closing all datasets without disconnecting from the server

The connection component automatically closes all datasets when you close its
connection. There may be times, however, when you want to close all datasets
without disconnecting from the database server.

To close all open datasets without disconnecting from a server, you can use the
CloseDataSets method.

For TADOConnection and TIBDatabase, calling CloseDataSets always leaves the
connection open. For TDatabase and TSQLConnection, you must also set the
KeepConnection property to True.

Iterating through the associated datasets

To perform any actions (other than closing them all) on all the datasets that use a
connection component, use the DataSets and DataSetCount properties. DataSets is an
indexed array of all datasets that are linked to the connection component. For all
connection components except TADOConnection, this list includes only the active
datasets. TADOConnection lists the inactive datasets as well. DataSetCount is the
number of datasets in this array.

Note When you use a specialized client dataset to cache updates (as opposed to the generic
client dataset, TClientDataSet), the DataSets property lists the internal dataset owned
by the client dataset, not the client dataset itself.

You can use DataSets with DataSetCount to cycle through all currently active datasets
in code. For example, the following code cycles through all active datasets and
disables any controls that use the data they provide:

var
I: Integer;

begin
with MyDBConnection do
begin

for I := 0 to DataSetCount - 1 do
DataSets[I].DisableControls;

end;
end;

Note TADOConnection supports command objects as well as datasets. You can iterate
through these much like you iterate through the datasets, by using the Commands and
CommandCount properties.

Obtaining metadata
All database connection components can retrieve lists of metadata on the database
server, although they vary in the types of metadata they retrieve. The methods that
retrieve metadata fill a string list with the names of various entities available on the
server. You can then use this information, for example, to let your users dynamically
select a table at runtime.

C o n n e c t i n g t o d a t a b a s e s 17-13

O b t a i n i n g m e t a d a t a

You can use a TADOConnection component to retrieve metadata about the tables and
stored procedures available on the ADO data store. You can then use this
information, for example, to let your users dynamically select a table or stored
procedure at runtime.

Listing available tables

The GetTableNames method copies a list of table names to an already-existing string
list object. This can be used, for example, to fill a list box with table names that the
user can then use to choose a table to open. The following line fills a listbox with the
names of all tables on the database:

MyDBConnection.GetTableNames(ListBox1.Items, False);

GetTableNames has two parameters: the string list to fill with table names, and a
boolean that indicates whether the list should include system tables, or ordinary
tables. Note that not all servers use system tables to store metadata, so asking for
system tables may result in an empty list.

Note For most database connection components, GetTableNames returns a list of all
available non-system tables when the second parameter is False. For TSQLConnection,
however, you have more control over what type is added to the list when you are not
fetching only the names of system tables. When using TSQLConnection, the types of
names added to the list are controlled by the TableScope property. TableScope indicates
whether the list should contain any or all of the following: ordinary tables, system
tables, synonyms, and views.

Listing the fields in a table

The GetFieldNames method fills an existing string list with the names of all fields
(columns) in a specified table. GetFieldNames takes two parameters, the name of the
table for which you want to list the fields, and an existing string list to be filled with
field names:

MyDBConnection.GetFieldNames('Employee', ListBox1.Items);

Listing available stored procedures

To get a listing of all of the stored procedures contained in the database, use the
GetProcedureNames method. This method takes a single parameter: an already-
existing string list to fill:

MyDBConnection.GetProcedureNames(ListBox1.Items);

Note GetProcedureNames is only available for TADOConnection and TSQLConnection.

17-14 D e v e l o p e r ’ s G u i d e

O b t a i n i n g m e t a d a t a

Listing available indexes

To get a listing of all indexes defined for a specific table, use the GetIndexNames
method. This method takes two parameters: the table whose indexes you want, and
an already-existing string list to fill:

SQLConnection1.GetIndexNames('Employee', ListBox1.Items);

Note GetIndexNames is only available for TSQLConnection, although most table-type
datasets have an equivalent method.

Listing stored procedure parameters

To get a list of all parameters defined for a specific stored procedure, use the
GetProcedureParams method. GetProcedureParams fills a TList object with pointers to
parameter description records, where each record describes a parameter of a
specified stored procedure, including its name, index, parameter type, field type, and
so on.

GetProcedureParams takes two parameters: the name of the stored procedure, and an
already-existing TList object to fill:

SQLConnection1.GetProcedureParams('GetInterestRate', List1);

You can convert the parameter descriptions that are added to the list into the more
familiar TParams object by calling the global LoadParamListItemsprocedure. Because
GetProcedureParams dynamically allocates the individual records, your application
must free them when it is finished with the information. The global FreeProcParams
routine can do this for you.

Note GetProcedureParams is only available for TSQLConnection.

U n d e r s t a n d i n g d a t a s e t s 18-1

C h a p t e r

18
Chapter 18Understanding datasets

The fundamental unit for accessing data is the dataset family of objects. Your
application uses datasets for all database access. A dataset object represents a set of
records from a database organized into a logical table. These records may be the
records from a single database table, or they may represent the results of executing a
query or stored procedure.

All dataset objects that you use in your database applications descend from TDataSet,
and they inherit data fields, properties, events, and methods from this class. This
chapter describes the functionality of TDataSet that is inherited by the dataset objects
you use in your database applications. You need to understand this shared
functionality to use any dataset object.

TDataSet is a virtualized dataset, meaning that many of its properties and methods
are virtual or abstract. A virtual method is a function or procedure declaration where
the implementation of that method can be (and usually is) overridden in descendant
objects. An abstract method is a function or procedure declaration without an actual
implementation. The declaration is a prototype that describes the method (and its
parameters and return type, if any) that must be implemented in all descendant
dataset objects, but that might be implemented differently by each of them.

Because TDataSet contains abstract methods, you cannot use it directly in an
application without generating a runtime error. Instead, you either create instances
of the built-in TDataSet descendants and use them in your application, or you derive
your own dataset object from TDataSet or its descendants and write implementations
for all its abstract methods.

TDataSet defines much that is common to all dataset objects. For example, TDataSet
defines the basic structure of all datasets: an array of TField components that
correspond to actual columns in one or more database tables, lookup fields provided
by your application, or calculated fields provided by your application. For
information about TField components, see Chapter 19, “Working with field
components.”

18-2 D e v e l o p e r ’ s G u i d e

U s i n g T D a t a S e t d e s c e n d a n t s

This chapter describes how to use the common database funtionality introduced by
TDataSet. Bear in mind, however, that although TDataSet introduces the methods for
this functionality, not all TDataSet dependants implement them. In particular,
unidirectional datasets implement only a limited subset.

Using TDataSet descendants
TDataSet has several immediate descendants, each of which corresponds to a
different data access mechanism. You do not work directly with any of these
descendants. Rather, each descendant introduces the properties and methods for
using a particular data access mechanism. These properties and methods are then
exposed by descendant classes that are adapted to different types of server data. The
immediate descendants of TDataSet include

• TBDEDataSet, which uses the Borland Database Engine (BDE) to communicate
with the database server. The TBDEDataSet descendants you use are TTable,
TQuery, TStoredProc, and TNestedTable. The unique features of BDE-enabled
datasets are described in Chapter 20, “Using the Borland Database Engine”.

• TCustomADODataSet, which uses ActiveX Data Objects (ADO) to communicate
with an OLEDB data store. The TCustomADODataSet descendants you use are
TADODataSet, TADOTable, TADOQuery, and TADOStoredProc. The unique
features of ADO-based datasets are described in Chapter 21, “Working with ADO
components”.

• TCustomSQLDataSet, which uses dbExpress to communicate with a database
server. The TCustomSQLDataSet descendants you use are TSQLDataSet,
TSQLTable, TSQLQuery, and TSQLStoredProc. The unique features of dbExpress
datasets are described in Chapter 22, “Using unidirectional datasets”.

• TIBCustomDataSet, which communicates directly with an InterBase database
server. The TIBCustomDataSet descendants you use are TIBDataSet, TIBTable,
TIBQuery, and TIBStoredProc.

• TCustomClientDataSet, which represents the data from another dataset component
or the data from a dedicated file on disk. The TCustomClientDataSet descendants
you use are TClientDataSet, which can connect to an external (source) dataset, and
the client datasets that are specialized to a particular data access mechanism
(TBDEClientDataSet, TSQLClientDataSet, and TIBClientDataSet), which use an
internal source dataset. The unique features of client datasets are described in
Chapter 23, “Using client datasets”.

Some pros and cons of the various data access mechanisms employed by these
TDataSet descendants are described in “Using databases” on page 14-1.

In addition to the built-in datasets, you can create your own custom TDataSet
descendants — for example to supply data from a process other than a database
server, such as a spreadsheet. Writing custom datasets allows you the flexibility of
managing the data using any method you choose, while still letting you use the VCL
data controls to build your user interface. For more information about creating
custom components, see Chapter 40, “Overview of component creation.”

U n d e r s t a n d i n g d a t a s e t s 18-3

D e t e r m i n i n g d a t a s e t s t a t e s

Although each TDataSet descendant has its own unique properties and methods,
some of the properties and methods introduced by descendant classes are the same
as those introduced by other descendant classes that use another data access
mechanism. For example, there are similarities between the “table” components
(TTable, TADOTable, TSQLTable, and TIBTable). For information about the
commonalities introduced by TDataSet descendants, see “Types of datasets” on
page 18-23.

Determining dataset states
The state—or mode—of a dataset determines what can be done to its data. For
example, when a dataset is closed, its state is dsInactive, meaning that nothing can be
done to its data. At runtime, you can examine a dataset’s read-only State property to
determine its current state. The following table summarizes possible values for the
State property and what they mean:

Table 18.1 Values for the dataset State property

Value State Meaning

dsInactive Inactive DataSet closed. Its data is unavailable.

dsBrowse Browse DataSet open. Its data can be viewed, but not changed. This is
the default state of an open dataset.

dsEdit Edit DataSet open. The current row can be modified. (not supported
on unidirectional datasets)

dsInsert Insert DataSet open. A new row is inserted or appended. (not
supported on unidirectional datasets)

dsSetKey SetKey DataSet open. Enables setting of ranges and key values used for
ranges and GotoKey operations. (not supported by all datasets)

dsCalcFields CalcFields DataSet open. Indicates that an OnCalcFields event is under way.
Prevents changes to fields that are not calculated.

dsCurValue CurValue DataSet open. Indicates that the CurValue property of fields is
being fetched for an event handler that responds to errors in
applying cached updates.

dsNewValue NewValue DataSet open. Indicates that the NewValue property of fields is
being fetched for an event handler that responds to errors in
applying cached updates.

dsOldValue OldValue DataSet open. Indicates that the OldValue property of fields is
being fetched for an event handler that responds to errors in
applying cached updates.

dsFilter Filter DataSet open. Indicates that a filter operation is under way. A
restricted set of data can be viewed, and no data can be changed.
(not supported on unidirectional datasets)

dsBlockRead Block Read DataSet open. Data-aware controls are not updated and events
are not triggered when the current record changes.

18-4 D e v e l o p e r ’ s G u i d e

O p e n i n g a n d c l o s i n g d a t a s e t s

Typically, an application checks the dataset state to determine when to perform
certain tasks. For example, you might check for the dsEdit or dsInsert state to ascertain
whether you need to post updates.

Note Whenever a dataset’s state changes, the OnStateChange event is called for any data
source components associated with the dataset. For more information about data
source components and OnStateChange, see “Responding to changes mediated by the
data source” on page 15-4.

Opening and closing datasets
To read or write data in a dataset, an application must first open it. You can open a
dataset in two ways,

• Set the Active property of the dataset to True, either at design time in the Object
Inspector, or in code at runtime:

CustTable.Active := True;

• Call the Open method for the dataset at runtime,

CustQuery.Open;

When you open the dataset, the dataset first receives a BeforeOpen event, then it opens
a cursor, populating itself with data, and finally, it receives an AfterOpen event.

The newly-opened dataset is in browse mode, which means your application can
read the data and navigate through it.

You can close a dataset in two ways,

• Set the Active property of the dataset to False, either at design time in the Object
Inspector, or in code at runtime,

CustQuery.Active := False;

• Call the Close method for the dataset at runtime,

CustTable.Close;

Just as the dataset receives BeforeOpen and AfterOpen events when you open it, it
receives a BeforeClose and AfterClose event when you close it. handlers that respond to
the Close method for a dataset. You can use these events, for example, to prompt the

dsInternalCalc Internal Calc DataSet open. An OnCalcFields event is underway for calculated
values that are stored with the record. (client datasets only)

dsOpening Opening DataSet is in the process of opening but has not finished. This
state occurs when the dataset is opened for asynchronous
fetching.

Table 18.1 Values for the dataset State property (continued)

Value State Meaning

U n d e r s t a n d i n g d a t a s e t s 18-5

N a v i g a t i n g d a t a s e t s

user to post pending changes or cancel them before closing the dataset. The following
code illustrates such a handler:

procedure TForm1.CustTableVerifyBeforeClose(DataSet: TDataSet);
begin

if (CustTable.State in [dsEdit, dsInsert]) then begin
case MessageDlg('Post changes before closing?', mtConfirmation, mbYesNoCancel, 0) of
mrYes: CustTable.Post; { save the changes }
mrNo: CustTable.Cancel; { abandon the changes}
mrCancel: Abort; { abort closing the dataset }

end;
end;

end;

Note You may need to close a dataset when you want to change certain of its properties,
such as TableName on a TTable component. When you reopen the dataset, the new
property value takes effect.

Navigating datasets
Each active dataset has a cursor, or pointer, to the current row in the dataset. The
current row in a dataset is the one whose field values currently show in single-field,
data-aware controls on a form, such as TDBEdit, TDBLabel, and TDBMemo. If the
dataset supports editing, the current record contains the values that can be
manipulated by edit, insert, and delete methods.

You can change the current row by moving the cursor to point at a different row. The
following table lists methods you can use in application code to move to different
records:

The data-aware, visual component TDBNavigator encapsulates these methods as
buttons that users can click to move among records at runtime. For information
about the navigator component, see “Navigating and manipulating records” on
page 15-28.

Whenever you change the current record using one of these methods (or by other
methods that navigate based on a search criterion), the dataset receives two events:
BeforeScroll (before leaving the current record) and AfterScroll (after arriving at the
new record). You can use these events to update your user interface (for example, to
update a status bar that indicates information about the current record).

Table 18.2 Navigational methods of datasets

Method Moves the cursor to

First The first row in a dataset.

Last The last row in a dataset. (not available for unidirectional datasets)

Next The next row in a dataset.

Prior The previous row in a dataset. (not available for unidirectional datasets)

MoveBy A specified number of rows forward or back in a dataset.

18-6 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

TDataSet also defines two boolean properties that provide useful information when
iterating through the records in a dataset.

Using the First and Last methods

The First method moves the cursor to the first row in a dataset and sets the Bof
property to True. If the cursor is already at the first row in the dataset, First does
nothing.

For example, the following code moves to the first record in CustTable:

CustTable.First;

The Last method moves the cursor to the last row in a dataset and sets the Eof
property to True. If the cursor is already at the last row in the dataset, Last does
nothing.

The following code moves to the last record in CustTable:

CustTable.Last;

Note The Last method raises an exception in unidirectional datasets.

Tip While there may be programmatic reasons to move to the first or last rows in a
dataset without user intervention, you can also enable your users to navigate from
record to record using the TDBNavigator component. The navigator component
contains buttons that, when active and visible, enable a user to move to the first and
last rows of an active dataset. The OnClick events for these buttons call the First and
Last methods of the dataset. For more information about making effective use of the
navigator component, see “Navigating and manipulating records” on page 15-28.

Using the Next and Prior methods

The Next method moves the cursor forward one row in the dataset and sets the Bof
property to False if the dataset is not empty. If the cursor is already at the last row in
the dataset when you call Next, nothing happens.

For example, the following code moves to the next record in CustTable:

CustTable.Next;

The Prior method moves the cursor back one row in the dataset, and sets Eof to False if
the dataset is not empty. If the cursor is already at the first row in the dataset when
you call Prior, Prior does nothing.

Table 18.3 Navigational properties of datasets

Property Description

Bof (Beginning-of-file) True: the cursor is at the first row in the dataset.
False: the cursor is not known to be at the first row in the dataset

Eof (End-of-file) True: the cursor is at the last row in the dataset.
False: the cursor is not known to be at the first row in the dataset

U n d e r s t a n d i n g d a t a s e t s 18-7

N a v i g a t i n g d a t a s e t s

For example, the following code moves to the previous record in CustTable:

CustTable.Prior;

Note The Prior method raises an exception in unidirectional datasets.

Using the MoveBy method

MoveBy lets you specify how many rows forward or back to move the cursor in a
dataset. Movement is relative to the current record at the time that MoveBy is called.
MoveBy also sets the Bof and Eof properties for the dataset as appropriate.

This function takes an integer parameter, the number of records to move. Positive
integers indicate a forward move and negative integers indicate a backward move.

Note MoveBy raises an exception in unidirectional datasets if you use a negative argument.

MoveBy returns the number of rows it moves. If you attempt to move past the
beginning or end of the dataset, the number of rows returned by MoveBy differs from
the number of rows you requested to move. This is because MoveBy stops when it
reaches the first or last record in the dataset.

The following code moves two records backward in CustTable:

CustTable.MoveBy(-2);

Note If your application uses MoveBy in a multi-user database environment, keep in mind
that datasets are fluid. A record that was five records back a moment ago may now
be four, six, or even an unknown number of records back if several users are
simultaneously accessing the database and changing its data.

Using the Eof and Bof properties

Two read-only, runtime properties, Eof (End-of-file) and Bof (Beginning-of-file), are
useful when you want to iterate through all records in a dataset.

Eof
When Eof is True, it indicates that the cursor is unequivocally at the last row in a
dataset. Eof is set to True when an application

• Opens an empty dataset.

• Calls a dataset’s Last method.

• Calls a dataset’s Next method, and the method fails (because the cursor is
currently at the last row in the dataset.

• Calls SetRange on an empty range or dataset.

Eof is set to False in all other cases; you should assume Eof is False unless one of the
conditions above is met and you test the property directly.

Eof is commonly tested in a loop condition to control iterative processing of all
records in a dataset. If you open a dataset containing records (or you call First) Eof is

18-8 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

False. To iterate through the dataset a record at a time, create a loop that steps
through each record by calling Next, and terminates when Eof is True. Eof remains
False until you call Next when the cursor is already on the last record.

The following code illustrates one way you might code a record-processing loop for a
dataset called CustTable:

CustTable.DisableControls;
try

CustTable.First; { Go to first record, which sets Eof False }
while not CustTable.Eof do { Cycle until Eof is True }
begin

{ Process each record here }
ƒ
CustTable.Next; { Eof False on success; Eof True when Next fails on last record }

end;
finally

CustTable.EnableControls;
end;

Tip This example also shows how to disable and enable data-aware visual controls tied to
a dataset. If you disable visual controls during dataset iteration, it speeds processing
because your application does not need to update the contents of the controls as the
current record changes. After iteration is complete, controls should be enabled again
to update them with values for the new current row. Note that enabling of the visual
controls takes place in the finally clause of a try...finally statement. This guarantees
that even if an exception terminates loop processing prematurely, controls are not left
disabled.

Bof
When Bof is True, it indicates that the cursor is unequivocally at the first row in a
dataset. Bof is set to True when an application

• Opens a dataset.

• Calls a dataset’s First method.

• Calls a dataset’s Prior method, and the method fails (because the cursor is
currently at the first row in the dataset.

• Calls SetRange on an empty range or dataset.

Bof is set to False in all other cases; you should assume Bof is False unless one of the
conditions above is met and you test the property directly.

Like Eof, Bof can be in a loop condition to control iterative processing of records in a
dataset. The following code illustrates one way you might code a record-processing
loop for a dataset called CustTable:

CustTable.DisableControls; { Speed up processing; prevent screen flicker }
try

while not CustTable.Bof do { Cycle until Bof is True }
begin

{ Process each record here }
ƒ

U n d e r s t a n d i n g d a t a s e t s 18-9

N a v i g a t i n g d a t a s e t s

CustTable.Prior; { Bof False on success; Bof True when Prior fails on first record }
end;

finally
CustTable.EnableControls; { Display new current row in controls }

end;

Marking and returning to records

In addition to moving from record to record in a dataset (or moving from one record
to another by a specific number of records), it is often also useful to mark a particular
location in a dataset so that you can return to it quickly when desired. TDataSet
introduces a bookmarking feature that consists of a Bookmark property and five
bookmark methods.

TDataSet implements virtual bookmark methods. While these methods ensure that
any dataset object derived from TDataSet returns a value if a bookmark method is
called, the return values are merely defaults that do not keep track of the current
location. TDataSet descendants vary in the level of support they provide for
bookmarks. None of the dbExpress datasets add any support for bookmarks. ADO
datasets can support bookmarks, depending on the underlying database tables. BDE
datasets, InterBase express datasets, and client datasets always support bookmarks.

The Bookmark property
The Bookmark property indicates which bookmark among any number of bookmarks
in your application is current. Bookmark is a string that identifies the current
bookmark. Each time you add another bookmark, it becomes the current bookmark.

The GetBookmark method
To create a bookmark, you must declare a variable of type TBookmark in your
application, then call GetBookmark to allocate storage for the variable and set its value
to a particular location in a dataset. The TBookmark type is a Pointer.

The GotoBookmark and BookmarkValid methods
When passed a bookmark, GotoBookmark moves the cursor for the dataset to the
location specified in the bookmark. Before calling GotoBookmark, you can call
BookmarkValid to determine if the bookmark points to a record. BookmarkValid returns
True if a specified bookmark points to a record.

The CompareBookmarks method
You can also call CompareBookmarks to see if a bookmark you want to move to is
different from another (or the current) bookmark. If the two bookmarks refer to the
same record (or if both are nil), CompareBookmarks returns 0.

The FreeBookmark method
FreeBookmark frees the memory allocated for a specified bookmark when you no
longer need it. You should also call FreeBookmark before reusing an existing
bookmark.

18-10 D e v e l o p e r ’ s G u i d e

S e a r c h i n g d a t a s e t s

A bookmarking example
The following code illustrates one use of bookmarking:

procedure DoSomething (const Tbl: TTable)
var

Bookmark: TBookmark;
begin

Bookmark := Tbl.GetBookmark; { Allocate memory and assign a value }
Tbl.DisableControls; { Turn off display of records in data controls }
try

Tbl.First; { Go to first record in table }
while not Tbl.Eof do {Iterate through each record in table }
begin
{ Do your processing here }
ƒ
Tbl.Next;

end;
finally

Tbl.GotoBookmark(Bookmark);
Tbl.EnableControls; { Turn on display of records in data controls, if necessary }
Tbl.FreeBookmark(Bookmark); {Deallocate memory for the bookmark }

end;
end;

Before iterating through records, controls are disabled. Should an error occur during
iteration through records, the finally clause ensures that controls are always enabled
and that the bookmark is always freed even if the loop terminates prematurely.

Searching datasets
If a dataset is not unidirectional, you can search against it using the Locate and Lookup
methods. These methods enable you to search on any type of columns in any dataset.

Note Some TDataSet descendants introduce an additional family of methods for searching
based on an index. For information about these additional methods, see “Using
Indexes to search for records” on page 18-27.

Using Locate

Locate moves the cursor to the first row matching a specified set of search criteria. In
its simplest form, you pass Locate the name of a column to search, a field value to
match, and an options flag specifying whether the search is case-insensitive or if it
can use partial-key matching. (Partial-key matching is when the criterion string need
only be a prefix of the field value.) For example, the following code moves the cursor
to the first row in the CustTable where the value in the Company column is
“Professional Divers, Ltd.”:

var
LocateSuccess: Boolean;
SearchOptions: TLocateOptions;

begin

U n d e r s t a n d i n g d a t a s e t s 18-11

S e a r c h i n g d a t a s e t s

SearchOptions := [loPartialKey];
LocateSuccess := CustTable.Locate('Company', 'Professional Divers, Ltd.', SearchOptions);

end;

If Locate finds a match, the first record containing the match becomes the current
record. Locate returns True if it finds a matching record, False if it does not. If a search
fails, the current record does not change.

The real power of Locate comes into play when you want to search on multiple
columns and specify multiple values to search for. Search values are Variants, which
means you can specify different data types in your search criteria. To specify
multiple columns in a search string, separate individual items in the string with
semicolons.

Because search values are Variants, if you pass multiple values, you must either pass
a Variant array as an argument (for example, the return values from the Lookup
method), or you must construct the Variant array in code using the VarArrayOf
function. The following code illustrates a search on multiple columns using multiple
search values and partial-key matching:

with CustTable do
Locate('Company;Contact;Phone', VarArrayOf(['Sight Diver','P']), loPartialKey);

Locate uses the fastest possible method to locate matching records. If the columns to
search are indexed and the index is compatible with the search options you specify,
Locate uses the index.

Using Lookup

Lookup searches for the first row that matches specified search criteria. If it finds a
matching row, it forces the recalculation of any calculated fields and lookup fields
associated with the dataset, then returns one or more fields from the matching row.
Lookup does not move the cursor to the matching row; it only returns values from it.

In its simplest form, you pass Lookup the name of field to search, the field value to
match, and the field or fields to return. For example, the following code looks for the
first record in the CustTable where the value of the Company field is “Professional
Divers, Ltd.”, and returns the company name, a contact person, and a phone number
for the company:

var
LookupResults: Variant;

begin
LookupResults := CustTable.Lookup('Company', 'Professional Divers, Ltd.',

 'Company;Contact; Phone');
end;

Lookup returns values for the specified fields from the first matching record it finds.
Values are returned as Variants. If more than one return value is requested, Lookup
returns a Variant array. If there are no matching records, Lookup returns a Null
Variant. For more information about Variant arrays, see the online help.

The real power of Lookup comes into play when you want to search on multiple
columns and specify multiple values to search for. To specify strings containing

18-12 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

multiple columns or result fields, separate individual fields in the string items with
semicolons.

Because search values are Variants, if you pass multiple values, you must either pass
a Variant array as an argument (for example, the return values from the Lookup
method), or you must construct the Variant array in code using the VarArrayOf
function. The following code illustrates a lookup search on multiple columns:

var
LookupResults: Variant;

begin
with CustTable do

LookupResults := Lookup('Company; City', VarArrayOf(['Sight Diver', 'Christiansted']),
'Company; Addr1; Addr2; State; Zip');

end;

Like Locate, Lookup uses the fastest possible method to locate matching records. If the
columns to search are indexed, Lookup uses the index.

Displaying and editing a subset of data using filters
An application is frequently interested in only a subset of records from a dataset. For
example, you may be interested in retrieving or viewing only those records for
companies based in California in your customer database, or you may want to find a
record that contains a particular set of field values. In each case, you can use filters to
restrict an application’s access to a subset of all records in the dataset.

With unidirectional datasets, you can only limit the records in the dataset by using a
query that restricts the records in the dataset. With other TDataSet descendants,
however, you can define a subset of the data that has already been fetched. To restrict
an application’s access to a subset of all records in the dataset, you can use filters.

A filter specifies conditions a record must meet to be displayed. Filter conditions can
be stipulated in a dataset’s Filter property or coded into its OnFilterRecord event
handler. Filter conditions are based on the values in any specified number of fields in
a dataset, regardless of whether those fields are indexed. For example, to view only
those records for companies based in California, a simple filter might require that
records contain a value in the State field of “CA”.

Note Filters are applied to every record retrieved in a dataset. When you want to filter
large volumes of data, it may be more efficient to use a query to restrict record
retrieval, or to set a range on an indexed table rather than using filters.

Enabling and disabling filtering

Enabling filters on a dataset is a three-step process:

1 Create a filter.
2 Set filter options for string-based filter tests, if necessary.
3 Set the Filtered property to True.

U n d e r s t a n d i n g d a t a s e t s 18-13

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

When filtering is enabled, only those records that meet the filter criteria are available
to an application. Filtering is always a temporary condition. You can turn off filtering
by setting the Filtered property to False.

Creating filters

There are two ways to create a filter for a dataset:

• Specify simple filter conditions in the Filter property. Filter is especially useful for
creating and applying filters at runtime.

• Write an OnFilterRecord event handler for simple or complex filter conditions.
With OnFilterRecord, you specify filter conditions at design time. Unlike the Filter
property, which is restricted to a single string containing filter logic, an
OnFilterRecord event can take advantage of branching and looping logic to create
complex, multi-level filter conditions.

The main advantage to creating filters using the Filter property is that your
application can create, change, and apply filters dynamically, (for example, in
response to user input). Its main disadvantages are that filter conditions must be
expressible in a single text string, cannot make use of branching and looping
constructs, and cannot test or compare its values against values not already in the
dataset.

The strengths of the OnFilterRecord event are that a filter can be complex and
variable, can be based on multiple lines of code that use branching and looping
constructs, and can test dataset values against values outside the dataset, such as the
text in an edit box. The main weakness of using OnFilterRecord is that you set the
filter at design time and it cannot be modified in response to user input. (You can,
however, create several filter handlers and switch among them in response to general
application conditions.)

The following sections describe how to create filters using the Filter property and the
OnFilterRecord event handler.

Setting the Filter property
To create a filter using the Filter property, set the value of the property to a string that
contains the filter’s test condition. For example, the following statement creates a
filter that tests a dataset’s State field to see if it contains a value for the state of
California:

Dataset1.Filter := 'State = ' + QuotedStr('CA');

You can also supply a value for Filter based on text supplied by the user. For
example, the following statement assigns the text in from edit box to Filter:

Dataset1.Filter := Edit1.Text;

You can, of course, create a string based on both hard-coded text and user-supplied
data:

Dataset1.Filter := 'State = ' + QuotedStr(Edit1.Text);

18-14 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

Blank field values do not appear unless they are explicitly included in the filter:

Dataset1.Filter := 'State <> ‘’CA’’ or State = BLANK';

Note After you specify a value for Filter, to apply the filter to the dataset, set the Filtered
property to True.

Filters can compare field values to literals and to constants using the following
comparison and logical operators:

By using combinations of these operators, you can create fairly sophisticated filters.
For example, the following statement checks to make sure that two test conditions
are met before accepting a record for display:

(Custno > 1400) AND (Custno < 1500);

Note When filtering is on, user edits to a record may mean that the record no longer meets
a filter’s test conditions. The next time the record is retrieved from the dataset, it may
therefore “disappear.” If that happens, the next record that passes the filter condition
becomes the current record.

Writing an OnFilterRecord event handler
You can write code to filter records using the OnFilterRecord events generated by the
dataset for each record it retrieves. This event handler implements a test that
determines if a record should be included in those that are visible to the application.

To indicate whether a record passes the filter condition, your OnFilterRecord handler
sets its Accept parameter to True to include a record, or False to exclude it. For

Table 18.4 Comparison and logical operators that can appear in a filter

Operator Meaning

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Not equal to

AND Tests two statements are both True

NOT Tests that the following statement is not True

OR Tests that at least one of two statements is True

+ Adds numbers, concatenates strings, ads numbers to date/time values (only
available for some drivers)

- Subtracts numbers, subtracts dates, or subtracts a number from a date (only
available for some drivers)

* Multiplies two numbers (only available for some drivers)

/ Divides two numbers (only available for some drivers)

* wildcard for partial comparisons (FilterOptions must include foPartialCompare)

U n d e r s t a n d i n g d a t a s e t s 18-15

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

example, the following filter displays only those records with the State field set to
“CA”:

procedure TForm1.Table1FilterRecord(DataSet: TDataSet; var Accept: Boolean);
begin

Accept := DataSet['State'].AsString = 'CA';
end;

When filtering is enabled, an OnFilterRecord event is generated for each record
retrieved. The event handler tests each record, and only those that meet the filter’s
conditions are displayed. Because the OnFilterRecord event is generated for every
record in a dataset, you should keep the event handler as tightly-coded as possible to
avoid adversely affecting the performance.

Switching filter event handlers at runtime
You can code any number of OnFilterRecord event handlers and switch among them
at runtime. For example, the following statements switch to an OnFilterRecord event
handler called NewYorkFilter:

DataSet1.OnFilterRecord := NewYorkFilter;
Refresh;

Setting filter options

The FilterOptions property lets you specify whether a filter that compares string-
based fields accepts records based on partial comparisons and whether string
comparisons are case-sensitive. FilterOptions is a set property that can be an empty set
(the default), or that can contain either or both of the following values:

For example, the following statements set up a filter that ignores case when
comparing values in the State field:

FilterOptions := [foCaseInsensitive];
Filter := 'State = ' + QuotedStr('CA');

Table 18.5 FilterOptions values

Value Meaning

foCaseInsensitive Ignore case when comparing strings.

foNoPartialCompare Disable partial string matching; that is, don’t match strings that end with
an asterisk (*).

18-16 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

Navigating records in a filtered dataset

There are four dataset methods that navigate among records in a filtered dataset. The
following table lists these methods and describes what they do:

For example, the following statement finds the first filtered record in a dataset:

DataSet1.FindFirst;

Provided that you set the Filter property or create an OnFilterRecord event handler for
your application, these methods position the cursor on the specified record
regardless of whether filtering is currently enabled. If you call these methods when
filtering is not enabled, then they

• Temporarily enable filtering.
• Position the cursor on a matching record if one is found.
• Disable filtering.

Note If filtering is disabled and you do not set the Filter property or create an
OnFilterRecord event handler, these methods do the same thing as First, Last, Next,
and Prior.

All navigational filter methods position the cursor on a matching record (if one is
found), make that record the current one, and return True. If a matching record is not
found, the cursor position is unchanged, and these methods return False. You can
check the status of the Found property to wrap these calls, and only take action when
Found is True. For example, if the cursor is already on the last matching record in the
dataset and you call FindNext, the method returns False, and the current record is
unchanged.

Modifying data
You can use the following dataset methods to insert, update, and delete data if the
read-only CanModify property is True. CanModify is True unless the dataset is
unidirectional, the database underlying the dataset does not permit read and write

Table 18.6 Filtered dataset navigational methods

Method Purpose

FindFirst Move to the first record that matches the current filter criteria. The search for the
first matching record always begins at the first record in the unfiltered dataset.

FindLast Move to the last record that matches the current filter criteria.

FindNext Moves from the current record in the filtered dataset to the next one.

FindPrior Move from the current record in the filtered dataset to the previous one.

U n d e r s t a n d i n g d a t a s e t s 18-17

M o d i f y i n g d a t a

privileges, or some other factor intervenes. (Intervening factors include the ReadOnly
property on some datasets or the RequestLive property on TQuery components.)

Editing records

A dataset must be in dsEdit mode before an application can modify records. In your
code you can use the Edit method to put a dataset into dsEdit mode if the read-only
CanModify property for the dataset is True.

When a dataset transitions to dsEdit mode, it first receives a BeforeEdit event. After the
transition to edit mode is successfully completed, the dataset receives an AfterEdit
event. Typically, these events are used for updating the user interface to indicate the
current state of the dataset. If the dataset can’t be put into edit mode for some reason,
an OnEditError event occurs, where you can inform the user of the problem or try to
correct the situation that prevented the dataset from entering edit mode.

On forms in your application, some data-aware controls can automatically put a
dataset into dsEdit state if

• The control’s ReadOnly property is False (the default),
• The AutoEdit property of the data source for the control is True, and
• CanModify is True for the dataset.

Note Even if a dataset is in dsEdit state, editing records may not succeed for SQL-based
databases if your application’s user does not have proper SQL access privileges.

Once a dataset is in dsEdit mode, a user can modify the field values for the current
record that appears in any data-aware controls on a form. Data-aware controls for
which editing is enabled automatically call Post when a user executes any action that
changes the current record (such as moving to a different record in a grid).

If you have a navigator component on your form, users can cancel edits by clicking
the navigator’s Cancel button. Canceling edits returns a dataset to dsBrowse state.

In code, you must write or cancel edits by calling the appropriate methods. You write
changes by calling Post. You cancel them by calling Cancel. In code, Edit and Post are
often used together. For example,

with CustTable do
begin

Edit;

Table 18.7 Dataset methods for inserting, updating, and deleting data

Method Description

Edit Puts the dataset into dsEdit state if it is not already in dsEdit or dsInsert states.

Append Posts any pending data, moves current record to the end of the dataset, and puts the
dataset in dsInsert state.

Insert Posts any pending data, and puts the dataset in dsInsert state.

Post Attempts to post the new or altered record to the database. If successful, the dataset
is put in dsBrowse state; if unsuccessful, the dataset remains in its current state.

Cancel Cancels the current operation and puts the dataset in dsBrowse state.

Delete Deletes the current record and puts the dataset in dsBrowse state.

18-18 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

FieldValues['CustNo'] := 1234;
Post;

end;

In the previous example, the first line of code places the dataset in dsEdit mode. The
next line of code assigns the number 1234 to the CustNo field of the current record.
Finally, the last line writes, or posts, the modified record. If you are not caching
updates, posting writes the change back to the database. If you are caching updates,
the change is written to a temporary buffer, where it stays until the dataset’s
ApplyUpdates method is called.

Adding new records

A dataset must be in dsInsert mode before an application can add new records. In
code, you can use the Insert or Append methods to put a dataset into dsInsert mode if
the read-only CanModify property for the dataset is True.

When a dataset transitions to dsInsert mode, it first receives a BeforeInsert event. After
the transition to insert mode is successfully completed, the dataset receives first an
OnNewRecord event hand then an AfterInsert event. You can use these events, for
example, to provide initial values to newly inserted records:

procedure TForm1.OrdersTableNewRecord(DataSet: TDataSet);
begin

DataSet.FieldByName('OrderDate').AsDateTime := Date;
end;

On forms in your application, the data-aware grid and navigator controls can put a
dataset into dsInsert state if

• The control’s ReadOnly property is False (the default), and

• CanModify is True for the dataset.

Note Even if a dataset is in dsInsert state, adding records may not succeed for SQL-based
databases if your application’s user does not have proper SQL access privileges.

Once a dataset is in dsInsert mode, a user or application can enter values into the
fields associated with the new record. Except for the grid and navigational controls,
there is no visible difference to a user between Insert and Append. On a call to Insert,
an empty row appears in a grid above what was the current record. On a call to
Append, the grid is scrolled to the last record in the dataset, an empty row appears at
the bottom of the grid, and the Next and Last buttons are dimmed on any navigator
component associated with the dataset.

Data-aware controls for which inserting is enabled automatically call Post when a
user executes any action that changes which record is current (such as moving to a
different record in a grid). Otherwise you must call Post in your code.

Post writes the new record to the database, or, if you are caching updates, Post writes
the record to an in-memory cache. To write cached inserts and appends to the
database, call the dataset’s ApplyUpdates method.

U n d e r s t a n d i n g d a t a s e t s 18-19

M o d i f y i n g d a t a

Inserting records
Insert opens a new, empty record before the current record, and makes the empty
record the current record so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post (or ApplyUpdates when using cached updates), a
newly inserted record is written to a database in one of three ways:

• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a
position based on its index.

• For unindexed Paradox and dBASE tables, the record is inserted into the dataset at
its current position.

• For SQL databases, the physical location of the insertion is implementation-
specific. If the table is indexed, the index is updated with the new record
information.

Appending records
Append opens a new, empty record at the end of the dataset, and makes the empty
record the current one so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post (or ApplyUpdates when using cached updates), a
newly appended record is written to a database in one of three ways:

• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a
position based on its index.

• For unindexed Paradox and dBASE tables, the record is added to the end of the
dataset.

• For SQL databases, the physical location of the append is implementation-specific.
If the table is indexed, the index is updated with the new record information.

Deleting records

Use the Delete method to delete the current record in an active dataset. When the
Delete method is called,

• The dataset receives a BeforeDelete event.
• The dataset attempts to delete the current record.
• The dataset returns to the dsBrowse state.
• The dataset receives an AfterDelete event.

If want to prevent the deletion in the BeforeDelete event handler, you can call the
global Abort procedure:

procedure TForm1.TableBeforeDelete (Dataset: TDataset)begin
if MessageDlg('Delete This Record?', mtConfirmation, mbYesNoCancel, 0) <> mrYes then
Abort;

end;

18-20 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

If Delete fails, it generates an OnDeleteError event. If the OnDeleteError event handler
can’t correct the problem, the dataset remains in dsEdit state. If Delete succeeds, the
dataset reverts to the dsBrowse state and the record that followed the deleted record
becomes the current record.

If you are caching updates, the deleted record is not removed from the underlying
database table until you call ApplyUpdates.

If you provide a navigator component on your forms, users can delete the current
record by clicking the navigator’s Delete button. In code, you must call Delete
explicitly to remove the current record.

Posting data

After you finish editing a record, you must call the Post method to write out your
changes. The Post method behaves differently, depending on the dataset’s state and
on whether you are caching updates.

• If you are not caching updates, and the dataset is in the dsEdit or dsInsert state, Post
writes the current record to the database and returns the dataset to the dsBrowse
state.

• If you are caching updates, and the dataset is in the dsEdit or dsInsert state, Post
writes the current record to an internal cache and returns the dataset to the
dsBrowse state. The edits are net written to the database until you call
ApplyUpdates.

• If the dataset is in the dsSetKey state, Post returns the dataset to the dsBrowse state.

Regardless of the initial state of the dataset, Post generates BeforePost and AfterPost
events, before and after writing the current changes. You can use these events to
update the user interface, or prevent the dataset from posting changes by calling the
Abort procedure. If the call to Post fails, the dataset receives an OnPostError event,
where you can inform the user of the problem or attempt to correct it.

Posting can be done explicitly, or implicitly as part of another procedure. When an
application moves off the current record, Post is called implicitly. Calls to the First,
Next, Prior, and Last methods perform a Post if the table is in dsEdit or dsInsert modes.
The Append and Insert methods also implicitly post any pending data.

Warning The Close method does not call Post implicitly. Use the BeforeClose event to post any
pending edits explicitly.

Canceling changes

An application can undo changes made to the current record at any time, if it has not
yet directly or indirectly called Post. For example, if a dataset is in dsEdit mode, and a
user has changed the data in one or more fields, the application can return the record
back to its original values by calling the Cancel method for the dataset. A call to Cancel
always returns a dataset to dsBrowse state.

U n d e r s t a n d i n g d a t a s e t s 18-21

M o d i f y i n g d a t a

If the dataset was in dsEdit or dsInsert mode when your application called Cancel, it
receives BeforeCancel and AfterCancel events before and after the current record is
restored to its original values.

On forms, you can allow users to cancel edit, insert, or append operations by
including the Cancel button on a navigator component associated with the dataset, or
you can provide code for your own Cancel button on the form.

Modifying entire records

On forms, all data-aware controls except for grids and the navigator provide access
to a single field in a record.

In code, however, you can use the following methods that work with entire record
structures provided that the structure of the database tables underlying the dataset is
stable and does not change. The following table summarizes the methods available
for working with entire records rather than individual fields in those records:

These method take an array of values as an argument, where each value corresponds
to a column in the underlying dataset. The values can be literals, variables, or NULL.
If the number of values in an argument is less than the number of columns in a
dataset, then the remaining values are assumed to be NULL.

For unindexed datasets, AppendRecord adds a record to the end of the dataset and
InsertRecord inserts a record after the current cursor position. For indexed datasets,
both methods place the record in the correct position in the table, based on the index.
In both cases, the methods move the cursor to the record’s position.

 SetFields assigns the values specified in the array of parameters to fields in the
dataset. To use SetFields, an application must first call Edit to put the dataset in dsEdit
mode. To apply the changes to the current record, it must perform a Post.

If you use SetFields to modify some, but not all fields in an existing record, you can
pass NULL values for fields you do not want to change. If you do not supply enough
values for all fields in a record, SetFields assigns NULL values to them. NULL values
overwrite any existing values already in those fields.

For example, suppose a database has a COUNTRY table with columns for Name,
Capital, Continent, Area, and Population. If a TTable component called CountryTable

Table 18.8 Methods that work with entire records

Method Description

AppendRecord([array of values]) Appends a record with the specified column values at the end
of a table; analogous to Append. Performs an implicit Post.

InsertRecord([array of values]) Inserts the specified values as a record before the current
cursor position of a table; analogous to Insert. Performs an
implicit Post.

SetFields([array of values]) Sets the values of the corresponding fields; analogous to
assigning values to TFields. The application must perform an
explicit Post.

18-22 D e v e l o p e r ’ s G u i d e

C a l c u l a t i n g f i e l d s

were linked to the COUNTRY table, the following statement would insert a record
into the COUNTRY table:

CountryTable.InsertRecord(['Japan', 'Tokyo', 'Asia']);

This statement does not specify values for Area and Population, so NULL values are
inserted for them. The table is indexed on Name, so the statement would insert the
record based on the alphabetic collation of “Japan”.

To update the record, an application could use the following code:

with CountryTable do
begin

if Locate('Name', 'Japan', loCaseInsensitive) then;
begin

Edit;
SetFields(nil, nil, nil, 344567, 164700000);
Post;

end;
end;

This code assigns values to the Area and Population fields and then posts them to the
database. The three NULL pointers act as place holders for the first three columns to
preserve their current contents.

Calculating fields
Using the Fields editor, you can define calculated fields for your datasets. When a
dataset contains calculated fields, you provide the code to calculate those field’s
values in an OnCalcFields event handler. For details on how to define calculated fields
using the Fields editor, see “Defining a calculated field” on page 19-7.

The AutoCalcFields property determines when OnCalcFields is called. If AutoCalcFields
is True, OnCalcFields is called when

• A dataset is opened.

• The dataset enters edit mode.

• A record is retrieved from the database.

• Focus moves from one visual component to another, or from one column to
another in a data-aware grid control and the current record has been modified.

If AutoCalcFields is False, then OnCalcFields is not called when individual fields within
a record are edited (the fourth condition above).

Caution OnCalcFields is called frequently, so the code you write for it should be kept short.
Also, if AutoCalcFields is True, OnCalcFields should not perform any actions that
modify the dataset (or a linked dataset if it is part of a master-detail relationship),
because this leads to recursion. For example, if OnCalcFields performs a Post, and
AutoCalcFields is True, then OnCalcFields is called again, causing another Post, and so
on.

U n d e r s t a n d i n g d a t a s e t s 18-23

T y p e s o f d a t a s e t s

When OnCalcFields executes, a dataset enters dsCalcFields mode. This state prevents
modifications or additions to the records except for the calculated fields the handler
is designed to modify. The reason for preventing other modifications is because
OnCalcFields uses the values in other fields to derive calculated field values. Changes
to those other fields might otherwise invalidate the values assigned to calculated
fields. After OnCalcFields is completed, the dataset returns to dsBrowse state.

Types of datasets
“Using TDataSet descendants” on page 18-2 classifies TDataSet descendants by the
method they use to access their data. Another useful way to classify TDataSet
descendants is to consider the type of server data they represent. Viewed this way,
there are three basic classes of datasets:

• Table-type datasets: Table-type datasets represent a single table from the database
server, including all of its rows and columns. Table-type datasets include TTable,
TADOTable, TSQLTable, and TIBTable.

Table-type datasets let you take advantage of indexes defined on the server.
Because there is a one-to-one correspondence between database table and dataset,
you can use server indexes that are defined for the database table. Indexes allow
your application to sort the records in the table, speed searches and lookups, and
can form the basis of a master/detail relationship. Some table-type datasets also
take advantage of the one-to-one relationship between dataset and database table
to let you perform table-level operations such as creating and deleting database
tables.

• Query-type datasets: Query-type datasets represent a single SQL command, or
query. Queries can represent the result set from executing a command (typically a
SELECT statement), or they can execute a command that does not return any
records (for example, an UPDATE statement). Query-type datasets include
TQuery, TADOQuery, TSQLQuery, and TIBQuery.

To use a query-type dataset effectively, you must be familiar with SQL and your
server’s SQL implementation, including limitations and extensions to the SQL-92
standard. If you are new to SQL, you may want to purchase a third party book that
covers SQL in-depth. One of the best is Understanding the New SQL: A Complete
Guide, by Jim Melton and Alan R. Simpson, Morgan Kaufmann Publishers.

• Stored procedure-type datasets: Stored procedure-type datasets represent a
stored procedure on the database server. Stored procedure-type datasets include
TStoredProc, TADOStoredProc, TSQLStoredProc, and TIBStoredProc.

A stored procedure is a self-contained program written in the procedure and
trigger language specific to the database system used. They typically handle
frequently-repeated database-related tasks, and are especially useful for
operations that act on large numbers of records or that use aggregate or
mathematical functions. Using stored procedures typically improves the
performance of a database application by:

• Taking advantage of the server’s usually greater processing power and speed.

• Reducing network traffic by moving processing to the server.

18-24 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e - t y p e d a t a s e t s

Stored procedures may or may not return data. Those that return data may return
it as a cursor (similar to the results of a SELECT query), as multiple cursors
(effectively returning multiple datasets), or they may return data in output
parameters. These differences depend in part on the server: Some servers do not
allow stored procedures to return data, or only allow output parameters. Some
servers do not support stored procedures at all. See your server documentation to
determine what is available.

Note You can usually use a query-type dataset to execute stored procedures because most
servers provide extensions to SQL for working with stored procedures. Each server,
however, uses its own syntax for this. If you choose to use a query-type dataset
instead of a stored procedure-type dataset, see your server documentation for the
necessary syntax.

In addition to the datasets that fall neatly into these three categories, TDataSet has
some descendants that fit into more than one category:

• TADODataSet and TSQLDataSet have a CommandType property that lets you
specify whether they represent a table, query, or stored procedure. Property and
method names are most similar to query-type datasets, although TADODataSet
lets you specify an index like a table-type dataset.

• TClientDataSet represents the data from another dataset. As such, it can represent a
table, query, or stored procedure. TClientDataSet behaves most like a table-type
dataset, because of its index support. However, it also has some of the features of
queries and stored procedures: the management of parameters and the ability to
execute without retrieving a result set.

• Some other client datasets (TBDEClientDataSet and TSQLClientDataSet) have a
CommandType property that lets you specify whether they represent a table, query,
or stored procedure. Property and method names are like TClientDataSet,
including parameter support, indexes, and the ability to execute without
retrieving a result set.

• TIBDataSet can represent both queries and stored procedures. In fact, it can
represent multiple queries and stored procedures simultaneously, with separate
properties for each.

Using table-type datasets
To use a table-type dataset,

1 Place the appropriate dataset component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server that contains the table you want to use. Each table-
type dataset does this differently, but typically you specify a database connection
component:

• For TTable, specify a TDatabase component or a BDE alias using the
DatabaseName property.

U n d e r s t a n d i n g d a t a s e t s 18-25

U s i n g t a b l e - t y p e d a t a s e t s

• For TADOTable, specify a TADOConnection component using the Connection
property.

• For TSQLTable, specify a TSQLConnection component using the SQLConnection
property.

• For TIBTable, specify a TIBConnection component using the Database property.

For information about using database connection components, see Chapter 17,
“Connecting to databases”.

3 Set the TableName property to the name of the table in the database. You can select
tables from a drop-down list if you have already identified a database connection
component.

4 Place a data source component in the data module or on the form, and set its
DataSet property to the name of the dataset. The data source component is used to
pass a result set from the dataset to data-aware components for display.

Advantages of using table-type datasets

The main advantage of using table-type datasets is the availability of indexes.
Indexes enable your application to

• Sort the records in the dataset.
• Locate records quickly.
• Limit the records that are visible.
• Establish master/detail relationships.

In addition, the one-to-one relationship between table-type datasets and database
tables enables many of them to be used for

• Controlling Read/write access to tables
• Creating and deleting tables
• Emptying tables
• Synchronizing tables

Sorting records with indexes

An index determines the display order of records in a table. Typically, records appear
in ascending order based on a primary, or default, index. This default behavior does
not require application intervention. If you want a different sort order, however, you
must specify either

• An alternate index.

• A list of columns on which to sort (not available on servers that aren’t SQL-based).

Indexes let you present the data from a table in different orders. On SQL-based
tables, this sort order is implemented by using the index to generate an ORDER BY
clause in a query that fetches the table’s records. On other tables (such as Paradox
and dBASE tables), the index is used by the data access mechanism to present records
in the desired order.

18-26 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e - t y p e d a t a s e t s

Obtaining information about indexes
You application can obtain information about server-defined indexes from all table-
type datasets. To obtain a list of available indexes for the dataset, call the
GetIndexNames method. GetIndexNames fills a string list with valid index names. For
example, the following code fills a listbox with the names of all indexes defined for
the CustomersTable dataset:

CustomersTable.GetIndexNames(ListBox1.Items);

Note For Paradox tables, the primary index is unnamed, and is therefore not returned by
GetIndexNames. You can still change the index back to a primary index on a Paradox
table after using an alternative index, however, by setting the IndexName property to
a blank string.

To obtain information about the fields of the current index, use the

• IndexFieldCount property, to determine the number of columns in the index.

• IndexFields property, to examine a list the field components for the columns that
comprise the index.

The following code illustrates how you might use IndexFieldCount and IndexFields to
iterate through a list of column names in an application:

var
I: Integer;
ListOfIndexFields: array[0 to 20} of string;

begin
with CustomersTable do

begin
for I := 0 to IndexFieldCount - 1 do

ListOfIndexFields[I] := IndexFields[I].FieldName;
end;

end;

Note IndexFieldCount is not valid for a dBASE table opened on an expression index.

Specifying an index with IndexName
Use the IndexName property to cause an index to be active. Once active, an index
determines the order of records in the dataset. (It can also be used as the basis for a
master-detail link, an index-based search, or index-based filtering.)

To activate an index, set the IndexName property to the name of the index. In some
database systems, primary indexes do not have names. To activate one of these
indexes, set IndexName to a blank string.

At design-time, you can select an index from a list of available indexes by clicking the
property’s ellipsis button in the Object Inspector. At runtime set IndexName using a
String literal or variable. You can obtain a list of available indexes by calling the
GetIndexNames method.

The following code sets the index for CustomersTable to CustDescending:

CustomersTable.IndexName := 'CustDescending';

U n d e r s t a n d i n g d a t a s e t s 18-27

U s i n g t a b l e - t y p e d a t a s e t s

Creating an index with IndexFieldNames
If there is no defined index that implements the sort order you want, you can create a
pseudo-index using the IndexFieldNames property.

Note IndexName and IndexFieldNames are mutually exclusive. Setting one property clears
values set for the other.

The value of IndexFieldNames is a string. To specify a sort order, list each column
name to use in the order it should be used, and delimit the names with semicolons.
Sorting is by ascending order only. Case-sensitivity of the sort depends on the
capabilities of your server. See your server documentation for more information.

The following code sets the sort order for PhoneTable based on LastName, then
FirstName:

PhoneTable.IndexFieldNames := 'LastName;FirstName';

Note If you use IndexFieldNames on Paradox and dBASE tables, the dataset attempts to find
an index that uses the columns you specify. If it cannot find such an index, it raises an
exception.

Using Indexes to search for records

You can search against any dataset using the Locate and Lookup methods of TDataSet.
However, by explicitly using indexes, some table-type datasets can improve over the
searching performance provided by the Locate and Lookup methods.

ADO datasets all support the Seek method, which moves to a record based on a set of
field values for fields in the current index. Seek lets you specify where to move the
cursor relative to the first or last matching record.

TTable and all types of client dataset support similar indexed-based searches, but use
a combination of related methods. The following table summarizes the six related
methods provided by TTable and client datasets to support index-based searches:

Table 18.9 Index-based search methods

Method Purpose

EditKey Preserves the current contents of the search key buffer and puts the dataset into
dsSetKey state so your application can modify existing search criteria prior to
executing a search.

FindKey Combines the SetKey and GotoKey methods in a single method.

FindNearest Combines the SetKey and GotoNearest methods in a single method.

GotoKey Searches for the first record in a dataset that exactly matches the search criteria,
and moves the cursor to that record if one is found.

GotoNearest Searches on string-based fields for the closest match to a record based on partial
key values, and moves the cursor to that record.

SetKey Clears the search key buffer and puts the table into dsSetKey state so your
application can specify new search criteria prior to executing a search.

18-28 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e - t y p e d a t a s e t s

GotoKey and FindKey are boolean functions that, if successful, move the cursor to a
matching record and return True. If the search is unsuccessful, the cursor is not
moved, and these functions return False.

GotoNearest and FindNearest always reposition the cursor either on the first exact
match found or, if no match is found, on the first record that is greater than the
specified search criteria.

Executing a search with Goto methods
To execute a search using Goto methods, follow these general steps:

1 Specify the index to use for the search. This is the same index that sorts the records
in the dataset (see “Sorting records with indexes” on page 18-25). To specify the
index, use the IndexName or IndexFieldNames property.

2 Open the dataset.

3 Put the dataset in dsSetKey state by calling the SetKey method.

4 Specify the value(s) to search on in the Fields property. Fields is a TFields object,
which maintains an indexed list of field components you can access by specifying
ordinal numbers corresponding to columns. The first column number in a dataset
is 0.

5 Search for and move to the first matching record found with GotoKey or
GotoNearest.

For example, the following code, attached to a button’s OnClick event, uses the
GotoKey method to move to the first record where the first field in the index has a
value that exactly matches the text in an edit box:

procedure TSearchDemo.SearchExactClick(Sender: TObject);
begin

ClientDataSet1.SetKey;
ClientDataSet1.Fields[0].AsString := Edit1.Text;
if not ClientDataSet1.GotoKey then

ShowMessage('Record not found');
end;

GotoNearest is similar. It searches for the nearest match to a partial field value. It can
be used only for string fields. For example,

Table1.SetKey;
Table1.Fields[0].AsString := 'Sm';
Table1.GotoNearest;

If a record exists with “Sm” as the first two characters of the first indexed field’s
value, the cursor is positioned on that record. Otherwise, the position of the cursor
does not change and GotoNearest returns False.

Executing a search with Find methods
The Find methods do the same thing as the Goto methods, except that you do not
need to explicitly put the dataset in dsSetKey state to specify the key field values on
which to search. To execute a search using Find methods, follow these general steps:

U n d e r s t a n d i n g d a t a s e t s 18-29

U s i n g t a b l e - t y p e d a t a s e t s

1 Specify the index to use for the search. This is the same index that sorts the records
in the dataset (see “Sorting records with indexes” on page 18-25). To specify the
index, use the IndexName or IndexFieldNames property.

2 Open the dataset.

3 Search for and move to the first or nearest record with FindKey or FindNearest. Both
methods take a single parameter, a comma-delimited list of field values, where
each value corresponds to an indexed column in the underlying table.

Note FindNearest can only be used for string fields.

Specifying the current record after a successful search
By default, a successful search positions the cursor on the first record that matches
the search criteria. If you prefer, you can set the KeyExclusive property to True to
position the cursor on the next record after the first matching record.

By default, KeyExclusive is False, meaning that successful searches position the cursor
on the first matching record.

Searching on partial keys
If the dataset has more than one key column, and you want to search for values in a
subset of that key, set KeyFieldCount to the number of columns on which you are
searching. For example, if the dataset’s current index has three columns, and you
want to search for values using just the first column, set KeyFieldCount to 1.

For table-type datasets with multiple-column keys, you can search only for values in
contiguous columns, beginning with the first. For example, for a three-column key
you can search for values in the first column, the first and second, or the first, second,
and third, but not just the first and third.

Repeating or extending a search
Each time you call SetKey or FindKey, the method clears any previous values in the
Fields property. If you want to repeat a search using previously set fields, or you want
to add to the fields used in a search, call EditKey in place of SetKey and FindKey.

For example, suppose you have already executed a search of the Employee table
based on the City field of the “CityIndex” index. Suppose further that “CityIndex”
includes both the City and Company fields. To find a record with a specified company
name in a specified city, use the following code:

Employee.KeyFieldCount := 2;
Employee.EditKey;
Employee['Company'] := Edit2.Text;
Employee.GotoNearest;

18-30 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e - t y p e d a t a s e t s

Limiting records with ranges

You can temporarily view and edit a subset of data for any dataset by using filters
(see “Displaying and editing a subset of data using filters” on page 18-12). Some
table-type datasets support an additional way to access a subset of available records,
called ranges.

Ranges only apply to TTable and to client datasets. Despite their similarities, ranges
and filters have different uses. The following topics discuss the differences between
ranges and filters and how to use ranges.

Understanding the differences between ranges and filters
Both ranges and filters restrict visible records to a subset of all available records, but
the way they do so differs. A range is a set of contiguously indexed records that fall
between specified boundary values. For example, in an employee database indexed
on last name, you might apply a range to display all employees whose last names are
greater than “Jones” and less than “Smith”. Because ranges depend on indexes, you
must set the current index to one that can be used to define the range. As with
specifying an index to sort records, you can assign the index on which to define a
range using either the IndexName or the IndexFieldNames property.

A filter, on the other hand, is any set of records that share specified data points,
regardless of indexing. For example, you might filter an employee database to
display all employees who live in California and who have worked for the company
for five or more years. While filters can make use of indexes if they apply, filters are
not dependent on them. Filters are applied record-by-record as an application scrolls
through a dataset.

In general, filters are more flexible than ranges. Ranges, however, can be more
efficient when datasets are large and the records of interest to an application are
already blocked in contiguously indexed groups. For very large datasets, it may be
still more efficient to use the WHERE clause of a query-type dataset to select data. For
details on specifying a query, see “Using query-type datasets” on page 18-41.

Specifying Ranges
There are two mutually exclusive ways to specify a range:

• Specify the beginning and ending separately using SetRangeStart and SetRangeEnd.

• Specify both endpoints at once using SetRange.

Setting the beginning of a range
Call the SetRangeStart procedure to put the dataset into dsSetKey state and begin
creating a list of starting values for the range. Once you call SetRangeStart,
subsequent assignments to the Fields property are treated as starting index values to
use when applying the range. Fields specified must apply to the current index.

For example, suppose your application uses a TSQLClientDataSet component named
Customers, linked to the CUSTOMER table, and that you have created persistent field
components for each field in the Customers dataset. CUSTOMER is indexed on its first

U n d e r s t a n d i n g d a t a s e t s 18-31

U s i n g t a b l e - t y p e d a t a s e t s

column (CustNo). A form in the application has two edit components named StartVal
and EndVal, used to specify start and ending values for a range. The following code
can be used to create and apply a range:

with Customers do
begin

SetRangeStart;
FieldByName('CustNo').AsString := StartVal.Text;
SetRangeEnd;
if (Length(EndVal.Text) > 0) then

FieldByName('CustNo').AsString := EndVal.Text;
ApplyRange;

end;

This code checks that the text entered in EndVal is not null before assigning any
values to Fields. If the text entered for StartVal is null, then all records from the
beginning of the dataset are included, since all values are greater than null. However,
if the text entered for EndVal is null, then no records are included, since none are less
than null.

For a multi-column index, you can specify a starting value for all or some fields in the
index. If you do not supply a value for a field used in the index, a null value is
assumed when you apply the range. If you try to set a value for a field that is not in
the index, the dataset raises an exception.

Tip To start at the beginning of the dataset, omit the call to SetRangeStart.

To finish specifying the start of a range, call SetRangeEnd or apply or cancel the range.
For information about applying and canceling ranges, see “Applying or canceling a
range” on page 18-33.

Setting the end of a range
Call the SetRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call SetRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range. Fields specified must apply to the current index.

Warning Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, Delphi assumes the
ending value of the range is a null value. A range with null ending values is always
empty.

The easiest way to assign ending values is to call the FieldByName method. For
example,

with Contacts do
begin

SetRangeStart;
FieldByName('LastName').AsString := Edit1.Text;
SetRangeEnd;
FieldByName('LastName').AsString := Edit2.Text;
ApplyRange;

end;

18-32 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e - t y p e d a t a s e t s

As with specifying start of range values, if you try to set a value for a field that is not
in the index, the dataset raises an exception.

To finish specifying the end of a range, apply or cancel the range. For information
about applying and canceling ranges, see “Applying or canceling a range” on
page 18-33.

Setting start- and end-range values
Instead of using separate calls to SetRangeStart and SetRangeEnd to specify range
boundaries, you can call the SetRange procedure to put the dataset into dsSetKey state
and set the starting and ending values for a range with a single call.

SetRange takes two constant array parameters: a set of starting values, and a set of
ending values. For example, the following statement establishes a range based on a
two-column index:

SetRange([Edit1.Text, Edit2.Text], [Edit3.Text, Edit4.Text]);

For a multi-column index, you can specify starting and ending values for all or some
fields in the index. If you do not supply a value for a field used in the index, a null
value is assumed when you apply the range. To omit a value for the first field in an
index, and specify values for successive fields, pass a null value for the omitted field.

Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, the dataset assumes
the ending value of the range is a null value. A range with null ending values is
always empty because the starting range is greater than or equal to the ending range.

Specifying a range based on partial keys
If a key is composed of one or more string fields, the SetRange methods support
partial keys. For example, if an index is based on the LastName and FirstName
columns, the following range specifications are valid:

Contacts.SetRangeStart;
Contacts['LastName'] := 'Smith';
Contacts.SetRangeEnd;
Contacts['LastName'] := 'Zzzzzz';
Contacts.ApplyRange;

This code includes all records in a range where LastName is greater than or equal to
“Smith.” The value specification could also be:

Contacts['LastName'] := 'Sm';

This statement includes records that have LastName greater than or equal to “Sm.”

Including or excluding records that match boundary values
By default, a range includes all records that are greater than or equal to the specified
starting range, and less than or equal to the specified ending range. This behavior is
controlled by the KeyExclusive property. KeyExclusive is False by default.

U n d e r s t a n d i n g d a t a s e t s 18-33

U s i n g t a b l e - t y p e d a t a s e t s

If you prefer, you can set the KeyExclusive property for a dataset to True to exclude
records equal to ending range. For example,

Contacts.KeyExclusive := True;
Contacts.SetRangeStart;
Contacts['LastName'] := 'Smith';
Contacts.SetRangeEnd;
Contacts['LastName'] := 'Tyler';
Contacts.ApplyRange;

This code includes all records in a range where LastName is greater than or equal to
“Smith” and less than “Tyler”.

Modifying a range
Two functions enable you to modify the existing boundary conditions for a range:
EditRangeStart, for changing the starting values for a range; and EditRangeEnd, for
changing the ending values for the range.

The process for editing and applying a range involves these general steps:

1 Putting the dataset into dsSetKey state and modifying the starting index value for
the range.

2 Modifying the ending index value for the range.

3 Applying the range to the dataset.

You can modify either the starting or ending values of the range, or you can modify
both boundary conditions. If you modify the boundary conditions for a range that is
currently applied to the dataset, the changes you make are not applied until you call
ApplyRange again.

Editing the start of a range
Call the EditRangeStart procedure to put the dataset into dsSetKey state and begin
modifying the current list of starting values for the range. Once you call
EditRangeStart, subsequent assignments to the Fields property overwrite the current
index values to use when applying the range.

Tip If you initially created a start range based on a partial key, you can use EditRangeStart
to extend the starting value for a range. For more information about ranges based on
partial keys, see “Specifying a range based on partial keys” on page 18-32.

Editing the end of a range
Call the EditRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call EditRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range.

Applying or canceling a range
When you call SetRangeStart or EditRangeStart to specify the start of a range, or
SetRangeEnd or EditRangeEnd to specify the end of a range, the dataset enters the
dsSetKey state. It stays in that state until you apply or cancel the range.

18-34 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e - t y p e d a t a s e t s

Applying a range
When you specify a range, the boundary conditions you define are not put into effect
until you apply the range. To make a range take effect, call the ApplyRange method.
ApplyRange immediately restricts a user’s view of and access to data in the specified
subset of the dataset.

Canceling a range
The CancelRange method ends application of a range and restores access to the full
dataset. Even though canceling a range restores access to all records in the dataset,
the boundary conditions for that range are still available so that you can reapply the
range at a later time. Range boundaries are preserved until you provide new range
boundaries or modify the existing boundaries. For example, the following code is
valid:

ƒ
MyTable.CancelRange;
ƒ
{later on, use the same range again. No need to call SetRangeStart, etc.}
MyTable.ApplyRange;
ƒ

Creating master/detail relationships

Table-type datasets can be linked into master/detail relationships. When you set up a
master/detail relationship, you link two datasets so that all the records of one (the
detail) always correspond to the single current record in the other (the master).

Table-type datasets support master/detail relationships in two very distinct ways:

• All table-type datasets can act as the detail of another dataset by linking cursors.
This process is described in “Making the table a detail of another dataset” below.

• TTable, TSQLTable, and all client datasets can act as the master in a master/detail
relationship that uses nested detail tables. This process is described in “Using
nested detail tables” on page 18-36.

Each of these approaches has its unique advantages. Linking cursors lets you create
master/detail relationships where the master table is any type of dataset. With
nested details, the type of dataset that can act as the detail table is limited, but they
provide for more options in how to display the data. If the master is a client dataset,
nested details provide a more robust mechanism for applying cached updates.

Making the table a detail of another dataset
A table-type dataset’s MasterSource and MasterFields properties can be used to
establish one-to-many relationships between two datasets.

The MasterSource property is used to specify a data source from which the table gets
data from the master table. This data source can be linked to any type of dataset. For
instance, by specifying a query’s data source in this property, you can link a client
dataset as the detail of the query, so that the client dataset tracks events occurring in
the query.

U n d e r s t a n d i n g d a t a s e t s 18-35

U s i n g t a b l e - t y p e d a t a s e t s

The dataset is linked to the master table based on its current index. Before you specify
the fields in the master dataset that are tracked by the detail dataset, first specify the
index in the detail dataset that starts with the corresponding fields. You can use
either the IndexName or the IndexFieldNames property.

Once you specify the index to use, use the MasterFields property to indicate the
column(s) in the master dataset that correspond to the index fields in the detail table.
To link datasets on multiple column names, separate field names with semicolons:

Parts.MasterFields := 'OrderNo;ItemNo';

To help create meaningful links between two datasets, you can use the Field Link
designer. To use the Field Link designer, double click on the MasterFields property in
the Object Inspector after you have assigned a MasterSource and an index.

The following steps create a simple form in which a user can scroll through customer
records and display all orders for the current customer. The master table is the
CustomersTable table, and the detail table is OrdersTable. The example uses the BDE-
based TTable component, but you can use the same methods to link any table-type
datasets.

1 Place two TTable components and two TDataSource components in a data module.

2 Set the properties of the first TTable component as follows:

• DatabaseName: DBDEMOS
• TableName: CUSTOMER
• Name: CustomersTable

3 Set the properties of the second TTable component as follows:

• DatabaseName: DBDEMOS
• TableName: ORDERS
• Name: OrdersTable

4 Set the properties of the first TDataSource component as follows:

• Name: CustSource
• DataSet: CustomersTable

5 Set the properties of the second TDataSource component as follows:

• Name: OrdersSource
• DataSet: OrdersTable

6 Place two TDBGrid components on a form.

7 Choose File|Use Unit to specify that the form should use the data module.

8 Set the DataSource property of the first grid component to
“CustSource”, and set the DataSource property of the second grid to
“OrdersSource”.

9 Set the MasterSource property of OrdersTable to “CustSource”. This links the
CUSTOMER table (the master table) to the ORDERS table (the detail table).

18-36 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e - t y p e d a t a s e t s

10 Double-click the MasterFields property value box in the Object Inspector to invoke
the Field Link Designer to set the following properties:

• In the Available Indexes field, choose CustNo to link the two tables by the
CustNo field.

• Select CustNo in both the Detail Fields and Master Fields field lists.

• Click the Add button to add this join condition. In the Joined Fields list,
“CustNo -> CustNo” appears.

• Choose OK to commit your selections and exit the Field Link Designer.

11 Set the Active properties of CustomersTable and OrdersTable to True to display data
in the grids on the form.

12 Compile and run the application.

If you run the application now, you will see that the tables are linked together, and
that when you move to a new record in the CUSTOMER table, you see only those
records in the ORDERS table that belong to the current customer.

Using nested detail tables
A nested table is a detail dataset that is the value of a single dataset field in another
(master) dataset. For datasets that represent server data, a nested detail dataset can
only be used for a dataset field on the server. TClientDataSet components do not
represent server data, but they can also contain dataset fields if you create a dataset
for them that contains nested details, or if they receive data from a provider that is
linked to the master table of a master/detail relationship.

Note For TClientDataSet, using nested detail sets is necessary if you want to apply updates
from master and detail tables to a database server.

To use nested detail sets, the ObjectView property of the master dataset must be True.
When your table-type dataset contains nested detail datasets, TDBGrid provides
support for displaying the nested details in a popup window. For more information
on how this works, see “Displaying dataset fields” on page 19-26.

Alternately, you can display and edit detail datasets in data-aware controls by using
a separate dataset component for the detail set. At design time, create persistent
fields for the fields in your (master) dataset, using the Fields Editor: right click the
master dataset and choose Fields Editor. Add a new persistent field to your dataset
by right-clicking and choosing Add Fields. Define your new field with type DataSet
Field. In the Fields Editor, define the structure of the detail table. You must also add
persistent fields for any other fields used in your master dataset.

The dataset component for the detail table is a dataset descendant of a type allowed
by the master table. TTable components only allow TNestedDataSet components as
nested datasets. TSQLTable components allow other TSQLTable components.
TClientDataset components allow other client datasets. Choose a dataset of the
appropriate type from the Component palette and add it to your form or data
module. Set this detail dataset’s DataSetField property to the persistent DataSet field
in the master dataset. Finally, place a data source component on the form or data
module and set its DataSet property to the detail dataset. Data-aware controls can use
this data source to access the data in the detail set.

U n d e r s t a n d i n g d a t a s e t s 18-37

U s i n g t a b l e - t y p e d a t a s e t s

Controlling Read/write access to tables

By default when a table-type dataset is opened, it requests read and write access for
the underlying database table. Depending on the characteristics of the underlying
database table, the requested write privilege may not be granted (for example, when
you request write access to an SQL table on a remote server and the server restricts
the table’s access to read only).

Note This is not true for TClientDataSet, which determines whether users can edit data
from information that the dataset provider supplies with data packets. It is also not
true for TSQLTable, which is a unidirectional dataset, and hence always read-only.

When the table opens, you can check the CanModify property to ascertain whether the
underlying database (or the dataset provider) allows users to edit the data in the
table. If CanModify is False, the application cannot write to the database. If CanModify
is True, your application can write to the database provided the table’s ReadOnly
property is False.

ReadOnly determines whether a user can both view and edit data. When ReadOnly is
False (the default), a user can both view and edit data. To restrict a user to viewing
data, set ReadOnly to True before opening the table.

Note ReadOnly is implemented on all table-type datasets except TSQLTable, which is
always read-only.

Creating and deleting tables

Some table-type datasets let you create and delete the underlying tables at design
time or at runtime. Typically, database tables are created and deleted by a database
administrator. However, it can be handy during application development and testing
to create and destroy database tables that your application can use.

Creating tables
TTable and TIBTable both let you create the underlying database table without using
SQL. Similarly, TClientDataSet lets you create a dataset when you are not working
with a dataset provider. Using TTable and TClientDataSet, you can create the table at
design time or runtime. TIBTable only lets you create tables at runtime.

Before you can create the table, you must be set properties to specify the structure of
the table you are creating. In particular, you must specify

• The database that will host the new table. For TTable, you specify the database
using the DatabaseName property. For TIBTable, you must use a TIBDataBase
component, which is assigned to the Database property. (Client datasets do not use
a database.)

• The type of database (TTable only). Set the TableType property to the desired type
of table. For Paradox, dBASE, or ASCII tables, set TableType to ttParadox, ttDBase,
or ttASCII, respectively. For all other table types, set TableType to ttDefault.

18-38 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e - t y p e d a t a s e t s

• The name of the table you want to create. Both TTable and TIBTable have a
TableName property for the name of the new table. Client datasets do not use a
table name, but you should specify the FileName property before you save the new
table. If you create a table that duplicates the name of an existing table, the existing
table and all its data are overwritten by the newly created table. The old table and
its data cannot be recovered. To avoid overwriting an existing table, you can check
the Exists property at runtime. Exists is only available on TTable and TIBTable.

• The fields for the new table. There are two ways to do this:

• You can add field definitions to the FieldDefs property. At design time, double-
click the FieldDefs property in the Object Inspector to bring up the collection
editor. Use the collection editor to add, remove, or change the properties of the
field definitions. At runtime, clear any existing field definitions and then use
the AddFieldDef method to add each new field definition. For each new field
definition, set the properties of the TFieldDef object to specify the desired
attributes of the field.

• You can use persistent field components instead. At design time, double-click
on the dataset to bring up the Fields editor. In the Fields editor, right-click and
choose the New Field command. Describe the basic properties of your field.
Once the field is created, you can alter its properties in the Object Inspector by
selecting the field in the Fields editor.

• Indexes for the new table (optional). At design time, double-click the IndexDefs
property in the Object Inspector to bring up the collection editor. Use the
collection editor to add, remove, or change the properties of index definitions. At
runtime, clear any existing index definitions, and then use the AddIndexDef
method to add each new index definition. For each new index definition, set the
properties of the TIndexDef object to specify the desired attributes of the index.

Note You can’t define indexes for the new table if you are using persistent field
components instead of field definition objects.

To create the table at design time, right-click the dataset and choose Create Table
(TTable) or Create Data Set (TClientDataSet). This command does not appear on the
context menu until you have specified all the necessary information.

To create the table at runtime, call the CreateTable method (TTable and TIBTable) or the
CreateDataSet method (TClientDataSet).

Note You can set up the definitions at design time and then call the CreateTable (or
CreateDataSet) method at runtime to create the table. However, to do so you must
indicate that the definitions specified at runtime should be saved with the dataset
component. (by default, field and index definitions are generated dynamically at
runtime). Specify that the definitions should be saved with the dataset by setting its
StoreDefs property to True.

Tip If you are using TTable, you can preload the field definitions and index definitions of
an existing table at design time. Set the DatabaseName and TableName properties to
specify the existing table. Right click the table component and choose Update Table
Definition. This automatically sets the values of the FieldDefs and IndexDefs
properties to describe the fields and indexes of the existing table. Next, reset the
DatabaseName and TableName to specify the table you want to create, canceling any
prompts to rename the existing table.

U n d e r s t a n d i n g d a t a s e t s 18-39

U s i n g t a b l e - t y p e d a t a s e t s

Note When creating Oracle8 tables, you can’t create object fields (ADT fields, array fields,
and dataset fields).

The following code creates a new table at runtime and associates it with the
DBDEMOS alias. Before it creates the new table, it verifies that the table name
provided does not match the name of an existing table:

var
TableFound: Boolean;

begin
with TTable.Create(nil) do // create a temporary TTable component
begin
try
{ set properties of the temporary TTable component }
Active := False;
DatabaseName := 'DBDEMOS';
TableName := Edit1.Text;
TableType := ttDefault;
{ define fields for the new table }
FieldDefs.Clear;
with FieldDefs.AddFieldDef do begin
Name := 'First';
DataType := ftString;
Size := 20;
Required := False;

end;
with FieldDefs.AddFieldDef do begin
Name := 'Second';
DataType := ftString;
Size := 30;
Required := False;

end;
{ define indexes for the new table }
IndexDefs.Clear;
with IndexDefs.AddIndexDef do begin
Name := '';
Fields := 'First';
Options := [ixPrimary];

end;
TableFound := Exists; // check whether the table already exists
if TableFound then
if MessageDlg('Overwrite existing table ' + Edit1.Text + '?',

mtConfirmation, mbYesNoCancel, 0) = mrYes then
TableFound := False;

if not TableFound then
CreateTable; // create the table

finally
Free; // destroy the temporary TTable when done

end;
end;

end;

18-40 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e - t y p e d a t a s e t s

Deleting tables
TTable and TIBTable let you delete tables from the underlying database table without
using SQL. To delete a table at runtime, call the dataset’s DeleteTable method. For
example, the following statement removes the table underlying a dataset:

CustomersTable.DeleteTable;

Caution When you delete a table with DeleteTable, the table and all its data are gone forever.

If you are using TTable, you can also delete tables at design time: Right-click the table
component and select Delete Table from the context menu. The Delete Table menu
pick is only present if the table component represents an existing database table (the
DatabaseName and TableName properties specify an existing table).

Emptying tables

Many table-type datasets supply a single method that lets you delete all rows of data
in the table.

• For TTable and TIBTable, you can delete all the records by calling the EmptyTable
method at runtime:

PhoneTable.EmptyTable;

• For TADOTable, you can use the DeleteRecords method.

PhoneTable.DeleteRecords;

• For TSQLTable, you can use the DeleteRecords method as well. Note, however, that
the TSQLTable version of DeleteRecords never takes any parameters.

PhoneTable.DeleteRecords;

• For client datasets, you can use the EmptyDataSet method.

PhoneTable.EmptyDataSet;

Note For tables on SQL servers, these methods only succeed if you have DELETE privilege
for the table.

Caution When you empty a dataset, the data you delete is gone forever.

Synchronizing tables

If you have two or more datasets that represent the same database table but do not
share a data source component, then each dataset has its own view on the data and
its own current record. As users access records through each datasets, the
components’ current records will differ.

If the datasets are all instances of TTable, or all instances of TIBTable, or all client
datasets, you can force the current record for each of these datasets to be the same by
calling the GotoCurrent method. GotoCurrent sets its own dataset’s current record to
the current record of a matching dataset. For example, the following code sets the
current record of CustomerTableOne to be the same as the current record of
CustomerTableTwo:

CustomerTableOne.GotoCurrent(CustomerTableTwo);

U n d e r s t a n d i n g d a t a s e t s 18-41

U s i n g q u e r y - t y p e d a t a s e t s

Tip If your application needs to synchronize datasets in this manner, put the datasets in a
data module and add the unit for the data module to the uses clause of each unit that
accesses the tables.

To synchronize datasets from separate forms, you must add one form’s unit to the
uses clause of the other, and you must qualify at least one of the dataset names with
its form name. For example:

CustomerTableOne.GotoCurrent(Form2.CustomerTableTwo);

Using query-type datasets
To use a query-type dataset,

1 Place the appropriate dataset component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server to query. Each query-type dataset does this
differently, but typically you specify a database connection component:

• For TQuery, specify a TDatabase component or a BDE alias using the
DatabaseName property.

• For TADOQuery, specify a TADOConnection component using the Connection
property.

• For TSQLQuery, specify a TSQLConnection component using the SQLConnection
property.

• For TIBQuery, specify a TIBConnection component using the Database property.

For information about using database connection components, see Chapter 17,
“Connecting to databases”.

3 Specify an SQL statement in the SQL property of the dataset, and optionally
specify any parameters for the statement. For more information, see “Specifying
the query” on page 18-42 and “Using parameters in queries” on page 18-43.

4 If the query data is to be used with visual data controls, add a data source
component to the data module, and set its DataSet property to the query-type
dataset. The data source component forwards the results of the query (called a
result set) to data-aware components for display. Connect data-aware components
to the data source using their DataSource and DataField properties.

5 Activate the query component. For queries that return a result set, use the Active
property or the Open method. To execute queries that only perform an action on a
table and return no result set, use the ExecSQL method at runtime. If you plan to
execute the query more than once, you may want to call Prepare to initialize the
data access layer and bind parameter values into the query. For information about
preparing a query, see “Preparing queries” on page 18-47.

18-42 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

Specifying the query

For true query-type datasets, you use the SQL property to specify the SQL statement
for the dataset to execute. Some datasets, such as TADODataSet, TSQLDataSet, and
client datasets, use a CommandText property to accomplish the same thing.

Most queries that return records are SELECT commands. Typically, they define the
fields to include, the tables from which to select those fields, conditions that limit
what records to include, and the order of the resulting dataset. For example:

SELECT CustNo, OrderNo, SaleDate
FROM Orders
WHERE CustNo = 1225
ORDER BY SaleDate

Queries that do not return records include statements that use Data Definition
Language (DDL) or Data Manipulation Language (DML) statements other than
SELECT statements (For example, INSERT, DELETE, UPDATE, CREATE INDEX,
and ALTER TABLE commands do not return any records). The language used in
commands is server-specific, but usually compliant with the SQL-92 standard for the
SQL language.

The SQL command you execute must be acceptable to the server you are using.
Datasets neither evaluate the SQL nor execute it. They merely pass the command to
the server for execution. In most cases, the SQL command must be only one complete
SQL statement, although that statement can be as complex as necessary (for example,
a SELECT statement with a WHERE clause that uses several nested logical operators
such as AND and OR). Some servers also support “batch” syntax that permits
multiple statements; if your server supports such syntax, you can enter multiple
statements when you specify the query.

The SQL statements used by queries can be verbatim, or they can contain replaceable
parameters. Queries that use parameters are called parameterized queries. When you
use parameterized queries, the actual values assigned to the parameters are inserted
into the query before you execute, or run, the query. Using parameterized queries is
very flexible, because you can change a user’s view of and access to data on the fly at
runtime without having to alter the SQL statement. For more information about
parameterized queries, see “Using parameters in queries” on page 18-43.

Specifying a query using the SQL property
When using a true query-type dataset (TQuery, TADOQuery, TSQLQuery, or
TIBQuery), assign the query to the SQL property. The SQL property is a TStrings
object. Each separate string in this TStrings object is a separate line of the query.
Using multiple lines does not affect the way the query executes on the server, but can
make it easier to modify and debug the query if you divide the statement into logical
units:

MyQuery.Close;
MyQuery.SQL.Clear;
MyQuery.SQL.Add('SELECT CustNo, OrderNO, SaleDate');
MyQuery.SQL.Add(' FROM Orders');
MyQuery.SQL.Add('ORDER BY SaleDate');
MyQuery.Open;

U n d e r s t a n d i n g d a t a s e t s 18-43

U s i n g q u e r y - t y p e d a t a s e t s

The code below demonstrates modifying only a single line in an existing SQL
statement. In this case, the ORDER BY clause already exists on the third line of the
statement. It is referenced via the SQL property using an index of 2.

MyQuery.SQL[2] := ‘ORDER BY OrderNo’;

Note The dataset must be closed when you specify or modify the SQL property.

At design time, use the String List editor to specify the query. Click the ellipsis button
by the SQL property in the Object Inspector to display the String List editor.

Note With some versions of Delphi, if you are using TQuery, you can also use the SQL
Builder to construct a query based on a visible representation of tables and fields in a
database. To use the SQL Builder, select the query component, right-click it to invoke
the context menu, and choose Graphical Query Editor. To learn how to use SQL
Builder, open it and use its online help.

Because the SQL property is a TStrings object, you can load the text of the query from
a file by calling the TStrings.LoadFromFile method:

MyQuery.SQL.LoadFromFile('custquery.sql');

You can also use the Assign method of the SQL property to copy the contents of a
string list object into the SQL property. The Assign method automatically clears the
current contents of the SQL property before copying the new statement:

MyQuery.SQL.Assign(Memo1.Lines);

Specifying a query using the CommandText property
When using TADODataSet, TSQLDataSet, or a client dataset, assign the text of the
query statement to the CommandText property:

MyQuery.CommandText := 'SELECT CustName, Address FROM Customer';

At design time, you can type the query directly into the Object Inspector, or, if the
dataset already has an active connection to the database, you can click the elipsis
button by the CommandText property to display the Command Text editor. The
Command Text editor lists the available tables, and the fields in those tables, to make
it easier to compose your queries.

Using parameters in queries

A parameterized SQL statement contains parameters, or variables, the values of
which can be varied at design time or runtime. Parameters can replace data values,
such as those used in a WHERE clause for comparisons, that appear in an SQL
statement. Ordinarily, parameters stand in for data values passed to the statement.
For example, in the following INSERT statement, values to insert are passed as
parameters:

INSERT INTO Country (Name, Capital, Population)
VALUES (:Name, :Capital, :Population)

In this SQL statement, :Name, :Capital, and :Population are placeholders for actual
values supplied to the statement at runtime by your application. Note that the names
of parameters begin with a colon. The colon is required so that the parameter names

18-44 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

can be distinguished from literal values. You can also include unnamed parameters
by adding a question mark (?) to your query. Unnamed parameters are identified by
position, because they do not have unique names.

Before the dataset can execute the query, you must supply values for any parameters
in the query text. TQuery, TIBQuery, TSQLQuery, and client datasets use the Params
property to store these values. TADOQuery uses the Parameters property instead.
Params (or Parameters) is a collection of parameter objects (TParam or TParameter),
where each object represents a single parameter. When you specify the text for the
query, the dataset generates this set of parameter objects, and (depending on the
dataset type) initializes any of their properties that it can deduce from the query.

Note You can suppress the automatic generation of parameter objects in response to
changing the query text by setting the ParamCheck property to False. This is useful for
data definition language (DDL) statements that contain parameters as part of the
DDL statement that are not parameters for the query itself. For example, the DDL
statement to create a stored procedure may define parameters that are part of the
stored procedure. By setting ParamCheck to False, you prevent these parameters from
being mistaken for parameters of the query.

Parameter values must be bound into the SQL statement before it is executed for the
first time. Query components do this automatically for you even if you do not
explicitly call the Prepare method before executing a query.

Tip It is a good programming practice to provide variable names for parameters that
correspond to the actual name of the column with which it is associated. For
example, if a column name is “Number,” then its corresponding parameter would be
“:Number”. Using matching names is especially important if the dataset uses a
datasource to obtain parameter values from another dataset. This process is
described in “Establishing master/detail relationships using parameters” on
page 18-46.

Supplying parameters at design time
At design time, you can specify parameter values using the parameter collection
editor. To display the parameter collection editor, click on the ellipsis button for the
Params or Parameters property in the Object Inspector. If the SQL statement does not
contain any parameters, no objects are listed in the collection editor.

Note The parameter collection editor is the same collection editor that appears for other
collection properties. Because the editor is shared with other properties, its right-click
context menu contains the Add and Delete commands. However, they are never
enabled for query parameters. The only way to add or delete parameters is in the
SQL statement itself.

For each parameter, select it in the parameter collection editor. Then use the Object
Inspector to modify its properties.

When using the Params property (TParam objects), you will want to inspect or modify
the following:

• The DataType property lists the data type for the parameter’s value. For some
datasets, this value may be correctly initialized. If the dataset did not deduce the
type, DataType is ftUnknown, and you must change it to indicate the type of the
parameter value.

U n d e r s t a n d i n g d a t a s e t s 18-45

U s i n g q u e r y - t y p e d a t a s e t s

The DataType property lists the logical data type for the parameter. In general,
these data types conform to server data types. For specific logical type-to-server
data type mappings, see the documentation for the data access mechanism (BDE,
dbExpress, InterBase).

• The ParamType property lists the type of the selected parameter. For queries, this is
always ptInput, because queries can only contain input parameters. If the value of
ParamType is ptUnknown, change it to ptInput.

• The Value property specifies a value for the selected parameter. You can leave
Value blank if your application supplies parameter values at runtime.

When using the Parameters property (TParameter objects), you will want to inspect or
modify the following:

• The DataType property lists the data type for the parameter’s value. For some data
types, you must provide additional information:

• The NumericScale property indicates the number of decimal places for numeric
parameters.

• The Precision property indicates the total number of digits for numeric
parameters.

• The Size property indicates the number of characters in string parameters.

• The Direction property lists the type of the selected parameter. For queries, this is
always pdInput, because queries can only contain input parameters.

• The Attributes property controls the type of values the parameter will accept.
Attributes may be set to a combination of psSigned, psNullable, and psLong.

• The Value property specifies a value for the selected parameter. You can leave
Value blank if your application supplies parameter values at runtime.

Supplying parameters at runtime
To create parameters at runtime, you can use the

• ParamByName method to assign values to a parameter based on its name (not
available for TADOQuery)

• Params or Parameters property to assign values to a parameter based on the
parameter’s ordinal position within the SQL statement.

• Params.ParamValues or Parameters.ParamValues property to assign values to one or
more parameters in a single command line, based on the name of each parameter
set.

The following code uses ParamByName to assign the text of an edit box to the :Capital
parameter:

SQLQuery1.ParamByName('Capital').AsString := Edit1.Text;

The same code can be rewritten using the Params property, using an index of 0
(assuming the :Capital parameter is the first parameter in the SQL statement):

SQLQuery1.Params[0].AsString := Edit1.Text;

18-46 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

The command line below sets three parameters at once, using the
Params.ParamValues property:

Query1.Params.ParamValues['Name;Capital;Continent'] :=
VarArrayOf([Edit1.Text, Edit2.Text, Edit3.Text]);

Note that ParamValues uses Variants, avoiding the need to cast values.

Establishing master/detail relationships using parameters

To set up a master/detail relationship where the detail set is a query-type dataset,
you must specify a query that uses parameters. These parameters refer to current
field values on the master dataset. Because the current field values on the master
dataset change dynamically at runtime, you must rebind the detail set’s parameters
every time the master record changes. Although you could write code to do this
using an event handler, all query-type datasets except TIBQuery provide an easier
mechanism using the DataSource property.

If parameter values for a parameterized query are not bound at design time or
specified at runtime, query-type datasets attempt to supply values for them based on
the DataSource property. DataSource identifies a different dataset that is searched for
field names that match the names of unbound parameters. This search dataset can be
any type of dataset. The search dataset must be created and populated before you
create the detail dataset that uses it. If matches are found in the search dataset, the
detail dataset binds the parameter values to the values of the fields in the current
record pointed to by the data source.

To illustrate how this works, consider two tables: a customer table and an orders
table. For every customer, the orders table contains a set of orders that the customer
made. The Customer table includes an ID field that specifies a unique customer ID.
The orders table includes a CustID field that specifies the ID of the customer who
made an order.

The first step is to set up the Customer dataset:

1 Add a table-type dataset to your application and bind it to the Customer table.

2 Add a TDataSource component named CustomerSource. Set its DataSet property to
the dataset added in step 1. This data source now represents the Customer dataset.

3 Add a query-type dataset and set its SQL property to

SELECT CustID, OrderNo, SaleDate
FROM Orders
WHERE CustID = :ID

Note that the name of the parameter is the same as the name of the field in the
master (Customer) table.

4 Set the detail dataset’s DataSource property to CustomerSource. Setting this
property makes the detail dataset a linked query.

At runtime the :ID parameter in the SQL statement for the detail dataset is not
assigned a value, so the dataset tries to match the parameter by name against a
column in the dataset identified by CustomersSource. CustomersSource gets its data

U n d e r s t a n d i n g d a t a s e t s 18-47

U s i n g q u e r y - t y p e d a t a s e t s

from the master dataset, which, in turn, derives its data from the Customer table.
Because the Customer table contains a column called “ID,” the value from the ID
field in the current record of the master dataset is assigned to the :ID parameter for
the detail dataset’s SQL statement. The datasets are linked in a master-detail
relationship. Each time the current record changes in the Customers dataset, the
detail dataset’s SELECT statement executes to retrieve all orders based on the current
customer id.

Preparing queries

Preparing a query is an optional step that precedes query execution. Preparing a
query submits the SQL statement and its parameters, if any, to the data access layer
and the database server for parsing, resource allocation, and optimization. In some
datasets, the dataset may perform additional setup operations when preparing the
query. These operations improve query performance, making your application
faster, especially when working with updatable queries.

An application can prepare a query by setting the Prepared property to True. If you do
not prepare a query before executing it, the dataset automatically prepares it for you
each time you call Open or ExecSQL. Even though the dataset prepares queries for
you, you can improve performance by explicitly preparing the dataset before you
open it the first time.

CustQuery.Prepared := True;

When you explicitly prepare the dataset, the resources allocated for executing the
statement are not freed until you set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared
before it executes (for example, if you add a parameter).

Note When you change the text of the SQL property for a query, the dataset automatically
closes and unprepares the query.

Executing queries that don’t return a result set

When a query returns a set of records (such as a SELECT query), you execute the
query the same way you populate any dataset with records: by setting Active to True
or calling the Open method.

However, often SQL commands do not return any records. Such commands include
statements that use Data Definition Language (DDL) or Data Manipulation
Language (DML) statements other than SELECT statements (For example, INSERT,
DELETE, UPDATE, CREATE INDEX, and ALTER TABLE commands do not return
any records).

For all query-type datasets, you can execute a query that does not return a result set
by calling ExecSQL:

CustomerQuery.ExecSQL; { query does not return a result set }

18-48 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Tip If you are executing the query multiple times, it is a good idea to set the Prepared
property to True.

Although the query does not return any records, you may want to know the number
of records it affected (for example, the number of records deleted by a DELETE
query). The RowsAffected property gives the number of affected records after a call to
ExecSQL.

Tip When you do not know at design time whether the query returns a result set (for
example, if the user supplies the query dynamically at runtime), you can code both
types of query execution statements in a try...except block. Put a call to the Open
method in the try clause. An action query is executed when the query is activated
with the Open method, but an exception occurs in addition to that. Check the
exception, and suppress it if it merely indicates the lack of a result set. (For example,
TQuery indicates this by an ENoResultSet exception.)

Using unidirectional result sets

When a query-type dataset returns a result set, it also receives a cursor, or pointer to
the first record in that result set. The record pointed to by the cursor is the currently
active record. The current record is the one whose field values are displayed in data-
aware components associated with the result set’s data source. Unless you are using
dbExpress, this cursor is bi-directional by default. A bi-directional cursor can
navigate both forward and backward through its records. Bi-directional cursor
support requires some additional processing overhead, and can slow some queries.

If you do not need to be able to navigate backward through a result set, TQuery and
TIBQuery let you improve query performance by requesting a unidirectional cursor
instead. To request a unidirectional cursor, set the UniDirectional property to True.

Set UniDirectional before preparing and executing a query. The following code
illustrates setting UniDirectional prior to preparing and executing a query:

if not (CustomerQuery.Prepared) then
begin

CustomerQuery.UniDirectional := True;
CustomerQuery.Prepared := True;

end;
CustomerQuery.Open; { returns a result set with a one-way cursor }

Note Do not confuse the UniDirectional property with a unidirectional dataset.
Unidirectional datasets (TSQLDataSet, TSQLTable, TSQLQuery, and TSQLStoredProc)
use dbExpress, which only returns unidirectional cursors. In addition to restricting
the ability to navigate backwards, unidirectional datasets do not buffer records, and
so have additional limitations (such as the inability to use filters).

Using stored procedure-type datasets
How your application uses a stored procedure depends on how the stored procedure
was coded, whether and how it returns data, the specific database server used, or a
combination of these factors.

U n d e r s t a n d i n g d a t a s e t s 18-49

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

In general terms, to access a stored procedure on a server, an application must:

1 Place the appropriate dataset component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server that defines the stored procedure. Each stored
procedure-type dataset does this differently, but typically you specify a database
connection component:

• For TStoredProc, specify a TDatabase component or a BDE alias using the
DatabaseName property.

• For TADOStoredProc, specify a TADOConnection component using the
Connection property.

• For TSQLStoredProc, specify a TSQLConnection component using the
SQLConnection property.

• For TIBStoredProc, specify a TIBConnection component using the Database
property.

For information about using database connection components, see Chapter 17,
“Connecting to databases”.

3 Specify the stored procedure to execute. For most stored procedure-type datasets,
you do this by setting the StoredProcName property. The one exception is
TADOStoredProc, which has a ProcedureName property instead.

4 If the stored procedure returns a cursor to be used with visual data controls, add a
data source component to the data module, and set its DataSet property to the
stored procedure-type dataset. Connect data-aware components to the data source
using their DataSource and DataField properties.

5 Provide input parameter values for the stored procedure, if necessary. If the server
does not provide information about all stored procedure parameters, you may
need to provide additional input parameter information, such as parameter names
and data types. For information about working with stored procedure parameters,
see “Working with stored procedure parameters” on page 18-50.

6 Execute the stored procedure. For stored procedures that return a cursor, use the
Active property or the Open method. To execute stored procedures that do not
return any results or that only return output parameters, use the ExecProc method
at runtime. If you plan to execute the stored procedure more than once, you may
want to call Prepare to initialize the data access layer and bind parameter values
into the stored procedure. For information about preparing a query, see
“Executing stored procedures that don’t return a result set” on page 18-53.

7 Process any results. These results can be returned as result and output parameters,
or they can be returned as a result set that populates the stored procedure-type
dataset. Some stored procedures return multiple cursors. For details on how to
access the additional cursors, see “Fetching multiple result sets” on page 18-53.

18-50 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Working with stored procedure parameters

There are four types of parameters that can be associated with stored procedures:

• Input parameters, used to pass values to a stored procedure for processing.

• Output parameters, used by a stored procedure to pass return values to an
application.

• Input/output parameters, used to pass values to a stored procedure for processing,
and used by the stored procedure to pass return values to the application.

• A result parameter, used by some stored procedures to return an error or status
value to an application. A stored procedure can only return one result parameter.

Whether a stored procedure uses a particular type of parameter depends both on the
general language implementation of stored procedures on your database server and
on a specific instance of a stored procedure. For any server, individual stored
procedures may or may not use input parameters. On the other hand, some uses of
parameters are server-specific. For example, on MS-SQL Server and Sybase stored
procedures always return a result parameter, but the InterBase implementation of a
stored procedure never returns a result parameter.

Access to stored procedure parameters is provided by the Params property (in
TStoredProc, TSQLStoredProc, TIBStoredProc) or the Parameters property (in
TADOStoredProc). When you assign a value to the StoredProcName (or ProcedureName)
property, the dataset automatically generates objects for each parameter of the stored
procedure. For some datasets, if the stored procedure name is not specified until
runtime, objects for each parameter must be programmatically created at that time.
Not specifying the stored procedure and manually creating the TParam or TParameter
objects allows a single dataset to be used with any number of available stored
procedures.

Note Some stored procedures return a dataset in addition to output and result parameters.
Applications can display dataset records in data-aware controls, but must separately
process output and result parameters.

Setting up parameters at design time
You can specify stored procedure parameter values at design time using the
parameter collection editor. To display the parameter collection editor, click on the
ellipsis button for the Params or Parameters property in the Object Inspector.

Important You can assign values to input parameters by selecting them in the parameter
collection editor and using the Object Inspector to set the Value property. However,
do not change the names or data types for input parameters reported by the server.
Otherwise, when you execute the stored procedure an exception is raised.

Some servers do not report parameter names or data types. In these cases, you must
set up the parameters manually using the parameter collection editor. Right click and
choose Add to add parameters. For each parameter you add, you must fully describe
the parameter. Even if you do not need to add any parameters, you should check the
properties of individual parameter objects to ensure that they are correct.

U n d e r s t a n d i n g d a t a s e t s 18-51

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

If the dataset has a Params property (TParam objects), the following properties must
be correctly specified:

• The Name property indicates the name of the parameter as it is defined by the
stored procedure.

• The DataType property gives the data type for the parameter’s value. When using
TSQLStoredProc, some data types require additional information:

• The NumericScale property indicates the number of decimal places for numeric
parameters.

• The Precision property indicates the total number of digits for numeric
parameters.

• The Size property indicates the number of characters in string parameters.

• The ParamType property indicates the type of the selected parameter. This can be
ptInput (for input parameters), ptOutput (for output parameters), ptInputOutput
(for input/output parameters) or ptResult (for result parameters).

• The Value property specifies a value for the selected parameter. You can never set
values for output and result parameters. These types of parameters have values
set by the execution of the stored procedure. For input and input/output
parameters, you can leave Value blank if your application supplies parameter
values at runtime.

If the dataset uses a Parameters property (TParameter objects), the following properties
must be correctly specified:

• The Name property indicates the name of the parameter as it is defined by the
stored procedure.

• The DataType property gives the data type for the parameter’s value. For some
data types, you must provide additional information:

• The NumericScale property indicates the number of decimal places for numeric
parameters.

• The Precision property indicates the total number of digits for numeric
parameters.

• The Size property indicates the number of characters in string parameters.

• The Direction property gives the type of the selected parameter. This can be
pdInput (for input parameters), pdOutput (for output parameters), pdInputOutput
(for input/output parameters) or pdReturnValue (for result parameters).

• The Attributes property controls the type of values the parameter will accept.
Attributes may be set to a combination of psSigned, psNullable, and psLong.

• The Value property specifies a value for the selected parameter. Do not set values
for output and result parameters. For input and input/output parameters, you can
leave Value blank if your application supplies parameter values at runtime.

18-52 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Using parameters at runtime
With some datasets, if the name of the stored procedure is not specified until
runtime, no TParam objects are automatically created for parameters and they must
be created programmatically. This can be done using the TParam.Create method or
the TParams.AddParam method:

var
P1, P2: TParam;

begin
...
with StoredProc1 do begin

StoredProcName := 'GET_EMP_PROJ';
Params.Clear;
P1 := TParam.Create(Params, ptInput);
P2 := TParam.Create(Params, ptOutput);
try
Params[0].Name := ‘EMP_NO’;
Params[1].Name := ‘PROJ_ID’;
ParamByname(‘EMP_NO’).AsSmallInt := 52;
ExecProc;
Edit1.Text := ParamByname(‘PROJ_ID’).AsString;

finally
P1.Free;
P2.Free;

end;
end;
...

end;

Even if you do not need to add the individual parameter objects at runtime, you may
want to access individual parameter objects to assign values to input parameters and
to retrieve values from output parameters. You can use the dataset’s ParamByName
method to access individual parameters based on their names. For example, the
following code sets the value of an input/output parameter, executes the stored
procedure, and retrieves the returned value:

with SQLStoredProc1 do
begin

ParamByName('IN_OUTVAR').AsInteger := 103;
ExecProc;
IntegerVar := ParamByName('IN_OUTVAR').AsInteger;

end;

Preparing stored procedures

As with query-type datasets, stored procedure-type datasets must be prepared
before they execute the stored procedure. Preparing a stored procedure tells the data
access layer and the database server to allocate resources for the stored procedure
and to bind parameters. These operations can improve performance.

If you attempt to execute a stored procedure before preparing it, the dataset
automatically prepares it for you, and then unprepares it after it executes. If you plan

U n d e r s t a n d i n g d a t a s e t s 18-53

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

to execute a stored procedure a number of times, it is more efficient to explicitly
prepare it by setting the Prepared property to True.

MyProc.Prepared := True;

When you explicitly prepare the dataset, the resources allocated for executing the
stored procedure are not freed until you set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared
before it executes (for example, if you change the parameters when using Oracle
overloaded procedures).

Executing stored procedures that don’t return a result set

When a stored procedure returns a cursor, you execute it the same way you populate
any dataset with records: by setting Active to True or calling the Open method.

However, often stored procedures do not return any data, or only return results in
output parameters. You can execute a stored procedure that does not return a result
set by calling ExecProc. After executing the stored procedure, you can use the
ParamByName method to read the value of the result parameter or of any output
parameters:

MyStoredProcedure.ExecProc; { does not return a result set }
Edit1.Text := MyStoredProcedure.ParamByName('OUTVAR').AsString;

Note TADOStoredProc does not have a ParamByName method. To obtain output parameter
values when using ADO, access parameter objects using the Parameters property.

Tip If you are executing the procedure multiple times, it is a good idea to set the Prepared
property to True.

Fetching multiple result sets

Some stored procedures return multiple sets of records. The dataset only fetches the
first set when you open it. If you are using TSQLStoredProc or TADOStoredProc, you
can access the other sets of records by calling the NextRecordSet method:

var
DataSet2: TCustomSQLDataSet;

begin
DataSet2 := SQLStoredProc1.NextRecordSet;
...

In TSQLStoredProc, NextRecordSet returns a newly created TCustomSQLDataSet
component that provides access to the next set of records. In TADOStoredProc,
NextRecordset returns an interface that can be assigned to the RecordSet property of an
existing ADO dataset. For either class, the method returns the number of records in
the returned dataset as an output parameter.

The first time you call NextRecordSet, it returns the second set of records. Calling
NextRecordSet again returns a third dataset, and so on, until there are no more sets of
records. When there are no additional cursors, NextRecordSet returns nil.

18-54 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-1

C h a p t e r

19
Chapter 19Working with field components

This chapter describes the properties, events, and methods common to the TField
object and its descendants. Field components represent individual fields (columns) in
datasets. This chapter also describes how to use field components to control the
display and editing of data in your applications.

Field components are always associated with a dataset. You never use a TField object
directly in your applications. Instead, each field component in your application is a
TField descendant specific to the datatype of a column in a dataset. Field components
provide data-aware controls such as TDBEdit and TDBGrid access to the data in a
particular column of the associated dataset.

Generally speaking, a single field component represents the characteristics of a single
column, or field, in a dataset, such as its data type and size. It also represents the
field’s display characteristics, such as alignment, display format, and edit format. For
example, a TFloatField component has four properties that directly affect the
appearance of its data:

As you scroll from record to record in a dataset, a field component lets you view and
change the value for that field in the current record.

Field components have many properties in common with one another (such as
DisplayWidth and Alignment), and they have properties specific to their data types
(such as Precision for TFloatField). Each of these properties affect how data appears to
an application’s users on a form. Some properties, such as Precision, can also affect
what data values the user can enter in a control when modifying or entering data.

Table 19.1 TFloatField properties that affect data display

Property Purpose

Alignment Specifies whether data is displayed left-aligned, centered, or right-aligned.

DisplayWidth Specifies the number of digits to display in a control at one time.

DisplayFormat Specifies data formatting for display (such as how many decimal places to show).

EditFormat Specifies how to display a value during editing.

19-2 D e v e l o p e r ’ s G u i d e

D y n a m i c f i e l d c o m p o n e n t s

All field components for a dataset are either dynamic (automatically generated for
you based on the underlying structure of database tables), or persistent (generated
based on specific field names and properties you set in the Fields editor). Dynamic
and persistent fields have different strengths and are appropriate for different types
of applications. The following sections describe dynamic and persistent fields in
more detail and offer advice on choosing between them.

Dynamic field components
Dynamically generated field components are the default. In fact, all field components
for any dataset start out as dynamic fields the first time you place a dataset on a data
module, specify how that dataset fetches its data, and open it. A field component is
dynamic if it is created automatically based on the underlying physical characteristics
of the data represented by a dataset. Datasets generate one field component for each
column in the underlying data. The exact TField descendant created for each column
is determined by field type information received from the database or (for
TClientDataSet) from a provider component.

Dynamic fields are temporary. They exist only as long as a dataset is open. Each time
you reopen a dataset that uses dynamic fields, it rebuilds a completely new set of
dynamic field components based on the current structure of the data underlying the
dataset. If the columns in the underlying data change, then the next time you open a
dataset that uses dynamic field components, the automatically generated field
components are also changed to match.

Use dynamic fields in applications that must be flexible about data display and
editing. For example, to create a database browsing tool such as SQL explorer, you
must use dynamic fields because every database table has different numbers and
types of columns. You might also want to use dynamic fields in applications where
user interaction with data mostly takes place inside grid components and you know
that the datasets used by the application change frequently.

To use dynamic fields in an application:

1 Place datasets and data sources in a data module.

2 Associate the datasets with data. This involves using a connection component or
provider to connect to the source of the data and setting any properties that
specify what data the dataset represents.

3 Associate the data sources with the datasets.

4 Place data-aware controls in the application’s forms, add the data module to each
uses clause for each form’s unit, and associate each data-aware control with a data
source in the module. In addition, associate a field with each data-aware control
that requires one. Note that because you are using dynamic field components,
there is no guarantee that any field name you specify will exist when the dataset is
opened.

5 Open the datasets.

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-3

P e r s i s t e n t f i e l d c o m p o n e n t s

Aside from ease of use, dynamic fields can be limiting. Without writing code, you
cannot change the display and editing defaults for dynamic fields, you cannot safely
change the order in which dynamic fields are displayed, and you cannot prevent
access to any fields in the dataset. You cannot create additional fields for the dataset,
such as calculated fields or lookup fields, and you cannot override a dynamic field’s
default data type. To gain control and flexibility over fields in your database
applications, you need to invoke the Fields editor to create persistent field
components for your datasets.

Persistent field components
By default, dataset fields are dynamic. Their properties and availability are
automatically set and cannot be changed in any way. To gain control over a field’s
properties and events you must create persistent fields for the dataset. Persistent
fields let you

• Set or change the field’s display or edit characteristics at design time or runtime.

• Create new fields, such as lookup fields, calculated fields, and aggregated fields,
that base their values on existing fields in a dataset.

• Validate data entry.

• Remove field components from the list of persistent components to prevent your
application from accessing particular columns in an underlying database.

• Define new fields to replace existing fields, based on columns in the table or query
underlying a dataset.

At design time, you can—and should—use the Fields editor to create persistent lists
of the field components used by the datasets in your application. Persistent field
component lists are stored in your application, and do not change even if the
structure of a database underlying a dataset is changed. Once you create persistent
fields with the Fields editor, you can also create event handlers for them that respond
to changes in data values and that validate data entries.

Note When you create persistent fields for a dataset, only those fields you select are
available to your application at design time and runtime. At design time, you can
always use the Fields editor to add or remove persistent fields for a dataset.

All fields used by a single dataset are either persistent or dynamic. You cannot mix
field types in a single dataset. If you create persistent fields for a dataset, and then
want to revert to dynamic fields, you must remove all persistent fields from the
dataset. For more information about dynamic fields, see “Dynamic field
components” on page 19-2.

Note One of the primary uses of persistent fields is to gain control over the appearance and
display of data. You can also control the appearance of columns in data-aware grids.
To learn about controlling column appearance in grids, see “Creating a customized
grid” on page 15-16.

19-4 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Creating persistent fields

Persistent field components created with the Fields editor provide efficient, readable,
and type-safe programmatic access to underlying data. Using persistent field
components guarantees that each time your application runs, it always uses and
displays the same columns, in the same order even if the physical structure of the
underlying database has changed. Data-aware components and program code that
rely on specific fields always work as expected. If a column on which a persistent
field component is based is deleted or changed, Delphi generates an exception rather
than running the application against a nonexistent column or mismatched data.

To create persistent fields for a dataset:

1 Place a dataset in a data module.

2 Bind the dataset to its underlying data. This typically involves associating the
dataset with a connection component or provider and specifying any properties to
describe the data. For example, If you are using TADODataSet, you can set the
Connection property to a properly configured TADOConnection component and set
the CommandText property to a valid query.

3 Double-click the dataset component in the data module to invoke the Fields editor.
The Fields editor contains a title bar, navigator buttons, and a list box.

The title bar of the Fields editor displays both the name of the data module or form
containing the dataset, and the name of the dataset itself. For example, if you open
the Customers dataset in the CustomerData data module, the title bar displays
‘CustomerData.Customers,’ or as much of the name as fits.

Below the title bar is a set of navigation buttons that let you scroll one-by-one
through the records in an active dataset at design time, and to jump to the first or
last record. The navigation buttons are dimmed if the dataset is not active or if the
dataset is empty. If the dataset is unidirectional, the buttons for moving to the last
record and the previous record are always dimmed.

The list box displays the names of persistent field components for the dataset. The
first time you invoke the Fields editor for a new dataset, the list is empty because
the field components for the dataset are dynamic, not persistent. If you invoke the
Fields editor for a dataset that already has persistent field components, you see the
field component names in the list box.

4 Choose Add Fields from the Fields editor context menu.

5 Select the fields to make persistent in the Add Fields dialog box. By default, all
fields are selected when the dialog box opens. Any fields you select become
persistent fields.

The Add Fields dialog box closes, and the fields you selected appear in the Fields
editor list box. Fields in the Fields editor list box are persistent. If the dataset is active,
note, too, that the Next and (if the dataset is not unidirectional) Last navigation
buttons above the list box are enabled.

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-5

P e r s i s t e n t f i e l d c o m p o n e n t s

From now on, each time you open the dataset, it no longer creates dynamic field
components for every column in the underlying database. Instead it only creates
persistent components for the fields you specified.

Each time you open the dataset, it verifies that each non-calculated persistent field
exists or can be created from data in the database. If it cannot, the dataset raises an
exception warning you that the field is not valid, and does not open the dataset.

Arranging persistent fields

The order in which persistent field components are listed in the Fields editor list box
is the default order in which the fields appear in a data-aware grid component. You
can change field order by dragging and dropping fields in the list box.

To change the order of fields:

1 Select the fields. You can select and order one or more fields at a time.

2 Drag the fields to a new location.

If you select a noncontiguous set of fields and drag them to a new location, they are
inserted as a contiguous block. Within the block, the order of fields does not change.

Alternatively, you can select the field, and use Ctrl+Up and Ctrl+Dn to change an
individual field’s order in the list.

Defining new persistent fields

Besides making existing dataset fields into persistent fields, you can also create
special persistent fields as additions to or replacements of the other persistent fields
in a dataset.

New persistent fields that you create are only for display purposes. The data they
contain at runtime are not retained either because they already exist elsewhere in the
database, or because they are temporary. The physical structure of the data
underlying the dataset is not changed in any way.

To create a new persistent field component, invoke the context menu for the Fields
editor and choose New field. The New Field dialog box appears.

The New Field dialog box contains three group boxes: Field properties, Field type,
and Lookup definition.

• The Field properties group box lets you enter general field component
information. Enter the field name in the Name edit box. The name you enter here
corresponds to the field component’s FieldName property. The New Field dialog
uses this name to build a component name in the Component edit box. The name
that appears in the Component edit box corresponds to the field component’s
Name property and is only provided for informational purposes (Name is the
identifier by which you refer to the field component in your source code). The
dialog discards anything you enter directly in the Component edit box.

19-6 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

• The Type combo box in the Field properties group lets you specify the field
component’s data type. You must supply a data type for any new field component
you create. For example, to display floating-point currency values in a field, select
Currency from the drop-down list. Use the Size edit box to specify the maximum
number of characters that can be displayed or entered in a string-based field, or
the size of Bytes and VarBytes fields. For all other data types, Size is meaningless.

• The Field type radio group lets you specify the type of new field component to
create. The default type is Data. If you choose Lookup, the Dataset and Source
Fields edit boxes in the Lookup definition group box are enabled. You can also
create Calculated fields, and if you are working with a client dataset, you can
create InternalCalc fields or Aggregate fields. The following table describes these
types of fields you can create:

The Lookup definition group box is only used to create lookup fields. This is described
more fully in “Defining a lookup field” on page 19-8.

Defining a data field
A data field replaces an existing field in a dataset. For example, for programmatic
reasons you might want to replace a TSmallIntField with a TIntegerField. Because you
cannot change a field’s data type directly, you must define a new field to replace it.

Important Even though you define a new field to replace an existing field, the field you define
must derive its data values from an existing column in a table underlying a dataset.

To create a replacement data field for a field in a table underlying a dataset, follow
these steps:

1 Remove the field from the list of persistent fields assigned for the dataset, and then
choose New Field from the context menu.

2 In the New Field dialog box, enter the name of an existing field in the database
table in the Name edit box. Do not enter a new field name. You are actually
specifying the name of the field from which your new field will derive its data.

3 Choose a new data type for the field from the Type combo box. The data type you
choose should be different from the data type of the field you are replacing. You
cannot replace a string field of one size with a string field of another size. Note that
while the data type should be different, it must be compatible with the actual data
type of the field in the underlying table.

Table 19.2 Special persistent field kinds

Field kind Purpose

Data Replaces an existing field (for example to change its data type)

Calculated Displays values calculated at runtime by a dataset’s OnCalcFields event handler.

Lookup Retrieve values from a specified dataset at runtime based on search criteria you
specify. (not supported by unidirectional datasets)

InternalCalc Displays values calculated at runtime by a client dataset and stored with its data.

Aggregate Displays a value summarizing the data in a set of records from a client dataset.

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-7

P e r s i s t e n t f i e l d c o m p o n e n t s

4 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

5 Select Data in the Field type radio group if it is not already selected.

6 Choose OK. The New Field dialog box closes, the newly defined data field
replaces the existing field you specified in Step 1, and the component declaration
in the data module or form’s type declaration is updated.

To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 19-10.

Defining a calculated field
A calculated field displays values calculated at runtime by a dataset’s OnCalcFields
event handler. For example, you might create a string field that displays
concatenated values from other fields.

To create a calculated field in the New Field dialog box:

1 Enter a name for the calculated field in the Name edit box. Do not enter the name
of an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

4 Select Calculated or InternalCalc in the Field type radio group. InternalCalc is only
available if you are working with a client dataset. The significant difference
between these types of calculated fields is that the values calculated for an
InternalCalc field are stored and retrieved as part of the client dataset’s data.

5 Choose OK. The newly defined calculated field is automatically added to the end
of the list of persistent fields in the Field editor list box, and the component
declaration is automatically added to the form’s or data module’s type
declaration.

6 Place code that calculates values for the field in the OnCalcFields event handler for
the dataset. For more information about writing code to calculate field values, see
“Programming a calculated field” on page 19-7.

Note To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 19-10.

Programming a calculated field
After you define a calculated field, you must write code to calculate its value.
Otherwise, it always has a null value. Code for a calculated field is placed in the
OnCalcFields event for its dataset.

19-8 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

To program a value for a calculated field:

1 Select the dataset component from the Object Inspector drop-down list.

2 Choose the Object Inspector Events page.

3 Double-click the OnCalcFields property to bring up or create a CalcFields procedure
for the dataset component.

4 Write the code that sets the values and other properties of the calculated field as
desired.

For example, suppose you have created a CityStateZip calculated field for the
Customers table on the CustomerData data module. CityStateZip should display a
company’s city, state, and zip code on a single line in a data-aware control.

To add code to the CalcFields procedure for the Customers table, select the Customers
table from the Object Inspector drop-down list, switch to the Events page, and
double-click the OnCalcFields property.

The TCustomerData.CustomersCalcFields procedure appears in the unit’s source code
window. Add the following code to the procedure to calculate the field:

CustomersCityStateZip.Value := CustomersCity.Value + ', ' + CustomersState.Value
+ ' ' + CustomersZip.Value;

Note When writing the OnCalcFields event handler for an internally calculated field, you
can improve performance by checking the client dataset’s State property and only
recomputing the value when State is dsInternalCalc. See “Using internally calculated
fields in client datasets” on page 23-10 for details.

Defining a lookup field
A lookup field is a read-only field that displays values at runtime based on search
criteria you specify. In its simplest form, a lookup field is passed the name of an
existing field to search on, a field value to search for, and a different field in a lookup
dataset whose value it should display.

For example, consider a mail-order application that enables an operator to use a
lookup field to determine automatically the city and state that correspond to the zip
code a customer provides. The column to search on might be called ZipTable.Zip, the
value to search for is the customer’s zip code as entered in Order.CustZip, and the
values to return would be those for the ZipTable.City and ZipTable.State columns of
the record where the value of ZipTable.Zip matches the current value in the
Order.CustZip field.

Note Unidirectional datasets do not support lookup fields.

To create a lookup field in the New Field dialog box:

1 Enter a name for the lookup field in the Name edit box. Do not enter the name of
an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-9

P e r s i s t e n t f i e l d c o m p o n e n t s

4 Select Lookup in the Field type radio group. Selecting Lookup enables the Dataset
and Key Fields combo boxes.

5 Choose from the Dataset combo box drop-down list the dataset in which to look
up field values. The lookup dataset must be different from the dataset for the field
component itself, or a circular reference exception is raised at runtime. Specifying
a lookup dataset enables the Lookup Keys and Result Field combo boxes.

6 Choose from the Key Fields drop-down list a field in the current dataset for which
to match values. To match more than one field, enter field names directly instead
of choosing from the drop-down list. Separate multiple field names with
semicolons. If you are using more than one field, you must use persistent field
components.

7 Choose from the Lookup Keys drop-down list a field in the lookup dataset to
match against the Source Fields field you specified in step 6. If you specified more
than one key field, you must specify the same number of lookup keys. To specify
more than one field, enter field names directly, separating multiple field names
with semicolons.

8 Choose from the Result Field drop-down list a field in the lookup dataset to return
as the value of the lookup field you are creating.

When you design and run your application, lookup field values are determined
before calculated field values are calculated. You can base calculated fields on lookup
fields, but you cannot base lookup fields on calculated fields.

You can use the LookupCache property to hone the way lookup fields are determined.
LookupCache determines whether the values of a lookup field are cached in memory
when a dataset is first opened, or looked up dynamically every time the current
record in the dataset changes. Set LookupCache to True to cache the values of a lookup
field when the LookupDataSet is unlikely to change and the number of distinct lookup
values is small. Caching lookup values can speed performance, because the lookup
values for every set of LookupKeyFields values are preloaded when the DataSet is
opened. When the current record in the DataSet changes, the field object can locate its
Value in the cache, rather than accessing the LookupDataSet. This performance
improvement is especially dramatic if the LookupDataSet is on a network where
access is slow.

Tip You can use a lookup cache to provide lookup values programmatically rather than
from a secondary dataset. Be sure that the LookupDataSet property is nil. Then, use the
LookupList property’s Add method to fill it with lookup values. Set the LookupCache
property to True. The field will use the supplied lookup list without overwriting it
with values from a lookup dataset.

If every record of DataSet has different values for KeyFields, the overhead of locating
values in the cache can be greater than any performance benefit provided by the
cache. The overhead of locating values in the cache increases with the number of
distinct values that can be taken by KeyFields.

If LookupDataSet is volatile, caching lookup values can lead to inaccurate results. Call
RefreshLookupList to update the values in the lookup cache. RefreshLookupList
regenerates the LookupList property, which contains the value of the LookupResultField
for every set of LookupKeyFields values.

When setting LookupCache at runtime, call RefreshLookupList to initialize the cache.

19-10 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Defining an aggregate field
An aggregate field displays values from a maintained aggregate in a client dataset.
An aggregate is a calculation that summarizes the data in a set of records. See “Using
maintained aggregates” on page 23-11 for details about maintained aggregates.

To create an aggregate field in the New Field dialog box:

1 Enter a name for the aggregate field in the Name edit box. Do not enter the name
of an existing field.

2 Choose aggregate data type for the field from the Type combo box.

3 Select Aggregate in the Field type radio group.

4 Choose OK. The newly defined aggregate field is automatically added to the client
dataset and its Aggregates property is automatically updated to include the
appropriate aggregate specification.

5 Place the calculation for the aggregate in the ExprText property of the newly
created aggregate field. For more information about defining an aggregate, see
“Specifying aggregates” on page 23-11.

Once a persistent TAggregateField is created, a TDBText control can be bound to the
aggregate field. The TDBText control will then display the value of the aggregate
field that is relevant to the current record of the underlying client data set.

Deleting persistent field components

Deleting a persistent field component is useful for accessing a subset of available
columns in a table, and for defining your own persistent fields to replace a column in
a table. To remove one or more persistent field components for a dataset:

1 Select the field(s) to remove in the Fields editor list box.

2 Press Del.

Note You can also delete selected fields by invoking the context menu and choosing
Delete.

Fields you remove are no longer available to the dataset and cannot be displayed by
data-aware controls. You can always recreate a persistent field component that you
delete by accident, but any changes previously made to its properties or events is
lost. For more information, see “Creating persistent fields” on page 19-4.

Note If you remove all persistent field components for a dataset, the dataset reverts to
using dynamic field components for every column in the underlying database table.

Setting persistent field properties and events

You can set properties and customize events for persistent field components at
design time. Properties control the way a field is displayed by a data-aware
component, for example, whether it can appear in a TDBGrid, or whether its value

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-11

P e r s i s t e n t f i e l d c o m p o n e n t s

can be modified. Events control what happens when data in a field is fetched,
changed, set, or validated.

To set the properties of a field component or write customized event handlers for it,
select the component in the Fields editor, or select it from the component list in the
Object Inspector.

Setting display and edit properties at design time
To edit the display properties of a selected field component, switch to the Properties
page on the Object Inspector window. The following table summarizes display
properties that can be edited.

Table 19.3 Field component properties

Property Purpose

Alignment Left justifies, right justifies, or centers a field contents within a data-aware
component.

ConstraintErrorMessage Specifies the text to display when edits clash with a constraint condition.

CustomConstraint Specifies a local constraint to apply to data during editing.

Currency Numeric fields only. True: displays monetary values.
False (default): does not display monetary values.

DisplayFormat Specifies the format of data displayed in a data-aware component.

DisplayLabel Specifies the column name for a field in a data-aware grid component.

DisplayWidth Specifies the width, in characters, of a grid column that display this field.

EditFormat Specifies the edit format of data in a data-aware component.

EditMask Limits data-entry in an editable field to specified types and ranges of
characters, and specifies any special, non-editable characters that appear
within the field (hyphens, parentheses, and so on).

FieldKind Specifies the type of field to create.

FieldName Specifies the actual name of a column in the table from which the field
derives its value and data type.

HasConstraints Indicates whether there are constraint conditions imposed on a field.

ImportedConstraint Specifies an SQL constraint imported from the Data Dictionary or an SQL
server.

Index Specifies the order of the field in a dataset.

LookupDataSet Specifies the table used to look up field values when Lookup is True.

LookupKeyFields Specifies the field(s) in the lookup dataset to match when doing a lookup.

LookupResultField Specifies the field in the lookup dataset from which to copy values into
this field.

MaxValue Numeric fields only. Specifies the maximum value a user can enter for the
field.

MinValue Numeric fields only. Specifies the minimum value a user can enter for the
field.

Name Specifies the component name of the field component within Delphi.

Origin Specifies the name of the field as it appears in the underlying database.

Precision Numeric fields only. Specifies the number of significant digits.

19-12 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Not all properties are available for all field components. For example, a field
component of type TStringField does not have Currency, MaxValue, or DisplayFormat
properties, and a component of type TFloatField does not have a Size property.

While the purpose of most properties is straightforward, some properties, such as
Calculated, require additional programming steps to be useful. Others, such as
DisplayFormat, EditFormat, and EditMask, are interrelated; their settings must be
coordinated. For more information about using DisplayFormat, EditFormat, and
EditMask, see “Controlling and masking user input” on page 19-14.

Setting field component properties at runtime
You can use and manipulate the properties of field component at runtime. Access
persistent field components by name, where the name can be obtained by
concatenating the field name to the dataset name.

For example, the following code sets the ReadOnly property for the CityStateZip field
in the Customers table to True:

CustomersCityStateZip.ReadOnly := True;

And this statement changes field ordering by setting the Index property of the
CityStateZip field in the Customers table to 3:

CustomersCityStateZip.Index := 3;

Creating attribute sets for field components
When several fields in the datasets used by your application share common
formatting properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat,
MaxValue, MinValue, and so on), it is more convenient to set the properties for a
single field, then store those properties as an attribute set in the Data Dictionary.
Attribute sets stored in the data dictionary can be easily applied to other fields.

Note Attribute sets and the Data Dictionary are only available for BDE-enabled datasets.

ReadOnly True: Displays field values in data-aware controls, but prevents editing.
False (the default): Permits display and editing of field values.

Size Specifies the maximum number of characters that can be displayed or
entered in a string-based field, or the size, in bytes, of TBytesField and
TVarBytesField fields.

Tag Long integer bucket available for programmer use in every component as
needed.

Transliterate True (default): specifies that translation to and from the respective locales
will occur as data is transferred between a dataset and a database.
False: Locale translation does not occur.

Visible True (the default): Permits display of field in a data-aware grid.
False: Prevents display of field in a data-aware grid component.
User-defined components can make display decisions based on this
property.

Table 19.3 Field component properties (continued)

Property Purpose

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-13

P e r s i s t e n t f i e l d c o m p o n e n t s

To create an attribute set based on a field component in a dataset:

1 Double-click the dataset to invoke the Fields editor.

2 Select the field for which to set properties.

3 Set the desired properties for the field in the Object Inspector.

4 Right-click the Fields editor list box to invoke the context menu.

5 Choose Save Attributes to save the current field’s property settings as an attribute
set in the Data Dictionary.

The name for the attribute set defaults to the name of the current field. You can
specify a different name for the attribute set by choosing Save Attributes As instead
of Save Attributes from the context menu.

Once you have created a new attribute set and added it to the Data Dictionary, you
can then associate it with other persistent field components. Even if you later remove
the association, the attribute set remains defined in the Data Dictionary.

Note You can also create attribute sets directly from the SQL Explorer. When you create an
attribute set using SQL Explorer, it is added to the Data Dictionary, but not applied to
any fields. SQL Explorer lets you specify two additional attributes: a field type (such
as TFloatField, TStringField, and so on) and a data-aware control (such as TDBEdit,
TDBCheckBox, and so on) that is automatically placed on a form when a field based
on the attribute set is dragged to the form. For more information, see the online help
for the SQL Explorer.

Associating attribute sets with field components
When several fields in the datasets used by your application share common
formatting properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat,
MaxValue, MinValue, and so on), and you have saved those property settings as
attribute sets in the Data Dictionary, you can easily apply the attribute sets to fields
without having to recreate the settings manually for each field. In addition, if you
later change the attribute settings in the Data Dictionary, those changes are
automatically applied to every field associated with the set the next time field
components are added to the dataset.

To apply an attribute set to a field component:

1 Double-click the dataset to invoke the Fields editor.

2 Select the field for which to apply an attribute set.

3 Invoke the context menu and choose Associate Attributes.

4 Select or enter the attribute set to apply from the Associate Attributes dialog box. If
there is an attribute set in the Data Dictionary that has the same name as the
current field, that set name appears in the edit box.

Important If the attribute set in the Data Dictionary is changed at a later date, you must reapply
the attribute set to each field component that uses it. You can invoke the Fields editor
and multi-select field components within a dataset when reapplying attributes.

19-14 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Removing attribute associations
If you change your mind about associating an attribute set with a field, you can
remove the association by following these steps:

1 Invoke the Fields editor for the dataset containing the field.

2 Select the field or fields from which to remove the attribute association.

3 Invoke the context menu for the Fields editor and choose Unassociate Attributes.

Important Unassociating an attribute set does not change any field properties. A field retains
the settings it had when the attribute set was applied to it. To change these
properties, select the field in the Fields editor and set its properties in the Object
Inspector.

Controlling and masking user input
The EditMask property provides a way to control the type and range of values a user
can enter into a data-aware component associated with TStringField, TDateField,
TTimeField, and TDateTimeField, and TSQLTimeStampField components. You can use
existing masks or create your own. The easiest way to use and create edit masks is
with the Input Mask editor. You can, however, enter masks directly into the EditMask
field in the Object Inspector.

Note For TStringField components, the EditMask property is also its display format.

To invoke the Input Mask editor for a field component:

1 Select the component in the Fields editor or Object Inspector.

2 Click the Properties page in the Object Inspector.

3 Double-click the values column for the EditMask field in the Object Inspector, or
click the ellipsis button. The Input Mask editor opens.

The Input Mask edit box lets you create and edit a mask format. The Sample Masks
grid lets you select from predefined masks. If you select a sample mask, the mask
format appears in the Input Mask edit box where you can modify it or use it as is.
You can test the allowable user input for a mask in the Test Input edit box.

The Masks button enables you to load a custom set of masks—if you have created
one—into the Sample Masks grid for easy selection.

Using default formatting for numeric, date, and time fields
Delphi provides built-in display and edit format routines and intelligent default
formatting for TFloatField, TCurrencyField, TBCDField, TFMTBCDField, TIntegerField,
TSmallIntField, TWordField, TDateField, TDateTimeField, and TTimeField, and
TSQLTimeStampField components. To use these routines, you need do nothing.

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-15

P e r s i s t e n t f i e l d c o m p o n e n t s

Default formatting is performed by the following routines:

Only format properties appropriate to the data type of a field component are
available for a given component.

Default formatting conventions for date, time, currency, and numeric values are
based on the Regional Settings properties in the Control Panel. For example, using
the default settings for the United States, a TFloatField column with the Currency
property set to True sets the DisplayFormat property for the value 1234.56 to $1234.56,
while the EditFormat is 1234.56.

At design time or runtime, you can edit the DisplayFormat and EditFormat properties
of a field component to override the default display settings for that field. You can
also write OnGetText and OnSetText event handlers to do custom formatting for field
components at runtime.

Handling events
Like most components, field components have events associated with them. Methods
can be assigned as handlers for these events. By writing these handlers you can react
to the occurrence of events that affect data entered in fields through data-aware
controls and perform actions of your own design. The following table lists the events
associated with field components:

OnGetText and OnSetText events are primarily useful to programmers who want to
do custom formatting that goes beyond the built-in formatting functions. OnChange
is useful for performing application-specific tasks associated with data change, such
as enabling or disabling menus or visual controls. OnValidate is useful when you
want to control data-entry validation in your application before returning values to a
database server.

Table 19.4 Field component formatting routines

Routine Used by . . .

FormatFloat TFloatField, TCurrencyField

FormatDateTime TDateField, TTimeField, TDateTimeField,

SQLTimeStampToString TSQLTimeStampField

FormatCurr TCurrencyField, TBCDField

BcdToStrF TFMTBcdField

Table 19.5 Field component events

Event Purpose

OnChange Called when the value for a field changes.

OnGetText Called when the value for a field component is retrieved for display or editing.

OnSetText Called when the value for a field component is set.

OnValidate Called to validate the value for a field component whenever the value is
changed because of an edit or insert operation.

19-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i e l d c o m p o n e n t m e t h o d s a t r u n t i m e

To write an event handler for a field component:

1 Select the component.

2 Select the Events page in the Object Inspector.

3 Double-click the Value field for the event handler to display its source code
window.

4 Create or edit the handler code.

Working with field component methods at runtime
Field components methods available at runtime enable you to convert field values
from one data type to another, and enable you to set focus to the first data-aware
control in a form that is associated with a field component.

Controlling the focus of data-aware components associated with a field is important
when your application performs record-oriented data validation in a dataset event
handler (such as BeforePost). Validation may be performed on the fields in a record
whether or not its associated data-aware control has focus. Should validation fail for
a particular field in the record, you want the data-aware control containing the faulty
data to have focus so that the user can enter corrections.

You control focus for a field’s data-aware components with a field’s FocusControl
method. FocusControl sets focus to the first data-aware control in a form that is
associated with a field. An event handler should call a field’s FocusControl method
before validating the field. The following code illustrates how to call the FocusControl
method for the Company field in the Customers table:

CustomersCompany.FocusControl;

The following table lists some other field component methods and their uses. For a
complete list and detailed information about using each method, see the entries for
TField and its descendants in the online VCL Reference.

Table 19.6 Selected field component methods

Method Purpose

AssignValue Sets a field value to a specified value using an automatic conversion function
based on the field’s type.

Clear Clears the field and sets its value to NULL.

GetData Retrieves unformatted data from the field.

IsValidChar Determines if a character entered by a user in a data-aware control to set a
value is allowed for this field.

SetData Assigns unformatted data to this field.

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-17

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

Displaying, converting, and accessing field values
Data-aware controls such as TDBEdit and TDBGrid automatically display the values
associated with field components. If editing is enabled for the dataset and the
controls, data-aware controls can also send new and changed values to the database.
In general, the built-in properties and methods of data-aware controls enable them to
connect to datasets, display values, and make updates without requiring extra
programming on your part. Use them whenever possible in your database
applications. For more information about data-aware control, see Chapter 15, “Using
data controls.”

Standard controls can also display and edit database values associated with field
components. Using standard controls, however, may require additional
programming on your part. For example, when using standard controls, your
application is responsible for tracking when to update controls because field values
change. If the dataset has a datasource component, you can use its events to help you
do this. In particular, the OnDataChange event lets you know when you may need to
update a control’s value and the OnStateChange event can help you determine when
to enable or disable controls. For more information on these events, see “Responding
to changes mediated by the data source” on page 15-4.

The following topics discuss how to work with field values so that you can display
them in standard controls.

Displaying field component values in standard controls

An application can access the value of a dataset column through the Value property
of a field component. For example, the following OnDataChange event handler
updates the text in a TEdit control because the value of the CustomersCompany field
may have changed:

procedure TForm1.CustomersDataChange(Sender: TObject, Field: TField);
begin

Edit3.Text := CustomersCompany.Value;
end;

This method works well for string values, but may require additional programming
to handle conversions for other data types. Fortunately, field components have built-
in properties for handling conversions.

Note You can also use Variants to access and set field values. For more information about
using variants to access and set field values, see “Accessing field values with the
default dataset property” on page 19-19.

Converting field values

Conversion properties attempt to convert one data type to another. For example, the
AsString property converts numeric and Boolean values to string representations.

19-18 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

The following table lists field component conversion properties, and which
properties are recommended for field components by field-component class:

Note that some columns in the table refer to more than one conversion property
(such as AsFloat, AsCurrency, and AsBCD). This is because all field data types that
support one of those properties always support the others as well.

Note also that the AsVariant property can translate among all data types. For any
data types not listed above, AsVariant is also available (and is, in fact, the only
option). When in doubt, use AsVariant.

In some cases, conversions are not always possible. For example, AsDateTime can be
used to convert a string to a date, time, or datetime format only if the string value is
in a recognizable datetime format. A failed conversion attempt raises an exception.

In some other cases, conversion is possible, but the results of the conversion are not
always intuitive. For example, what does it mean to convert a TDateTimeField value
into a float format? AsFloat converts the date portion of the field to the number of

AsVariant AsString AsInteger

AsFloat
AsCurrency
AsBCD

AsDateTime
AsSQLTimeStamp AsBoolean

TStringField yes NA yes yes yes yes

TWideStringField yes yes yes yes yes yes

TIntegerField yes yes NA yes

TSmallIntField yes yes yes yes

TWordField yes yes yes yes

TLargeintField yes yes yes yes

TFloatField yes yes yes yes

TCurrencyField yes yes yes yes

TBCDField yes yes yes yes

TFMTBCDField yes yes yes yes

TDateTimeField yes yes yes yes

TDateField yes yes yes yes

TTimeField yes yes yes yes

TSQLTimeStampField yes yes yes yes

TBooleanField yes yes

TBytesField yes yes

TVarBytesField yes yes

TBlobField yes yes

TMemoField yes yes

TGraphicField yes yes

TVariantField NA yes yes yes yes yes

TAggregateField yes yes

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-19

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

days since 12/31/1899, and it converts the time portion of the field to a fraction of 24
hours. Table 19.7 lists permissible conversions that produce special results:

In other cases, conversions are not possible at all. In these cases, attempting a
conversion also raises an exception.

Conversion always occurs before an assignment is made. For example, the following
statement converts the value of CustomersCustNo to a string and assigns the string to
the text of an edit control:

Edit1.Text := CustomersCustNo.AsString;

Conversely, the next statement assigns the text of an edit control to the
CustomersCustNo field as an integer:

MyTableMyField.AsInteger := StrToInt(Edit1.Text);

Accessing field values with the default dataset property

The most general method for accessing a field’s value is to use Variants with the
FieldValues property. For example, the following statement puts the value of an edit
box into the CustNo field in the Customers table:

Customers.FieldValues['CustNo'] := Edit2.Text;

Because the FieldValues property is of type Variant, it automatically converts other
datatypes into a Variant value.

For more information about Variants, see the online help.

Accessing field values with a dataset’s Fields property

You can access the value of a field with the Fields property of the dataset component
to which the field belongs. Fields maintains an indexed list of all the fields in the
dataset. Accessing field values with the Fields property is useful when you need to
iterate over a number of columns, or if your application works with tables that are
not available to you at design time.

To use the Fields property you must know the order of and data types of fields in the
dataset. You use an ordinal number to specify the field to access. The first field in a
dataset is numbered 0. Field values must be converted as appropriate using each

Table 19.7 Special conversion results

Conversion Result

String to Boolean Converts “True,” “False,” “Yes,” and “No” to Boolean. Other values raise
exceptions.

Float to Integer Rounds float value to nearest integer value.

DateTime or
SQLTimeStamp
to Float

Converts date to number of days since 12/31/1899, time to a fraction of 24
hours.

Boolean to String Converts any Boolean value to “True” or “False.”

19-20 D e v e l o p e r ’ s G u i d e

S e t t i n g a d e f a u l t v a l u e f o r a f i e l d

field component’s conversion properties. For more information about field
component conversion properties, see “Converting field values” on page 19-17.

For example, the following statement assigns the current value of the seventh column
(Country) in the Customers table to an edit control:

Edit1.Text := CustTable.Fields[6].AsString;

Conversely, you can assign a value to a field by setting the Fields property of the
dataset to the desired field. For example:

begin
Customers.Edit;
Customers.Fields[6].AsString := Edit1.Text;
Customers.Post;

end;

Accessing field values with a dataset’s FieldByName method

You can also access the value of a field with a dataset’s FieldByName method. This
method is useful when you know the name of the field you want to access, but do not
have access to the underlying table at design time.

To use FieldByName, you must know the dataset and name of the field you want to
access. You pass the field’s name as an argument to the method. To access or change
the field’s value, convert the result with the appropriate field component conversion
property, such as AsString or AsInteger. For example, the following statement assigns
the value of the CustNo field in the Customers dataset to an edit control:

Edit2.Text := Customers.FieldByName('CustNo').AsString;

Conversely, you can assign a value to a field:

begin
Customers.Edit;
Customers.FieldByName('CustNo').AsString := Edit2.Text;
Customers.Post;

end;

Setting a default value for a field
You can specify how a default value for a field in a client dataset or a BDE-enabled
dataset should be calculated at runtime using the DefaultExpression property.
DefaultExpression can be any valid SQL value expression that does not refer to field
values. If the expression contains literals other than numeric values, they must
appear in quotes. For example, a default value of noon for a time field would be

‘12:00:00’

including the quotes around the literal value.

Note If the underlying database table defines a default value for the field, the default you
specify in DefaultExpression takes precedence. That is because DefaultExpression is
applied when the dataset posts the record containing the field, before the edited
record is applied to the database server.

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-21

W o r k i n g w i t h c o n s t r a i n t s

Working with constraints
Field components in client datasets or BDE-enabled datasets can use SQL server
constraints. In addition, your applications can create and use custom constraints for
these datasets that are local to your application. All constraints are rules or
conditions that impose a limit on the scope or range of values that a field can store.

Creating a custom constraint

A custom constraint is not imported from the server like other constraints. It is a
constraint that you declare, implement, and enforce in your local application. As
such, custom constraints can be useful for offering a prevalidation enforcement of
data entry, but a custom constraint cannot be applied against data received from or
sent to a server application.

To create a custom constraint, set the CustomConstraint property to specify a
constraint condition, and set ConstraintErrorMessage to the message to display when a
user violates the constraint at runtime.

CustomConstraint is an SQL string that specifies any application-specific constraints
imposed on the field’s value. Set CustomConstraint to limit the values that the user
can enter into a field. CustomConstraint can be any valid SQL search expression such
as

x > 0 and x < 100

The name used to refer to the value of the field can be any string that is not a reserved
SQL keyword, as long as it is used consistently throughout the constraint expression.

Note Custom constraints are only available in BDE-enabled and client datasets.

Custom constraints are imposed in addition to any constraints to the field’s value
that come from the server. To see the constraints imposed by the server, read the
ImportedConstraint property.

Using server constraints

Most production SQL databases use constraints to impose conditions on the possible
values for a field. For example, a field may not permit NULL values, may require that
its value be unique for that column, or that its values be greater than 0 and less than
150. While you could replicate such conditions in your client applications, client
datasets and BDE-enabled datasets offer the ImportedConstraint property to
propagate a server’s constraints locally.

ImportedConstraint is a read-only property that specifies an SQL clause that limits
field values in some manner. For example:

Value > 0 and Value < 100

Do not change the value of ImportedConstraint, except to edit nonstandard or server-
specific SQL that has been imported as a comment because it cannot be interpreted
by the database engine.

19-22 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

To add additional constraints on the field value, use the CustomConstraint property.
Custom constraints are imposed in addition to the imported constraints. If the server
constraints change, the value of ImportedConstraint also changed but constraints
introduced in the CustomConstraint property persist.

Removing constraints from the ImportedConstraint property will not change the
validity of field values that violate those constraints. Removing constraints results in
the constraints being checked by the server instead of locally. When constraints are
checked locally, the error message supplied as the ConstraintErrorMessage property is
displayed when violations are found, instead of displaying an error message from
the server.

Using object fields
Object fields are fields that represent a composite of other, simpler data types. These
include ADT (Abstract Data Type) fields, Array fields, DataSet fields, and Reference
fields. All of these field types either contain or reference child fields or other data
sets.

ADT fields and array fields are fields that contain child fields. The child fields of an
ADT field can be any scalar or object type (that is, any other field type). These child
fields may differ in type from each other. An array field contains an array of child
fields, all of the same type.

Dataset and reference fields are fields that access other data sets. A dataset field
provides access to a nested (detail) dataset and a reference field stores a pointer
(reference) to another persistent object (ADT).

When you add fields with the Fields editor to a dataset that contains object fields,
persistent object fields of the correct type are automatically created for you. Adding
persistent object fields to a dataset automatically sets the dataset’s ObjectView
property to True, which instructs the dataset to store these fields hierarchically, rather
than flattening them out as if the constituent child fields were separate, independent
fields.

Table 19.8 Types of object field components

Component name Purpose

TADTField Represents an ADT (Abstract Data Type) field.

TArrayField Represents an array field.

TDataSetField Represents a field that contains a nested data set reference.

TReferenceField Represents a REF field, a pointer to an ADT.

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-23

U s i n g o b j e c t f i e l d s

The following properties are common to all object fields and provide the
functionality to handle child fields and datasets.

Displaying ADT and array fields

Both ADT and array fields contain child fields that can be displayed through data-
aware controls.

Data-aware controls such as TDBEdit that represent a single field value display child
field values in an uneditable comma delimited string. In addition, if you set the
control’s DataField property to the child field instead of the object field itself, the child
field can be viewed an edited just like any other normal data field.

A TDBGrid control displays ADT and array field data differently, depending on the
value of the dataset’s ObjectView property. When ObjectView is False, each child field
appears in a single column. When ObjectView is True, an ADT or array field can be
expanded and collapsed by clicking on the arrow in the title bar of the column. When
the field is expanded, each child field appears in its own column and title bar, all
below the title bar of the ADT or array itself. When the ADT or array is collapsed,
only one column appears with an uneditable comma-delimited string containing the
child fields.

Working with ADT fields

ADTs are user-defined types created on the server, and are similar to the record type.
An ADT can contain most scalar field types, array fields, reference fields, and nested
ADTs.

There are a variety of ways to access the data in ADT field types. These are illustrated
in the following examples, which assign a child field value to an edit box called
CityEdit, and use the following ADT structure,

Address
Street
City
State
Zip

Table 19.9 Common object field descendant properties

Property Purpose

Fields Contains the child fields belonging to the object field.

ObjectType Classifies the object field.

FieldCount Number of child fields belonging to the object field.

FieldValues Provides access to the values of the child fields.

19-24 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Using persistent field components
The easiest way to access ADT field values is to use persistent field components. For
the ADT structure above, the following persistent fields can be added to the Customer
table using the Fields editor:

CustomerAddress: TADTField;
CustomerAddrStreet: TStringField;
CustomerAddrCity: TStringField;
CustomerAddrState: TStringField;
CustomerAddrZip: TStringField;

Given these persistent fields, you can simply access the child fields of an ADT field
by name:

CityEdit.Text := CustomerAddrCity.AsString;

Although persistent fields are the easiest way to access ADT child fields, it is not
possible to use them if the structure of the dataset is not known at design time. When
accessing ADT child fields without using persistent fields, you must set the dataset’s
ObjectView property to True.

Using the dataset’s FieldByName method
You can access the children of an ADT field using the dataset’s FieldByName method
by qualifying the name of the child field with the ADT field’s name:

CityEdit.Text := Customer.FieldByName(‘Address.City’).AsString;

Using the dateset’s FieldValues property
You can also use qualified field names with a dataset’s FieldValues property:

CityEdit.Text := Customer['Address.City'];

Note that you can omit the property name (FieldValues) because FieldValues is the
dataset’s default property.

Note Unlike other runtime methods for accessing ADT child field values, the FieldValues
property works even if the dataset’s ObjectView property is False.

Using the ADT field’s FieldValues property
You can access the value of a child field with the TADTField’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert fields of any
type. The index parameter is an integer value that specifies the offset of the field.

CityEdit.Text := TADTField(Customer.FieldByName('Address')).FieldValues[1];

Because FieldValues is the default property of TADTField, the property name
(FieldValues) can be omitted. Thus, the following statement is equivalent to the one
above:

CityEdit.Text := TADTField(Customer.FieldByName('Address'))[1];

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-25

U s i n g o b j e c t f i e l d s

Using the ADT field’s Fields property
Each ADT field has a Fields property that is analogous to the Fields property of a
dataset. Like the Fields property of a dataset, you can use it to access child fields by
position:

CityEdit.Text := TADTField(Customer.FieldByName(‘Address’)).Fields[1].AsString;

or by name:

CityEdit.Text :=
TADTField(Customer.FieldByName(‘Address’)).Fields.FieldByName(‘City’).AsString;

Working with array fields

Array fields consist of a set of fields of the same type. The field types can be scalar
(for example, float, string), or non-scalar (an ADT), but an array field of arrays is not
permitted. The SparseArrays property of TDataSet determines whether a unique
TField object is created for each element of the array field.

There are a variety of ways to access the data in array field types. If you are not using
persistent fields, the dataset’s ObjectView property must be set to True before you can
access the elements of an array field.

Using persistent fields
You can map persistent fields to the individual array elements in an array field. For
example, consider an array field TelNos_Array, which is a six element array of strings.
The following persistent fields created for the Customer table component represent
the TelNos_Array field and its six elements:

CustomerTelNos_Array: TArrayField;
CustomerTelNos_Array0: TStringField;
CustomerTelNos_Array1: TStringField;
CustomerTelNos_Array2: TStringField;
CustomerTelNos_Array3: TStringField;
CustomerTelNos_Array4: TStringField;
CustomerTelNos_Array5: TStringField;

Given these persistent fields, the following code uses a persistent field to assign an
array element value to an edit box named TelEdit.

TelEdit.Text := CustomerTelNos_Array0.AsString;

Using the array field’s FieldValues property
You can access the value of a child field with the array field’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert child fields of
any type. For example,

TelEdit.Text := TArrayField(Customer.FieldByName('TelNos_Array')).FieldValues[1];

Because FieldValues is the default property of TArrayField, this can also be written

TelEdit.Text := TArrayField(Customer.FieldByName('TelNos_Array'))[1];

19-26 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Using the array field’s Fields property
TArrayField has a Fields property that you can use to access individual sub-fields. This
is illustrated below, where an array field (OrderDates) is used to populate a list box
with all non-null array elements:

for I := 0 to OrderDates.Size - 1 do
begin

if not OrderDates.Fields[I].IsNull then
OrderDateListBox.Items.Add(OrderDates[I]);

end;

Working with dataset fields

Dataset fields provide access to data stored in a nested dataset. The NestedDataSet
property references the nested dataset. The data in the nested dataset is then accessed
through the field objects of the nested dataset.

Displaying dataset fields
TDBGrid controls enable the display of data stored in data set fields. In a TDBGrid
control, a dataset field is indicated in each cell of a dataset column with the string
“(DataSet)”, and at runtime an ellipsis button also exists to the right. Clicking on the
ellipsis brings up a new form with a grid displaying the dataset associated with the
current record’s dataset field. This form can also be brought up programmatically
with the DB grid’s ShowPopupEditor method. For example, if the seventh column in
the grid represents a dataset field, the following code will display the dataset
associated with that field for the current record.

DBGrid1.ShowPopupEditor(DBGrid1.Columns[7]);

Accessing data in a nested dataset
A dataset field is not normally bound directly to a data aware control. Rather, since a
nested data set is just that, a data set, the means to get at its data is via a TDataSet
descendant. The type of dataset you use is determined by the parent dataset (the one
with the dataset field.) For example, a BDE-enabled dataset uses TNestedTable to
represent the data in its dataset fields, while client datasets use other client datasets.

To access the data in a dataset field,

1 Create a persistent TDataSetField object by invoking the Fields editor for the parent
dataset.

2 Create a dataset to represent the values in that dataset field. It must be of a type
compatible with the parent dataset.

3 Set that DataSetField property of the dataset created in step 2 to the persistent
dataset field you created in step 1.

If the nested dataset field for the current record has a value, the detail dataset
component will contain records with the nested data; otherwise, the detail dataset
will be empty.

W o r k i n g w i t h f i e l d c o m p o n e n t s 19-27

U s i n g o b j e c t f i e l d s

Before inserting records into a nested dataset, you should be sure to post the
corresponding record in the master table, if it has just been inserted. If the inserted
record is not posted, it will be automatically posted before the nested dataset posts.

Working with reference fields

Reference fields store a pointer or reference to another ADT object. This ADT object is
a single record of another object table. Reference fields always refer to a single record
in a dataset (object table). The data in the referenced object is actually returned in a
nested dataset, but can also be accessed via the Fields property on the TReferenceField.

Displaying reference fields
In a TDBGrid control a reference field is designated in each cell of the dataset column,
with (Reference) and, at runtime, an ellipsis button to the right. At runtime, clicking
on the ellipsis brings up a new form with a grid displaying the object associated with
the current record’s reference field.

This form can also be brought up programmatically with the DB grid’s
ShowPopupEditor method. For example, if the seventh column in the grid represents a
reference field, the following code will display the object associated with that field
for the current record.

DBGrid1.ShowPopupEditor(DBGrid1.Columns[7]);

Accessing data in a reference field
You can access the data in a reference field in the same way you access a nested
dataset:

1 Create a persistent TDataSetField object by invoking the Fields editor for the parent
dataset.

2 Create a dataset to represent the value of that dataset field.

3 Set that DataSetField property of the dataset created in step 2 to the persistent
dataset field you created in step 1.

If the reference is assigned, the reference dataset will contain a single record with the
referenced data. If the reference is null, the reference dataset will be empty.

You can also use the reference field’s Fields property to access the data in a reference
field. For example, the following lines are equivalent and assign data from the
reference field CustomerRefCity to an edit box called CityEdit:

CityEdit.Text := CustomerRefCity.Fields[1].AsString;
CityEdit.Text := CustomerRefCity.NestedDataSet.Fields[1].AsString;

When data in a reference field is edited, it is actually the referenced data that is
modified.

19-28 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

To assign a reference field, you need to first use a SELECT statement to select the
reference from the table, and then assign. For example:

var
AddressQuery: TQuery;
CustomerAddressRef: TReferenceField;

begin
AddressQuery.SQL.Text := ‘SELECT REF(A) FROM AddressTable A WHERE A.City = ‘’San
Francisco’’’;
AddressQuery.Open;
CustomerAddressRef.Assign(AddressQuery.Fields[0]);

end;

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-1

C h a p t e r

20
Chapter 20Using the Borland Database Engine

The Borland Database Engine (BDE) is a data-access mechanism that can be shared
by several applications. The BDE defines a powerful library of API calls that can
create, restructure, fetch data from, update, and otherwise manipulate local and
remote database servers. The BDE provides a uniform interface to access a wide
variety of database servers, using drivers to connect to different databases.
Depending on your version of Delphi, you can use the drivers for local databases
(Paradox, dBASE, FoxPro, and Access), SQL Links drivers for remote database
servers such as InterBase, Oracle, Sybase, Informix, Microsoft SQL server, and DB2,
and an ODBC adapter that lets you supply your own ODBC drivers.

When deploying BDE-based applications, you must include the BDE with your
application. While this increases the size of the application and the complexity of
deployment, the BDE can be shared with other BDE-based applications and provides
a broad range of support for database manipulation. Although you can use the BDE’s
API directly in your application, the components on the BDE page of the Component
palette wrap most of this functionality for you.

Note For information on the BDE API, see its online help file, BDE32.hlp, which is installed
in the directory where you install the Borland Database Engine.

BDE-based architecture
When using the BDE, your application uses a variation of the general database
architecture described in “Database architecture” on page 14-5. In addition to the
user interface elements, datasource, and datasets common to all Delphi database
applications, A BDE-based application can include

• One or more database components to control transactions and to manage database
connections.

• One or more session components to isolate data access operations such as database
connections, and to manage groups of databases.

20-2 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

The relationships between the components in a BDE-based application are illustrated
in Figure 20.1:

Figure 20.1 Components in a BDE-based application

Using BDE-enabled datasets

BDE-enabled datasets use the Borland Database Engine (BDE) to access data. They
inherit the common dataset capabilities described in Chapter 18, “Understanding
datasets,” using the BDE to provide the implementation. In addition, all BDE
datasets add properties, events, and methods for

• Associating a dataset with database and session connections.
• Caching BLOBs.
• Obtaining a BDE handle.

There are three BDE-enabled datasets:

• TTable, a table-type dataset that represents all of the rows and columns of a single
database table. See “Using table-type datasets” on page 18-24 for a description of
features common to table-type datasets. See “Using TTable” on page 20-4 for a
description of features unique to TTable.

• TQuery, a query-type dataset that encapsulates an SQL statement and enables
applications to access the resulting records, if any. See “Using query-type
datasets” on page 18-41 for a description of features common to query-type
datasets. See “Using TQuery” on page 20-8 for a description of features unique to
TQuery.

• TStoredProc, a stored procedure-type dataset that executes a stored procedure that
is defined on a database server. See “Using stored procedure-type datasets” on
page 18-48 for a description of features common to stored procedure-type
datasets. See “Using TStoredProc” on page 20-11 for a description of features
unique to TStoredProc.

Note In addition to the three types of BDE-enabled datasets, there is a BDE-based client
dataset (TBDEClientDataSet) that can be used for caching updates. For information on
caching updates, see “Using a client dataset to cache updates” on page 23-15.

user
interface
elements

data source

Borland
Database
Engine

Session

database

dataset

datasetdata source

Data ModuleForm

database

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-3

B D E - b a s e d a r c h i t e c t u r e

Associating a dataset with database and session connections
In order for a BDE-enabled dataset to fetch data from a database server it needs to
use both a database and a session.

• Databases represent connections to specific database servers. The database
identifies a BDE driver, a particular database server that uses that driver, and a set
of connection parameters for connecting to that database server. Each database is
represented by a TDatabase component. You can either associate your datasets
with a TDatabase component you add to a form or data module, or you can simply
identify the database server by name and let Delphi generate an implicit database
component for you. Using an explicitly-created TDatabase component is
recommended for most applications, because the database component gives you
greater control over how the connection is established, including the login process,
and lets you create and use transactions.

To associate a BDE-enabled dataset with a database, use the DatabaseName
property. DatabaseName is a string that contains different information, depending
on whether you are using an explicit database component and, if not, the type of
database you are using:

• If you are using an explicit TDatabase component, DatabaseName is the value of
the DatabaseName property of the database component.

• If you are want to use an implicit database component and the database has a
BDE alias, you can specify a BDE alias as the value of DatabaseName. A BDE
alias represents a database plus configuration information for that database.
The configuration information associated with an alias differs by database type
(Oracle, Sybase, InterBase, Paradox, dBASE, and so on). Use the BDE
Administration tool or the SQL explorer to create and manage BDE aliases.

• If you want to use an implicit database component for a Paradox or dBASE
database, you can also use DatabaseName to simply specify the directory where
the database tables are located.

• A session provides global management for a group of database connections in an
application. When you add BDE-enabled datasets to your application, your
application automatically contains a session component, named Session. As you
add database and dataset components to the application, they are automatically
associated with this default session. It also controls access to password protected
Paradox files, and it specifies directory locations for sharing Paradox files over a
network. You can control database connections and access to Paradox files using
the properties, events, and methods of the session.

You can use the default session to control all database connections in your
application. Alternatively, you can add additional session components at design
time or create them dynamically at runtime to control a subset of database
connections in an application. To associate your dataset with an explicitly created
session component, use the SessionName property. If you do not use explicit
session components in your application, you do not have to provide a value for
this property. Whether you use the default session or explicitly specify a session
using the SessionName property, you can access the session associated with a
dataset by reading the DBSession property.

20-4 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Note If you use a session component, the SessionName property of a dataset must match the
SessionName property for the database component with which the dataset is
associated.

For more information about TDatabase and TSession, see “Connecting to databases
with TDatabase” on page 20-12 and “Managing database sessions” on page 20-16.

Caching BLOBs
BDE-enabled datasets all have a CacheBlobs property that controls whether BLOB
fields are cached locally by the BDE when an application reads BLOB records. By
default, CacheBlobs is True, meaning that the BDE caches a local copy of BLOB fields.
Caching BLOBs improves application performance by enabling the BDE to store local
copies of BLOBs instead of fetching them repeatedly from the database server as a
user scrolls through records.

In applications and environments where BLOBs are frequently updated or replaced,
and a fresh view of BLOB data is more important than application performance, you
can set CacheBlobs to False to ensure that your application always sees the latest
version of a BLOB field.

Obtaining a BDE handle
You can use BDE-enabled datasets without ever needing to make direct API calls to
the Borland Database Engine. The BDE-enabled datasets, in combination with
database and session components, encapsulate much of the BDE functionality.
However, if you need to make direct API calls to the BDE, you may need BDE
handles for resources managed by the BDE. Many BDE APIs require these handles as
parameters.

All BDE-enabled datasets include three read-only properties for accessing BDE
handles at runtime:

• Handle is a handle to the BDE cursor that accesses the records in the dataset.

• DBHandle is a handle to the database that contains the underlying tables or stored
procedure.

• DBLocale is a handle to the BDE language driver for the dataset. The locale controls
the sort order and character set used for string data.

These properties are automatically assigned to a dataset when it is connected to a
database server through the BDE. For more information about the BDE API, see the
online help file, BDE32.HLP.

Using TTable

TTable encapsulates the full structure of and data in an underlying database table. It
implements all of the basic functionality introduced by TDataSet, as well as all of the
special features typical of table-type datasets. Before looking at the unique features
introduced by TTable, you should familiarize yourself with the common database
features described in “Understanding datasets,” including the section on table-type
datasets that starts on page 18-24.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-5

B D E - b a s e d a r c h i t e c t u r e

Because TTable is a BDE-enabled dataset, it must be associated with a database and a
session. “Associating a dataset with database and session connections” on page 20-3
describes how you form these associations. Once the dataset is associated with a
database and session, you can bind it to a particular database table by setting the
TableName property and, if you are using a Paradox, dBASE, FoxPro, or comma-
delimited ASCII text table, the TableType property.

Note The table must be closed when you change its association to a database, session, or
database table, or when you set the TableType property. However, before you close
the table to change these properties, first post or discard any pending changes. If
cached updates are enabled, call the ApplyUpdates method to write the posted
changes to the database.

TTable components are unique in the support they offer for local database tables
(Paradox, dBASE, FoxPro, and comma-delimited ASCII text tables). The following
topics describe the special properties and methods that implement this support.

In addition, TTable components can take advantage of the BDE’s support for batch
operations (table level operations to append, update, delete, or copy entire groups of
records). This support is described in “Importing data from another table” on
page 20-8.

Specifying the table type for local tables
If an application accesses Paradox, dBASE, FoxPro, or comma-delimited ASCII text
tables, then the BDE uses the TableType property to determine the table’s type (its
expected structure). TableType is not used when TTable represents an SQL-based table
on a database server.

By default TableType is set to ttDefault. When TableType is ttDefault, the BDE
determines a table’s type from its filename extension. Table 20.1 summarizes the file
extensions recognized by the BDE and the assumptions it makes about a table’s type:

If your local Paradox, dBASE, and ASCII text tables use the file extensions as
described in Table 20.1, then you can leave TableType set to ttDefault. Otherwise, your
application must set TableType to indicate the correct table type. Table 20.2 indicates
the values you can assign to TableType:

Table 20.1 Table types recognized by the BDE based on file extension

Extension Table type

No file extension Paradox

.DB Paradox

.DBF dBASE

.TXT ASCII text

Table 20.2 TableType values

Value Table type

ttDefault Table type determined automatically by the BDE

ttParadox Paradox

20-6 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Controlling read/write access to local tables
Like any table-type dataset, TTable lets you control read and write access by your
application using the ReadOnly property.

In addition, for Paradox, dBASE, and FoxPro tables, TTable can let you control read
and write access to tables by other applications. The Exclusive property controls
whether your application gains sole read/write access to a Paradox, dBASE, or
FoxPro table. To gain sole read/write access for these table types, set the table
component’s Exclusive property to True before opening the table. If you succeed in
opening a table for exclusive access, other applications cannot read data from or
write data to the table. Your request for exclusive access is not honored if the table is
already in use when you attempt to open it.

The following statements open a table for exclusive access:

CustomersTable.Exclusive := True; {Set request for exclusive lock}
CustomersTable.Active := True; {Now open the table}

Note You can attempt to set Exclusive on SQL tables, but some servers do not support
exclusive table-level locking. Others may grant an exclusive lock, but permit other
applications to read data from the table. For more information about exclusive
locking of database tables on your server, see your server documentation.

Specifying a dBASE index file
For most servers, you use the methods common to all table-type datasets to specify
an index. These methods are described in “Sorting records with indexes” on
page 18-25.

For dBASE tables that use non-production index files or dBASE III PLUS-style
indexes (*.NDX), however, you must use the IndexFiles and IndexName properties
instead. Set the IndexFiles property to the name of the non-production index file or list
the .NDX files. Then, specify one index in the IndexName property to have it actively
sorting the dataset.

At design time, click the ellipsis button in the IndexFiles property value in the Object
Inspector to invoke the Index Files editor. To add one non-production index file or
.NDX file: click the Add button in the Index Files dialog and select the file from the
Open dialog. Repeat this process once for each non-production index file or .NDX
file. Click the OK button in the Index Files dialog after adding all desired indexes.

This same operation can be performed programmatically at runtime. To do this,
access the IndexFiles property using properties and methods of string lists. When
adding a new set of indexes, first call the Clear method of the table’s IndexFiles

ttDBase dBASE

ttFoxPro FoxPro

ttASCII Comma-delimited ASCII text

Table 20.2 TableType values (continued)

Value Table type

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-7

B D E - b a s e d a r c h i t e c t u r e

property to remove any existing entries. Call the Add method to add each non-
production index file or .NDX file:

with Table2.IndexFiles do begin
Clear;
Add('Bystate.ndx');
Add('Byzip.ndx');
Add('Fullname.ndx');
Add('St_name.ndx');

end;

After adding any desired non-production or .NDX index files, the names of
individual indexes in the index file are available, and can be assigned to the
IndexName property. The index tags are also listed when using the GetIndexNames
method and when inspecting index definitions through the TIndexDef objects in the
IndexDefs property. Properly listed .NDX files are automatically updated as data is
added, changed, or deleted in the table (regardless of whether a given index is used
in the IndexName property).

In the example below, the IndexFiles for the AnimalsTable table component is set to the
non-production index file ANIMALS.MDX, and then its IndexName property is set to
the index tag called “NAME”:

AnimalsTable.IndexFiles.Add('ANIMALS.MDX');
AnimalsTable.IndexName := 'NAME';

Once you have specified the index file, using non-production or .NDX indexes works
the same as any other index. Specifying an index name sorts the data in the table and
makes it available for indexed-based searches, ranges, and (for non-production
indexes) master-detail linking. See “Using table-type datasets” on page 18-24 for
details on these uses of indexes.

There are two special considerations when using dBASE III PLUS-style .NDX indexes
with TTable components. The first is that .NDX files cannot be used as the basis for
master-detail links. The second is that when activating a .NDX index with the
IndexName property, you must include the .NDX extension in the property value as
part of the index name:

with Table1 do begin
IndexName := 'ByState.NDX';
FindKey(['CA']);

end;

Renaming local tables
To rename a Paradox or dBASE table at design time, right-click the table component
and select Rename Table from the context menu.

To rename a Paradox or dBASE table at runtime, call the table’s RenameTable method.
For example, the following statement renames the Customer table to CustInfo:

Customer.RenameTable(‘CustInfo’);

20-8 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Importing data from another table
You can use a table component’s BatchMove method to import data from another
table. BatchMove can

• Copy records from another table into this table.

• Update records in this table that occur in another table.

• Append records from another table to the end of this table.

• Delete records in this table that occur in another table.

BatchMove takes two parameters: the name of the table from which to import data,
and a mode specification that determines which import operation to perform. Table
20.3 describes the possible settings for the mode specification:

For example, the following code updates all records in the current table with records
from the Customer table that have the same values for fields in the current index:

Table1.BatchMove('CUSTOMER.DB', batUpdate);

BatchMove returns the number of records it imports successfully.

Caution Importing records using the batCopy mode overwrites existing records. To preserve
existing records use batAppend instead.

BatchMove performs only some of the batch operations supported by the BDE.
Additional functions are available using the TBatchMove component. If you need to
move a large amount of data between or among tables, use TBatchMove instead of
calling a table’s BatchMove method. For information about using TBatchMove, see
“Using TBatchMove” on page 20-47.

Using TQuery

TQuery represents a single Data Definition Language (DDL) or Data Manipulation
Language (DML) statement (For example, a SELECT, INSERT, DELETE, UPDATE,
CREATE INDEX, or ALTER TABLE command). The language used in commands is
server-specific, but usually compliant with the SQL-92 standard for the SQL
language. TQuery implements all of the basic functionality introduced by TDataSet,
as well as all of the special features typical of query-type datasets. Before looking at
the unique features introduced by TQuery, you should familiarize yourself with the

Table 20.3 BatchMove import modes

Value Meaning

batAppend Append all records from the source table to the end of this table.

batAppendUpdate Append all records from the source table to the end of this table and update
existing records in this table with matching records from the source table.

batCopy Copy all records from the source table into this table.

batDelete Delete all records in this table that also appear in the source table.

batUpdate Update existing records in this table with matching records from the source
table.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-9

B D E - b a s e d a r c h i t e c t u r e

common database features described in “Understanding datasets,” including the
section on query-type datasets that starts on page 18-41.

Because TQuery is a BDE-enabled dataset, it must usually be associated with a
database and a session. (The one exception is when you use the TQuery for a
heterogeneous query.) “Associating a dataset with database and session
connections” on page 20-3 describes how you form these associations. You specify
the SQL statement for the query by setting the SQL property.

A TQuery component can access data in:

• Paradox or dBASE tables, using Local SQL, which is part of the BDE. Local SQL is
a subset of the SQL-92 specification. Most DML is supported and enough DDL
syntax to work with these types of tables. See the local SQL help,
LOCALSQL.HLP, for details on supported SQL syntax.

• Local InterBase Server databases, using the InterBase engine. For information on
InterBase’s SQL-92 standard SQL syntax support and extended syntax support,
see the InterBase Language Reference.

• Databases on remote database servers such as Oracle, Sybase, MS-SQL Server,
Informix, DB2, and InterBase. You must install the appropriate SQL Link driver
and client software (vendor-supplied) specific to the database server to access a
remote server. Any standard SQL syntax supported by these servers is allowed.
For information on SQL syntax, limitations, and extensions, see the documentation
for your particular server.

Creating heterogeneous queries
TQuery supports heterogeneous queries against more than one server or table type
(for example, data from an Oracle table and a Paradox table). When you execute a
heterogeneous query, the BDE parses and processes the query using Local SQL.
Because BDE uses Local SQL, extended, server-specific SQL syntax is not supported.

To perform a heterogeneous query, follow these steps:

1 Define separate BDE aliases for each database accessed in the query using the BDE
BDE Administration tool or the SQL explorer.

2 Leave the DatabaseName property of the TQuery blank; the names of the databases
used will be specified in the SQL statement.

3 In the SQL property, specify the SQL statement to execute. Precede each table
name in the statement with the BDE alias for the table’s database, enclosed in
colons. This whole reference is then enclosed in quotation marks.

4 Set any parameters for the query in the Params property.

5 Call Prepare to prepare the query for execution prior to executing it for the first
time.

6 Call Open or ExecSQL depending on the type of query you are executing.

20-10 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

For example, suppose you define an alias called Oracle1 for an Oracle database that
has a CUSTOMER table, and Sybase1 for a Sybase database that has an ORDERS
table. A simple query against these two tables would be:

SELECT Customer.CustNo, Orders.OrderNo
FROM ”:Oracle1:CUSTOMER”

JOIN ”:Sybase1:ORDERS”
ON (Customer.CustNo = Orders.CustNo)

WHERE (Customer.CustNo = 1503)

As an alternative to using a BDE alias to specify the database in a heterogeneous
query, you can use a TDatabase component. Configure the TDatabase as normal to
point to the database, set the TDatabase.DatabaseName to an arbitrary but unique
value, and then use that value in the SQL statement instead of a BDE alias name.

Obtaining an editable result set
To request a result set that users can edit in data-aware controls, set a query
component’s RequestLive property to True. Setting RequestLive to True does not
guarantee a live result set, but the BDE attempts to honor the request whenever
possible. There are some restrictions on live result set requests, depending on
whether the query uses the local SQL parser or a server’s SQL parser.

• Queries where table names are preceded by a BDE database alias (as in
heterogeneous queries) and queries executed against Paradox or dBASE are
parsed by the BDE using Local SQL. When queries use the local SQL parser, the
BDE offers expanded support for updatable, live result sets in both single table
and multi-table queries. When using Local SQL, a live result set for a query against
a single table or view is returned if the query does not contain any of the
following:

• DISTINCT in the SELECT clause
• Joins (inner, outer, or UNION)
• Aggregate functions with or without GROUP BY or HAVING clauses
• Base tables or views that are not updatable
• Subqueries
• ORDER BY clauses not based on an index

• Queries against a remote database server are parsed by the server. If the
RequestLive property is set to True, the SQL statement must abide by Local SQL
standards in addition to any server-imposed restrictions because the BDE needs to
use it for conveying data changes to the table. A live result set for a query against a
single table or view is returned if the query does not contain any of the following:

• A DISTINCT clause in the SELECT statement
• Aggregate functions, with or without GROUP BY or HAVING clauses
• References to more than one base table or updatable views (joins)
• Subqueries that reference the table in the FROM clause or other tables

If an application requests and receives a live result set, the CanModify property of the
query component is set to True. Even if the query returns a live result set, you may
not be able to update the result set directly if it contains linked fields or you switch
indexes before attempting an update. If these conditions exist, you should treat the
result set as a read-only result set, and update it accordingly.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-11

B D E - b a s e d a r c h i t e c t u r e

If an application requests a live result set, but the SELECT statement syntax does not
allow it, the BDE returns either

• A read-only result set for queries made against Paradox or dBASE.
• An error code for SQL queries made against a remote server.

Updating read-only result sets
Applications can update data returned in a read-only result set if they are using
cached updates.

If you are using a client dataset to cache updates, the client dataset or its associated
provider can automatically generate the SQL for applying updates unless the query
represents multiple tables. If the query represents multiple tables, you must indicate
how to apply the updates:

• If all updates are applied to a single database table, you can indicate the
underlying table to update in an OnGetTableName event handler.

• If you need more control over applying updates, you can associate the query with
an update object (TUpdateSQL). A provider automatically uses this update object
to apply updates:

1 Associate the update object with the query by setting the query’s UpdateObject
property to the TUpdateSQL object you are using.

2 Set the update object’s ModifySQL, InsertSQL, and DeleteSQL properties to SQL
statements that perform the appropriate updates for your query’s data.

If you are using the BDE to cache updates, you must use an update object.

Note For more information on using update objects, see “Using update objects to update a
dataset” on page 20-39.

Using TStoredProc

TStoredProc represents a stored procedure. It implements all of the basic functionality
introduced by TDataSet, as well as most of the special features typical of stored
procedure-type datasets. Before looking at the unique features introduced by
TStoredProc, you should familiarize yourself with the common database features
described in “Understanding datasets,” including the section on stored procedure-
type datasets that starts on page 18-48.

Because TStoredProc is a BDE-enabled dataset, it must be associated with a database
and a session. “Associating a dataset with database and session connections” on
page 20-3 describes how you form these associations. Once the dataset is associated
with a database and session, you can bind it to a particular stored procedure by
setting the StoredProcName property.

TStoredProc differs from other stored procedure-type datasets in the following ways:

• It gives you greater control over how to bind parameters.
• It provides support for Oracle overloaded stored procedures.

20-12 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Binding parameters
When you prepare and execute a stored procedure, its input parameters are
automatically bound to parameters on the server.

TStoredProc lets you use the ParamBindMode property to specify how parameters
should be bound to the parameters on the server. By default ParamBindMode is set to
pbByName, meaning that parameters from the stored procedure component are
matched to those on the server by name. This is the easiest method of binding
parameters.

Some servers also support binding parameters by ordinal value, the order in which
the parameters appear in the stored procedure. In this case the order in which you
specify parameters in the parameter collection editor is significant. The first
parameter you specify is matched to the first input parameter on the server, the
second parameter is matched to the second input parameter on the server, and so on.
If your server supports parameter binding by ordinal value, you can set
ParamBindMode to pbByNumber.

Tip If you want to set ParamBindMode to pbByNumber, you need to specify the correct
parameter types in the correct order. You can view a server’s stored procedure source
code in the SQL Explorer to determine the correct order and type of parameters to
specify.

Working with Oracle overloaded stored procedures
Oracle servers allow overloading of stored procedures; overloaded procedures are
different procedures with the same name. The stored procedure component’s
Overload property enables an application to specify the procedure to execute.

If Overload is zero (the default), there is assumed to be no overloading. If Overload is
one (1), then the stored procedure component executes the first stored procedure it
finds on the Oracle server that has the overloaded name; if it is two (2), it executes the
second, and so on.

Note Overloaded stored procedures may take different input and output parameters. See
your Oracle server documentation for more information.

Connecting to databases with TDatabase

When a Delphi application uses the Borland Database Engine (BDE) to connect to a
database, that connection is encapsulated by a TDatabase component. A database
component represents the connection to a single database in the context of a BDE
session.

TDatabase performs many of the same tasks as and shares many common properties,
methods, and events with other database connection components. These
commonalities are described in Chapter 17, “Connecting to databases.”

In addition to the common properties, methods, and events, TDatabase introduces
many BDE-specific features. These features are described in the following topics.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-13

B D E - b a s e d a r c h i t e c t u r e

Associating a database component with a session
All database components must be associated with a BDE session. Use the
SessionName, establish this association. When you first create a database component
at design time, SessionName is set to “Default”, meaning that it is associated with the
default session component that is referenced by the global Session variable.

Multi-threaded or reentrant BDE applications may require more than one session. If
you need to use multiple sessions, add TSession components for each session. Then,
associate your dataset with a session component by setting the SessionName property
to a session component’s SessionName property.

At runtime, you can access the session component with which the database is
associated by reading the Session property. If SessionName is blank or “Default”, then
the Session property references the same TSession instance referenced by the global
Session variable. Session enables applications to access the properties, methods, and
events of a database component’s parent session component without knowing the
session’s actual name.

For more information about BDE sessions, see “Managing database sessions” on
page 20-16.

If you are using an implicit database component, the session for that database
component is the one specified by the dataset’s SessionName property.

Understanding database and session component interactions
In general, session component properties provide global, default behaviors that
apply to all implicit database components created at runtime. For example, the
controlling session’s KeepConnections property determines whether a database
connection is maintained even if its associated datasets are closed (the default), or if
the connections are dropped when all its datasets are closed. Similarly, the default
OnPassword event for a session guarantees that when an application attempts to
attach to a database on a server that requires a password, it displays a standard
password prompt dialog box.

Session methods apply somewhat differently. TSession methods affect all database
components, regardless of whether they are explicitly created or instantiated
implicitly by a dataset. For example, the session method DropConnections closes all
datasets belonging to a session’s database components, and then drops all database
connections, even if the KeepConnection property for individual database components
is True.

Database component methods apply only to the datasets associated with a given
database component. For example, suppose the database component Database1 is
associated with the default session. Database1.CloseDataSets() closes only those
datasets associated with Database1. Open datasets belonging to other database
components within the default session remain open.

Identifying the database
AliasName and DriverName are mutually exclusive properties that identify the
database server to which the TDatabase component connects.

20-14 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

• AliasName specifies the name of an existing BDE alias to use for the database
component. The alias appears in subsequent drop-down lists for dataset
components so that you can link them to a particular database component. If you
specify AliasName for a database component, any value already assigned to
DriverName is cleared because a driver name is always part of a BDE alias.

You create and edit BDE aliases using the Database Explorer or the BDE
Administration utility. For more information about creating and maintaining BDE
aliases, see the online documentation for these utilities.

• DriverName is the name of a BDE driver. A driver name is one parameter in a BDE
alias, but you may specify a driver name instead of an alias when you create a
local BDE alias for a database component using the DatabaseName property. If you
specify DriverName, any value already assigned to AliasName is cleared to avoid
potential conflicts between the driver name you specify and the driver name that
is part of the BDE alias identified in AliasName.

DatabaseName lets you provide your own name for a database connection. The name
you supply is in addition to AliasName or DriverName, and is local to your
application. DatabaseName can be a BDE alias, or, for Paradox and dBASE files, a
fully-qualified path name. Like AliasName, DatabaseName appears in subsequent
drop-down lists for dataset components to let you link them to database components.

At design time, to specify a BDE alias, assign a BDE driver, or create a local BDE alias,
double-click a database component to invoke the Database Properties editor.

You can enter a DatabaseName in the Name edit box in the properties editor. You can
enter an existing BDE alias name in the Alias name combo box for the Alias property,
or you can choose from existing aliases in the drop-down list. The Driver name
combo box enables you to enter the name of an existing BDE driver for the
DriverName property, or you can choose from existing driver names in the drop-
down list.

Note The Database Properties editor also lets you view and set BDE connection
parameters, and set the states of the LoginPrompt and KeepConnection properties. For
information on connection parameters, see “Setting BDE alias parameters” below.
For information on LoginPrompt, see “Controlling server login” on page 17-4. For
information on KeepConnection see “Opening a connection using TDatabase” on
page 20-15.

Setting BDE alias parameters
At design time you can create or edit connection parameters in three ways:

• Use the Database Explorer or BDE Administration utility to create or modify BDE
aliases, including parameters. For more information about these utilities, see their
online Help files.

• Double-click the Params property in the Object Inspector to invoke the String List
editor.

• Double-click a database component in a data module or form to invoke the
Database Properties editor.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-15

B D E - b a s e d a r c h i t e c t u r e

All of these methods edit the Params property for the database component. Params is
a string list containing the database connection parameters for the BDE alias
associated with a database component. Some typical connection parameters include
path statement, server name, schema caching size, language driver, and SQL query
mode.

When you first invoke the Database Properties editor, the parameters for the BDE
alias are not visible. To see the current settings, click Defaults. The current
parameters are displayed in the Parameter overrides memo box. You can edit
existing entries or add new ones. To clear existing parameters, click Clear. Changes
you make take effect only when you click OK.

At runtime, an application can set alias parameters only by editing the Params
property directly. For more information about parameters specific to using SQL
Links drivers with the BDE, see your online SQL Links help file.

Opening a connection using TDatabase
As with all database connection components, to connect to a database using
TDatabase, you set the Connected property to True or call the Open method. This
process is described in “Connecting to a database server” on page 17-3. Once a
database connection is established the connection is maintained as long as there is at
least one active dataset. When there are no more active datasets, the connection is
dropped unless the database component’s KeepConnection property is True.

When you connect to a remote database server from an application, the application
uses the BDE and the Borland SQL Links driver to establish the connection. (The BDE
can also communicate with an ODBC driver that you supply.) You need to configure
the SQL Links or ODBC driver for your application prior to making the connection.
SQL Links and ODBC parameters are stored in the Params property of a database
component. For information about SQL Links parameters, see the online SQL Links
User’s Guide. To edit the Params property, see “Setting BDE alias parameters” on
page 20-14.

Working with network protocols
As part of configuring the appropriate SQL Links or ODBC driver, you may need to
specify the network protocol used by the server, such as SPX/IPX or TCP/IP,
depending on the driver’s configuration options. In most cases, network protocol
configuration is handled using a server’s client setup software. For ODBC it may also
be necessary to check the driver setup using the ODBC driver manager.

Establishing an initial connection between client and server can be problematic. The
following troubleshooting checklist should be helpful if you encounter difficulties:

• Is your server’s client-side connection properly configured?

• Are the DLLs for your connection and database drivers in the search path?

• If you are using TCP/IP:

• Is your TCP/IP communications software installed? Is the proper
WINSOCK.DLL installed?

• Is the server’s IP address registered in the client’s HOSTS file?

20-16 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

• Is the Domain Name Services (DNS) properly configured?

• Can you ping the server?

For more troubleshooting information, see the online SQL Links User’s Guide and
your server documentation.

Using ODBC
An application can use ODBC data sources (for example, Btrieve). An ODBC driver
connection requires

• A vendor-supplied ODBC driver.

• The Microsoft ODBC Driver Manager.

• The BDE Administration utility.

To set up a BDE alias for an ODBC driver connection, use the BDE Administration
utility. For more information, see the BDE Administration utility’s online help file.

Using database components in data modules
You can safely place database components in data modules. If you put a data module
that contains a database component into the Object Repository, however, and you
want other users to be able to inherit from it, you must set the HandleShared property
of the database component to True to prevent global name space conflicts.

Managing database sessions

An BDE-based application’s database connections, drivers, cursors, queries, and so
on are maintained within the context of one or more BDE sessions. Sessions isolate a
set of database access operations, such as database connections, without the need to
start another instance of the application.

All BDE-based database applications automatically include a default session
component, named Session, that encapsulates the default BDE session. When
database components are added to the application, they are automatically associated
with the default session (note that its SessionName is “Default”). The default session
provides global control over all database components not associated with another
session, whether they are implicit (created by the session at runtime when you open a
dataset that is not associated with a database component you create) or persistent
(explicitly created by your application). The default session is not visible in your data
module or form at design time, but you can access its properties and methods in your
code at runtime.

To use the default session, you need write no code unless your application must

• Explicitly activate or deactivate a session, enabling or disabling the session’s
databases’ ability to open.

• Modify the properties of the session, such as specifying default properties for
implicitly generated database components.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-17

B D E - b a s e d a r c h i t e c t u r e

• Execute a session’s methods, such as managing database connections (for example
opening and closing database connections in response to user actions).

• Respond to session events, such as when the application attempts to access a
password-protected Paradox or dBASE table.

• Set Paradox directory locations such as the NetFileDir property to access Paradox
tables on a network and the PrivateDir property to a local hard drive to speed
performance.

• Manage the BDE aliases that describe possible database connection configurations
for databases and datasets that use the session.

Whether you add database components to an application at design time or create
them dynamically at runtime, they are automatically associated with the default
session unless you specifically assign them to a different session. If you open a
dataset that is not associated with a database component, Delphi automatically

• Creates a database component for it at runtime.

• Associates the database component with the default session.

• Initializes some of the database component’s key properties based on the default
session’s properties. Among the most important of these properties is
KeepConnections, which determines when database connections are maintained or
dropped by an application.

The default session provides a widely applicable set of defaults that can be used as is
by most applications. You need only associate a database component with an
explicitly named session if the component performs a simultaneous query against a
database already opened by the default session. In this case, each concurrent query
must run under its own session. Multi-threaded database applications also require
multiple sessions, where each thread has its own session.

Applications can create additional session components as needed. BDE-based
database applications automatically include a session list component, named
Sessions, that you can use to manage all of your session components. For more
information about managing multiple sessions see, “Managing multiple sessions” on
page 20-28.

You can safely place session components in data modules. If you put a data module
that contains one or more session components into the Object Repository, however,
make sure to set the AutoSessionName property to True to avoid namespace conflicts
when users inherit from it.

Activating a session
Active is a Boolean property that determines if database and dataset components
associated with a session are open. You can use this property to read the current state
of a session’s database and dataset connections, or to change it. If Active is False (the
default), all databases and datasets associated with the session are closed. If True,
databases and datasets are open.

A session is activated when it is first created, and subsequently, whenever its Active
property is changed to True from False (for example, when a database or dataset is

20-18 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

associated with a session is opened and there are currently no other open databases or
datasets). Setting Active to True triggers a session’s OnStartup event, registers the
paradox directory locations with the BDE, and registers the ConfigMode property,
which determines what BDE aliases are available within the session. You can write
an OnStartup event handler to initialize the NetFileDir, PrivateDir, and ConfigMode
properties before they are registered with the BDE, or to perform other specific
session start-up activities. For information about the NetFileDir and PrivateDir
properties, see “Specifying Paradox directory locations” on page 20-24. For
information about ConfigMode, see “Working with BDE aliases” on page 20-24.

Once a session is active, you can open its database connections by calling the
OpenDatabase method.

For session components you place in a data module or form, setting Active to False
when there are open databases or datasets closes them. At runtime, closing databases
and datasets may trigger events associated with them.

Note You cannot set Active to False for the default session at design time. While you can
close the default session at runtime, it is not recommended.

You can also use a session’s Open and Close methods to activate or deactivate sessions
other than the default session at runtime. For example, the following single line of
code closes all open databases and datasets for a session:

Session1.Close;

This code sets Session1’s Active property to False. When a session’s Active property is
False, any subsequent attempt by the application to open a database or dataset resets
Active to True and calls the session’s OnStartup event handler if it exists. You can also
explicitly code session reactivation at runtime. The following code reactivates
Session1:

Session1.Open;

Note If a session is active you can also open and close individual database connections. For
more information, see “Closing database connections” on page 20-19.

Specifying default database connection behavior
KeepConnections provides the default value for the KeepConnection property of
implicit database components created at runtime. KeepConnection specifies what
happens to a database connection established for a database component when all its
datasets are closed. If True (the default), a constant, or persistent, database connection
is maintained even if no dataset is active. If False, a database connection is dropped as
soon as all its datasets are closed.

Note Connection persistence for a database component you explicitly place in a data
module or form is controlled by that database component’s KeepConnection property.
If set differently, KeepConnection for a database component always overrides the
KeepConnections property of the session. For more information about controlling
individual database connections within a session, see “Managing database
connections” on page 20-19.

KeepConnections should be set to True for applications that frequently open and close
all datasets associated with a database on a remote server. This setting reduces

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-19

B D E - b a s e d a r c h i t e c t u r e

network traffic and speeds data access because it means that a connection need only
be opened and closed once during the lifetime of the session. Otherwise, every time
the application closes or reestablishes a connection, it incurs the overhead of
attaching and detaching the database.

Note Even when KeepConnections is True for a session, you can close and free inactive
database connections for all implicit database components by calling the
DropConnections method. For more information about DropConnections, see
“Dropping inactive database connections” on page 20-20.

Managing database connections
You can use a session component to manage the database connections within it. The
session component includes properties and methods you can use to

• Open database connections.
• Close database connections.
• Close and free all inactive temporary database connections.
• Locate specific database connections.
• Iterate through all open database connections.

Opening database connections
To open a database connection within a session, call the OpenDatabase method.
OpenDatabase takes one parameter, the name of the database to open. This name is a
BDE alias or the name of a database component. For Paradox or dBASE, the name can
also be a fully qualified path name. For example, the following statement uses the
default session and attempts to open a database connection for the database pointed
to by the DBDEMOS alias:

var
DBDemosDatabase: TDatabase;

begin
DBDemosDatabase := Session.OpenDatabase('DBDEMOS');
...

OpenDatabase actives the session if it is not already active, and then checks if the
specified database name matches the DatabaseName property of any database
components for the session. If the name does not match an existing database
component, OpenDatabase creates a temporary database component using the
specified name. Finally, OpenDatabase calls the Open method of the database
component to connect to the server. Each call to OpenDatabase increments a reference
count for the database by 1. As long as this reference count remains greater than 0,
the database is open.

Closing database connections
To close an individual database connection, call the CloseDatabase method. When you
call CloseDatabase, the reference count for the database, which is incremented when
you call OpenDatabase, is decremented by 1. When the reference count for a database
is 0, the database is closed. CloseDatabase takes one parameter, the database to close. If
you opened the database using the OpenDatabase method, this parameter can be set to
the return value of OpenDatabase.

Session.CloseDatabase(DBDemosDatabase);

20-20 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

If the specified database name is associated with a temporary (implicit) database
component, and the session’s KeepConnections property is False, the database
component is freed, effectively closing the connection.

Note If KeepConnections is False temporary database components are closed and freed
automatically when the last dataset associated with the database component is
closed. An application can always call CloseDatabase prior to that time to force
closure. To free temporary database components when KeepConnections is True, call
the database component’s Close method, and then call the session’s DropConnections
method.

Note Calling CloseDatabase for a persistent database component does not actually close the
connection. To close the connection, call the database component’s Close method
directly.

There are two ways to close all database connections within the session:

• Set the Active property for the session to False.
• Call the Close method for the session.

When you set Active to False, Delphi automatically calls the Close method. Close
disconnects from all active databases by freeing temporary database components and
calling each persistent database component’s Close method. Finally, Close sets the
session’s BDE handle to nil.

Dropping inactive database connections
If the KeepConnections property for a session is True (the default), then database
connections for temporary database components are maintained even if all the
datasets used by the component are closed. You can eliminate these connections and
free all inactive temporary database components for a session by calling the
DropConnections method. For example, the following code frees all inactive,
temporary database components for the default session:

Session.DropConnections;

Temporary database components for which one or more datasets are active are not
dropped or freed by this call. To free these components, call Close.

Searching for a database connection
Use a session’s FindDatabase method to determine whether a specified database
component is already associated with a session. FindDatabase takes one parameter,
the name of the database to search for. This name is a BDE alias or database
component name. For Paradox or dBASE, it can also be a fully-qualified path name.

FindDatabase returns the database component if it finds a match. Otherwise it returns
nil.

The following code searches the default session for a database component using the
DBDEMOS alias, and if it is not found, creates one and opens it:

var
DB: TDatabase;

begin
DB := Session.FindDatabase('DBDEMOS');

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-21

B D E - b a s e d a r c h i t e c t u r e

if (DB = nil) then { database doesn't exist for session so,}
DB := Session.OpenDatabase('DBDEMOS'); { create and open it}

if Assigned(DB) and DB.Connected then begin
DB.StartTransaction;
...

end;
end;

Iterating through a session’s database components
You can use two session component properties, Databases and DatabaseCount, to cycle
through all the active database components associated with a session.

Databases is an array of all currently active database components associated with a
session. DatabaseCount is the number of databases in that array. As connections are
opened or closed during a session’s life-span, the values of Databases and
DatabaseCount change. For example, if a session’s KeepConnections property is False
and all database components are created as needed at runtime, each time a unique
database is opened, DatabaseCount increases by one. Each time a unique database is
closed, DatabaseCount decreases by one. If DatabaseCount is zero, there are no
currently active database components for the session.

The following example code sets the KeepConnection property of each active database
in the default session to True:

var
MaxDbCount: Integer;

begin
with Session do

if (DatabaseCount > 0) then
for MaxDbCount := 0 to (DatabaseCount - 1) do

Databases[MaxDbCount].KeepConnection := True;
end;

Working with password-protected Paradox and dBASE tables
A session component can store passwords for password-protected Paradox and
dBASE tables. Once you add a password to the session, your application can open
tables protected by that password. Once you remove the password from the session,
your application can’t open tables that use the password until you add it again.

Using the AddPassword method
The AddPassword method provides an optional way for an application to provide a
password for a session prior to opening an encrypted Paradox or dBASE table that
requires a password for access. If you do not add the password to the session, when
your application attempts to open a password-protected table, a dialog box prompts
the user for a password.

AddPassword takes one parameter, a string containing the password to use. You can
call AddPassword as many times as necessary to add passwords (one at a time) to
access tables protected with different passwords.

20-22 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

var
Passwrd: String;

begin
Passwrd := InputBox('Enter password', 'Password:', '');
Session.AddPassword(Passwrd);
try
Table1.Open;

except
ShowMessage('Could not open table!');
Application.Terminate;

end;
end;

Note Use of the InputBox function, above, is for demonstration purposes. In a real-world
application, use password entry facilities that mask the password as it is entered,
such as the PasswordDialog function or a custom form.

The Add button of the PasswordDialog function dialog has the same effect as the
AddPassword method.

if PasswordDialog(Session) then
Table1.Open

else
ShowMessage('No password given, could not open table!');

end;

Using the RemovePassword and RemoveAllPasswords methods
RemovePassword deletes a previously added password from memory.
RemovePassword takes one parameter, a string containing the password to delete.

Session.RemovePassword(‘secret’);

RemoveAllPasswords deletes all previously added passwords from memory.

Session.RemoveAllPasswords;

Using the GetPassword method and OnPassword event
The OnPassword event allows you to control how your application supplies
passwords for Paradox and dBASE tables when they are required. Provide a handler
for the OnPassword event if you want to override the default password handling
behavior. If you do not provide a handler, Delphi presents a default dialog for
entering a password and no special behavior is provided—the table open attempt
either succeeds or an exception is raised.

If you provide a handler for the OnPassword event, do two things in the event
handler: call the AddPassword method and set the event handler’s Continue parameter
to True. The AddPassword method passes a string to the session to be used as a
password for the table. The Continue parameter indicates to Delphi that no further
password prompting need be done for this table open attempt. The default value for
Continue is False, and so requires explicitly setting it to True. If Continue is False after
the event handler has finished executing, an OnPassword event fires again—even if a
valid password has been passed using AddPassword. If Continue is True after
execution of the event handler and the string passed with AddPassword is not the
valid password, the table open attempt fails and an exception is raised.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-23

B D E - b a s e d a r c h i t e c t u r e

OnPassword can be triggered by two circumstances. The first is an attempt to open a
password-protected table (dBASE or Paradox) when a valid password has not
already been supplied to the session. (If a valid password for that table has already
been supplied, the OnPassword event does not occur.)

The other circumstance is a call to the GetPassword method. GetPassword either
generates an OnPassword event, or, if the session does not have an OnPassword event
handler, displays a default password dialog. It returns True if the OnPassword event
handler or default dialog added a password to the session, and False if no entry at all
was made.

In the following example, the Password method is designated as the OnPassword event
handler for the default session by assigning it to the global Session object’s
OnPassword property.

procedure TForm1.FormCreate(Sender: TObject);
begin

Session.OnPassword := Password;
end;

In the Password method, the InputBox function prompts the user for a password. The
AddPassword method then programmatically supplies the password entered in the
dialog to the session.

procedure TForm1.Password(Sender: TObject; var Continue: Boolean);
var

Passwrd: String;
begin

Passwrd := InputBox('Enter password', 'Password:', '');
Continue := (Passwrd > '');
Session.AddPassword(Passwrd);

end;

The OnPassword event (and thus the Password event handler) is triggered by an
attempt to open a password-protected table, as demonstrated below. Even though
the user is prompted for a password in the handler for the OnPassword event, the
table open attempt can still fail if they enter an invalid password or something else
goes wrong.

procedure TForm1.OpenTableBtnClick(Sender: TObject);
const
 CRLF = #13 + #10;
begin

try
Table1.Open; { this line triggers the OnPassword event }

except
on E:Exception do begin { exception if cannot open table }
ShowMessage('Error!' + CRLF + { display error explaining what happened }

E.Message + CRLF +
'Terminating application...');

Application.Terminate; { end the application }
end;

end;
end;

20-24 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Specifying Paradox directory locations
Two session component properties, NetFileDir and PrivateDir, are specific to
applications that work with Paradox tables.

NetFileDir specifies the directory that contains the Paradox network control file,
PDOXUSRS.NET. This file governs sharing of Paradox tables on network drives. All
applications that need to share Paradox tables must specify the same directory for the
network control file (typically a directory on a network file server). Delphi derives a
value for NetFileDir from the Borland Database Engine (BDE) configuration file for a
given database alias. If you set NetFileDir yourself, the value you supply overrides
the BDE configuration setting, so be sure to validate the new value.

At design time, you can specify a value for NetFileDir in the Object Inspector. You can
also set or change NetFileDir in code at runtime. The following code sets NetFileDir
for the default session to the location of the directory from which your application
runs:

Session.NetFileDir := ExtractFilePath(Application.EXEName);

Note NetFileDir can only be changed when an application does not have any open Paradox
files. If you change NetFileDir at runtime, verify that it points to a valid network
directory that is shared by your network users.

PrivateDir specifies the directory for storing temporary table processing files, such as
those generated by the BDE to handle local SQL statements. If no value is specified
for the PrivateDir property, the BDE automatically uses the current directory at the
time it is initialized. If your application runs directly from a network file server, you
can improve application performance at runtime by setting PrivateDir to a user’s local
hard drive before opening the database.

Note Do not set PrivateDir at design time and then open the session in the IDE. Doing so
generates a Directory is busy error when running your application from the IDE.

The following code changes the setting of the default session’s PrivateDir property to
a user’s C:\TEMP directory:

Session.PrivateDir := 'C:\TEMP';

Important Do not set PrivateDir to a root directory on a drive. Always specify a subdirectory.

Working with BDE aliases
Each database component associated with a session has a BDE alias (although
optionally a fully-qualified path name may be substituted for an alias when accessing
Paradox and dBASE tables). A session can create, modify, and delete aliases during
its lifetime.

The AddAlias method creates a new BDE alias for an SQL database server. AddAlias
takes three parameters: a string containing a name for the alias, a string that specifies
the SQL Links driver to use, and a string list populated with parameters for the alias.
For example, the following statements use AddAlias to add a new alias for accessing
an InterBase server to the default session:

var
AliasParams: TStringList;

begin
AliasParams := TStringList.Create;

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-25

B D E - b a s e d a r c h i t e c t u r e

try
with AliasParams do begin
Add('OPEN MODE=READ');
Add('USER NAME=TOMSTOPPARD');
Add('SERVER NAME=ANIMALS:/CATS/PEDIGREE.GDB');

end;
Session.AddAlias('CATS', 'INTRBASE', AliasParams);
...

finally
AliasParams.Free;

end;
end;

AddStandardAlias creates a new BDE alias for Paradox, dBASE, or ASCII tables.
AddStandardAlias takes three string parameters: the name for the alias, the fully-
qualified path to the Paradox or dBASE table to access, and the name of the default
driver to use when attempting to open a table that does not have an extension. For
example, the following statement uses AddStandardAlias to create a new alias for
accessing a Paradox table:

AddStandardAlias('MYDBDEMOS', 'C:\TESTING\DEMOS\', 'Paradox');

When you add an alias to a session, the BDE stores a copy of the alias in memory,
where it is only available to this session and any other sessions with cfmPersistent
included in the ConfigMode property. ConfigMode is a set that describes which types
of aliases can be used by the databases in the session. The default setting is cmAll,
which translates into the set [cfmVirtual, cfmPersistent, cfmSession]. If ConfigMode is
cmAll, a session can see all aliases created within the session (cfmSession), all aliases in
the BDE configuration file on a user’s system (cfmPersistent), and all aliases that the
BDE maintains in memory (cfmVirtual). You can change ConfigMode to restrict what
BDE aliases the databases in a session can use. For example, setting ConfigMode to
cfmSession restricts a session’s view of aliases to those created within the session. All
other aliases in the BDE configuration file and in memory are not available.

To make a newly created alias available to all sessions and to other applications, use
the session’s SaveConfigFile method. SaveConfigFile writes aliases in memory to the
BDE configuration file where they can be read and used by other BDE-enabled
applications.

After you create an alias, you can make changes to its parameters by calling
ModifyAlias. ModifyAlias takes two parameters: the name of the alias to modify and a
string list containing the parameters to change and their values. For example, the
following statements use ModifyAlias to change the OPEN MODE parameter for the
CATS alias to READ/WRITE in the default session:

var
List: TStringList;

begin
List := TStringList.Create;
with List do begin

Clear;
Add('OPEN MODE=READ/WRITE');

end;
Session.ModifyAlias('CATS', List);
List.Free;
...

20-26 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

To delete an alias previously created in a session, call the DeleteAlias method.
DeleteAlias takes one parameter, the name of the alias to delete. DeleteAlias makes an
alias unavailable to the session.

Note DeleteAlias does not remove an alias from the BDE configuration file if the alias was
written to the file by a previous call to SaveConfigFile. To remove the alias from the
configuration file after calling DeleteAlias, call SaveConfigFile again.

Session components provide five methods for retrieving information about a BDE
aliases, including parameter information and driver information. They are:

• GetAliasNames, to list the aliases to which a session has access.
• GetAliasParams, to list the parameters for a specified alias.
• GetAliasDriverName, to return the name of the BDE driver used by the alias.
• GetDriverNames, to return a list of all BDE drivers available to the session.
• GetDriverParams, to return driver parameters for a specified driver.

For more information about using a session’s informational methods, see “Retrieving
information about a session” below. For more information about BDE aliases and the
SQL Links drivers with which they work, see the BDE online help, BDE32.HLP.

Retrieving information about a session
You can retrieve information about a session and its database components by using a
session’s informational methods. For example, one method retrieves the names of all
aliases known to the session, and another method retrieves the names of tables
associated with a specific database component used by the session. Table 20.4
summarizes the informational methods to a session component:

Except for GetAliasDriverName, these methods return a set of values into a string list
declared and maintained by your application. (GetAliasDriverName returns a single
string, the name of the current BDE driver for a particular database component used
by the session.)

Table 20.4 Database-related informational methods for session components

Method Purpose

GetAliasDriverName Retrieves the BDE driver for a specified alias of a database.

GetAliasNames Retrieves the list of BDE aliases for a database.

GetAliasParams Retrieves the list of parameters for a specified BDE alias of a database.

GetConfigParams Retrieves configuration information from the BDE configuration file.

GetDatabaseNames Retrieves the list of BDE aliases and the names of any TDatabase
components currently in use.

GetDriverNames Retrieves the names of all currently installed BDE drivers.

GetDriverParams Retrieves the list of parameters for a specified BDE driver.

GetStoredProcNames Retrieves the names of all stored procedures for a specified database.

GetTableNames Retrieves the names of all tables matching a specified pattern for a
specified database.

GetFieldNames Retrieves the names of all fields in a specified table in a specified
database.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-27

B D E - b a s e d a r c h i t e c t u r e

For example, the following code retrieves the names of all database components and
aliases known to the default session:

var
List: TStringList;

begin
List := TStringList.Create;
try

Session.GetDatabaseNames(List);
...

finally
List.Free;

end;
end;

Creating additional sessions
You can create sessions to supplement the default session. At design time, you can
place additional sessions on a data module (or form), set their properties in the
Object Inspector, write event handlers for them, and write code that calls their
methods. You can also create sessions, set their properties, and call their methods at
runtime.

Note Creating additional sessions is optional unless an application runs concurrent queries
against a database or the application is multi-threaded.

To enable dynamic creation of a session component at runtime, follow these steps:

1 Declare a TSession variable.

2 Instantiate a new session by calling the Create method. The constructor sets up an
empty list of database components for the session, sets the KeepConnections
property to True, and adds the session to the list of sessions maintained by the
application’s session list component.

3 Set the SessionName property for the new session to a unique name. This property
is used to associate database components with the session. For more information
about the SessionName property, see “Naming a session” on page 20-28.

4 Activate the session and optionally adjust its properties.

You can also create and open sessions using the OpenSession method of TSessionList.
Using OpenSession is safer than calling Create, because OpenSession only creates a
session if it does not already exist. For information about OpenSession, see “Managing
multiple sessions” on page 20-28.

The following code creates a new session component, assigns it a name, and opens
the session for database operations that follow (not shown here). After use, it is
destroyed with a call to the Free method.

Note Never delete the default session.

var
SecondSession: TSession;

begin
SecondSession := TSession.Create(Form1);
with SecondSession do

try

20-28 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

SessionName := 'SecondSession';
KeepConnections := False;
Open;
...

finally
SecondSession.Free;

end;
end;

Naming a session
A session’s SessionName property is used to name the session so that you can
associate databases and datasets with it. For the default session, SessionName is
“Default,” For each additional session component you create, you must set its
SessionName property to a unique value.

Database and dataset components have SessionName properties that correspond to
the SessionName property of a session component. If you leave the SessionName
property blank for a database or dataset component it is automatically associated
with the default session. You can also set SessionName for a database or dataset
component to a name that corresponds to the SessionName of a session component
you create.

The following code uses the OpenSession method of the default TSessionList
component, Sessions, to open a new session component, sets its SessionName to
“InterBaseSession,” activate the session, and associate an existing database
component Database1 with that session:

var
IBSession: TSession;
...

begin
IBSession := Sessions.OpenSession('InterBaseSession');
Database1.SessionName := 'InterBaseSession';

end;

Managing multiple sessions
If you create a single application that uses multiple threads to perform database
operations, you must create one additional session for each thread. The BDE page on
the Component palette contains a session component that you can place in a data
module or on a form at design time.

Important When you place a session component, you must also set its SessionName property to a
unique value so that it does not conflict with the default session’s SessionName
property.

Placing a session component at design time presupposes that the number of threads
(and therefore sessions) required by the application at runtime is static. More likely,
however, is that an application needs to create sessions dynamically. To create
sessions dynamically, call the OpenSession method of the global Sessions object at
runtime.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-29

B D E - b a s e d a r c h i t e c t u r e

OpenSession requires a single parameter, a name for the session that is unique across
all session names for the application. The following code dynamically creates and
activates a new session with a uniquely generated name:

Sessions.OpenSession('RunTimeSession' + IntToStr(Sessions.Count + 1));

This statement generates a unique name for a new session by retrieving the current
number of sessions, and adding one to that value. Note that if you dynamically create
and destroy sessions at runtime, this example code will not work as expected.
Nevertheless, this example illustrates how to use the properties and methods of
Sessions to manage multiple sessions.

Sessions is a variable of type TSessionList that is automatically instantiated for BDE-
based database applications. You use the properties and methods of Sessions to keep
track of multiple sessions in a multi-threaded database application. Table 20.5
summarizes the properties and methods of the TSessionList component:

As an example of using Sessions properties and methods in a multi-threaded
application, consider what happens when you want to open a database connection.
To determine if a connection already exists, use the Sessions property to walk through
each session in the sessions list, starting with the default session. For each session
component, examine its Databases property to see if the database in question is open.
If you discover that another thread is already using the desired database, examine
the next session in the list.

If an existing thread is not using the database, then you can open the connection
within that session.

If, on the other hand, all existing threads are using the database, you must open a
new session in which to open another database connection.

If you are replicating a data module that contains a session in a multi-threaded
application, where each thread contains its own copy of the data module, you can use
the AutoSessionName property to make sure that all datasets in the data module use
the correct session. Setting AutoSessionName to True causes the session to generate its
own unique name dynamically when it is created at runtime. It then assigns this
name to every dataset in the data module, overriding any explicitly set session
names. This ensures that each thread has its own session, and each dataset uses the
session in its own data module.

Table 20.5 TSessionList properties and methods

Property or Method Purpose

Count Returns the number of sessions, both active and inactive, in the session list.

FindSession Searches for a session with a specified name and returns a pointer to it, or
nil if there is no session with the specified name. If passed a blank session
name, FindSession returns a pointer to the default session, Session.

GetSessionNames Populates a string list with the names of all currently instantiated session
components. This procedure always adds at least one string, “Default” for
the default session.

List Returns the session component for a specified session name. If there is no
session with the specified name, an exception is raised.

OpenSession Creates and activates a new session or reactivates an existing session for a
specified session name.

Sessions Accesses the session list by ordinal value.

20-30 D e v e l o p e r ’ s G u i d e

U s i n g t r a n s a c t i o n s w i t h t h e B D E

Using transactions with the BDE
By default, the BDE provides implicit transaction control for your applications. When
an application is under implicit transaction control, a separate transaction is used for
each record in a dataset that is written to the underlying database. Implicit
transactions guarantee both a minimum of record update conflicts and a consistent
view of the database. On the other hand, because each row of data written to a
database takes place in its own transaction, implicit transaction control can lead to
excessive network traffic and slower application performance. Also, implicit
transaction control will not protect logical operations that span more than one record.

If you explicitly control transactions, you can choose the most effective times to start,
commit, and roll back your transactions. When you develop applications in a multi-
user environment, particularly when your applications run against a remote SQL
server, you should control transactions explicitly.

There are two mutually exclusive ways to control transactions explicitly in a BDE-
based database application:

• Use the database component to control transactions. The main advantage to using
the methods and properties of a database component is that it provides a clean,
portable application that is not dependent on a particular database or server. This
type of transaction control is supported by all database connection components,
and described in “Managing transactions” on page 17-5

• Use passthrough SQL in a query component to pass SQL statements directly to
remote SQL or ODBC servers. The main advantage to passthrough SQL is that you
can use the advanced transaction management capabilities of a particular database
server, such as schema caching. To understand the advantages of your server’s
transaction management model, see your database server documentation. For
more information about using passthrough SQL, see “Using passthrough SQL”
below.

When working with local databases, you can only use the database component to
create explicit transactions (local databases do not support passthrough SQL).
However, there are limitations to using local transactions. For more information on
using local transactions, see “Using local transactions” on page 20-31.

Note You can minimize the number of transactions you need by caching updates. For
more information about cached updates, see “Using a client dataset to cache
updates” on page 23-15 and “Using the BDE to cache updates” on page 20-32.

Using passthrough SQL

With passthrough SQL, you use a TQuery, TStoredProc, or TUpdateSQL component to
send an SQL transaction control statement directly to a remote database server. The
BDE does not process the SQL statement. Using passthrough SQL enables you to take
direct advantage of the transaction controls offered by your server, especially when
those controls are non-standard.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-31

U s i n g t r a n s a c t i o n s w i t h t h e B D E

To use passthrough SQL to control a transaction, you must

• Install the proper SQL Links drivers. If you chose the “Typical” installation when
installing Delphi, all SQL Links drivers are already properly installed.

• Configure your network protocol. See your network administrator for more
information.

• Have access to a database on a remote server.

• Set SQLPASSTHRU MODE to NOT SHARED using the SQL Explorer.
SQLPASSTHRU MODE specifies whether the BDE and passthrough SQL
statements can share the same database connections. In most cases,
SQLPASSTHRU MODE is set to SHARED AUTOCOMMIT. However, you can’t
share database connections when using transaction control statements. For more
information about SQLPASSTHRU modes, see the help file for the BDE
Administration utility.

Note When SQLPASSTHRU MODE is NOT SHARED, you must use separate database
components for datasets that pass SQL transaction statements to the server and
datasets that do not.

Using local transactions

The BDE supports local transactions against Paradox, dBASE, Access, and FoxPro
tables. From a coding perspective, there is no difference to you between a local
transaction and a transaction against a remote database server.

Note When using transactions with local Paradox, dBASE, Access, and FoxPro tables, set
TransIsolation to tiDirtyRead instead of using the default value of tiReadCommitted. A
BDE error is returned if TransIsolation is set to anything but tiDirtyRead for local
tables.

When a transaction is started against a local table, updates performed against the
table are logged. Each log record contains the old record buffer for a record. When a
transaction is active, records that are updated are locked until the transaction is
committed or rolled back. On rollback, old record buffers are applied against
updated records to restore them to their pre-update states.

Local transactions are more limited than transactions against SQL servers or ODBC
drivers. In particular, the following limitations apply to local transactions:

• Automatic crash recovery is not provided.

• Data definition statements are not supported.

• Transactions cannot be run against temporary tables.

• TransIsolation level must only be set to tiDirtyRead.

• For Paradox, local transactions can only be performed on tables with valid
indexes. Data cannot be rolled back on Paradox tables that do not have indexes.

• Only a limited number of records can be locked and modified. With Paradox
tables, you are limited to 255 records. With dBASE the limit is 100.

20-32 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

• Transactions cannot be run against the BDE ASCII driver.

• Closing a cursor on a table during a transaction rolls back the transaction unless:

• Several tables are open.
• The cursor is closed on a table to which no changes were made.

Using the BDE to cache updates
The recommended approach for caching updates is to use a client dataset
(TBDEClientDataSet) or to connect the BDE-dataset to a client dataset using a dataset
provider. The advantages of using a client dataset are discussed in “Using a client
dataset to cache updates” on page 23-15.

For simple cases, however, you may choose to use the BDE to cache updates instead.
BDE-enabled datasets and TDatabase components provide built-in properties,
methods, and events for handling cached updates. Most of these correspond directly
to the properties, methods, and events that you use with client datasets and dataset
providers when using a client dataset to cache updates. The following table lists these
properties, events, and methods and the corresponding properties, methods and
events on TBDEClientDataSet:

Table 20.6 Properties, methods, and events for cached updates

On BDE-enabled datasets
(or TDatabase) On TBDEClientDataSet Purpose

CachedUpdates Not needed for client
datasets, which always
cache updates.

Determines whether cached updates are
in effect for the dataset.

UpdateObject Use a BeforeUpdateRecord
event handler, or, if using
TClientDataSet, use the
UpdateObject property on
the BDE-enabled source
dataset.

Specifies the update object for updating
read-only datasets.

UpdatesPending ChangeCount Indicates whether the local cache
contains updated records that need to be
applied to the database.

UpdateRecordTypes StatusFilter Indicates the kind of updated records to
make visible when applying cached
updates.

UpdateStatus UpdateStatus Indicates if a record is unchanged,
modified, inserted, or deleted.

OnUpdateError OnReconcileError An event for handling update errors on
a record-by-record basis.

OnUpdateRecord BeforeUpdateRecord An event for processing updates on a
record-by-record basis.

ApplyUpdates
ApplyUpdates (database)

ApplyUpdates Applies records in the local cache to the
database.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-33

U s i n g t h e B D E t o c a c h e u p d a t e s

For an overview of the cached update process, see “Overview of using cached
updates” on page 23-16.

Note Even if you are using a client dataset to cache updates, you may want to read the
section about update objects on page 20-39. You can use update objects in the
BeforeUpdateRecord event handler of TBDEClientDataSet or TDataSetProvider to apply
updates from stored procedures or multi-table queries.

Enabling BDE-based cached updates

To use the BDE for cached updates, the BDE-enabled dataset must indicate that it
should cache updates. This is specified by setting the CachedUpdates property to True.
When you enable cached updates, a copy of all records is cached in local memory.
Users view and edit this local copy of data. Changes, insertions, and deletions are
also cached in memory. They accumulate in memory until the application applies
those changes to the database server. If changed records are successfully applied to
the database, the record of those changes are freed in the cache.

The dataset caches all updates until you set CachedUpdates to False. Applying cached
updates does not disable further cached updates; it only writes the current set of
changes to the database and clears them from memory. Canceling the updates by
calling CancelUpdates removes all the changes currently in the cache, but does not
stop the dataset from caching any subsequent changes.

Note If you disable cached updates by setting CachedUpdates to False, any pending changes
that you have not yet applied are discarded without notification. To prevent losing
changes, test the UpdatesPending property before disabling cached updates.

Applying BDE-based cached updates

Applying updates is a two-phase process that should occur in the context of a
database component’s transaction so that your application can recover gracefully
from errors. For information about transaction handling with database components,
see “Managing transactions” on page 17-5.

CancelUpdates CancelUpdates Removes all pending updates from the
local cache without applying them.

CommitUpdates Reconcile Clears the update cache following
successful application of updates.

FetchAll GetNextPacket
(and PacketRecords)

Copies database records to the local
cache for editing and updating.

RevertRecord RevertRecord Undoes updates to the current record if
updates are not yet applied.

Table 20.6 Properties, methods, and events for cached updates (continued)

On BDE-enabled datasets
(or TDatabase) On TBDEClientDataSet Purpose

20-34 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

When applying updates under database transaction control, the following events
take place:

1 A database transaction starts.

2 Cached updates are written to the database (phase 1). If you provide it, an
OnUpdateRecord event is triggered once for each record written to the database. If
an error occurs when a record is applied to the database, the OnUpdateError event
is triggered if you provide one.

3 The transaction is committed if writes are successful or rolled back if they are not:

If the database write is successful:

• Database changes are committed, ending the database transaction.
• Cached updates are committed, clearing the internal cache buffer (phase 2).

If the database write is unsuccessful:

• Database changes are rolled back, ending the database transaction.
• Cached updates are not committed, remaining intact in the internal cache.

For information about creating and using an OnUpdateRecord event handler, see
“Creating an OnUpdateRecord event handler” on page 20-36. For information about
handling update errors that occur when applying cached updates, see “Handling
cached update errors” on page 20-37.

Note Applying cached updates is particularly tricky when you are working with multiple
datasets linked in a master/detail relationship because the order in which you apply
updates to each dataset is significant. Usually, you must update master tables before
detail tables, except when handling deleted records, where this order must be
reversed. Because of this difficulty, it is strongly recommended that you use client
datasets when caching updates in a master/detail form. Client datasets automatically
handle all ordering issues with master/detail relationships.

There are two ways to apply BDE-based updates:

• You can apply updates using a database component by calling its ApplyUpdates
method. This method is the simplest approach, because the database handles all
details of managing a transaction for the update process and of clearing the
dataset’s cache when updating is complete.

• You can apply updates for a single dataset by calling the dataset’s ApplyUpdates
and CommitUpdates methods. When applying updates at the dataset level you
must explicitly code the transaction that wraps the update process as well as
explicitly call CommitUpdates to commit updates from the cache.

Important To apply updates from a stored procedure or an SQL query that does not return a
live result set, you must use TUpdateSQL to specify how to perform updates. For
updates to joins (queries involving two or more tables), you must provide one
TUpdateSQL object for each table involved, and you must use the OnUpdateRecord
event handler to invoke these objects to perform the updates. See “Using update
objects to update a dataset” on page 20-39 for details.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-35

U s i n g t h e B D E t o c a c h e u p d a t e s

Applying cached updates using a database
To apply cached updates to one or more datasets in the context of a database
connection, call the database component’s ApplyUpdates method. The following code
applies updates to the CustomersQuery dataset in response to a button click event:

procedure TForm1.ApplyButtonClick(Sender: TObject);
begin

// for local databases such as Paradox, dBASE, and FoxPro
// set TransIsolation to DirtyRead
if not (Database1.IsSQLBased) and not (Database1.TransIsolation = tiDirtyRead) then

Database1.TransIsolation := tiDirtyRead;
Database1.ApplyUpdates([CustomersQuery]);

end;

The above sequence writes cached updates to the database in the context of an
automatically-generated transaction. If successful, it commits the transaction and
then commits the cached updates. If unsuccessful, it rolls back the transaction and
leaves the update cache unchanged. In this latter case, you should handle cached
update errors through a dataset’s OnUpdateError event. For more information about
handling update errors, see “Handling cached update errors” on page 20-37.

The main advantage to calling a database component’s ApplyUpdates method is that
you can update any number of dataset components that are associated with the
database. The parameter for the ApplyUpdates method for a database is an array of
TDBDataSet. For example, the following code applies updates for two queries:

if not (Database1.IsSQLBased) and not (Database1.TransIsolation = tiDirtyRead) then
Database1.TransIsolation := tiDirtyRead;

Database1.ApplyUpdates([CustomerQuery, OrdersQuery]);

Applying cached updates with dataset component methods
You can apply updates for individual BDE-enabled datasets directly using the
dataset’s ApplyUpdates and CommitUpdates methods. Each of these methods
encapsulate one phase of the update process:

1 ApplyUpdates writes cached changes to a database (phase 1).

2 CommitUpdates clears the internal cache when the database write is successful
(phase 2).

The following code illustrates how you apply updates within a transaction for the
CustomerQuery dataset:

procedure TForm1.ApplyButtonClick(Sender: TObject)
begin

Database1.StartTransaction;
try

if not (Database1.IsSQLBased) and not (Database1.TransIsolation = tiDirtyRead) then
Database1.TransIsolation := tiDirtyRead;

CustomerQuery.ApplyUpdates; { try to write the updates to the database }
Database1.Commit; { on success, commit the changes }

except
Database1.Rollback; { on failure, undo any changes }

20-36 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

raise; { raise the exception again to prevent a call to CommitUpdates }
end;
CustomerQuery.CommitUpdates; { on success, clear the internal cache }

end;

If an exception is raised during the ApplyUpdates call, the database transaction is
rolled back. Rolling back the transaction ensures that the underlying database table is
not changed. The raise statement inside the try...except block reraises the exception,
thereby preventing the call to CommitUpdates. Because CommitUpdates is not called,
the internal cache of updates is not cleared so that you can handle error conditions
and possibly retry the update.

Creating an OnUpdateRecord event handler
When a BDE-enabled dataset applies its cached updates, it iterates through the
changes recorded in its cache, attempting to apply them to the corresponding records
in the base table. As the update for each changed, deleted, or newly inserted record is
about to be applied, the dataset component’s OnUpdateRecord event fires.

Providing a handler for the OnUpdateRecord event allows you to perform actions just
before the current record’s update is actually applied. Such actions can include
special data validation, updating other tables, special parameter substitution, or
executing multiple update objects. A handler for the OnUpdateRecord event affords
you greater control over the update process.

Here is the skeleton code for an OnUpdateRecord event handler:

procedure TForm1.DataSetUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin

{ perform updates here... }
end;

The DataSet parameter specifies the cached dataset with updates.

The UpdateKind parameter indicates the type of update that needs to be performed
for the current record. Values for UpdateKind are ukModify, ukInsert, and ukDelete. If
you are using an update object, you need to pass this parameter to the update object
when applying the update. You may also need to inspect this parameter if your
handler performs any special processing based on the kind of update.

The UpdateAction parameter indicates whether you applied the update. Values for
UpdateAction are uaFail (the default), uaAbort, uaSkip, uaRetry, uaApplied. If your event
handler successfully applies the update, change this parameter to uaApplied before
exiting. If you decide not to update the current record, change the value to uaSkip to
preserve unapplied changes in the cache. If you do not change the value for
UpdateAction, the entire update operation for the dataset is aborted and an exception
is raised. You can suppress the error message (raising a silent exception) by changing
UpdateAction to uaAbort.

In addition to these parameters, you will typically want to make use of the OldValue
and NewValue properties for the field component associated with the current record.
OldValue gives the original field value that was fetched from the database. It can be
useful in locating the database record to update. NewValue is the edited value in the
update you are trying to apply.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-37

U s i n g t h e B D E t o c a c h e u p d a t e s

Important An OnUpdateRecord event handler, like an OnUpdateError or OnCalcFields event
handler, should never call any methods that change the current record in a dataset.

The following example illustrates how to use these parameters and properties. It uses
a TTable component named UpdateTable to apply updates. In practice, it is easier to
use an update object, but using a table illustrates the possibilities more clearly.

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
if UpdateKind = ukInsert then

UpdateTable.AppendRecord([DataSet.Fields[0].NewValue, DataSet.Fields[1].NewValue])
else

if UpdateTable.Locate('KeyField', VarToStr(DataSet.Fields[1].OldValue), []) then
case UpdateKind of

ukModify:
begin
UpdateTable.Edit;
UpdateTable.Fields[1].AsString := VarToStr(DataSet.Fields[1].NewValue);
UpdateTable.Post;

end;
ukInsert:

begin
UpdateTable.Insert;
UpdateTable.Fields[1].AsString := VarToStr(DataSet.Fields[1].NewValue);
UpdateTable.Post;

end;
ukDelete: UpdateTable.Delete;

end;
UpdateAction := uaApplied;

end;

Handling cached update errors
The Borland Database Engine (BDE) specifically checks for user update conflicts and
other conditions when attempting to apply updates, and reports any errors. The
dataset component’s OnUpdateError event enables you to catch and respond to
errors. You should create a handler for this event if you use cached updates. If you do
not, and an error occurs, the entire update operation fails.

Here is the skeleton code for an OnUpdateError event handler:

procedure TForm1.DataSetUpdateError(DataSet: TDataSet; E: EDatabaseError;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
{ ... perform update error handling here ... }

end;

DataSet references the dataset to which updates are applied. You can use this dataset
to access new and old values during error handling. The original values for fields in
each record are stored in a read-only TField property called OldValue. Changed
values are stored in the analogous TField property NewValue. These values provide
the only way to inspect and change update values in the event handler.

Warning Do not call any dataset methods that change the current record (such as Next and
Prior). Doing so causes the event handler to enter an endless loop.

20-38 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

The E parameter is usually of type EDBEngineError. From this exception type, you
can extract an error message that you can display to users in your error handler. For
example, the following code could be used to display the error message in the
caption of a dialog box:

ErrorLabel.Caption := E.Message;

This parameter is also useful for determining the actual cause of the update error.
You can extract specific error codes from EDBEngineError, and take appropriate
action based on it.

The UpdateKind parameter describes the type of update that generated the error.
Unless your error handler takes special actions based on the type of update being
carried out, your code probably will not make use of this parameter.

The following table lists possible values for UpdateKind:

UpdateAction tells the BDE how to proceed with the update process when your event
handler exits. When your update error handler is first called, the value for this
parameter is always set to uaFail. Based on the error condition for the record that
caused the error and what you do to correct it, you typically set UpdateAction to a
different value before exiting the handler:

• If your error handler can correct the error condition that caused the handler to be
invoked, set UpdateAction to the appropriate action to take on exit. For error
conditions you correct, set UpdateAction to uaRetry to apply the update for the
record again.

• When set to uaSkip, the update for the row that caused the error is skipped, and the
update for the record remains in the cache after all other updates are completed.

• Both uaFail and uaAbort cause the entire update operation to end. uaFail raises an
exception and displays an error message. uaAbort raises a silent exception (does
not display an error message).

The following code shows an OnUpdateError event handler that checks to see if the
update error is related to a key violation, and if it is, it sets the UpdateAction
parameter to uaSkip:

{ Add 'Bde' to your uses clause for this example }
if (E is EDBEngineError) then

with EDBEngineError(E) do begin
if Errors[ErrorCount - 1].ErrorCode = DBIERR_KEYVIOL then
UpdateAction := uaSkip { key violation, just skip this record }

else
UpdateAction := uaAbort; { don't know what's wrong, abort the update }

end;

Table 20.7 UpdateKind values

Value Meaning

ukModify Editing an existing record caused an error.

ukInsert Inserting a new record caused an error.

ukDelete Deleting an existing record caused an error.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-39

U s i n g t h e B D E t o c a c h e u p d a t e s

Note If an error occurs during the application of cached updates, an exception is raised and
an error message displayed. Unless the ApplyUpdates is called from within a
try...except construct, an error message to the user displayed from inside your
OnUpdateError event handler may cause your application to display the same error
message twice. To prevent error message duplication, set UpdateAction to uaAbort to
turn off the system-generated error message display.

Using update objects to update a dataset

When the BDE-enabled dataset represents a stored procedure or a query that is not
“live”, it is not possible to apply updates directly from the dataset. Such datasets may
also cause a problem when you use a client dataset to cache updates. Whether you
are using the BDE or a client dataset to cache updates, you can handle these problem
datasets by using an update object:

1 If you are using a client dataset, use an external provider component with
TClientDataSet rather than TBDEClientDataSet. This is so you can set the
UpdateObject property of the BDE-enabled source dataset (step 3).

2 Add a TUpdateSQL component to the same data module as the BDE-enabled
dataset.

3 Set the BDE-enabled dataset component’s UpdateObject property to the
TUpdateSQL component in the data module.

4 Specify the SQL statements needed to perform updates using the update object’s
ModifySQL, InsertSQL, and DeleteSQL properties. You can use the Update SQL
editor to help you compose these statements.

5 Close the dataset.

6 Set the dataset component’s CachedUpdates property to True or link the dataset to
the client dataset using a dataset provider.

7 Reopen the dataset.

Note Sometimes, you need to use multiple update objects. For example, when updating a
multi-table join or a stored procedure that represents data from multiple datasets,
you must provide one TUpdateSQL object for each table you want to update. When
using multiple update objects, you can’t simply associate the update object with the
dataset by setting the UpdateObject property. Instead, you must manually call the
update object from an OnUpdateRecord event handler (when using the BDE to cache
updates) or a BeforeUpdateRecord event handler (when using a client dataset).

The update object actually encapsulates three TQuery components. Each of these
query components perform a single update task. One query component provides an
SQL UPDATE statement for modifying existing records; a second query component
provides an INSERT statement to add new records to a table; and a third component
provides a DELETE statement to remove records from a table.

20-40 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

When you place an update component in a data module, you do not see the query
components it encapsulates. They are created by the update component at runtime
based on three update properties for which you supply SQL statements:

• ModifySQL specifies the UPDATE statement.
• InsertSQL specifies the INSERT statement.
• DeleteSQL specifies the DELETE statement.

At runtime, when the update component is used to apply updates, it:

1 Selects an SQL statement to execute based on whether the current record is
modified, inserted, or deleted.

2 Provides parameter values to the SQL statement.

3 Prepares and executes the SQL statement to perform the specified update.

Creating SQL statements for update components
To update a record in an associated dataset, an update object uses one of three SQL
statements. Each update object can only update a single table, so the object’s update
statements must each reference the same base table.

The three SQL statements delete, insert, and modify records cached for update. You
must provide these statements as update object’s DeleteSQL, InsertSQL, and
ModifySQL properties. You can provide these values at design time or at runtime. For
example, the following code specifies a value for the DeleteSQL property at runtime:

with UpdateSQL1.DeleteSQL do begin
Clear;
Add(‘DELETE FROM Inventory I’);
Add(‘WHERE (I.ItemNo = :OLD_ItemNo)’);

end;

At design time, you can use the Update SQL editor to help you compose the SQL
statements that apply updates.

Update objects provide automatic parameter binding for parameters that reference
the dataset’s original and updated field values. Typically, therefore, you insert
parameters with specially formatted names when you compose the SQL statements.
For information on using these parameters, see “Understanding parameter
substitution in update SQL statements” on page 20-41.

Using the Update SQL editor
To create the SQL statements for an update component,

1 Using the Object Inspector, select the name of the update object from the drop-
down list for the dataset’s UpdateObject property. This step ensures that the
Update SQL editor you invoke in the next step can determine suitable default
values to use for SQL generation options.

2 Right-click the update object and select UpdateSQL Editor from the context menu.
This displays the Update SQL editor. The editor creates SQL statements for the
update object’s ModifySQL, InsertSQL, and DeleteSQL properties based on the
underlying data set and on the values you supply to it.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-41

U s i n g t h e B D E t o c a c h e u p d a t e s

The Update SQL editor has two pages. The Options page is visible when you first
invoke the editor. Use the Table Name combo box to select the table to update. When
you specify a table name, the Key Fields and Update Fields list boxes are populated
with available columns.

The Update Fields list box indicates which columns should be updated. When you
first specify a table, all columns in the Update Fields list box are selected for
inclusion. You can multi-select fields as desired.

The Key Fields list box is used to specify the columns to use as keys during the
update. For Paradox, dBASE, and FoxPro the columns you specify here must
correspond to an existing index, but this is not a requirement for remote SQL
databases. Instead of setting Key Fields you can click the Primary Keys button to
choose key fields for the update based on the table’s primary index. Click Dataset
Defaults to return the selection lists to the original state: all fields selected as keys and
all selected for update.

Check the Quote Field Names check box if your server requires quotation marks
around field names.

After you specify a table, select key columns, and select update columns, click
Generate SQL to generate the preliminary SQL statements to associate with the
update component’s ModifySQL, InsertSQL, and DeleteSQL properties. In most cases
you will want or need to fine tune the automatically generated SQL statements.

To view and modify the generated SQL statements, select the SQL page. If you have
generated SQL statements, then when you select this page, the statement for the
ModifySQL property is already displayed in the SQL Text memo box. You can edit the
statement in the box as desired.

Important Keep in mind that generated SQL statements are starting points for creating update
statements. You may need to modify these statements to make them execute
correctly. For example, when working with data that contains NULL values, you
need to modify the WHERE clause to read

WHERE field IS NULL

rather then using the generated field variable. Test each of the statements directly
yourself before accepting them.

Use the Statement Type radio buttons to switch among generated SQL statements
and edit them as desired.

To accept the statements and associate them with the update component’s SQL
properties, click OK.

Understanding parameter substitution in update SQL statements
Update SQL statements use a special form of parameter substitution that enables you
to substitute old or new field values in record updates. When the Update SQL editor
generates its statements, it determines which field values to use. When you write the
update SQL, you specify the field values to use.

When the parameter name matches a column name in the table, the new value in the
field in the cached update for the record is automatically used as the value for the
parameter. When the parameter name matches a column name prefixed by the string

20-42 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

“OLD_”, then the old value for the field will be used. For example, in the update SQL
statement below, the parameter :LastName is automatically filled with the new field
value in the cached update for the inserted record.

INSERT INTO Names
(LastName, FirstName, Address, City, State, Zip)
VALUES (:LastName, :FirstName, :Address, :City, :State, :Zip)

New field values are typically used in the InsertSQL and ModifySQL statements. In an
update for a modified record, the new field value from the update cache is used by
the UPDATE statement to replace the old field value in the base table updated.

In the case of a deleted record, there are no new values, so the DeleteSQL property
uses the “:OLD_FieldName” syntax. Old field values are also normally used in the
WHERE clause of the SQL statement for a modified or deletion update to determine
which record to update or delete.

In the WHERE clause of an UPDATE or DELETE update SQL statement, supply at
least the minimal number of parameters to uniquely identify the record in the base
table that is updated with the cached data. For instance, in a list of customers, using
just a customer’s last name may not be sufficient to uniquely identify the correct
record in the base table; there may be a number of records with “Smith” as the last
name. But by using parameters for last name, first name, and phone number could be
a distinctive enough combination. Even better would be a unique field value like a
customer number.

Note If you create SQL statements that contain parameters that do not refer the edited or
original field values, the update object does not know how to bind their values. You
can, however, do this manually, using the update object’s Query property. See “Using
an update component’s Query property” on page 20-46 for details.

Composing update SQL statements
At design time, you can use the Update SQL editor to write the SQL statements for
the DeleteSQL, InsertSQL, and ModifySQL properties. If you do not use the Update
SQL editor, or if you want to modify the generated statements, you should keep in
mind the following guidelines when writing statements to delete, insert, and modify
records in the base table.

The DeleteSQL property should contain only an SQL statement with the DELETE
command. The base table to be updated must be named in the FROM clause. So that
the SQL statement only deletes the record in the base table that corresponds to the
record deleted in the update cache, use a WHERE clause. In the WHERE clause, use a
parameter for one or more fields to uniquely identify the record in the base table that
corresponds to the cached update record. If the parameters are named the same as
the field and prefixed with “OLD_”, the parameters are automatically given the
values from the corresponding field from the cached update record. If the parameter
are named in any other manner, you must supply the parameter values.

DELETE FROM Inventory I
WHERE (I.ItemNo = :OLD_ItemNo)

Some table types might not be able to find the record in the base table when fields
used to identify the record contain NULL values. In these cases, the delete update

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-43

U s i n g t h e B D E t o c a c h e u p d a t e s

fails for those records. To accommodate this, add a condition for those fields that
might contain NULLs using the IS NULL predicate (in addition to a condition for a
non-NULL value). For example, when a FirstName field may contain a NULL value:

DELETE FROM Names
WHERE (LastName = :OLD_LastName) AND

((FirstName = :OLD_FirstName) OR (FirstName IS NULL))

The InsertSQL statement should contain only an SQL statement with the INSERT
command. The base table to be updated must be named in the INTO clause. In the
VALUES clause, supply a comma-separated list of parameters. If the parameters are
named the same as the field, the parameters are automatically given the value from
the cached update record. If the parameter are named in any other manner, you must
supply the parameter values. The list of parameters supplies the values for fields in
the newly inserted record. There must be as many value parameters as there are
fields listed in the statement.

INSERT INTO Inventory
(ItemNo, Amount)
VALUES (:ItemNo, 0)

The ModifySQL statement should contain only an SQL statement with the UPDATE
command. The base table to be updated must be named in the FROM clause. Include
one or more value assignments in the SET clause. If values in the SET clause
assignments are parameters named the same as fields, the parameters are
automatically given values from the fields of the same name in the updated record in
the cache. You can assign additional field values using other parameters, as long as
the parameters are not named the same as any fields and you manually supply the
values. As with the DeleteSQL statement, supply a WHERE clause to uniquely
identify the record in the base table to be updated using parameters named the same
as the fields and prefixed with “OLD_”. In the update statement below, the
parameter :ItemNo is automatically given a value and :Price is not.

UPDATE Inventory I
SET I.ItemNo = :ItemNo, Amount = :Price
WHERE (I.ItemNo = :OLD_ItemNo)

Considering the above update SQL, take an example case where the application end-
user modifies an existing record. The original value for the ItemNo field is 999. In a
grid connected to the cached dataset, the end-user changes the ItemNo field value to
123 and Amount to 20. When the ApplyUpdates method is invoked, this SQL
statement affects all records in the base table where the ItemNo field is 999, using the
old field value in the parameter :OLD_ItemNo. In those records, it changes the
ItemNo field value to 123 (using the parameter :ItemNo, the value coming from the
grid) and Amount to 20.

Using multiple update objects
When more than one base table referenced in the update dataset needs to be updated,
you need to use multiple update objects: one for each base table updated. Because the
dataset component’s UpdateObject only allows one update object to be associated
with the dataset, you must associate each update object with a dataset by setting its
DataSet property to the name of the dataset.

20-44 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

Tip When using multiple update objects, you can use TBDEClientDataSet instead of
TClientDataSet with an external provider. This is because you do not need to set the
source dataset’s UpdateObject property.

The DataSet property for update objects is not available at design time in the Object
Inspector. You can only set this property at runtime.

UpdateSQL1.DataSet := Query1;

The update object uses this dataset to obtain original and updated field values for
parameter substitution and, if it is a BDE-enabled dataset, to identify the session and
database to use when applying the updates. So that parameter substitution will work
correctly, the update object’s DataSet property must be the dataset that contains the
updated field values. When using the BDE-enabled dataset to cache updates, this is
the BDE-enabled dataset itself. When using a client dataset, this is a client dataset that
is provided as a parameter to the BeforeUpdateRecord event handler.

When the update object has not been assigned to the dataset’s UpdateObject property,
its SQL statements are not automatically executed when you call ApplyUpdates. To
update records, you must manually call the update object from an OnUpdateRecord
event handler (when using the BDE to cache updates) or a BeforeUpdateRecord event
handler (when using a client dataset). In the event handler, the minimum actions you
need to take are

• If you are using a client dataset to cache updates, you must be sure that the
updates object’s DatabaseName and SessionName properties are set to the
DatabaseName and SessionName properties of the source dataset.

• The event handler must call the update object’s ExecSQL or Apply method. This
invokes the update object for each record that requires updating. For more
information about executing update statements, see “Executing the SQL
statements” below.

• Set the event handler’s UpdateAction parameter to uaApplied (OnUpdateRecord) or
the Applied parameter to True (BeforeUpdateRecord).

You may optionally perform data validation, data modification, or other operations
that depend on each record’s update.

Warning If you call an update object’s ExecSQL or Apply method in an OnUpdateRecord event
handler, be sure that you do not set the dataset’s UpdateObject property to that
update object. Otherwise, this will result in a second attempt to apply each record’s
update.

Executing the SQL statements
When you use multiple update objects, you do not associate the update objects with a
dataset by setting its UpdateObject property. As a result, the appropriate statements
are not automatically executed when you apply updates. Instead, you must explicitly
invoke the update object in code.

There are two ways to invoke the update object. Which way you choose depends on
whether the SQL statement uses parameters to represent field values:

• If the SQL statement to execute uses parameters, call the Apply method.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-45

U s i n g t h e B D E t o c a c h e u p d a t e s

• If the SQL statement to execute does not use parameters, it is more efficient to call
the ExecSQL method.

Note If the SQL statement uses parameters other than the built-in types (for the original
and updated field values), you must manually supply parameter values instead of
relying on the parameter substitution provided by the Apply method. See “Using an
update component’s Query property” on page 20-46 for information on manually
providing parameter values.

For information about the default parameter substitution for parameters in an update
object’s SQL statements, see “Understanding parameter substitution in update SQL
statements” on page 20-41.

Calling the Apply method
The Apply method for an update component manually applies updates for the
current record. There are two steps involved in this process:

1 Initial and edited field values for the record are bound to parameters in the
appropriate SQL statement.

2 The SQL statement is executed.

Call the Apply method to apply the update for the current record in the update cache.
The Apply method is most often called from within a handler for the dataset’s
OnUpdateRecord event or from a provider’s BeforeUpdateRecord event handler.

Warning If you use the dataset’s UpdateObject property to associate dataset and update object,
Apply is called automatically. In that case, do not call Apply in an OnUpdateRecord
event handler as this will result in a second attempt to apply the current record’s
update.

OnUpdateRecord event handlers indicate the type of update that needs to be applied
with an UpdateKind parameter of type TUpdateKind. You must pass this parameter to
the Apply method to indicate which update SQL statement to use. The following code
illustrates this using a BeforeUpdateRecord event handler:

procedure TForm1.BDEClientDataSet1BeforeUpdateRecord(Sender: TObject; SourceDS: TDataSet;
DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind; var Applied: Boolean);

begin
with UpdateSQL1 do
begin
DataSet := DeltaDS;
DatabaseName := (SourceDS as TDBDataSet).DatabaseName;
SessionName := (SourceDS as TDBDataSet).SessionName;
Apply(UpdateKind);
Applied := True;

end;
end;

Calling the ExecSQL method
The ExecSQL method for an update component manually applies updates for the
current record. Unlike the Apply method, ExecSQL does not bind parameters in the
SQL statement before executing it. The ExecSQL method is most often called from

20-46 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

within a handler for the OnUpdateRecord event (when using the BDE) or the
BeforeUpdateRecord event (when using a client dataset).

Because ExecSQL does not bind parameter values, it is used primarily when the
update object’s SQL statements do not include parameters. You can use Apply
instead, even when there are no parameters, but ExecSQL is more efficient because it
does not check for parameters.

If the SQL statements include parameters, you can still call ExecSQL, but only after
explicitly binding parameters. If you are using the BDE to cache updates, you can
explicitly bind parameters by setting the update object’s DataSet property and then
calling its SetParams method. When using a client dataset to cache updates, you must
supply parameters to the underlying query object maintained by TUpdateSQL. For
information on how to do this, see “Using an update component’s Query property”
on page 20-46.

Warning If you use the dataset’s UpdateObject property to associate dataset and update object,
ExecSQL is called automatically. In that case, do not call ExecSQL in an
OnUpdateRecord or BeforeUpdateRecord event handler as this will result in a second
attempt to apply the current record’s update.

OnUpdateRecord and BeforeUpdateRecord event handlers indicate the type of update
that needs to be applied with an UpdateKind parameter of type TUpdateKind. You
must pass this parameter to the ExecSQL method to indicate which update SQL
statement to use. The following code illustrates this using a BeforeUpdateRecord event
handler:

procedure TForm1.BDEClientDataSet1BeforeUpdateRecord(Sender: TObject; SourceDS: TDataSet;
DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind; var Applied: Boolean);

begin
with UpdateSQL1 do
begin
DatabaseName := (SourceDS as TDBDataSet).DatabaseName;
SessionName := (SourceDS as TDBDataSet).SessionName;
ExecSQL(UpdateKind);
Applied := True;

end;
end;

If an exception is raised during the execution of the update program, execution
continues in the OnUpdateError event, if it is defined.

Using an update component’s Query property
The Query property of an update component provides access to the query
components that implement its DeleteSQL, InsertSQL, and ModifySQL statements. In
most applications, there is no need to access these query components directly: you
can use the DeleteSQL, InsertSQL, and ModifySQL properties to specify the statements
these queries execute, and execute them by calling the update object’s Apply or
ExecSQL method. There are times, however, when you may need to directly
manipulate the query component. In particular, the Query property is useful when
you want to supply your own values for parameters in the SQL statements rather
than relying on the update object’s automatic parameter binding to old and new field
values.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-47

U s i n g T B a t c h M o v e

Note The Query property is only accessible at runtime.

The Query property is indexed on a TUpdateKind value:

• Using an index of ukModify accesses the query that updates existing records.
• Using an index of ukInsert accesses the query that inserts new records.
• Using an index of ukDelete accesses the query that deletes records.

The following shows how to use the Query property to supply parameter values that
can’t be bound automatically:

procedure TForm1.BDEClientDataSet1BeforeUpdateRecord(Sender: TObject; SourceDS: TDataSet;
DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind; var Applied: Boolean);

begin
UpdateSQL1.DataSet := DeltaDS; { required for the automatic parameter substitution }
with UpdateSQL1.Query[UpdateKind] do
begin
{ Make sure the query has the correct DatabaseName and SessionName }
DatabaseName := (SourceDS as TDBDataSet).DatabaseName;
SessionName := (SourceDS as TDBDataSet).SessionName;
ParamByName('TimeOfUpdate').Value = Now;

end;
UpdateSQL1.Apply(UpdateKind); { now perform automatic substitutions and execute }
Applied := True;

end;

Using TBatchMove
TBatchMove encapsulates Borland Database Engine (BDE) features that let you to
duplicate a dataset, append records from one dataset to another, update records in
one dataset with records from another dataset, and delete records from one dataset
that match records in another dataset. TBatchMove is most often used to:

• Download data from a server to a local data source for analysis or other
operations.

• Move a desktop database into tables on a remote server as part of an upsizing
operation.

A batch move component can create tables on the destination that correspond to the
source tables, automatically mapping the column names and data types as
appropriate.

Creating a batch move component

To create a batch move component:

1 Place a table or query component for the dataset from which you want to import
records (called the Source dataset) on a form or in a data module.

2 Place the dataset to which to move records (called the Destination dataset) on the
form or data module.

20-48 D e v e l o p e r ’ s G u i d e

U s i n g T B a t c h M o v e

3 Place a TBatchMove component from the BDE page of the Component palette in
the data module or form, and set its Name property to a unique value appropriate
to your application.

4 Set the Source property of the batch move component to the name of the table from
which to copy, append, or update records. You can select tables from the drop-
down list of available dataset components.

5 Set the Destination property to the dataset to create, append to, or update. You can
select a destination table from the drop-down list of available dataset components.

• If you are appending, updating, or deleting, Destination must represent an
existing database table.

• If you are copying a table and Destination represents an existing table, executing
the batch move overwrites all of the current data in the destination table.

• If you are creating an entirely new table by copying an existing table, the
resulting table has the name specified in the Name property of the table
component to which you are copying. The resulting table type will be of a
structure appropriate to the server specified by the DatabaseName property.

6 Set the Mode property to indicate the type of operation to perform. Valid
operations are batAppend (the default), batUpdate, batAppendUpdate, batCopy, and
batDelete. For information about these modes, see “Specifying a batch move mode”
on page 20-49.

7 Optionally set the Transliterate property. If Transliterate is True (the default),
character data is translated from the Source dataset’s character set to the
Destination dataset’s character set as necessary.

8 Optionally set column mappings using the Mappings property. You need not set
this property if you want batch move to match columns based on their position in
the source and destination tables. For more information about mapping columns,
see “Mapping data types” on page 20-50.

9 Optionally specify the ChangedTableName, KeyViolTableName, and
ProblemTableName properties. Batch move stores problem records it encounters
during the batch operation in the table specified by ProblemTableName. If you are
updating a Paradox table through a batch move, key violations can be reported in
the table you specify in KeyViolTableName. ChangedTableName lists all records that
changed in the destination table as a result of the batch move operation. If you do
not specify these properties, these error tables are not created or used. For more
information about handling batch move errors, see “Handling batch move errors”
on page 20-51.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-49

U s i n g T B a t c h M o v e

Specifying a batch move mode

The Mode property specifies the operation a batch move component performs:

Appending records
To append data, the destination dataset must represent an existing table. During the
append operation, the BDE converts data to appropriate data types and sizes for the
destination dataset if necessary. If a conversion is not possible, an exception is
thrown and the data is not appended.

Updating records
To update data, the destination dataset must represent an existing table and must
have an index defined that enables records to be matched. If the primary index fields
are used for matching, records with index fields in the destination dataset that match
index fields records in the source dataset are overwritten with the source data.
During the update operation, the BDE converts data to appropriate data types and
sizes for the destination dataset if necessary.

Appending and updating records
To append and update data the destination dataset must represent an existing table
and must have an index defined that enables records to be matched. If the primary
index fields are used for matching, records with index fields in the destination
dataset that match index fields records in the source dataset are overwritten with the
source data. Otherwise, data from the source dataset is appended to the destination
dataset. During append and update operations, the BDE converts data to appropriate
data types and sizes for the destination dataset, if necessary.

Copying datasets
To copy a source dataset, the destination dataset should not represent an exist table.
If it does, the batch move operation overwrites the existing table with a copy of the
source dataset.

If the source and destination datasets are maintained by different types of database
engines, for example, Paradox and InterBase, the BDE creates a destination dataset

Table 20.8 Batch move modes

Property Purpose

batAppend Append records to the destination table.

batUpdate Update records in the destination table with matching records from the
source table. Updating is based on the current index of the destination table.

batAppendUpdate If a matching record exists in the destination table, update it. Otherwise,
append records to the destination table.

batCopy Create the destination table based on the structure of the source table. If the
destination table already exists, it is dropped and recreated.

batDelete Delete records in the destination table that match records in the source table.

20-50 D e v e l o p e r ’ s G u i d e

U s i n g T B a t c h M o v e

with a structure as close as possible to that of the source dataset and automatically
performs data type and size conversions as necessary.

Note TBatchMove does not copy metadata structures such as indexes, constraints, and
stored procedures. You must recreate these metadata objects on your database server
or through the SQL Explorer as appropriate.

Deleting records
To delete data in the destination dataset, it must represent an existing table and must
have an index defined that enables records to be matched. If the primary index fields
are used for matching, records with index fields in the destination dataset that match
index fields records in the source dataset are deleted in the destination table.

Mapping data types

In batAppend mode, a batch move component creates the destination table based on
the column data types of the source table. Columns and types are matched based on
their position in the source and destination tables. That is, the first column in the
source is matched with the first column in the destination, and so on.

To override the default column mappings, use the Mappings property. Mappings is a
list of column mappings (one per line). This listing can take one of two forms. To map
a column in the source table to a column of the same name in the destination table,
you can use a simple listing that specifies the column name to match. For example,
the following mapping specifies that a column named ColName in the source table
should be mapped to a column of the same name in the destination table:

ColName

To map a column named SourceColName in the source table to a column named
DestColName in the destination table, the syntax is as follows:

DestColName = SourceColName

If source and destination column data types are not the same, a batch move operation
attempts a “best fit”. It trims character data types, if necessary, and attempts to
perform a limited amount of conversion, if possible. For example, mapping a
CHAR(10) column to a CHAR(5) column will result in trimming the last five
characters from the source column.

As an example of conversion, if a source column of character data type is mapped to
a destination of integer type, the batch move operation converts a character value of
‘5’ to the corresponding integer value. Values that cannot be converted generate
errors. For more information about errors, see “Handling batch move errors” on
page 20-51.

When moving data between different table types, a batch move component translates
data types as appropriate based on the dataset’s server types. See the BDE online
help file for the latest tables of mappings among server types.

Note To batch move data to an SQL server database, you must have that database server
and a version of Delphi with the appropriate SQL Link installed, or you can use
ODBC if you have the proper third party ODBC drivers installed.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-51

U s i n g T B a t c h M o v e

Executing a batch move

Use the Execute method to execute a previously prepared batch operation at runtime.
For example, if BatchMoveAdd is the name of a batch move component, the following
statement executes it:

BatchMoveAdd.Execute;

You can also execute a batch move at design time by right clicking the mouse on a
batch move component and choosing Execute from the context menu.

The MovedCount property keeps track of the number of records that are moved when
a batch move executes.

The RecordCount property specifies the maximum number of records to move. If
RecordCount is zero, all records are moved, beginning with the first record in the
source dataset. If RecordCount is a positive number, a maximum of RecordCount
records are moved, beginning with the current record in the source dataset. If
RecordCount is greater than the number of records between the current record in the
source dataset and its last record, the batch move terminates when the end of the
source dataset is reached. You can examine MoveCount to determine how many
records were actually transferred.

Handling batch move errors

There are two types of errors that can occur in a batch move operation: data type
conversion errors and integrity violations. TBatchMove has a number of properties
that report on and control error handling.

The AbortOnProblem property specifies whether to abort the operation when a data
type conversion error occurs. If AbortOnProblem is True, the batch move operation is
canceled when an error occurs. If False, the operation continues. You can examine the
table you specify in the ProblemTableName to determine which records caused
problems.

The AbortOnKeyViol property indicates whether to abort the operation when a
Paradox key violation occurs.

The ProblemCount property indicates the number of records that could not be
handled in the destination table without a loss of data. If AbortOnProblem is True, this
number is one, since the operation is aborted when an error occurs.

The following properties enable a batch move component to create additional tables
that document the batch move operation:

• ChangedTableName, if specified, creates a local Paradox table containing all records
in the destination table that changed as a result of an update or delete operation.

• KeyViolTableName, if specified, creates a local Paradox table containing all records
from the source table that caused a key violation when working with a Paradox
table. If AbortOnKeyViol is True, this table will contain at most one entry since the
operation is aborted on the first problem encountered.

20-52 D e v e l o p e r ’ s G u i d e

T h e D a t a D i c t i o n a r y

• ProblemTableName, if specified, creates a local Paradox table containing all records
that could not be posted in the destination table due to data type conversion
errors. For example, the table could contain records from the source table whose
data had to be trimmed to fit in the destination table. If AbortOnProblem is True,
there is at most one record in this table since the operation is aborted on the first
problem encountered.

Note If ProblemTableName is not specified, the data in the record is trimmed and placed in
the destination table.

The Data Dictionary
When you use the BDE to access your data, your application has access to the Data
Dictionary. The Data Dictionary provides a customizable storage area, independent
of your applications, where you can create extended field attribute sets that describe
the content and appearance of data.

For example, if you frequently develop financial applications, you may create a
number of specialized field attribute sets describing different display formats for
currency. When you create datasets for your application at design time, rather than
using the Object Inspector to set the currency fields in each dataset by hand, you can
associate those fields with an extended field attribute set in the data dictionary. Using
the data dictionary ensures a consistent data appearance within and across the
applications you create.

In a client/server environment, the Data Dictionary can reside on a remote server for
additional sharing of information.

To learn how to create extended field attribute sets from the Fields editor at design
time, and how to associate them with fields throughout the datasets in your
application, see “Creating attribute sets for field components” on page 19-12. To
learn more about creating a data dictionary and extended field attributes with the
SQL and Database Explorers, see their respective online help files.

A programming interface to the Data Dictionary is available in the drintf unit
(located in the lib directory). This interface supplies the following methods:

Table 20.9 Data Dictionary interface

Routine Use

DictionaryActive Indicates if the data dictionary is active.

DictionaryDeactivate Deactivates the data dictionary.

IsNullID Indicates whether a given ID is a null ID

FindDatabaseID Returns the ID for a database given its alias.

FindTableID Returns the ID for a table in a specified database.

FindFieldID Returns the ID for a field in a specified table.

FindAttrID Returns the ID for a named attribute set.

GetAttrName Returns the name an attribute set given its ID.

GetAttrNames Executes a callback for each attribute set in the dictionary.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 20-53

T o o l s f o r w o r k i n g w i t h t h e B D E

Tools for working with the BDE
One advantage of using the BDE as a data access mechanism is the wealth of
supporting utilities that ship with Delphi. These utilities include:

• SQL Explorer and Database Explorer: Delphi ships with one of these two
applications, depending on which version you have purchased. Both Explorers
enable you to

• Examine existing database tables and structures. The SQL Explorer lets you
examine and query remote SQL databases.

• Populate tables with data

• Create extended field attribute sets in the Data Dictionary or associate them
with fields in your application.

• Create and manage BDE aliases.

SQL Explorer lets you do the following as well:

• Create SQL objects such as stored procedures on remote database servers.

• View the reconstructed text of SQL objects on remote database servers.

• Run SQL scripts.

• SQL Monitor: SQL Monitor lets you watch all of the communication that passes
between the remote database server and the BDE. You can filter the messages you
want to watch, limiting them to only the categories of interest. SQL Monitor is
most useful when debugging your application.

GetAttrID Returns the ID of the attribute set for a specified field.

NewAttr Creates a new attribute set from a field component.

UpdateAttr Updates an attribute set to match the properties of a field.

CreateField Creates a field component based on stored attributes.

UpdateField Changes the properties of a field to match a specified attribute set.

AssociateAttr Associates an attribute set with a given field ID.

UnassociateAttr Removes an attribute set association for a field ID.

GetControlClass Returns the control class for a specified attribute ID.

QualifyTableName Returns a fully qualified table name (qualified by user name).

QualifyTableNameByName Returns a fully qualified table name (qualified by user name).

HasConstraints Indicates whether the dataset has constraints in the dictionary.

UpdateConstraints Updates the imported constraints of a dataset.

UpdateDataset Updates a dataset to the current settings and constraints in the
dictionary.

Table 20.9 Data Dictionary interface (continued)

Routine Use

20-54 D e v e l o p e r ’ s G u i d e

T o o l s f o r w o r k i n g w i t h t h e B D E

• BDE Administration utility: The BDE Administration utility lets you add new
database drivers, configure the defaults for existing drivers, and create new BDE
aliases.

• Database Desktop: If you are using Paradox or dBASE tables, Database Desktop
lets you view and edit their data, create new tables, and restructure existing tables.
Using Database Desktop affords you more control than using the methods of a
TTable component (for example, it allows you to specify validity checks and
language drivers). It provides the only mechanism for restructuring Paradox and
dBASE tables other than making direct calls the BDE’s API.

W o r k i n g w i t h A D O c o m p o n e n t s 21-1

C h a p t e r

21
Chapter 21Working with ADO components

The ADOExpress components provide data access through the ADO framework.
ADO, (Microsoft ActiveX Data Objects) is a set of COM objects that access data
through an OLE DB provider. The Delphi ADOExpress components encapsulate these
ADO objects in the Delphi database architecture.

The ADO layer of an ADO-based application consists of Microsoft ADO 2.1, an OLE
DB provider or ODBC driver for the data store access, client software for the specific
database system used (in the case of SQL databases), a database back-end system
accessible to the application (for SQL database systems), and a database. All of these
must be accessible to the ADO-based application for it to be fully functional.

The ADO objects that figure most prominently are the Connection, Command, and
Recordset objects. These ADO objects are wrapped by the TADOConnection,
TADOCommand, and ADO dataset components. The ADO framework includes other
“helper” objects, like the Field and Properties objects, but these are typically not used
directly in Delphi applications and are not wrapped by dedicated components.

This chapter presents the ADOExpress components and discusses the unique features
they add to the common Delphi database architecture. Before reading about the
features peculiar to the ADOExpress components, you should familiarize yourself
with the common features of database connection components and datasets
described in Chapter 17, “Connecting to databases” and Chapter 18, “Understanding
datasets.”

Overview of ADO components
The ADO page of the component palette hosts the ADOExpress components. These
components let you connect to an ADO data store, execute commands, and retrieve
data from tables in databases using the ADO framework. They require ADO 2.1 (or
higher) to be installed on the host computer. Additionally, client software for the
target database system (such as Microsoft SQL Server) must be installed, as well as an
OLE DB driver or ODBC driver specific to the particular database system.

21-2 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

Most ADOExpress components have direct counterparts in the components available
for other data access mechanisms: a database connection component
(TADOConnection) and various types of datasets. In addition, ADOExpress includes
TADOCommand, a simple component that is not a dataset but which represents an
SQL command to be executed on the ADO data store.

The following table lists the ADO components.

Connecting to ADO data stores
Delphi ADO-based applications use Microsoft ActiveX Data Objects (ADO) 2.1 to
interact with an OLE DB provider that connects to a data store and accesses its data.
One of the items a data store can represent is a database. An ADO-based application
requires that ADO 2.1 be installed on the client computer. ADO and OLE DB is
supplied by Microsoft and installed with Windows.

An ADO provider represents one of a number of types of access, from native OLE DB
drivers to ODBC drivers. These drivers must be installed on the client computer. OLE
DB drivers for various database systems are supplied by the database vendor or by a
third-party. If the application uses an SQL database, such as Microsoft SQL Server or
Oracle, the client software for that database system must also be installed on the
client computer. Client software is supplied by the database vendor and installed
from the database systems CD (or disk).

Table 21.1 ADO components

Component Use

TADOConnection A database connection component that establishes a connection with an
ADO data store; multiple ADO dataset and command components can
share this connection to execute commands, retrieve data, and operate
on metadata.

TADODataSet The primary dataset for retrieving and operating on data; TADODataSet
can retrieve data from a single or multiple tables; can connect directly to
a data store or use a TADOConnection component.

TADOTable A table-type dataset for retrieving and operating on a recordset
produced by a single database table; TADOTable can connect directly to
a data store or use a TADOConnection component.

TADOQuery A query-type dataset for retrieving and operating on a recordset
produced by a valid SQL statement; TADOQuery can also execute data
definition language (DDL) SQL statements. It can connect directly to a
data store or use a TADOConnection component

TADOStoredProc A stored procedure-type dataset for executing stored procedures;
TADOStoredProc executes stored procedures that may or may not
retrieve data. It can connect directly to a data store or use a
TADOConnection component.

TADOCommand A simple component for executing commands (SQL statements that do
not return result sets); TADOCommand can be used with a supporting
dataset component, or retrieve a dataset from a table; It can connect
directly to a data store or use a TADOConnection component.

W o r k i n g w i t h A D O c o m p o n e n t s 21-3

C o n n e c t i n g t o A D O d a t a s t o r e s

To connect your application with the data store, use an ADO connection component
(TADOConnection). Configure the ADO connection component to use one of the
available ADO providers. Although TADOConnection is not strictly required, because
ADO command and dataset components can establish connections directly using
their ConnectionString property, you can use TADOConnection to share a single
connection among several ADO components. This can reduce resource consumption,
and allows you to create transactions that span multiple datasets.

Like other database connection components, TADOConnection provides support for

• Controlling connections
• Controlling server login
• Managing transactions
• Working with associated datasets
• Sending commands to the server
• Obtaining metadata

In addition to these features that are common to all database connection components,
TADOConnection provides its own support for

• A wide range of options you can use to fine-tune the connection.
• The ability to list the command objects that use the connection.
• Additional events when performing common tasks.

Connecting to a data store using TADOConnection

One or more ADO dataset and command components can share a single connection
to a data store by using TADOConnection. To do so, associated dataset and command
components with the connection component through their Connection properties. At
design-time, select the desired connection component from the drop-down list for the
Connection property in the Object Inspector. At runtime, assign the reference to the
Connection property. For example, the following line associates a TADODataSet
component with a TADOConnection component.

ADODataSet1.Connection := ADOConnection1;

The connection component represents an ADO connection object. Before you can use
the connection object to establish a connection, you must identify the data store to
which you want to connect. Typically, you provide information using the
ConnectionString property. ConnectionString is a semicolon delimited string that lists
one or more named connection parameters. These parameters identify the data store
by specifying either the name of a file that contains the connection information or the
name of an ADO provider and a reference identifying the data store. Use the
following, predefined parameter names to supply this information:

Parameter Description

Provider The name of a local ADO provider to use for the connection.

Data Source The name of the data store.

File name The name of a file containing connection information.

Remote Provider The name of an ADO provider that resides on a remote machine.

Remote Server The name of the remote server when using a remote provider.

21-4 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

Thus, a typical value of ConnectionString has the form

Provider=MSDASQL.1;Data Source=MQIS

Note The connection parameters in ConnectionString do not need to include the Provider or
Remote Provider parameter if you specify an ADO provider using the Provider
property. Similarly, you do not need to specify the Data Source parameter if you use
the DefaultDatabase property.

In addition, to the parameters listed above, ConnectionString can include any
connection parameters peculiar to the specific ADO provider you are using. These
additional connection parameters can include user ID and password if you want to
hardcode the login information.

At design-time, you can use the Connection String Editor to build a connection string
by selecting connection elements (like the provider and server) from lists. Click the
ellipsis button for the ConnectionString property in the Object Inspector to launch the
Connection String Editor, which is an ActiveX property editor supplied by ADO.

Once you have specified the ConnectionString property (and, optionally, the Provider
property), you can use the ADO connection component to connect to or disconnect
from the ADO data store, although you may first want to use other properties to fine-
tune the connection. When connecting to or disconnecting from the data store,
TADOConnection lets you respond to a few additional events beyond those common
to all database connection components. These additional events are described in
“Events when establishing a connection” on page 21-7 and “Events when
disconnecting” on page 21-8.

Note If you do not explicitly activate the connection by setting the connection component’s
Connected property to True, it automatically establishes the connection when the first
dataset component is opened or the first time you use an ADO command component
to execute a command.

Accessing the connection object
Use the ConnectionObject property of TADOConnection to access the underlying ADO
connection object. Using this reference it is possible to access properties and call
methods of the underlying ADO Connection object.

Using the underlying ADO Connection object requires a good working knowledge of
ADO objects in general and the ADO Connection object in particular. It is not
recommended that you use the Connection object unless you are familiar with
Connection object operations. Consult the Microsoft Data Access SDK help for
specific information on using ADO Connection objects.

Fine-tuning a connection

One advantage of using TADOConnection for establishing the connection to a data
store instead of simply supplying a connection string for your ADO command and
dataset components, is that it provides a greater degree of control over the conditions
and attributes of the connection.

W o r k i n g w i t h A D O c o m p o n e n t s 21-5

C o n n e c t i n g t o A D O d a t a s t o r e s

Forcing asynchronous connections
Use the ConnectOptions property to force the connection to be asynchronous.
Asynchronous connections allow your application to continue processing without
waiting for the connection to be completely opened.

By default, ConnectionOptions is set to coConnectUnspecified which allows the server to
decide the best type of connection. To explicitly make the connection asynchronous,
set ConnectOptions to coAsyncConnect.

The example routines below enable and disable asynchronous connections in the
specified connection component:

procedure TForm1.AsyncConnectButtonClick(Sender: TObject);
begin

with ADOConnection1 do begin
Close;
ConnectOptions := coAsyncConnect;
Open;

end;
end;

procedure TForm1.ServerChoiceConnectButtonClick(Sender: TObject);
begin

with ADOConnection1 do begin
Close;
ConnectOptions := coConnectUnspecified;
Open;

end;
end;

Controlling timeouts
You can control the amount of time that can elapse before attempted commands and
connections are considered failed and are aborted using the ConnectionTimeout and
CommandTimeout properties.

ConnectionTimeout specifies the amount of time, in seconds, before an attempt to
connect to the data store times out. If the connection does not successfully compile
prior to expiration of the time specified in ConnectionTimeout, the connection attempt
is canceled:

with ADOConnection1 do begin
ConnectionTimeout := 10 {seconds};
Open;

end;

CommandTimeout specifies the amount of time, in seconds, before an attempted
command times out. If a command initiated by a call to the Execute method does not
successfully complete prior to expiration of the time specified in CommandTimeout,
the command is canceled and ADO generates an exception:

with ADOConnection1 do begin
CommandTimeout := 10 {seconds};
Execute('DROP TABLE Employee1997', cmdText, []);

end;

21-6 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

Indicating the types of operations the connection supports
ADO connections are established using a specific mode, similar to the mode you use
when opening a file. The connection mode determines the permissions available to
the connection, and hence the types of operations (such as reading and writing) that
can be performed using that connection.

Use the Mode property to indicate the connection mode. The possible values are listed
in Table 21.2:

The possible values for Mode correspond to the ConnectModeEnum values of the Mode
property on the underlying ADO connection object. See the Microsoft Data Access
SDK help for more information on these values.

Specifying whether the connection automatically initiates transactions
Use the Attributes property to control the connection component’s use of retaining
commits and retaining aborts. When the connection component uses retaining
commits, then every time your application commits a transaction, a new transaction
is automatically started. When the connection component uses retaining aborts, then
every time your application rolls back a transaction, a new transaction is
automatically started.

Attributes is a set that can contain one, both, or neither of the constants
xaCommitRetaining and xaAbortRetaining. When Attributes contains
xaCommitRetaining, the connection uses retaining commits. When Attributes contains
xaAbortRetaining, it uses retaining aborts.

Check whether either retaining commits or retaining aborts is enabled using the in
operator. Enable retaining commits or aborts by adding the appropriate value to the
attributes property; disable them by subtracting the value. The example routines
below respectively enable and disable retaining commits in an ADO connection
component.

procedure TForm1.RetainingCommitsOnButtonClick(Sender: TObject);
begin

with ADOConnection1 do begin
Close;
if not (xaCommitRetaining in Attributes) then
Attributes := (Attributes + [xaCommitRetaining])

Table 21.2 ADO connection modes

Connect Mode Meaning

cmUnknown Permissions are not yet set for the connection or cannot be determined.

cmRead Read-only permissions are available to the connection.

cmWrite Write-only permissions are available to the connection.

cmReadWrite Read/write permissions are available to the connection.

cmShareDenyRead Prevents others from opening connections with read permissions.

cmShareDenyWrite Prevents others from opening connection with write permissions.

cmShareExclusive Prevents others from opening connection.

cmShareDenyNone Prevents others from opening connection with any permissions.

W o r k i n g w i t h A D O c o m p o n e n t s 21-7

C o n n e c t i n g t o A D O d a t a s t o r e s

Open;
end;

end;

procedure TForm1.RetainingCommitsOffButtonClick(Sender: TObject);
begin

with ADOConnection1 do begin
Close;
if (xaCommitRetaining in Attributes) then
Attributes := (Attributes - [xaCommitRetaining]);

Open;
end;

end;

Accessing the connection’s commands

Like other database connection components, you can access the datasets associated with
the connection using the DataSets and DataSetCount properties. However, ADOExpress
also includes TADOCommand objects, which are not datasets, but which maintain a
similar relationship to the connection component.

You can use the Commands and CommandCount properties of TADOConnection to access
the associated ADO command objects in the same way you use the DataSets and
DataSetCount properties to access the associated datasets. Unlike DataSets and
DataSetCount, which only list active datasets, Commands and CommandCount provide
references to all TADOCommand components associated with the connection
component.

Commands is a zero-based array of references to ADO command components.
CommandCount provides a total count of all of the commands listed in Commands.
You can use theses properties together to iterate through all the commands that use a
connection component, as illustrated in the following code:

var
i: Integer

begin
for i := 0 to (ADOConnection1.CommandCount - 1) do

ADOConnection1.Commands[i].Execute;
end;

ADO connection events

In addition to the usual events that occur for all database connection components,
TADOConnection generates a number of additional events that occur during normal
usage.

Events when establishing a connection
In addition to the BeforeConnect and AfterConnect events that are common to all
database connection components, TADOConnection also generates an OnWillConnect
and OnConnectComplete event when establishing a connection. These events occur
after the BeforeConnect event.

21-8 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

• OnWillConnect occurs before the ADO provider establishes a connection. It lets
you make last minute changes to the connection string, provide a user name and
password if you are handling your own login support, force an asynchronous
connection, or even cancel the connection before it is opened.

• OnConnectComplete occurs after the connection is opened. Because
TADOConnection can represent asynchronous connections, you should use
OnConnectComplete, which occurs after the connection is opened or has failed due
to an error condition, instead of the AfterConnect event, which occurs after the
connection component instructs the ADO provider to open a connection, but not
necessarily after the connection is opened.

Events when disconnecting
In addition to the BeforeDisconnect and AfterDisconnect events common to all database
connection components, TADOConnection also generates an OnDisconnect event after
closing a connection. OnDisconnect occurs after the connection is closed but before
any associated datasets are closed and before the AfterDisconnect event.

Events when managing transactions
The ADO connection component provides a number of events for detecting when
transaction-related processes have been completed. These events indicate when a
transaction process initiated by a BeginTrans, CommitTrans, and RollbackTrans method
has been successfully completed at the data store.

• The OnBeginTransComplete event occurs when the data store has successfully
started a transaction after a call to the BeginTrans method.

• The OnCommitTransComplete event occurs after a transaction is successfully
committed due to a call to CommitTrans.

• The OnRollbackTransComplete event occurs after a transaction is successfully
aborted due to a call to RollbackTrans.

Other events
ADO connection components introduce two additional events you can use to
respond to notifications from the underlying ADO connection object:

• The OnExecuteComplete event occurs after the connection component executes a
command on the data store (for example, after calling the Execute method).
OnExecuteComplete indicates whether the execution was successful.

• The OnInfoMessage event occurs when the underlying connection object provides
detailed information after an operation is completed. The OnInfoMessage event
handler receives the interface to an ADO Error object that contains the detailed
information and a status code indicating whether the operation was successful.

W o r k i n g w i t h A D O c o m p o n e n t s 21-9

U s i n g A D O d a t a s e t s

Using ADO datasets
ADO dataset components encapsulate the ADO Recordset object. They inherit the
common dataset capabilities described in Chapter 18, “Understanding datasets,”
using ADO to provide the implementation. In order to use an ADO dataset, you must
familiarize yourself with these common features.

In addition to the common dataset features, all ADO datasets add properties, events,
and methods for

• Connecting to an ADO datastore.
• Accessing the underlying Recordset object.
• Filtering records based on bookmarks.
• Fetching records asynchronously.
• Performing batch updates (caching updates).
• Using files on disk to store data.

There are four ADO datasets:

• TADOTable, a table-type dataset that represents all of the rows and columns of a
single database table. See “Using table-type datasets” on page 18-24 for
information on using TADOTable and other table-type datasets.

• TADOQuery, a query-type dataset that encapsulates an SQL statement and enables
applications to access the resulting records, if any. See “Using query-type
datasets” on page 18-41 for information on using TADOQuery and other query-
type datasets.

• TADOStoredProc, a stored procedure-type dataset that executes a stored procedure
defined on a database server. See “Using stored procedure-type datasets” on
page 18-48 for information on using TADOStoredProc and other stored procedure-
type datasets.

• TADODataSet, a general-purpose dataset that includes the capabilities of the other
three types. See “Using TADODataSet” on page 21-15 for a description of features
unique to TADODataSet.

Note When using ADO to access database information, you do not need to use a dataset
such as TADOQuery to represent SQL commands that do not return a cursor. Instead,
you can use TADOCommand, a simple component that is not a dataset. For details on
TADOCommand, see “Using Command objects” on page 21-16.

Connecting an ADO dataset to a data store
ADO datasets can connect to an ADO data store either collectively or individually.

When connecting datasets collectively, set the Connection property of each dataset to
a TADOConnection component. Each dataset then uses the ADO connection
component’s connection.

ADODataSet1.Connection := ADOConnection1;
ADODataSet2.Connection := ADOConnection1;
...

21-10 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

Among the advantages of connecting datasets collectively are:

• The datasets share the connection object’s attributes.
• Only one connection need be set up: that of the TADOConnection.
• The datasets can participate in transactions.

For more information on using TADOConnection see “Connecting to ADO data
stores” on page 21-2.

When connecting datasets individually, set the ConnectionString property of each
dataset. Each dataset that uses ConnectionString establishes its own connection to the
data store, independent of any other dataset connection in the application.

The ConnectionString property of ADO datasets works the same way as the
ConnectionString property of TADOConnection: it is a set of semicolon-delimited
connection parameters such as the following:

ADODataSet1.ConnectionString := 'Provider=YourProvider;Password=SecretWord;' +
'User ID=JaneDoe;SERVER=PURGATORY;UID=JaneDoe;PWD=SecretWord;' +
'Initial Catalog=Employee';

At design time you can use the Connection String Editor to help you build the
connection string. For more information about connection strings, see “Connecting to
a data store using TADOConnection” on page 21-3.

Working with record sets
The Recordset property provides direct access to the ADO recordset object underlying
the dataset component. Using this object, it is possible to access properties and call
methods of the recordset object from an application. Use of Recordset to directly
access the underlying ADO recordset object requires a good working knowledge of
ADO objects in general and the ADO recordset object in specific. Using the recordset
object directly is not recommended unless you are familiar with recordset object
operations. Consult the Microsoft Data Access SDK help for specific information on
using ADO recordset objects.

The RecordsetState property indicates the current state of the underlying recordset
object. RecordsetState corresponds to the State property of the ADO recordset object.
The value of RecordsetState is either stOpen, stExecuting, or stFetching. (TObjectState,
the type of the RecordsetState property, defines other values, but only stOpen,
stExecuting, and stFetching pertain to recordsets.) A value of stOpen indicates that the
recordset is currently idle. A value of stExecuting indicates that it is executing a
command. A value of stFetching indicates that it is fetching rows from the associated
table (or tables).

Use RecordsetState values to perform actions dependent on the current state of the
dataset. For example, a routine that updates data might check the RecordsetState
property to see whether the dataset is active and not in the process of other activities
such as connecting or fetching data.

Filtering records based on bookmarks
ADO datasets support the common dataset feature of using bookmarks to mark and
return to specific records. Also like other datasets, ADO datasets let you use filters to

W o r k i n g w i t h A D O c o m p o n e n t s 21-11

U s i n g A D O d a t a s e t s

limit the available records in the dataset. ADO datasets provide an additional feature
that combines these two common dataset features: the ability to filter on a set of
records identified by bookmarks.

To filter on a set of bookmarks,

1 Use the Bookmark method to mark the records you want to include in the filtered
dataset.

2 Call the FilterOnBookmarks method to filter the dataset so that only the
bookmarked records appear.

This process is illustrated below:

procedure TForm1.Button1Click(Sender: TObject);
var
 BM1, BM2: TBookmarkStr;
begin
 with ADODataSet1 do begin
 BM1 := Bookmark;

BMList.Add(Pointer(BM1));
 MoveBy(3);
 BM2 := Bookmark;

BMList.Add(Pointer(BM2));
FilterOnBookmarks([BM1, BM2]);

 end;
end;

Note that the example above also adds the bookmarks to a list object named BMList.
This is necessary so that the application can later free the bookmarks when they are
no longer needed.

For details on using bookmarks, see “Marking and returning to records” on
page 18-9. For details on other types of filters, see “Displaying and editing a subset of
data using filters” on page 18-12.

Fetching records asynchronously
Unlike other datasets, ADO datasets can fetch their data asynchronously. This allows
your application to continue performing other tasks while the dataset populates itself
with data from the data store.

To control whether the dataset fetches data asynchronously, if it fetches data at all,
use the ExecuteOptions property. ExecuteOptions governs how the dataset fetches its
records when you call Open or set Active to True. If the dataset represents a query or
stored procedure that does not return any records, ExecuteOptions governs how the
query or stored procedure is executed when you call ExecSQL or ExecProc.

21-12 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

ExecuteOptions is a set that includes zero or more of the following values:

Using batch updates
One approach for caching updates is to connect the ADO dataset to a client dataset
using a dataset provider. This approach is discussed in “Using a client dataset to
cache updates” on page 23-15.

However, ADO dataset components provide their own support for cached updates,
which they call batch updates. The following table lists the correspondences between
caching updates using a client dataset and using the batch updates features:

Using the batch updates features of ADO dataset components is a matter of:

• Opening the dataset in batch update mode
• Inspecting the update status of individual rows
• Filtering multiple rows based on update status
• Applying the batch updates to base tables
• Canceling batch updates

Table 21.3 Execution options for ADO datasets

Execute Option Meaning

eoAsyncExecute The command or data fetch operation is executed asynchronously.

eoAsyncFetch The dataset first fetches the number of records specified by the
CacheSize property synchronously, then fetches any remaining rows
asynchronously.

eoAsyncFetchNonBlocking Asynchronous data fetches or command execution do not block the
current thread of execution.

eoExecuteNoRecords A command or stored procedure that does not return data. If any
rows are retrieved, they are discarded and not returned.

Table 21.4 Comparison of ADO and client dataset cached updates

ADO dataset TClientDataSet Description

LockType Not used: client datasets
always cache updates

Specifies whether the dataset is opened in batch
update mode.

CursorType Not used: client datasets
always work with an in-
memory snapshot of data

Specifies how isolated the ADO dataset is from
changes on the server.

RecordStatus UpdateStatus Indicates what update, if any, has occurred on the
current row. RecordStatus provides more
information than UpdateStatus.

FilterGroup StatusFilter Specifies which type of records are available.
FilterGroup provides a wider variety of
information.

UpdateBatch ApplyUpdates Applies the cached updates back to the database
server. Unlike ApplyUpdates, UpdateBatch lets you
limit the types of updates to be applied.

CancelBatch CancelUpdates Discards pending updates, reverting to the
original values. Unlike CancelUpdates, CancelBatch
lets you limit the types of updates to be canceled.

W o r k i n g w i t h A D O c o m p o n e n t s 21-13

U s i n g A D O d a t a s e t s

Opening the dataset in batch update mode
To open an ADO dataset in batch update mode, it must meet these criteria:

1 The component’s CursorType property must be ctKeySet (the default property
value) or ctStatic.

2 The LockType property must be ltBatchOptimistic.
3 The command must be a SELECT query.

Before activating the dataset component, set the CursorType and LockType properties
as indicated above. Assign a SELECT statement to the component’s CommandText
property (for TADODataSet) or the SQL property (for TADOQuery). For
TADOStoredProc components, set the ProcedureName to the name of a stored
procedure that returns a result set. These properties can be set at design-time through
the Object Inspector or programmatically at runtime. The example below shows the
preparation of a TADODataSet component for batch update mode.

with ADODataSet1 do begin
CursorLocation := clUseClient;
CursorType := ctStatic;
LockType := ltBatchOptimistic;
CommandType := cmdText;
CommandText := 'SELECT * FROM Employee';
Open;

end;

After a dataset has been opened in batch update mode, all changes to the data are
cached rather than applied directly to the base tables.

Inspecting the update status of individual rows
Determine the update status of a given row by making it current and then inspecting
the RecordStatus property of the ADO data component. RecordStatus reflects the
update status of the current row and only that row.

case ADOQuery1.RecordStatus of
rsUnmodified: StatusBar1.Panels[0].Text := 'Unchanged record';
rsModified: StatusBar1.Panels[0].Text := 'Changed record';
rsDeleted: StatusBar1.Panels[0].Text := 'Deleted record';
rsNew: StatusBar1.Panels[0].Text := 'New record';

end;

Filtering multiple rows based on update status
Filter a recordset to show only those rows that belong to a group of rows with the
same update status using the FilterGroup property. Set FilterGroup to the TFilterGroup
constant that represents the update status of rows to display. A value of fgNone (the
default value for this property) specifies that no filtering is applied and all rows are
visible regardless of update status (except rows marked for deletion). The example
below causes only pending batch update rows to be visible.

FilterGroup := fgPendingRecords;
Filtered := True;

Note For the FilterGroup property to have an effect, the ADO dataset component’s Filtered
property must be set to True.

21-14 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

Applying the batch updates to base tables
Apply pending data changes that have not yet been applied or canceled by calling
the UpdateBatch method. Rows that have been changed and are applied have their
changes put into the base tables on which the recordset is based. A cached row
marked for deletion causes the corresponding base table row to be deleted. A record
insertion (exists in the cache but not the base table) is added to the base table.
Modified rows cause the columns in the corresponding rows in the base tables to be
changed to the new column values in the cache.

Used alone with no parameter, UpdateBatch applies all pending updates. A
TAffectRecords value can optionally be passed as the parameter for UpdateBatch. If any
value except arAll is passed, only a subset of the pending changes are applied.
Passing arAll is the same as passing no parameter at all and causes all pending
updates to be applied. The example below applies only the currently active row to be
applied:

ADODataSet1.UpdateBatch(arCurrent);

Canceling batch updates
Cancel pending data changes that have not yet been canceled or applied by calling
the CancelBatch method. When you cancel pending batch updates, field values on
rows that have been changed revert to the values that existed prior to the last call to
CancelBatch or UpdateBatch, if either has been called, or prior to the current pending
batch of changes.

Used alone with no parameter, CancelBatch cancels all pending updates. A
TAffectRecords value can optionally be passed as the parameter for CancelBatch. If any
value except arAll is passed, only a subset of the pending changes are canceled.
Passing arAll is the same as passing no parameter at all and causes all pending
updates to be canceled. The example below cancels all pending changes:

ADODataSet1.CancelBatch;

Loading data from and saving data to files
The data retrieved via an ADO dataset component can be saved to a file for later
retrieval on the same or a different computer. The data is saved in one of two
proprietary formats: ADTG or XML. These two file formats are the only formats
supported by ADO. However, both formats are not necessarily supported in all
versions of ADO. Consult the ADO documentation for the version you are using to
determine what save file formats are supported.

Save the data to a file using the SaveToFile method. SaveToFile takes two parameters,
the name of the file to which data is saved, and, optionally, the format (ADTG or
XML) in which to save the data. Indicate the format for the saved file by setting the
Format parameter to pfADTG or pfXML. If the file specified by the FileName parameter
already exists, SaveToFile raises an EOleException.

Retrieve the data from file using the LoadFromFile method. LoadFromFile takes a single
parameter, the name of the file to load. If the specified file does not exist,
LoadFromFile raises an EOleException exception. On calling the LoadFromFile method,
the dataset component is automatically activated.

W o r k i n g w i t h A D O c o m p o n e n t s 21-15

U s i n g A D O d a t a s e t s

In the example below, the first procedure saves the dataset retrieved by the
TADODataSet component ADODataSet1 to a file. The target file is an ADTG file
named SaveFile, saved to a local drive. The second procedure loads this saved file
into the TADODataSet component ADODataSet2.

procedure TForm1.SaveBtnClick(Sender: TObject);
begin

if (FileExists('c:\SaveFile')) then
begin
DeleteFile('c:\SaveFile');
StatusBar1.Panels[0].Text := 'Save file deleted!';

end;
ADODataSet1.SaveToFile('c:\SaveFile', pfADTG);

end;

procedure TForm1.LoadBtnClick(Sender: TObject);
begin

if (FileExists('c:\SaveFile')) then
ADODataSet2.LoadFromFile('c:\SaveFile')

else
StatusBar1.Panels[0].Text := 'Save file does not exist!';

end;

The datasets that save and load the data need not be on the same form as above, in
the same application, or even on the same computer. This allows for the briefcase-
style transfer of data from one computer to another.

Using TADODataSet

TADODataSet is a general-purpose dataset for working with data from an ADO data
store. Unlike the other ADO dataset components, TADODataSet is not a table-type,
query-type, or stored procedure-type dataset. Instead, it can function as any of these
types:

• Like a table-type dataset, TADODataSet lets you represent all of the rows and
columns of a single database table. To use it in this way, set the CommandType
property to cmdTable and the CommandText property to the name of the table.
TADODataSet supports table-type tasks such as

• Assigning indexes to sort records or form the basis of record-based searches. In
addition to the standard index properties and methods described in “Sorting
records with indexes” on page 18-25, TADODataSet lets you sort using
temporary indexes by setting the Sort property. Indexed-based searches
performed using the Seek method use the current index.

• Emptying the dataset. The DeleteRecords method provides greater control than
related methods in other table-type datasets, because it lets you specify what
records to delete.

The table-type tasks supported by TADODataSet are available even when you are
not using a CommandType of cmdTable.

21-16 D e v e l o p e r ’ s G u i d e

U s i n g C o m m a n d o b j e c t s

• Like a query-type dataset, TADODataSet lets you specify a single SQL command
that is executed when you open the dataset. To use it in this way, set the
CommandType property to cmdText and the CommandText property to the SQL
command you want to execute. At design time, you can double-click on the
CommandText property in the Object Inspector to use the Command Text editor for
help in constructing the SQL command. TADODataSet supports query-type tasks
such as

• Using parameters in the query text. See “Using parameters in queries” on
page 18-43 for details on query parameters.

• Setting up master/detail relationships using parameters. See “Establishing
master/detail relationships using parameters” on page 18-46 for details on how
to do this.

• Preparing the query in advance to improve performance by setting the Prepared
property to True.

• Like a stored procedure-type dataset, TADODataSet lets you specify a stored
procedure that is executed when you open the dataset. To use it in this way, set the
CommandType property to cmdStoredProc and the CommandText property to the
name of the stored procedure. TADODataSet supports stored procedure-type tasks
such as

• Working with stored procedure parameters. See “Working with stored
procedure parameters” on page 18-50 for details on stored procedure
parameters.

• Fetching multiple result sets. See “Fetching multiple result sets” on page 18-53
for details on how to do this.

• Preparing the stored procedure in advance to improve performance by setting
the Prepared property to True.

In addition, TADODataSet lets you work with data stored in files by setting the
CommandType property to cmdFile and the CommandText property to the file name.

Before you set the CommandText and CommandType properties, you should link the
TADODataSet to a data store by setting the Connection or ConnectionString property.
This process is described in “Connecting an ADO dataset to a data store” on
page 21-9. As an alternative, you can use an RDS DataSpace object to connect the
TADODataSet to an ADO-based application server. To use an RDS DataSpace object,
set the RDSConnection property to a TRDSConnection object.

Using Command objects
In the ADO environment, commands are textual representations of provider-specific
action requests. Typically, they are Data Definition Language (DDL) and Data
Manipulation Language (DML) SQL statements. The language used in commands is
provider-specific, but usually compliant with the SQL-92 standard for the SQL
language.

W o r k i n g w i t h A D O c o m p o n e n t s 21-17

U s i n g C o m m a n d o b j e c t s

Although you can always execute commands using TADOQuery, you may not want
the overhead of using a dataset component, especially if the command does not
return a result set. As an alternative, you can use the TADOCommand component,
which is a lighter-weight object designed to execute commands, one command at a
time. TADOCommand is intended primarily for executing those commands that do
not return result sets, such as Data Definition Language (DDL) SQL statements.
Through an overloaded version of its Execute method, however, it is capable of
returning a result set that can be assigned to the RecordSet property of an ADO
dataset component.

In general, working with TADOCommand is very similar to working with
TADODataSet, except that you can’t use the standard dataset methods to fetch data,
navigate records, edit data, and so on. TADOCommand objects connect to a data store
in the same way as ADO datasets. See “Connecting an ADO dataset to a data store”
on page 21-9 for details.

The following topics provide details on how to specify and execute commands using
TADOCommand.

Specifying the command

Specify commands for a TADOCommand component using the CommandText
property. Like TADODataSet, TADOCommand lets you specify the command in
different ways, depending on the CommandType property. Possible values for
CommandType include: cmdText (used if the command is an SQL statement), cmdTable
(if it is a table name), and cmdStoredProc (if the command is the name of a stored
procedure). At design-time, select the appropriate command type from the list in the
Object Inspector. At runtime, assign a value of type TCommandType to the
CommandType property.

with ADOCommand1 do begin
CommandText := 'AddEmployee';
CommandType := cmdStoredProc;

...
end;

If no specific type is specified, the server is left to decide as best it can based on the
command in CommandText.

CommandText can contain the text of an SQL query that includes parameters or the
name of a stored procedure that uses parameters. You must then supply parameter
values, which are bound to the parameters before executing the command. See
“Handling command parameters” on page 21-19 for details.

Using the Execute method

Before TADOCommand can execute its command, it must have a valid connection to a
data store. This is established just as with an ADO dataset. See “Connecting an ADO
dataset to a data store” on page 21-9 for details.

21-18 D e v e l o p e r ’ s G u i d e

U s i n g C o m m a n d o b j e c t s

To execute the command, call the Execute method. Execute is an overloaded method
that lets you choose the most appropriate way to execute the command.

For commands that do not require any parameters and for which you do not need to
know how many records were affected, call Execute without any parameters:

with ADOCommand1 do begin
CommandText := 'UpdateInventory';
CommandType := cmdStoredProc;
Execute;

end;

Other versions of Execute let you provide parameter values using a Variant array,
and to obtain the number of records affected by the command.

For information on executing commands that return a result set, see “Retrieving
result sets with commands” on page 21-18.

Canceling commands

If you are executing the command asynchronously, then after calling Execute you can
abort the execution by calling the Cancel method:

procedure TDataForm.ExecuteButtonClick(Sender: TObject);
begin

ADOCommand1.Execute;
end;

procedure TDataForm.CancelButtonClick(Sender: TObject);
begin

ADOCommand1.Cancel;
end;

The Cancel method only has an effect if there is a command pending and it was
executed asynchronously (eoAsynchExecute is in the ExecuteOptions parameter of the
Execute method). A command is said to be pending if the Execute method has been
called but the command has not yet been completed or timed out.

A command times out if it is not completed or canceled before the number of seconds
specified in the CommandTimeout property expire. By default, commands time out
after 30 seconds.

Retrieving result sets with commands

Unlike TADOQuery components, which use different methods to execute depending
on whether they return a result set, TADOCommand always uses the Execute
command to execute the command, regardless of whether it returns a result set.
When the command returns a result set, Execute returns an interface to the ADO
_RecordSet interface.

The most convenient way to work with this interface is to assign it to the RecordSet
property of an ADO dataset.

W o r k i n g w i t h A D O c o m p o n e n t s 21-19

U s i n g C o m m a n d o b j e c t s

For example, the following code uses TADOCommand (ADOCommand1) to execute a
SELECT query, which returns a result set. This result set is then assigned to the
RecordSet property of a TADODataSet component (ADODataSet1).

with ADOCommand1 do begin
CommandText := 'SELECT Company, State ' +

'FROM customer ' +
'WHERE State = :StateParam';

CommandType := cmdText;
Parameters.ParamByName('StateParam').Value := 'HI';
ADODataSet1.Recordset := Execute;

end;

As soon as the result set is assigned to the ADO dataset’s Recordset property, the
dataset is automatically activated and the data is available.

Handling command parameters

There are two ways in which a TADOCommand object may use parameters:

• The CommandText property can specify a query that includes parameters. Working
with parameterized queries in TADOCommand works like using a parameterized
query in an ADO dataset. See “Using parameters in queries” on page 18-43 for
details on parameterized queries.

• The CommandText property can specify a stored procedure that uses parameters.
Stored procedure parameters work much the same using TADOCommand as with
an ADO dataset. See “Working with stored procedure parameters” on page 18-50
for details on stored procedure parameters.

There are two ways to supply parameter values when working with TADOCommand:
you can supply them when you call the Execute method, or you can specify them
ahead of time using the Parameters property.

The Execute method is overloaded to include versions that take a set of parameter
values as a Variant array. This is useful when you want to supply parameter values
quickly without the overhead of setting up the Parameters property:

ADOCommand1.Execute(VarArrayOf([Edit1.Text, Date]));

When working with stored procedures that return output parameters, you must use
the Parameters property instead. Even if you do not need to read output parameters,
you may prefer to use the Parameters property, which lets you supply parameters at
design time and lets you work with TADOCommand properties in the same way you
work with the parameters on datasets.

When you set the CommandText property, the Parameters property is automatically
updated to reflect the parameters in the query or those used by the stored procedure.
At design-time, you can use the Parameter Editor to access parameters, by clicking
the ellipsis button for the Parameters property in the Object Inspector. At runtime, use
properties and methods of TParameter to set (or get) the values of each parameter.

21-20 D e v e l o p e r ’ s G u i d e

U s i n g C o m m a n d o b j e c t s

with ADOCommand1 do begin
CommandText := 'INSERT INTO Talley ' +

'(Counter) ' +
'VALUES (:NewValueParam)';

CommandType := cmdText;
Parameters.ParamByName('NewValueParam').Value := 57;
Execute

end;

U s i n g u n i d i r e c t i o n a l d a t a s e t s 22-1

C h a p t e r

22
Chapter 22Using unidirectional datasets

dbExpress is a set of lightweight database drivers that provide fast access to SQL
database servers. For each supported database, dbExpress provides a driver that
adapts the server-specific software to a set of uniform dbExpress interfaces. When you
deploy a database application that uses dbExpress, you need only include a dll (the
server-specific driver) with the application files you build.

dbExpress lets you access databases using unidirectional datasets. Unidirectional
datasets are designed for quick lightweight access to database information, with
minimal overhead. Like other datasets, they can send an SQL command to the
database server, and if the command returns a set of records, obtain a cursor for
accessing those records. However, unidirectional datasets can only retrieve a
unidirectional cursor. They do not buffer data in memory, which makes them faster
and less resource-intensive than other types of dataset. However, because there are
no buffered records, unidirectional datasets are also less flexible than other datasets.
Many of the capabilities introduced by TDataSet are either unimplemented in
unidirectional datasets, or cause them to raise exceptions. For example:

• The only supported navigation methods are the First and Next methods. Most
others raise exceptions. Some, such as the methods involved in bookmark support,
simply do nothing.

• There is no built-in support for editing because editing requires a buffer to hold
the edits. The CanModify property is always False, so attempts to put the dataset
into edit mode always fail. You can, however, use unidirectional datasets to
update data using an SQL UPDATE command or provide conventional editing
support by using a dbExpress-enabled client dataset or connecting the dataset to a
client dataset (see “Connecting to another dataset” on page 14-10).

• There is no support for filters, because filters work with multiple records, which
requires buffering. If you try to filter a unidirectional dataset, it raises an
exception. Instead, all limits on what data appears must be imposed using the SQL
command that defines the data for the dataset.

22-2 D e v e l o p e r ’ s G u i d e

T y p e s o f u n i d i r e c t i o n a l d a t a s e t s

• There is no support for lookup fields, which require buffering to hold multiple
records containing lookup values. If you define a lookup field on a unidirectional
dataset, it does not work properly.

Despite these limitations, unidirectional datasets are a powerful way to access data.
They are the fastest data access mechanism, and very simple to use and deploy.

Types of unidirectional datasets
The dbExpress page of the component palette contains four types of unidirectional
dataset: TSQLDataSet, TSQLQuery, TSQLTable, and TSQLStoredProc.

TSQLDataSet is the most general of the four. You can use an SQL dataset to represent
any data available through dbExpress, or to send commands to a database accessed
through dbExpress. This is the recommended component to use for working with
database tables in new database applications.

TSQLQuery is a query-type dataset that encapsulates an SQL statement and enables
applications to access the resulting records, if any. See “Using query-type datasets”
on page 18-41 for information on using query-type datasets.

TSQLTable is a table-type dataset that represents all of the rows and columns of a
single database table. See “Using table-type datasets” on page 18-24 for information
on using table-type datasets.

TSQLStoredProc is a stored procedure-type dataset that executes a stored procedure
defined on a database server. See “Using stored procedure-type datasets” on
page 18-48 for information on using stored procedure-type datasets.

Note The dbExpress page also includes TSQLClientDataSet, which is not a unidirectional
dataset. Rather, it is a client dataset that uses a unidirectional dataset internally to
access its data

Connecting to the database server
The first step when working with a unidirectional dataset is to connect it to a
database server. At design time, once a dataset has an active connection to a database
server, the Object Inspector can provide drop-down lists of values for other
properties. For example, when representing a stored procedure, you must have an
active connection before the Object Inspector can list what stored procedures are
available on the server.

The connection to a database server is represented by a separate TSQLConnection
component. You work with TSQLConnection like any other database connection
component. For information about database connection components, see Chapter 17,
“Connecting to databases”.

To use TSQLConnection to connect a unidirectional dataset to a database server, set
the SQLConnection property. At design time, you can choose the SQL connection

U s i n g u n i d i r e c t i o n a l d a t a s e t s 22-3

C o n n e c t i n g t o t h e d a t a b a s e s e r v e r

component from a drop-down list in the Object Inspector. If you make this
assignment at runtime, be sure that the connection is active:

SQLDataSet1.SQLConnection := SQLConnection1;
SQLConnection1.Connected := True;

Typically, all unidirectional datasets in an application share the same connection
component, unless you are working with data from multiple database servers.
However, you may want to use a separate connection for each dataset if the server
does not support multiple statements per connection. Check whether the database
server requires a separate connection for each dataset by reading the
MaxStmtsPerConn property. By default, TSQLConnection generates connections as
needed when the server limits the number of statements that can be executed over a
connection. If you want to keep stricter track of the connections you are using, set the
AutoClone property to False.

Before you assign the SQLConnection property, you will need to set up the
TSQLConnection component so that it identifies the database server and any required
connection parameters (including which database to use on the server, the host name
of the machine running the server, the username, password, and so on).

Setting up TSQLConnection

In order to describe a database connection in sufficient detail for TSQLConnection to
open a connection, you must identify both the driver to use and a set of connection
parameters the are passed to that driver.

Identifying the driver
The driver is identified by the DriverName property, which is the name of an installed
dbExpress driver, such as INTERBASE, ORACLE, MYSQL, or DB2. The driver name is
associated with two files

• The dbExpress driver. This can be either a dynamic-link library with a name like
dbexpint.dll, dbexpora.dll, dbexpmys.dll, or dbexpdb2.dll, or a compiled unit that
you can statically link into your application (dbexptint.dcu, dbexpora.dcu,
dbexpmys.dcu, or dbexpdb2.dcu).

• The dynamic-link library provided by the database vendor for client-side support.

The relationship between these two files and the database name is stored in a file
called dbxdrivers.ini, which is updated when you install a dbExpress driver.
Typically, you do not need to worry about these files because the SQL connection
component looks them up in dbxdrivers.ini when given the value of DriverName.
When you set the DriverName property, TSQLConnection automatically sets the
LibraryName and VendorLib properties to the names of the associated dlls. Once
LibraryName and VendorLib have been set, your application does not need to rely on
dbxdrivers.ini. (That is, you do not need to deploy dbxdrivers.ini with your
application unless you set the DriverName property at runtime.)

22-4 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o t h e d a t a b a s e s e r v e r

Specifying connection parameters
The Params property is a string list that lists name/value pairs. Each pair has the
form Name=Value, where Name is the name of the parameter, and Value is the value
you want to assign.

The particular parameters you need depend on the database server you are using.
However, one particular parameter, Database, is required for all servers. Its value
depends on the server you are using. For example, with InterBase, Database is the
name of the .gdb file, with ORACLE it is the entry in TNSNames.ora, while with DB2,
it is the client-side node name.

Other typical parameters include the User_Name (the name to use when logging in),
Password (the password for User_Name), HostName (the machine name or IP address
of where the server is located), and TransIsolation (the degree to which transactions
you introduce are aware of changes made by other transactions). When you specify a
driver name, the Params property is preloaded with all the parameters you need for
that driver type, initialized to default values.

Because Params is a string list, at design time you can double-click on the Params
property in the Object Inspector to edit the parameters using the String List editor. At
runtime, use the Params.Values property to assign values to individual parameters.

Naming a connection description
Although you can always specify a connection using only the DatabaseName and
Params properties, it can be more convenient to name a specific combination and then
just identify the connection by name. You can name dbExpress database and
parameter combinations, which are then saved in a file called dbxconnections.ini.
The name of each combination is called a connection name.

Once you have defined the connection name, you can identify a database connection
by simply setting the ConnectionName property to a valid connection name. Setting
ConnectionName automatically sets the DriverName and Params properties. Once
ConnectionName is set, you can edit the Params property to create temporary
differences from the saved set of parameter values, but changing the DriverName
property clears both Params and ConnectionName.

One advantage of using connection names arises when you develop your application
using one database (for example Local InterBase), but deploy it for use with another
(such as ORACLE). In that case, DriverName and Params will likely differ on the
system where you deploy your application from the values you use during
development. You can switch between the two connection descriptions easily by
using two versions of the dbxconnections.ini file. At design-time, your application
loads the DriverName and Params from the design-time version of dbxconnections.ini.
Then, when you deploy your application, it loads these values from a separate
version of dbxconnections.ini that uses the “real” database. However, for this to
work, you must instruct your connection component to reload the DriverName and
Params properties at runtime. There are two ways to do this:

• Set the LoadParamsOnConnect property to True. This causes TSQLConnection to
automatically set DriverName and Params to the values associated with
ConnectionName in dbxconnections.ini when the connection is opened.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 22-5

S p e c i f y i n g w h a t d a t a t o d i s p l a y

• Call the LoadParamsFromIniFile method. This method sets DriverName and Params
to the values associated with ConnectionName in dbxconnections.ini (or in another
file that you specify). You might choose to use this method if you want to then
override certain parameter values before opening the connection.

Using the Connection Editor
The relationships between connection names and their associated driver and
connection parameters is stored in the dbxconnections.ini file. You can create or
modify these associations using the Connection Editor.

To display the Connection Editor, double-click on the TSQLConnection component.
The Connection Editor appears, with a drop-down list containing all available
drivers, a list of connection names for the currently selected driver, and a table listing
the connection parameters for the currently selected connection name.

You can use this dialog to indicate the connection to use by selecting a driver and
connection name. Once you have chosen the configuration you want, click the Test
Connection button to check that you have chosen a valid configuration.

In addition, you can use this dialog to edit the named connections in
dbxconnections.ini:

• Edit the parameter values in the parameter table to change the currently selected
named connection. When you exit the dialog by clicking OK, the new parameter
values are saved to dbxconnections.ini.

• Click the Add Connection button to define a new named connection. A dialog
appears where you specify the driver to use and the name of the new connection.
Once the connection is named, edit the parameters to specify the connection you
want and click the OK button to save the new connection to dbxconnections.ini.

• Click the Delete Connection button to delete the currently selected named
connection from dbxconnections.ini.

• Click the Rename Connection button to change the name of the currently selected
named connection. Note that any edits you have made to the parameters are saved
with the new name when you click the OK button.

Specifying what data to display
There are a number of ways to specify what data a unidirectional dataset represents.
Which method you choose depends on the type of unidirectional dataset you are
using and whether the information comes from a single database table, the results of
a query, or from a stored procedure.

When you work with a TSQLDataSet component, use the CommandType property to
indicate where the dataset gets its data. CommandType can take any of the following
values:

• ctQuery: When CommandType is ctQuery, TSQLDataSet executes a query you
specify. If the query is a SELECT command, the dataset contains the resulting set
of records.

22-6 D e v e l o p e r ’ s G u i d e

S p e c i f y i n g w h a t d a t a t o d i s p l a y

• ctTable: When CommandType is ctTable, TSQLDataSet retrieves all of the records
from a specified table.

• ctStoredProc: When CommandType is ctStoredProc, TSQLDataSet executes a stored
procedure. If the stored procedure returns a cursor, the dataset contains the
returned records.

Note You can also populate the unidirectional dataset with metadata about what is
available on the server. For information on how to do this, see “Fetching metadata
into a unidirectional dataset” on page 22-12.

Representing the results of a query

Using a query is the most general way to specify a set of records. Queries are simply
commands written in SQL. You can use either TSQLDataSet or TSQLQuery to
represent the result of a query.

When using TSQLDataSet, set the CommandType property to ctQuery and assign the
text of the query statement to the CommandText property. When using TSQLQuery,
assign the query to the SQL property instead. These properties work the same way
for all general-purpose or query-type datasets. “Specifying the query” on page 18-42
discusses them in greater detail.

When you specify the query, it can include parameters, or variables, the values of
which can be varied at design time or runtime. Parameters can replace data values
that appear in the SQL statement. Using parameters in queries and supplying values
for those parameters is discussed in “Using parameters in queries” on page 18-43.

SQL defines queries such as UPDATE queries that perform actions on the server but
do not return records. Such queries are discussed in “Executing commands that do
not return records” on page 22-9.

Representing the records in a table

When you want to represent all of the fields and all of the records in a single
underlying database table, you can use either TSQLDataSet or TSQLTable to generate
the query for you rather than writing the SQL yourself.

Note If server performance is a concern, you may want to compose the query explicitly
rather than relying on an automatically-generated query. Automatically-generated
queries use wildcards rather than explicitly listing all of the fields in the table. This
can result in slightly slower performance on the server. The wildcard (*) in
automatically-generated queries is more robust to changes in the fields on the server.

Representing a table using TSQLDataSet
To make TSQLDataSet generate a query to fetch all fields and all records of a single
database table, set the CommandType property to ctTable.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 22-7

S p e c i f y i n g w h a t d a t a t o d i s p l a y

When CommandType is ctTable, TSQLDataSet generates a query based on the values of
two properties:

• CommandText specifies the name of the database table that the TSQLDataSet object
should represent.

• SortFieldNames lists the names of any fields to use to sort the data, in the order of
significance.

For example, if you specify the following:

SQLDataSet1.CommandType := ctTable;
SQLDataSet1.CommandText := 'Employee';
SQLDataSet1.SortFieldNames := 'HireDate,Salary'

TSQLDataSet generates the following query, which lists all the records in the
Employee table, sorted by HireDate and, within HireDate, by Salary:

select * from Employee order by HireDate, Salary

Representing a table using TSQLTable
When using TSQLTable, specify the table you want using the TableName property.

To specify the order of fields in the dataset, you must specify an index. There are two
ways to do this:

• Set the IndexName property to the name of an index defined on the server that
imposes the order you want.

• Set the IndexFieldNames property to a semicolon-delimited list of field names on
which to sort. IndexFieldNames works like the SortFieldNames property of
TSQLDataSet, except that it uses a semicolon instead of a comma as a delimiter.

Representing the results of a stored procedure

Stored procedures are sets of SQL statements that are named and stored on an SQL
server. How you indicate the stored procedure you want to execute depends on the
type of unidirectional dataset you are using.

When using TSQLDataSet, to specify a stored procedure:

• Set the CommandType property to ctStoredProc.

• Specify the name of the stored procedure as the value of the CommandText
property:

SQLDataSet1.CommandType := ctStoredProc;
SQLDataSet1.CommandText := 'MyStoredProcName';

When using TSQLStoredProc , you need only specify the name of the stored
procedure as the value of the StoredProcName property.

SQLStoredProc1.StoredProcName := 'MyStoredProcName';

After you have identified a stored procedure, your application may need to enter
values for any input parameters of the stored procedure or retrieve the values of
output parameters after you execute the stored procedure. See “Working with stored
procedure parameters” on page 18-50 for information about working with stored
procedure parameters.

22-8 D e v e l o p e r ’ s G u i d e

F e t c h i n g t h e d a t a

Fetching the data
Once you have specified the source of the data, you must fetch the data before your
application can access it. Once the dataset has fetched the data, data-aware controls
linked to the dataset through a data source automatically display data values and
client datasets linked to the dataset through a provider can be populated with
records.

As with any dataset, there are two ways to fetch the data for a unidirectional dataset:

• Set the Active property to True, either at design time in the Object Inspector, or in
code at runtime:

CustQuery.Active := True;

• Call the Open method at runtime,

CustQuery.Open;

Use the Active property or the Open method with any unidirectional dataset that
obtains records from the server. It does not matter whether these records come from
a SELECT query (including automatically-generated queries when the CommandType
is ctTable) or a stored procedure.

Preparing the dataset

Before a query or stored procedure can execute on the server, it must first be
“prepared”. Preparing the dataset means that dbExpress and the server allocate
resources for the statement and its parameters. If CommandType is ctTable, this is
when the dataset generates its SELECT query. Any parameters that are not bound by
the server are folded into a query at this point.

Unidirectional datasets are automatically prepared when you set Active to True or call
the Open method. When you close the dataset, the resources allocated for executing
the statement are freed. If you intend to execute the query or stored procedure more
than once, you can improve performance by explicitly preparing the dataset before
you open it the first time. To explicitly prepare a dataset, set its Prepared property to
True.

CustQuery.Prepared := True;

When you explicitly prepare the dataset, the resources allocated for executing the
statement are not freed until you set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared
before it executes (for example, if you change a parameter value or the SortFieldNames
property).

U s i n g u n i d i r e c t i o n a l d a t a s e t s 22-9

E x e c u t i n g c o m m a n d s t h a t d o n o t r e t u r n r e c o r d s

Fetching multiple datasets

Some stored procedures return multiple sets of records. The dataset only fetches the
first set when you open it. In order to access the other sets of records, call the
NextRecordSet method:

var
DataSet2: TSQLDataSet;
nRows: Integer;

begin
DataSet2 := SQLDataSet1.NextRecordSet(nRows);
...

NextRecordSet returns a newly created TSQLDataSet component that provides access
to the next set of records. That is, the first time you call NextRecordSet, it returns a
dataset for the second set of records. Calling NextRecordSet returns a third dataset,
and so on, until there are no more sets of records. When there are no additional
datasets, NextRecordSet returns nil.

Executing commands that do not return records
You can use a unidirectional dataset even if the query or stored procedure it
represents does not return any records. Such commands include statements that use
Data Definition Language (DDL) or Data Manipulation Language (DML) statements
other than SELECT statements (For example, INSERT, DELETE, UPDATE, CREATE
INDEX, and ALTER TABLE commands do not return any records). The language
used in commands is server-specific, but usually compliant with the SQL-92 standard
for the SQL language.

The SQL command you execute must be acceptable to the server you are using.
Unidirectional datasets neither evaluate the SQL nor execute it. They merely pass the
command to the server for execution.

Note If the command does not return any records, you do not need to use a unidirectional
dataset at all, because there is no need for the dataset methods that provide access to
a set of records. The SQL connection component that connects to the database server
can be used directly to execute a command on the server. See “Sending commands to
the server” on page 17-10 for details.

Specifying the command to execute

With unidirectional datasets, the way you specify the command to execute is the
same whether the command results in a dataset or not. That is:

When using TSQLDataSet, use the CommandType and CommandText properties to
specify the command:

• If CommandType is ctQuery, CommandText is the SQL statement to pass to the
server.

22-10 D e v e l o p e r ’ s G u i d e

E x e c u t i n g c o m m a n d s t h a t d o n o t r e t u r n r e c o r d s

• If CommandType is ctStoredProc, CommandText is the name of a stored procedure to
execute.

When using TSQLQuery, use the SQL property to specify the SQL statement to pass
to the server.

When using TSQLStoredProc, use the StoredProcName property to specify the name of
the stored procedure to execute.

Just as you specify the command in the same way as when you are retrieving records,
you work with query parameters or stored procedure parameters the same way as
with queries and stored procedures that return records. See “Using parameters in
queries” on page 18-43 and “Working with stored procedure parameters” on
page 18-50 for details.

Executing the command

To execute a query or stored procedure that does not return any records, you do not
use the Active property or the Open method. Instead, you must use

• The ExecSQL method if the dataset is an instance of TSQLDataSet or TSQLQuery.

FixTicket.CommandText := 'DELETE FROM TrafficViolations WHERE (TicketID = 1099)';
FixTicket.ExecSQL;

• The ExecProc method if the dataset is an instance of TSQLStoredProc.

SQLStoredProc1.StoredProcName := 'MyCommandWithNoResults';
SQLStoredProc1.ExecProc;

Tip If you are executing the query or stored procedure multiple times, it is a good idea to
set the Prepared property to True.

Creating and modifying server metadata

Most of the commands that do not return data fall into two categories: those that you
use to edit data (such as INSERT, DELETE, and UPDATE commands), and those that
you use to create or modify entities on the server such as tables, indexes, and stored
procedures.

If you don’t want to use explicit SQL commands for editing, you can link your
unidirectional dataset to a client dataset and let it handle all the generation of all SQL
commands concerned with editing (see “Connecting a client dataset to another
dataset in the same application” on page 14-11). In fact, this is the recommended
approach because data-aware controls are designed to perform edits through a
dataset such as TClientDataSet.

The only way your application can create or modify metadata on the server,
however, is to send a command. Not all database drivers support the same SQL
syntax. It is beyond the scope of this topic to describe the SQL syntax supported by
each database type and the differences between the database types. For a
comprehensive and up-to-date discussion of the SQL implementation for a given
database system, see the documentation that comes with that system.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 22-11

E x e c u t i n g c o m m a n d s t h a t d o n o t r e t u r n r e c o r d s

In general, use the CREATE TABLE statement to create tables in a database and
CREATE INDEX to create new indexes for those tables. Where supported, use other
CREATE statements for adding various metadata objects, such as CREATE
DOMAIN, CREATE VIEW, CREATE SCHEMA, and CREATE PROCEDURE.

For each of the CREATE statements, there is a corresponding DROP statement to
delete the metadata object. These statements include DROP TABLE, DROP VIEW,
DROP DOMAIN, DROP SCHEMA, and DROP PROCEDURE.

To change the structure of a table, use the ALTER TABLE statement. ALTER TABLE
has ADD and DROP clauses to create new elements in a table and to delete them. For
example, use the ADD COLUMN clause to add a new column to the table and DROP
CONSTRAINT to delete an existing constraint from the table.

For example, the following statement creates a stored procedure called
GET_EMP_PROJ on an InterBase database:

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :EMP_NO
INTO :PROJ_ID
DO

SUSPEND;
END

The following code uses a TSQLDataSet to create this stored procedure. Note the use
of the ParamCheck property to prevent the dataset from confusing the parameters in
the stored procedure definition (:EMP_NO and :PROJ_ID) with a parameter of the
query that creates the stored procedure.

with SQLDataSet1 do
begin

ParamCheck := False;
CommandType := ctQuery;
CommandText := 'CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT) ' +

'RETURNS (PROJ_ID CHAR(5)) AS ' +
'BEGIN ' +

'FOR SELECT PROJ_ID FROM EMPLOYEE_PROJECT ' +
'WHERE EMP_NO = :EMP_NO ' +
'INTO :PROJ_ID ' +

'DO SUSPEND; ' +
END';

ExecSQL;
end;

22-12 D e v e l o p e r ’ s G u i d e

S e t t i n g u p m a s t e r / d e t a i l l i n k e d c u r s o r s

Setting up master/detail linked cursors
There are two ways to use linked cursors to set up a master/detail relationship with a
unidirectional dataset as the detail set. Which method you use depends on the type of
unidirectional dataset you are using. Once you have set up such a relationship, the
unidirectional dataset (the “many” in a one-to-many relationship) provides access
only to those records that correspond to the current record on the master set (the
“one” in the one-to-many relationship).

TSQLDataSet and TSQLQuery require you to use a parameterized query to establish a
master/detail relationship. This is the technique for creating such relationships on all
query-type datasets. For details on creating master/detail relationships with query-
type datasets, see “Establishing master/detail relationships using parameters” on
page 18-46.

To set up a master/detail relationship where the detail set is an instance of
TSQLTable, use the MasterSource and MasterFields properties, just as you would with
any other table-type dataset. For details on creating master/detail relationships with
table-type datasets, see “Establishing master/detail relationships using parameters”
on page 18-46.

Accessing schema information
There are two ways to obtain information about what is available on the server. This
information, called schema information or metadata, includes information about
what tables and stored procedures are available on the server and information about
these tables and stored procedures (such as the fields a table contains, the indexes
that are defined, and the parameters a stored procedure uses).

The simplest way to obtain this metadata is to use the methods of TSQLConnection.
These methods fill an existing string list or list object with the names of tables, stored
procedures, fields, or indexes, or with parameter descriptors. This technique is the
same as the way you fill lists with metadata for any other database connection
component. These methods are described in “Obtaining metadata” on page 17-12.

If you require more detailed schema information, you can populate a unidirectional
dataset with metadata. Instead of a simple list, the unidirectional dataset is filled with
schema information, where each record represents a single table, stored procedure,
index, field, or parameter.

Fetching metadata into a unidirectional dataset

To populate a unidirectional datasets with metadata from the database server, you
must first indicate what data you want to see, using the SetSchemaInfo method.
SetSchemaInfo takes three parameters:

• The type of schema information (metadata) you want to fetch. This can be a list of
tables (stTables), a list of system tables (stSysTables), a list of stored procedures
(stProcedures), a list of fields in a table (stColumns), a list of indexes (stIndexes), or a

U s i n g u n i d i r e c t i o n a l d a t a s e t s 22-13

A c c e s s i n g s c h e m a i n f o r m a t i o n

list of parameters used by a stored procedure (stProcedureParams). Each type of
information uses a different set of fields to describe the items in the list. For details
on the structures of these datasets, see “The structure of metadata datasets” on
page 22-13.

• If you are fetching information about fields, indexes, or stored procedure
parameters, the name of the table or stored procedure to which they apply. If you
are fetching any other type of schema information, this parameter is nil.

• A pattern that must be matched for every name returned. This pattern is an SQL
pattern such as ‘Cust%’, which uses the wildcards ‘%’ (to match a string of
arbitrary characters of any length) and ‘_’ (to match a single arbitrary character).
To use a literal percent or underscore in a pattern, the character is doubled (%% or
__). If you do not want to use a pattern, this parameter can be nil.

Note If you are fetching schema information about tables (stTables), the resulting schema
information can describe ordinary tables, system tables, views, and/or synonyms,
depending on the value of the SQL connection’s TableScope property.

The following call requests a table listing all system tables (server tables that contain
metadata):

SQLDataSet1.SetSchemaInfo(stSysTable, '', '');

When you open the dataset after this call to SetSchemaInfo, the resulting dataset has a
record for each table, with columns giving the table name, type, schema name, and so
on. If the server does not use system tables to store metadata (for example MySQL),
when you open the dataset it contains no records.

The previous example used only the first parameter. Suppose, Instead, you want to
obtain a list of input parameters for a stored procedure named ‘MyProc’. Suppose,
further, that the person who wrote that stored procedure named all parameters using
a prefix to indicate whether they were input or output parameters (‘inName’,
‘outValue’ and so on). You could call SetSchemaInfo as follows:

SQLDataSet1.SetSchemaInfo(stProcedureParams, 'MyProc', 'in%');

The resulting dataset is a table of input parameters with columns to describe the
properties of each parameter.

Fetching data after using the dataset for metadata
There are two ways to return to executing queries or stored procedures with the
dataset after a call to SetSchemaInfo:

• Change the CommandText property, specifying the query, table, or stored
procedure from which you want to fetch data.

• Call SetSchemaInfo, setting the first parameter to stNoSchema. In this case, the
dataset reverts to fetching the data specified by the current value of CommandText.

The structure of metadata datasets
For each type of metadata you can access using TSQLDataSet, there is a predefined
set of columns (fields) that are populated with information about the items of the
requested type.

22-14 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about tables
When you request information about tables (stTables or stSysTables), the resulting
dataset includes a record for each table. It has the following columns:

Information about stored procedures
When you request information about stored procedures (stProcedures), the resulting
dataset includes a record for each stored procedure. It has following columns:

Table 22.1 Columns in tables of metadata listing tables

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the table. This
is the same as the Database parameter on an SQL connection
component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the table.

TABLE_NAME ftString The name of the table. This field determines the sort order of
the dataset.

TABLE_TYPE ftInteger Identifies the type of table. It is a sum of one or more of the
following values:

1: Table
2: View
4: System table
8: Synonym
16: Temporary table
32: Local table.

Table 22.2 Columns in tables of metadata listing stored procedures

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored
procedure. This is the same as the Database parameter on an
SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the stored
procedure.

PROC_NAME ftString The name of the stored procedure. This field determines the
sort order of the dataset.

PROC_TYPE ftInteger Identifies the type of stored procedure. It is a sum of one or
more of the following values:

1: Procedure
2: Function
4: Package
8: System procedure

IN_PARAMS ftSmallint The number of input parameters

OUT_PARAMS ftSmallint The number of output parameters.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 22-15

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about fields
When you request information about the fields in a specified table (stColumns), the
resulting dataset includes a record for each field. It includes the following columns:

Table 22.3 Columns in tables of metadata listing fields

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the table
whose fields you listing. This is the same as the Database
parameter on an SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
field.

TABLE_NAME ftString The name of the table that contains the fields.

COLUMN_NAME ftString The name of the field. This value determines the sort
order of the dataset.

COLUMN_POSITION ftSmallint The position of the column in its table.

COLUMN_TYPE ftInteger Identifies the type of value in the field. It is a sum of one
or more of the following:

1: Row ID
2: Row Version
4: Auto increment field
8: Field with a default value

COLUMN_DATATYPE ftSmallint The datatype of the column. This is one of the logical field
type constants defined in sqllinks.pas.

COLUMN_TYPENAME ftString A string describing the datatype. This is the same
information as contained in COLUMN_DATATYPE and
COLUMN_SUBTYPE, but in a form used in some DDL
statements.

COLUMN_SUBTYPE ftSmallint A subtype for the column’s datatype. This is one of the
logical subtype constants defined in sqllinks.pas.

COLUMN_PRECISION ftInteger The size of the field type (number of characters in a string,
bytes in a bytes field, significant digits in a BCD value,
members of an ADT field, and so on).

COLUMN_SCALE ftSmallint The number of digits to the right of the decimal on BCD
values, or descendants on ADT and array fields.

COLUMN_LENGTH ftInteger The number of bytes required to store field values.

COLUMN_NULLABLE ftSmallint A Boolean that indicates whether the field can be left
blank (0 means the field requires a value).

22-16 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about indexes
When you request information about the indexes on a table (stIndexes), the resulting
dataset includes a record for each field in each record. (Multi-record indexes are
described using multiple records) The dataset has the following columns:

Information about stored procedure parameters
When you request information about the parameters of a stored procedure
(stProcedureParams), the resulting dataset includes a record for each parameter. It has
the following columns:

Table 22.4 Columns in tables of metadata listing indexes

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the index.
This is the same as the Database parameter on an SQL
connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
index.

TABLE_NAME ftString The name of the table for which the index is defined.

INDEX_NAME ftString The name of the index. This field determines the sort order
of the dataset.

PKEY_NAME ftString Indicates the name of the primary key.

COLUMN_NAME ftString The name of the field (column) in the index.

COLUMN_POSITION ftSmallint The position of this field in the index.

INDEX_TYPE ftSmallint Identifies the type of index. It is a sum of one or more of the
following values:

1: Non-unique
2: Unique
4: Primary key

SORT_ORDER ftString Indicates that the index is ascending (a) or descending (d).

FILTER ftString Describes a filter condition that limits the indexed records.

Table 22.5 Columns in tables of metadata listing parameters

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored
procedure. This is the same as the Database parameter on an
SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
stored procedure.

PROC_NAME ftString The name of the stored procedure that contains the
parameter.

PARAM_NAME ftString The name of the parameter. This field determines the sort
order of the dataset.

PARAM_TYPE ftSmallint Identifies the type of parameter. This is the same as a
TParam object’s ParamType property.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 22-17

D e b u g g i n g d b E x p r e s s a p p l i c a t i o n s

Debugging dbExpress applications
While you are debugging your database application, it may prove useful to monitor
the SQL messages that are sent to and from the database server through your
connection component, including those that are generated automatically for you (for
example by a provider component or by the dbExpress driver).

Using TSQLMonitor to monitor SQL commands

TSQLConnection uses a companion component, TSQLMonitor, to intercept these
messages and save them in a string list. TSQLMonitor works much like the SQL
monitor utility that you can use with the BDE, except that it monitors only those
commands involving a single TSQLConnection component rather than all commands
managed by dbExpress.

To use TSQLMonitor,

1 Add a TSQLMonitor component to the form or data module containing the
TSQLConnection component whose SQL commands you want to monitor.

2 Set its SQLConnection property to the TSQLConnection component.

3 Set the SQL monitor’s Active property to True.

As SQL commands are sent to the server, the SQL monitor’s TraceList property is
automatically updated to list all the SQL commands that are intercepted.

You can save this list to a file by specifying a value for the FileName property and
then setting the AutoSave property to True. AutoSave causes the SQL monitor to save
the contents of the TraceList property to a file every time is logs a new message.

PARAM_DATATYPE ftSmallint The datatype of the parameter. This is one of the logical
field type constants defined in sqllinks.pas.

PARAM_SUBTYPE ftSmallint A subtype for the parameter’s datatype. This is one of the
logical subtype constants defined in sqllinks.pas.

PARAM_TYPENAME ftString A string describing the datatype. This is the same
information as contained in PARAM_DATATYPE and
PARAM_SUBTYPE, but in a form used in some DDL
statements.

PARAM_PRECISION ftInteger The maximum number of digits in floating-point values or
bytes (for strings and Bytes fields).

PARAM_SCALE ftSmallint The number of digits to the right of the decimal on floating-
point values.

PARAM_LENGTH ftInteger The number of bytes required to store parameter values.

PARAM_NULLABLE ftSmallint A Boolean that indicates whether the parameter can be left
blank (0 means the parameter requires a value).

Table 22.5 Columns in tables of metadata listing parameters (continued)

Column name Field type Contents

22-18 D e v e l o p e r ’ s G u i d e

D e b u g g i n g d b E x p r e s s a p p l i c a t i o n s

If you do not want the overhead of saving a file every time a message is logged, you
can use the OnLogTrace event handler to only save files after a number of messages
have been logged. For example, the following event handler saves the contents of
TraceList every 10th message, clearing the log after saving it so that the list never gets
too long:

procedure TForm1.SQLMonitor1LogTrace(Sender: TObject; CBInfo: Pointer);
var

LogFileName: string;
begin

with Sender as TSQLMonitor do
begin

if TraceCount = 10 then
begin
LogFileName := 'c:\log' + IntToStr(Tag) + '.txt';
Tag := Tag + 1; {ensure next log file has a different name }
SaveToFile(LogFileName);
TraceList.Clear; { clear list }

end;
end;

end;

Note If you were to use the previous event handler, you would also want to save any
partial list (fewer than 10 entries) when the application shuts down.

Using a callback to monitor SQL commands

Instead of using TSQLMonitor, you can customize the way your application traces
SQL commands by using the SQL connection component’s SetTraceCallbackEvent
method. SetTraceCallbackEvent takes two parameters: a callback of type
TSQLCallbackEvent, and a user-defined value that is passed to the callback function.

The callback function takes two parameters: CallType and CBInfo:

• CallType is reserved for future use.

• CBInfo is a pointer to a record that includes the category (the same as CallType), the
text of the SQL command, and the user-defined value that is passed to the
SetTraceCallbackEvent method.

The callback returns a value of type CBRType, typically cbrUSEDEF.

The dbExpress driver calls your callback every time the SQL connection component
passes a command to the server or the server returns an error message.

Warning Do not call SetTraceCallbackEvent if the TSQLConnection object has an associated
TSQLMonitor component. TSQLMonitor uses the callback mechanism to work, and
TSQLConnection can only support one callback at a time.

U s i n g c l i e n t d a t a s e t s 23-1

C h a p t e r

23
Chapter23Using client datasets

Client datasets are specialized datasets that hold all their data in memory. The
support for manipulating the data they store in memory is provided by midaslib.dcu
or midas.dll. The format client datasets use for storing data is self-contained and
easily transported, which allows client datasets to

• Read from and write to dedicated files on disk, acting as a file-based dataset.
Properties and methods supporting this mechanism are described in “Using a
client dataset with file-based data” on page 23-31.

• Cache updates for data from a database server. Client dataset features that support
cached updates are described in “Using a client dataset to cache updates” on
page 23-15.

• Represent the data in the client portion of a multi-tiered application. To function in
this way, the client dataset must work with an external provider, as described in
“Using a client dataset with a provider” on page 23-23. For information about
multi-tiered database applications, see Chapter 25, “Creating multi-tiered
applications.”

• Represent the data from a source other than a dataset. Because a client dataset can
use the data from an external provider, specialized providers can adapt a variety
of information sources to work with client datasets. For example, you can use an
XML provider to enable a client dataset to represent the information in an XML
document.

Whether you use client datasets for file-based data, caching updates, data from an
external provider (such as working with an XML document or in a multi-tiered
application), or a combination of these approaches such as a “briefcase model”
application, you can take advantage of broad range of features client datasets
support for working with data.

23-2 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Working with data using a client dataset
Like any dataset, you can use client datasets to supply the data for data-aware
controls using a data source component. See Chapter 15, “Using data controls”for
information on how to display database information in data-aware controls.

Client datasets implement all the properties an methods inherited from TDataSet. For
a complete introduction to this generic dataset behavior, see Chapter 18,
“Understanding datasets.”

In addition, client datasets implement many of the features common to table-type
datasets such as

• Sorting records with indexes.
• Using Indexes to search for records.
• Limiting records with ranges.
• Creating master/detail relationships.
• Controlling read/write access
• Creating the underlying dataset
• Emptying the dataset
• Synchronizing client datasets

For details on these features, see “Using table-type datasets” on page 18-24.

Client datasets differ from other datasets in that they hold all their data in memory.
Because of this, their support for some database functions can involve additional
capabilities or considerations. This chapter describes some of these common
functions and the differences introduced by client datasets.

Navigating data in client datasets

If an application uses standard data-aware controls, then a user can navigate through
a client dataset’s records using the built-in behavior of those controls. You can also
navigate programmatically through records using standard dataset methods such as
First, Last, Next, and Prior. For more information about these methods, see
“Navigating datasets” on page 18-5.

Unlike most datasets, client datasets can also position the cursor at a specific record
in the dataset by using the RecNo property. Ordinarily an application uses RecNo to
determine the record number of the current record. Client datasets can, however, set
RecNo to a particular record number to make that record the current one.

Limiting what records appear

To restrict users to a subset of available data on a temporary basis, applications can
use ranges and filters. When you apply a range or a filter, the client dataset does not
display all the data in its in-memory cache. Instead, it only displays the data that
meets the range or filter conditions. For more information about using filters, see
“Displaying and editing a subset of data using filters” on page 18-12. For more
information about ranges, see “Limiting records with ranges” on page 18-30.

U s i n g c l i e n t d a t a s e t s 23-3

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

With most datasets, filter strings are parsed into SQL commands that are then
implemented on the database server. Because of this, the SQL dialect of the server
limits what operations are used in filter strings. Client datasets implement their own
filter support, which includes more operations than that of other datasets. For
example, when using a client dataset, filter expressions can include string operators
that return substrings, operators that parse date/time values, and much more. Client
datasets also allow filters on BLOB fields or complex field types such as ADT fields
and array fields.

The various operators and functions that client datasets can use in filters, along with
a comparison to other datasets that support filters, is given below:

Table 23.1 Filter support in client datasets

Operator
or function Example

Supported
by other
datasets Comment

Comparisons

= State = 'CA' Yes

<> State <> 'CA' Yes

>= DateEntered >= '1/1/1998' Yes

<= Total <= 100,000 Yes

> Percentile > 50 Yes

< Field1 < Field2 Yes

BLANK State <> 'CA' or State = BLANK Yes Blank records do not
appear unless explicitly
included in the filter.

IS NULL Field1 IS NULL No

IS NOT NULL Field1 IS NOT NULL No

Logical operators

and State = 'CA' and Country = 'US' Yes

or State = 'CA' or State = 'MA' Yes

not not (State = 'CA') Yes

Arithmetic operators

+ Total + 5 > 100 Depends
on driver

Applies to numbers,
strings, or date (time) +
number.

- Field1 - 7 <> 10 Depends
on driver

Applies to numbers, dates,
or date (time) - number.

* Discount * 100 > 20 Depends
on driver

Applies to numbers only.

/ Discount > Total / 5 Depends
on driver

Applies to numbers only.

23-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

String functions

Upper Upper(Field1) = 'ALWAYS' No

Lower Lower(Field1 + Field2) = 'josp' No

Substring Substring(DateFld,8) = '1998'
Substring(DateFld,1,3) = 'JAN'

No Value goes from position
of second argument to end
or number of chars in third
argument. First char has
position 1.

Trim Trim(Field1 + Field2)
Trim(Field1, '-')

No Removes third argument
from front and back. If no
third argument, trims
spaces.

TrimLeft TrimLeft(StringField)
TrimLeft(Field1, '$') <> ''

No See Trim.

TrimRight TrimRight(StringField)
TrimRight(Field1, '.') <> ''

No See Trim.

DateTime functions

Year Year(DateField) = 2000 No

Month Month(DateField) <> 12 No

Day Day(DateField) = 1 No

Hour Hour(DateField) < 16 No

Minute Minute(DateField) = 0 No

Second Second(DateField) = 30 No

GetDate GetDate - DateField > 7 No Represents current date
and time.

Date DateField = Date(GetDate) No Returns the date portion of
a datetime value.

Time TimeField > Time(GetDate) No Returns the time portion of
a datetime value.

Miscellaneous

Like Memo LIKE '%filters%' No Works like SQL-92
without the ESC clause.
When applied to BLOB
fields, FilterOptions
determines whether case is
considered.

In Day(DateField) in (1,7) No Works like SQL-92. Second
argument is a list of values
all with the same type.

* State = 'M*' Yes Wildcard for partial
comparisons.

Table 23.1 Filter support in client datasets (continued)

Operator
or function Example

Supported
by other
datasets Comment

U s i n g c l i e n t d a t a s e t s 23-5

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

When applying ranges or filters, the client dataset still stores all of its records in
memory. The range or filter merely determines which records are available to
controls that navigate or display data from the client dataset.

Note When fetching data from a provider, you can also limit the data that the client dataset
stores by supplying parameters to the provider. For details, see “Limiting records
with parameters” on page 23-28.

Editing data

Client datasets represent their data as an in-memory data packet. This packet is the
value of the client dataset’s Data property. By default, however, edits are not stored
in the Data property. Instead the insertions, deletions, and modifications (made by
users or programmatically) are stored in an internal change log, represented by the
Delta property. Using a change log serves two purposes:

• The change log is required for applying updates to a database server or external
provider component.

• The change log provides sophisticated support for undoing changes.

The LogChanges property lets you disable logging. When LogChanges is True, changes
are recorded in the log. When LogChanges is False, changes are made directly to the
Data property. You can disable the change log in file-based applications if you do not
want the undo support.

Edits in the change log remain there until they are removed by the application.
Applications remove edits when

• Undoing changes
• Saving changes

Note Saving the client dataset to a file does not remove edits from the change log. When
you reload the dataset, the Data and Delta properties are the same as they were when
the data was saved.

Undoing changes
Even though a record’s original version remains unchanged in Data, each time a user
edits a record, leaves it, and returns to it, the user sees the last changed version of the
record. If a user or application edits a record a number of times, each changed
version of the record is stored in the change log as a separate entry.

Storing each change to a record makes it possible to support multiple levels of undo
operations should it be necessary to restore a record’s previous state:

• To remove the last change to a record, call UndoLastChange. UndoLastChange takes
a Boolean parameter, FollowChange, that indicates whether to reposition the cursor
on the restored record (True), or to leave the cursor on the current record (False). If
there are several changes to a record, each call to UndoLastChange removes another
layer of edits. UndoLastChange returns a Boolean value indicating success or
failure. If the removal occurs, UndoLastChange returns True. Use the ChangeCount
property to check whether there are more changes to undo. ChangeCount indicates
the number of changes stored in the change log.

23-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

• Instead of removing each layer of changes to a single record, you can remove them
all at once. To remove all changes to a record, select the record, and call
RevertRecord. RevertRecord removes any changes to the current record from the
change log.

• To restore a deleted record, first set the StatusFilter property to [usDeleted], which
makes the deleted records “visible.” Next, navigate to the record you want to
restore and call RevertRecord. Finally, restore the StatusFilter property to
[usModified, usInserted, usUnmodified] so that the edited version of the dataset (now
containing the restored record) is again visible.

• At any point during edits, you can save the current state of the change log using
the SavePoint property. Reading SavePoint returns a marker into the current
position in the change log. Later, if you want to undo all changes that occurred
since you read the save point, set SavePoint to the value you read previously. Your
application can obtain values for multiple save points. However, once you back up
the change log to a save point, the values of all save points that your application
read after that one are invalid.

• You can abandon all changes recorded in the change log by calling CancelUpdates.
CancelUpdates clears the change log, effectively discarding all edits to all records.
Be careful when you call CancelUpdates. After you call CancelUpdates, you cannot
recover any changes that were in the log.

Saving changes
Client datasets use different mechanisms for incorporating changes from the change
log, depending on whether the client datasets stores its data in a file or represents
data obtained through a provider. Whichever mechanism is used, the change log is
automatically emptied when all updates have been incorporated.

File-based applications can simply merge the changes into the local cache
represented by the Data property. They do not need to worry about resolving local
edits with changes made by other users. To merge the change log into the Data
property, call the MergeChangeLog method. “Merging changes into data” on
page 23-33 describes this process.

You can’t use MergeChangeLog if you are using the client dataset to cache updates or
to represent the data from an external provider component. The information in the
change log is required fro resolving updated records with the data stored in the
database (or source dataset). Instead, you call ApplyUpdates, which attempts to write
the modifications to the database server or source dataset, and updates the Data
property only when the modifications have been successfully committed. See
“Applying updates” on page 23-19 for more information about this process.

Constraining data values

Client datasets can enforce constraints on the edits a user makes to data. These
constraints are applied when the user tries to post changes to the change log. You can
always supply custom constraints. These let you provide your own, application-
defined limits on what values users post to a client dataset.

U s i n g c l i e n t d a t a s e t s 23-7

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

In addition, when client datasets represent server data that is accessed using the BDE,
they also enforce data constraints imported from the database server. If the client
dataset works with an external provider component, the provider can control
whether those constraints are sent to the client dataset, and the client dataset can
control whether it uses them. For details on how the provider controls whether
constraints are included in data packets, see “Handling server constraints” on
page 24-12. For details on how and why client dataset can turn off enforcement of
server constraints, see “Handling constraints from the server” on page 23-28.

Specifying custom constraints
You can use the properties of the client dataset’s field components to impose your
own constraints on what data users can enter. Each field component has two
properties that you can use to specify constraints:

• The DefaultExpression property defines a default value that is assigned to the field if
the user does not enter a value. Note that if the database server or source dataset also
assigns a default expression for the field, the client dataset’s version takes precedence
because it is assigned before the update is applied back to the database server or
source dataset.

• The CustomConstraint property lets you assign a constraint condition that must be
met before a field value can be posted. Custom constraints defined this way are
applied in addition to any constraints imported from the server. For more
information about working with custom constraints on field components, see
“Creating a custom constraint” on page 19-21.

In addition, you can create record-level constraints using the client dataset’s
Constraints property. Constraints is a collection of TCheckConstraint objects, where each
object represents a separate condition. Use the CustomConstraint property of a
TCheckConstraint object to add your own constraints that are checked when you post
records.

Sorting and indexing

Using indexes provides several benefits to your applications:

• They allow client datasets to locate data quickly.

• They let you apply ranges to limit the available records.

• They let your application set up relationships with other datasets such as lookup
tables or master/detail forms.

• They specify the order in which records appear.

If a client dataset represents server data or uses an external provider, it inherits a
default index and sort order based on the data it receives. The default index is called
DEFAULT_ORDER. You can use this ordering, but you cannot change or delete the
index.

In addition to the default index, the client dataset maintains a second index, called
CHANGEINDEX, on the changed records stored in the change log (Delta property).
CHANGEINDEX orders all records in the client dataset as they would appear if the

23-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

changes specified in Delta were applied. CHANGEINDEX is based on the ordering
inherited from DEFAULT_ORDER. As with DEFAULT_ORDER, you cannot change
or delete the CHANGEINDEX index.

You can use other existing indexes, and you can create your own indexes. The
following sections describe how to create and use indexes with client datasets.

Note You may also want to review the material on indexes in table-type datasets, which
also applies to client datasets. This material is in “Sorting records with indexes” on
page 18-25 and “Limiting records with ranges” on page 18-30.

Adding a new index
There are three ways to add indexes to a client dataset:

• To create a temporary index at runtime that sorts the records in the client dataset,
you can use the IndexFieldNames property. Specify field names, separated by
semicolons. Ordering of field names in the list determines their order in the index.

This is the least powerful method of adding indexes. You can’t specify a
descending or case-insensitive index, and the resulting indexes do not support
grouping. These indexes do not persist when you close the dataset, and are not
saved when you save the client dataset to a file.

• To create an index at runtime that can be used for grouping, call AddIndex.
AddIndex lets you specify the properties of the index, including

• The name of the index. This can be used for switching indexes at runtime.

• The fields that make up the index. The index uses these fields to sort records
and to locate records that have specific values on these fields.

• How the index sorts records. By default, indexes impose an ascending sort
order (based on the machine’s locale). This default sort order is case-sensitive.
You can set options to make the entire index case-insensitive or to sort in
descending order. Alternately, you can provide a list of fields to be sorted case-
insensitively and a list of fields to be sorted in descending order.

• The default level of grouping support for the index.

Indexes created with AddIndex do not persist when the client dataset is closed.
(That is, they are lost when you reopen the client dataset). You can't call AddIndex
when the dataset is closed. Indexes you add using AddIndex are not saved when
you save the client dataset to a file.

• The third way to create an index is at the time the client dataset is created. Before
creating the client dataset, specify the desired indexes using the IndexDefs
property. The indexes are then created along with the underlying dataset when
you call CreateDataSet. See “Creating and deleting tables” on page 18-37 for more
information about creating client datasets.

As with AddIndex, indexes you create with the dataset support grouping, can sort
in ascending order on some fields and descending order on others, and can be case
insensitive on some fields and case sensitive on others. Indexes created this way
always persist and are saved when you save the client dataset to a file.

Tip You can index and sort on internally calculated fields with client datasets.

U s i n g c l i e n t d a t a s e t s 23-9

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Deleting and switching indexes
To remove an index you created for a client dataset, call DeleteIndex and specify the
name of the index to remove. You cannot remove the DEFAULT_ORDER and
CHANGEINDEX indexes.

To use a different index when more than one index is available, use the IndexName
property to select the index to use. At design time, you can select from available
indexes in IndexName property drop-down box in the Object Inspector.

Using indexes to group data
When you use an index in your client dataset, it automatically imposes a sort order
on the records. Because of this order, adjacent records usually contain duplicate
values on the fields that make up the index. For example, consider the following
fragment from an orders table that is indexed on the SalesRep and Customer fields:

Because of the sort order, adjacent values in the SalesRep column are duplicated.
Within the records for SalesRep 1, adjacent values in the Customer column are
duplicated. That is, the data is grouped by SalesRep, and within the SalesRep group
it is grouped by Customer. Each grouping has an associated level. In this case, the
SalesRep group has level 1 (because it is not nested in any other groups) and the
Customer group has level 2 (because it is nested in the group with level 1). Grouping
level corresponds to the order of fields in the index.

Client datasets let you determine where the current record lies within any given
grouping level. This allows your application to display records differently,
depending on whether they are the first record in the group, in the middle of a group,
or the last record in a group. For example, you might want to display a field value
only if it is on the first record of the group, eliminating the duplicate values. To do
this with the previous table results in the following:

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

SalesRep Customer OrderNo Amount

1 1 5 100

2 50

2 3 200

6 75

2 1 1 10

3 4 200

23-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

To determine where the current record falls within any group, use the GetGroupState
method. GetGroupState takes an integer giving the level of the group and returns a
value indicating where the current record falls the group (first record, last record, or
neither).

When you create an index, you can specify the level of grouping it supports (up to
the number of fields in the index). GetGroupState can’t provide information about
groups beyond that level, even if the index sorts records on additional fields.

Representing calculated values

As with any dataset, you can add calculated fields to your client dataset. These are
fields whose values you calculate dynamically, usually based on the values of other
fields in the same record. For more information about using calculated fields, see
“Defining a calculated field” on page 19-7.

Client datasets, however, let you optimize when fields are calculated by using
internally calculated fields. For more information on internally calculated fields, see
“Using internally calculated fields in client datasets” below.

You can also tell client datasets to create calculated values that summarize the data in
several records using maintained aggregates. For more information on maintained
aggregates, see “Using maintained aggregates” on page 23-11.

Using internally calculated fields in client datasets
In other datasets, your application must compute the value of calculated fields every
time the record changes or the user edits any fields in the current record. It does this
in an OnCalcFields event handler.

While you can still do this, client datasets let you minimize the number of times
calculated fields must be recomputed by saving calculated values in the client
dataset’s data. When calculated values are saved with the client dataset, they must
still be recomputed when the user edits the current record, but your application need
not recompute values every time the current record changes. To save calculated
values in the client dataset’s data, use internally calculated fields instead of
calculated fields.

Internally calculated fields, just like calculated fields, are calculated in an
OnCalcFields event handler. However, you can optimize your event handler by
checking the State property of your client dataset. When State is dsInternalCalc, you
must recompute internally calculated fields. When State is dsCalcFields, you need only
recompute regular calculated fields.

To use internally calculated fields, you must define the fields as internally calculated
before you create the client dataset. Depending on whether you use persistent fields
or field definitions, you do this in one of the following ways:

• If you use persistent fields, define fields as internally calculated by selecting
InternalCalc in the Fields editor.

• If you use field definitions, set the InternalCalcField property of the relevant field
definition to True.

U s i n g c l i e n t d a t a s e t s 23-11

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Note Other types of datasets use internally calculated fields. However, with other datasets,
you do not calculate these values in an OnCalcFields event handler. Instead, they are
computed automatically by the BDE or remote database server.

Using maintained aggregates

Client datasets provide support for summarizing data over groups of records.
Because these summaries are automatically updated as you edit the data in the
dataset, this summarized data is called a “maintained aggregate.”

In their simplest form, maintained aggregates let you obtain information such as the
sum of all values in a column of the client dataset. They are flexible enough, however,
to support a variety of summary calculations and to provide subtotals over groups of
records defined by a field in an index that supports grouping.

 Specifying aggregates
To specify that you want to calculate summaries over the records in a client dataset,
use the Aggregates property. Aggregates is a collection of aggregate specifications
(TAggregate). You can add aggregate specifications to your client dataset using the
Collection Editor at design time, or using the Add method of Aggregates at runtime. If
you want to create field components for the aggregates, create persistent fields for the
aggregated values in the Fields Editor.

Note When you create aggregated fields, the appropriate aggregate objects are added to
the client dataset’s Aggregates property automatically. Do not add them explicitly
when creating aggregated persistent fields. For details on creating aggregated
persistent fields, see “Defining an aggregate field” on page 19-10.

For each aggregate, the Expression property indicates the summary calculation it
represents. Expression can contain a simple summary expression such as

Sum(Field1)

or a complex expression that combines information from several fields, such as

Sum(Qty * Price) - Sum(AmountPaid)

Aggregate expressions include one or more of the summary operators in Table 23.2

The summary operators act on field values or on expressions built from field values
using the same operators you use to create filters. (You can’t nest summary
operators, however.) You can create expressions by using operators on summarized

Table 23.2 Summary operators for maintained aggregates

Operator Use

Sum Totals the values for a numeric field or expression

Avg Computes the average value for a numeric or date-time field or expression

Count Specifies the number of non-blank values for a field or expression

Min Indicates the minimum value for a string, numeric, or date-time field or expression

Max Indicates the maximum value for a string, numeric, or date-time field or expression

23-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

values with other summarized values, or on summarized values and constants.
However, you can’t combine summarized values with field values, because such
expressions are ambiguous (there is no indication of which record should supply the
field value.) These rules are illustrated in the following expressions:

Aggregating over groups of records
By default, maintained aggregates are calculated so that they summarize all the
records in the client dataset. However, you can specify that you want to summarize
over the records in a group instead. This lets you provide intermediate summaries
such as subtotals for groups of records that share a common field value.

Before you can specify a maintained aggregate over a group of records, you must use
an index that supports the appropriate grouping. See “Using indexes to group data”
on page 23-9 for information on grouping support.

Once you have an index that groups the data in the way you want it summarized,
specify the IndexName and GroupingLevel properties of the aggregate to indicate what
index it uses, and which group or subgroup on that index defines the records it
summarizes.

For example, consider the following fragment from an orders table that is grouped by
SalesRep and, within SalesRep, by Customer:

The following code sets up a maintained aggregate that indicates the total amount for
each sales representative:

Agg.Expression := 'Sum(Amount)';
Agg.IndexName := 'SalesCust';
Agg.GroupingLevel := 1;
Agg.AggregateName := 'Total for Rep';

To add an aggregate that summarizes for each customer within a given sales
representative, create a maintained aggregate with level 2.

Sum(Qty * Price) {legal -- summary of an expression on fields }

Max(Field1) - Max(Field2) {legal -- expression on summaries }

Avg(DiscountRate) * 100 {legal -- expression of summary and constant }

Min(Sum(Field1)) {illegal -- nested summaries }

Count(Field1) - Field2 {illegal -- expression of summary and field }

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

U s i n g c l i e n t d a t a s e t s 23-13

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Maintained aggregates that summarize over a group of records are associated with a
specific index. The Aggregates property can include aggregates that use different
indexes. However, only the aggregates that summarize over the entire dataset and
those that use the current index are valid. Changing the current index changes which
aggregates are valid. To determine which aggregates are valid at any time, use the
ActiveAggs property.

Obtaining aggregate values
To get the value of a maintained aggregate, call the Value method of the TAggregate
object that represents the aggregate. Value returns the maintained aggregate for the
group that contains the current record of the client dataset.

When you are summarizing over the entire client dataset, you can call Value at any
time to obtain the maintained aggregate. However, when you are summarizing over
grouped information, you must be careful to ensure that the current record is in the
group whose summary you want. Because of this, it is a good idea to obtain
aggregate values at clearly specified times, such as when you move to the first record
of a group or when you move to the last record of a group. Use the GetGroupState
method to determine where the current record falls within a group.

To display maintained aggregates in data-aware controls, use the Fields editor to
create a persistent aggregate field component. When you specify an aggregate field
in the Fields editor, the client dataset’s Aggregates is automatically updated to include
the appropriate aggregate specification. The AggFields property contains the new
aggregated field component, and the FindField method returns it.

Copying data from another dataset

To copy the data from another dataset at design time, right click the client dataset
and choose Assign Local Data. A dialog appears listing all the datasets available in
your project. Select the one whose data and structure you want to copy and choose
OK. When you copy the source dataset, your client dataset is automatically activated.

To copy from another dataset at runtime, you can assign its data directly or, if the
source is another client dataset, you can clone the cursor.

Assigning data directly
You can use the client dataset’s Data property to assign data to a client dataset from
another dataset. Data is a data packet in the form of an OleVariant. A data packet can
come from another client dataset or from any other dataset by using a provider. Once
a data packet is assigned to Data, its contents are displayed automatically in data-
aware controls connected to the client dataset by a data source component.

When you open a client dataset that represents server data or that uses an external
provider component, data packets are automatically assigned to Data.

When your client dataset does not use a provider, you can copy the data from
another client dataset as follows:

ClientDataSet1.Data := ClientDataSet2.Data;

23-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Note When you copy the Data property of another client dataset, you copy the change log
as well, but the copy does not reflect any filters or ranges that have been applied. To
include filters or ranges, you must clone the source dataset’s cursor instead.

If you are copying from a dataset other than a client dataset, you can create a dataset
provider component, link it to the source dataset, and then copy its data:

TempProvider := TDataSetProvider.Create(Form1);
TempProvider.DataSet := SourceDataSet;
ClientDataSet1.Data := TempProvider.Data;
TempProvider.Free;

Note When you assign directly to the Data property, the new data packet is not merged
into the existing data. Instead, all previous data is replaced.

If you want to merge changes from another dataset, rather than copying its data, you
must use a provider component. Create a dataset provider as in the previous
example, but attach it to the destination dataset and instead of copying the data
property, use the ApplyUpdates method:

TempProvider := TDataSetProvider.Create(Form1);
TempProvider.DataSet := ClientDataSet1;
TempProvider.ApplyUpdates(SourceDataSet.Delta, -1, ErrCount);
TempProvider.Free;

Cloning a client dataset cursor
Client datasets use the CloneCursor method to let you work with a second view of the
data at runtime. CloneCursor lets a second client dataset share the original client
dataset’s data. This is less expensive than copying all the original data, but, because
the data is shared, the second client dataset can’t modify the data without affecting
the original client dataset.

CloneCursor takes three parameters: Source specifies the client dataset to clone. The
last two parameters (Reset and KeepSettings) indicate whether to copy information
other than the data. This information includes any filters, the current index, links to a
master table (when the source dataset is a detail set), the ReadOnly property, and any
links to a connection component or provider.

When Reset and KeepSettings are False, a cloned client dataset is opened, and the
settings of the source client dataset are used to set the properties of the destination.
When Reset is True, the destination dataset’s properties are given the default values
(no index or filters, no master table, ReadOnly is False, and no connection component
or provider is specified). When KeepSettings is True, the destination dataset’s
properties are not changed.

Adding application-specific information to the data

Application developers can add custom information to the client dataset’s Data
property. Because this information is bundled with the data packet, it is included
when you save the data to a file or stream. It is copied when you copy the data to
another dataset. Optionally, it can be included with the Delta property so that a
provider can read this information when it receives updates from the client dataset.

U s i n g c l i e n t d a t a s e t s 23-15

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

To save application-specific information with the Data property, use the
SetOptionalParam method. This method lets you store an OleVariant that contains the
data under a specific name.

To retrieve this application-specific information, use the GetOptionalParam method,
passing in the name that was used when the information was stored.

Using a client dataset to cache updates
By default, when you edit data in most datasets, every time you delete or post a
record, the dataset generates a transaction, deletes or writes that record to the
database server, and commits the transaction. If there is a problem writing changes to
the database, your application is notified immediately: the dataset raises an exception
when you post the record.

If your dataset uses a remote database server, this approach can degrade
performance due to network traffic between your application and the server every
time you move to a new record after editing the current record. To minimize the
network traffic, you may want to cache updates locally. When you cache updates,
you application retrieves data from the database, caches and edits it locally, and then
applies the cached updates to the database in a single transaction. When you cache
updates, changes to a dataset (such as posting changes or deleting records) are stored
locally instead of being written directly to the dataset’s underlying table. When
changes are complete, your application calls a method that writes the cached changes
to the database and clears the cache.

Caching updates can minimize transaction times and reduce network traffic.
However, cached data is local to your application and is not under transaction
control. This means that while you are working on your local, in-memory, copy of the
data, other applications can be changing the data in the underlying database table.
They also can’t see any changes you make until you apply the cached updates.
Because of this, cached updates may not be appropriate for applications that work
with volatile data, as you may create or encounter too many conflicts when trying to
merge your changes into the database.

Although the BDE and ADO provide alternate mechanisms for caching updates,
using a client dataset for caching updates has several advantages:

• Applying updates when datasets are linked in master/detail relationships is
handled for you. This ensures that updates to multiple linked datasets are applied
in the correct order.

• Client datasets give you the maximum of control over the update process. You can
set properties to influence the SQL that is generated for updating records, specify
the table to use when updating records from a multi-table join, or even apply
updates manually from a BeforeUpdateRecord event handler.

• When errors occur applying cached updates to the database server, only client
datasets (and dataset providers) provide you with information about the current
record value on the database server in addition to the original (unedited) value
from your dataset and the new (edited) value of the update that failed.

• Client datasets let you specify the number of update errors you want to tolerate
before the entire update is rolled back.

23-16 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

Overview of using cached updates

To use cached updates, the following order of processes must occur in an application:

1 Indicate the data you want to edit. How you do this depends on the type of client
dataset you are using:

• If you are using TClientDataSet, Specify the provider component that represent
the data you want to edit. This is described in “Specifying a provider” on
page 23-24.

• If you are using a client dataset associated with a particular data access
mechanism, you must
- Identify the database server by setting the DBConnection property to an

appropriate connection component.
- Indicate what data you want to see by specifying the CommandText and

CommandType properties. CommandType indicates whether CommandText is an
SQL statement to execute, the name of a stored procedure, or the name of a
table. If CommandText is a query or stored procedure, use the Params property to
provide any input parameters.

- Optionally, use the Options property to indicate whether nested detail sets and
BLOB data should be included in data packets or fetched separately, whether
specific types of edits (insertions, modifications, or deletions) should be
disabled, whether a single update can affect multiple server records, and
whether the client dataset’s records are refreshed when it applies updates.
Options is identical to a provider’s Options property. As a result, it allows you to
set options that are not relevant or appropriate. For example, there is no reason
to include poIncFieldProps, because the client dataset does not fetch its data from
a dataset with persistent fields. Conversely, you do not want to exclude
poAllowCommandText, which is included by default, because that would disable
the CommandText property, which the client dataset uses to specify what data it
wants. For information on the provider’s Options property, see “Setting options
that influence the data packets” on page 24-5.

2 Display and edit the data, permit insertion of new records, and support deletions
of existing records. Both the original copy of each record and any edits to it are
stored in memory. This process is described in “Editing data” on page 23-5.

3 Fetch additional records as necessary. By default, client datasets fetch all records
and store them in memory. If a dataset contains many records or records with
large BLOB fields, you may want to change this so that the client dataset fetches
only enough records for display and re-fetches as needed. For details on how to
control the record-fetching process, see “Requesting data from the source dataset
or document” on page 23-25.

4 Optionally, refresh the records. As time passes, other users may modify the data
on the database server. This can cause the client dataset’s data to deviate more and
more from the data on the server, increasing the chance of errors when you apply
updates. To mitigate this problem, you can refresh records that have not already
been edited. See “Refreshing records” on page 23-29 for details.

U s i n g c l i e n t d a t a s e t s 23-17

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

5 Apply the locally cached records to the database or cancel the updates. For each
record written to the database, a BeforeUpdateRecord event is triggered. If an error
occurs when writing an individual record to the database, an OnUpdateError event
enables the application to correct the error, if possible, and continue updating.
When updates are complete, all successfully applied updates are cleared from the
local cache. For more information about applying updates to the database, see
“Updating records” on page 23-19.

Instead of applying updates, an application can cancel the updates, emptying the
change log without writing the changes to the database. You can cancel the
updates by calling CancelUpdates method. All deleted records in the cache are
undeleted, modified records revert to original values, and newly inserted record
simply disappear.

Choosing the type of dataset for caching updates

Delphi includes some specialized client dataset components for caching updates.
Each client dataset is associated with a particular data access mechanism. These are
listed in Table 23.3:

In addition, you can cache updates using the generic client dataset (TClientDataSet)
with an external provider and source dataset. For information about using
TClientDataSet with an external provider, see “Using a client dataset with a provider”
on page 23-23.

Note The specialized client datasets associated with each data access mechanism actually
use a provider and source dataset as well. However, both the provider and the source
dataset are internal to the client dataset.

It is simplest to use one of the specialized client datasets to cache updates. However,
there are times when it is preferable to use TClientDataSet with an external provider:

• If you are using a data access mechanism that does not have a specialized client
dataset, you must use TClientDataSet with an external provider component. For
example, if the data comes from an XML document or custom dataset.

• If you are working with tables that are related in a master/detail relationship, you
should use TClientDataSet and connect it, using a provider, to the master table of
two source datasets linked in a master/detail relationship. The client dataset sees
the detail dataset as a nested dataset field. This approach is necessary so that
updates to master and detail tables can be applied in the correct order.

Table 23.3 Specialized client datasets for caching updates

Client dataset Data access mechanism

TBDEClientDataSet Borland Database Engine

TSQLClientDataSet dbExpress

TIBClientDataSet InterBase Express

23-18 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

• If you want to code event handlers that respond to the communication between
the client dataset and the provider (for example, before and after the client dataset
fetches records from the provider), you must use TClientDataSet with an external
provider component. The specialized client datasets publish the most important
events for applying updates (OnReconcileError, BeforeUpdateRecord and
OnGetTableName), but do not publish the events surrounding communication
between the client dataset and its provider, because they are intended primarily
for multi-tiered applications.

• When using the BDE, you may want to use an external provider and source
dataset if you need to use an update object. Although it is possible to code an
update object from the BeforeUpdateRecord event handler of TBDEClientDataSet, it
can be simpler just to assign the UpdateObject property of the source dataset. For
information about using update objects, see “Using update objects to update a
dataset” on page 20-39.

Indicating what records are modified

While the user edits a client dataset, you may find it useful to provide feedback about
the edits that have been made. This is especially useful if you want to allow the user
to undo specific edits, for example, by navigating to them and clicking an “Undo”
button.

The UpdateStatus method and StatusFilter properties are useful when providing
feedback on what updates have occurred:

• UpdateStatus indicates what type of update, if any, has occurred for the current
record. It can be any of the following values:

• usUnmodified indicates that the current record is unchanged.
• usModified indicates that the current record has been edited.
• usInserted indicates a record that was inserted by the user.
• usDeleted indicates a record that was deleted by the user.

• StatusFilter controls what type of updates in the change log are visible. StatusFilter
works on cached records in much the same way as filters work on regular data.
StatusFilter is a set, so it can contain any combination of the following values:

• usUnmodified indicates an unmodified record.
• usModified indicates a modified record.
• usInserted indicates an inserted record.
• usDeleted indicates a deleted record.

By default, StatusFilter is the set [usModified, usInserted, usUnmodified]. You can add
usDeleted to this set to provide feedback about deleted records as well.

Note UpdateStatus and StatusFilter are also useful in BeforeUpdateRecord and
OnReconcileError event handlers. For information about BeforeUpdateRecord, see
“Intervening as updates are applied” on page 23-20. For information about
OnReconcileError, see “Reconciling update errors” on page 23-22.

The following example shows how to provide feedback about the update status of
records using the UpdateStatus method. It assumes that you have changed the

U s i n g c l i e n t d a t a s e t s 23-19

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

StatusFilter property to include usDeleted, allowing deleted records to remain visible
in the dataset. It further assumes that you have added a calculated field to the dataset
called “Status.”

procedure TForm1.ClientDataSet1CalcFields(DataSet: TDataSet);
begin

with ClientDataSet1 do begin
case UpdateStatus of
usUnmodified: FieldByName('Status').AsString := '';
usModified: FieldByName('Status').AsString := 'M';
usInserted: FieldByName('Status').AsString := 'I';
usDeleted: FieldByName('Status').AsString := 'D';

end;
end;

end;

Updating records

The contents of the change log are stored as a data packet in the client dataset’s Delta
property. To make the changes in Delta permanent, the client dataset must apply
them to the database (or source dataset or XML document).

When a client applies updates to the server, the following steps occur:

1 The client application calls the ApplyUpdates method of a client dataset object. This
method passes the contents of the client dataset’s Delta property to the (internal or
external) provider. Delta is a data packet that contains a client dataset’s updated,
inserted, and deleted records.

2 The provider applies the updates, caching any problem records that it can’t
resolve itself. See “Responding to client update requests” on page 24-8 for details
on how the provider applies updates.

3 The provider returns all unresolved records to the client dataset in a Result data
packet. The Result data packet contains all records that were not updated. It also
contains error information, such as error messages and error codes.

4 The client dataset attempts to reconcile update errors returned in the Result data
packet on a record-by-record basis.

Applying updates
Changes made to the client dataset’s local copy of data are not sent to the database
server (or XML document) until the client application calls the ApplyUpdates method.
ApplyUpdates takes the changes in the change log, and sends them as a data packet
(called Delta) to the provider. (Note that, when using most client datasets, the
provider is internal to the client dataset.)

ApplyUpdates takes a single parameter, MaxErrors, which indicates the maximum
number of errors that the provider should tolerate before aborting the update
process. If MaxErrors is 0, then as soon as an update error occurs, the entire update
process is terminated. No changes are written to the database, and the client dataset’s
change log remains intact. If MaxErrors is -1, any number of errors is tolerated, and

23-20 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

the change log contains all records that could not be successfully applied. If
MaxErrors is a positive value, and more errors occur than are permitted by
MaxErrors, all updates are aborted. If fewer errors occur than specified by MaxErrors,
all records successfully applied are automatically cleared from the client dataset’s
change log.

ApplyUpdates returns the number of actual errors encountered, which is always less
than or equal to MaxErrors plus one. This return value indicates the number of
records that could not be written to the database.

The client dataset’s ApplyUpdates method does the following:

1 It indirectly calls the provider’s ApplyUpdates method. The provider’s
ApplyUpdates method writes the updates to the database, source dataset, or XML
document and attempts to correct any errors it encounters. Records that it cannot
apply because of error conditions are sent back to the client dataset.

2 The client dataset ‘s ApplyUpdates method then attempts to reconcile these
problem records by calling the Reconcile method. Reconcile is an error-handling
routine that calls the OnReconcileError event handler. You must code the
OnReconcileError event handler to correct errors. For details about using
OnReconcileError, see “Reconciling update errors” on page 23-22.

3 Finally, Reconcile removes successfully applied changes from the change log and
updates Data to reflect the newly updated records. When Reconcile completes,
ApplyUpdates reports the number of errors that occurred.

Important In some cases, the provider can’t determine how to apply updates (for example,
when applying updates from a stored procedure or multi-table join). Client datasets
and provider components generate events that let you handle these situations. See
“Intervening as updates are applied” below for details.

Tip If the provider is on a stateless application server, you may want to communicate
with it about persistent state information before or after you apply updates.
TClientDataSet receives a BeforeApplyUpdates event before the updates are sent, which
lets you send persistent state information to the server. After the updates are applied
(but before the reconcile process), TClientDataSet receives an AfterApplyUpdates event
where you can respond to any persistent state information returned by the
application server.

Intervening as updates are applied
When a client dataset applies its updates, the provider determines how to handle
writing the insertions, deletions, and modifications to the database server or source
dataset. When you use TClientDataSet with an external provider component, you can
use the properties and events of that provider to influence the way updates are
applied. These are described in “Responding to client update requests” on page 24-8.

When the provider is internal, however, as it is for any client dataset associated with
a data access mechanism, you can’t set its properties or provide event handlers. As a
result, the client dataset publishes one property and two events that let you influence
how the internal provider applies updates.

U s i n g c l i e n t d a t a s e t s 23-21

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

• UpdateMode controls what fields are used to locate records in the SQL statements
the provider generates for applying updates. UpdateMode is identical to the
provider’s UpdateMode property. For information on the provider’s UpdateMode
property, see “Influencing how updates are applied” on page 24-9.

• OnGetTableName lets you supply the provider with the name of the database table
to which it should apply updates. This lets the provider generate the SQL
statements for updates when it can’t identify the database table from the stored
procedure or query specified by CommandText. For example, if the query executes
a multi-table join that only requires updates to a single table, supplying an
OnGetTableName event handler allows the internal provider to correctly apply
updates.

An OnGetTableName event handler has three parameters: the internal provider
component, the internal dataset that fetched the data from the server, and a
parameter to return the table name to use in the generated SQL.

• BeforeUpdateRecord occurs for every record in the delta packet. This event lets you
make any last-minute changes before the record is inserted, deleted, or modified.
It also provides a way for you to execute your own SQL statements to apply the
update in cases where the provider can’t generate correct SQL (for example, for
multi-table joins where multiple tables must be updated.)

A BeforeUpdateRecord event handler has five parameters: the internal provider
component, the internal dataset that fetched the data from the server, a delta
packet that is positioned on the record that is about to be updated, an indication of
whether the update is an insertion, deletion, or modification, and a parameter that
returns whether the event handler performed the update.The use of these is
illustrated in the following event handler. For simplicity, the example assumes the
SQL statements are available as global variables that only need field values:

procedure TForm1.SQLClientDataSet1BeforeUpdateRecord(Sender: TObject;
SourceDS: TDataSet; DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind;
var Applied Boolean);

var
SQL: string;
Connection: TSQLConnection;

begin
Connection := (SourceDS as TCustomSQLDataSet).SQLConnection;
case UpdateKind of
ukModify:

begin
{ 1st dataset: update Fields[1], use Fields[0] in where clause }
SQL := Format(UpdateStmt1, [DeltaDS.Fields[1].NewValue, DeltaDS.Fields[0].OldValue]);
Connection.Execute(SQL, nil, nil);

{ 2nd dataset: update Fields[2], use Fields[3] in where clause }
SQL := Format(UpdateStmt2, [DeltaDS.Fields[2].NewValue, DeltaDS.Fields[3].OldValue]);
Connection.Execute(SQL, nil, nil);

end;
ukDelete:

begin
{ 1st dataset: use Fields[0] in where clause }
SQL := Format(DeleteStmt1, [DeltaDS.Fields[0].OldValue]);
Connection.Execute(SQL, nil, nil);

23-22 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

{ 2nd dataset: use Fields[3] in where clause }
SQL := Format(DeleteStmt2, [DeltaDS.Fields[3].OldValue]);
Connection.Execute(SQL, nil, nil);

end;
ukInsert:

begin
{ 1st dataset: values in Fields[0] and Fields[1] }

SQL := Format(InsertStmt1, [DeltaDS.Fields[0].NewValue, DeltaDS.Fields[1].NewValue]);
Connection.Execute(SQL, nil, nil);

{ 2nd dataset: values in Fields[2] and Fields[3] }
SQL := Format(InsertStmt2, [DeltaDS.Fields[2].NewValue, DeltaDS.Fields[3].NewValue]);
Connection.Execute(SQL, nil, nil);

end;
end;
Applied := True;

end;

Reconciling update errors
There are two events that let you handle errors that occur during the update process:

• During the update process, the internal provider generates an OnUpdateError
event every time it encounters an update that it can’t handle. If you correct the
problem in an OnUpdateError event handler, then the error does not count toward
the maximum number of errors passed to the ApplyUpdates method. This event
only occurs for client datasets that use an internal provider. If you are using
TClientDataSet, you can use the provider component’s OnUpdateError event
instead.

• After the entire update operation is finished, the client dataset generates an
OnReconcileError event for every record that the provider could not apply to the
database server.

You should always code an OnReconcileError or OnUpdateError event handler, even if
only to discard the records returned that could not be applied. The event handlers for
these two events work the same way. They include the following parameters:

• DataSet: A client dataset that contains the updated record which couldn’t be
applied. You can use this dataset’s methods to get information about the problem
record and to edit the record in order to correct any problems. In particular, you
will want to use the CurValue, OldValue, and NewValue properties of the fields in
the current record to determine the cause of the update problem. However, you
must not call any client dataset methods that change the current record in your
event handler.

• E: An object that represents the problem that occurred. You can use this exception
to extract an error message or to determine the cause of the update error.

• UpdateKind: The type of update that generated the error. UpdateKind can be
ukModify (the problem occurred updating an existing record that was modified),
ukInsert (the problem occurred inserting a new record), or ukDelete (the problem
occurred deleting an existing record).

U s i n g c l i e n t d a t a s e t s 23-23

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

• Action: A var parameter that indicates what action to take when the event handler
exits. In your event handler, you set this parameter to

• Skip this record, leaving it in the change log. (rrSkip or raSkip)

• Stop the entire reconcile operation. (rrAbort or raAbort)

• Merge the modification that failed into the corresponding record from the
server. (rrMerge or raMerge) This only works if the server record does not
include any changes to fields modified in the client dataset’s record.

• Replace the current update in the change log with the value of the record in the
event handler, which has presumably been corrected. (rrApply or raCorrect)

• Ignore the error completely. (rrIgnore) This possibility only exists in the
OnUpdateError event handler, and is intended for the case where the event
handler applies the update back to the database server. The updated record is
removed from the change log and merged into Data, as if the provider had
applied the update.

• Back out the changes for this record on the client dataset, reverting to the
originally provided values. (raCancel) This possibility only exists in the
OnReconcileError event handler.

• Update the current record value to match the record on the server. (raRefresh)
This possibility only exists in the OnReconcileError event handler.

The following code shows an OnReconcileError event handler that uses the reconcile
error dialog from the RecError unit which ships in the objrepos directory. (To use this
dialog, add RecError to your uses clause.)

procedure TForm1.ClientDataSetReconcileError(DataSet: TCustomClientDataSet; E:
EReconcileError; UpdateKind: TUpdateKind, var Action TReconcileAction);
begin

Action := HandleReconcileError(DataSet, UpdateKind, E);
end;

Using a client dataset with a provider
A client dataset uses a provider to supply it with data and apply updates when

• It caches updates from a database server or another dataset.

• It represents the data in an XML document.

• It stores the data in the client portion of a multi-tiered application.

For any client dataset other than TClientDataSet, this provider is internal, and so not
directly accessible by the application. With TClientDataSet, the provider is an external
component that links the client dataset to an external source of data.

An external provider component can reside in the same application as the client
dataset, or it can be part of a separate application running on another system. For
more information about provider components, see Chapter 24, “Using provider
components.” For more information about applications where the provider is in a

23-24 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

separate application on another system, see Chapter 25, “Creating multi-tiered
applications.”

When using an (internal or external) provider, the client dataset always caches any
updates. For information on how this works, see “Using a client dataset to cache
updates” on page 23-15.

The following topics describe additional properties and methods of the client dataset
that enable it to work with a provider.

Specifying a provider

Unlike the client datasets that are associated with a data access mechanism,
TClientDataSet has no internal provider component to package data or apply
updates. If you want it to represent data from a source dataset or XML document,
therefore, you must associated the client dataset with an external provider
component.

The way you associate TClientDataSet with a provider depends on whether the
provider is in the same application as the client dataset or on a remote application
server running on another system.

• If the provider is in the same application as the client dataset, you can associate it
with a provider by choosing a provider from the drop-down list for the
ProviderName property in the Object Inspector. This works as long as the provider
has the same Owner as the client dataset. (The client dataset and the provider have
the same Owner if they are placed in the same form or data module.) To use a local
provider that has a different Owner, you must form the association at runtime
using the client dataset’s SetProvider method

If you think you may eventually scale up to a remote provider, or if you want to
make calls directly to the IAppServer interface, you can also set the RemoteServer
property to a TLocalConnection component. If you use TLocalConnection, the
TLocalConnection instance manages the list of all providers that are local to the
application, and handles the client dataset’s IAppServer calls. If you do not use
TLocalConnection, Delphi creates a hidden object that handles the IAppServer calls
from the client dataset.

• If the provider is on a remote application server, then, in addition to the
ProviderName property, you need to specify a component that connects the client
dataset to the application server. There are two properties that can handle this
task: RemoteServer, which specifies the name of a connection component from
which to get a list of providers, or ConnectionBroker, which specifies a centralized
broker that provides an additional level of indirection between the client dataset
and the connection component. The connection component and, if used, the
connection broker, reside in the same data module as the client dataset. The
connection component establishes and maintains a connection to an application
server, sometimes called a “data broker”. For more information, see “The structure
of the client application” on page 25-4.

At design time, after you specify RemoteServer or ConnectionBroker, you can select a
provider from the drop-down list for the ProviderName property in the Object

U s i n g c l i e n t d a t a s e t s 23-25

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Inspector. This list includes both local providers (in the same form or data
module) and remote providers that can be accessed through the connection
component.

Note If the connection component is an instance of TDCOMConnection, the application
server must be registered on the client machine.

At runtime, you can switch among available providers (both local and remote) by
setting ProviderName in code.

Requesting data from the source dataset or document

Client datasets can control how they fetch their data packets from a provider. By
default, they retrieve all records from the source dataset. This is true whether the
source dataset and provider are internal components (as with TBDEClientDataSet,
TSQLClientDataSet, and TIBClientDataSet), or separate components that supply the
data for TClientDataSet.

You can change how the client dataset fetches records using the PacketRecords and
FetchOnDemand properties.

Incremental fetching
By changing the PacketRecords property, you can specify that the client dataset fetches
data in smaller chunks. PacketRecords specifies either how many records to fetch at a
time, or the type of records to return. By default, PacketRecords is set to -1, which
means that all available records are fetched at once, either when the client dataset is
first opened, or when the application explicitly calls GetNextPacket. When
PacketRecords is -1, then after the client dataset first fetches data, it never needs to
fetch more data because it already has all available records.

To fetch records in small batches, set PacketRecords to the number of records to fetch.
For example, the following statement sets the size of each data packet to ten records:

ClientDataSet1.PacketRecords := 10;

This process of fetching records in batches is called “incremental fetching”. Client
datasets use incremental fetching when PacketRecords is greater than zero.

To fetch each batch of records, the client dataset calls GetNextPacket. Newly fetched
packets are appended to the end of the data already in the client dataset.
GetNextPacket returns the number of records it fetches. If the return value is the same
as PacketRecords, the end of available records was not encountered. If the return value
is greater than 0 but less than PacketRecords, the last record was reached during the
fetch operation. If GetNextPacket returns 0, then there are no more records to fetch.

Warning Incremental fetching does not work if you are fetching data from a remote provider
on a stateless application server. See “Supporting state information in remote data
modules” on page 25-19 for information on how to use incremental fetching with
stateless remote data modules.

Note You can also use PacketRecords to fetch metadata information about the source
dataset. To retrieve metadata information, set PacketRecords to 0.

23-26 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Fetch-on-demand
Automatic fetching of records is controlled by the FetchOnDemand property. When
FetchOnDemand is True (the default), the client dataset automatically fetches records
as needed. To prevent automatic fetching of records, set FetchOnDemand to False.
When FetchOnDemand is False, the application must explicitly call GetNextPacket to
fetch records.

For example, Applications that need to represent extremely large read-only datasets
can turn off FetchOnDemand to ensure that the client datasets do not try to load more
data than can fit into memory. Between fetches, the client dataset frees its cache using
the EmptyDataSet method. This approach, however, does not work well when the
client must post updates to the server.

The provider controls whether the records in data packets include BLOB data and
nested detail datasets. If the provider excludes this information from records, the
FetchOnDemand property causes the client dataset to automatically fetch BLOB data
and detail datasets on an as-needed basis. If FetchOnDemand is False, and the provider
does not include BLOB data and detail datasets with records, you must explicitly call
the FetchBlobs or FetchDetails method to retrieve this information.

Getting parameters from the source dataset

There are two circumstances when the client dataset needs to fetch parameter values:

• The application needs the value of output parameters on a stored procedure.

• The application wants to initialize the input parameters of a query or stored
procedure to the current values on the source dataset.

Client datasets store parameter values in their Params property. These values are
refreshed with any output parameters when the client dataset fetches data from the
source dataset. However, there may be times a TClientDataSet component in a client
application needs output parameters when it is not fetching data.

To fetch output parameters when not fetching records, or to initialize input
parameters, the client dataset can request parameter values from the source dataset
by calling the FetchParams method. The parameters are returned in a data packet
from the provider and assigned to the client dataset’s Params property.

At design time, the Params property can be initialized by right-clicking the client
dataset and choosing Fetch Params.

Note There is never a need to call FetchParams when the client dataset uses an internal
provider and source dataset, because the Params property always reflects the
parameters of the internal source dataset. With TClientDataSet, the FetchParams
method (or the Fetch Params command) only works if the client dataset is connected
to a provider whose associated dataset can supply parameters. For example, if the
source dataset is a table-type dataset, there are no parameters to fetch.

If the provider is on a separate system as part of a stateless application server, you
can’t use FetchParams to retrieve output parameters. In a stateless application server,
other clients can change and rerun the query or stored procedure, changing output
parameters before the call to FetchParams. To retrieve output parameters from a

U s i n g c l i e n t d a t a s e t s 23-27

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

stateless application server, use the Execute method. If the provider is associated with
a query or stored procedure, Execute tells the provider to execute the query or stored
procedure and return any output parameters. These returned parameters are then
used to automatically update the Params property.

Passing parameters to the source dataset

Client datasets can pass parameters to the source dataset to specify what data they
want provided in the data packets it sends. These parameters can specify

• Input parameter values for a query or stored procedure that is run on the
application server

• Field values that limit the records sent in data packets

You can specify parameter values that your client dataset sends to the source dataset
at design time or at runtime. At design time, select the client dataset and double-click
the Params property in the Object Inspector. This brings up the collection editor,
where you can add, delete, or rearrange parameters. By selecting a parameter in the
collection editor, you can use the Object Inspector to edit the properties of that
parameter.

At runtime, use the CreateParam method of the Params property to add parameters to
your client dataset. CreateParam returns a parameter object, given a specified name,
parameter type, and datatype. You can then use the properties of that parameter
object to assign a value to the parameter.

For example, the following code adds an input parameter named CustNo with a
value of 605:

with ClientDataSet1.Params.CreateParam(ftInteger, 'CustNo', ptInput) do
 AsInteger := 605;

If the client dataset is not active, you can send the parameters to the application
server and retrieve a data packet that reflects those parameter values simply by
setting the Active property to True.

Sending query or stored procedure parameters
When the client dataset’s CommandType property is ctQuery or ctStoredProc, or, if the
client dataset is a TClientDataSet instance, when the associated provider represents
the results of a query or stored procedure, you can use the Params property to specify
parameter values. When the client dataset requests data from the source dataset or
uses its Execute method to run a query or stored procedure that does not return a
dataset, it passes these parameter values along with the request for data or the
execute command. When the provider receives these parameter values, it assigns
them to its associated dataset. It then instructs the dataset to execute its query or
stored procedure using these parameter values, and, if the client dataset requested
data, begins providing data, starting with the first record in the result set.

Note Parameter names should match the names of the corresponding parameters on the
source dataset.

23-28 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Limiting records with parameters
If the client dataset is

• a TClientDataSet instance whose associated provider represents a TTable or
TSQLTable component

• a TSQLClientDataSet or TBDEClientDataSet instance whose CommandType property
is ctTable

then it can use the Params property to limit the records that it caches in memory. Each
parameter represents a field value that must be matched before a record can be
included in the client dataset’s data. This works much like a filter, except that with a
filter, the records are still cached in memory, but unavailable.

Each parameter name must match the name of a field. When using TClientDataSet,
these are the names of fields in the TTable or TSQLTable component associated with
the provider. When using TSQLClientDataSet or TBDEClientDataSet, these are the
names of fields in the table on the database server. The data in the client dataset then
includes only those records whose values on the corresponding fields match the
values assigned to the parameters.

For example, consider an application that displays the orders for a single customer.
When the user identifies the customer, the client dataset sets its Params property to
include a single parameter named CustID (or whatever field in the source table is
called) whose value identifies the customer whose orders should be displayed. When
the client dataset requests data from the source dataset, it passes this parameter
value. The provider then sends only the records for the identified customer. This is
more efficient than letting the provider send all the orders records to the client
application and then filtering the records using the client dataset.

Handling constraints from the server

When a database server defines constraints on what data is valid, it is useful if the
client dataset knows about them. That way, the client dataset can ensure that user
edits never violate those server constraints. As a result, such violations are never
passed to the database server where they would be rejected. This means fewer
updates generate error conditions during the updating process.

Regardless of the source of data, you can duplicate such server constraints by
explicitly adding them to the client dataset. This process is described in “Specifying
custom constraints” on page 23-7.

It is more convenient, however, if the server constraints are automatically included in
data packets. Then you need not explicitly specify default expressions and
constraints, and the client dataset changes the values it enforces when the server
constraints change. By default, this is exactly what happens: if the source dataset is
aware of server constraints, the provider automatically includes them in data packets
and the client dataset enforces them when the user posts edits to the change log.

Note Only datasets that use the BDE can import constraints from the server. This means
that server constraints are only included in data packets when using
TBDEClientDataSet or TClientDataSet with a provider that represents a BDE-based

U s i n g c l i e n t d a t a s e t s 23-29

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

dataset. For more information on how to import server constraints and how to
prevent a provider from including them in data packets, see “Handling server
constraints” on page 24-12.

Note For more information on working with the constraints once they have been imported,
see “Using server constraints” on page 19-21.

While importing server constraints and expressions is an extremely valuable feature
that helps an application preserve data integrity, there may be times when it needs to
disable constraints on a temporary basis. For example, if a server constraint is based
on the current maximum value of a field, but the client dataset uses incremental
fetching, the current maximum value for a field in the client dataset may differ from
the maximum value on the database server, and constraints may be invoked
differently. In another case, if a client dataset applies a filter to records when
constraints are enabled, the filter may interfere in unintended ways with constraint
conditions. In each of these cases, an application may disable constraint-checking.

To disable constraints temporarily, call the DisableConstraints method. Each time
DisableConstraints is called, a reference count is incremented. While the reference
count is greater than zero, constraints are not enforced on the client dataset.

To reenable constraints for the client dataset, call the dataset’s EnableConstraints
method. Each call to EnableConstraints decrements the reference count. When the
reference count is zero, constraints are enabled again.

Tip Always call DisableConstraints and EnableConstraints in paired blocks to ensure that
constraints are enabled when you intend them to be.

Refreshing records

Client datasets work with an in-memory snapshot of the data from the source
dataset. If the source dataset represents server data, then as time elapses other users
may modify that data. The data in the client dataset becomes a less accurate picture
of the underlying data.

Like any other dataset, client datasets have a Refresh method that updates its records
to match the current values on the server. However, calling Refresh only works if
there are no edits in the change log. Calling Refresh when there are unapplied edits
results in an exception.

Client datasets can also update the data while leaving the change log intact. To do
this, call the RefreshRecord method. Unlike the Refresh method, RefreshRecord updates
only the current record in the client dataset. RefreshRecord changes the record value
originally obtained from the provider but leaves any changes in the change log.

Warning It is not always appropriate to call RefreshRecord. If the user’s edits conflict with
changes made to the underlying dataset by other users, calling RefreshRecord masks
this conflict. When the client dataset applies its updates, no reconcile error occurs
and the application can’t resolve the conflict.

In order to avoid masking update errors, you may want to check that there are no
pending updates before calling RefreshRecord. For example, the following AfterScroll

23-30 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

refreshes the current record every time the user moves to a new record (ensuring the
most up-to-date value), but only when it is safe to do so.:

procedure TForm1.ClientDataSet1AfterScroll(DataSet: TDataSet);
begin
 if ClientDataSet1.UpdateStatus = usUnModified then
 ClientDataSet1.RefreshRecord;
end;

Communicating with providers using custom events

Client datasets communicate with a provider component through a special interface
called IAppServer. If the provider is local, IAppServer is the interface to an
automatically-generated object that handles all communication between the client
dataset and its provider. If the provider is remote, IAppServer is the interface to a
remote data module on the application server

TClientDataSet provides many opportunities for customizing the communication that
uses the IAppServer interface. Before and after every IAppServer method call that is
directed at the client dataset’s provider, TClientDataSet receives special events that
allow it to communicate arbitrary information with its provider. These events are
matched with similar events on the provider. Thus for example, when the client
dataset calls its ApplyUpdates method, the following events occur:

1 The client dataset receives a BeforeApplyUpdates event, where it specifies arbitrary
custom information in an OleVariant called OwnerData.

2 The provider receives a BeforeApplyUpdates event, where it can respond to the
OwnerData from the client dataset and update the value of OwnerData to new
information.

3 The provider goes through its normal process of assembling a data packet
(including all the accompanying events).

4 The provider receives an AfterApplyUpdates event, where it can respond to the
current value of OwnerData and update it to a value for the client dataset.

5 The client dataset receives an AfterApplyUpdates event, where it can respond to the
returned value of OwnerData.

Every other IAppServer method call is accompanied by a similar set of BeforeXXX and
AfterXXX events that let you customize the communication between client dataset
and provider.

In addition, the client dataset has a special method, DataRequest, whose only purpose
is to allow application-specific communication with the provider. When the client
dataset calls DataRequest, it passes an OleVariant as a parameter that can contain any
information you want. This, in turn, generates an is the OnDataRequest event on the
provider, where you can respond in any application-defined way and return a value
to the client dataset.

U s i n g c l i e n t d a t a s e t s 23-31

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

Overriding the source dataset

The client datasets that are associated with a particular data access mechanism use
the CommandText and CommandType properties to specify the data they represent.
When using TClientDataSet, however, the data is specified by the source dataset, not
the client dataset. Typically, this source dataset has a property that specifies an SQL
statement to generate the data or the name of a database table or stored procedure.

If the provider allows, TClientDataSet can override the property on the source dataset
that indicates what data it represents. That is, if the provider permits, the client
dataset’s CommandText property replaces the property on the provider’s dataset that
specifies what data it represents. This allows TClientDataSet to specify dynamically what
data it wants to see.

By default, external provider components do not let client datasets use the
CommandText value in this way. To allow TClientDataSet to use its CommandText
property, you must add poAllowCommandText to the Options property of the provider.
Otherwise, the value of CommandText is ignored.

Note Never remove poAllowCommandText from the Options property of TSQLClientDataSet,
TBDEClientDataSet, or TIBClientDataSet. The client dataset’s Options property is
forwarded to the internal provider, so removing poAllowCommandText prevents the
client dataset from specifying what data to access.

The client dataset sends its CommandText string to the provider at two times:

• When the client dataset first opens. After it has retrieved the first data packet from
the provider, the client dataset does not send CommandText when fetching
subsequent data packets.

• When the client dataset sends an Execute command to provider.

To send an SQL command or to change a table or stored procedure name at any other
time, you must explicitly use the IAppServer interface that is available as the
AppServer property. This property represents the interface through which the client
dataset communicates with its provider.

Using a client dataset with file-based data
Client datasets can work with dedicated files on disk as well as server data. This
allows them to be used in file-based database applications and “briefcase model”
applications. The special files that client datasets use for their data are called MyBase.

Tip All client datasets are appropriate for a briefcase model application, but for a pure
MyBase application (one that does not use a provider), it is preferable to use
TClientDataSet, because it involves less overhead.

In a pure MyBase application, the client application cannot get table definitions and
data from the server, and there is no server to which it can apply updates. Instead,
the client dataset must independently

• Define and create tables

23-32 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

• Load saved data
• Merge edits into its data
• Save data

Creating a new dataset

There are three ways to define and create client datasets that do not represent server
data:

• You can define and create a new client dataset using persistent fields or field and
index definitions. This follows the same scheme as creating any table-type dataset.
See “Creating and deleting tables” on page 18-37 for details.

• You can copy an existing dataset (at design or runtime). See “Copying data from
another dataset” on page 23-13 for more information about copying existing
datasets.

• You can create a client dataset from an arbitrary XML document. See “Converting
XML documents into data packets” on page 26-6 for details.

Once the dataset is created, you can save it to a file. From then on, you do not need to
recreate the table, only load it from the file you saved. When beginning a file-based
database application, you may want to first create and save empty files for your
datasets before writing the application itself. This way, you start with the metadata
for your client dataset already defined, making it easier to set up the user interface.

Loading data from a file or stream

To load data from a file, call a client dataset’s LoadFromFile method. LoadFromFile
takes one parameter, a string that specifies the file from which to read data. The file
name can be a fully qualified path name, if appropriate. If you always load the client
dataset’s data from the same file, you can use the FileName property instead. If
FileName names an existing file, the data is automatically loaded when the client
dataset is opened.

To load data from a stream, call the client dataset’s LoadFromStream method.
LoadFromStream takes one parameter, a stream object that supplies the data.

The data loaded by LoadFromFile (LoadFromStream) must have previously been saved
in a client dataset’s data format by this or another client dataset using the SaveToFile
(SaveToStream) method, or generated from an XML document. For more information
about saving data to a file or stream, see “Saving data to a file or stream” on
page 23-33. For information about creating client dataset data from an XML
document, see Chapter 26, “Using XML in database applications.”

When you call LoadFromFile or LoadFromStream, all data in the file is read into the
Data property. Any edits that were in the change log when the data was saved are
read into the Delta property. However, the only indexes that are read from the file are
those that were created with the dataset.

U s i n g c l i e n t d a t a s e t s 23-33

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

Merging changes into data

When you edit the data in a client dataset, all edits to the data exist only in an in-
memory change log. This log can be maintained separately from the data itself,
although it is completely transparent to objects that use the client dataset. That is,
controls that navigate the client dataset or display its data see a view of the data that
includes the changes. If you do not want to back out of changes, however, you should
merge the change log into the data of the client dataset by calling the MergeChangeLog
method. MergeChangeLog overwrites records in Data with any changed field values in
the change log.

After MergeChangeLog executes, Data contains a mix of existing data and any changes
that were in the change log. This mix becomes the new Data baseline against which
further changes can be made. MergeChangeLog clears the change log of all records and
resets the ChangeCount property to 0.

Warning Do not call MergeChangeLog for client datasets that use a provider. In this case, call
ApplyUpdates to write changes to the database. For more information, see “Applying
updates” on page 23-19.

Note It is also possible to merge changes into the data of a separate client dataset if that
dataset originally provided the data in the Data property. To do this, you must use a
dataset provider. For an example of how to do this, see “Assigning data directly” on
page 23-13.

If you do not want to use the extended undo capabilities of the change log, you can
set the client dataset’s LogChanges property to False. When LogChanges is False, edits
are automatically merged when you post records and there is no need to call
MergeChangeLog.

Saving data to a file or stream

Even when you have merged changes into the data of a client dataset, this data still
exists only in memory. While it persists if you close the client dataset and reopen it in
your application, it will disappear when your application shuts down. To make the
data permanent, it must be written to disk. Write changes to disk using the SaveToFile
method.

SaveToFile takes one parameter, a string that specifies the file into which to write data.
The file name can be a fully qualified path name, if appropriate. If the file already
exists, its current contents are completely overwritten.

Note SaveToFile does not preserve any indexes you added to the client dataset at runtime,
only indexes that were added when you created the client dataset.

If you always save the data to the same file, you can use the FileName property
instead. If FileName is set, the data is automatically saved to the named file when the
client dataset is closed.

You can also save data to a stream, using the SaveToStream method. SaveToStream
takes one parameter, a stream object that receives the data.

23-34 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

Note If you save a client dataset while there are still edits in the change log, these are not
merged with the data. When you reload the data, using the LoadFromFile or
LoadFromStream method, the change log will still contain the unmerged edits. This is
important for applications that support the briefcase model, where those changes
will eventually have to be applied to a provider component on the application server.

U s i n g p r o v i d e r c o m p o n e n t s 24-1

C h a p t e r

24
Chapter 24Using provider components

Provider components (TDataSetProvider and TXMLTransformProvider) supply the
most common mechanism by which client datasets obtain their data. Providers

• Receive data requests from a client dataset (or XML broker), fetch the requested
data, package the data into a transportable data packet, and return the data to the
client dataset (or XML broker). This activity is called “providing.”

• Receive updated data from a client dataset (or XML broker), apply updates to the
database server, source dataset, or source XML document, and log any updates
that cannot be applied, returning unresolved updates to the client dataset for
further reconciliation. This activity is called “resolving.”

Most of the work of a provider component happens automatically. You need not
write any code on the provider to create data packets from the data in a dataset or
XML document or to apply updates. However, provider components include a
number of events and properties that allow your application more direct control over
what information is packaged for clients and how your application responds to client
requests.

When using TBDEClientDataSet, TSQLClientDataSet, or TIBClientDataSet, the
provider is internal to the client dataset, and the application has no direct access to it.
When using TClientDataSet or TXMLBroker, however, the provider is a separate
component that you can use to control what information is packaged for clients and
for responding to events that occur around the process of providing and resolving.
The client datasets that have internal providers surface some of the internal
provider’s properties and events as their own properties and events, but for the
greatest amount of control, you may want to use TClientDataSet with a separate
provider component.

When using a separate provider component, it can reside in the same application as
the client dataset (or XML broker), or it can reside on an application server as part of
a multi-tiered application.

This chapter describes how to use a provider component to control the interaction
with client datasets or XML brokers.

24-2 D e v e l o p e r ’ s G u i d e

D e t e r m i n i n g t h e s o u r c e o f d a t a

Determining the source of data
When you use a provider component, you must specify the source it uses to get the
data it assembles into data packets. Depending on your version of Delphi, you can
specify the source as one of the following:

• To provide the data from a dataset, use TDataSetProvider.
• To provide the data from an XML document, use TXMLTransformProvider.

Using a dataset as the source of the data

If the provider is a dataset provider (TDataSetProvider), set the DataSet property of the
provider to indicate the source dataset. At design time, select from available datasets
in the DataSet property drop-down list in the Object Inspector.

TDataSetProvider interacts with the source dataset using the IProviderSupport
interface. This interface is introduced by TDataSet, so it is available for all datasets.
However, the IProviderSupport methods implemented in TDataSet are mostly stubs
that don’t do anything or that raise exceptions.

The dataset classes that ship with Delphi (BDE-enabled datasets, ADO-enabled
datasets, dbExpress datasets, and InterBase Express datasets) override these methods
to implement the IProviderSupport interface in a more useful fashion. Client datasets
don’t add anything to the inherited IProviderSupport implementation, but can still be
used as a source dataset as long as the ResolveToDataSet property of the provider is
True.

Component writers that create their own custom descendants from TDataSet must
override all appropriate IProviderSupport methods if their datasets are to supply data
to a provider. If the provider only provides data packets on a read-only basis (that is,
if it does not apply updates), the IProviderSupport methods implemented in TDataSet
may be sufficient.

Using an XML document as the source of the data

If the provider is an XML provider, set the XMLDataFile property of the provider
indicate the source document.

XML providers must transform the source document into data packets, so in addition
to indicating the source document, you must also specify how to transform that
document into data packets. This transformation is handled by the provider’s
TransformRead property. TransformRead represents a TXMLTransform object. You can
set its properties to specify what transformation to use, and use its events to provide
your own input to the transformation. For more information on using XML
providers, see “Using an XML document as the source for a provider” on page 26-8.

U s i n g p r o v i d e r c o m p o n e n t s 24-3

C o m m u n i c a t i n g w i t h t h e c l i e n t d a t a s e t

Communicating with the client dataset
All communication between a provider and a client dataset or XML broker takes
place through an IAppServer interface. If the provider is in the same application as the
client, this interface is implemented by a hidden object generated automatically for
you, or by a TLocalConnection component. If the provider is part of a multi-tiered
application, this is the interface for the application server’s remote data module.

Most applications do not use IAppServer directly, but invoke it indirectly through the
properties and methods of the client dataset or XML broker. However, when
necessary, you can make direct calls to the IAppServer interface by using the
AppServer property of a client dataset.

Table 24.1 lists the methods of the IAppServer interface, as well as the corresponding
methods and events on the provider component and the client dataset. These
IAppServer methods include a Provider parameter. In multi-tiered applications, this
parameter indicates the provider on the application server with which the client
dataset communicates. Most methods also include an OleVariant parameter called
OwnerData that allows a client dataset and a provider to pass custom information
back and forth. OwnerData is not used by default, but is passed to all event handlers
so that you can write code that allows your provider to adjust to application-defined
information before and after each call from a client dataset.

Table 24.1 AppServer interface members

IAppServer provider component TClientDataSet

AS_ApplyUpdates method ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event

ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event.

AS_DataRequest method DataRequest method,
OnDataRequest event

DataRequest method.

AS_Execute method Execute method,
BeforeExecute event,
AfterExecute event

Execute method,
BeforeExecute event,
AfterExecute event.

AS_GetParams method GetParams method,
BeforeGetParams event,
AfterGetParams event

FetchParams method,
BeforeGetParams event,
AfterGetParams event.

AS_GetProviderNames method Used to identify all available
providers.

Used to create a design-time list
for ProviderName property.

AS_GetRecords method GetRecords method,
BeforeGetRecords event,
AfterGetRecords event

GetNextPacket method,
Data property,
BeforeGetRecords event,
AfterGetRecords event

AS_RowRequest method RowRequest method,
BeforeRowRequest event,
AfterRowRequest event

FetchBlobs method,
FetchDetails method,
RefreshRecord method,
BeforeRowRequest event,
AfterRowRequest event

24-4 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o a p p l y u p d a t e s u s i n g a d a t a s e t p r o v i d e r

Choosing how to apply updates using a dataset provider
TXMLTransformProvider components always apply updates to the associated XML
document. When using TDataSetProvider, however, you can choose how updates are
applied. By default, when TDataSetProvider components apply updates and resolve
update errors, they communicate directly with the database server using
dynamically generated SQL statements. This approach has the advantage that your
server application does not need to merge updates twice (first to the dataset, and
then to the remote server).

However, you may not always want to take this approach. For example, you may
want to use some of the events on the dataset component. Alternately, the dataset
you use may not support the use of SQL statements (for example if you are providing
from a TClientDataSet component).

TDataSetProvider lets you decide whether to apply updates to the database server
using SQL or to the source dataset by setting the ResolveToDataSet property. When
this property is True, updates are applied to the dataset. When it is False, updates are
applied directly to the underlying database server.

Controlling what information is included in data packets
When working with a dataset provider, there are a number of ways to control what
information is included in data packets that are sent to and from the client. These
include

• Specifying what fields appear in data packets
• Setting options that influence the data packets
• Adding custom information to data packets

Note These techniques for controlling the content of data packets are only available for
dataset providers. When using TXMLTransformProvider, you can only control the
content of data packets by controlling the transformation file the provider uses.

Specifying what fields appear in data packets

When using a dataset provider, you can control what fields are included in data
packets by creating persistent fields on the dataset that the provider uses to build
data packets. The provider then includes only these fields. Fields whose values are
generated dynamically by the source dataset (such as calculated fields or lookup
fields) can be included, but appear to client datasets on the receiving end as static
read-only fields. For information about persistent fields, see “Persistent field
components” on page 19-3.

If the client dataset will be editing the data and applying updates, you must include
enough fields so that there are no duplicate records in the data packet. Otherwise,
when the updates are applied, it is impossible to determine which record to update.
If you do not want the client dataset to be able to see or use extra fields provided only

U s i n g p r o v i d e r c o m p o n e n t s 24-5

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

to ensure uniqueness, set the ProviderFlags property for those fields to include
pfHidden.

Note Including enough fields to avoid duplicate records is also a consideration when the
provider’s source dataset represents a query. You must specify the query so that it
includes enough fields to ensure all records are unique, even if your application does
not use all the fields.

Setting options that influence the data packets

The Options property of a dataset provider lets you specify when BLOBs or nested
detail tables are sent, whether field display properties are included, what type of
updates are allowed, and so on. The following table lists the possible values that can
be included in Options.

Table 24.2 Provider options

Value Meaning

poAutoRefresh The provider refreshes the client dataset with current record
values whenever it applies updates.

poReadOnly The client dataset can’t apply updates to the provider.

poDisableEdits Client datasets can’t modify existing data values. If the user tries
to edit a field, the client dataset raises exception. (This does not
affect the client dataset’s ability to insert or delete records).

poDisableInserts Client datasets can’t insert new records. If the user tries to insert
a new record, the client dataset raises an exception. (This does
not affect the client dataset’s ability to delete records or modify
existing data)

poDisableDeletes Client datasets can’t delete records. If the user tries to delete a
record, the client dataset raises an exception. (This does not
affect the client dataset’s ability to insert or modify records)

poFetchBlobsOnDemand BLOB field values are not included in data packets. Instead,
client datasets must request these values on an as-needed basis.
If the client dataset’s FetchOnDemand property is True, it requests
these values automatically. Otherwise, the application must call
the client dataset’s FetchBlobs method to retrieve BLOB data.

poFetchDetailsOnDemand When the provider’s dataset represents the master of a master/
detail relationship, nested detail values are not included in data
packets. Instead, client datasets request these on an as-needed
basis. If the client dataset’s FetchOnDemand property is True, it
requests these values automatically. Otherwise, the application
must call the client dataset’s FetchDetails method to retrieve
nested details.

poIncFieldProps The data packet includes the following field properties (where
applicable): Alignment, DisplayLabel, DisplayWidth, Visible,
DisplayFormat, EditFormat, MaxValue, MinValue, Currency,
EditMask, DisplayValues.

24-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

Adding custom information to data packets

Dataset providers can add application-defined information to data packets using the
OnGetDataSetProperties event. This information is encoded as an OleVariant, and
stored under a name you specify. Client datasets can then retrieve the information
using their GetOptionalParam method. You can also specify that the information be
included in delta packets that the client dataset sends when updating records. In this
case, the client dataset may never be aware of the information, but the provider can
send a round-trip message to itself.

When adding custom information in the OnGetDataSetProperties event, each
individual attribute (sometimes called an “optional parameter”) is specified using a
Variant array that contains three elements: the name (a string), the value (a Variant),
and a boolean flag indicating whether the information should be included in delta
packets when the client applies updates. Add multiple attributes by creating a
Variant array of Variant arrays. For example, the following OnGetDataSetProperties
event handler sends two values, the time the data was provided and the total number

poCascadeDeletes When the provider’s dataset represents the master of a master/
detail relationship, the server automatically deletes detail
records when master records are deleted. To use this option, the
database server must be set up to perform cascaded deletes as
part of its referential integrity.

poCascadeUpdates When the provider’s dataset represents the master of a master/
detail relationship, key values on detail tables are updated
automatically when the corresponding values are changed in
master records. To use this option, the database server must be
set up to perform cascaded updates as part of its referential
integrity.

poAllowMultiRecordUpdates A single update can cause more than one record of the
underlying database table to change. This can be the result of
triggers, referential integrity, SQL statements on the source
dataset, and so on. Note that if an error occurs, the event
handlers provide access to the record that was updated, not the
other records that change in consequence.

poNoReset Client datasets can’t specify that the provider should reposition
the cursor on the first record before providing data.

poPropogateChanges Changes made by the server to updated records as part of the
update process are sent back to the client and merged into the
client dataset.

poAllowCommandText The client can override the associated dataset’s SQL text or the
name of the table or stored procedure it represents.

poRetainServerOrder The client dataset should not re-sort the records in the dataset to
enforce a default order.

Table 24.2 Provider options (continued)

Value Meaning

U s i n g p r o v i d e r c o m p o n e n t s 24-7

R e s p o n d i n g t o c l i e n t d a t a r e q u e s t s

of records in the source dataset. Only the time the data was provided is returned
when client datasets apply updates:

procedure TMyDataModule1.Provider1GetDataSetProperties(Sender: TObject; DataSet: TDataSet;
out Properties: OleVariant);
begin

Properties := VarArrayCreate([0,1], varVariant);
Properties[0] := VarArrayOf(['TimeProvided', Now, True]);
Properties[1] := VarArrayOf(['TableSize', DataSet.RecordCount, False]);

end;

When the client dataset applies updates, the time the original records were provided
can be read in the provider’s OnUpdateData event:

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
var

WhenProvided: TDateTime;
begin

WhenProvided := DataSet.GetOptionalParam('TimeProvided');
...

end;

Responding to client data requests
Usually client requests for data are handled automatically. A client dataset or XML
broker requests a data packet by calling GetRecords (indirectly, through the
IAppServer interface). The provider responds automatically by fetching data from the
associated dataset or XML document, creating a data packet, and sending the packet
to the client.

The provider has the option of editing data after it has been assembled into a data
packet but before the packet is sent to the client. For example, you might want to
remove records from the packet based on some criterion (such as the user’s level of
access), or, in a multi-tiered application, you might want to encrypt sensitive data
before it is sent on to the client.

To edit the data packet before sending it on to the client, write an OnGetData event
handler. OnGetData event handlers provide the data packet as a parameter in the
form of a client dataset. Using the methods of this client dataset, you can edit data
before it is sent to the client.

As with all method calls made through the IAppServer interface, the provider can
communicate persistent state information with a client dataset before and after the
call to GetRecords. This communication takes place using the BeforeGetRecords and
AfterGetRecords event handlers. For a discussion of persistent state information in
application servers, see “Supporting state information in remote data modules” on
page 25-19.

24-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Responding to client update requests
A provider applies updates to database records based on a Delta data packet received
from a client dataset or XML broker. The client requests updates by calling the
ApplyUpdates method (indirectly, through the IAppServer interface).

As with all method calls made through the IAppServer interface, the provider can
communicate persistent state information with a client dataset before and after the
call to ApplyUpdates. This communication takes place using the BeforeApplyUpdates
and AfterApplyUpdates event handlers. For a discussion of persistent state
information in application servers, see “Supporting state information in remote data
modules” on page 25-19.

If you are using a dataset provider, a number of additional events allow you more
control:

When a dataset provider receives an update request, it generates an OnUpdateData
event, where you can edit the Delta packet before it is written to the dataset or
influence how updates are applied. After the OnUpdateData event, the provider
writes the changes to the database or source dataset.

The provider performs the update on a record-by-record basis. Before the dataset
provider applies each record, it generates a BeforeUpdateRecord event, which you can
use to screen updates before they are applied. If an error occurs when updating a
record, the provider receives an OnUpdateError event where it can resolve the error.
Usually errors occur because the change violates a server constraint or a database
record was changed by a different application subsequent to its retrieval by the
provider, but prior to the client dataset’s request to apply updates.

Update errors can be processed by either the dataset provider or the client dataset.
When the provider is part of a multi-tiered application, it should handle all update
errors that do not require user interaction to resolve. When the provider can’t resolve
an error condition, it temporarily stores a copy of the offending record. When record
processing is complete, the provider returns a count of the errors it encountered to
the client dataset, and copies the unresolved records into a results data packet that it
returns to the client dataset for further reconciliation.

The event handlers for all provider events are passed the set of updates as a client
dataset. If your event handler is only dealing with certain types of updates, you can
filter the dataset based on the update status of records. By filtering the records, your
event handler does not need to sort through records it won’t be using. To filter the
client dataset on the update status of its records, set its StatusFilter property.

Note Applications must supply extra support when the updates are directed at a dataset
that does not represent a single table. For details on how to do this, see “Applying
updates to datasets that do not represent a single table” on page 24-11.

U s i n g p r o v i d e r c o m p o n e n t s 24-9

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Editing delta packets before updating the database

Before a dataset provider applies updates to the database, it generates an
OnUpdateData event. The OnUpdateData event handler receives a copy of the Delta
packet as a parameter. This is a client dataset.

In the OnUpdateData event handler, you can use any of the properties and methods of
the client dataset to edit the Delta packet before it is written to the dataset. One
particularly useful property is the UpdateStatus property. UpdateStatus indicates what
type of modification the current record in the delta packet represents. It can have any
of the values in Table 24.3.

For example, the following OnUpdateData event handler inserts the current date into
every new record that is inserted into the database:

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
begin

with DataSet do
begin

First;
while not Eof do
begin
if UpdateStatus = usInserted then
begin

Edit;
FieldByName('DateCreated').AsDateTime := Date;
Post;

end;
Next;

end;
end;

Influencing how updates are applied

The OnUpdateData event also gives your dataset provider a chance to indicate how
records in the delta packet are applied to the database.

By default, changes in the delta packet are written to the database using
automatically generated SQL UPDATE, INSERT, or DELETE statements such as

UPDATE EMPLOYEES
 set EMPNO = 748, NAME = 'Smith', TITLE = 'Programmer 1', DEPT = 52
WHERE
 EMPNO = 748 and NAME = 'Smith' and TITLE = 'Programmer 1' and DEPT = 47

Table 24.3 UpdateStatus values

Value Description

usUnmodified Record contents have not been changed

usModified Record contents have been changed

usInserted Record has been inserted

usDeleted Record has been deleted

24-10 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Unless you specify otherwise, all fields in the delta packet records are included in the
UPDATE clause and in the WHERE clause. However, you may want to exclude some
of these fields. One way to do this is to set the UpdateMode property of the provider.
UpdateMode can be assigned any of the following values:

You might, however, want even more control. For example, with the previous
statement, you might want to prevent the EMPNO field from being modified by
leaving it out of the UPDATE clause and leave the TITLE and DEPT fields out of the
WHERE clause to avoid update conflicts when other applications have modified the
data. To specify the clauses where a specific field appears, use the ProviderFlags
property. ProviderFlags is a set that can include any of the values in Table 24.5

Thus, the following OnUpdateData event handler allows the TITLE field to be
updated and uses the EMPNO and DEPT fields to locate the desired record. If an
error occurs, and a second attempt is made to locate the record based only on the key,
the generated SQL looks for the EMPNO field only:

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
begin

with DataSet do
begin

FieldByName('TITLE').ProviderFlags := [pfInUpdate];
FieldByName('EMPNO').ProviderFlags := [pfInWhere, pfInKey];
FieldByName('DEPT').ProviderFlags := [pfInWhere];

end;
end;

Note You can use the UpdateFlags property to influence how updates are applied even if
you are updating to a dataset and not using dynamically generated SQL. These flags
still determine which fields are used to locate records and which fields get updated.

Table 24.4 UpdateMode values

Value Meaning

upWhereAll All fields are used to locate fields (the WHERE clause).

upWhereChanged Only key fields and fields that are changed are used to locate records.

upWhereKeyOnly Only key fields are used to locate records.

Table 24.5 ProviderFlags values

Value Description

pfInWhere The field appears in the WHERE clause of generated INSERT, DELETE, and
UPDATE statements when UpdateMode is upWhereAll or upWhereChanged.

pfInUpdate The field appears in the UPDATE clause of generated UPDATE statements.

pfInKey The field is used in the WHERE clause of generated statements when UpdateMode
is upWhereKeyOnly.

pfHidden The field is included in records to ensure uniqueness, but can’t be seen or used on
the client side.

U s i n g p r o v i d e r c o m p o n e n t s 24-11

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Screening individual updates

Immediately before each update is applied, a dataset provider receives a
BeforeUpdateRecord event. You can use this event to edit records before they are
applied, similar to the way you can use the OnUpdateData event to edit entire delta
packets. For example, the provider does not compare BLOB fields (such as memos)
when checking for update conflicts. If you want to check for update errors involving
BLOB fields, you can use the BeforeUpdateRecord event.

In addition, you can use this event to apply updates yourself or to screen and reject
updates. The BeforeUpdateRecord event handler lets you signal that an update has
been handled already and should not be applied. The provider then skips that
record, but does not count it as an update error. For example, this event provides a
mechanism for applying updates to a stored procedure (which can’t be updated
automatically), allowing the provider to skip any automatic processing once the
record is updated from within the event handler.

Resolving update errors on the provider

When an error condition arises as the dataset provider tries to post a record in the
delta packet, an OnUpdateError event occurs. If the provider can’t resolve an update
error, it temporarily stores a copy of the offending record. When record processing is
complete, the provider returns a count of the errors it encountered, and copies the
unresolved records into a results data packet that it passes back to the client for
further reconciliation.

In multi-tiered applications, this mechanism lets you handle any update errors you
can resolve mechanically on the application server, while still allowing user
interaction on the client application to correct error conditions.

The OnUpdateError handler gets a copy of the record that could not be changed, an
error code from the database, and an indication of whether the resolver was trying to
insert, delete, or update the record. The problem record is passed back in a client
dataset. You should never use the data navigation methods on this dataset. However,
for each field in the dataset, you can use the NewValue, OldValue, and CurValue
properties to determine the cause of the problem and make any modifications to
resolve the update error. If the OnUpdateError event handler can correct the problem,
it sets the Response parameter so that the corrected record is applied.

Applying updates to datasets that do not represent a single table

When a dataset provider generates SQL statements that apply updates directly to a
database server, it needs the name of the database table that contains the records.
This can be handled automatically for many datasets such as table-type datasets or
“live” TQuery components. Automatic updates are a problem however, if the
provider must apply updates to the data underlying a stored procedure with a result
set or a multi-table query. There is no easy way to obtain the name of the table to
which updates should be applied.

24-12 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t - g e n e r a t e d e v e n t s

If the query or stored procedure is a BDE-enabled dataset (TQuery or TStoredProc)
and it has an associated update object, the provider uses the update object. However,
if there is no update object, you can supply the table name programmatically in an
OnGetTableName event handler. Once an event handler supplies the table name, the
provider can generate appropriate SQL statements to apply updates.

Supplying a table name only works if the target of the updates is a single database
table (that is, only the records in one table need to be updated). If the update requires
making changes to multiple underlying database tables, you must explicitly apply
the updates in code using the BeforeUpdateRecord event of the provider. Once this
event handler has applied an update, you can set the event handler’s Applied
parameter to True so that the provider does not generate an error.

Note If the provider is associated with a BDE-enabled dataset, you can use an update
object in the BeforeUpdateRecord event handler to apply updates using customized
SQL statements. See “Using update objects to update a dataset” on page 20-39 for
details.

Responding to client-generated events
Provider components implement a general-purpose event that lets you create your
own calls from client datasets directly to the provider. This is the OnDataRequest
event.

OnDataRequest is not part of the normal functioning of the provider. It is simply a
hook to allow your client datasets to communicate directly with providers. The event
handler takes an OleVariant as an input parameter and returns an OleVariant. By
using OleVariants, the interface is sufficiently general to accommodate almost any
information you want to pass to or from the provider.

To generate an OnDataRequest event, the client application calls the DataRequest
method of the client dataset.

Handling server constraints
Most relational database management systems implement constraints on their tables
to enforce data integrity. A constraint is a rule that governs data values in tables and
columns, or that governs data relationships across columns in different tables. For
example, most SQL-92 compliant relational databases support the following
constraints:

• NOT NULL, to guarantee that a value supplied to a column has a value.

• NOT NULL UNIQUE, to guarantee that column value has a value and does not
duplicate any other value already in that column for another record.

• CHECK, to guarantee that a value supplied to a column falls within a certain
range, or is one of a limited number of possible values.

• CONSTRAINT, a table-wide check constraint that applies to multiple columns.

U s i n g p r o v i d e r c o m p o n e n t s 24-13

H a n d l i n g s e r v e r c o n s t r a i n t s

• PRIMARY KEY, to designate one or more columns as the table’s primary key for
indexing purposes.

• FOREIGN KEY, to designate one or more columns in a table that reference another
table.

Note This list is not exclusive. Your database server may support some or all of these
constraints in part or in whole, and may support additional constraints. For more
information about supported constraints, see your server documentation.

Database server constraints obviously duplicate many kinds of data checks that
traditional desktop database applications manage. You can take advantage of server
constraints in multi-tiered database applications without having to duplicate the
constraints in application server or client application code.

If the provider is working with a BDE-enabled dataset, the Constraints property lets
you replicate and apply server constraints to data passed to and received from client
datasets. When Constraints is True (the default), server constraints stored in the
source dataset are included in data packets and affect client attempts to update data.

Important Before the provider can pass constraint information on to client datasets, it must
retrieve the constraints from the database server. To import database constraints
from the server, use SQL Explorer to import the database server’s constraints and
default expressions into the Data Dictionary. Constraints and default expressions in
the Data Dictionary are automatically made available to BDE-enabled datasets.

There may be times when you do not want to apply server constraints to data sent to
a client dataset. For example, a client dataset that receives data in packets and
permits local updating of records prior to fetching more records may need to disable
some server constraints that might be triggered because of the temporarily
incomplete set of data. To prevent constraint replication from the provider to a client
dataset, set Constraints to False. Note that client datasets can disable and enable
constraints using the DisableConstraints and EnableConstraints methods. For more
information about enabling and disabling constraints from the client dataset, see
“Handling constraints from the server” on page 23-28.

24-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-1

C h a p t e r

25
Chapter 25Creating multi-tiered applications

This chapter describes how to create a multi-tiered, client/server database
application. A multi-tiered client/server application is partitioned into logical units,
called tiers, which run in conjunction on separate machines. Multi-tiered applications
share data and communicate with one another over a local-area network or even over
the Internet. They provide many benefits, such as centralized business logic and thin
client applications.

In its simplest form, sometimes called the “three-tiered model,” a multi-tiered
application is partitioned into thirds:

• Client application: provides a user interface on the user’s machine.

• Application server: resides in a central networking location accessible to all clients
and provides common data services.

• Remote database server: provides the relational database management system
(RDBMS).

In this three-tiered model, the application server manages the flow of data between
clients and the remote database server, so it is sometimes called a “data broker.” With
Delphi you usually only create the application server and its clients, although, if you
are really ambitious, you could create your own database back end as well.

In more complex multi-tiered applications, additional services reside between a
client and a remote database server. For example, there might be a security services
broker to handle secure Internet transactions, or bridge services to handle sharing of
data with databases on other platforms.

Delphi’s support for developing multi-tiered applications is an extension of the way
client datasets communicate with a provider component using transportable data
packets. This chapter focuses on creating a three-tiered database application. Once
you understand how to create and manage a three-tiered application, you can create
and add additional service layers based on your needs.

25-2 D e v e l o p e r ’ s G u i d e

A d v a n t a g e s o f t h e m u l t i - t i e r e d d a t a b a s e m o d e l

Advantages of the multi-tiered database model
The multi-tiered database model breaks a database application into logical pieces.
The client application can focus on data display and user interactions. Ideally, it
knows nothing about how the data is stored or maintained. The application server
(middle tier) coordinates and processes requests and updates from multiple clients. It
handles all the details of defining datasets and interacting with the database server.

The advantages of this multi-tiered model include the following:

• Encapsulation of business logic in a shared middle tier. Different client
applications all access the same middle tier. This allows you to avoid the
redundancy (and maintenance cost) of duplicating your business rules for each
separate client application.

• Thin client applications. Your client applications can be written to make a small
footprint by delegating more of the processing to middle tiers. Not only are client
applications smaller, but they are easier to deploy because they don’t need to
worry about installing, configuring, and maintaining the database connectivity
software (such as the Borland Database Engine and the database server’s client-
side software). Thin client applications can be distributed over the Internet for
additional flexibility.

• Distributed data processing. Distributing the work of an application over several
machines can improve performance because of load balancing, and allow
redundant systems to take over when a server goes down.

• Increased opportunity for security. You can isolate sensitive functionality into
tiers that have different access restrictions. This provides flexible and configurable
levels of security. Middle tiers can limit the entry points to sensitive material,
allowing you to control access more easily. If you are using HTTP, CORBA, or
COM+, you can take advantage of the security models they support.

Understanding provider-based multi-tiered applications
Delphi’s support for multi-tiered applications use the components on the DataSnap
page and the Data Access page of the component palette, plus a remote data module
that is created by a wizard on the Multitier page of the New Items dialog. They are
based on the ability of provider components to package data into transportable data
packets and handle updates received as transportable delta packets.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-3

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

The components needed for a multi-tiered application are described in Table 25.1:

The provider and client dataset components require midas.dll or midaslib.dcu,
which manages datasets stored as data packets. (Note that, because the provider is
used on the application server and the client dataset is used on the client application,
if you are using midas.dll, you must deploy it on both application server and client
application.)

If you are using BDE-enabled datasets, the application server may also require SQL
Explorer to help in database administration and to import server constraints into the
Data Dictionary so that they can be checked at any level of the multi-tiered
application.

Note You must purchase server licenses for deploying your application server.

An overview of the architecture into which these components fit is described in
“Using a multi-tiered architecture” on page 14-12.

Overview of a three-tiered application

The following numbered steps illustrate a normal sequence of events for a provider-
based three-tiered application:

1 A user starts the client application. The client connects to the application server
(which can be specified at design time or runtime). If the application server is not
already running, it starts. The client receives an IAppServer interface from the
application server.

2 The client requests data from the application server. A client may request all data
at once, or may request chunks of data throughout the session (fetch on demand).

3 The application server retrieves the data (first establishing a database connection,
if necessary), packages it for the client, and returns a data packet to the client.
Additional information, (for example, field display characteristics) can be
included in the metadata of the data packet. This process of packaging data into
data packets is called “providing.”

Table 25.1 Components used in multi-tiered applications

Component Description

Remote data
modules

Specialized data modules that can act as a COM Automation server, SOAP
server, or CORBA server to give client applications access to any providers
they contain. Used on the application server.

Provider
component

A data broker that provides data by creating data packets and resolves
client updates. Used on the application server.

Client dataset
component

A specialized dataset that uses midas.dll or midaslib.dcu to manage data
stored in data packets. The client dataset is used in the client application. It
caches updates locally, and applies them in delta packets to the application
server.

Connection
components

A family of components that locate the server, form connections, and make
the IAppServer interface available to client datasets. Each connection
component is specialized to use a particular communications protocol.

25-4 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

4 The client decodes the data packet and displays the data to the user.

5 As the user interacts with the client application, the data is updated (records are
added, deleted, or modified). These modifications are stored in a change log by the
client.

6 Eventually the client applies its updates to the application server, usually in
response to a user action. To apply updates, the client packages its change log and
sends it as a data packet to the server.

7 The application server decodes the package and posts updates (in the context of a
transaction if appropriate). If a record can’t be posted (for example, because
another application changed the record after the client requested it and before the
client applied its updates), the application server either attempts to reconcile the
client’s changes with the current data, or saves the records that could not be
posted. This process of posting records and caching problem records is called
“resolving.”

8 When the application server finishes the resolving process, it returns any
unposted records to the client for further resolution.

9 The client reconciles unresolved records. There are many ways a client can
reconcile unresolved records. Typically the client attempts to correct the situation
that prevented records from being posted or discards the changes. If the error
situation can be rectified, the client applies updates again.

10 The client refreshes its data from the server.

The structure of the client application

To the end user, the client application of a multi-tiered application looks and behaves
no differently than a traditional two-tiered application that uses cached updates.
User interaction takes place through standard data-aware controls that display data
from a TClientDataSet component. For detailed information about using the
properties, events, and methods of client datasets, see Chapter 23, “Using client
datasets.”

TClientDataSet fetches data from and applies updates to a provider component, just
as in two-tiered applications that use a client dataset with an external provider. For
details about providers, see Chapter 24, “Using provider components”. For details
about client dataset features that facilitate its communication with a provider, see
“Using a client dataset with a provider” on page 23-23

The client dataset communicates with the provider through the IAppServer interface.
It gets this interface from a connection component. The connection component
establishes the connection to the application server. Different connection components

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-5

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

are available for using different communications protocols. These connection
components are summarized in the following table:

Note Delphi also includes a connection component that does not connect to an application
server at all, but instead supplies an IAppServer interface for client datasets to use
when communicating with providers in the same application. This component,
TLocalConnection, is not required, but makes it easier to later scale up to a multi-tiered
application.

For more information about using connection components, see “Connecting to the
application server” on page 25-23.

The structure of the application server

When you set up and run an application server, it does not establish any connection
with client applications. Instead, connection is initiated and maintained by client
applications. The client application uses its connection component to establish a
connection to the application server, which it uses to communicate with its selected
provider. All of this happens automatically, without your having to write code to
manage incoming requests or supply interfaces.

The basis of an application server is a remote data module, which is a specialized
data module that supports the IAppServer interface. Client applications use the
IAppServer interface to communicate with providers on the application server.

There are four types of remote data modules:

• TRemoteDataModule: This is a dual-interface Automation server. Use this type of
remote data module if clients use DCOM, HTTP, sockets, or OLE to connect to the
application server, unless you want to install the application server with MTS.

• TMTSDataModule: This is a dual-interface Automation server. Use this type of
remote data module if you are creating the application server as an Active Library
(.DLL) that is installed with MTS or COM+. You can use MTS remote data
modules with DCOM, HTTP, sockets, or OLE.

• TCorbaDataModule: This is a CORBA server. Use this type of remote data
module to provide data to CORBA clients.

• TSoapDataModule: This is a data module that implements an IAppServer
descendant as an invokable interface in a Web Service application. Use this type of
remote data module to provide data to clients that access data as a Web Service.

Table 25.2 Connection components

Component Protocol

TDCOMConnection DCOM

TSocketConnection Windows sockets (TCP/IP)

TWebConnection HTTP

TSOAPConnection SOAP (HTTP and XML)

TCorbaConnection CORBA (IIOP)

25-6 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

If the application server is to be deployed under MTS or COM+, the remote data
module includes events for when the application server is activated or deactivated.
This allows it to acquire database connections when activated and release them when
deactivated.

The contents of the remote data module
As with any data module, you can include any nonvisual component in the remote
data module. There are certain components, however, that you must include:

• If the remote data module is exposing information from a database server, it must
include a dataset component to represent the records from that database server.
Other components, such as a database connection component of some type, may
be required to allow the dataset to interact with a database server. For information
about datasets, see Chapter 18, “Understanding datasets.” For information about
database connection components, see Chapter 17, “Connecting to databases.”

For every dataset that the remote data module exposes to clients, it must include a
dataset provider. A dataset provider packages data into data packets that are sent
to client datasets and applies updates received from client datasets back to a
source dataset or a database server. For more information about dataset providers,
see Chapter 24, “Using provider components.”

• For every XML document that the remote data module exposes to clients, it must
include an XML provider. An XML provider acts like a dataset provider, except
that it fetches data from and applies updates to an XML document rather than a
database server. For more information about XML providers, see “Using an XML
document as the source for a provider” on page 26-8.

Note Do not confuse database connection components, which connect datasets to a
database server, with the connection components used by client applications in a
multi-tiered application. The connection components in multi-tiered applications can
be found on the DataSnap page of the Component palette.

Using transactional data modules
You can write an application server that takes advantage of special services for
distributed applications that are supplied by MTS (before Windows 2000) or COM+
(under Windows 2000 and later). To do so, you create a transactional data module
instead of an ordinary remote data module.

When you use a transactional data module, your application can take advantage of
the following special services:

• Security. MTS and COM+ provide role-based security for your application server.
Clients are assigned roles, which determine how they can access the MTS data
module’s interface. The MTS data module implements the IsCallerInRole method,
which you lets you check the role of the currently connected client and
conditionally allow certain functions based on that role. For more information
about MTS and COM+ security, see “Role-based security” on page 39-14.

• Database handle pooling. Transactional data modules automatically pool
database connections that are made via ADO or (if you are using MTS and turn on
MTS POOLING) the BDE. When one client is finished with a database connection,

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-7

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

another client can reuse it. This cuts down on network traffic, because your middle
tier does not need to log off of the remote database server and then log on again.
When pooling database handles, your database connection component should set
its KeepConnection property to False, so that your application maximizes the
sharing of connections. For more information about pooling database handles, see
“Database resource dispensers” on page 39-5.

• Transactions. When using a transactional data module, you can provide enhanced
transaction support beyond that available with a single database connection.
Transactional data modules can participate in transactions that span multiple
databases, or include functions that do not involve databases at all. For more
information about the transaction support provided by transactional objects such
as transactional data modules, see “Managing transactions in multi-tiered
applications” on page 25-18.

• Just-in-time activation and as-soon-as-possible deactivation. You can write your
server so that remote data module instances are activated and deactivated on an
as-needed basis. When using just-in-time activation and as-soon-as-possible
deactivation, your remote data module is instantiated only when it is needed to
handle client requests. This prevents it from tying up resources such as database
handles when they are not in use.

Using just-in-time activation and as-soon-as-possible deactivation provides a
middle ground between routing all clients through a single remote data module
instance, and creating a separate instance for every client connection. With a single
remote data module instance, the application server must handle all database calls
through a single database connection. This acts as a bottleneck, and can impact
performance when there are many clients. With multiple instances of the remote
data module, each instance can maintain a separate database connection, thereby
avoiding the need to serialize database access. However, this monopolizes
resources because other clients can’t use the database connection while it is
associated with another client’s remote data module.

To take advantage of transactions, just-in-time activation, and as-soon-as-possible
deactivation, remote data module instances must be stateless. This means you must
provide additional support if your client relies on state information. For example, the
client must pass information about the current record when performing incremental
fetches. For more information about state information and remote data modules in
multi-tiered applications, see “Supporting state information in remote data modules”
on page 25-19.

By default, all automatically generated calls to a transactional data module are
transactional (that is, they assume that when the call exits, the data module can be
deactivated and any current transactions committed or rolled back). You can write a
transactional data module that depends on persistent state information by setting the
AutoComplete property to False, but it will not support transactions, just-in-time
activation, or as-soon-as-possible deactivation unless you use a custom interface.

Warning Application servers containing transactional data modules should not open database
connections until the data module is activated. While developing your application,
be sure that all datasets are not active and the database is not connected before
running your application. In the application itself, add code to open database
connections when the data module is activated and close them when it is deactivated.

25-8 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

Pooling remote data modules
Object pooling allows you to create a cache of remote data modules that are shared
by their clients, thereby conserving resources. How this works depends on the type
of remote data module and on the connection protocol.

If you are creating a transactional data module that will be installed to COM+, you
can use the COM+ Component Manager to install the application server as a pooled
object. See “Object pooling” on page 39-8 for details.

Even if you are not using a transactional data module, you can take advantage of
object pooling if the connection is formed using HTTP (TWebConnection). Under this
second type of object pooling, you limit the number of instances of your remote data
module that are created. This limits the number of database connections that you
must hold, as well as any other resources used by the remote data module.

When the Web Server application (which passes calls to your remote data module)
receives client requests, it passes them on to the first available remote data module in
the pool. If there is no available remote data module, it creates a new one (up to a
maximum number that you specify). This provides a middle ground between routing
all clients through a single remote data module instance (which can act as a
bottleneck), and creating a separate instance for every client connection (which can
consume many resources).

If a remote data module instance in the pool does not receive any client requests for a
while, it is automatically freed. This prevents the pool from monopolizing resources
unless they are used.

To set up object pooling when using a Web connection (HTTP), your remote data
module must override the UpdateRegistry method. In the overridden method, call
RegisterPooled when the remote data module registers and UnregisterPooled when the
remote data module unregisters. When using either method of object pooling, your
remote data module must be stateless. This is because a single instance potentially
handles requests from several clients. If it relied on persistent state information,
clients could interfere with each other. See “Supporting state information in remote
data modules” on page 25-19 for more information on how to ensure that your
remote data module is stateless.

Choosing a connection protocol

Each communications protocol you can use to connect your client applications to the
application server provides its own unique benefits. Before choosing a protocol,
consider how many clients you expect, how you are deploying your application, and
future development plans.

Using DCOM connections
DCOM provides the most direct approach to communication, requiring no
additional runtime applications on the server. However, because DCOM is not
included with Windows 95, some older client machines may not have DCOM
installed.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-9

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

DCOM provides the only approach that lets you use security services when writing a
transactional data module. These security services are based on assigning roles to the
callers of transactional objects. When using DCOM, DCOM identifies the caller to the
system that calls your application server (MTS or COM+). Therefore, it is possible to
accurately determine the role of the caller. When using other protocols, however,
there is a runtime executable, separate from the application server, that receives
client calls. This runtime executable makes COM calls into the application server on
behalf of the client. Because of this, it is impossible to assign roles to separate clients:
The runtime executable is, effectively, the only client. For more information about
security and transactional objects, see “Role-based security” on page 39-14.

Using Socket connections
TCP/IP Sockets let you create lightweight clients. For example, if you are writing a
Web-based client application, you can’t be sure that client systems support DCOM.
Sockets provide a lowest common denominator that you know will be available for
connecting to the application server. For more information about sockets, see
Chapter 32, “Working with sockets.”

Instead of instantiating the remote data module directly from the client (as happens
with DCOM), sockets use a separate application on the server (ScktSrvr.exe), which
accepts client requests and instantiates the remote data module using COM. The
connection component on the client and ScktSrvr.exe on the server are responsible
for marshaling IAppServer calls.

Note ScktSrvr.exe can run as an NT service application. Register it with the Service
manager by starting it using the -install command line option. You can unregister it
using the -uninstall command line option.

Before you can use a socket connection, the application server must register its
availability to clients using a socket connection. By default, all new remote data
modules automatically register themselves by adding a call to EnableSocketTransport
in the UpdateRegistry method. You can remove this call to prevent socket connections
to your application server.

Note Because older servers did not add this registration, you can disable the check for
whether an application server is registered by unchecking the Connections|
Registered Objects Only menu item on ScktSrvr.exe.

When using sockets, there is no protection on the server against client systems failing
before they release a reference to interfaces on the application server. While this
results in less message traffic than when using DCOM (which sends periodic keep-
alive messages), this can result in an application server that can’t release its resources
because it is unaware that the client has gone away.

Using Web connections
HTTP lets you create clients that can communicate with an application server that is
protected by a firewall. HTTP messages provide controlled access to internal
applications so that you can distribute your client applications safely and widely.
Like socket connections, HTTP messages provide a lowest common denominator
that you know will be available for connecting to the application server. For more
information about HTTP messages, see Chapter 27, “Creating Internet applications.”

25-10 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

Instead of instantiating the remote data module directly from the client (as happens
with DCOM), HTTP-based connections use a Web server application on the server
(httpsrvr.dll) that accepts client requests and instantiates the remote data module
using COM. Because of this, they are also called Web connections. The connection
component on the client and httpsrvr.dll on the server are responsible for marshaling
IAppServer calls.

Web connections can take advantage of the SSL security provided by wininet.dll (a
library of Internet utilities that runs on the client system). Once you have configured
the Web server on the server system to require authentication, you can specify the
user name and password using the properties of the Web connection component.

As an additional security measure, the application server must register its availability
to clients using a Web connection. By default, all new remote data modules
automatically register themselves by adding a call to EnableWebTransport in the
UpdateRegistry method. You can remove this call to prevent Web connections to your
application server.

Web connections can take advantage of object pooling. This allows your server to
create a limited pool of remote data module instances that are available for client
requests. By pooling the remote data modules, your server does not consume the
resources for the data module and its database connection except when they are
needed. For more information on object pooling, see “Pooling remote data modules”
on page 25-8.

Unlike most other connection components, you can’t use callbacks when the
connection is formed via HTTP.

Using SOAP connections
SOAP is the protocol that underlies Delphi’s support for Web Service applications.
SOAP marshals method calls using an XML encoding. SOAP connections use HTTP
as a transport protocol.

SOAP connections have the advantage that they work in cross-platform applications
because they are supported on both the Windows and Linux. Because SOAP
connections use HTTP, they have the same advantages as Web connections: HTTP
provides a lowest common denominator that you know is available on all clients, and
clients can communicate with an application server that is protected by a “firewall”.
For more information about using SOAP to distribute applications in Delphi, see
Chapter 31, “Using Web Services.”

As with HTTP connections, you can’t use callbacks when the connection is formed
via SOAP. SOAP connections also limit you to a single remote data module in the
application server.

Using CORBA connections
CORBA lets you integrate your multi-tiered database applications into an
environment that is standardized on CORBA. For example, when working with a
client application written in Java, only the CORBA connection is available. Because
CORBA (and Java) is available on multiple platforms, this allows you to write cross-
platform multi-tiered applications.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-11

B u i l d i n g a m u l t i - t i e r e d a p p l i c a t i o n

By using CORBA, your application automatically gets the benefits of load-balancing,
location transparency, and fail-over from the ORB runtime software. In addition, you
can add hooks to take advantage of other CORBA services.

Building a multi-tiered application
The general steps for creating a multi-tiered database application are

1 Create the application server.

2 Register or install the application server.

3 Create a client application.

The order of creation is important. You should create and run the application server
before you create a client. At design time, you can then connect to the application
server to test your client. You can, of course, create a client without specifying the
application server at design time, and only supply the server name at runtime.
However, doing so prevents you from seeing if your application works as expected
when you code at design time, and you will not be able to choose servers and
providers using the Object Inspector.

Note If you are not creating the client application on the same system as the server, and
you are using a DCOM connection, you may want to register the application server
on the client system. This makes the connection component aware of the application
server at design time so that you can choose server names and provider names from
a drop-down list in the Object Inspector. (If you are using a Web connection, SOAP
connection, or socket connection, the connection component fetches the names of
registered servers from the server machine.)

Creating the application server
You create an application server very much as you create most database applications.
The major difference is that the application server uses a remote data module.

To create an application server, follow these steps:

1 Start a new project:

• If you are using SOAP as a transport protocol, this should be a new Web Service
application. Choose File|New|Other, and on the Web Services page of the new
items dialog, choose Web Service application.

• For any other transport protocol, you need only choose File|New|Application.

Save the new project.

2 Add a new remote data module to the project. From the main menu, choose File|
New |Other, and on the Multitier page of the new items dialog, select

• Remote Data Module if you are creating a COM Automation server that clients
access using DCOM, HTTP, or sockets.

25-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

• Transactional Data Module if you are creating a remote data module that runs
under MTS or COM+. Connections can be formed using DCOM, HTTP, or
sockets. However, only DCOM supports the security services.

• CORBA Data Module if you are creating a CORBA server.

• SOAP Data Module if you are creating a SOAP server in a Web Service
application.

For more detailed information about setting up a remote data module, see “Setting
up the remote data module” on page 25-13.

Note Remote data modules are more than simple data modules. The CORBA data
module acts as a CORBA server. The SOAP data module implements an invokable
interface in a Web Service application. Other data modules are COM Automation
objects.

3 Place the appropriate dataset components on the data module and set them up to
access the database server.

4 Place a TDataSetProvider component on the data module for each dataset. This
provider is required for brokering client requests and packaging data. Set the
DataSet property for each provider component to the name of the dataset to access.
You can set additional properties for the provider. See Chapter 24, “Using
provider components” for more detailed information about setting up a provider.

If you are working with data from XML documents, you can use a
TXMLTransformProvider component instead of a dataset and TDataSetProvider
component. When using TXMLTransformProvider, set the XMLDataFile property to
specify the XML document from which data is provided and to which updates are
applied.

5 Write application server code to implement events, shared business rules, shared
data validation, and shared security. When writing this code, you may want to

• Extend the application server’s interface to provide additional ways for the
client application to call the server. Extending the application server’s interface
is described in “Extending the application server’s interface” on page 25-16.

• Provide transaction support beyond the transactions automatically created
when applying updates. Transaction support in multi-tiered database
applications is described in “Managing transactions in multi-tiered
applications” on page 25-18.

• Create master/detail relationships between the datasets in your application
server. Master/detail relationships are described in “Supporting master/detail
relationships” on page 25-19.

• Ensure your application server is stateless. Handling state information is
described in “Supporting state information in remote data modules” on
page 25-19.

• Divide your application server into multiple remote data modules. Using
multiple remote data modules is described in “Using multiple remote data
modules” on page 25-21.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-13

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

6 Save, compile, and register or install the application server. Registering an
application server is described in “Registering the application server” on
page 25-22.

7 If your server application does not use DCOM or SOAP, you must install the
runtime software that receives client messages, instantiates the remote data
module, and marshals interface calls.

• For TCP/IP sockets this is a socket dispatcher application, Scktsrvr.exe.

• For HTTP connections this is httpsrvr.dll, an ISAPI/NSAPI DLL that must be
installed with your Web server.

• For CORBA, this is the VisiBroker ORB.

Setting up the remote data module

When you create the remote data module, you must provide certain information that
indicates how it responds to client requests. This information varies, depending on
the type of remote data module. See “The structure of the application server” on
page 25-5 for information on what type of remote data module you need.

Configuring TRemoteDataModule
To add a TRemoteDataModule component to your application, choose File|New|
Other and select Remote Data Module from the Multitier page of the new items
dialog. You will see the Remote Data Module wizard.

You must supply a class name for your remote data module. This is the base name of
a descendant of TRemoteDataModule that your application creates. It is also the base
name of the interface for that class. For example, if you specify the class name
MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TRemoteDataModule, which implements IMyDataServer, a descendant of
IAppServer.

Note You can add your own properties and methods to the new interface. For more
information, see “Extending the application server’s interface” on page 25-16.

You must specify the threading model in the Remote Data Module wizard. You can
choose Single-threaded, Apartment-threaded, Free-threaded, or Both.

• If you choose Single-threaded, COM ensures that only one client request is
serviced at a time. You do not need to worry about client requests interfering with
each other.

• If you choose Apartment-threaded, COM ensures that any instance of your remote
data module services one request at a time. When writing code in an Apartment-
threaded library, you must guard against thread conflicts if you use global
variables or objects not contained in the remote data module. This is the
recommended model if you are using BDE-enabled datasets. (Note that you will
need a session component with its AutoSessionName property set to True to handle
threading issues on BDE-enabled datasets).

25-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

• If you choose Free-threaded, your application can receive simultaneous client
requests on several threads. You are responsible for ensuring your application is
thread-safe. Because multiple clients can access your remote data module
simultaneously, you must guard your instance data (properties, contained objects,
and so on) as well as global variables. This is the recommended model if you are
using ADO datasets.

• If you choose Both, your library works the same as when you choose Free-
threaded, with one exception: all callbacks (calls to client interfaces) are serialized
for you.

• If you choose Neutral, the remote data module can receive simultaneous calls on
separate threads, as in the Free-threaded model, but COM guarantees that no two
threads access the same method at the same time.

If you are creating an EXE, you must also specify what type of instancing to use. You
can choose Single instance or Multiple instance (Internal instancing applies only if
the client code is part of the same process space.)

• If you choose Single instance, each client connection launches its own instance of
the executable. That process instantiates a single instance of the remote data
module, which is dedicated to the client connection.

• If you choose Multiple instance, a single instance of the application (process)
instantiates all remote data modules created for clients. Each remote data module
is dedicated to a single client connection, but they all share the same process space.

Configuring TMTSDataModule
To add a TMTSDataModule component to your application, choose File|New|Other
and select Transactional Data Module from the Multitier page of the new items
dialog. You will see the Transactional Data Module wizard.

You must supply a class name for your remote data module. This is the base name of
a descendant of TMTSDataModule that your application creates. It is also the base
name of the interface for that class. For example, if you specify the class name
MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TMTSDataModule, which implements IMyDataServer, a descendant of IAppServer.

Note You can add your own properties and methods to your new interface. For more
information, see “Extending the application server’s interface” on page 25-16.

You must specify the threading model in the Transactional Data Module wizard.
Choose Single, Apartment, or Both.

• If you choose Single, client requests are serialized so that your application services
only one at a time. You do not need to worry about client requests interfering with
each other.

• If you choose Apartment, the system ensures that any instance of your remote
data module services one request at a time, and calls always use the same thread.
You must guard against thread conflicts if you use global variables or objects not
contained in the remote data module. Instead of using global variables, you can
use the shared property manager. For more information on the shared property
manager, see “Shared property manager” on page 39-6.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-15

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

• If you choose Both, MTS calls into the remote data module’s interface in the same
way as when you choose Apartment. However, any callbacks you make to client
applications are serialized, so that you don’t need to worry about them interfering
with each other.

Note The Apartment model under MTS or COM+ is different from the corresponding
model under DCOM.

You must also specify the transaction attributes of your remote data module. You can
choose from the following options:

• Requires a transaction. When you select this option, every time a client uses your
remote data module’s interface, that call is executed in the context of a transaction.
If the caller supplies a transaction, a new transaction need not be created.

• Requires a new transaction. When you select this option, every time a client uses
your remote data module’s interface, a new transaction is automatically created
for that call.

• Supports transactions. When you select this option, your remote data module can
be used in the context of a transaction, but the caller must supply the transaction
when it invokes the interface.

• Does not support transactions. When you select this option, your remote data
module can’t be used in the context of transactions.

Configuring TSoapDataModule
To add a TSoapDataModule component to your application, choose File|New|Other
and select SOAP Data Module from the Multitier page of the new items dialog. The
SOAP data module wizard appears.

You must supply a class name for your SOAP data module. This is the base name of a
TSoapDataModule descendant that your application creates. It is also the base name of
the interface for that class. For example, if you specify the class name MyDataServer,
the wizard creates a new unit declaring TMyDataServer, a descendant of
TSoapDataModule, which implements IMyDataServer, a descendant of IAppServer.

You may want to edit the definitions of the generated interface and TSoapDataModule
descendant, adding your own properties and methods. These properties and
methods are not called automatically, but client applications that request your new
interface by name can use any of the properties and methods that you add.

Note To use TSoapDataModule, the new data module should be added to a Web Service
application. The IAppServer interface is an invokable interface, which is registered in
the initialization section of the new unit. This allows the invoker component in the
main Web module to forward all incoming calls to your data module.

Configuring TCorbaDataModule
To add a TCorbaDataModule component to your application, choose File|New and
select CORBA Data Module from the Multitier page of the new items dialog. You will
see the CORBA Data Module wizard.

25-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

You must supply a class name for your remote data module. This is the base name of
a descendant of TCorbaDataModule that your application creates. It is also the base
name of the interface for that class. For example, if you specify the class name
MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TCorbaDataModule, which implements IMyDataServer, a descendant of IAppServer.

Note You can add your own properties and methods to your new interface. For more
information on adding to your data module’s interface, see “Extending the
application server’s interface” on page 25-16.

The CORBA Data Module wizard lets you specify how you want your server
application to create instances of the remote data module. You can choose either
shared or instance-per-client.

• When you choose shared, your application creates a single instance of the remote
data module that handles all client requests. This is the model used in traditional
CORBA development.

• When you choose instance-per-client, a new remote data module instance is
created for each client connection. This instance persists until its timeout period
elapses with no messages from the client. This allows the server to free instances
when they are no longer used by clients, but holds the risk that the server may be
freed prematurely if the client does not use the server’s interface for a long time.

Note Unlike instancing for COM servers, where the model determines the number of
instances of the process that run, with CORBA, instancing determines the number of
instances created of your object. They are all created within a single instance of the
server executable.

In addition to the instancing model, you must specify the threading model in the
CORBA Data Module wizard. You can choose Single- or Multi-threaded.

• If you choose Single-threaded, each remote data module instance is guaranteed to
receive only one client request at a time. You can safely access the objects
contained in your remote data module. However, you must guard against thread
conflicts when you use global variables or objects not contained in the remote data
module.

• If you choose Multi-threaded, each client connection has its own dedicated thread.
However, your application may be called by multiple clients simultaneously, each
on a separate thread. You must guard against simultaneous access of instance data
as well as global memory. Writing Multi-threaded servers is tricky when you are
using a shared remote data module instance, because you must protect all use of
objects contained in your remote data module.

Extending the application server’s interface

Client applications interact with the application server by creating or connecting to
an instance of the remote data module. They use its interface as the basis of all
communication with the application server.

You can add to your remote data module’s interface to provide additional support
for your client applications. This interface is a descendant of IAppServer and is

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-17

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

created for you automatically by the wizard when you create the remote data
module.

To add to the remote data module’s interface, you can

• Choose the Add to Interface command from the Edit menu in the IDE. Indicate
whether you are adding a procedure, function, or property, and enter its syntax.
When you click OK, you will be positioned in the code editor on the
implementation of your new interface member.

• Use the type library editor. Select the interface for your application server in the
type library editor, and click the tool button for the type of interface member
(method or property) that you are adding. Give your interface member a name in
the Attributes page, specify parameters and type in the Parameters page, and then
refresh the type library. See Chapter 34, “Working with type libraries” for more
information about using the type library editor, Note that many of the features
you can specify in the type library editor (such as help context, version, and so on)
do not apply to CORBA interfaces. Any values you specify for these in the type
library editor are ignored.

Note Neither of these approaches works if you are implementing TSoapDataModule. For
TSoapDataModule descendants, you must edit the server interface directly.

What Delphi does when you add new entries to the interface using the type library
editor or the Add To Interface command depends on whether you are creating a
COM-based (TRemoteDataModule or TMTSDataModule) or CORBA
(TCorbaDataModule) server.

• When you add to a COM interface, your changes are added to your unit source
code and the type library file (.TLB).

• When you add to a CORBA interface, your changes are reflected in your unit
source code and the automatically generated _TLB unit. The _TLB unit is added to
the uses clause of your unit. You must add this unit to the uses clause in your
client application if you want to take advantage of early binding. In addition, you
can save an .IDL file from the type library editor using the Export to IDL button.
The .IDL file is needed for registering the interface with the Interface Repository
and Object Activation Daemon.

Note You must explicitly save the TLB file by choosing Refresh in the type library editor
and then saving the changes from the IDE.

Once you have added to your remote data module’s interface, locate the properties
and methods that were added to your remote data module’s implementation. Add
code to finish this implementation by filling in the bodies of the new methods.

Client applications call your interface extensions using the AppServer property of
their connection component. For more information on how to do this, see “Calling
server interfaces” on page 25-29.

Adding callbacks to the application server’s interface
You can allow the application server to call your client application by introducing a
callback. To do this, the client application passes an interface to one of the application
server’s methods, and the application server later calls this method as needed.

25-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

However, if your extensions to the remote data module’s interface include callbacks,
you can’t use an HTTP or SOAP-based connection. TWebConnection does not support
callbacks. If you are using a socket-based connection, client applications must
indicate whether they are using callbacks by setting the SupportCallbacks property.
All other types of connection automatically support callbacks.

Extending a transactional application server’s interface
When using transactions or just-in-time activation, you must be sure all new methods
call SetComplete to indicate when they are finished. This allows transactions to
complete and permits the remote data module to be deactivated.

Furthermore, you can’t return any values from your new methods that allow the
client to communicate directly with objects or interfaces on the application server
unless they provide a safe reference. If you are using a stateless MTS data module,
neglecting to use a safe reference can lead to crashes because you can’t guarantee that
the remote data module is active. For more information on safe references, see
“Passing object references” on page 39-20.

Managing transactions in multi-tiered applications

When client applications apply updates to the application server, the provider
component automatically wraps the process of applying updates and resolving
errors in a transaction. This transaction is committed if the number of problem
records does not exceed the MaxErrors value specified as an argument to the
ApplyUpdates method. Otherwise, it is rolled back.

In addition, you can add transaction support to your server application by adding a
database connection component or managing the transaction directly by sending
SQL to the database server. This works the same way that you would manage
transactions in a two-tiered application. For more information about this sort of
transaction control, see “Managing transactions” on page 17-5.

If you have a transactional data module, you can broaden your transaction support
by using MTS or COM+ transactions. These transactions can include any of the
business logic on your application server, not just the database access. In addition,
because they support two-phase commits, they can span multiple databases.

Only the BDE- and ADO-based data access components support two-phase commit.
Do not use InterbaseExpress or dbExpress components if you want to have
transactions that span multiple databases.

Warning When using the BDE, two-phase commit is fully implemented only on Oracle7 and
MS-SQL databases. If your transaction involves multiple databases, and some of
them are remote servers other than Oracle7 or MS-SQL, your transaction runs a small
risk of only partially succeeding. Within any one database, however, you will always
have transaction support.

By default, all IAppServer calls on a transactional data module are transactional. You
need only set the transaction attribute of your data module to indicate that it must
participate in transactions. In addition, you can extend the application server’s
interface to include method calls that encapsulate transactions that you define.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-19

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

If your transaction attribute indicates that the remote data module requires a
transaction, then every time a client calls a method on its interface, it is automatically
wrapped in a transaction. All client calls to your application server are then enlisted
in that transaction until you indicate that the transaction is complete. These calls
either succeed as a whole or are rolled back.

Note Do not combine MTS or COM+ transactions with explicit transactions created by a
database connection component or using explicit SQL commands. When your
transactional data module is enlisted in a transaction, it automatically enlists all of
your database calls in the transaction as well.

For more information about using MTS and COM+ transactions, see “MTS and
COM+ transaction support” on page 39-8.

Supporting master/detail relationships

You can create master/detail relationships between client datasets in your client
application in the same way you set them up using any table-type dataset. For more
information about setting up master/detail relationships in this way, see “Creating
master/detail relationships” on page 18-34.

However, this approach has two major drawbacks:

• The detail table must fetch and store all of its records from the application server
even though it only uses one detail set at a time. (This problem can be mitigated by
using parameters. For more information, see “Limiting records with parameters”
on page 23-28.)

• It is very difficult to apply updates, because client datasets apply updates at the
dataset level and master/detail updates span multiple datasets. Even in a two-
tiered environment, where you can use the database connection component to
apply updates for multiple tables in a single transaction, applying updates in
master/detail forms is tricky.

In multi-tiered applications, you can avoid these problems by using nested tables to
represent the master/detail relationship. To do this when providing from datasets,
set up a master/detail relationship between the datasets on the application server.
Then set the DataSet property of your provider component to the master table. To use
nested tables to represent master/detail relationships when providing from XML
documents, use a transformation file that defines the nested detail sets.

When clients call the GetRecords method of the provider, it automatically includes the
detail dataset as a DataSet field in the records of the data packet. When clients call the
ApplyUpdates method of the provider, it automatically handles applying updates in
the proper order.

Supporting state information in remote data modules

The IAppServer interface, which controls all communication between client datasets
and providers on the application server, is mostly stateless. When an application is
stateless, it does not “remember” anything that happened in previous calls by the

25-20 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

client. This stateless quality is useful if you are pooling database connections in a
transactional data module, because your application server does not need to
distinguish between database connections for persistent information such as record
currency. Similarly, this stateless quality is important when you are sharing remote
data module instances between many clients, as occurs with just-in-time activation,
object pooling, or typical CORBA servers. SOAP data modules must be stateless.

However, there are times when you want to maintain state information between calls
to the application server. For example, when requesting data using incremental
fetching, the provider on the application server must “remember” information from
previous calls (the current record).

Before and after any calls to the IAppServer interface that the client dataset makes
(AS_ApplyUpdates, AS_Execute, AS_GetParams, AS_GetRecords, or AS_RowRequest), it
receives an event where it can send or retrieve custom state information. Similarly,
before and after providers respond to these client-generated calls, they receive events
where they can retrieve or send custom state information. Using this mechanism, you
can communicate persistent state information between client applications and the
application server, even if the application server is stateless.

For example, consider a dataset that represents the following parameterized query:

SELECT * from CUSTOMER WHERE CUST_NO > :MinVal ORDER BY CUST_NO

To enable incremental fetching in a stateless application server, you can do the
following:

• When the provider packages a set of records in a data packet, it notes the value of
CUST_NO on the last record in the packet:

TRemoteDataModule1.DataSetProvider1GetData(Sender: TObject; DataSet: TCustomClientDataSet);
begin

DataSet.Last; { move to the last record }
with Sender as TDataSetProvider do

Tag := DataSet.FieldValues['CUST_NO']; {save the value of CUST_NO }
end;

• The provider sends this last CUST_NO value to the client after sending the data
packet:

TRemoteDataModule1.DataSetProvider1AfterGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
with Sender as TDataSetProvider do

OwnerData := Tag; {send the last value of CUST_NO }
end;

• On the client, the client dataset saves this last value of CUST_NO:

TDataModule1.ClientDataSet1AfterGetRecords(Sender: TObject; var OwnerData: OleVariant);
begin

with Sender as TClientDataSet do
Tag := OwnerData; {save the last value of CUST_NO }

end;

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-21

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

• Before fetching a data packet, the client sends the last value of CUST_NO it
received:

TDataModule1.ClientDataSet1BeforeGetRecords(Sender: TObject; var OwnerData: OleVariant);
begin

with Sender as TClientDataSet do
begin

if not Active then Exit;
OwnerData := Tag; { Send last value of CUST_NO to application server }

end;
end;

• Finally, on the server, the provider uses the last CUST_NO sent as a minimum
value in the query:

TRemoteDataModule1.DataSetProvider1BeforeGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
if not VarIsEmpty(OwnerData) then

with Sender as TDataSetProvider do
with DataSet as TSQLDataSet do
begin

Params.ParamValues['MinVal'] := OwnerData;
Refresh; { force the query to reexecute }

end;
end;

Using multiple remote data modules

You may want to structure your application server so that it uses multiple remote
data modules. Using multiple remote data modules lets you partition your code,
organizing a large application server into multiple self-contained units, where each
unit is relatively self-contained.

Although you can always create multiple remote data modules on the application
server that function independently, Delphi provides support for a model where you
have one main “parent” remote data module that dispatches connections from clients
to other “child” remote data modules.

To create the parent remote data module, you must extend its IAppServer interface,
adding properties that expose the interfaces of the child remote data modules. That
is, for each child remote data module, add a property to the parent data module’s
interface whose value is the IAppServer interface for the child data module. The
property getter should look something like the following:

function ParentRDM.Get_ChildRDM: IChildRDM;
begin

{note the parent RDM uses a factory component defined in the child RDM’s unit.
This is more efficient if it must create several children for different clients }
Result := ChildRDMFactory.CreateCOMObject(nil) as IChildRDM;
Result.ParentRDM := Self;

end;

25-22 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g t h e a p p l i c a t i o n s e r v e r

For information about extending the parent remote data module’s interface, see
“Extending the application server’s interface” on page 25-16.

Tip You may also want to extend the interface for each child data module, exposing the
parent data module’s interface, or the interfaces of the other child data modules. This
lets the various data modules in your application server communicate more freely
with each other.

Once you have added properties that represent the child remote data modules to the
main remote data module, client applications do not need to form separate
connections to each remote data module on the application server. Instead, they
share a single connection to the parent remote data module, which then dispatches
messages to the “child” data modules. Because each client application uses the same
connection for every remote data module, the remote data modules can share a single
database connection, conserving resources. For information on how child
applications share a single connection, see “Connecting to an application server that
uses multiple data modules” on page 25-30.

Registering the application server
Before client applications can locate and use an application server, it must be
registered or installed. (This is not strictly true for CORBA application servers,
although registration is still recommended.)

• If the application server uses DCOM, HTTP, or sockets as a communication
protocol, it acts as an Automation server and must be registered like any other
COM server. For information about registering a COM server, see “Registering a
COM object” on page 36-16.

• If you are using a transactional data module, you do not register the application
server. Instead, you install it with MTS or COM+. For information about installing
transactional objects, see “Installing transactional objects” on page 39-22.

• When the application server uses SOAP, the application must be a Web Service
application. As such, it must be registered with your Web Server, so that it
receives incoming HTTP messages. In addition, if you want clients that are not
written using Delphi to access any of the interfaces in your application, you can
publish a WSDL document that describes the invokable interfaces in your
application. For information about exporting a WSDL document for a Web Service
application, see “Generating WSDL documents for a Web Service application” on
page 31-7.

• When the application server uses CORBA, registration is optional. If you want to
allow client applications to use dynamic binding to your interface, you must
install the server’s interface in the Interface Repository. In addition, if you want to
allow client applications to launch the application server when it is not already
running, it must be registered with the OAD (Object Activation Daemon).

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-23

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Creating the client application
In most regards, creating a multi-tiered client application is similar to creating a two-
tiered client that uses a client dataset to cache updates. The major difference is that a
multi-tiered client uses a connection component to establish a conduit to the
application server.

To create a multi-tiered client application, start a new project and follow these steps:

1 Add a new data module to the project.

2 Place a connection component on the data module. The type of connection
component you add depends on the communication protocol you want to use. See
“The structure of the client application” on page 25-4 for details.

3 Set properties on your connection component to specify the application server
with which it should establish a connection. To learn more about setting up the
connection component, see “Connecting to the application server” on page 25-23.

4 Set the other connection component properties as needed for your application. For
example, you might set the ObjectBroker property to allow the connection
component to choose dynamically from several servers. For more information
about using the connection components, see “Managing server connections” on
page 25-28

5 Place as many TClientDataSet components as needed on the data module, and set
the RemoteServer property for each component to the name of the connection
component you placed in Step 2. For a full introduction to client datasets, see
Chapter 23, “Using client datasets.”

6 Set the ProviderName property for each TClientDataSet component. If your
connection component is connected to the application server at design time, you
can choose available application server providers from the ProviderName
property’s drop-down list.

7 Continue in the same way you would create any other database application. There
are a few additional features available to clients of multi-tiered applications:

• Your application may want to make direct calls to the application server.
“Calling server interfaces” on page 25-29 describes how to do this.

• You may want to use the special features of client datasets that support their
interaction with the provider components. These are described in “Using a
client dataset with a provider” on page 23-23.

Connecting to the application server

To establish and maintain a connection to an application server, a client application
uses one or more connection components. You can find these components on the
DataSnap page of the Component palette.

Use a connection component to

25-24 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

• Identify the protocol for communicating with the application server. Each type of
connection component represents a different communication protocol. See
“Choosing a connection protocol” on page 25-8 for details on the benefits and
limitations of the available protocols.

• Indicate how to locate the server machine. The details of identifying the server
machine vary depending on the protocol.

• Identify the application server on the server machine.

If you are not using CORBA, identify the server using the ServerName or
ServerGUID property. ServerName identifies the base name of the class you specify
when creating the remote data module on the application server. See “Setting up
the remote data module” on page 25-13 for details on how this value is specified
on the server. If the server is registered or installed on the client machine, or if the
connection component is connected to the server machine, you can set the
ServerName property at design time by choosing from a drop-down list in the
Object Inspector. ServerGUID specifies the GUID of the remote data module’s
interface. You can look up this value using the type library editor.

If you are using CORBA, identify the server using the RepositoryID property.
RepositoryID specifies the Repository ID of the application server’s factory
interface, which appears as the third argument in the call to
TCorbaVCLComponentFactory.Create that is automatically added to the
initialization section of the CORBA server’s implementation unit. You can also set
this property to the base name of the CORBA data module’s interface (the same
string as the ServerName property for other connection components), and it is
automatically converted into the appropriate Repository ID for you.

• Manage server connections. Connection components can be used to create or drop
connections and to call application server interfaces.

Usually the application server is on a different machine from the client application,
but even if the server resides on the same machine as the client application (for
example, during the building and testing of the entire multi-tier application), you can
still use the connection component to identify the application server by name, specify
a server machine, and use the application server interface.

Specifying a connection using DCOM
When using DCOM to communicate with the application server, client applications
include a TDCOMConnection component for connecting to the application server.
TDCOMConnection uses the ComputerName property to identify the machine on
which the server resides.

When ComputerName is blank, the DCOM connection component assumes that the
application server resides on the client machine or that the application server has a
system registry entry. If you do not provide a system registry entry for the
application server on the client when using DCOM, and the server resides on a
different machine from the client, you must supply ComputerName.

Note Even when there is a system registry entry for the application server, you can specify
ComputerName to override this entry. This can be especially useful during
development, testing, and debugging.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-25

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for ComputerName. For more
information, see “Brokering connections” on page 25-27.

If you supply the name of a host computer or server that cannot be found, the DCOM
connection component raises an exception when you try to open the connection.

Specifying a connection using sockets
You can establish a connection to the application server using sockets from any
machine that has a TCP/IP address. This method has the advantage of being
applicable to more machines, but does not provide for using any security protocols.
When using sockets, include a TSocketConnection component for connecting to the
application server.

TSocketConnection identifies the server machine using the IP Address or host name of
the server system, and the port number of the socket dispatcher program
(Scktsrvr.exe) that is running on the server machine. For more information about IP
addresses and port values, see “Describing sockets” on page 32-3.

Three properties of TSocketConnection specify this information:

• Address specifies the IP Address of the server.

• Host specifies the host name of the server.

• Port specifies the port number of the socket dispatcher program on the application
server.

Address and Host are mutually exclusive. Setting one unsets the value of the other.
For information on which one to use, see “Describing the host” on page 32-4.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for Address or Host. For more
information, see “Brokering connections” on page 25-27.

By default, the value of Port is 211, which is the default port number of the socket
dispatcher programs supplied with Delphi. If the socket dispatcher has been
configured to use a different port, set the Port property to match that value.

Note You can configure the port of the socket dispatcher while it is running by right-
clicking the Borland Socket Server tray icon and choosing Properties.

Although socket connections do not provide for using security protocols, you can
customize the socket connection to add your own encryption. To do this

1 Create a COM object that supports the IDataIntercept interface. This is an interface
for encrypting and decrypting data.

2 Use TPacketInterceptFactory as the class factory for this object. If you are using a
wizard to create the COM object in step 1, replace the line in the initialization
section that says TComponentFactory.Create(...) with
TPacketInterceptFactory.Create(...).

3 Register your new COM server on the client machine.

25-26 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

4 Set the InterceptName or InterceptGUID property of the socket connection
component to specify this COM object. If you used TPacketInterceptFactory in step
2, your COM server appears in the drop-down list of the Object Inspector for the
InterceptName property.

5 Finally, right click the Borland Socket Server tray icon, choose Properties, and on
the properties tab set the Intercept Name or Intercept GUID to the ProgId or GUID
for the interceptor.

This mechanism can also be used for data compression and decompression.

Specifying a connection using HTTP
You can establish a connection to the application server using HTTP from any
machine that has a TCP/IP address. Unlike sockets, however, HTTP allows you to
take advantage of SSL security and to communicate with a server that is protected
behind a firewall. When using HTTP, include a TWebConnection component for
connecting to the application server.

The Web connection component establishes a connection to the Web server
application (httpsrvr.dll), which in turn communicates with the application server.
TWebConnection locates httpsrvr.dll using a Uniform Resource Locator (URL). The
URL specifies the protocol (http or, if you are using SSL security, https), the host
name for the machine that runs the Web server and httpsrvr.dll, and the path to the
Web server application (httpsrvr.dll). Specify this value using the URL property.

Note When using TWebConnection, wininet.dll must be installed on the client machine. If
you have IE3 or higher installed, wininet.dll can be found in the Windows system
directory.

If the Web server requires authentication, or if you are using a proxy server that
requires authentication, you must set the values of the UserName and Password
properties so that the connection component can log on.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for URL. For more
information, see “Brokering connections” on page 25-27.

Specifying a connection using SOAP
You can establish a connection to a SOAP application server using the
TSoapConnection component. TSoapConnection is very similar to TWebConnection,
because it also uses HTTP as a transport protocol. Thus, you can use TSoapConnection
from any machine that has a TCP/IP address, and it can take advantage of SSL
security to communicate with a server that is protected by a firewall.

The SOAP connection component establishes a connection to a Web server
application that implements the IAppServer interface as a Web Service.
TSoapConnection locates this Web Server application using a Uniform Resource
Locator (URL). The URL specifies the protocol (http or, if you are using SSL security,
https), the host name for the machine that runs the Web server, the name of the Web
Service application, and a path that matches the path name of the
THTTPSoapDispatcher on the application server. Specify this value using the URL
property.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-27

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Note When using TSoapConnection, wininet.dll must be installed on the client machine. If
you have IE3 or higher installed, wininet.dll can be found in the Windows system
directory.

If the Web server requires authentication, or if you are using a proxy server that
requires authentication, you must set the values of the UserName and Password
properties so that the connection component can log on.

Specifying a connection using CORBA
Only the RepositoryID property is necessary in order to specify a CORBA connection.
This is because a Smart Agent on the local network automatically locates an available
server for your CORBA client.

However, you can limit the possible servers to which your client application connects
by the other properties of the CORBA connection component. If you want to specify a
particular server machine, rather than letting the CORBA Smart Agent locate any
available server, use the HostName property. If there is more than one object instance
that implements your server interface, you can specify which object you want to use
by setting the ObjectName property.

The TCorbaConnection component obtains an interface to the CORBA data module on
the application server in one of two ways:

• If you are using early (static) binding, you must add the _TLB.pas file (generated
by the type library editor) to your client application. Early binding is highly
recommended, both for compile-time type checking and because it is much faster
than late (dynamic) binding.

• If you are using late (dynamic) binding, the interface must be registered with the
Interface Repository.

For more information on early vs. late binding, see “Calling server interfaces” on
page 25-29.

Brokering connections
If you have multiple servers that your client application can choose from, you can use
an Object Broker to locate an available server system. The object broker maintains a
list of servers from which the connection component can choose. When the
connection component needs to connect to an application server, it asks the Object
Broker for a computer name (or IP address, host name, or URL). The broker supplies
a name, and the connection component forms a connection. If the supplied name
does not work (for example, if the server is down), the broker supplies another name,
and so on, until a connection is formed.

Once the connection component has formed a connection with a name supplied by
the broker, it saves that name as the value of the appropriate property
(ComputerName, Address, Host, RemoteHost, or URL). If the connection component
closes the connection later, and then needs to reopen the connection, it tries using this
property value, and only requests a new name from the broker if the connection fails.

25-28 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Use an Object Broker by specifying the ObjectBroker property of your connection
component. When the ObjectBroker property is set, the connection component does
not save the value of ComputerName, Address, Host, RemoteHost, or URL to disk.

Note Do not use the ObjectBroker property with CORBA connections. CORBA has its own
brokering mechanism.

Managing server connections

The main purpose of connection components is to locate and connect to the
application server. Because they manage server connections, you can also use
connection components to call the methods of the application server’s interface.

Connecting to the server
To locate and connect to the application server, you must first set the properties of
the connection component to identify the application server. This process is
described in “Connecting to the application server” on page 25-23. Before opening
the connection, any client datasets that use the connection component to
communicate with the application server should indicate this by setting their
RemoteServer property to specify the connection component.

The connection is opened automatically when client datasets try to access the
application server. For example, setting the Active property of the client dataset to
True opens the connection, as long as the RemoteServer property has been set.

If you do not link any client datasets to the connection component, you can open the
connection by setting the Connected property of the connection component to True.

Before a connection component establishes a connection to an application server, it
generates a BeforeConnect event. You can perform any special actions prior to
connecting in a BeforeConnect handler that you code. After establishing a connection,
the connection component generates an AfterConnect event for any special actions.

Dropping or changing a server connection
A connection component drops a connection to the application server when you

• set the Connected property to False.

• free the connection component. A connection object is automatically freed when a
user closes the client application.

• change any of the properties that identify the application server (ServerName,
ServerGUID, ComputerName, and so on). Changing these properties allows you to
switch among available application servers at runtime. The connection component
drops the current connection and establishes a new one.

Note Instead of using a single connection component to switch among available
application servers, a client application can instead have more than one connection
component, each of which is connected to a different application server.

Before a connection component drops a connection, it automatically calls its
BeforeDisconnect event handler, if one is provided. To perform any special actions

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-29

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

prior to disconnecting, write a BeforeDisconnect handler. Similarly, after dropping the
connection, the AfterDisconnect event handler is called. If you want to perform any
special actions after disconnecting, write an AfterDisconnect handler.

Calling server interfaces

Applications do not need to call the IAppServer interface directly because the
appropriate calls are made automatically when you use the properties and methods
of the client dataset. However, while it is not necessary to work directly with the
IAppServer interface, you may have added your own extensions to the remote data
module’s interface. When you extend the application server’s interface, you need a
way to call those extensions using the connection created by your connection
component. Unless you are using SOAP, you can do this using the AppServer
property of the connection component. For information about extending the
application server’s interface, see “Extending the application server’s interface” on
page 25-16.

AppServer is a Variant that represents the application server’s interface. You can call
an interface method using AppServer by writing a statement such as

MyConnection.AppServer.SpecialMethod(x,y);

However, this technique provides late (dynamic) binding of the interface call. That is,
the SpecialMethod procedure call is not bound until runtime when the call is executed.
Late binding is very flexible, but by using it you lose many benefits such as code
insight and type checking. In addition, late binding is slower than early binding,
because the compiler generates additional calls to the server to set up interface calls
before they are invoked.

When you are using DCOM or CORBA as a communications protocol, you can use
early binding of AppServer calls. Use the as operator to cast the AppServer variable to
the IAppServer descendant you created when you created the remote data module.
For example:

with MyConnection.AppServer as IMyAppServer do
 SpecialMethod(x,y);

To use early binding under DCOM, the server’s type library must be registered on
the client machine. You can use TRegsvr.exe, which ships with Delphi to register the
type library.

Note See the TRegSvr demo (which provides the source for TRegsvr.exe) for an example of
how to register the type library programmatically.

To use early binding with CORBA, you must add the _TLB unit that is generated by
the type library editor to your project. To do this, add this unit to the uses clause of
your unit.

When you are using TCP/IP or HTTP, you can’t use true early binding, but because
the remote data module uses a dual interface, you can use the application server’s
dispinterface to improve performance over simple late-binding. The dispinterface
has the same name as the remote data module’s interface, with the string ‘Disp’

25-30 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

appended. You can assign the AppServer property to a variable of this type to obtain
the dispinterface. Thus:

var
 TempInterface: IMyAppServerDisp;
begin

TempInterface :=IMyAppServerDisp(IDispatch(MyConnection.AppServer));
...
 TempInterface.SpecialMethod(x,y);
...
end;

Note To use the dispinterface, you must add the _TLB unit that is generated when you
save the type library to the uses clause of your client module.

If you are using SOAP, you can’t use the AppServer property. Instead, you must use a
remote interfaced object (THTTPRio) and make early-bound calls. As with all early-
bound calls, the client application must know the application server’s interface
declaration at compile time. You can add this to your client application either by
adding the same unit the server uses to declare and register the interface to the
client’s uses clause, or you can reference a WSDL document that describes the
interface. For information on importing a WSDL document that describes the server
interface, see “Importing WSDL documents” on page 31-8.

Note The unit that declares the server interface must also register it with the invocation
registry. For details on how to register invokable interfaces, see “Defining invokable
interfaces” on page 31-3.

Once your application uses the server unit that declares and registers the interface, or
you have imported a WSDL document to generate such a unit, create an instance of
THTTPRio for the desired interface:

X := THTTPRio.Create(nil);

Next, assign the URL that your connection component uses to the remote interfaced
object:

X.URL := SoapConnection1.URL;

You can then use the as operator to cast the instance of THTTPRio to the application
server’s interface:

InterfaceVariable := X as IMyAppServer;
InterfaceVariable.SpecialMethod(x,y);

Connecting to an application server that uses multiple data modules

If the application server uses a main “parent” remote data module and several child
remote data modules, as described in “Using multiple remote data modules” on
page 25-21, then you need a separate connection component for every remote data
module on the application server. Each connection component represents the
connection to a single remote data module.

While it is possible to have your client application form independent connections to
each remote data module on the application server, it is more efficient to use a single

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-31

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

connection to the application server that is shared by all the connection components.
That is, you add a single connection component that connects to the “main” remote
data module on the application server, and then, for each “child” remote data
module, add an additional component that shares the connection to the main remote
data module.

1 For the connection to the main remote data module, add and set up a connection
component as described in “Connecting to the application server” on page 25-23.
The only limitation is that you can’t use a CORBA or SOAP connection.

2 For each child remote data module, use a TSharedConnection component.

• Set its ParentConnection property to the connection component you added in
step 1. The TSharedConnection component shares the connection that this main
connection establishes.

• Set its ChildName property to the name of the property on the main remote data
module’s interface that exposes the interface of the desired child remote data
module.

When you assign the TSharedConnection component placed in step 2 as the value of a
client dataset’s RemoteServer property, it works as if you were using an entirely
independent connection to the child remote data module. However, the
TSharedConnection component uses the connection established by the component you
placed in step 1.

Writing Web-based client applications
If you want to create Web-based clients for your multi-tiered database application,
you must replace the client tier with a special Web application that acts
simultaneously as a client to an application server and as a Web server application
that is installed with a Web server on the same machine. This architecture is
illustrated in Figure 25.1.

Figure 25.1 Web-based multi-tiered database application

There are two approaches that you can take to build the Web application:

• You can combine the multi-tiered database architecture with Delphi’s ActiveX
support to distribute the client application as an ActiveX control. This allows any
browser that supports ActiveX to run your client application as an in-process
server.

Remote Database

Web ServerBrowser

Application
Server

Web-based
Client

Application

25-32 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

• You can use XML data packets to build an InternetExpress application. This allows
browsers that supports javascript to interact with your client application through
html pages.

These two approaches are very different. Which one you choose depends on the
following considerations:

• Each approach relies on a different technology (ActiveX vs. javascript and XML).
Consider what systems your end users will use. The first approach requires a
browser to support ActiveX (which limits clients to a Windows platform). The
second approach requires a browser to support javascript and the DHTML
capabilities introduced by Netscape 4 and Internet Explorer 4.

• ActiveX controls must be downloaded to the browser to act as an in-process
server. As a result, the clients using an ActiveX approach require much more
memory than the clients of an HTML-based application.

• The InternetExpress approach can be integrated with other HTML pages. An
ActiveX client must run in a separate window.

• The InternetExpress approach uses standard HTTP, thereby avoiding any firewall
issues that confront an ActiveX application.

• The ActiveX approach provides greater flexibility in how you program your
application. You are not limited by the capabilities of the javascript libraries. The
client datasets used in the ActiveX approach surface more features (such as filters,
ranges, aggregation, optional parameters, delayed fetching of BLOBs or nested
details, and so on) than the XML brokers used in the InternetExpress approach.

Caution Your Web client application may look and act differently when viewed from
different browsers. Test your application with the browsers you expect your end-
users to use.

Distributing a client application as an ActiveX control

The multi-tiered database architecture can be combined with Delphi’s ActiveX
features to distribute a client application as an ActiveX control.

When you distribute your client application as an ActiveX control, create the
application server as you would for any other multi-tiered application. The only
limitation is that you will want to use DCOM, HTTP, SOAP, or sockets as a
communications protocol, because you can’t count on client machines having
installed the CORBA runtime software. For details on creating the application server,
see “Creating the application server” on page 25-11.

When creating the client application, you must use an Active Form as the basis
instead of an ordinary form. See “Creating an Active Form for the client application”
for details.

Once you have built and deployed your client application, it can be accessed from
any ActiveX-enabled Web browser on another machine. For a Web browser to
successfully launch your client application, the Web server must be running on the
machine that has the client application.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-33

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

If the client application uses DCOM to communicate between the client application
and the application server, the machine with the Web browser must be enabled to
work with DCOM. If the machine with the Web browser is a Windows 95 machine, it
must have installed DCOM95, which is available from Microsoft.

Creating an Active Form for the client application
1 Because the client application will be deployed as an ActiveX control, you must

have a Web server that runs on the same system as the client application. You can
use a ready-made server such as Microsoft’s Personal Web server or you can write
your own using the socket components described in Chapter 32, “Working with
sockets.”

2 Create the client application following the steps described in “Creating the client
application” on page 25-23, except start by choosing File|New|Active Form,
rather than beginning the client project as an ordinary Delphi project.

3 If your client application uses a data module, add a call to explicitly create the data
module in the active form initialization.

4 When your client application is finished, compile the project, and select Project |
Web Deployment Options. In the Web Deployment Options dialog, you must do
the following:

1 On the Project page, specify the Target directory, the URL for the target
directory, and the HTML directory. Typically, the Target directory and the
HTML directory will be the same as the projects directory for your Web Server.
The target URL is typically the name of the server machine that is specified in
the Windows Network|DNS settings.

2 On the Additional Files page, include midas.dll with your client application.

5 Finally, select Project|WebDeploy to deploy the client application as an active
form.

Any Web browser that can run Active forms can run your client application by
specifying the .HTM file that was created when you deployed the client application.
This .HTM file has the same name as your client application project, and appears in
the directory specified as the Target directory.

Building Web applications using InternetExpress

A client application can request that the application server provide data packets that
are coded in XML instead of OleVariants. By combining XML-coded data packets,
special javascript libraries of database functions, and Delphi’s Web server application
support, you can create thin client applications that can be accessed using a Web
browser that supports javascript. These applications make up Delphi’s
InternetExpress support.

Before building an InternetExpress application, you should understand Delphi’s
Web server application architecture. This is described in Chapter 27, “Creating
Internet applications.”

25-34 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

An InternetExpress application extends the basic Web server application architecture
to act as the client of an application server. InternetExpress applications generate
HTML pages that contain a mixture of HTML, XML, and javascript. The HTML
governs the layout and appearance of the pages seen by end users in their browsers.
The XML encodes the data packets and delta packets that represent database
information. The javascript allows the HTML controls to interpret and manipulate
the data in these XML data packets on the client machine.

If the InternetExpress application uses DCOM to connect to the application server,
you must take additional steps to ensure that the application server grants access and
launch permissions to its clients. See “Granting permission to access and launch the
application server” on page 25-36 for details.

Tip You can create an InternetExpress application to provide Web browsers with “live”
data even if you do not have an application server. Simply add the provider and its
dataset to the Web module.

Building an InternetExpress application

The following steps describe one way to build a Web application using
InternetExpress. The result is an application that creates HTML pages that let users
interact with the data from an application server via a javascript-enabled Web
browser. You can also build an InternetExpress application using the Site Express
architecture by using the InternetExpress page producer (TInetXPageProducer).

1 Choose File|New to display the New Items dialog box, and on the New page
select Web Server application. This process is described in “Creating Web server
applications with Web Broker” on page 28-1.

2 From the DataSnap page of the component palette, add a connection component
to the Web Module that appears when you create a new Web server application.
The type of connection component you add depends on the communication
protocol you want to use. See “Choosing a connection protocol” on page 25-8 for
details.

3 Set properties on your connection component to specify the application server
with which it should establish a connection. To learn more about setting up the
connection component, see “Connecting to the application server” on page 25-23.

4 Instead of a client dataset, add an XML broker from the InternetExpress page of
the component palette to the Web module. Like TClientDataSet, TXMLBroker
represents the data from a provider on the application server and interacts with
the application server through its IAppServer interface. However, unlike client
datasets, XML brokers request data packets as XML instead of as OleVariants and
interact with InternetExpress components instead of data controls.

5 Set the RemoteServer property of the XML broker to point to the connection
component you added in step 2. Set the ProviderName property to indicate the
provider on the application server that provides data and applies updates. For
more information about setting up the XML broker, see “Using an XML broker”
on page 25-36.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-35

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

6 Add an InternetExpress page producer (TInetXPageProducer) to the Web module
for each separate page that users will see in their browsers. For each page
producer, you must set the IncludePathURL property to indicate where it can find
the javascript libraries that augment its generated HTML controls with data
management capabilities.

7 Right-click a Web page and choose Action Editor to display the Action editor. Add
action items for every message you want to handle from browsers. Associate the
page producers you added in step 6 with these actions by setting their Producer
property or writing code in an OnAction event handler. For more information on
adding action items using the Action editor, see “Adding actions to the
dispatcher” on page 28-4.

8 Double-click each Web page to display the Web Page editor. (You can also display
this editor by clicking the ellipsis button in the Object Inspector next to the
WebPageItems property.) In this editor you can add Web Items to design the pages
that users see in their browsers. For more information about designing Web pages
for your InternetExpress application, see “Creating Web pages with an
InternetExpress page producer” on page 25-38.

9 Build your Web application. Once you install this application with your Web
server, browsers can call it by specifying the name of the application as the
scriptname portion of the URL and the name of the Web Page component as the
pathinfo portion.

Using the javascript libraries
The HTML pages generated by the InternetExpress components and the Web items
they contain make use of several javascript libraries that ship with Delphi:

These libraries can be found in the Source/Webmidas directory. Once you have
installed these libraries, you must set the IncludePathURL property of all
InternetExpress page producers to indicate where they can be found.

Table 25.3 Javascript libraries

Library Description

xmldom.js This library is a DOM-compatible XML parser written in javascript. It allows
parsers that do not support XML to use XML data packets. Note that this does
not include support for XML Islands, which are supported by IE5 and later.

xmldb.js This library defines data access classes that manage XML data packets and
XML delta packets.

xmldisp.js This library defines classes that associate the data access classes in xmldb with
HTML controls in the HTML page.

xmlerrdisp.js This library defines classes that can be used when reconciling update errors.
These classes are not used by any of the built-in InternetExpress components,
but are useful when writing a Reconcile producer.

xmlshow.js This library includes functions to display formatted XML data packets and
XML delta packets. This library is not used by any of the InternetExpress
components, but is useful when debugging.

25-36 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

It is possible to write your own HTML pages using the javascript classes provided in
these libraries instead of using Web items to generate your Web pages. However, you
must ensure that your code does not do anything illegal, as these classes include
minimal error checking (so as to minimize the size of the generated Web pages).

The classes in the javascript libraries are an evolving standard, and are updated
regularly. If you want to use them directly rather than relying on Web items to
generate the javascript code, you can get the latest versions and documentation of
how to use them from CodeCentral available through community.borland.com.

Granting permission to access and launch the application server
Requests from the InternetExpress application appear to the application server as
originating from a guest account with the name IUSR_computername, where
computername is the name of the system running the Web application. By default,
this account does not have access or launch permission for the application server. If
you try to use the Web application without granting these permissions, when the
Web browser tries to load the requested page it times out with EOLE_ACCESS_ERROR.

Note Because the application server runs under this guest account, it can’t be shut down
by other accounts.

To grant the Web application access and launch permissions, run DCOMCnfg.exe,
which is located in the System32 directory of the machine that runs the application
server. The following steps describe how to configure your application server:

1 When you run DCOMCnfg, select your application server in the list of
applications on the Applications page.

2 Click the Properties button. When the dialog changes, select the Security page.

3 Select Use Custom Access Permissions, and press the Edit button. Add the name
IUSR_computername to the list of accounts with access permission, where
computername is the name of the machine that runs the Web application.

4 Select Use Custom Launch Permissions, and press the Edit button. Add
IUSR_computername to this list as well.

5 Click the Apply button.

Using an XML broker

The XML broker serves two major functions:

• It fetches XML data packets from the application server and makes them available
to the Web Items that generate HTML for the InternetExpress application.

• It receives updates in the form of XML delta packets from browsers and applies
them to the application server.

Fetching XML data packets
Before the XML broker can supply XML data packets to the components that
generate HTML pages, it must fetch them from the application server. To do this, it

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-37

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

uses the IAppServer interface of the application server, which it acquires through a
connection component. You must set the following properties so that the XML
producer can use the application server’s IAppServer interface:

• Set the RemoteServer property to the connection component that establishes the
connection to the application server and gets its IAppServer interface. At design
time, you can select this value from a drop-down list in the object inspector.

• Set the ProviderName property to the name of the provider component on the
application server that represents the dataset for which you want XML data
packets. This provider both supplies XML data packets and applies updates from
XML delta packets. At design time, if the RemoteServer property is set and the
connection component has an active connection, the Object Inspector displays a
list of available providers. (If you are using a DCOM connection the application
server must also be registered on the client machine).

Two properties let you indicate what you want to include in data packets:

• You can limit the number of records that are added to the data packet by setting
the MaxRecords property. This is especially important for large datasets because
InternetExpress applications send the entire data packet to client Web browsers. If
the data packet is too large, the download time can become prohibitively long.

• If the provider on the application server represents a query or stored procedure,
you may want to provide parameter values before obtaining an XML data packet.
You can supply these parameter values using the Params property.

The components that generate HTML and javascript for the InternetExpress
application automatically use the XML broker’s XML data packet once you set their
XMLBroker property. To obtain the XML data packet directly in code, use the
RequestRecords method.

Note When the XML broker supplies a data packet to another component (or when you
call RequestRecords), it receives an OnRequestRecords event. You can use this event to
supply your own XML string instead of the data packet from the application server.
For example, you could fetch the XML data packet from the application server using
GetXMLRecords and then edit it before supplying it to the emerging Web page.

Applying updates from XML delta packets
When you add the XML broker to the Web module (or data module containing a
TWebDispatcher), it automatically registers itself with the Web dispatcher as an auto-
dispatching object. This means that, unlike other components, you do not need to
create an action item for the XML broker in order for it to respond to update
messages from a Web browser. These messages contain XML delta packets that
should be applied to the application server. Typically, they originate from a button
that you create on one of the HTML pages produced by the Web client application.

So that the dispatcher can recognize messages for the XML broker, you must describe
them using the WebDispatch property. Set the PathInfo property to the path portion of
the URL to which messages for the XML broker are sent. Set MethodType to the value
of the method header of update messages addressed to that URL (typically mtPost). If
you want to respond to all messages with the specified path, set MethodType to
mtAny. If you don’t want the XML broker to respond directly to update messages (for

25-38 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

example, if you want to handle them explicitly using an action item), set the Enabled
property to False. For more information on how the Web dispatcher determines
which component handles messages from the Web browser, see “Dispatching
request messages” on page 28-5.

When the dispatcher passes an update message on to the XML broker, it passes the
updates on to the application server and, if there are update errors, receives an XML
delta packet describing all update errors. Finally, it sends a response message back to
the browser, which either redirects the browser to the same page that generated the
XML delta packet or sends it some new content.

A number of events allow you to insert custom processing at all steps of this update
process:

1 When the dispatcher first passes the update message to the XML broker, it receives
a BeforeDispatch event, where you can preprocess the request or even handle it
entirely. This event allows the XML broker to handle messages other than update
messages.

2 If the BeforeDispatch event handler does not handle the message, the XML broker
receives an OnRequestUpdate event, where you can apply the updates yourself
rather than using the default processing.

3 If the OnRequestUpdate event handler does not handle the request, the XML broker
applies the updates and receives a delta packet containing any update errors.

4 If there are no update errors, the XML broker receives an OnGetResponse event,
where you can create a response message that indicates the updates were
successfully applied or sends refreshed data to the browser. If the OnGetResponse
event handler does not complete the response (does not set the Handled parameter
to True), the XML broker sends a response that redirects the browser back to the
document that generated the delta packet.

5 If there are update errors, the XML broker receives an OnGetErrorResponse event
instead. You can use this event to try to resolve update errors or to generate a Web
page that describes them to the end user. If the OnGetErrorResponse event handler
does not complete the response (does not set the Handled parameter to True), the
XML broker calls on a special content producer called the ReconcileProducer to
generate the content of the response message.

6 Finally, the XML broker receives an AfterDispatch event, where you can perform
any final actions before sending a response back to the Web browser.

Creating Web pages with an InternetExpress page producer

Each InternetExpress page producer generates an HTML document that appears in
the browsers of your application’s clients. If your application includes several
separate Web documents, use a separate page producer for each of them.

The InternetExpress page producer (TInetXPageProducer) is a special page producer
component. As with other page producers, you can assign it as the Producer property
of an action item or call it explicitly from an OnAction event handler. For more
information about using content producers with action items, see “Responding to

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-39

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

request messages with action items” on page 28-7. For more information about page
producers, see “Using page producer components” on page 28-13.

Unlike most page producers, the InternetExpress page producer has a default
template as the value of its HTMLDoc property. This template contains a set of
HTML-transparent tags that the InternetExpress page producer uses to assemble an
HTML document (with embedded javascript and XML) including content produced
by other components. Before it can translate all of the HTML-transparent tags and
assemble this document, you must indicate the location of the javascript libraries
used for the embedded javascript on the page. This location is specified by setting the
IncludePathURL property.

You can specify the components that generate parts of the Web page using the Web
page editor. Display the Web page editor by double-clicking the Web page
component or clicking the ellipsis button next to the WebPageItems property in the
Object Inspector.

The components you add in the Web page editor generate the HTML that replaces
one of the HTML-transparent tags in the InternetExpress page producer’s default
template. These components become the value of the WebPageItems property. After
adding the components in the order you want them, you can customize the template
to add your own HTML or change the default tags.

Using the Web page editor
The Web page editor lets you add Web items to your InternetExpress page producer
and view the resulting HTML page. Display the Web page editor by double-clicking
on a InternetExpress page producer component.

Note You must have Internet Explorer 4 or better installed to use the Web page editor.

The top of the Web page editor displays the Web items that generate the HTML
document. These Web items are nested, where each type of Web item assembles the
HTML generated by its subitems. Different types of items can contain different
subitems. On the left, a tree view displays all of the Web items, indicating how they
are nested. On the right, you can see the Web items included by the currently selected
item. When you select a component in the top of the Web page editor, you can set its
properties using the Object Inspector.

Click the New Item button to add a subitem to the currently selected item. The Add
Web Component dialog lists only those items that can be added to the currently
selected item.

The InternetExpress page producer can contain one of two types of item, each of
which generates an HTML form:

• TDataForm, which generates an HTML form for displaying data and the controls
that manipulate that data or submit updates.

Items you add to TDataForm display data in a multi-record grid (TDataGrid) or in a
set of controls each of which represents a single field from a single record
(TFieldGroup). In addition, you can add a set of buttons to navigate through data or
post updates (TDataNavigator), or a button to apply updates back to the Web client
(TApplyUpdatesButton). Each of these items contains subitems to represent

25-40 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

individual fields or buttons. Finally, as with most Web items, you can add a layout
grid (TLayoutGroup), that lets you customize the layout of any items it contains.

• TQueryForm, which generates an HTML form for displaying or reading
application-defined values. For example, you can use this form for displaying and
submitting parameter values.

Items you add to TQueryForm display application-defined
values(TQueryFieldGroup) or a set of buttons to submit or reset those values
(TQueryButtons). Each of these items contains subitems to represent individual
values or buttons. You can also add a layout grid to a query form, just as you can
to a data form.

The bottom of the Web page editor displays the generated HTML code and lets you
see what it looks like in a browser (IE4).

Setting Web item properties
The Web items that you add using the Web page editor are specialized components
that generate HTML. Each Web item class is designed to produce a specific control or
section of the final HTML document, but a common set of properties influences the
appearance of the final HTML.

When a Web item represents information from the XML data packet (for example,
when it generates a set of field or parameter display controls or a button that
manipulates the data), the XMLBroker property associates the Web item with the
XML broker that manages the data packet. You can further specify a dataset that is
contained in a dataset field of that data packet using the XMLDataSetField property. If
the Web item represents a specific field or parameter value, the Web item has a
FieldName or ParamName property.

You can apply a style attribute to any Web item, thereby influencing the overall
appearance of all the HTML it generates. Styles and style sheets are part of the
HTML 4 standard. They allow an HTML document to define a set of display
attributes that apply to a tag and everything in its scope. Web items offer a flexible
selection of ways to use them:

• The simplest way to use styles is to define a style attribute directly on the Web
item. To do this, use the Style property. The value of Style is simply the attribute
definition portion of a standard HTML style definition, such as
color: red.

• You can also define a style sheet that defines a set of style definitions. Each
definition includes a style selector (the name of a tag to which the style always
applies or a user-defined style name) and the attribute definition in curly braces:
H2 B {color: red}
.MyStyle {font-family: arial; font-weight: bold; font-size: 18px }

The entire set of definitions is maintained by the InternetExpress page producer as
its Styles property. Each Web item can then reference the styles with user-defined
names by setting its StyleRule property.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 25-41

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

• If you are sharing a style sheet with other applications, you can supply the style
definitions as the value of the InternetExpress page producer’s StylesFile property
instead of the Styles property. Individual Web items still reference styles using the
StyleRule property.

Another common property of Web items is the Custom property. Custom includes a
set of options that you add to the generated HTML tag. HTML defines a different set
of options for each type of tag. The VCL reference for the Custom property of most
Web items gives an example of possible options. For more information on possible
options, use an HTML reference.

Customizing the InternetExpress page producer template
The template of an InternetExpress page producer is an HTML document with extra
embedded tags that your application translates dynamically. Initially, the page
producer generates a default template as the value of the HTMLDoc property. This
default template has the form

<HTML>
<HEAD>
</HEAD>
<BODY>
<#INCLUDES> <#STYLES> <#WARNINGS> <#FORMS> <#SCRIPT>
</BODY>
</HTML>

The HTML-transparent tags in the default template are translated as follows:

<#INCLUDES> generates the statements that include the javascript libraries. These
statements have the form

<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldom.js"> </SCRIPT>
<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldb.js"> </SCRIPT>
<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmlbind.js"> </SCRIPT>

<#STYLES> generates the statements that defines a style sheet from definitions listed in
the Styles or StylesFile property of the InternetExpress page producer.

<#WARNINGS> generates nothing at runtime. At design time, it adds warning messages
for problems detected while generating the HTML document. You can see these
messages in the Web page editor.

<#FORMS> generates the HTML produced by the components that you add in the Web
page editor. The HTML from each component is generated in the order it appears in
WebPageItems.

<#SCRIPT> generates a block of javascript declarations that are used in the HTML
generated by the components added in the Web page editor.

You can replace the default template by changing the value of HTMLDoc or setting
the HTMLFile property. The customized HTML template can include any of the
HTML-transparent tags that make up the default template. The InternetExpress page
producer automatically translates these tags when you call the Content method. In

25-42 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

addition, The InternetExpress page producer automatically translates three
additional tags:

<#BODYELEMENTS> is replaced by the same HTML as results from the 5 tags in the
default template. It is useful when generating a template in an HTML editor when
you want to use the default layout but add additional elements using the editor.

<#COMPONENT Name=WebComponentName> is replaced by the HTML that the component
named WebComponentName generates. This component can be one of the components
added in the Web page editor, or it can be any component that supports the
IWebContent interface and has the same Owner as the InternetExpress page producer.

<#DATAPACKET XMLBroker=BrokerName> is replaced with the XML data packet obtained
from the XML broker specified by BrokerName. When, in the Web page editor, you see
the HTML that the InternetExpress page producer generates, you see this tag instead
of the actual XML data packet.

In addition, the customized template can include any other HTML-transparent tags
that you define. When the InternetExpress page producer encounters a tag that is not
one of the seven types it translates automatically, it generates an OnHTMLTag event,
where you can write code to perform your own translations. For more information
about HTML templates in general, see “HTML templates” on page 28-13.

Tip The components that appear in the Web page editor generate static code. That is,
unless the application server changes the metadata that appears in data packets, the
HTML is always the same, no matter when it is generated. You can avoid the
overhead of generating this code dynamically at runtime in response to every request
message by copying the generated HTML in the Web page editor and using it as a
template. Because the Web page editor displays a <#DATAPACKET> tag instead of
the actual XML, using this as a template still allows your application to fetch data
packets from the application server dynamically.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 26-1

C h a p t e r

26
Chapter 26Using XML in database applications

In addition to the support for connecting to database servers, Delphi lets you work
with XML documents as if they were database servers. XML (Extensible Markup
Language) is a markup language for describing structured data. XML documents
provide a standard, transportable format for data that is used in Web applications,
business-to-business communication, and so on. For information on Delphi’s support
for working directly with XML documents, see Chapter 30, “Working with XML
documents.”

Delphi’s support for working with XML documents in database applications is based
on a set of components that can convert data packets (the Data property of a client
dataset) into XML documents and convert XML documents into data packets. In
order to use these components, you must first define the transformation between the
XML document and the data packet. Once you have defined the transformation, you
can use special components to

• convert XML documents into data packets.
• provide data from and resolve updates to an XML document.
• use an XML document as the client of a provider.

Defining transformations
Before you can convert between data packets and XML documents, you must define
the relationship between the metadata in a data packet and the nodes of the
corresponding XML document. A description of this relationship is stored in a
special XML document called a transformation.

Each transformation file contains two things: the mapping between the nodes in an
XML schema and the fields in a data packet, and a skeletal XML document that
represents the structure for the results of the transformation. A transformation is a
one-way mapping: from an XML schema or document to a data packet or from the
metadata in a data packet to an XML schema. Often, you create transformation files

26-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g t r a n s f o r m a t i o n s

in pairs: one that maps from XML to data packet, and one that maps from data packet
to XML.

In order to create the transformation files for a mapping, use the XMLMapper utility
that ships in the bin directory.

Mapping between XML nodes and data packet fields

XML provides a text-based way to store or describe structured data. Datasets provide
another way to store and describe structured data. To convert an XML document into
a dataset, therefore, you must identify the correspondences between the nodes in an
XML document and the fields in a dataset.

Consider, for example, an XML document that represents a set of email messages. It
might look like the following (containing a single message):

<?xml version="1.0" standalone='yes' ?>
<email>

<head>
<from>

<name>Dave Boss</name>
<address>dboss@MyCo.com</address>

</from>
<to>

<name>Joe Engineer</name>
<address>jengineer@MyCo.com</address>

</to>
<cc>

<name>Robin Smith/name>
<address>rsmith@MyCo.com</address>

</cc>
<cc>

<name>Leonard Devon</name>
<address>ldevon@MyCo.com</address>

</cc>
</head>
<body>

<subject>XML components</subject>
<content>

Joe,
Attached is the specification for the new XML component support in Delphi.
This looks like a good solution to our buisness-to-buisness application!
Also attached, please find the project schedule. Do you think its reasonable?

Dave.
</content>
<attachment attachfile="XMLSpec.txt"/>
<attachment attachfile="Schedule.txt"/>

</body>
</email>

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 26-3

D e f i n i n g t r a n s f o r m a t i o n s

One natural mapping between this document and a dataset would map each email
message to a single record. The record would have fields for the sender’s name and
address. Because an email message can have multiple recipients, the recipient (<to>
would map to a nested dataset. Similarly, the cc list maps to a nested dataset. The
subject line would map to a string field while the message itself (<content>) would
probably be a memo field. The names of attachment files would map to a nested
dataset because one message can have several attachments. Thus, the email above
would map to a dataset something like the following:

where the nested dataset in the “To” field is

the nested dataset in the “CC” field is

and the nested dataset in the “Attach” field is

Defining such a mapping involves identifying those nodes of the XML document that
can be repeated and mapping them to nested datasets. Tagged elements that have
values and appear only once (such as <content>...</content>) map to fields whose
datatype reflects the type of data that can appear as the value. Attributes of a tag
(such as the AttachFile attribute of the attachment tag) also map to fields.

Note that not all tags in the XML document appear in the corresponding dataset. For
example, the <head>...<head/> element has no corresponding element in the
resulting dataset. Typically, only elements that have values, elements that can be
repeated, or the attributes of a tag map to the fields (including nested dataset fields)
of a dataset. The exception to this rule is when a parent node in the XML document
maps to a field whose value is built up from the values of the child nodes. For
example, an XML document might contain a set of tags such as

<FullName>
<Title> Mr. </Title>
<FirstName> John </FirstName>
<LastName> Smith </LastName>

</FullName>

which could map to a single dataset field with the value

Mr. John Smith

SenderName SenderAddress To CC Subject Content Attach

Dave Boss dboss@MyCo.Com (DataSet) (DataSet) XML components (MEMO) (DataSet)

Name Address

Joe Engineer jengineer@MyCo.Com

Name Address

Robin Smith rsmith@MyCo.Com

Leonard Devon ldevon@MyCo.Com

Attachfile

XMLSpec.txt

Schedule.txt

26-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g t r a n s f o r m a t i o n s

Using XMLMapper

The XML mapper utility, xmlmapper.exe, lets you define mappings in three ways:

• From an existing XML schema (or document) to a client dataset that you define.
This is useful when you want to create a database application to work with data
for which you already have an XML schema.

• From an existing data packet to a new XML schema you define. This is useful
when you want to expose existing database information in XML, for example to
create a new business-to-business communication system.

• Between an existing XML schema and an existing data packet. This is useful when
you have an XML schema and a database that both describe the same information
and you want to make them work together.

Once you define the mapping, you can generate the transformation files that are used
to convert XML documents to data packets and to convert data packets to XML
documents. Note that only the transformation file is directional: a single mapping
can be used to generate both the transformation from XML to data packet and from
data packet to XML.

Note XML mapper relies on two .DLLs (midas.dll and msxml.dll) to work correctly. Be
sure that you have both of these .DLLs installed before you try to use
xmlmapper.exe. In addition, msxml.dll must be registered as a COM server. You can
register it using Regsvr32.exe.

Loading an XML schema or data packet
Before you can define a mapping and generate a transformation file, you must first
load descriptions of the XML document and the data packet between which you are
mapping.

You can load an XML document or schema by choosing File|Open and selecting the
document or schema in the resulting dialog.

You can load a data packet by choosing File|Open and selecting a data packet file in
the resulting dialog. (The data packet is simply the file generated when you call a
client dataset’s SaveToFile method.) If you have not saved the data packet to disk, you
can fetch the data packet directly from the application server of a multi-tiered
application by right-clicking in the Datapacket pane and choosing Connect To
Remote Server.

You can load only an XML document or schema, only a data packet, or you can load
both. If you load only one side of the mapping, XML mapper can generate a natural
mapping for the other side.

Defining mappings
The mapping between an XML document and a data packet need not include all of
the fields in the data packet or all of the tagged elements in the XML document.
Therefore, you must first specify those elements that are mapped. To specify these
elements, first select the Mapping page in the central pane of the dialog.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 26-5

D e f i n i n g t r a n s f o r m a t i o n s

To specify the elements of an XML document or schema that are mapped to fields in
a data packet, select the Sample or Structure tab of the XML document pane and
double-click on the nodes for elements that map to data packet fields.

To specify the fields of the data packet that are mapped to tagged elements or
attributes in the XML document and double-click on the nodes for those fields in the
Datapacket pane.

If you have only loaded one side of the mapping (the XML document or the data
packet), you can generate the other side after you have selected the nodes that are
mapped.

• If you are generating a data packet from an XML document, you first define
attributes for the selected nodes that determine the types of fields to which they
correspond in the data packet. In the center pane, select the Node Repository page.
Select each node that participates in the mapping and indicate the attributes of the
corresponding field. If the mapping is not straightforward (for example, a node
with subnodes that corresponds to a field whose value is built from those
subnodes), check the User Defined Translation check box. You will need to write
an event handler later to perform the transformation on user defined nodes.

Once you have specified the way nodes are to be mapped, choose Create|
Datapacket from XML. The corresponding data packet is automatically generated
and displayed in the Datapacket pane.

• If you are generating an XML document from a data packet, choose Create|XML
from Datapacket. A dialog appears where you can specify the names of the tags
and attributes in the XML document that correspond to fields, records, and
datasets in the data packet. For field values, you specify whether they map to a
tagged element with a value or to an attribute by the way you name them. Names
that begin with an @ symbol map to attributes of the tag that corresponds to the
record, while names that do not begin with an @ symbol map to tagged elements
that have values and that are nested within the element for the record.

• If you have loaded both an XML document and a data packet (client dataset file),
be sure you select corresponding nodes in the same order. The corresponding
nodes should appear next to each other in the table at the top of the Mapping page.

Once you have loaded or generated both the XML document and the data packet and
selected the nodes that appear in the mapping, the table at the top of the Mapping
page should reflect the mapping you have defined.

Generating transformation files
To generate a transformation file, use the following steps:

1 First select the radio button that indicates what the transformation creates:

• Choose the Datapacket to XML button if the mapping goes from data packet to
XML document.

• Choose the XML to Datapacket button if the mapping goes from XML
document to data packet.

26-6 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g X M L d o c u m e n t s i n t o d a t a p a c k e t s

2 If you are generating a data packet, you will also want to use the radio buttons in
the Create Datapacket As section. These buttons let you specify how the data
packet will be used: as a dataset, as a delta packet for applying updates, or as the
parameters to supply to a provider before fetching data.

3 Click Create and Test Transformation to generate an in-memory version of the
transformation. XML mapper displays the XML document that would be
generated for the data packet in the Datapacket pane or the data packet that would
be generated for the XML document in the XML Document pane.

4 Finally, choose File|Save|Transformation to save the transformation file. The
transformation file is a special XML file (with the .xtr extension) that describes the
transformation you have defined.

Converting XML documents into data packets
Once you have created a transformation file that indicates how to transform an XML
document into a data packet, you can create data packets for any XML document that
conforms to the schema used in the transformation. These data packets can then be
assigned to a client dataset and saved to a file so that they form the basis of a file-
based database application.

The TXMLTransform component transforms an XML document into a data packet
according to the mapping in a transformation file.

Note You can also use TXMLTransform to convert a data packet that appears in XML
format into an arbitrary XML document.

Specifying the source XML document

There are three ways to specify the source XML document:

• If the source document is a .xml file on disk, you can use the SourceXmlFile
property.

• If the source document is an in-memory string of XML, you can use the SourceXml
property.

• If you have an IDOMDocument interface for the source document, you can use the
SourceXmlDocument property.

TXMLTransform checks these properties in the order listed above. That is, it first
checks for a file name in the SourceXmlFile property. Only if SourceXmlFile is an
empty string does it check the SourceXml property. Only if SourceXml is an empty
string does it then check the SourceXmlDocument property.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 26-7

C o n v e r t i n g X M L d o c u m e n t s i n t o d a t a p a c k e t s

Specifying the transformation

There are two ways to specify the transformation that converts the XML document
into a data packet:

• Set the TransformationFile property to indicate a transformation file that was
created using xmlmapper.exe.

• Set the TransformationDocument property if you have an IDOMDocument interface
for the transformation.

TXMLTransform checks these properties in the order listed above. That is, it first
checks for a file name in the TransformationFile property. Only if TransformationFile is
an empty string does it check the TransformationDocument property.

Obtaining the resulting data packet

To cause TXMLTranform to perform its transformation and generate a data packet,
you need only read the Data property. For example, the following code uses an XML
document and transformation file to generate a data packet, which is then assigned
to a client dataset:

XMLTransform1.SourceXMLFile := 'CustomerDocument.xml';
XMLTransform1.TransformationFile := 'CustXMLToCustTable.xtr';
ClientDataSet1.XMLData := XMLTransform1.Data;

Converting user-defined nodes

When you define a transformation using xmlmapper.exe, you can specify that some
of the nodes in the XML document are “user-defined”. User-defined nodes are nodes
for which you want to provide the transformation in code rather than relying on a
straightforward node-value-to-field-value translation.

You can provide the code to translate user-defined nodes using the OnTranslate
event. OnTranslate is called every time the TXMLTransform component encounters a
user-defined node in the XML document. In the OnTranslate event handler, you can
read the source document and specify the resulting value for the field in the data
packet.

For example, the following OnTranslate event handler converts a node in the XML
document with the following form

<FullName>
<Title> </Title>
<FirstName> </FirstName>
<LastName> </LastName>

</FullName>

into a single field value:

procedure TForm1.XMLTransform1Translate(Sender: TObject; Id: String; SrcNode: IDOMNode;
var Value: String; DestNode: IDOMNode);

var

26-8 D e v e l o p e r ’ s G u i d e

U s i n g a n X M L d o c u m e n t a s t h e s o u r c e f o r a p r o v i d e r

CurNode: IDOMNode;
begin

if Id = 'FullName' then
begin

Value = '';
if SrcNode.hasChildNodes then
begin
CurNode := SrcNode.firstChild;
Value := Value + CurNode.nodeValue;
while CurNode <> SrcNode.lastChild do
begin

CurNode := CurNode.nextSibling;
Value := Value + ' ';
Value := Value + CurNode.nodeValue;

end;
end;

end;
end;

Using an XML document as the source for a provider
The TXMLTransformProvider component lets you use an XML document as if it were
a database table. TXMLTransformProvider packages the data from an XML document
and applies updates from clients back to that XML document. It appears to clients
such as client datasets or XML brokers like any other provider component. For
information on provider components, see Chapter 24, “Using provider components.”
For information on using provider components with client datasets, see “Using a
client dataset with a provider” on page 23-23.

You can specify the XML document from which the XML provider provides data and
to which it applies updates using the XMLDataFile property.

TXMLTransformProvider components use internal TXMLTransform components to
translate between data packets and the source XML document: one to translate the
XML document into data packets, and one to translate data packets back into the
XML format of the source document after applying updates. These two
TXMLTransform components can be accessed using the TransformRead and
TransformWrite properties, respectively.

When using TXMLTransformProvider, you must specify the transformations that these
two TXMLTransform components use to translate between data packets and the
source XML document. You do this by setting the TXMLTransform component’s
TransformationFile or TransformationDocument property, just as when using a stand-
alone TXMLTransform component.

In addition, if the transformation includes any user-defined nodes, you must supply
an OnTranslate event handler to the internal TXMLTransform components.

You do not need to specify the source document on the TXMLTransform components
that are the values of TransformRead and TransformWrite. For TransformRead, the
source is the file specified by the provider’s XMLDataFile property (although, if you
set XMLDataFile to an empty string, you can supply the source document using
TransformRead.XmlSource or TransformRead.XmlSourceDocument). For TransformWrite,
the source is generated internally by the provider when it applies updates.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 26-9

U s i n g a n X M L d o c u m e n t a s t h e c l i e n t o f a p r o v i d e r

Using an XML document as the client of a provider
The TXMLTransformClient component acts as an adapter to let you use an XML
document (or set of documents) as the client for an application server (or simply as
the client of a dataset to which it connects via a TDataSetProvider component). That is,
TXMLTransform client lets you publish database data as an XML document and to
make use of update requests (insertions or deletions) from an external application
that supplies them in the form of XML documents.

To specify the provider from which the TXMLTransformClient object fetches data and
to which it applies updates, set the ProviderName property. As with the ProviderName
property of a client dataset, ProviderName can be the name of a provider on a remote
application server or it can be a local provider in the same form or data module as the
TXMLTransformClient object. For information about providers, see Chapter 24,
“Using provider components.”

If the provider is on a remote application server, you must use a DataSnap
connection component to connect to that application server. Specify the connection
component using the RemoteServer property. For information on DataSnap
connection components, see “Connecting to the application server” on page 25-23.

Fetching an XML document from a provider

TXMLTransformClient uses an internal TXMLTransform component to translate data
packets from the provider into an XML document. You can access this
TXMLTransform component as the value of the TransformGetData property.

Before you can create an XML document that represents the data from a provider,
you must specify the transformation file that TransformGetData uses to translate the
data packet into the appropriate XML format. You do this by setting the
TXMLTransform component’s TransformationFile or TransformationDocument property,
just as when using a stand-alone TXMLTransform component. If that transformation
includes any user-defined nodes, you will want to supply TransformGetData with an
OnTranslate event handler as well.

There is no need to specify the source document for TransformGetData,
TXMLTransformClient fetches that from the provider. However, if the provider
expects any input parameters, you may want to set them before fetching the data.
Use the SetParams method to supply these input parameters before you fetch data
from the provider. SetParams takes two arguments: a string of XML from which to
extract parameter values, and the name of a transformation file to translate that XML
into a data packet. SetParams uses the transformation file to convert the string of XML
into a data packet, and then extracts the parameter values from that data packet.

Note You can override either of these arguments if you want to specify the parameter
document or transformation in another way. Simply set one of the properties on
TransformSetParams property to indicate the document that contains the parameters
or the transformation to use when converting them, and then set the argument you
want to override to an empty string when you call SetParams. For details on the

26-10 D e v e l o p e r ’ s G u i d e

U s i n g a n X M L d o c u m e n t a s t h e c l i e n t o f a p r o v i d e r

properties you can use, see “Converting XML documents into data packets” on
page 26-6.

Once you have configured TransformGetData and supplied any input parameters, you
can call the GetDataAsXml method to fetch the XML. GetDataAsXml sends the current
parameter values to the provider, fetches a data packet, converts it into an XML
document, and returns that document as a string. You can save this string to a file:

var
XMLDoc: TFileStream;
XML: string;

begin
XMLTransformClient1.ProviderName := 'Provider1';
XMLTransformClient1.TransformGetData.TransformationFile := 'CustTableToCustXML.xtr';
XMLTransformClient1.TransFormSetParams.SourceXmlFile := 'InputParams.xml';
XMLTransformClient1.SetParams('', 'InputParamsToDP.xtr');
XML := XMLTransformClient1.GetDataAsXml;
XMLDoc := TFileStream.Create('Customers.xml', fmCreate or fmOpenWrite);
try
XMLDoc.Write(XML, Length(XML));

finally
XMLDoc.Free;

end;
end;

Applying updates from an XML document to a provider

TXMLTransformClient also lets you insert all of the data from an XML document into
the provider’s dataset or to delete all of the records in an XML document from the
provider’s dataset. To perform these updates, call the ApplyUpdates method, passing
in

• A string whose value is the contents of the XML document with the data to insert
or delete.

• The name of a transformation file that can convert that XML data into an insert or
delete delta packet. (When you define the transformation file using the XML
mapper utility, you specify whether the transformation is for an insert or delete
delta packet.)

• The number of update errors that can be tolerated before the update operation is
aborted. If fewer than the specified number of records can’t be inserted or deleted,
ApplyUpdates returns the number of actual failures. If more than the specified
number of records can’t be inserted or deleted, the entire update operation is
rolled back, and no update is performed.

The following call transforms the XML document Customers.xml into a delta packet
and applies all updates regardless of the number of errors:

StringList1.LoadFromFile('Customers.xml');
nErrors := ApplyUpdates(StringList1.Text, 'CustXMLToInsert.xtr', -1);

W r i t i n g I n t e r n e t a p p l i c a t i o n s

P a r t

III
Part IIIWriting Internet applications

The chapters in “Writing Internet applications” present concepts and skills necessary
for building applications that are distributed over the Internet.

Note The components described in this section are not available in all editions of Delphi.

C r e a t i n g I n t e r n e t a p p l i c a t i o n s 27-1

C h a p t e r

27
Chapter 27Creating Internet applications

Web server applications extend the functionality and capability of existing Web
servers. A Web server application receives HTTP request messages from the Web
server, performs any actions requested in those messages, and formulates responses
that it passes back to the Web server. Any operation that you can perform with a
Delphi application can be incorporated into a Web server application.

Delphi provides two different architectures for developing Web server applications:
Web Broker and WebSnap. Although these two architectures are different, WebSnap
and Web Broker have many common elements. The WebSnap architecture acts as a
superset of Web Broker. It provides additional components, and new features such as
the WebSnap Surface Designer—which allows the content of a page to be displayed
without the developer having to run the application. Applications developed with
WebSnap can include Web Broker components, whereas applications developed
with Web Broker cannot include WebSnap components.

This chapter describes the features of the Web Broker and WebSnap technologies and
provides general information on Internet-based client/server applications.

About Web Broker and WebSnap
The first step in building a Web server application is choosing which architecture you
want to use. Both approaches provide many of the same features, including

• Support for many types of Web server applications, including ISAPI, NSAPI, CGI,
Win CGI, and Apache. These are described in “Types of Web server applications”
on page 27-6.

• Multithreading support so that incoming client requests are handled on separate
threads.

• Caching of Web modules for quicker responses.

27-2 D e v e l o p e r ’ s G u i d e

T e r m i n o l o g y a n d s t a n d a r d s

However, each approach has certain advantages and disadvantages. The major
differences between these two approaches are outlined in the following table:

For more information on Web Broker, see Chapter 28, “Using Web Broker.” For more
information on WebSnap, see Chapter 29, “Using WebSnap.”

Terminology and standards
Many of the protocols that control activity on the Internet are defined in Request for
Comment (RFC) documents that are created, updated, and maintained by the
Internet Engineering Task Force (IETF), the protocol engineering and development

Table 27.1 Web Broker versus WebSnap

Web Broker WebSnap

Backward compatible Although WebSnap applications can use any Web
Broker components that produce content, the Web
modules and dispatcher that contain these are
new.

Available in cross-platform (CLX)
applications.

At present, WebSnap is only available on
Windows.

Only one Web module allowed in an
application.

Multiple Web modules can partition the
application into units, allowing multiple
developers to work on the same project with fewer
conflicts.

Only one Web dispatcher allowed in the
application.

Multiple, special-purpose dispatchers handle
different types of requests.

Specialized components for creating content
include page producers, InternetExpress
components, and Web Services components.

Supports all the content producers that can appear
in Web broker applications, plus many others
designed to let you quickly build complex data-
driven Web pages.

No scripting support. Support for server-side scripting (JScript or
VBscript) allows HTML generation logic to be
separated from the business logic.

No built-in support for named pages. Named pages can be automatically retrieved by a
page dispatcher and addressed from server-side
scripts.

No session support. Sessions store information about an end user that
is needed for a short period of time. This can be
used for such tasks as login/logout support.

Every request must be explicitly handled,
using either an action item or an auto-
dispatching component.

Dispatch components automatically respond to a
variety of requests.

Only a few specialized components provide
previews of the content they produce. Most
development is not visual.

The WebSnap surface designer lets you build Web
pages visually, and view the results at design time.
Previews are available for all components.

C r e a t i n g I n t e r n e t a p p l i c a t i o n s 27-3

T e r m i n o l o g y a n d s t a n d a r d s

arm of the Internet. There are several important RFCs that you will find useful when
writing Internet applications:

• RFC822, “Standard for the format of ARPA Internet text messages,” describes the
structure and content of message headers.

• RFC1521, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies,” describes
the method used to encapsulate and transport multipart and multiformat
messages.

• RFC1945, “Hypertext Transfer Protocol — HTTP/1.0,” describes a transfer
mechanism used to distribute collaborative hypermedia documents.

The IETF maintains a library of the RFCs on their Web site, www.ietf.cnri.reston.va.us

Parts of a Uniform Resource Locator

The Uniform Resource Locator (URL) is a complete description of the location of a
resource that is available over the net. It is composed of several parts that may be
accessed by an application. These parts are illustrated in Figure 27.1:

Figure 27.1 Parts of a Uniform Resource Locator

The first portion (not technically part of the URL) identifies the protocol (http). This
portion can specify other protocols such as https (secure http), ftp, and so on.

The Host portion identifies the machine that runs the Web server and Web server
application. Although it is not shown in the preceding picture, this portion can
override the port that receives messages. Usually, there is no need to specify a port,
because the port number is implied by the protocol.

The ScriptName portion specifies the name of the Web server application. This is the
application to which the Web server passes messages.

Following the script name is the pathinfo. This identifies the destination of the
message within the Web server application. Path info values may refer to directories
on the host machine, the names of components that respond to specific messages, or
any other mechanism the Web server application uses to divide the processing of
incoming messages.

The Query portion contains a set a named values. These values and their names are
defined by the Web server application.

URI vs. URL
The URL is a subset of the Uniform Resource Identifier (URI) defined in the HTTP
standard, RFC1945. Web server applications frequently produce content from many

Host ScriptName PathInfo Query

Query Field Query Field

http://www.Tsite.com/art/gallery.dll/mammals?animal=dog&color=black

http://www.Tsite.com/art/gallery.dll/mammals?animal=dog&color=black

27-4 D e v e l o p e r ’ s G u i d e

H T T P s e r v e r a c t i v i t y

sources where the final result does not reside in a particular location, but is created as
necessary. URIs can describe resources that are not location-specific.

HTTP request header information

HTTP request messages contain many headers that describe information about the
client, the target of the request, the way the request should be handled, and any
content sent with the request. Each header is identified by a name, such as “Host”
followed by a string value. For example, consider the following HTTP request:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

The first line identifies the request as a GET. A GET request message asks the Web
server application to return the content associated with the URI that follows the word
GET (in this case /art/gallery.dll/animals?animal=doc&color=black). The last part
of the first line indicates that the client is using the HTTP 1.0 standard.

The second line is the Connection header, and indicates that the connection should
not be closed once the request is serviced. The third line is the User-Agent header,
and provides information about the program generating the request. The next line is
the Host header, and provides the Host name and port on the server that is contacted
to form the connection. The final line is the Accept header, which lists the media
types the client can accept as valid responses.

HTTP server activity
The client/server nature of Web browsers is deceptively simple. To most users,
retrieving information on the World Wide Web is a simple procedure: click on a link,
and the information appears on the screen. More knowledgeable users have some
understanding of the nature of HTML syntax and the client/server nature of the
protocols used. This is usually sufficient for the production of simple, page-oriented
Web site content. Authors of more complex Web pages have a wide variety of
options to automate the collection and presentation of information using HTML.

Before building a Web server application, it is useful to understand how the client
issues a request and how the server responds to client requests.

Composing client requests

When an HTML hypertext link is selected (or the user otherwise specifies a URL), the
browser collects information about the protocol, the specified domain, the path to the
information, the date and time, the operating environment, the browser itself, and
other content information. It then composes a request.

C r e a t i n g I n t e r n e t a p p l i c a t i o n s 27-5

H T T P s e r v e r a c t i v i t y

For example, to display a page of images based on criteria selected by clicking
buttons on a form, the client might construct this URL:

http://www.TSite.com/art/gallery.dll/animals?animal=dog&color=black

which specifies an HTTP server in the www.TSite.com domain. The client contacts
www.TSite.com, connects to the HTTP server, and passes it a request. The request
might look something like this:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Serving client requests

The Web server receives a client request and can perform any number of actions,
based on its configuration. If the server is configured to recognize the /gallery.dll
portion of the request as a program, it passes information about the request to that
program. The way information about the request is passed to the program depends
on the type of Web server application:

• If the program is a Common Gateway Interface (CGI) program, the server passes
the information contained in the request directly to the CGI program. The server
waits while the program executes. When the CGI program exits, it passes the
content directly back to the server.

• If the program is WinCGI, the server opens a file and writes out the request
information. It then executes the Win-CGI program, passing the location of the file
containing the client information and the location of a file that the Win-CGI
program should use to create content. The server waits while the program
executes. When the program exits, the server reads the data from the content file
written by the Win-CGI program.

• If the program is a dynamic-link library (DLL), the server loads the DLL (if
necessary) and passes the information contained in the request to the DLL as a
structure. The server waits while the program executes. When the DLL exits, it
passes the content directly back to the server.

In all cases, the program acts on the request of and performs actions specified by the
programmer: accessing databases, doing simple table lookups or calculations,
constructing or selecting HTML documents, and so on.

Responding to client requests

When a Web server application finishes with a client request, it constructs a page of
HTML code or other MIME content, and passes it back (via the server) to the client
for display. The way the response is sent also differs based on the type of program:

• When a Win-CGI script finishes it constructs a page of HTML, writes it to a file,
writes any response information to another file, and passes the locations of both

http://www.TSite.com/art/gallery.dll/animals?animal=dog&color=black

27-6 D e v e l o p e r ’ s G u i d e

T y p e s o f W e b s e r v e r a p p l i c a t i o n s

files back to the server. The server opens both files and passes the HTML page
back to the client.

• When a DLL finishes, it passes the HTML page and any response information
directly back to the server, which passes them back to the client.

Creating a Web server application as a DLL reduces system load and resource use by
reducing the number of processes and disk accesses necessary to service an
individual request.

Types of Web server applications
Whether you use Web Broker or WebSnap, you can create five types of Web server
applications. In addition, you can create a Web Application Debugger executable,
which integrates the Web server into your application so that you can debug your
application logic. The Web Application Debugger executable is intended only for
debugging. When you deploy your application, you should migrate to one of the
other five types.

Each of the five types of Web server application uses a type-specific descendant of
TWebApplication, TWebRequest, and TWebResponse:

ISAPI and NSAPI
An ISAPI or NSAPI Web server application is a DLL that is loaded by the Web server.
Client request information is passed to the DLL as a structure and evaluated by
TISAPIApplication, which creates TISAPIRequest and TISAPIResponse objects. Each
request message is automatically handled in a separate execution thread.

Apache
An Apache Web server application is a DLL that is loaded by the Web server. Client
request information is passed to the DLL as a structure and evaluated by
TApacheApplication, which creates TApacheRequest and TApacheResponse objects. Each
request message is automatically handled in a separate execution thread.

CGI stand-alone
A CGI stand-alone Web server application is a console application that receives client
request information on standard input and passes the results back to the server on
standard output. This data is evaluated by TCGIApplication, which creates

Table 27.2 Web server application components

Application Type Application Object Request Object Response Object

Microsoft Server DLL (ISAPI) TISAPIApplication TISAPIRequest TISAPIResponse

Netscape Server DLL (NSAPI) TISAPIApplication TISAPIRequest TISAPIResponse

Apache Server DLL TApacheApplication TApacheRequest TApacheResponse

Console CGI application TCGIApplication TCGIRequest TCGIResponse

Windows CGI application TCGIApplication TWinCGIRequest TWinCGIResponse

C r e a t i n g I n t e r n e t a p p l i c a t i o n s 27-7

D e b u g g i n g s e r v e r a p p l i c a t i o n s

TCGIRequest and TCGIResponse objects. Each request message is handled by a
separate instance of the application.

Win-CGI stand-alone
A Win-CGI stand-alone Web server application is a Windows application that
receives client request information from a configuration settings (INI) file written by
the server and writes the results to a file that the server passes back to the client. The
INI file is evaluated by TCGIApplication, which creates TWinCGIRequest and
TWinCGIResponse objects. Each request message is handled by a separate instance of
the application.

Debugging server applications
Debugging Web server applications presents some unique problems, because they
run in response to messages from a Web server. You can not simply launch your
application from the IDE, because that leaves the Web server out of the loop, and
your application will not find the request message it is expecting.

The following topics describe techniques you can use to debug Web server
applications.

Using the Web Application Debugger

The Web Application Debugger provides an easy way to monitor HTTP requests,
responses, and response times. The Web Application Debugger takes the place of the
Web server. Once you have debugged your application, you can convert it to one of
the supported types of Web application and install it with a commercial Web server.

To use the Web Application Debugger, you must first create your Web application as
a Web Application Debugger executable. Whether you are using Web Broker or
WebSnap, the wizard that creates your Web server application includes this as an
option when you first begin the application. This creates a Web server application
that is also a COM server.

For information on how to write this Web server application using Web Broker, see
Chapter 28, “Using Web Broker”. For more information on using WebSnap, see
Chapter 29, “Using WebSnap”.

Launching your application with the Web Application Debugger
Once you have developed your Web server application, you can run and debug it as
follows:

1 With your project loaded in the IDE, set any breakpoints so that you can debug
your application just like any other executable.

2 Choose Run|Run. This displays the console window of the COM server that is
your Web server application. The first time you run your application, it registers
your COM server so that the Web App debugger can access it.

27-8 D e v e l o p e r ’ s G u i d e

D e b u g g i n g s e r v e r a p p l i c a t i o n s

3 Select Tools|Web App Debugger.

4 Click the Start button. This displays the ServerInfo page in your default Browser.

5 The ServerInfo page provides a drop-down list of all registered Web Application
Debugger executables. Select your application from the drop-down list. If you do
not find your application in this drop-down list, try running your application as
an executable. Your application must be run once so that it can register itself. If
you still do not find your application in the drop-down list, try refreshing the Web
page. (Sometimes the Web browser caches this page, preventing you from seeing
the most recent changes.)

6 Once you have selected your application in the drop-down list, press the Go
button. This launches your application in the Web Application Debugger, which
provides you with details on request and response messages that pass between
your application and the Web Application Debugger.

Converting your application to another type of Web server application
When you have finished debugging your Web server application, you will need to
convert it to another type of Web application before you install it with a commercial
Web server. The following steps describe how to make these changes:

1 In the IDE, choose Project|Add New Project. This opens a new project without
closing down the current one (you Web server application).

2 Launch the wizard to start a Web Broker or WebSnap application and choose the
type of application you want to create.

3 Choose View|Project Manager to display the project manager.

4 In the project manager, drag all the units that make up your Web Server
application from the old project to the one you just added. Omit the unit that
implements the console window.

You now have a Web server application of the appropriate type.

Debugging Web applications that are DLLs

ISAPI , NSAPI, and Apache applications are actually DLLs that contain predefined
entry points. The Web server passes request messages to the application by making
calls to these entry points. Because these applications are DLLs, you can debug them
by setting your application’s run parameters to launch the server.

To set up your application’s run parameters, choose Run|Parameters and set the
Host Application and Run Parameters to specify the executable for the Web server
and any parameters it requires when you launch it. For details about these values on
your Web server, see the documentation provided by you Web server vendor.

Note Some Web Servers require additional changes before you have the rights to launch
the Host Application in this way. See your Web server vendor for details.

Tip If you are using Windows 2000 with IIS 5, details on all of the changes you need to
make to set up your rights properly are described at the following Web site:

C r e a t i n g I n t e r n e t a p p l i c a t i o n s 27-9

D e b u g g i n g s e r v e r a p p l i c a t i o n s

http://community.borland.com/article/0,1410,23024,00.html

Once you have set the Host Application and Run Parameters, you can set up your
breakpoints so that when the server passes a request message to your DLL, you hit
one of your breakpoints, and can debug normally.

Note Before launching the Web server using your application’s run parameters, make sure
that the server is not already running.

Debugging under Windows NT
Under Windows NT, you must have the correct user rights to debug a DLL. In the
User Manager, add your name to the lists granting rights for

• Log on as Service

• Act as part of the operation system

• Generate security audits

Tip Insert a hard-coded _asm int 3 into your code where you wish to begin debugging.
Recreate your DLL and use Just-In-Time Debugging (Tools|Options|Debug).

Debugging under Windows 2000
Under Windows 2000, you grant the same rights as follows:

1 In the Administrative Tools portion of the Control Panel, click on Local Security
Policy. Expand Local Policies and click on User Rights Assignment. Double-click
on Act as part of the operating system in the right-hand panel.

2 Select Add to add a user to the list. Add your current user.

3 Reboot so the changes take effect.

http://community.borland.com/article/0,1410,23024,00.html

27-10 D e v e l o p e r ’ s G u i d e

U s i n g W e b B r o k e r 28-1

C h a p t e r

28
Chapter 28Using Web Broker

Web Broker components (located on the Internet tab of the component palette)
enable you to create event handlers that are associated with a specific Uniform
Resource Identifier (URI). When processing is complete, You can programmatically
construct HTML or XML documents and transfer them to the client. You can use Web
Broker components for cross-platform application development.

Frequently, the content of Web pages is drawn from databases. You can use Internet
components to automatically manage connections to databases, allowing a single
DLL to handle numerous simultaneous, thread-safe database connections.

The following sections of this chapter explain how you use the Web Broker
components to create a Web server application.

Creating Web server applications with Web Broker
To create a new Web server application using the Web Broker architecture:

1 Select File|New|Other.

2 In the New Items dialog box, select the New tab and choose Web Server
Application.

3 A dialog box appears, where you can select one of the Web server application
types:

• ISAPI and NSAPI: Selecting this type of application sets up your project as a DLL,
with the exported methods expected by the Web server. It adds the library header
to the project file and the required entries to the uses list and exports clause of the
project file.

• Apache: Selecting this type of application sets up your project as a DLL, with the
exported methods expected by the Apache Web server. It adds the library header
to the project file and the required entries to the uses list and exports clause of the
project file.

28-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b B r o k e r

• CGI stand-alone: Selecting this type of application sets up your project as a console
application, and adds the required entries to the uses clause of the project file.

• Win-CGI stand-alone: Selecting this type of application sets up your project as a
Windows application, and adds the required entries to the uses clause of the
project file.

• Web Application Debugger stand-alone executable: Selecting this type of
application sets up an environment for developing and testing Web server
applications. This type of application is not intended for deployment.

Choose the type of Web Server Application that communicates with the type of Web
Server your application will use. This creates a new project configured to use Internet
components and containing an empty Web Module.

The Web module

The Web module (TWebModule) is a descendant of TDataModule and may be used in
the same way: to provide centralized control for business rules and non-visual
components in the Web application.

Add any content producers that your application uses to generate response
messages. These can be the built-in content producers such as TPageProducer,
TDataSetPageProducer, TDataSetTableProducer, TQueryTableProducer and
TInetXPageProducer, or descendants of TCustomContentProducer that you have written
yourself. If your application generates response messages that include material
drawn from databases, you can add data access components or special components
for writing a Web server that acts as a client in a multi-tiered database application.

In addition to storing non-visual components and business rules, the Web module
also acts as a dispatcher, matching incoming HTTP request messages to action items
that generate the responses to those requests.

You may have a data module already that is set up with many of the non-visual
components and business rules that you want to use in your Web application. You
can replace the Web module with your pre-existing data module. Simply delete the
automatically generated Web module and replace it with your data module. Then,
add a TWebDispatcher component to your data module, so that it can dispatch request
messages to action items, the way a Web module can. If you want to change the way
action items are chosen to respond to incoming HTTP request messages, derive a
new dispatcher component from TCustomWebDispatcher, and add that to the data
module instead.

Your project can contain only one dispatcher. This can either be the Web module that
is automatically generated when you create the project, or the TWebDispatcher
component that you add to a data module that replaces the Web module. If a second
data module containing a dispatcher is created during execution, the Web server
application generates a runtime error.

Note The Web module that you set up at design time is actually a template. In ISAPI and
NSAPI applications, each request message spawns a separate thread, and separate
instances of the Web module and its contents are created dynamically for each
thread.

U s i n g W e b B r o k e r 28-3

T h e s t r u c t u r e o f a W e b B r o k e r a p p l i c a t i o n

Warning The Web module in a DLL-based Web server application is cached for later reuse to
increase response time. The state of the dispatcher and its action list is not
reinitialized between requests. Enabling or disabling action items during execution
may cause unexpected results when that module is used for subsequent client
requests.

The Web Application object

The project that is set up for your Web application contains a global variable named
Application. Application is a descendant of TWebApplication (either TISAPIApplication
or TCGIApplication) that is appropriate to the type of application you are creating. It
runs in response to HTTP request messages received by the Web server.

Warning Do not include the forms unit in the project uses clause after the CGIApp or
ISAPIApp unit. Forms also declares a global variable named Application, and if it
appears after the CGIApp or ISAPIApp unit, Application will be initialized to an
object of the wrong type.

The structure of a Web Broker application
When the Web application receives an HTTP request message, it creates a
TWebRequest object to represent the HTTP request message, and a TWebResponse
object to represent the response that should be returned. The application then passes
these objects to the Web dispatcher (either the Web module or a TWebDispatcher
component).

The Web dispatcher controls the flow of the Web server application. The dispatcher
maintains a collection of action items (TWebActionItem) that know how to handle
certain types of HTTP request messages. The dispatcher identifies the appropriate
action items or auto-dispatching components to handle the HTTP request message,
and passes the request and response objects to the identified handler so that it can
perform any requested actions or formulate a response message. It is described more
fully in the section “The Web dispatcher” on page 28-4.

Figure 28.1 Structure of a Server Application

Web Module (Dispatcher)

Web
Server

Action
Item

Content
Producer

Web
Application

Web
Response

Action
Item

Content
Producer

Content
Producer

Web
Request

28-4 D e v e l o p e r ’ s G u i d e

T h e W e b d i s p a t c h e r

The action items are responsible for reading the request and assembling a response
message. Specialized content producer components aid the action items in
dynamically generating the content of response messages, which can include custom
HTML code or other MIME content. The content producers can make use of other
content producers or descendants of THTMLTagAttributes, to help them create the
content of the response message. For more information on content producers, see
“Generating the content of response messages” on page 28-13.

If you are creating the Web Client in a multi-tiered database application, your Web
server application may include additional, auto-dispatching components that
represent database information encoded in XML and database manipulation classes
encoded in javascript. If you are creating a server that implements a Web Service,
your Web server application may include an auto-dispatching component that passes
SOAP-based messages on to an invoker that interprets and executes them. The
dispatcher calls on these auto-dispatching components to handle the request message
after it has tried all of its action items.

When all action items (or auto-dispatching components) have finished creating the
response by filling out the TWebResponse object, the dispatcher passes the result back
to the Web application. The application sends the response on to the client via the
Web server.

The Web dispatcher
If you are using a Web module, it acts as a Web dispatcher. If you are using a pre-
existing data module, you must add a single dispatcher component (TWebDispatcher)
to that data module. The dispatcher maintains a collection of action items that know
how to handle certain kinds of request messages. When the Web application passes a
request object and a response object to the dispatcher, it chooses one or more action
items to respond to the request.

Adding actions to the dispatcher

Open the action editor from the Object Inspector by clicking the ellipsis on the Actions
property of the dispatcher. Action items can be added to the dispatcher by clicking
the Add button in the action editor.

Add actions to the dispatcher to respond to different request methods or target URIs.
You can set up your action items in a variety of ways. You can start with action items
that preprocess requests, and end with a default action that checks whether the
response is complete and either sends the response or returns an error code. Or, you
can add a separate action item for every type of request, where each action item
completely handles the request.

Action items are discussed in further detail in “Action items” on page 28-5.

U s i n g W e b B r o k e r 28-5

A c t i o n i t e m s

Dispatching request messages

When the dispatcher receives the client request, it generates a BeforeDispatch event.
This provides your application with a chance to preprocess the request message
before it is seen by any of the action items.

Next, the dispatcher looks through its list of action items for one that matches the
pathinfo portion of the request message’s target URL and that can provide the service
specified as the method of the request message. It does this by comparing the PathInfo
and MethodType properties of the TWebRequest object with the properties of the same
name on the action item.

When the dispatcher finds an appropriate action item, it causes that action item to
fire. When the action item fires, it does one of the following:

• Fills in the response content and sends the response or signals that the request is
completely handled.

• Adds to the response and then allows other action items to complete the job.

• Defers the request to other action items.

After checking all its action items, if the message is not handled the dispatcher checks
any specially registered auto-dispatching components that do not use action items.
These components are specific to multi-tiered database applications, which are
described in “Building Web applications using InternetExpress” on page 25-33

If, after checking all the action items and any specially registered auto-dispatching
components, the request message has still not been fully handled, the dispatcher calls
the default action item. The default action item does not need to match either the
target URL or the method of the request.

If the dispatcher reaches the end of the action list (including the default action, if any)
and no actions have been triggered, nothing is passed back to the server. The server
simply drops the connection to the client.

If the request is handled by the action items, the dispatcher generates an
AfterDispatch event. This provides a final opportunity for your application to check
the response that was generated, and make any last minute changes.

Action items
Each action item (TWebActionItem) performs a specific task in response to a given
type of request message.

Action items can completely respond to a request or perform part of the response and
allow other action items to complete the job. Action items can send the HTTP
response message for the request, or simply set up part of the response for other
action items to complete. If a response is completed by the action items but not sent,
the Web server application sends the response message.

28-6 D e v e l o p e r ’ s G u i d e

A c t i o n i t e m s

Determining when action items fire

Most properties of the action item determine when the dispatcher selects it to handle
an HTTP request message. To set the properties of an action item, you must first
bring up the action editor: select the Actions property of the dispatcher in the Object
Inspector and click on the ellipsis. When an action is selected in the action editor, its
properties can be modified in the Object Inspector.

The target URL
The dispatcher compares the PathInfo property of an action item to the PathInfo of the
request message. The value of this property should be the path information portion
of the URL for all requests that the action item is prepared to handle. For example,
given this URL,

http://www.TSite.com/art/gallery.dll/mammals?animal=dog&color=black

and assuming that the /gallery.dll part indicates the Web server application, the
path information portion is

/mammals

Use path information to indicate where your Web application should look for
information when servicing requests, or to divide you Web application into logical
subservices.

The request method type
The MethodType property of an action item indicates what type of request messages it
can process. The dispatcher compares the MethodType property of an action item to
the MethodType of the request message. MethodType can take one of the following
values:

Enabling and disabling action items
Each action item has an Enabled property that can be used to enable or disable that
action item. By setting Enabled to False, you disable the action item so that it is not
considered by the dispatcher when it looks for an action item to handle a request.

Table 28.1 MethodType values

Value Meaning

mtGet The request is asking for the information associated with the target URI to be
returned in a response message.

mtHead The request is asking for the header properties of a response, as if servicing an
mtGet request, but omitting the content of the response.

mtPost The request is providing information to be posted to the Web application.

mtPut The request asks that the resource associated with the target URI be replaced by the
content of the request message.

mtAny Matches any request method type, including mtGet, mtHead, mtPut, and mtPost.

http://www.TSite.com/art/gallery.dll/mammals?animal=dog&color=black

U s i n g W e b B r o k e r 28-7

A c t i o n i t e m s

A BeforeDispatch event handler can control which action items should process a
request by changing the Enabled property of the action items before the dispatcher
begins matching them to the request message.

Caution Changing the Enabled property of an action during execution may cause unexpected
results for subsequent requests. If the Web server application is a DLL that caches
Web modules, the initial state will not be reinitialized for the next request. Use the
BeforeDispatch event to ensure that all action items are correctly initialized to their
appropriate starting states.

Choosing a default action item
Only one of the action items can be the default action item. The default action item is
selected by setting its Default property to True. When the Default property of an action
item is set to True, the Default property for the previous default action item (if any) is
set to False.

When the dispatcher searches its list of action items to choose one to handle a
request, it stores the name of the default action item. If the request has not been fully
handled when the dispatcher reaches the end of its list of action items, it executes the
default action item.

The dispatcher does not check the PathInfo or MethodType of the default action item.
The dispatcher does not even check the Enabled property of the default action item.
Thus, you can make sure the default action item is only called at the very end by
setting its Enabled property to False.

The default action item should be prepared to handle any request that is
encountered, even if it is only to return an error code indicating an invalid URI or
MethodType. If the default action item does not handle the request, no response is sent
to the Web client.

Caution Changing the Default property of an action during execution may cause unexpected
results for the current request. If the Default property of an action that has already
been triggered is set to True, that action will not be re-evaluated and the dispatcher
will not trigger that action when it reaches the end of the action list.

Responding to request messages with action items

The real work of the Web server application is performed by action items when they
execute. When the Web dispatcher fires an action item, that action item can respond
to the current request message in two ways:

• If the action item has an associated producer component as the value of its
Producer property, that producer automatically assigns the Content of the response
message using its Content method. The Internet page of the component palette
includes a number of content producer components that can help construct an
HTML page for the content of the response message.

• After the producer has assigned any response content (if there is an associated
producer), the action item receives an OnAction event. The OnAction event handler
is passed the TWebRequest object that represents the HTTP request message and a
TWebResponse object to fill with any response information.

28-8 D e v e l o p e r ’ s G u i d e

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

If the action item’s content can be generated by a single content producer, it is
simplest to assign the content producer as the action item’s Producer property.
However, you can always access any content producer from the OnAction event
handler as well. The OnAction event handler allows more flexibility, so that you can
use multiple content producers, assign response message properties, and so on.

Both the content-producer component and the OnAction event handler can use any
objects or runtime library methods to respond to request messages. They can access
databases, perform calculations, construct or select HTML documents, and so on. For
more information about generating response content using content-producer
components, see “Generating the content of response messages” on page 28-13.

Sending the response
An OnAction event handler can send the response back to the Web client by using the
methods of the TWebResponse object. However, if no action item sends the response to
the client, it will still get sent by the Web server application as long as the last action
item to look at the request indicates that the request was handled.

Using multiple action items
You can respond to a request from a single action item, or divide the work up among
several action items. If the action item does not completely finish setting up the
response message, it must signal this state in the OnAction event handler by setting
the Handled parameter to False.

If many action items divide up the work of responding to request messages, each
setting Handled to False so that others can continue, make sure the default action item
leaves the Handled parameter set to True. Otherwise, no response will be sent to the
Web client.

When dividing the work among several action items, either the OnAction event
handler of the default action item or the AfterDispatch event handler of the dispatcher
should check whether all the work was done and set an appropriate error code if it is
not.

Accessing client request information
When an HTTP request message is received by the Web server application, the
headers of the client request are loaded into the properties of a TWebRequest object. In
NSAPI and ISAPI applications, the request message is encapsulated by a
TISAPIRequest object. Console CGI applications use TCGIRequest objects, and
Windows CGI applications use TWinCGIRequest objects.

The properties of the request object are read-only. You can use them to gather all of
the information available in the client request.

U s i n g W e b B r o k e r 28-9

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

Properties that contain request header information

Most properties in a request object contain information about the request that comes
from the HTTP request header. Not every request supplies a value for every one of
these properties. Also, some requests may include header fields that are not surfaced
in a property of the request object, especially as the HTTP standard continues to
evolve. To obtain the value of a request header field that is not surfaced as one of the
properties of the request object, use the GetFieldByName method.

Properties that identify the target
The full target of the request message is given by the URL property. Usually, this is a
URL that can be broken down into the protocol (HTTP), Host (server system),
ScriptName (server application), PathInfo (location on the host), and Query.

Each of these pieces is surfaced in its own property. The protocol is always HTTP,
and the Host and ScriptName identify the Web server application. The dispatcher uses
the PathInfo portion when matching action items to request messages. The Query is
used by some requests to specify the details of the requested information. Its value is
also parsed for you as the QueryFields property.

Properties that describe the Web client
The request also includes several properties that provide information about where
the request originated. These include everything from the e-mail address of the
sender (the From property), to the URI where the message originated (the Referer or
RemoteHost property). If the request contains any content, and that content does not
arise from the same URI as the request, the source of the content is given by the
DerivedFrom property. You can also determine the IP address of the client (the
RemoteAddr property), and the name and version of the application that sent the
request (the UserAgent property).

Properties that identify the purpose of the request
The Method property is a string describing what the request message is asking the
server application to do. The HTTP 1.1 standard defines the following methods:

Value What the message requests

OPTIONS Information about available communication options.

GET Information identified by the URL property.

HEAD Header information from an equivalent GET message, without the content of the
response.

POST The server application to post the data included in the Content property, as
appropriate.

PUT The server application to replace the resource indicated by the URL property
with the data included in the Content property.

DELETE The server application to delete or hide the resource identified by the URL
property.

TRACE The server application to send a loop-back to confirm receipt of the request.

28-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

The Method property may indicate any other method that the Web client requests of
the server.

The Web server application does not need to provide a response for every possible
value of Method. The HTTP standard does require that it service both GET and HEAD
requests, however.

The MethodType property indicates whether the value of Method is GET (mtGet),
HEAD (mtHead), POST (mtPost), PUT (mtPut) or some other string (mtAny). The
dispatcher matches the value of the MethodType property with the MethodType of each
action item.

Properties that describe the expected response
The Accept property indicates the media types the Web client will accept as the
content of the response message. The IfModifiedSince property specifies whether the
client only wants information that has changed recently. The Cookie property
includes state information (usually added previously by your application) that can
modify the response.

Properties that describe the content
Most requests do not include any content, as they are requests for information.
However, some requests, such as POST requests, provide content that the Web server
application is expected to use. The media type of the content is given in the
ContentType property, and its length in the ContentLength property. If the content of
the message was encoded (for example, for data compression), this information is in
the ContentEncoding property. The name and version number of the application that
produced the content is specified by the ContentVersion property. The Title property
may also provide information about the content.

The content of HTTP request messages

In addition to the header fields, some request messages include a content portion that
the Web server application should process in some way. For example, a POST
request might include information that should be added to a database maintained by
the Web server application.

The unprocessed value of the content is given by the Content property. If the content
can be parsed into fields separated by ampersands (&), a parsed version is available
in the ContentFields property.

Creating HTTP response messages
When the Web server application creates a TWebRequest object for an incoming HTTP
request message, it also creates a corresponding TWebResponse object to represent the
response message that will be sent in return. In NSAPI and ISAPI applications, the
response message is encapsulated by a TISAPIResponse object. Console CGI
applications use TCGIResponse objects, and Windows CGI applications use
TWinCGIResponse objects.

U s i n g W e b B r o k e r 28-11

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

The action items that generate the response to a Web client request fill in the
properties of the response object. In some cases, this may be as simple as returning an
error code or redirecting the request to another URI. In other cases, this may involve
complicated calculations that require the action item to fetch information from other
sources and assemble it into a finished form. Most request messages require some
response, even if it is only the acknowledgment that a requested action was carried
out.

Filling in the response header

Most of the properties of the TWebResponse object represent the header information of
the HTTP response message that is sent back to the Web client. An action item sets
these properties from its OnAction event handler.

Not every response message needs to specify a value for every one of the header
properties. The properties that should be set depend on the nature of the request and
the status of the response.

Indicating the response status
Every response message must include a status code that indicates the status of the
response. You can specify the status code by setting the StatusCode property. The
HTTP standard defines a number of standard status codes with predefined
meanings. In addition, you can define your own status codes using any of the unused
possible values.

Each status code is a three-digit number where the most significant digit indicates the
class of the response, as follows:

• 1xx: Informational (The request was received but has not been fully processed).

• 2xx: Success (The request was received, understood, and accepted).

• 3xx: Redirection (Further action by the client is needed to complete the request).

• 4xx: Client Error (The request cannot be understood or cannot be serviced).

• 5xx: Server Error (The request was valid but the server could not handle it).

Associated with each status code is a string that explains the meaning of the status
code. This is given by the ReasonString property. For predefined status codes, you do
not need to set the ReasonString property. If you define your own status codes, you
should also set the ReasonString property.

Indicating the need for client action
When the status code is in the 300-399 range, the client must perform further action
before the Web server application can complete its request. If you need to redirect the
client to another URI, or indicate that a new URI was created to handle the request,
set the Location property. If the client must provide a password before you can
proceed, set the WWWAuthenticate property.

28-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

Describing the server application
Some of the response header properties describe the capabilities of the Web server
application. The Allow property indicates the methods to which the application can
respond. The Server property gives the name and version number of the application
used to generate the response. The Cookies property can hold state information about
the client’s use of the server application which is included in subsequent request
messages.

Describing the content
Several properties describe the content of the response. ContentType gives the media
type of the response, and ContentVersion is the version number for that media type.
ContentLength gives the length of the response. If the content is encoded (such as for
data compression), indicate this with the ContentEncoding property. If the content
came from another URI, this should be indicated in the DerivedFrom property. If the
value of the content is time-sensitive, the LastModified property and the Expires
property indicate whether the value is still valid. The Title property can provide
descriptive information about the content.

Setting the response content

For some requests, the response to the request message is entirely contained in the
header properties of the response. In most cases, however, action item assigns some
content to the response message. This content may be static information stored in a
file, or information that was dynamically produced by the action item or its content
producer.

You can set the content of the response message by using either the Content property
or the ContentStream property.

The Content property is a string. Delphi strings are not limited to text values, so the
value of the Content property can be a string of HTML commands, graphics content
such as a bit-stream, or any other MIME content type.

Use the ContentStream property if the content for the response message can be read
from a stream. For example, if the response message should send the contents of a
file, use a TFileStream object for the ContentStream property. As with the Content
property, ContentStream can provide a string of HTML commands or other MIME
content type. If you use the ContentStream property, do not free the stream yourself.
The Web response object automatically frees it for you.

Note If the value of the ContentStream property is not nil, the Content property is ignored.

Sending the response

If you are sure there is no more work to be done in response to a request message,
you can send a response directly from an OnAction event handler. The response
object provides two methods for sending a response: SendResponse and SendRedirect.
Call SendResponse to send the response using the specified content and all the header
properties of the TWebResponse object. If you only need to redirect the Web client to
another URI, the SendRedirect method is more efficient.

U s i n g W e b B r o k e r 28-13

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

If none of the event handlers send the response, the Web application object sends it
after the dispatcher finishes. However, if none of the action items indicate that they
have handled the response, the application will close the connection to the Web client
without sending any response.

Generating the content of response messages
Delphi provides a number of objects to assist your action items in producing content
for HTTP response messages. You can use these objects to generate strings of HTML
commands that are saved in a file or sent directly back to the Web client. You can
write your own content producers, deriving them from TCustomContentProducer or
one of its descendants.

TCustomContentProducer provides a generic interface for creating any MIME type as
the content of an HTTP response message. Its descendants include page producers
and table producers:

• Page producers scan HTML documents for special tags that they replace with
customized HTML code. They are described in the following section.

• Table producers create HTML commands based on the information in a dataset.
They are described in “Using database information in responses” on page 28-17.

Using page producer components

Page producers (TPageProducer and its descendants) take an HTML template and
convert it by replacing special HTML-transparent tags with customized HTML code.
You can store a set of standard response templates that are filled in by page
producers when you need to generate the response to an HTTP request message. You
can chain page producers together to iteratively build up an HTML document by
successive refinement of the HTML-transparent tags.

HTML templates
An HTML template is a sequence of HTML commands and HTML-transparent tags.
An HTML-transparent tag has the form

<#TagName Param1=Value1 Param2=Value2 ...>

The angle brackets (< and >) define the entire scope of the tag. A pound sign (#)
immediately follows the opening angle bracket (<) with no spaces separating it from
the angle bracket. The pound sign identifies the string to the page producer as an
HTML-transparent tag. The tag name immediately follows the pound sign with no
spaces separating it from the pound sign. The tag name can be any valid identifier
and identifies the type of conversion the tag represents.

Following the tag name, the HTML-transparent tag can optionally include
parameters that specify details of the conversion to be performed. Each parameter is
of the form ParamName=Value, where there is no space between the parameter name,
the equals symbol (=) and the value. The parameters are separated by whitespace.

28-14 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

The angle brackets (< and >) make the tag transparent to HTML browsers that do not
recognize the #TagName construct.

While you can create your own HTML-transparent tags to represent any kind of
information processed by your page producer, there are several predefined tag
names associated with values of the TTag data type. These predefined tag names
correspond to HTML commands that are likely to vary over response messages. They
are listed in the following table:

Any other tag name is associated with tgCustom. The page producer supplies no
built-in processing of the predefined tag names. They are simply provided to help
applications organize the conversion process into many of the more common tasks.

Note The predefined tag names are case insensitive.

Specifying the HTML template
Page producers provide you with many choices in how to specify the HTML
template. You can set the HTMLFile property to the name of a file that contains the
HTML template. You can set the HTMLDoc property to a TStrings object that contains
the HTML template. If you use either the HTMLFile property or the HTMLDoc
property to specify the template, you can generate the converted HTML commands
by calling the Content method.

In addition, you can call the ContentFromString method to directly convert an HTML
template that is a single string which is passed in as a parameter. You can also call the
ContentFromStream method to read the HTML template from a stream. Thus, for
example, you could store all your HTML templates in a memo field in a database,
and use the ContentFromStream method to obtain the converted HTML commands,
reading the template directly from a TBlobStream object.

Converting HTML-transparent tags
The page producer converts the HTML template when you call one of its Content
methods. When the Content method encounters an HTML-transparent tag, it triggers

Tag Name TTag value What the tag should be converted to

Link tgLink A hypertext link. The result is an HTML sequence beginning
with an <A> tag and ending with an tag.

Image tgImage A graphic image. The result is an HTML tag.

Table tgTable An HTML table. The result is an HTML sequence beginning
with a <TABLE> tag and ending with a </TABLE> tag.

ImageMap tgImageMap A graphic image with associated hot zones. The result is an
HTML sequence beginning with a <MAP> tag and ending
with a </MAP> tag.

Object tgObject An embedded ActiveX object. The result is an HTML
sequence beginning with an <OBJECT> tag and ending with
an </OBJECT> tag.

Embed tgEmbed A Netscape-compliant add-in DLL. The result is an HTML
sequence beginning with an <EMBED> tag and ending with
an </EMBED> tag.

U s i n g W e b B r o k e r 28-15

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

the OnHTMLTag event. You must write an event handler to determine the type of tag
encountered, and to replace it with customized content.

If you do not create an OnHTMLTag event handler for the page producer, HTML-
transparent tags are replaced with an empty string.

Using page producers from an action item
A typical use of a page producer component uses the HTMLFile property to specify a
file containing an HTML template. The OnAction event handler calls the Content
method to convert the template into a final HTML sequence:

procedure WebModule1.MyActionEventHandler(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

begin
PageProducer1.HTMLFile := 'Greeting.html';
Response.Content := PageProducer1.Content;

end;

Greeting.html is a file that contains this HTML template:

<HTML>
<HEAD><TITLE>Our brand new web site</TITLE></HEAD>
<BODY>
Hello <#UserName>! Welcome to our web site.
</BODY>
</HTML>

The OnHTMLTag event handler replaces the custom tag (<#UserName>) in the HTML
during execution:

procedure WebModule1.PageProducer1HTMLTag(Sender : TObject;Tag: TTag;
const TagString: string; TagParams: TStrings; var ReplaceText: string);

begin
if CompareText(TagString,'UserName') = 0 then

ReplaceText := TPageProducer(Sender).Dispatcher.Request.Content;
end;

If the content of the request message was the string Mr. Ed, the value of
Response.Content would be

<HTML>
<HEAD><TITLE>Our brand new web site</TITLE></HEAD>
<BODY>
Hello Mr. Ed! Welcome to our web site.
</BODY>
</HTML>

Note This example uses an OnAction event handler to call the content producer and assign
the content of the response message. You do not need to write an OnAction event
handler if you assign the page producer’s HTMLFile property at design time. In that
case, you can simply assign PageProducer1 as the value of the action item’s Producer
property to accomplish the same effect as the OnAction event handler above.

28-16 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

Chaining page producers together
The replacement text from an OnHTMLTag event handler need not be the final
HTML sequence you want to use in the HTTP response message. You may want to
use several page producers, where the output from one page producer is the input
for the next.

The simplest way is to chain the page producers together is to associate each page
producer with a separate action item, where all action items have the same PathInfo
and MethodType. The first action item sets the content of the Web response message
from its content producer, but its OnAction event handler makes sure the message is
not considered handled. The next action item uses the ContentFromString method of
its associated producer to manipulate the content of the Web response message, and
so on. Action items after the first one use an OnAction event handler such as the
following:

procedure WebModule1.Action2Action(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := PageProducer2.ContentFromString(Response.Content);

end;

For example, consider an application that returns calendar pages in response to
request messages that specify the month and year of the desired page. Each calendar
page contains a picture, followed by the name and year of the month between small
images of the previous month and next months, followed by the actual calendar. The
resulting image looks something like this:

The general form of the calendar is stored in a template file. It looks like this:

<HTML>
<Head></HEAD>
<BODY>
<#MonthlyImage> <#TitleLine><#MainBody>
</BODY>
</HTML>

The OnHTMLTag event handler of the first page producer looks up the month and
year from the request message. Using that information and the template file, it does
the following:

• Replaces <#MonthlyImage> with <#Image Month=January Year=1997>.

• Replaces <#TitleLine> with <#Calendar Month=December Year=1996
Size=Small> January 1997 <#Calendar Month=February Year=1997 Size=Small>.

• Replaces <#MainBody> with <#Calendar Month=January Year=1997 Size=Large>.

U s i n g W e b B r o k e r 28-17

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

The OnHTMLTag event handler of the next page producer uses the content produced
by the first page producer, and replaces the <#Image Month=January Year=1997> tag
with the appropriate HTML tag. Yet another page producer resolves the
#Calendar tags with appropriate HTML tables.

Using database information in responses
The response to an HTTP request message may include information taken from a
database. Specialized content producers on the Internet palette page can generate the
HTML to represent the records from a database in an HTML table.

As an alternate approach, special components on the InternetExpress page of the
component palette let you build Web servers that are part of a multi-tiered database
application. See “Building Web applications using InternetExpress” on page 25-33
for details.

Adding a session to the Web module

Both console CGI applications and Win-CGI applications are launched in response to
HTTP request messages. When working with databases in these types of
applications, you can use the default session to manage your database connections,
because each request message has its own instance of the application. Each instance
of the application has its own distinct, default session.

When writing an ISAPI application or an NSAPI application, however, each request
message is handled in a separate thread of a single application instance. To prevent
the database connections from different threads from interfering with each other, you
must give each thread its own session.

Each request message in an ISAPI or NSAPI application spawns a new thread. The
Web module for that thread is generated dynamically at runtime. Add a TSession
object to the Web module to handle the database connections for the thread that
contains the Web module.

Separate instances of the Web module are generated for each thread at runtime. Each
of those modules contains the session object. Each of those sessions must have a
separate name, so that the threads that handle separate request messages do not
interfere with each other’s database connections. To cause the session objects in each
module to dynamically generate unique names for themselves, set the
AutoSessionName property of the session object. Each session object will dynamically
generate a unique name for itself and set the SessionName property of all datasets in
the module to refer to that unique name. This allows all interaction with the database
for each request thread to proceed without interfering with any of the other request
messages. For more information on sessions, see “Managing database sessions” on
page 20-16.

28-18 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

Representing database information in HTML

Specialized Content producer components on the Internet palette page supply
HTML commands based on the records of a dataset. There are two types of data-
aware content producers:

• The dataset page producer, which formats the fields of a dataset into the text of an
HTML document.

• Table producers, which format the records of a dataset as an HTML table.

Using dataset page producers
Dataset page producers work like other page producer components: they convert a
template that includes HTML-transparent tags into a final HTML representation.
They include the special ability, however, of converting tags that have a tagname
which matches the name of a field in a dataset into the current value of that field. For
more information about using page producers in general, see “Using page producer
components” on page 28-13.

To use a dataset page producer, add a TDataSetPageProducer component to your web
module and set its DataSet property to the dataset whose field values should be
displayed in the HTML content. Create an HTML template that describes the output
of your dataset page producer. For every field value you want to display, include a
tag of the form

<#FieldName>

in the HTML template, where FieldName specifies the name of the field in the dataset
whose value should be displayed.

When your application calls the Content, ContentFromString, or ContentFromStream
method, the dataset page producer substitutes the current field values for the tags
that represent fields.

Using table producers
The Internet palette page includes two components that create an HTML table to
represent the records of a dataset:

• Dataset table producers, which format the fields of a dataset into the text of an
HTML document.

• Query table producers, which runs a query after setting parameters supplied by
the request message and formats the resulting dataset as an HTML table.

Using either of the two table producers, you can customize the appearance of a
resulting HTML table by specifying properties for the table’s color, border, separator
thickness, and so on. To set the properties of a table producer at design time, double-
click the table producer component to display the Response Editor dialog.

Specifying the table attributes
Table producers use the THTMLTableAttributes object to describe the visual
appearance of the HTML table that displays the records from the dataset. The

U s i n g W e b B r o k e r 28-19

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

THTMLTableAttributes object includes properties for the table’s width and spacing
within the HTML document, and for its background color, border thickness, cell
padding, and cell spacing. These properties are all turned into options on the HTML
<TABLE> tag created by the table producer.

At design time, specify these properties using the Object Inspector. Select the table
producer object in the Object Inspector and expand the TableAttributes property to
access the display properties of the THTMLTableAttributes object.

You can also specify these properties programmatically at runtime.

Specifying the row attributes
Similar to the table attributes, you can specify the alignment and background color of
cells in the rows of the table that display data. The RowAttributes property is a
THTMLTableRowAttributes object.

At design time, specify these properties using the Object Inspector by expanding the
RowAttributes property. You can also specify these properties programmatically at
runtime.

You can also adjust the number of rows shown in the HTML table by setting the
MaxRows property.

Specifying the columns
If you know the dataset for the table at design time, you can use the Columns editor
to customize the columns’ field bindings and display attributes. Select the table
producer component, and right-click. From the context menu, choose the Columns
editor. This lets you add, delete, or rearrange the columns in the table. You can set the
field bindings and display properties of individual columns in the Object Inspector
after selecting them in the Columns editor.

If you are getting the name of the dataset from the HTTP request message, you can’t
bind the fields in the Columns editor at design time. However, you can still
customize the columns programmatically at runtime, by setting up the appropriate
THTMLTableColumn objects and using the methods of the Columns property to add
them to the table. If you do not set up the Columns property, the table producer
creates a default set of columns that match the fields of the dataset and specify no
special display characteristics.

Embedding tables in HTML documents
You can embed the HTML table that represents your dataset in a larger document by
using the Header and Footer properties of the table producer. Use Header to specify
everything that comes before the table, and Footer to specify everything that comes
after the table.

You may want to use another content producer (such as a page producer) to create
the values for the Header and Footer properties.

If you embed your table in a larger document, you may want to add a caption to the
table. Use the Caption and CaptionAlignment properties to give your table a caption.

28-20 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

Setting up a dataset table producer
TDataSetTableProducer is a table producer that creates an HTML table for a dataset.
Set the DataSet property of TDataSetTableProducer to specify the dataset that contains
the records you want to display. You do not set the DataSource property, as you
would for most data-aware objects in a conventional database application. This is
because TDataSetTableProducer generates its own data source internally.

You can set the value of DataSet at design time if your Web application always
displays records from the same dataset. You must set the DataSet property at runtime
if you are basing the dataset on the information in the HTTP request message.

Setting up a query table producer
You can produce an HTML table to display the results of a query, where the
parameters of the query come from the HTTP request message. Specify the TQuery
object that uses those parameters as the Query property of a TQueryTableProducer
component.

If the request message is a GET request, the parameters of the query come from the
Query fields of the URL that was given as the target of the HTTP request message. If
the request message is a POST request, the parameters of the query come from the
content of the request message.

When you call the Content method of TQueryTableProducer, it runs the query, using
the parameters it finds in the request object. It then formats an HTML table to display
the records in the resulting dataset.

As with any table producer, you can customize the display properties or column
bindings of the HTML table, or embed the table in a larger HTML document.

U s i n g W e b S n a p 29-1

C h a p t e r

29
Chapter29Using WebSnap

WebSnap augments WebBroker with new components, wizards, and views—making
it easier to build Web applications that contain complex, data-driven Web pages.
WebSnap's support for multiple modules and for server-side scripts makes team
development easier.

The dispatcher components automatically handle requests for page content, HTML
form submissions, and requests for dynamic images. New components called
adapters provide a means to define a scriptable interface to the business rules of your
application. For example, the TDataSetAdapter object is used to make data-set
components scriptable. You can use new producer components to quickly build
complex, data-driven forms and tables, or to use XSL to generate a page. You can use
the session component to keep track of end-users. You can use the user list
component to provide access to user names, passwords, and access rights.

The Web application wizard allows you to quickly build an application that is
customized with the components that you will need. The Web page module wizard
allows you to create a module that defines a new page in your application. Or use the
Web data module wizard to create a container for components that are shared across
your Web application.

The page module views make it possible to see the result of server-side script without
running the application. The Preview tab shows the page in an embedded browser.
The HTML Result view shows the generated HTML. The XSL Tree and XML Tree
views make it easier to work with XML and XSL.

To support a team of developers, you can use WebSnap's multiple-module support
to partition the application into units that can be worked on independently. When
creating a new page module, you can have the page module wizard create an
external template file. You can edit the template file outside of the IDE and test it
without recompiling the application.

The following sections of this chapter explain how you use the WebSnap components
to create a Web server application.

29-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

Creating Web server applications with WebSnap
To create a new Web server application using the WebSnap architecture:

1 Select File|New|Other.

2 In the New Items dialog box, select the WebSnap tab and choose WebSnap
Application.

3 A dialog box appears which requires the following types of information:

• Server type

• Web application module types

• Web application module options

• Application components

Server type

Select one of the following types of Web server application, depending on your
application’s type of Web server:

• ISAPI and NSAPI: Selecting this type of application sets up your project as a DLL
with the exported methods expected by the Web server. It adds the library header
to the project file, and adds the required entries to the uses list and to the exports
clause of the project file.

• Apache: Selecting this type of application sets up your project as a DLL with the
exported methods expected by the Apache Web server. It adds the library header
to the project file and the required entries to the uses list and exports clause of the
project file.

• CGI stand-alone: Selecting this type of application sets up your project as a console
application, and adds the required entries to the uses clause of the project file.

• Win-CGI stand-alone: Selecting this type of application sets up your project as a
Windows application and adds the required entries to the uses clause of the
project file.

• Web Application Debugger executable: Selecting this type of application sets up
an environment for developing and testing Web server applications. This type of
application is not intended for deployment.

Choose the type of Web server application that communicates with the type of Web
server your application will use.

U s i n g W e b S n a p 29-3

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

Web application module types

The Web application module provides centralized control for business rules and non-
visual components in the Web application. There are two types of Web application
modules:

• Page Module: Selecting this type of module creates a content page. The page
module contains a page producer which is responsible for generating the content
of a page. The page producer displays its associated page when the HTTP request
pathinfo matches the page name. The page can act as the default page when the
pathinfo is blank.

• Data Module: Selecting this type of module does not create a content page. This
module is used as a container for components shared by other modules—for
example, database components used by two Web Page modules.

Web application module options

If the selected application module type is page module, you can associate a name
with the page by entering a name in the Page Name field in the dialog box. At
runtime, the instance of this module can be either kept in cache, or removed from
memory when the request has been serviced. Select either of the options from the
Caching field. You can select more page module options through the Page Options
button. You can set the following categories:

• Producer: The producer type for the page can be set to one of AdapterPageProducer,
DataSetPageProducer, InetXPageProducer, PageProducer, or XSLPageProducer. If the
selected page producer supports scripting, then use the Script Engine drop-down
list to select the language used to script the page.

Note The AdapterPageProducer supports only JScript.

• HTML: When the selected producer uses an HTML template this group will be
visible.

• XSL: When the selected producer uses an XSL template, such as
TXSLPageProducer, this group will be visible.

• New File: Check New File if you want a template file to be created and managed
as part of the unit. A managed template file will appear in the project manager and
have the same file name and location as the unit source file. Uncheck New File if
you want to use the properties of the producer component (typically the
HTMLDoc or HTMLFile property).

• Template: When New File is checked, choose the default content for the template
file from the Template drop-down. The “Default” template displays the title of the
application, the title of the page, and hyperlinks to published pages.

• Page: Enter a page name and title for the page module. The page name is used to
reference the page in an HTTP request or within the application's logic, whereas
the title is the name that the end user will see when the page is displayed in a
browser.

29-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

• Published: Check Published to allow the page to automatically respond to HTTP
requests where the page name matches the pathinfo in the request message.

• Login Required: Check Login Required to require the user to log on before the
page can be accessed.

Application components

Application components provide the Web application’s functionality. For example,
including an adapter dispatcher component automatically handles HTML form
submissions and the return of dynamically generated images. Including a page
dispatcher automatically displays the content of a page when the HTTP request
pathinfo contains the name of the page.

Selecting the Components button displays a dialog box where you can select one or
more of the Application components:

• Application Adapter: Contains information about the application, such as the title.
The default type is TApplicationAdapter.

• End User Adapter: Contains information about the user, such as their name, access
rights, and whether they are logged in. The default type is TEndUserAdapter.
TEndUserSessionAdapter may also be selected.

• Page Dispatcher: Examines the HTTP request’s pathinfo, and calls the appropriate
page module to return the content of a page. The default type is TPageDispatcher.

• Adapter Dispatcher: Automatically handles HTML form submissions, and
requests for dynamic images, by calling adapter action and field components. The
default type is TAdapterDispatcher.

• Dispatch Actions: Allows you to define a collection of action items to handle
requests based on pathinfo and method type. Action items call user-defined
events, or request the content of page-producer components. The default type is
TWebDispatcher.

• Locate File Service: Provides control over the loading of template files, and script
include files, when the Web application is running. The default type is
TLocateFileService.

• Sessions Service: Used to store information about an end-users that is needed for a
short period of time. For example, you can use sessions to keep track of logged-in
users, and to automatically log a user out after a period of inactivity. The default
type is TSessionService.

• User List Service: Keeps track of authorized users, and their passwords and access
rights. The default type is TWebUserList.

For each of the above components, the component types listed are the default types
shipped with the Delphi software product. Users can create their own component
types or use third-party component types.

U s i n g W e b S n a p 29-5

W e b m o d u l e s

Web modules
There are four Web module types:

• TWebAppPageModule
• TWebAppDataModule
• TWebPageModule
• TWebDataModule

The Web application module (TWebAppPageModule or TWebAppDataModule) is a
container for the application components that perform functions for the application
as a whole—such as dispatching requests, managing sessions, and maintaining user
lists. Your project can contain only one of these types of application modules.

The Web page module (TWebPageModule) provides content to a page and the Web
data module (TWebDataModule) acts as a container for components shared across
your application. You can optionally include one or more Web page and Web data
modules in the Web application module.

Web data modules

Like standard data modules, a Web data module is a container for components from
the palette. Data modules provide a design surface for adding, removing, and
selecting components. When the application is running, a data module does not
create a window.

The Web data module differs from a standard data module in the structure of the
unit and the interfaces that the Web data module implements.

Use the Web data module as a container for components that are shared across your
application. For example, you can put a dataset component in a data module and
access the dataset from both:

• a page module that displays a grid, and
• a page module that displays an input form.

Structure of a Web data module unit
Standard data modules have a variable called the form variable, which is used to
access the data module object. Web data modules replace this with a function. The
purpose is the same. However, because WebSnap applications may be multi-
threaded and may have multiple instances of a particular module that service
multiple requests concurrently, this function is implemented to return the correct
instance.

The unit also registers a factory. The factory specifies how the module should be
managed by the WebSnap application. For example, flags indicate whether to cache
the module and reuse it for other requests, or to destroy the module after a request
has been serviced.

29-6 D e v e l o p e r ’ s G u i d e

W e b m o d u l e s

Interfaces implemented by a Web data module
A Web data module implements the following interfaces:

INotifyWebActivate: This interface is called when the module is activated to service a
Web request, and before the module is deactivated after a Web request is serviced.

IWebVariablesContainer: This interface is called during script execution to resolve
variable references. The adapter dispatcher also calls this interface to locate adapter
actions and fields that are referenced in an HTTP request.

IGetScriptObject: This interface is called to retrieve the module’s IDispatch
implementation. The returned object is the interface between the module and the
active scripting engine.

IIteratorObjectSupport: This interface is used to iterate through all of the objects within
the module that can be accessed by active scripting.

Web page modules

The page module has a page producer component associated with it. When a request
is received, the page dispatcher analyses the request and calls the appropriate page
module to process the request and return the content of the page.

Like Web data modules, Web page modules are containers for components. The
difference between a Web data module and a Web page module is that a Web page
module is used to produce a Web page.

Page producer component
Web page modules have a property that identifies the page producer component
responsible for generating content for the page. The WebSnap wizards automatically
adds a producer when creating a Web page module. You can change the page
producer component later by dropping in a different producer from the WebSnap
palette. However, if the page module has a template file, be sure that the content of
this file is compatible with the producer component.

Page name
Web page modules have a page name that can be used to reference the page in an
HTTP request or within the application's logic. A factory in the Web page module’s
unit specifies the page name for the Web page module.

Producer template
Most page producers use a template. HTML templates typically contain some static
HTML mixed in with transparent tags or server-side script. When page producers
create their content, they replace the transparent tags with appropriate values and
execute the server-side script to produce the HTML that is displayed by a client
browser. The XSLPageProducer is an exception to this. It uses XSL templates, which
contain XSL rather than HTML. The XSL templates do not support transparent tags
or server-side script.

U s i n g W e b S n a p 29-7

W e b m o d u l e s

Web page modules may have an associated template file that is managed as part of
the unit. A managed template file appears in the project manager and has the same
base file name and location as the unit service file. If the Web page module does not
have an associated template file then the properties of the page producer component
specify the template.

Interfaces that the Web page module implements
A Web page module implements all of the interfaces of a Web data module, in
addition to the following:

IDefaultPageFileName: The WebSnap surface designer uses this interface to ensure
that a page module uses the proper template file.

ISetWebContentOptions: The WebSnap surface designer uses this interface to control
the content that the page module generates. For example, an option can be used to
retrieve the content before the Active Script executes.

IGetProducerComponent: The WebSnap surface designer uses this interface to retrieve
the producer component associated with the page module.

IProducerEditorViewSupport: The WebSnap surface designer uses this interface to
retrieve information about the editor views that it should display when the page
module is active. The available editor views include HTML Script, Preview, HTML
Result, XSL Tree, and XML Tree.

IPageResult: This interface provides access to the result that a page module produces.
This interface supports three types of results: HTTP Content, HTTP Redirection, and
Page Include.

IGetDefaultAction: This interface retrieves the default adapter action (if any) that is
associated with the page module.

Web application modules

The Web application module implements interfaces that are not implemented by
TWebPageModule or TWebDataModule.

Interfaces implemented by a Web application data module
A Web application data module implements all the interfaces of a Web data module,
in addition to the following:

IGetWebAppServices: Retrieves the interface to the application's Web request handler.

IGetWebAppComponents: Retrieves the interface to the application-level components,
including the AdapterDispatcher, PageDispatcher, SessionsService, and
EndUserAdapter.

Interfaces implemented by a Web application page module
A Web application page module implements all the interfaces of a Web Application
data module and a Web page module.

29-8 D e v e l o p e r ’ s G u i d e

A d a p t e r s

Adapters
Adapters provide a way to create an interface to the application data. They allow you
to insert scripting languages into a page, and to retrieve information by making calls
from your script code to the adapters.

For example, you can use an adapter to define data fields to be displayed on an
HTML page. A scripted HTML page can then contain HTML content and script
statements that retrieve the values of those data fields.

Fields

Fields are components that the page producer uses to retrieve data from your
application and to display the content on a Web page. Fields can also be used to
retrieve an image. In this case, the field returns the address of the image written to
the Web page. When a page displays its content, a request sent to the Web
application, invokes the adapter dispatcher to retrieve the actual image from the field
component.

Actions

Actions are components that execute commands on behalf of the adapter. When a
page producer generates its page, the scripting language calls adapter action
components to return the name of the action along with any parameters necessary to
execute the command. For example, consider clicking a button on an HTML form to
delete a row from a table. This returns, in the HTTP request, the action name
associated with the button and a parameter indicating the row number. The adapter
dispatcher locates the named action component and passes the row number as a
parameter to the action.

Errors

Adapters keep a list of errors that occur while executing an action. Page producers
can access this list of errors and display them in the Web page that the application
returns to the end user.

Records

Some adapter components, such as TDataSetAdapter, represent multiple rows. The
adapter provides a scripting interface which allows iteration through the rows. Some
adapters support paging, and iterate over only the rows on the current page.

U s i n g W e b S n a p 29-9

P a g e p r o d u c e r s

Page producers
You use page producers to generate content on behalf of a Web page module. You
can also use producers in the same way as they are used in WebBroker applications,
by associating the producer with a Web dispatcher action item. The advantages of
using the Web page module are:

• the ability to preview the page’s layout without running the application, and

• the ability to associate a page name with the module, so that the page dispatcher
can call the page producer automatically.

Templates

Producers provide the following functionality:

• They generate HTML content.

• They can reference an external file using the HTMLfile property, or the internal
string using the HTMLDoc property.

• When the producers are used in conjunction with a Web page module, the
template can be a file associated with a unit.

• Producers dynamically generate HTML which can be inserted into the template
using transparent tags or active scripting. Transparent tags can be used in the
same way as WebBroker applications. For more details, see “Converting HTML-
transparent tags” on page 28-14. Active scripting support allows you to embed
JavaScript or VBscript inside the HTML page.

Server-side scripting in WebSnap
Page producer templates can include scripting languages such as JScript or VBScript.
The page producer executes the script in response to a request for the producer's
content. Because the Web application evaluates the script, it is called server-side
script, as opposed to client-side script (which is evaluated by the browser).

Active scripting

WebSnap relies on active scripting to implement server-side script. Active scripting is
a technology created by Microsoft to allow a scripting language to be used with
application objects through COM interfaces. Microsoft ships two active scripting
languages, VBScript and JScript. Support for other languages is available through
third parties.

29-10 D e v e l o p e r ’ s G u i d e

S e r v e r - s i d e s c r i p t i n g i n W e b S n a p

Script engine

The page producer’s ScriptEngine property identifies the active scripting engine that
evaluates the script within a template.

Script blocks

Script blocks are delimited by <% and %>. The script engine evaluates any text inside
script blocks. The result becomes part of the page producer's content. The page
producer writes text outside of a script block after translating any embedded
transparent tags. Script blocks can also enclose text, allowing conditional logic and
loops to dictate the output of text. For example, the following JScript block generates
a list of five numbered lines:

<% for (i=0;i<5;i++) { %>
 Item <% Response.Write(i) %>
<% } %>

The following script block is equivalent:

<% for (i=0;i<5;i++) { %>
 Item <%=i %>
<% } %>

The <%= delimiter is short for Response.Write.

Creating script

Developers can take advantage of WebSnap features to automatically generate script.

Wizard templates
When they create a new WebSnap application or page module, WebSnap wizards
provide a template field that is used to select the initial content for the page module
template. For example, the template called "Default" generates JScript to display the
application title, page name, and links to published pages.

TAdapterPageProducer
The TAdapterPageProducer builds forms and tables by generating HTML and JScript.
The generated JScript calls adapter objects to retrieve field values, field image
parameters, and action parameters.

Editing and viewing script

The WebSnap surface designer provides a view of your Web Page modules which
lets you preview a scripted page. Use the HTML Result tab to view the HTML

U s i n g W e b S n a p 29-11

S e r v e r - s i d e s c r i p t i n g i n W e b S n a p

resulting from the executed script. Use the Preview tab to view the result in a
browser. The HTML Script tab is available when the Web Page module uses
TAdapterPageProducer. The HTML Script tab displays the HTML and JScript
generated by the TAdapterPageProducer object. Consult this view to see how to write
script that builds HTML forms to display adapter fields and execute adapter actions.

Including script in a page

A template can include script from a file or from another page. To include script from
a file, use the following code statement:

<!-- #include file="filename.html" -->

When the template includes script from another page, the script is evaluated by the
including page, use the following code statement to include the unevaluated content
of page1.

<!-- #include page="page1" -- >

Script objects

Script objects are either VCL or CLX objects that can be referenced by script. You
make VCL or CLX objects available for scripting by registering an IDispatch interface
to the object with the active scripting engine. The following objects are available for
scripting:

• Application—The application object (which may be null) provides access to the
application adapter of the Web Application module. The following JScript block
writes the application title:

<%= Application.Title %>

• EndUser—The EndUser object provides access to the end-user adapter of the Web
Application module. The following JScript block writes the end-user name:

<%= EndUser.DisplayName %>

• Session—The session object provides access to the session object of the Web
Application module. The following JScript block writes the session ID:

<%= Session.SessionID %>

• Pages—The pages object (Pages) provides access to the application pages. The
following JScript block writes links to all published pages:

<% e = new Enumerator(Pages)
 for (; !e.atEnd(); e.moveNext())
 {
 if (e.item().Published)
 {
 Response.Write('' + e.item().Title + '')
 }
 }
%>

29-12 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s

Note that the editor's Preview tab will not display the proper result of this script
block. The pages object is always empty at design time because the Web page module
factories have not been registered.

• Modules—The modules object provides access to the application modules. The
following JScript block writes the content of an adapter field in a module called
DM.

<%= Modules.DM.Adapter1.Field1.DisplayText %>

• Page—The Page object provides access to the current page. The following JScript
block writes the title of the current page:

<%= Page.Title %>

• Producer—The Producer object provides access to the page producer of the Web
Page module. The following JScript block evaluates a transparent tag before
writing the content:

<% Producer.Write('Here is a tag <#TAG>') %>

Note that the editor's Preview tab will probably not display the proper result of this
script block. The event handlers that usually replace transparent tags do not execute
unless the application is running.

• Response—The Response object provides access to the WebResponse. Use this
object when tag replacement is not desired.

<% Response.Write('Hello World!') %>

• Request—The Request object provides access to the WebRequest. The following
JScript block displays the pathinfo.

<%= Request.PathInfo %>

• Adapter Objects—All of the adapter's components on the current page can be
referenced without qualification. Adapter's in other modules must be qualified
using the Modules objects. The following JScript block displays the text value of
the FirstName field from of all rows of Adapter1:

<% e = new Enumerator(Adapter1.Records) %>

 <% for (; !e.atEnd(); e.moveNext()) %>

 <% { %>

 <p><%= Adapter1.FirstName.DisplayText %>

 <% } %>

Dispatching requests
When the WebSnap application receives an HTTP request message, it creates a
TWebRequest object to represent the HTTP request message, and a TWebResponse
object to represent the response that should be returned.

U s i n g W e b S n a p 29-13

D i s p a t c h i n g r e q u e s t s

WebContext

Before handling the request, the Web application module initializes the WebContext
object (of type TWebContext). The WebContext is a thread variable that provides
global access to variables used by components servicing the request. For example, the
WebContext contains the TWebResponse and TWebRequest objects, as well as the
adapter request and adapter response objects discussed later in this section.

Dispatcher components

The dispatcher components within the Web Application module control the flow of
the application. The dispatchers determine how to handle certain types of HTTP
request messages by examining the HTTP request.

The adapter dispatcher component (TAdapterDispatcher) looks for a content field, or a
query field, that identifies an adapter action component or an adapter image field
component. If the adapter dispatcher finds a component, it will pass control to that
component.

The Web Dispatcher component (TWebDispatcher) maintains a collection of action
items (TWebActionItem) that know how to handle certain types of HTTP request
messages. The Web dispatcher looks for an action item that matches the request. If it
finds one, it passes control to that action item. The Web dispatcher also looks for
auto-dispatching components that can handle the request.

The page dispatcher component (TPageDispatcher) examines the pathInfo property of
the TWebRequest object, looking for the name of a registered Web page module. If the
dispatcher finds a Web page module name, then it will pass control to that Web page
module.

Adapter dispatcher operation

The adapter dispatcher component automatically handles HTML form submissions,
and requests for dynamic images, by calling adapter action and field components.

Using adapter components to generate content
In order for WebSnap applications to automatically execute adapter actions and
retrieve dynamic images from adapter fields, the HTML content must be properly
constructed. If the HTML content is not properly constructed, then the resulting
HTTP request will not contain the information that the adapter dispatcher needs to
call adapter action and field components.

To reduce errors in constructing the HTML page, adapter components indicate what
the names and values of HTML elements must be. Adapter components have
methods that retrieve the names and values of hidden fields that must appear on an
HTML form used to update adapter fields. Typically, page producers use server-side
scripts to retrieve names and values from adapter components and generates HTML

29-14 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s

using these names and values. For example, the following script constructs an
 element that references the field called Graphic from Adapter1:

<img src="<%=Adapter1.Graphic.Image.AsHREF%>" alt="<%=Adapter1.Graphic.DisplayText%>">

When the Web application evaluates the script, the HTML src attribute will contain
the information necessary to identify the field and any parameters that the field
component needs to retrieve the image. The resulting HTML might look like this:

When the browser sends an HTTP request to retrieve this image to the Web
application, the adapter dispatcher will be able to determine that the Graphic field of
Adapter1, in the module DM, should be called with the parameter "Species
No=90090". The adapter dispatcher will call the Graphic field to write an appropriate
HTTP response.

The following script constructs an <A> element referencing the EditRow action of
Adapter1 and the page called "Details":

<a href="<%=Adapter1.EditRow.LinkToPage("Details", Page.Name).AsHREF%>">Edit...

The resulting HTML might look like this:

Edit...

When the end-user clicks this hyperlink and the browser sends an HTTP request, the
adapter dispatcher will be able to determine that the EditRow action of Adapter1, in
the module DM, should be called with the parameter "Species No=903010". The
adapter dispatcher will also indicate that the Edit page is to be displayed if the action
executes successfully, and that the Grid page is to be displayed if action execution
fails. It will then call the EditRow action to locate the row to be edited, and the page
named Edit will be called to generate an HTTP response. Figure 29.1 shows how
adapter components are used to generate content.

Figure 29.1 Generating Content Flow

U s i n g W e b S n a p 29-15

D i s p a t c h i n g r e q u e s t s

Adapter requests and responses
When the adapter dispatcher receives the client request, the adapter dispatcher
creates adapter request and adapter response objects to hold information about the
HTTP request. The adapter request and adapter response objects are stored in the
WebContext to allow access during the processing of the request.

The adapter dispatcher creates two types of adapter request objects: action and
image. It creates the action request object when executing an adapter action. It creates
the image request object when retrieving an image from an adapter field.

The adapter response object is used by the adapter component to indicate the
response to an adapter action or adapter image request. There are two types of
adapter response objects, action and image.

Action request
The action request object is responsible for breaking the HTTP request down into
information needed to execute an adapter action. The types of information needed
for executing an adapter action may include:

• Component Name—Identifies the adapter action component.

• Adapter Mode—Adapters can define a mode. For example, TDataSetAdapter
supports Edit, Insert, and Browse modes. An adapter action may execute
differently depending on the mode. For example, the TDataSetAdapter Apply
action adds a new record when in Insert mode, and updates a record when in Edit
mode.

• Success Page—The success page identifies the page displayed after successful
execution of the action.

• Failure Page—The failure page identifies the page displayed if an error occurs
during execution of the action.

• Action Request Parameters—This identifies the parameters need by the adapter
action. For example, the TDataSetAdapter Apply action will include the key values
identifying the record to be updated.

• Adapter Field Values—These are the values for the adapter fields passed in the
HTTP request when an HTML form is submitted. A field value can include new
values entered by the end-user, the original values of the adapter field, and
uploaded files.

• Record Keys—If an HTML form submits changes to multiple records, keys used
by the adapter action component are required to uniquely identify each record so
that the adapter action can be performed on each record. For example, when the
TDataSetAdapter Apply action is performed on multiple records, the record keys
are used to locate each record in the dataset before updating the dataset fields.

Action response
The Action Response object generates an HTTP response on behalf of an adapter
action component. The adapter action indicates the type of response by setting

29-16 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s

properties within the object, or by calling methods in the Action Response object. The
properties include:

• Redirect Options—The redirect options indicate whether to perform an HTTP
redirect instead of returning HTML content.

• Execution Status—Setting the status to success causes the default action response to
be the content of the success page identified in the Action Request.

The Action response methods include:

• RespondWithPag —The adapter action calls this method when a particular Web
page module should generate the response.

• RespondWithComponent—The adapter action calls this method when the response
should come from the Web page module containing this component.

• RespondWithURL—The adapter action calls this method when the response is a
redirect to a specified URL.

When responding with a page, the Action response object attempts to use the page
dispatcher to generate page content. If it does not find the page dispatcher, it calls the
Web Page module directly.

Figure 29.4 illustrates how action request and action response objects handle a
request.

Figure 29.2 Action request and response

Image request
The Image Request object is responsible for breaking the HTTP request down into the
information required by the adapter image field to generate an image. The types of
information represented by the Image Request include:

• Component Name - Identifies the adapter field component.

U s i n g W e b S n a p 29-17

D i s p a t c h i n g r e q u e s t s

• Image Request Parameters - Identifies the parameters needed by the adapter
image. For example, the TDataSetAdapterImageField object needs key values to
identify the record that contains the image.

Image response
The Image response object contains the TWebResponse object. Adapter fields respond
to an adapter request by writing an image to the Web response object.

Figure 29.3 illustrates how adapter image fields respond to a request.

Figure 29.3 Image response to a request

Dispatching action items

The Web dispatcher (TWebDispatcher) searches through its list of action items for one
that:

• matches the Pathinfo portion of the target URL’s request message, and

• can provide the service specified as the method of the request message.

It accomplishes this by comparing the PathInfo and MethodType properties of the
TWebRequest object with the properties of the same name on the action item.

When the dispatcher finds the appropriate action item, it causes that action item to
fire. When the action item fires, it does one of the following:

• Fills in the response content and sends the response, or signals that the request has
been completely handled.

• Adds to the response, and then allows other action items to complete the job.

• Defers the request to other action items.

After the dispatcher has checked all of its action items, if the message has not been
handled correctly, the dispatcher checks for specially registered auto-dispatching
components that do not use action items. These components are specific to multi-

29-18 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

tiered database applications. If the request message has still not been fully handled,
the dispatcher calls the default action item. The default action item does not need to
match either the target URL or the method of the request.

Page dispatcher operation

When the page dispatcher receives a client request, it determines the page name by
checking the Pathinfo portion of the target URL’s request message. If the pathinfo
portion is not blank, the page dispatcher uses the ending word of pathinfo as the
page name. If the pathinfo portion is blank, the page dispatcher tries to determine a
default page name.

If the page dispatcher’s DefaultPage property contains a page name, then the page
dispatcher uses this name as the default page name. If the DefaultPage property is
blank, and the Web application module is a page module, then the page dispatcher
uses the name of the Web application module as the default page name.

If the page name is not blank, the page dispatcher searches for a Web page module
with a matching name. If it finds a Web page module, then it calls that module to
generated a response. If the page name is blank, or if the page dispatcher does not
find a Web page module, the page dispatcher raises an exception.

Figure 29.4 shows how the page dispatcher responds to a request.

Figure 29.4 Dispatching a page

WebSnap tutorial
The following section describes the steps to build a WebSnap application.
Completing the tutorial will familiarize users with the WebSnap architecture and
new concepts, by incorporating the new dispatcher and adapter components into the
new Web Page module. The WebSnap application demonstrates how to use
WebSnap HTML components to build an application that edits the content of a table.

U s i n g W e b S n a p 29-19

W e b S n a p t u t o r i a l

Create a new application

To create a new WebSnap application:

Step 1. Start the WebSnap application wizard
1 Run the Delphi application and select File|New|Other.

2 In the New Items dialog box, select the WebSnap tab and choose WebSnap
Application.

3 In the New WebSnap Application dialog box:

• Select the Web App Debugger Executable.

• In the CoClass field type CountryTutorial.

• Select Page Module as the component type.

• In the Page Name field type Home.

4 Click OK.

Step 2. Save the generated files and project
To save the pascal unit file and project:

1 Select File|Save All.

2 In the File name field enter HomeU.pas and Click OK.

3 In the File name field enter CountryU.pas and Click OK.

4 In the File name field enter CountryTutorial.dpr and Click OK.

5 Click OK.

Note Save the unit and the project to the same directory since the application will look for
the HomeU.html file in the same directory as the executable.

Step 3. Specify the application title
The application title is the name displayed to the end user. To specify the application
title:

1 Select View|Project Manager.

2 In the Project Manager window expand CountryTutorial.exe and double click the
HomeU entry.

3 In the Object Inspector window (bottom left), select ApplicationAdapter from the
pull down list.

4 In the Properties tab, enter Country Tutorial in the ApplicationTitle field.

5 Click on the Preview tab in the editor window. The application title is displayed at
the top of the page.

29-20 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

Create a CountryTable page

A Web page module is used to define a published page, and as a container for data
components.

Step 1. Add a new module
To add a new module:

1 Select File|New|Other.

2 In the New Items dialog box, select the WebSnap tab and choose WebSnap Page
Module.

3 In the dialog box, set the Producer Type to AdapterPageProducer from the list.

4 In the Page Name field enter CountryTable.

5 Leave the rest of the fields and selection at their default values.

6 Click OK.

Step 2. Save the new module
Save the unit to the directory of the project file. When the application runs, it searches
for the CountryTableU.html file in the same directory as the executable.

1 Select File|Save.

2 In the File name field, enter CountryTableU.pas and Click OK.

Add data components to the CountryTable module

A TTable component provides the data for the HTML table. The TDataSetAdapter
component allows server side script to access the TTable component.

Step 1. Add data-aware components
1 Select View|Project Manager.

2 In the Project Manager window expand CountryTutorial.exe and double click the
CountryTableU entry.

3 Select View|Object TreeView. The Object TreeView window (left hand side)
becomes active.

4 Select the Data Access tab in the tool palette.

5 Select a Table component (left-click and hold) and drag the component to the
Object TreeView window.

6 Select a Session component (left-click and hold) and drag the component to the
Object TreeView window.

7 Select the Session component in the Object TreeView window. This displays the
Session component values in the Object Inspector window.

U s i n g W e b S n a p 29-21

W e b S n a p t u t o r i a l

8 In the Object Inspector window, set the AutoSessionName property to True.

9 Select the Table component in the Object TreeView window. This displays the
Table component values in the Object Inspector window.

10 In the Object Inspector window, change the following properties:

• Set the Active property to True.

• Set the DatabaseName property to DBDEMOS .

• In the Name property, type Country.

• Set the TableName property to country.db.

Note The Session component is required because we are using the BDE component
(TTable) in a multi threaded application.

Step 2. Specify a key field
The key field is used to identify records within a table. This becomes important when
we add an edit page to the application. To specify a key field:

1 In the Object Tree View window, expand the Session and DBDemos node, and
select the country.db node. This node is the Country Table component.

2 Right-click on the country.db node and select Fields Editor.

3 Right-click in the CountryTable.Country editor window and select the Add All
Fields command.

4 Select the Name field from the list of added fields.

5 In the Object Inspector window, expand the ProviderFlags property.

6 Set the pfInKey property value to True.

Step 3. Add an adapter component
To expose the data in the TTable server-side scripting, you must include a
DataSetAdapter (TDataSetAdapter) component. To add such a component:

1 Select the WebSnap tab in the tool palette.

2 Select the DataSetAdapter component (left-click and hold) and drag the
component to the Object TreeView window.

3 In the Object Inspector window, change the following properties:

• Set the DataSet field to Country.

• In the Name field type Adapter.

29-22 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

Create a grid to display the data

The AdapterPageProducer leverages server-side script to quickly build an HTML table.

Step 1. Add a grid
To add a grid to display the data from the Country table:

1 Select View|Project Manager.

2 In the Project Manager window, expand CountryTutorial.exe and double-click the
CountryTableU entry.

3 Select View|Object TreeView. The Object TreeView window (left-hand side)
becomes active.

4 Expand the AdapterPageProducer component.

5 Right-click on WebPageItems entry and select New Component.

6 In the Add Web Component window, select AdapterForm, then Click OK. An
AdapterForm1 component appears in the Object TreeView window.

7 Right-click on AdapterForm1 and select New Component.

8 In the Add Web Component window, select AdapterGrid then click OK. An
AdapterGrid1 component appears in the Object TreeView window.

9 In the Object Inspector window, set the Adapter property to Adapter.

10 To preview the Page, select the CountryTableU.pas tab in the code editor window,
and select the Preview tab at the bottom. If the Preview tab is not shown, use the
right arrow at the bottom to scroll through the tabs.

11 Select the HTML Script tab to view the JScript generated by the WebSnap
components.

Step 2. Add editing commands to the grid
Users may need to update the content of the table. To allow users to make such
updates, such as deleting or inserting a row, add command components.

To add command components:

1 In the Object TreeView window for the CountryTable, expand the
AdapterPageProducer component and all its branches.

2 Right-click on the AdapterGrid1 component and select Add All Columns.

3 Right-click on the AdapterGrid1 component and select New Component. An
AdapterCommandColumn1 entry is added to the AdapterGrid1 component.

4 Right-click on AdapterCommandColumn1 and choose Add Commands.

5 Multi-select the DeleteRow, EditRow, and NewRow commands; then click OK.

6 To preview the Page, click on the Preview tab at the bottom of the code editor.

U s i n g W e b S n a p 29-23

W e b S n a p t u t o r i a l

Add an edit form

Create a Web page module to be the Edit form for the country table.

Step 1. Add a new module
To add a new WebSnap page module:

1 Select File|New|Other.

2 In the New Items dialog box, select the WebSnap tab and choose WebSnap Page
Module.

3 In the dialog box, set the Producer Type to AdapterPageProducer from the list.

4 In the Page Name field, enter CountryForm.

5 Uncheck the Published box.

6 Leave the rest of the fields and selections at their default values.

7 Click OK.

Step 2. Save the new module
Save the unit to the directory as the project file. When the application runs, it will
look for the CountryFormU.html file in the same directory as the executable.

1 Select File|Save.

2 In the File name field enter CountryFormU.pas and Click OK.

Step 3. Use the CountryTableU unit
Add CountryTableU unit to the uses clause to allow the module access to the
Adapter component.

1 Select File|Use Unit.

2 Select CountryTableU from the list then click OK.

Step 4. Add input fields
Add components to the AdapterPageProducer component to generate data entry fields
in the HTML form.

To add input fields:

1 Select View|Project Manager.

2 In the Project Manager window, expand CountryTutorial.exe and double-click the
CountryFormU entry.

3 Select View|Object TreeView. The Object TreeView window (left-hand side)
becomes active.

4 In the Object TreeView window, expand the AdapterPageProducer component,
right-click on WebPageItems, and select New Component.

29-24 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

5 Select AdapterForm, then click OK. An AdapterForm1 entry appears in the Object
TreeView window.

6 Right-click on AdapterForm1 and select New Component.

7 Select AdapterFieldGroup then click OK. An AdapterFieldGroup1 entry appears
in the Object TreeView window.

8 In the Object Inspector window, set the Adapter property to
CountryTable.Adapter.

9 To preview the Page, click the Preview tab at the bottom of the code editor.

Step 5. Add buttons
Add components to the AdapterPageProducer component to generate the submit
buttons in the HTML form. To add components:

1 In the Object TreeView, expand the AdapterPageProducer component and all its
branches.

2 Right-click on AdapterForm1 entry and select New Component.

3 Select AdapterCommandGroup then click OK. An AdapterCommandGroup1
entry appears in the Object TreeView window.

4 In the Object Inspector window, set the DisplayComponent property to
AdapterFieldGroup1.

5 Right-click on AdapterCommandGroup1 entry and select Add Commands.

6 Multi-select the Cancel, Apply, and Refresh Row commands; then click OK.

7 To preview the Page, click the Preview tab at the bottom of the code editor
window. If the preview does not show the country form, click on the Code tab and
then re-click the Preview tab.

Step 6. Link form actions to the grid page
When the user clicks a button, an adapter action is executed. To specify which page
to display after an adapter action is executed:

1 In the Object TreeView, expand AdapterCommandGroup1 to show the
CmdCancel, CmdApply, and CmdRefreshRow entries.

2 Select CmdCancel. In the Object Inspector window, type CountryTable in the
PageName property.

3 Select CmdApply. In the Object Inspector window, type CountryTable in the
PageName property.

Step 7. Link grid actions to the form page
To specify which page to display after an adapter action is executed by pushing a
button in the grid:

1 Select View|Project Manager.

U s i n g W e b S n a p 29-25

W e b S n a p t u t o r i a l

2 In the Project Manager window, expand CountryTutorial.exe and double-click the
CountryTableU entry.

3 In the Object TreeView window, expand the AdapterPageProducer component and
all its branches, to show the CmdNewRow, CmdEditRow, and CmdDeleteRow
entries. These entries appear under the AdapterCommandColumn1 entry.

4 Select CmdNewRow. In the Object Inspector window, type CountryForm in the
PageName property.

5 Select CmdEditRow. In the Object Inspector window, type CountryForm in the
PageName property.

6 To verify that the application is working and that all buttons perform some action,
run the application.

Note There will be no indication of database errors, such as an invalid type. For example,
try adding a new country with an invalid value (for example, 'abc') in the Area field.

Add error reporting

To report errors to the end user, an AdapterErrorList component is used to display
errors that occur while executing adapter actions that edit the country table.

Step 1. Add error support to the grid
1 In the Object TreeView for CountryTable, expand the AdapterPageProducer

component and all its branches to show AdapterForm1.

2 Right-click on AdapterForm1 and select New Component.

3 Select AdapterErrorList from the list, then click OK. An AdapterErrorList1 entry
appears in the Object TreeView window.

4 Move AdapterErrorList1 above AdapterGrid1 (either by dragging it or by using
the upward-pointing arrow in the Object TreeView toolbar).

5 In the Object Inspector window, set the Adapter property to Adapter.

Step 2. Add error support to the form
1 In the Object TreeView for CountryForm, expand the AdapterPageProducer

component and all its branches to show AdapterForm1.

2 Right-click on AdapterForm1 and select New Component.

3 Select AdapterErrorList from the list, then click OK. An AdapterErrorList1 entry
appears in the Object TreeView window.

4 Move AdapterErrorList1 above AdapterGrid1 (either by dragging it or by using
the upward-pointing arrow in the Object TreeView toolbar).

5 In the Object Inspector window, set the Adapter property to
CountryTable.Adapter.

29-26 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

Step 3. Test the error-reporting mechanism
To test Grid Errors:

1 Run the application, and browse to the CountryTable page.

2 Start up another instance of your browser and browse to the CountryTable page.

3 Click the DeleteRow button on the first row in the grid.

4 Without refreshing the second browser, click the DeleteRow button on the first
row in the grid.

5 An error message will be displayed above the grid.

To test Form Errors:

1 Run the application, and browse to the CountryTable page.

2 Click on the EditRow Button.

3 The CountryForm page is displayed.

4 Change the area field to 'abc', and click the Apply Button.

5 An error message will be displayed above the first field.

Run the completed application

To run the completed application:

1 Select Run|Run. You will see a form displayed. Web App Debugger executable
Web applications are COM servers, and the form you see is the console window
for the COM server. The first time that you run the project, it registers the COM
object that can be accessed directly by Web App Debugger.

2 Select Tools|Web App Debugger.

3 Click on the default URL link to display the ServerInfo page. The ServerInfo page
displays the names of all registered Web Application Debugger executables.

4 Select CountryTutorial in the drop-down list and click on the Go button.

W o r k i n g w i t h X M L d o c u m e n t s 30-1

C h a p t e r

30
Chapter 30Working with XML documents

XML (Extensible Markup Language) is a markup language for describing structured
data. It is similar to HTML, except that the tags describe the structure of information
rather than its display characteristics. XML documents provide a simple, text-based
way to store information so that it is easily searched or edited. They are often used as
a standard, transportable format for data in Web applications, business-to-business
communication, and so on.

XML documents provide a hierarchical view of a body of data. Tags in the XML
document describe the role or meaning of each data element, as illustrated in the
following document, which describes a collection of stock holdings:

<?xml version="1.0" standalone='yes' ?>
<!DOCTYPE stockholdings SYSTEM “sth.dtd”>
<StockList>

<Stock exchange=NASDAQ>
<name>Inprise (Borland)</name>
<price>15.375</price>
<symbol>INPR</symbol>
<shares>100</shares>

</Stock>
<Stock exchange=NYSE>

<name>Pfizer</name>
 <price>42.75</price>
<symbol>PFE</symbol>
<shares type=preferred>25</shares>

</Stock>
</StockList>

This example illustrates a number of typical elements in an XML document. The first
line is a processing instruction. It provides information on how to interpret the file,
but does not include any data.

The second line, which begins with the <!DOCType> tag, is a document type
declaration. It names the structure of the document and references another file
(sth.dtd) that describes that structure. In this case, the structure is described by a

30-2 D e v e l o p e r ’ s G u i d e

U s i n g t h e D o c u m e n t O b j e c t M o d e l

Document Type Definition (DTD) file. Other types of files that describe the structure
of an XML document include Reduced XML Data (XDR) and XML schemas (XSD).

The remaining lines are organized into a hierarchy with a single root node (the
<StockList> tag). Each node in this hierarchy contains either a set of child nodes, or a
text value. Some of the tags (the <Stock> and <shares> tags) include attributes, which
are Name=Value pairs that provide details on how to interpret the tag.

Although it is possible to work directly with the text in an XML document, typically
applications use some sort of additional tools for parsing and editing the data. W3C
defines a set of standard interfaces for representing a parsed XML document called
the Document Object Model (DOM). A number of vendors provide XML parsers that
implement the DOM interfaces to let you interpret and edit XML documents more
easily.

Delphi provides a number of additional tools for working with XML documents.
These tools use a DOM parser that is provided by another vendor, and make it even
easier to work with XML documents. This chapter describes those tools.

Note In addition to the tools described in this chapter, Delphi comes with tools and
components for converting XML documents to data packets that integrate into the
Delphi database architecture. For details on tools for integrating XML documents
into database applications, see Chapter 26, “Using XML in database applications.”

Using the Document Object Model
The Document Object Model (DOM) is a set of standard interfaces for representing a
parsed XML document. Delphi ships with two DOM implementations (from
Microsoft and from IBM). In addition, it includes a registration mechanism that lets
you integrate additional DOM implementations by other vendors into the Delphi
XML framework.

The XMLDOM unit includes declarations for all the DOM interfaces defined in the
W3C XML DOM level 2 specification. Each DOM vendor provides an
implementation for these interfaces.

• To use the Microsoft implementation, include the MSXMLDOM unit in your uses
clause. Because the Microsoft implementation is COM-based, you must also
register the msxml.dll library as a COM server. You can use Regsvr32.exe to
register this DLL.

• To use the IBM implementation, include the IBMXMLDOM unit in your uses
clause.

• To use another DOM implementation, you must create a unit that includes a
function to return the top-level interface (IDOMImplementation). Your unit should
register this function by calling the global RegisterDOMImplementation procedure.

Some vendors supply extensions to the standard DOM interfaces. To allow you to
uses these extensions, the XMLDOM unit also defines an IDOMNodeEx interface.
IDOMNodeEx is a descendant of the standard IDOMNode that includes the most
useful of these extensions.

W o r k i n g w i t h X M L d o c u m e n t s 30-3

W o r k i n g w i t h X M L c o m p o n e n t s

You can work directly with the DOM interfaces to parse and edit XML documents.
Simply call the GetDOM function to obtain an IDOMImplementation interface, which
you can use as a starting point.

Note For detailed descriptions of the DOM interfaces, see the declarations in the
XMLDOM unit, the documentation supplied by your DOM Vendor, or the
specifications provided on the W3C web site (www.w3.org).

You may find it more convenient to use Delphi’s XML classes rather than working
directly with the DOM interfaces. These are described below.

Working with XML components
Delphi defines a number of classes and interfaces for working with XML documents.
These simplify the process of loading, editing, and saving XML documents.

Using TXMLDocument

The starting point for working with an XML document is the TXMLDocument
component. The following steps describe how to use TXMLDocument to work
directly with an XML document:

1 Add a TXMLDocument component into your form or data module.
TXMLDocument appears on the Internet page of the Component palette.

2 Set the DOMVendor property to specify the DOM implementation you want the
component to use for parsing and editing an XML document. The Object Inspector
lists all the currently registered DOM vendors. For information on DOM
implementations, see “Using the Document Object Model” on page 30-2.

3 Depending on your implementation, you may want to set the ParseOptions
property to configure how the underlying DOM implementation parses the XML
document.

4 If you are working with an existing XML document, specify the document:

• If the XML document is stored in a file, set the FileName property to the name of
that file.

• You can specify the XML document as a string instead by using the XML
property.

5 Set the Active property to True.

Once you have an active TXMLDocument object, you can traverse the hierarchy of its
nodes, reading or setting their values. The root node of this hierarchy is available as
the DocumentElement property.

30-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h X M L c o m p o n e n t s

Working with XML nodes

Once an XML document has been parsed by a DOM implementation, the data it
represents is available as a hierarchy of nodes. Each node corresponds to a tagged
element in the document. For example, given the following XML:

Component palette<?xml version="1.0" standalone='yes' ?>
<!DOCTYPE stockholdings SYSTEM “sth.dtd”>
<StockList>

<Stock exchange=NASDAQ>
<name>Inprise (Borland)</name>
<price>15.375</price>
<symbol>INPR</symbol>
<shares>100</shares>

</Stock>
<Stock exchange=NYSE>

<name>Pfizer</name>
 <price>42.75</price>
<symbol>PFE</symbol>
<shares type=preferred>25</shares>

</Stock>
</StockList>

TXMLDocument would generate a hierarchy of nodes as follows: The root of the
hierarchy would be the StockList node. StockList would have two child nodes, which
correspond to the two Stock tags. Each of these two child nodes would have four
child nodes of its own (name, price, symbol, and shares). Those four child nodes would
act as leaf nodes. The text they contain would appear as the value of each of the leaf
nodes.

Note This division into nodes differs slightly from the way a DOM implementation
generates nodes for an XML document. In particular, a DOM parser treats all tagged
elements as internal nodes. Additional nodes (of type text node) would be created for
the values of the name, price, symbol, and shares nodes. These text nodes would then
appear as the children of the name, price, symbol, and shares nodes.

Each node is accessed through an IXMLNode interface, starting with the root node,
which is the value of the XML document component’s DocumentElement property.

Working with a node’s value
Given an IXMLNode interface, you can check whether it represents an internal node
or a leaf node by checking the IsTextElement property.

• If it represents a leaf node, you can read or set its value using the Text property.

• If it represents an internal node, you can access its child nodes using the
ChildNodes property.

Thus, for example, using the XML document above, you can read the price of
Inprise’s stock as follows:

InpriseStock := XMLDocument1.DocumentElement.ChildNodes[0];
Price := InpriseStock.ChildNodes['price'].Text;

W o r k i n g w i t h X M L d o c u m e n t s 30-5

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

Working with a node’s attributes
If the node includes any attributes, you can work with them using the Attributes
property. You can read or change an attribute value by specifying an existing
attribute name. You can add new attributes by specifying a new attribute name when
you set the Attributes property:

InpriseStock := XMLDocument1.DocumentElement.ChildNodes[0];
InpriseStock.ChildNodes['shares'].Attributes['type'] := 'common';

Adding and deleting child nodes
You can add child nodes using the AddChild method. AddChild creates new nodes
that correspond to tagged elements in the XML document. Such nodes are called
element nodes.

To create a new element node, specify the name that appears in the new tag and,
optionally, the position where the new node should appear. For example, the
following code adds a new stock listing to the document above:

var
NewStock: IXMLNode;
ValueNode: IXMLNode;

begin
NewStock := XMLDocument1.DocumentElement.AddChild('stock');
NewStock.Attributes['exchange'] := 'NASDAQ';
ValueNode := NewStock.AddChild('name');
ValueNode.Text := 'Cisco Systems'
ValueNode := NewStock.AddChild('price');
ValueNode.Text := '62.375';
ValueNode := NewStock.AddChild('symbol');
ValueNode.Text := 'CSCO';
ValueNode := NewStock.AddChild('shares');
ValueNode.Text := '25';

end;

An overloaded version of AddChild lets you specify the namespace in which the tag
name is defined.

You can delete child nodes using the methods of the ChildNodes property. ChildNodes
is an IXMLNodeList interface, which manages the children of a node. You can use its
Delete method to delete a single child node that is identified by position or by name.
For example, the following code deletes the last stock listed in the document above:

StockList := XMLDocument1.DocumentElement;
StockList.ChildNodes.Delete(StockList.ChildNodes.Count - 1);

Abstracting XML documents with the Data Binding wizard
Although it is possible to work with an XML document using only the
TXMLDocument component and the IXMLNode interface it surfaces for the nodes in
that document, or even to work exclusively with the DOM interfaces (avoiding even
TXMLDocument), you can write code that is much simpler and more readable by
using the XML Data Binding wizard.

30-6 D e v e l o p e r ’ s G u i d e

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

The Data Binding wizard takes an XML schema or data file and generates a set of
interfaces that map on top of it. For example, given XML data that looks like the
following:

<customer id=1>
<name>Mark</name>
<phone>(831) 431-1000</phone>

</customer>

The Data Binding wizard generates the following interface (along with a class to
implement it):

ICustomer = interface(IXMLNode)
property id: Integer read Getid write Setid;
property name: DOMString read Getname write Setname;
property phone: DOMString read Getphone write Setphone;
function Getid: Integer;
function Getname: DOMString;
function Getphone: DOMString;
procedure Setid(Value: Integer);
procedure Setname(Value: DOMString);
procedure Setphone(Value: DOMString);

end;

Every child node is mapped to a property whose name matches the tag name of the
child node and whose value is the interface of the child node (if the child is an
internal node) or the value of the child node (for leaf nodes). Every node attribute is
also mapped to a property, where the property name is the attribute name and the
property value is the attribute value.

In addition to creating interfaces (and implementation classes) for each tagged
element in the XML document, the wizard creates a global function for obtaining the
interface to the root node. For example, if the XML above came from a document
whose root node had the tag <Customers>, the Data Binding wizard would create
the following global routine:

function GetCustomers(XMLDoc: TXMLDocument): ICustomers;

Using the generated interfaces simplifies your code, because they reflect the structure
of the XML document more directly. For example, instead of writing code such as the
following:

CustName := XMLDocument1.DocumentElement.ChildNodes[0].ChildNodes['name'].Value;

Your code would look as follows:

CustName := GetCustomers(XMLDocument1)[0].Name;

Note that the interfaces generated by the Data Binding wizard all descend from
IXMLNode. This means you can still add and delete child nodes in the same way as
when you do not use the Data Binding wizard. (See “Adding and deleting child
nodes” on page 30-5.) In addition, when child nodes represent repeating elements
(when all of the children of a node are of the same type), the parent node is given two
methods, Add, and Insert, for adding additional repeats. These methods are simpler
than using AddChild, because you do not need to specify the type of node to create.

W o r k i n g w i t h X M L d o c u m e n t s 30-7

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

Using the XML Data Binding wizard

To use the Data Binding wizard,

1 Choose File|New|Other and select the icon labeled XML Data Binding from the
bottom of the New page.

2 The XML Data Binding wizard appears.

3 On the first page of the wizard

• specify the XML document or schema for which you want to generate
interfaces. This can be a sample XML document, a Document Type Definition
(.dtd) file, a Reduced XML Data (.xdr) file, or an XML schema (.xsd) file.

4 Click the Options button to specify the naming strategies you want the wizard to
use when generating interfaces and implementation classes and the default
mapping of types defined in the schema to Pascal data types.

5 Move to the second page of the wizard. This page lets you provide detailed
information about every node type in the document or schema. At the left is a tree
view that shows all of the node types in the document. For complex nodes (nodes
that have children), the tree view can be expanded to display the child elements.
When you select a node in this tree view, the right-hand side of the dialog displays
information about that node and lets you specify how you want the wizard to treat
that node.

• The Source Name control displays the name of the node type in the XML
schema.

• The Source Type control displays the type of the node’s value, as specified in
the XML schema.

• The Documentation control lets you add comments to the schema describing
the use or purpose of the node.

• If the wizard generates code for the selected node (that is, if it is a complex type
for which the wizard generates an interface and implementation class, or if it is
one of the child elements of a complex type for which the wizard generates a
property on the complex type’s interface), you can use the Generate Binding
check box to specify whether you want the wizard to generate code for the
node. If you uncheck Generate Binding, the wizard does not generate the
interface or implementation class for a complex type, or does not create a
property in the parent interface for a child element or attribute.

• The Binding Options section lets you influence the code that the wizard
generates for the selected element. For any node, you can specify the Identifier
Name (the name of the generated interface or property). In addition, for
interfaces, you must indicate which one represents the root node of the
document. For nodes that represent properties, you can specify the type of the
property and, if the property is not an interface, whether it is a read-only
property.

30-8 D e v e l o p e r ’ s G u i d e

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

6 Once you have specified what code you want the wizard to generate for each
node, move to the third page. This page lets you choose some global options about
how the wizard generates its code and lets you preview the code that will be
generated, and lets you tell the wizard how to save your choices for future use.

• To preview the code the wizard generates, select an interface in the Binding
Summary list and view the resulting interface definition in the Code Preview
control.

• Use the Data Binding Settings to indicate how the wizard should save your
choices. You can store the settings as annotations in a schema file that is
associated with the document (the schema file specified on the first page of the
dialog), or you can name an independent schema file that is used only by the
wizard.

7 When you click Finish, the Data Binding wizard generates a new unit that defines
interfaces and implementation classes for all of the node types in your XML
document. In addition, it creates a global function that takes a TXMLDocument
object and returns the interface for the root node of the data hierarchy.

Using code that the XML Data Binding wizard generates

Once the wizard has generated a set of interfaces and implementation classes, you
can use them to work with XML documents that match the structure of the document
or schema you supplied to the wizard. Just as when you are using only the built-in
XML components that ship with Delphi, your starting point is the TXMLDocument
component that appears on the Internet page of the Component palette.

To work with an XML document, use the following steps:

1 Place a TXMLDocument component in your form or data module.

2 Bind the TXMLDocument to an XML document by setting the FileName property.
(As an alternative approach, you can use a string of XML by setting the XML
property at runtime.)

3 In your code, call the global function that the wizard created to obtain an interface
for the root node of the XML document. For example, if the root element of the
XML document was the tag <StockList>, by default, the wizard generates a
function GetStockListType, which returns an IStockListType interface:

var
StockList: IStockListType;

begin
StockList := GetStockListType(XMLDocument1);

4 This interface has properties that correspond to the subnodes of the document’s
root element, as well as properties that correspond to that root element’s
attributes. You can use these to traverse the hierarchy of the XML document,
modify the data in the document, and so on.

5 To save any changes you make using the interfaces generated by the wizard, call
the TXMLDocument component’s SaveToFile method or read its XML property.

U s i n g W e b S e r v i c e s 31-1

C h a p t e r

31
Chapter 31Using Web Services

Web Services are self-contained modular applications that can be published and
invoked over a network (such as the World Wide Web). Web Services provide well-
defined interfaces that describe the services provided.

Web Services are designed to allow a loose coupling between client and server. That
is, server implementations do not require clients to use a specific platform or
programming language. In addition to defining interfaces in a language-neutral
fashion, they are designed to allow multiple communications mechanisms as well.

Delphi’s support for Web Services is designed to work using SOAP (Simple Object
Access Protocol). SOAP is a standard lightweight protocol for exchanging
information in a decentralized, distributed environment. It uses XML to encode
remote procedure calls and typically uses HTTP as a communications protocol. For
more information about SOAP, see the SOAP specification available at

http://www.w3.org/TR/SOAP/

Note Although Delphi’s support for Web Services is based on SOAP and HTTP, the
framework is sufficiently general that it can be expanded to use other encoding and
communications protocols.

Delphi’s SOAP-based technology is available on Windows and will later be
implemented on Linux, so that it can form the basis of cross-platform distributed
applications. There is no special client runtime software to install, as you must have
when distributing applications using CORBA. Because this technology is based on
HTTP messages, it has the advantage that it is widely available on a variety of
machines. Support for Web Services is built on top of Delphi’s cross-platform Web
server application architecture.

You can use Delphi to build both servers that implement Web Services and clients
that call on those services. If you use Delphi to create both the server and client
applications, you can share a single unit that defines the interfaces for the Web
Services. In addition, you can write Delphi clients for arbitrary servers that
implement Web Services that respond to SOAP messages, and Delphi servers that
publish Web Services that can be used by arbitrary clients.

http://www.w3.org/TR/SOAP/

31-2 D e v e l o p e r ’ s G u i d e

W r i t i n g S e r v e r s t h a t s u p p o r t W e b S e r v i c e s

When either the client or server is not written using Delphi, you can publish or
import information on what interfaces are available and how to call them using a
WSDL (Web Service Definition Language) document. On the server side, your
application can publish a WSDL document that describes your Web Service. On the
client side, a wizard can import a published WSDL document, providing you with
the interface definitions and connection information you need.

Writing Servers that support Web Services
In Delphi, servers that support Web Services are built using invokable interfaces.
Invokable interfaces are interfaces that are compiled to include runtime type
information (RTTI). This RTTI is used when interpreting incoming method calls from
clients so that they can be correctly marshaled.

In addition to the invokable interfaces, and the classes that implement them, your
server requires two components: a dispatcher and an invoker. The dispatcher
(THTTPSoapDispatcher) is an auto-dispatching component that receives incoming
SOAP messages and passes them on to the invoker. The invoker
(THTTPSoapPascalInvoker) interprets the SOAP message, identifies the invokable
interface it calls, executes the call and assembles the response message.

Note THTTPSoapDispatcher and THTTPSoapPascalInvoker are designed to respond to HTTP
messages containing a SOAP request. The underlying architecture is sufficiently
general, however, that it can support other protocols with the substitution of
different dispatcher and invoker components.

Once you register your invokable interfaces and their implementation classes, the
dispatcher and invoker automatically handle any messages that identify those
interfaces in the SOAP Action header of the HTTP request message.

Building a Web Service server

Use the following steps to build a server application that implements a Web Service:

1 Define the interfaces that make up your Web Service. These interface definitions
must be invokable interfaces. It is a good idea to create your interface definitions
in their own units, separate from the unit that contains the implementation classes.
In this way, the unit that defines the interfaces can be included in both the server
and client applications. In the initialization section of this unit, add code to register
the interfaces. For details on writing and registering invokable interfaces, see
“Defining invokable interfaces” on page 31-3.

2 If your interface uses any complex (non-scalar) types, you must make sure these
can be marshalled correctly. The Web Service application can only handle these
using special objects that contain runtime type information (RTTI) that describes
their structure. For details on creating and registering objects to represent complex
types, see “Using complex types in invokable interfaces” on page 31-5.

U s i n g W e b S e r v i c e s 31-3

W r i t i n g S e r v e r s t h a t s u p p o r t W e b S e r v i c e s

3 Define and implement classes that implement the invokable interfaces you
defined in step 1. For each implementation class, you may also need to create a
factory procedure that instantiates the class. In the initialization section of this
unit, add code to register the implementation class. This process is described in
“Creating and registering the implementation” on page 31-6.

4 If your application raises an exception when attempting to execute a SOAP
request, the exception will be automatically encoded in a SOAP fault packet,
which is returned instead of the results of the method call. If you want to convey
more information than a simple error message, you can create your own exception
classes that are encoded and passed to the client. This is described in “Creating
custom exception classes for Web Services” on page 31-7.

5 Choose File|New|Other, and on the Web Services page, double-click the Web
Service application icon. Choose the type of Web server application you want to
have implement your Web Service. For information about different types of Web
Server applications, see “Types of Web server applications” on page 27-6.

6 The wizard generates a new Web Service application that includes an invoker
component (THTTPSOAPPascalInvoker) and a dispatcher component
(THTTPSoapDispatcher). The invoker converts between SOAP messages and the
methods of any interfaces you registered in step 1. The dispatcher automatically
responds to incoming SOAP messages and forwards them to the invoker. You can
use its WebDispatch property to identify the HTTP request messages to which your
application responds. This involves setting the PathInfo property to indicate the
path portion of any URL directed to your application, and the MethodType
property to indicate the method header for request messages.

7 Choose Project|Add To Project, and add the units you created in steps 1 through 4
to your Web server application.

8 If you want your application to work with clients that are not written using
Delphi, publish a WSDL document that defines your interfaces and how to call
them. For details on how to generate a WSDL document that describes your Web
Service application, see “Generating WSDL documents for a Web Service
application” on page 31-7.

Defining invokable interfaces
To create an invokable interface, you need only compile an interface with the {$M+}
compiler option. The descendant of any invokable interface is also invokable.
However, if an invokable interface descends from another interface that is not
invokable, clients of your Web Service server can only call the methods defined in the
invokable interface and its descendants. Methods inherited from the non-invokable
ancestors are not compiled with type information and so can’t be called by clients.

Delphi defines a base invokable interface, IInvokable, that can be used as the basis of
any interface exposed to clients by a Web Service server. IInvokable is the same as the
base interface (IInterface), except that it is compiled using the {$M+} compiler option
so that it and all its descendants are compiled to include RTTI.

31-4 D e v e l o p e r ’ s G u i d e

W r i t i n g S e r v e r s t h a t s u p p o r t W e b S e r v i c e s

For example, the following code defines an invokable interface that contains two
methods for encoding and decoding numeric values:

IEncodeDecode = interface(IInvokable)
 ['{C527B88F-3F8E-1134-80e0-01A04F57B270}']

function EncodeValue(Value: Integer): Double; stdcall;
function DecodeValue(Value: Double): Integer; stdcall;

end;

Before a Web Service application can use this invokable interface, it must be
registered with the invocation registry. On the server, the invocation registry entry
allows the invoker component (THTTPSOAPPascalInvoker) to identify an
implementation class to use for executing interface calls. On client applications, an
invocation registry entry allows components to look up information that identifies
the invokable interface and supplies information on how to call it.

In the initialization section of the unit that defines the interface, add code to register
the interface with the invocation registry. To access the invocation registry, add the
InvokeRegistry unit to the uses clause of your unit. The InvokeRegistry unit declares
a global variable, InvRegistry, which maintains in memory a catalog of all registered
invokable interfaces, their implementation classes, and the factories that create
instances of the implementation classes.

When you are finished, the unit that defines the interface should look something like
the following:

unit EncodeDecode;

interface
type

IEncodeDecode = interface(IInvokable)
 ['{C527B88F-3F8E-1134-80e0-01A04F57B270}']

function EncodeValue(Value: Integer): Double; stdcall;
function DecodeValue(Value: Double): Integer; stdcall;

end;

implementation
uses InvokeRegistry;

initialization
InvRegistry.RegisterInterface(TypeInfo(IEncodeDecode));
end.

Because the interfaces of Web Services must have a namespace to identify them
among all the interfaces in all possible Web Services, when you register an interface
the invocation registry automatically generates a namespace for the interface. The
default namespace is built from a string that uniquely identifies the application (the
AppNamespacePrefix variable), the interface name, and the name of the unit in which it
is defined.

Tip It is a good idea to keep the unit that defines your invokable interfaces separate from
the unit in which you write the classes that implement them. This unit can then be
included in both the client and the server application. Because the generated
namespace includes the name of the unit in which the interface is defined, sharing
the same unit in both client and server applications enables them to automatically
use the same namespace.

U s i n g W e b S e r v i c e s 31-5

W r i t i n g S e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Using complex types in invokable interfaces
The invoker component (THTTPSOAPPascalInvoker) automatically knows how to
marshal scalar types on invokable interfaces. It can also handle dynamic arrays, as
long as they are registered with the remotable class registry (see below). However,
you must provide additional support if you want to transmit data in more complex
types such as static arrays, interfaces, records, sets, or classes. This support must take
the form of a class that includes runtime type information (RTTI), which the invoker
can use to convert between data in the SOAP stream and type values.

Use TRemotable as a base class when defining a class to represent a complex data type
on an invokable interface. For example, in the case where you would ordinarily pass
a record as a parameter, you would instead define a TRemotable descendant where
every member of the record is a published property on your new class.

If the value of your new TRemotable descendant represents to a scalar type in a WSDL
document that does not correspond to an Object Pascal scalar type, you should use
TRemotableXS as a base class instead. TRemotableXS is a TRemotable descendant that
introduces two methods for converting between your new class and its string
representation. Provide these methods by overriding the XSToNative and NativeToXS
methods.

In the initialization section of the unit that defines the TRemotable descendant, you
must register this class with the remotable class registry. Access the remotable class
registry by adding the InvokeRegistry unit to the uses clause. This unit declares a
global variable, RemClassRegistry, which maintains a catalog of all registered
remotable classes, and an indication of whether their values can be transmitted as
strings. For example, the following line comes from the XSBuiltIns unit. It registers
TXSDateTime, a TRemotable descendant that represents TDateTime values:

RemClassRegistry.RegisterXSClass(TXSDateTime, XMLSchemaNameSpace, 'dateTime', True);

The first parameter is the name of the TRemotable descendant. The second is a
uniform resource identifier (URI) that uniquely identifies the namespace of the new
class. If you supply an empty string, the registry can generate a URI for you. The
third parameter is the name of the data type your class represents. If you supply an
empty string, the registry simply uses the class name. The last parameter indicates
whether the value of class instances can be transmitted as a string (whether you
implemented the XSToNative and NativeToXS methods).

Tip It is a good idea to implement and register TRemotable descendants in a separate unit
from the rest of your server application, including from the units that declare and
register invokable interfaces. In this way, you can use the unit that defines your type
in both the client and server, and you can use the type for more than one interface.

If you are using dynamic arrays for parameters, you do not need to create a
remotable class to represent them, but you do have to register them with the
remotable class registry. Thus, for example, if your interface uses a type such as the
following:

type
TDateTimeArray = array of TXSDateTime;

You must add the following registration to the initialization section of the unit where
you declare this dynamic array:

RemClassRegistry.RegisterXSInfo(TypeInfo(TDateTimeArray), MyNameSpace, ‘DTarray’, False);

31-6 D e v e l o p e r ’ s G u i d e

W r i t i n g S e r v e r s t h a t s u p p o r t W e b S e r v i c e s

The parameters are the same as those used by RegisterXSClass, except for the first
which takes a pointer to the type information of the dynamic array rather than a class
reference.

Creating and registering the implementation
The simplest way to write an implementation for an invokable interface is to create a
class that descends from TInvokableClass. Add the class declaration, including the
invokable interfaces you are supporting, and then type Ctrl+Shift+C to invoke class
completion. The interface members appear in your class declaration, and empty
methods appear in the implementation section of the unit.

For example, the declaration for an implementation class implement the interface
declared in “Defining invokable interfaces” above might look like the following:

TEncodeDecode = class(TInvokableClass, IEncodeDecode)
protected

function EncodeValue(Value: Integer): Double; stdcall;
function DecodeValue(Value: Double): Integer; stdcall;

end;

In the implementation section of the unit that declares this class, fill in the
EncodeValue and DecodeValue methods.

Once you have created an implementation class, you must register this class with the
invocation registry. The invocation registry uses this to identify the class that
implements a registered interface and to make it available to the invoker component
when the invoker needs to call the interface. To register the implementation class,
add a call the RegisterInvokableClass method of the global InvRegistry variable to the
initialization section of your implementation unit:

InvRegistry.RegisterInvokableClass(TEncodeDecode);

You can also create implementation classes that do not descend from TInvokableClass.
In this case, however, you must provide a factory procedure that the invocation
registry can call to create instances of your class.

The factory procedure must be of type TCreateInstanceProc. It returns an instance of
your implementation class. If the procedure creates a new instance, the object should
free itself when the reference count on its interface drops to zero, as the invocation
registry does not explicitly free object instances. As an alternative, the factory
procedure can return a reference to a global instance that is shared by all callers. The
following code illustrates this latter approach:

procedure CreateEncodeDecode(out obj: TObject);
begin

if FEncodeDecode = nil then
begin

FEncodeDecode := TEncodeDecode.Create;
{save a reference to the interface so that the global instance doesn’t free itself }
FEncodeDecodeInterface := FEncodeDecode as IEncodeDecode;

end;
obj := FEncodeDecode; { return global instance }

end;

U s i n g W e b S e r v i c e s 31-7

W r i t i n g S e r v e r s t h a t s u p p o r t W e b S e r v i c e s

When using a factory procedure, supply the factory procedure as a second
parameter to the RegisterInvokableClass method:

InvRegistry.RegisterInvokableClass(TEncodeDecode, CreateEncodeDecode);

Creating custom exception classes for Web Services
When your Web Service application raises an exception in the course of trying to
execute a SOAP request, it automatically encodes information about that exception in
a SOAP fault packet, which it returns instead of the results of the method call. The
client application then raises the exception.

By default, the client application merely raises a generic exception (Exception) with
the error message in the SOAP fault packet. However, you can transmit additional
exception information by using an exception class that descends from
ERemotableException. The values of any published properties you add to your
exception class are included in the SOAP fault packet so that the client can raise an
equivalent exception.

To use an ERemotableException descendant, you must register it with the remotable
class registry. Thus, in the unit that defines your ERemotableException descendant,
you must add the InvokeRegistry unit to the uses clause and add a call to the
RegisterXSClass method of the global RemClassRegistry variable.

If the client uses the same unit that defines and registers your ERemotableException
descendant, then when it receives the SOAP fault packet, it automatically raises an
instance of the appropriate exception class, with all properties set to the values in the
SOAP fault packet.

Generating WSDL documents for a Web Service application
If you include the same units that define and register your invokable interfaces, the
classes that represent complex type information, and your remotable exceptions in a
Delphi client application, it can generate calls to use your Web Service. All you need
to do is supply the URL where you install your Web Service application.

However, you may want to make your Web Service available to a wider range of
clients. For example, you may have clients that are not written in Delphi. If you are
deploying several versions of your server application, you may not want to use a
single hard-coded URL for the server, but rather let the client look up the server
location dynamically. For these cases, you may want to publish a WSDL document
that describes the types and interfaces in your Web Service, with information on how
to call them.

To publish a WSDL document that describes your Web Service, simply add a
TWSDLHTMLPublish component to your Web Module. TWSDLHTMLPublish is an
auto-dispatching component, which means it automatically responds to incoming
messages that request a list of WSDL documents for your Web Service. Use the
WebDispatch property to specify the path information of the URL clients must use to
access the list of WSDL documents. The Web browser can then request the list of
WSDL documents by specifying an URL that is made up of the location of the server
application followed by the path in the WebDispatch property. This URL looks
something like the following:

http://www.myco.com/MyService.dll/WSDL

http://www.myco.com/MyService.dll/WSDL

31-8 D e v e l o p e r ’ s G u i d e

W r i t i n g c l i e n t s f o r W e b S e r v i c e s

Tip If you want a physical WSDL file instead, you can display the WSDL document in
your Web browser and then save it to generate a WSDL document file.

It is not necessary to publish the WSDL document from the same application that
implements your Web Service. To create an application that simply publishes the
WSDL document, omit the units that contain the implementation objects, and only
include the units that define and register invokable interfaces, remotable classes that
represent complex types, and any remotable exceptions.

By default, when you publish a WSDL document, it indicates that the services are
available at the same URL as the one where you published the WSDL document (but
with a different path). If you are deploying multiple versions of your Web Service
application, or if you are publishing the WSDL document from a different
application than the one that implements the Web Service, you will need to change
the WSDL document so that includes updated information on where to locate the
Web Service.

To change the URL, use the WSDL administrator. The first step is to enable the
administrator. You do this by setting the AdminEnabled property of the
TWSDLHTMLPublish component to True. Then, when you use your browser to
display the list of WSDL documents, it includes a button to administer them as well.
Use the WSDL administrator to specify the locations (URLs) where you have
deployed your Web Service application.

Writing clients for Web Services
Delphi provides client-side support for calling Web Services that use a SOAP-based
binding. These Web Services can be supplied by a server written in Delphi, or by any
other server that defines its Web Service in a WSDL document.

If the server is not written in Delphi, you can first import the WSDL document that
describes the server. This process is described below. If the server was written using
Delphi, you do not need to use a WSDL document: you can simply add any units that
define the invokable interfaces you want to use to your project, as well as any units
that define remotable classes that represent complex types and that define remotable
exceptions that the Web Service application can raise.

Note For information about creating the unit that defines an invokable interface in a
Delphi Web Service server, see “Defining invokable interfaces” on page 31-3. For
information about creating a unit that defines a remotable class for a complex type,
see “Using complex types in invokable interfaces” on page 31-5. For information
about creating a unit that defines a remotable exception, see “Creating custom
exception classes for Web Services” on page 31-7.

Importing WSDL documents

Before you can use a Web Service that was not written using Delphi, you must
import a WSDL document (or XML schema file) that defines the service. The Web
Services importer creates a unit that defines and registers the interfaces and types
you need to use.

U s i n g W e b S e r v i c e s 31-9

W r i t i n g c l i e n t s f o r W e b S e r v i c e s

To use the Web Services importer, choose File|New|Other, and on the WebServices
page double-click the icon labelled Web Services importer. In the dialog that appears,
specify the file name of a WSDL document (or XML schema file) or provide the URL
where that document is published. When you click Generate, the importer creates
new units that define and register invokable interfaces for the operations defined in
the document, and that define and register remotable classes for the types that the
document defines.

If the WSDL document or XML schema file uses identifiers that are also Object Pascal
keywords, the importer automatically adjusts their names so that the generated code
can compile. When complex types are declared inline, the importer adds code to
define and register the corresponding remotable class in the same unit as the
invokable interface that uses them. Otherwise, types are defined and registered in a
separate unit.

Calling invokable interfaces

To call an invokable interface, your client application must include any units that
define the invokable interfaces and any remotable classes that implement complex
types. If the server is written in Delphi, these should be the same units that the server
application uses to define and register these interfaces and classes. It is best to use the
same unit, because when you register an invokable interface or remotable class, it is
given a uniform resource identifier (URI) that uniquely identifies it. That URI is
derived from the name of the interface (or class) and the name of the unit in which it
is defined. If the client and server do not register the interface (or class) using the
same URI, they can’t communicate. If you do not use the same unit, the code that
registers the interface and implementation class must explicitly specify a namespace
URI to ensure that client and server use the same namespace.

If the server is not written in Delphi, or if you do not want to use the same unit in the
client that you used in the server, these units can be created by the Web Services
importer.

Once the client application has the declaration of an invokable interface, create an
instance of THTTPRio for the desired interface:

X := THTTPRio.Create(nil);

Next, provide the THTTPRio object with the information it needs to identify the
server interface and locate the server. There are two ways to supply this information:

• If the server is written in Delphi, the identification of the interface on the server is
handled automatically, based on the URI that is generated for it when the interface
is registered. You need only set the URL property to indicate the location of the
server. The path portion of this URL should match the path of the dispatcher
component in the server’s Web Module:

X.URL := 'http://www.myco.com/MyService.dll/SOAP/';

http://www.myco.com/MyService.dll/SOAP/';

31-10 D e v e l o p e r ’ s G u i d e

W r i t i n g c l i e n t s f o r W e b S e r v i c e s

• If the server is not written in Delphi, THTTPRio must look up the URI for the
interface, the information that must be included in the Soap Action header, and
the location of the server from a WSDL document. You tell it how to do this using
the WSDLLocation, Service, and Port properties:

X.WSDLLocation := 'Cryptography.wsdl';
X.Service := 'Cryptography';
X.Port := 'SoapEncodeDecode';

You can then use the as operator to cast the instance of THTTPRio to the invokable
interface. When you do this, it creates a vtable for the associated interface
dynamically in memory, enabling you to make interface calls:

InterfaceVariable := X as IEncodeDecode;
Code := InterfaceVariable.EncodeValue(5);

THTTPRio relies on the invocation registry to obtain information about the invokable
interface. If the client application does not have an invocation registry, or if the
invokable interface is not registered, THTTPRio can’t build its in-memory vtable.

W o r k i n g w i t h s o c k e t s 32-1

C h a p t e r

32
Chapter 32Working with sockets

This chapter describes the socket components that let you create an application that
can communicate with other systems using TCP/IP and related protocols. Using
sockets, you can read and write over connections to other machines without
worrying about the details of the underlying networking software. Sockets provide
connections based on the TCP/IP protocol, but are sufficiently general to work with
related protocols such as User Datagram Protocol (UDP), Xerox Network System
(XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

Using sockets, you can write network servers or client applications that read from
and write to other systems. A server or client application is usually dedicated to a
single service such as Hypertext Transfer Protocol (HTTP) or File Transfer Protocol
(FTP). Using server sockets, an application that provides one of these services can
link to client applications that want to use that service. Client sockets allow an
application that uses one of these services to link to server applications that provide
the service.

Implementing services
Sockets provide one of the pieces you need to write network servers or client
applications. For many services, such as HTTP or FTP, third party servers are readily
available. Some are even bundled with the operating system, so that there is no need
to write one yourself. However, when you want more control over the way the
service is implemented, a tighter integration between your application and the
network communication, or when no server is available for the particular service you
need, then you may want to create your own server or client application. For
example, when working with distributed data sets, you may want to write a layer to
communicate with databases on other systems.

32-2 D e v e l o p e r ’ s G u i d e

T y p e s o f s o c k e t c o n n e c t i o n s

Understanding service protocols

Before you can write a network server or client, you must understand the service that
your application is providing or using. Many services have standard protocols that
your network application must support. If you are writing a network application for
a standard service such as HTTP, FTP, or even finger or time, you must first
understand the protocols used to communicate with other systems. See the
documentation on the particular service you are providing or using.

If you are providing a new service for an application that communicates with other
systems, the first step is designing the communication protocol for the servers and
clients of this service. What messages are sent? How are these messages coordinated?
How is the information encoded?

Communicating with applications
Often, your network server or client application provides a layer between the
networking software and an application that uses the service. For example, an HTTP
server sits between the Internet and a Web server application that provides content
and responds to HTTP request messages.

Sockets provide the interface between your network server or client application and
the networking software. You must provide the interface between your application
and the clients that use it. You can copy the API of a standard third party server (such
as Apache), or you can design and publish your own API.

Services and ports

Most standard services are associated, by convention, with specific port numbers. We
will discuss port numbers in greater detail later. For now, consider the port number a
numeric code for the service.

If you are implementing a standard service, Linux socket objects provide methods for
you to look up the port number for the service. If you are providing a new service,
you can specify the associated port number in the /etc/services file. See your Linux
documentation for more information on the services file.

Types of socket connections
Socket connections can be divided into three basic types, which reflect how the
connection was initiated and what the local socket is connected to. These are

• Client connections.

• Listening connections.

• Server connections.

Once the connection to a client socket is completed, the server connection is
indistinguishable from a client connection. Both end points have the same

W o r k i n g w i t h s o c k e t s 32-3

D e s c r i b i n g s o c k e t s

capabilities and receive the same types of events. Only the listening connection is
fundamentally different, as it has only a single endpoint.

Client connections

Client connections connect a client socket on the local system to a server socket on a
remote system. Client connections are initiated by the client socket. First, the client
socket must describe the server socket to which it wishes to connect. The client socket
then looks up the server socket and, when it locates the server, requests a connection.
The server socket may not complete the connection right away. Server sockets
maintain a queue of client requests, and complete connections as they find time.
When the server socket accepts the client connection, it sends the client socket a full
description of the server socket to which it is connecting, and the connection is
completed by the client.

Listening connections

Server sockets do not locate clients. Instead, they form passive “half connections”
that listen for client requests. Server sockets associate a queue with their listening
connections; the queue records client connection requests as they come in. When the
server socket accepts a client connection request, it forms a new socket to connect to
the client, so that the listening connection can remain open to accept other client
requests.

Server connections

Server connections are formed by server sockets when a listening socket accepts a
client request. A description of the server socket that completes the connection to the
client is sent to the client when the server accepts the connection. The connection is
established when the client socket receives this description and completes the
connection.

Describing sockets
Sockets let your network application communicate with other systems over the
network. Each socket can be viewed as an endpoint in a network connection. It has an
address that specifies

• The system on which it is running.

• The types of interfaces it understands.

• The port it is using for the connection.

A full description of a socket connection includes the addresses of the sockets on both
ends of the connection. You can describe the address of each socket endpoint by
supplying both the IP address or host and the port number.

32-4 D e v e l o p e r ’ s G u i d e

D e s c r i b i n g s o c k e t s

Before you can make a socket connection, you must fully describe the sockets that
form its endpoints. Some of the information is available from the system your
application is running on. For instance, you do not need to describe the local IP
address of a client socket—this information is available from the operating system.

The information you must provide depends on the type of socket you are working
with. Client sockets must describe the server they want to connect to. Listening
server sockets must describe the port that represents the service they provide.

Describing the host

The host is the system that is running the application that contains the socket. You
can describe the host for a socket by giving its IP address, which is a string of four
numeric (byte) values in the standard Internet dot notation, such as

123.197.1.2

A single system may support more than one IP address.

IP addresses are often difficult to remember and easy to mistype. An alternative is to
use the host name. Host names are aliases for the IP address that you often see in
Uniform Resource Locators (URLs). They are strings containing a domain name and
service, such as

http://www.ASite.com

Most Intranets provide host names for the IP addresses of systems on the Internet.
You can learn the host name associated with any IP address (if one already exists) by
executing the following command from a command prompt:

nslookup IPADDRESS

where IPADDRESS is the IP address you’re interested in. If your local IP address
doesn’t have a host name and you decide you want one, contact your network
administrator.

Server sockets do not need to specify a host. The local IP address can be read from the
system. If the local system supports more than one IP address, server sockets will
listen for client requests on all IP addresses simultaneously. When a server socket
accepts a connection, the client socket provides the remote IP address.

Client sockets must specify the remote host by providing either its host name or IP
address.

Choosing between a host name and an IP address
Most applications use the host name to specify a system. Host names are easier to
remember, and easier to check for typographical errors. Further, servers can change
the system or IP address that is associated with a particular host name. Using a host
name allows the client socket to find the abstract site represented by the host name,
even when it has moved to a new IP address.

If the host name is unknown, the client socket must specify the server system using
its IP address. Specifying the server system by giving the IP address is faster. When

http://www.ASite.com

W o r k i n g w i t h s o c k e t s 32-5

U s i n g s o c k e t c o m p o n e n t s

you provide the host name, the socket must search for the IP address associated with
the host name, before it can locate the server system.

Using ports

While the IP address provides enough information to find the system on the other
end of a socket connection, you also need a port number on that system. Without port
numbers, a system could only form a single connection at a time. Port numbers are
unique identifiers that enable a single system to host multiple connections
simultaneously, by giving each connection a separate port number.

Earlier, we described port numbers as numeric codes for the services implemented
by network applications. This is actually just a convention that allows listening server
connections to make themselves available on a fixed port number so that they can be
found by client sockets. Server sockets listen on the port number associated with the
service they provide. When they accept a connection to a client socket, they create a
separate socket connection that uses a different, arbitrary, port number. This way, the
listening connection can continue to listen on the port number associated with the
service.

Client sockets use an arbitrary local port number, as there is no need for them to be
found by other sockets. They specify the port number of the server socket to which
they want to connect so that they can find the server application. Often, this port
number is specified indirectly, by naming the desired service.

Using socket components
The Internet palette page includes three socket components that allow your network
application to form connections to other machines, and that allow you to read and
write information over that connection. These are:

• TcpServer

• TcpClient

• UdpSocket

Associated with each of these socket components are socket objects, which represent
the endpoint of an actual socket connection. The socket components use the socket
objects to encapsulate the socket server calls, so that your application does not need
to be concerned with the details of establishing the connection or managing the
socket messages.

If you want to customize the details of the connections that the socket components
make on your behalf, you can use the properties, events, and methods of the socket
objects.

32-6 D e v e l o p e r ’ s G u i d e

U s i n g s o c k e t c o m p o n e n t s

Getting information about the connection

After completing the connection to a client or server socket, you can use the client or
server socket object associated with your socket component to obtain information
about the connection. Use the LocalHost and LocalPort properties to determine the
address and port number used by the local client or server socket, or use the
RemoteHost and RemotePort properties to determine the address and port number
used by the remote client or server socket. Use the GetSocketAddr method to build a
valid socket address based on the host name and port number. You can use the
LookupPort method to look up the port number. Use the LookupProtocol method to
look up the protocol number. Use the LookupHostName method to look up the host
name based on the host machine’s IP address.

To view network traffic in and out of the socket, use the BytesSent and BytesReceived
properties.

Using client sockets

Add a TcpClient or UdpSocket component to your form or data module to turn your
application into a TCP/IP or UDP client. Client sockets allow you to specify the
server socket you want to connect to, and the service you want that server to provide.
Once you have described the desired connection, you can use the client socket
component to complete the connection to the server.

Each client socket component uses a single client socket object to represent the client
endpoint in a connection.

Specifying the desired server
Client socket components have a number of properties that allow you to specify the
server system and port to which you want to connect. Use the RemoteHost property to
specify the remote host server by either its host name or IP address.

In addition to the server system, you must specify the port on the server system that
your client socket will connect to. You can use the RemotePort property to specify the
server port number directly or indirectly by naming the target service.

Forming the connection
Once you have set the properties of your client socket component to describe the
server you want to connect to, you can form the connection at runtime by calling the
Open method. If you want your application to form the connection automatically
when it starts up, set the Active property to True at design time, using the Object
Inspector.

Getting information about the connection
After completing the connection to a server socket, you can use the client socket
object associated with your client socket component to obtain information about the
connection. Use the LocalHost and LocalPort properties to determine the address and
port number used by the client and server sockets to form the end points of the
connection. You can use the Handle property to obtain a handle to the socket
connection to use when making socket calls.

W o r k i n g w i t h s o c k e t s 32-7

U s i n g s o c k e t c o m p o n e n t s

Closing the connection
When you have finished communicating with a server application over the socket
connection, you can shut down the connection by calling the Close method. The
connection may also be closed from the server end. If that is the case, you will receive
notification in an OnDisconnect event.

Using server sockets

Add a server socket component (TcpServer or UdpSocket) to your form or data module
to turn your application into an IP server. Server sockets allow you to specify the
service you are providing or the port you want to use to listen for client requests. You
can use the server socket component to listen for and accept client connection
requests.

Each server socket component uses a single server socket object to represent the
server endpoint in a listening connection. It also uses a server client socket object for
the server endpoint of each active connection to a client socket that the server accepts.

Specifying the port
Before your server socket can listen to client requests, you must specify the port that
your server will listen on. You can specify this port using the LocalPort property. If
your server application is providing a standard service that is associated by
convention with a specific port number, you can also specify the service name using
the LocalPort property. It is a good idea to use the service name instead of a port
number, because it is easy to introduce typographical errors when specifying the port
number.

Listening for client requests
Once you have set the port number of your server socket component, you can form a
listening connection at runtime by calling the Open method. If you want your
application to form the listening connection automatically when it starts up, set the
Active property to True at design time, using the Object Inspector.

Connecting to clients
A listening server socket component automatically accepts client connection requests
when they are received. You receive notification every time this occurs in an
OnAccept event.

Closing server connections
When you want to shut down the listening connection, call the Close method or set
the Active property to False. This shuts down all open connections to client
applications, cancels any pending connections that have not been accepted, and then
shuts down the listening connection so that your server socket component does not
accept any new connections.

When TCP clients shut down their individual connections to your server socket, you
are informed by an OnDisconnect event.

32-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o s o c k e t e v e n t s

Responding to socket events
When writing applications that use sockets, you can write or read to the socket
anywhere in the program. You can write to the socket using the SendBuf , SendStream,
or Sendln methods in your program after the socket has been opened. You can read
from the socket using the similarly-named methods ReceiveBuf and Receiveln. The
OnSend and OnReceive events are triggered every time something is written or read
from the socket. They can be used for filtering. Every time you read or write, a read
or write event is triggered.

Both client sockets and server sockets generate error events when they receive error
messages from the connection.

Socket components also receive two events in the course of opening and completing
a connection. If your application needs to influence how the opening of the socket
proceeds, you must use the SendBuf and ReceiveBuf methods to respond to these
client events or server events.

Error events

Client and server sockets generate OnError events when they receive error messages
from the connection. You can write an OnError event handler to respond to these
error messages. The event handler is passed information about

• What socket object received the error notification.

• What the socket was trying to do when the error occurred.

• The error code that was provided by the error message.

You can respond to the error in the event handler, and change the error code to 0 to
prevent the socket from raising an exception.

Client events

When a client socket opens a connection, the following events occur:

• The socket is set up and initialized for event notification.

• An OnCreateHandle event occurs after the server and server socket is created. At
this point, the socket object available through the Handle property can provide
information about the server or client socket that will form the other end of the
connection. This is the first chance to obtain the actual port used for the
connection, which may differ from the port of the listening sockets that accepted
the connection.

• The connection request is accepted by the server and completed by the client
socket.

• When the connection is established, the OnConnect notification event occurs.

W o r k i n g w i t h s o c k e t s 32-9

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

Server events

Server socket components form two types of connections: listening connections and
connections to client applications. The server socket receives events during the
formation of each of these connections.

Events when listening
Just before the listening connection is formed, the OnListening event occurs. You can
use its Handle property to make changes to the socket before it is opened for listing.
For example, if you want to restrict the IP addresses the server uses for listening, you
would do that in an OnListening event handler.

Events with client connections
When a server socket accepts a client connection request, the following events occur:

• An OnAccept event occurs, passing in the new TTcpClient object to the event
handler. This is the first point when you can use the properties of TTcpClient to
obtain information about the server endpoint of the connection to a client.

• If BlockMode is bmThreadBlocking an OnGetThread event occurs. If you want to
provide your own customized descendant of TServerSocketThread, you can create
one in an OnGetThread event handler, and that will be used instead of
TServerSocketThread. If you want to perform any initialization of the thread, or
make any socket API calls before the thread starts reading or writing over the
connection, you should use the OnGetThread event handler for these tasks as well.

• The client completes the connection and an OnAccept event occurs. With a non-
blocking server, you may want to start reading or writing over the socket
connection at this point.

Reading and writing over socket connections
The reason you form socket connections to other machines is so that you can read or
write information over those connections. What information you read or write, or
when you read it or write it, depends on the service associated with the socket
connection.

Reading and writing over sockets can occur asynchronously, so that it does not block
the execution of other code in your network application. This is called a non-blocking
connection. You can also form blocking connections, where your application waits
for the reading or writing to be completed before executing the next line of code.

Non-blocking connections

Non-blocking connections read and write asynchronously, so that the transfer of data
does not block the execution of other code in you network application. To create a
non-blocking connection for client or server sockets, set the BlockMode property to
bmNonBlocking.

32-10 D e v e l o p e r ’ s G u i d e

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

When the connection is non-blocking, reading and writing events inform your socket
when the socket on the other end of the connection tries to read or write information.

Reading and writing events
Non-blocking sockets generate reading and writing events when it needs to read or
write over the connection. You can respond to these notifications in an OnReceive or
OnSend event handler.

The socket object associated with the socket connection is provided as a parameter to
the read or write event handlers. This socket object provides a number of methods to
allow you to read or write over the connection.

To read from the socket connection, use the ReceiveBuf or Receiveln method. To write
to the socket connection, use the SendBuf, SendStream, or Sendln method.

Blocking connections

When the connection is blocking your socket must initiate reading or writing over the
connection rather than waiting passively for a notification from the socket
connection. Use a blocking socket when your end of the connection is in charge of
when reading and writing takes place.

For client or server sockets, set the BlockMode property to bmBlocking to form a
blocking connection. Depending on what else your client application does, you may
want to create a new execution thread for reading or writing, so that your application
can continue executing code on other threads while it waits for the reading or writing
over the connection to be completed.

For server sockets, set the BlockMode property to bmBlocking or bmThreadBlocking to
form a blocking connection. Because blocking connections hold up the execution of
all other code while the socket waits for information to be written or read over the
connection, server socket components always spawn a new execution thread for
every client connection when the BlockMode is bmThreadBlocking. When the BlockMode
is bmBlocking, program execution is blocked until a new connection is established.

D e v e l o p i n g C O M - b a s e d a p p l i c a t i o n s

P a r t

IV
Part IVDeveloping COM-based applications

The chapters in “Developing COM-based applications” present concepts necessary
for building COM-based applications, including Automation controllers,
Automation servers, ActiveX controls, and COM+ applications.

Note Support for COM clients is available in all editions of Delphi. However, to create
servers, you need the Professional or Enterprise edition.

O v e r v i e w o f C O M t e c h n o l o g i e s 33-1

C h a p t e r

33
Chapter 33Overview of COM technologies

Delphi provides wizards and classes to make it easy to implement applications based
on the Component Object Model (COM) from Microsoft. With these wizards, you can
create COM-based classes and components to use within applications or you can
create fully functional COM clients or servers that implement COM objects,
Automation servers (including Active Server Objects), ActiveX controls, or
ActiveForms.

Note COM components such as those on the ActiveX, COM+, and Servers tabs of the
Component palette are not available for use in CLX applications. This technology is
for use on Windows only and is not cross-platform.

COM is a language-independent software component model that enables interaction
between software components and applications running on a Windows platform.
The key aspect of COM is that it enables communication between components,
between applications, and between clients and servers through clearly defined
interfaces. Interfaces provide a way for clients to ask a COM component which
features it supports at runtime. To provide additional features for your component,
you simply add an additional interface for those features.

Applications can access the interfaces of COM components that exist on the same
computer as the application or that exist on another computer on the network using a
mechanism called Distributed COM (DCOM). For more information on clients,
servers, and interfaces see, “Parts of a COM application,” on page 33-3.

This chapter provides a conceptual overview of the underlying technology on which
Automation and ActiveX controls are built. Later chapters provide details on creating
Automation objects and ActiveX controls in Delphi.

COM as a specification and implementation
COM is both a specification and an implementation. The COM specification defines
how objects are created and how they communicate with each other. According to
this specification, COM objects can be written in different languages, run in different
process spaces and on different platforms. As long as the objects adhere to the

33-2 D e v e l o p e r ’ s G u i d e

written specification, they can communicate. This allows you to integrate legacy code
as a component with new components implemented in object-oriented languages.

The COM implementation is built into the Win32 subsystem, which provides a
number of core services that support the written specification. The COM library
contains a set of standard interfaces that define the core functionality of a COM
object, and a small set of API functions designed for the purpose of creating and
managing COM objects.

When you use Delphi wizards and VCL objects in your application, you are using
Delphi’s implementation of the COM specification. In addition, Delphi provides
some wrappers for COM services for those features that it does not implement
directly (such as Active Documents). You can find these wrappers defined in the
ComObj unit and the API definitions in the AxCtrls unit.

Note Delphi’s interfaces and language follow the COM specification. Delphi implements
objects conforming to the COM spec using a set of classes called the Delphi ActiveX
framework (DAX). These classes are found in the AxCtrls, OleCtrls, and OleServer
units. In addition, the Pascal interface to the COM API is in ActiveX.pas and
ComSvcs.pas.

COM extensions
As COM has evolved, it has been extended beyond the basic COM services. COM
serves as the basis for other technologies such as Automation, ActiveX controls,
Active Documents, and Active Directories. For details on COM extensions, see
“COM extensions” on page 33-10.

In addition, when working in a large, distributed environment, you can create
transactional COM objects. Prior to Windows 2000, these objects were not
architecturally part of COM, but rather ran in the Microsoft Transaction Server (MTS)
environment. With the advent of Windows 2000, this support is integrated into
COM+. Transactional objects are described in detail in Chapter 39, “Creating MTS or
COM+ objects.”

Delphi provides wizards to easily implement applications that incorporate the above
technologies in the Delphi environment. For details, see “Implementing COM objects
with wizards” on page 33-18.

O v e r v i e w o f C O M t e c h n o l o g i e s 33-3

P a r t s o f a C O M a p p l i c a t i o n

Parts of a COM application
When implementing a COM application, you supply the following:

COM interfaces

COM clients communicate with objects through COM interfaces. Interfaces are
groups of logically or semantically related routines which provide communication
between a provider of a service (server object) and its clients. The standard way to
depict a COM interface is shown in Figure 33.1:

Figure 33.1 A COM interface

For example, every COM object implements the basic interface, IUnknown, which
tells the client what interfaces are available on the COM object.

Objects can have multiple interfaces, where each interface implements a feature. An
interface provides a way to convey to the client what service it provides, without
providing implementation details of how or where the object provides this service.

Key aspects of COM interfaces are as follows:

• Once published, interfaces are immutable; that is, they do not change. You can rely
on an interface to provide a specific set of functions. Additional functionality is
provided by additional interfaces.

• By convention, COM interface identifiers begin with a capital I and a symbolic
name that defines the interface, such as IMalloc or IPersist.

COM Interface The way in which an object exposes its services externally to
clients. A COM object provides an interface for each set of related
methods and properties. Note that COM properties are not
identical to properties on VCL objects. COM properties always use
read and write access methods.

COM server A module, either an EXE, DLL, or OCX, that contains the code for a
COM object. Object implementations reside in servers. A COM
object implements one or more interfaces.

COM client The code that calls the interfaces to get the requested services from
the server. Clients know what they want to get from the server
(through the interface); clients do not know the internals of how
the server provides the services. Delphi eases the process in
creating a client by letting you install COM servers (such as a Word
document or PowerPoint slide) as components on the Component
Palette. This allows you to connect to the server and hook its
events through the Object Inspector.

COM
Object

Interface

33-4 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

• Interfaces are guaranteed to have a unique identification, called a Globally
Unique Identifier (GUID), which is a 128-bit randomly generated number.
Interface GUIDs are called Interface Identifiers (IIDs). This eliminates naming
conflicts between different versions of a product or different products.

• Interfaces are language independent. You can use any language to implement a
COM interface as long as the language supports a structure of pointers, and can
call a function through a pointer either explicitly or implicitly.

• Interfaces are not objects themselves; they provide a way to access an object.
Therefore, clients do not access data directly; clients access data through an
interface pointer. Windows 2000 adds an additional layer of indirection known as
an interceptor through which it provides COM+ features such as just-in-time
activation and object pooling.

• Interfaces are always inherited from the fundamental interface, IUnknown.

• Interfaces can be redirected by COM through proxies to enable interface method
calls to call between threads, processes, and networked machines, all without the
client or server objects ever being aware of the redirection. For more information
see , “In-process, out-of-process, and remote servers,” on page 33-6.

The fundamental COM interface, IUnknown
All COM objects must support the fundamental interface, called IUnknown, a typedef
to the base interface type IInterface. IUnknown contains the following routines:

Clients obtain pointers to other interfaces through the IUnknown method,
QueryInterface. QueryInterface knows about every interface in the server object and
can give a client a pointer to the requested interface. When receiving a pointer to an
interface, the client is assured that it can call any method of the interface.

Objects track their own lifetime through the IUnknown methods, AddRef and Release,
which are simple reference counting methods. As long as an object’s reference count
is nonzero, the object remains in memory. Once the reference count reaches zero, the
interface implementation can safely dispose of the underlying object(s).

COM interface pointers
An interface pointer is a 32-bit pointer to an object instance that points, in turn, to the
implementation of each method in the interface. The implementation is accessed
through an array of pointers to these methods, which is called a vtable. Vtables are
similar to the mechanism used to support virtual functions in Object Pascal. Because
of this similarity, the compiler can resolve calls to methods on the interface the same
way it resolves calls to methods on Object Pascal classes.

The vtable is shared among all instances of an object class, so for each object instance,
the object code allocates a second structure that contains its private data. The client’s

QueryInterface Provides pointers to other interfaces that the object supports.

AddRef and Release Simple reference counting methods that keep track of the
object’s lifetime so that an object can delete itself when the
client no longer needs its service.

O v e r v i e w o f C O M t e c h n o l o g i e s 33-5

P a r t s o f a C O M a p p l i c a t i o n

interface pointer, then, is a pointer to the pointer to the vtable, as shown in the
following diagram.

Figure 33.2 Interface vtable

In Windows 2000 and subsequent versions of Windows, when an object is running
under COM+, an added level of indirection is provided between the interface pointer
and the vtable pointer. The interface pointer available to the client points at an
interceptor, which in turn points at the vtable. This allows COM+ to provide such
services as just-in-time activation, whereby the server can be deactivated and
reactivated dynamically in a way that is opaque to the client. To achieve this, COM+
guarantees that the interceptor behaves as if it were an ordinary vtable pointer.

COM servers

A COM server is an application or a library that provides services to a client
application or library. A COM server consists of one or more COM objects, where a
COM object is a set of properties and methods.

Clients do not know how a COM object performs its service; the object’s
implementation remains encapsulated. An object makes its services available
through its interfaces as described previously.

In addition, clients do not need to know where a COM object resides. COM provides
transparent access regardless of the object’s location.

When a client requests a service from a COM object, the client passes a class identifier
(CLSID) to COM. A CLSID is simply a GUID that identifies a COM object. COM uses
this CLSID, which is registered in the system registry, to locate the appropriate server
implementation. Once the server is located, COM brings the code into memory, and
has the server instantiate an object instance for the client. This process is handled
indirectly, through a special object called a class factory (based on interfaces) that
creates instances of objects on demand.

As a minimum, a COM server must perform the following:

• Register entries in the system registry that associate the server module with the
class identifier (CLSID).

Pointer to
Function 1

Implementation
of interface
functions

vtable pointerinterface pointer

object

Pointer to
Function 2

Pointer to
Function 3

33-6 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

• Implement a class factory object, which manufactures another object of a
particular CLSID.

• Expose the class factory to COM.

• Provide an unloading mechanism through which a server that is not servicing
clients can be removed from memory.

Note Delphi wizards automate the creation of COM objects and servers as described in
“Implementing COM objects with wizards” on page 33-18.

CoClasses and class factories
A COM object is an instance of a CoClass, which is a class that implements one or
more COM interfaces. The COM object provides the services as defined by its
interfaces.

CoClasses are instantiated by a special type of object called a class factory. Whenever
an object’s services are requested by a client, a class factory creates an object instance
for that particular client. Typically, if another client requests the object’s services, the
class factory creates another object instance to service the second client. (Clients can
also bind to running COM objects that register themselves to support it.)

A CoClass must have a class factory and a class identifier (CLSID) so that it can be
instantiated externally, that is, from another module. Using these unique identifiers
for CoClasses means that they can be updated whenever new interfaces are
implemented in their class. A new interface can modify or add methods without
affecting older versions, which is a common problem when using DLLs.

Delphi wizards take care of assigning class identifiers and of implementing and
instantiating class factories.

In-process, out-of-process, and remote servers
With COM, a client does not need to know where an object resides, it simply makes a
call to an object’s interface. COM performs the necessary steps to make the call. These
steps differ depending on whether the object resides in the same process as the client,
in a different process on the client machine, or in a different machine across the
network. The different types of servers are known as:

In-process server A library (DLL) running in the same process space as the client,
for example, an ActiveX control embedded in a Web page
viewed under Internet Explorer or Netscape. Here, the ActiveX
control is downloaded to the client machine and invoked
within the same process as the Web browser.

The client communicates with the in-process server using direct
calls to the COM interface.

O v e r v i e w o f C O M t e c h n o l o g i e s 33-7

P a r t s o f a C O M a p p l i c a t i o n

As shown in Figure 33.3, for in-process servers, pointers to the object interfaces are in the
same process space as the client, so COM makes direct calls into the object
implementation.

Figure 33.3 In-process server

Note This is not always true under COM+. When a client makes a call to an object in a
different context, COM+ intercepts the call so that it behaves like a call to an out-of-
process server (see below), even if the server is in-process. See Chapter 39, “Creating
MTS or COM+ objects” for more information working with COM+.

As shown in Figure 33.4, when the process is either in a different process or in a different
machine altogether, COM uses a proxy to initiate remote procedure calls. The proxy
resides in the same process as the client, so from the client’s perspective, all interface
calls look alike. The proxy intercepts the client’s call and forwards it to where the real
object is running. The mechanism that enables the client to access objects in a different
process space, or even different machine, as if they were in their own process, is called
marshaling.

Out-of-process
server (or local
server)

Another application (EXE) running in a different process space
but on the same machine as the client. For example, an Excel
spreadsheet embedded in a Word document are two separate
applications running on the same machine.

The local server uses COM to communicate with the client.

Remote server A DLL or another application running on a different machine
from that of the client. For example, a Delphi database
application is connected to an application server on another
machine in the network.

The remote server uses distributed COM (DCOM) to access
interfaces and communicate with the application server.

Client Process

Client
Server

In-process
Object

33-8 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

Figure 33.4 Out-of-process and remote servers

The difference between out-of-process and remote servers is the type of interprocess
communication used. The proxy uses COM to communicate with an out-of-process
server, it uses distributed COM (DCOM) to communicate with a remote machine.
DCOM transparently transfers a local object request to the remote object running on
a different machine.

Note For remote procedure calls, DCOM uses the RPC protocol provided by Open
Group’s Distributed Computing Environment (DCE). For distributed security,
DCOM uses the NT LAN Manager (NTLM) security protocol. For directory services,
DCOM uses the Domain Name System (DNS).

The marshaling mechanism
Marshaling is the mechanism that allows a client to make interface function calls to
remote objects in another process or on a different machine. Marshaling

• Takes an interface pointer in the server’s process and makes a proxy pointer
available to code in the client process.

• Transfers the arguments of an interface call as passed from the client and places
the arguments into the remote object’s process space.

For any interface call, the client pushes arguments onto a stack and makes a function
call through the interface pointer. If the call to the object is not in-process, the call gets
passed to the proxy. The proxy packs the arguments into a marshaling packet and
transmits the structure to the remote object. The object’s stub unpacks the packet,
pushes the arguments onto the stack, and calls the object’s implementation. In
essence, the object recreates the client’s call in its own address space.

What type of marshaling occurs depends on what the COM object implements.
Objects can use a standard marshaling mechanism provided by the IDispatch
interface. This is a generic marshaling mechanism that enables communication
through a system-standard remote procedure call (RPC). For details on the IDispatch
interface, see “Automation interfaces” on page 36-12. Even if the object does not

DCOM
RPC

Client Process

Client

In-process
Proxy

Out-of-Process Server

Stub In-process
Object

Remote machine

Remote machine

DCOM

Stub

Remote server

In-process
Object

COM
RPC

O v e r v i e w o f C O M t e c h n o l o g i e s 33-9

P a r t s o f a C O M a p p l i c a t i o n

implement IDispatch, if it limits itself to automation-compatible types and has a
registered type library, COM automatically provides marshaling support.

Applications that do not limit themselves to automation-compatible types or register
a type library must provide their own marshaling. Marshaling is provided either
through an implementation of the IMarshal interface, or by using a separately
generated proxy/stub DLL. Delphi does not support the automatic generation of
proxy/stub DLLs.

Aggregation
Sometimes, a server object makes use of another COM object to perform some of its
functions. For example, an inventory management object might make use of a
separate invoicing object to handle customer invoices. If the inventory management
object wants to present the invoice interface to clients, however, there is a problem:
Although a client that has the inventory interface can call QueryInterface to obtain the
invoice interface, when the invoice object was created it did not know about the
inventory management object and can’t return an inventory interface in response to a
call to QueryInterface. A client that has the invoice interface can’t get back to the
inventory interface.

To avoid this problem, some COM objects support aggregation. When the inventory
management object creates an instance of the invoice object, it passes it a copy of its
own IUnknown interface. The invoice object can then use that IUnknown interface to
handle any QueryInterface calls that request an interface, such as the inventory
interface, that it does not support. When this happens, the two objects together are
called an aggregate. The invoice object is called the inner, or contained object of the
aggregate, and the inventory object is called the outer object.

Note In order to act as the outer object of an aggregate, a COM object must create the inner
object using the Windows API CoCreateInstance or CoCreateInstanceEx, passing its
IUnknown pointer as a parameter that the inner object can use for QueryInterface calls.

In order to create an object that can act as the inner object of an aggregate, it must
descend from TContainedObject. When the object is created, the IUnknown interface of
the outer object is passed to the constructor so that it can be used by the
QueryInterface method on calls that the inner object can’t handle.

COM clients

Clients can always query the interfaces of a COM object to determine what it is
capable of providing. All COM objects allow clients to request known interfaces. In
addition, if the server supports the IDispatch interface, clients can query the server for
information about what methods the interface supports. Server objects have no
expectations about the client using its objects. Similarly, clients don’t need to know
how (or even where) an object provides the services; they simply rely on server
objects to provide the services they advertise through their interfaces.

There are two types of COM clients, controllers and containers. Controllers launch
the server and interact with it through its interface. They request services from the
COM object or drive it as a separate process. Containers host visual controls or

33-10 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

objects that appear in the container’s user interface. They use predefined interfaces to
negotiate display issues with server objects. It is impossible to have a container
relationship over DCOM; for example, visual controls that appear in the container's
user interface must be located locally. This is because the controls are expected to
paint themselves, which requires that they have access to local GDI resources.

Delphi makes it easier for you to develop COM clients by letting you import a type
library or ActiveX control into a component wrapper so that server objects look like
other VCL components. For details on this process, see Chapter 35, “Creating COM
clients”.

COM extensions
COM was originally designed to provide core communication functionality and to
enable the broadening of this functionality through extensions. COM itself has
extended its core functionality by defining specialized sets of interfaces for specific
purposes.

The following lists some of the services COM extensions currently provide.
Subsequent sections describe these services in greater detail.

Automation servers Automation refers to the ability of an application to control the
objects in another application programmatically. Automation
servers are the objects that can be controlled by other
executables at runtime.

ActiveX controls ActiveX controls are specialized in-process servers, typically
intended for embedding in a client application. The controls
offer both design and runtime behaviors as well as events.

Active Server Pages Active Server Pages are scripts that generate HTML pages. The
scripting language includes constructs for creating and running
Automation objects. That is, the Active Server Page acts as an
Automation controller.

Active Documents Objects that support linking and embedding, drag-and-drop,
visual editing, and in-place activation. Word documents and
Excel spreadsheets are examples of Active Documents.

Transactional
objects

Objects that include additional support for responding to large
numbers of clients. This includes features such as just-in-time
activation, transactions, resource pooling, and security services.
These features were originally handled by MTS but have been
built into COM with the advent of COM+.

Type libraries A collection of static data structures, often saved as a resource,
that provides detailed type information about an object and its
interfaces. Clients of Automation servers, ActiveX controls, and
transactional objects expect type information to be available.

O v e r v i e w o f C O M t e c h n o l o g i e s 33-11

C O M e x t e n s i o n s

The following diagram illustrates the relationship of the COM extensions and how
they are built upon COM:

Figure 33.5 COM-based technologies

COM objects can be visual or non-visual. Some must run in the same process space as
their clients; others can run in different processes or remote machines, as long as the
objects provide marshaling support. Table 33.1 summarizes the types of COM objects
that you can create, whether they are visual, process spaces they can run in, how they
provide marshaling, and whether they require a type library.

Table 33.1 COM object requirements

Object Visual Object? Process space Communication Type library

Active
Document

Usually In-process, or
out-of-process

OLE Verbs No

Automation Occasionally In-process,
out-of-process,
or remote

Automatically marshaled
using the IDispatch interface
(for out-of process and
remote servers)

Required for
automatic
marshaling

ActiveX Control Usually In-process Automatically marshaled
using the IDispatch interface

Required

MTS or COM+ Occasionally In-process for
MTS,
any for COM+

Automatically marshaled via
a type library

Required

33-12 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

Automation servers

Automation refers to the ability of an application to control the objects in another
application programmatically, like a macro that can manipulate more than one
application at the same time. The server object being manipulated is called the
Automation object, and the client of the Automation object is referred to as an
Automation controller.

Automation can be used on in-process, local, and remote servers.

Automation is characterized by two key points:

• The Automation object defines a set of properties and commands, and describes
their capabilities through type descriptions. In order to do this, it must have a way
to provide information about its interfaces, the interface methods, and those
methods’ arguments. Typically, this information is available in a type library. The
Automation server can also generate type information dynamically when queried
via its IDispatch interface (see following).

• Automation objects make their methods accessible so that other applications can
use them. For this, they implement the IDispatch interface. Through this interface
an object can expose all of its methods and properties. Through the primary
method of this interface, the object’s methods can be invoked, once having been
identified through type information.

Developers often use Automation to create and use non-visual OLE objects that run
in any process space because the Automation IDispatch interface automates the
marshaling process. Automation does, however, restrict the types that you can use.

For a list of types that are valid for type libraries in general, and Automation
interfaces in particular, see “Valid types” on page 34-11.

For information on writing an Automation server, see Chapter 36, “Creating simple
COM servers.”

Active Server Pages

The Active Server Page (ASP) technology lets you write simple scripts, called Active
Server Pages, that can be launched by clients via a Web server. Unlike ActiveX
controls, which run on the client, Active Server Pages run on the server, and return a
resulting HTML page to clients.

In-process
custom interface
object

Optionally In-process No marshaling required for
in-process servers

Recommended

Other custom
interface object

Optionally In-process,
out-of-process,
or remote

Automatically marshaled via
a type library; otherwise,
manually marshaled using
custom interfaces

Recommended

Table 33.1 COM object requirements (continued)

Object Visual Object? Process space Communication Type library

O v e r v i e w o f C O M t e c h n o l o g i e s 33-13

C O M e x t e n s i o n s

Active Server Pages are written in Jscript or VB script. The script runs every time the
server loads the Web page. That script can then launch an embedded Automation
server (or Enterprise Java Bean). For example, you can write an Automation server,
such as one to create a bitmap or connect to a database, and this server accesses data
that gets updated every time a client loads the Web page.

Active Server Pages rely on the Microsoft Internet Information Server (IIS)
environment to serve your Web pages.

Delphi wizards let you create an Active Server Object, which is an Automation object
specifically designed to work with an Active Server Page. For more information
about creating and using these types of objects, see Chapter 37, “Creating an Active
Server Page.”

ActiveX controls

ActiveX is a technology that allows COM components, especially controls, to be more
compact and efficient. This is especially necessary for controls that are intended for
Intranet applications that need to be downloaded by a client before they are used.

ActiveX controls are visual controls that run only as in-process servers, and can be
plugged into an ActiveX control container application. They are not complete
applications in themselves, but can be thought of as prefabricated OLE controls that
are reusable in various applications. ActiveX controls have a visible user interface,
and rely on predefined interfaces to negotiate I/O and display issues with their host
containers.

ActiveX controls make use of Automation to expose their properties, methods, and
events. Features of ActiveX controls include the ability to fire events, bind to data
sources, and support licensing.

One use of ActiveX controls is on a Web site as interactive objects in a Web page. As
such, ActiveX is a standard that targets interactive content for the World Wide Web,
including the use of ActiveX Documents used for viewing non-HTML documents
through a Web browser. For more information about ActiveX technology, see the
Microsoft ActiveX Web site.

Delphi wizards allow you to easily create ActiveX controls. For more information
about creating and using these types of objects, see Chapter 38, “Creating an ActiveX
control.”

Active Documents

Active Documents (previously referred to as OLE documents) are a set of COM
services that support linking and embedding, drag-and-drop, and visual editing.
Active Documents can seamlessly incorporate data or objects of different formats,
such as sound clips, spreadsheets, text, and bitmaps.

Unlike ActiveX controls, Active Documents are not limited to in-process servers; they
can be used in cross-process applications.

33-14 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

Unlike Automation objects, which are almost never visual, Active Document objects
can be visually active in another application. Thus, Active Document objects are
associated with two types of data: presentation data, used for visually displaying the
object on a display or output device, and native data, used to edit an object.

Active Document objects can be document containers or document servers. While
Delphi does not provide an automatic wizard for creating Active Documents, you
can use the VCL class, TOleContainer, to support linking and embedding of existing
Active Documents.

You can also use TOleContainer as a basis for an Active Document container. To
create objects for Active Document servers, use the COM object wizard and add the
appropriate interfaces, depending on the services the object needs to support. For
more information about creating and using Active Document servers, see the
Microsoft ActiveX Web site.

Note While the specification for Active Documents has built-in support for marshaling in
cross-process applications, Active Documents do not run on remote servers because
they use types that are specific to a system on a given machine such as window
handles, menu handles, and so on.

Transactional objects

Delphi uses the term “transactional objects” to refer to objects that take advantage of
the transaction services, security, and resource management supplied by Microsoft
Transaction Server (MTS) (for versions of Windows prior to Windows 2000) or
COM+ (for Windows 2000 and later). These objects are designed to work in a large,
distributed environment.

The transaction services provide robustness so that activities are always completed
or rolled back (the server never partially completes an activity). The security services
allow you to expose different levels of support to different classes of clients. The
resource management allows an object to handle more clients by pooling resources or
keeping objects active only when they are in use. To enable the system to provide
these services, the object must implement the IObjectControl interface. To access the
services, transactional objects use an interface called IObjectContext, which is created
on their behalf by MTS or COM+.

Under MTS, the server object must be built into a library (DLL), which is then
installed in the MTS runtime environment. That is, the server object is an in-process
server that runs in the MTS runtime process space. Under COM+, this restriction
does not apply because all COM calls are routed through an interceptor. To clients,
the difference between MTS and COM+ is transparent.

MTS or COM+ servers group transactional objects that run in the same process space.
Under MTS, this group is called an MTS package, while under COM+ it is called a
COM+ application. A single machine can be running several different MTS packages
(or COM+ applications), where each one is running in a separate process space.

To clients, the transactional object may appear like any other COM server object. The
client need never know about transactions, security, or just-in-time activation unless
it is initiating a transaction itself.

O v e r v i e w o f C O M t e c h n o l o g i e s 33-15

C O M e x t e n s i o n s

Both MTS and COM+ provide a separate tool for administering transactional objects.
This tool lets you configure objects into packages or COM+ applications, view the
packages or COM+ applications installed on a computer, view or change the
attributes of the included objects, monitor and manage transactions, make objects
available to clients, and so on. Under MTS, this tool is the MTS Explorer. Under
COM+ it is the COM+ Component Manager.

Type libraries

Type libraries provide a way to get more type information about an object than can
be determined from an object’s interface. The type information contained in type
libraries provides needed information about objects and their interfaces, such as
what interfaces exist on what objects (given the CLSID), what member functions exist
on each interface, and what arguments those functions require.

You can obtain type information either by querying a running instance of an object or
by loading and reading type libraries. With this information, you can implement a
client which uses a desired object, knowing specifically what member functions you
need, and what to pass those member functions.

Clients of Automation servers, ActiveX controls, and transactional objects expect
type information to be available. All of Delphi’s wizards generate a type library
automatically, although the COM object wizard makes this optional. You can view or
edit this type information by using the Type Library Editor as described in Chapter
34, “Working with type libraries.”

This section describes what a type library contains, how it is created, when it is used,
and how it is accessed. For developers wanting to share interfaces across languages,
the section ends with suggestions on using type library tools.

The content of type libraries
Type libraries contain type information, which indicates which interfaces exist in
which COM objects, and the types and numbers of arguments to the interface
methods. These descriptions include the unique identifiers for the CoClasses
(CLSIDs) and the interfaces (IIDs), so that they can be properly accessed, as well as
the dispatch identifiers (dispIDs) for Automation interface methods and properties.

Type libraries can also contain the following information:

• Descriptions of custom type information associated with custom interfaces

• Routines that are exported by the Automation or ActiveX server, but that are not
interface methods

• Information about enumeration, record (structures), unions, alias, and module
data types

• References to type descriptions from other type libraries

33-16 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

Creating type libraries
With traditional development tools, you create type libraries by writing scripts in the
Interface Definition Language (IDL) or the Object Description Language (ODL), then
running that script through a compiler. However, Delphi automatically generates a
type library when you create a COM object (including ActiveX controls, Automation
objects, remote data modules, and so on) using any of the wizards on the ActiveX or
Multitier page of the new items dialog. (You can opt not to create a type library when
using the COM object wizard.) You can also create a type library by choosing from
the main menu, File|New|Other, select the ActiveX tab, and choose Type Library.

You can view the type library using Delphi’s Type Library editor. You can easily edit
your type library using the Type Library editor and Delphi automatically updates the
corresponding .tlb file (binary type library file) when the type library is saved. For
any changes to Interfaces and CoClasses that were created using a wizard, the Type
Library editor also updates your implementation files. For more information on
using the Type Library editor to write interfaces and CoClasses, see Chapter 34,
“Working with type libraries.”

When to use type libraries
It is important to create a type library for each set of objects that is exposed to
external users, for example,

• ActiveX controls require a type library, which must be included as a resource in
the DLL that contains the ActiveX controls.

• Exposed objects that support vtable binding of custom interfaces must be
described in a type library because vtable references are bound at compile time.
Clients import information about the interfaces from the type library and use that
information to compile. For more information about vtable and compile time
binding, see “Automation interfaces” on page 36-12.

• Applications that implement Automation servers should provide a type library so
that clients can early bind to it.

• Objects instantiated from classes that support the IProvideClassInfo interface, such
as all descendants of the VCL TTypedComObject class, must have a type library.

• Type libraries are not required, but are useful for identifying the objects used with
OLE drag-and-drop.

When defining interfaces for internal use only (within an application) you do not
need to create a type library.

Accessing type libraries
The binary type library is normally a part of a resource file (.res) or a stand-alone file
with a .tlb file-name extension. When included in a resource file, the type library can
be bound into a server (.dll, .ocx, or .exe).

O v e r v i e w o f C O M t e c h n o l o g i e s 33-17

C O M e x t e n s i o n s

Once a type library has been created, object browsers, compilers, and similar tools
can access type libraries through special type interfaces:

Delphi can import and use type libraries from other applications by choosing
Project|Import Type Library. Most of the VCL classes used for COM applications
support the essential interfaces that are used to store and retrieve type information
from type libraries and from running instances of an object. The VCL class
TTypedComObject supports interfaces that provide type information, and is used as a
foundation for the ActiveX object framework.

Benefits of using type libraries
Even if your application does not require a type library, you can consider the
following benefits of using one:

• Type checking can be performed at compile time.

• You can use early binding with Automation, and controllers that do not support
vtables or dual interfaces can encode dispIDs at compile time, improving runtime
performance.

• Type browsers can scan the library, so clients can see the characteristics of your
objects.

• The RegisterTypeLib function can be used to register your exposed objects in the
registration database.

• The UnRegisterTypeLib function can be used to completely uninstall an
application’s type library from the system registry.

• Local server access is improved because Automation uses information from the
type library to package the parameters that are passed to an object in another
process.

Interface Description

ITypeLib Provides methods for accessing a library of type descriptions.

ITypeLib2 Augments ITypeLib to include support for documentation
strings, custom data, and statistics about the type library.

ITypeInfo Provides descriptions of individual objects contained in a type
library. For example, a browser uses this interface to extract
information about objects from the type library.

ITypeInfo2 Augments ITypeInfo to access additional type library
information, including methods for accessing custom data
elements.

ITypeComp Provides a fast way to access information that compilers need
when binding to an interface.

33-18 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

Using type library tools
The tools for working with type libraries are listed below.

• The TLIBIMP (Type Library Import) tool, which takes existing type libraries and
creates Delphi Interface files (_TLB.pas files), is incorporated into the Type Library
editor. TLIBIMP provides additional configuration options not available inside the
Type Library editor.

• TRegSvr is a tool for registering and unregistering servers and type libraries,
which comes with Delphi. The source to TRegSvr is available as an example in the
Demos directory.

• The Microsoft IDL compiler (MIDL) compiles IDL scripts to create a type library.

• RegSvr32.exe is a tool for registering and unregistering servers and type libraries,
which is a standard Windows utility.

• OLEView is a type library browser tool, found on Microsoft’s Web site.

Implementing COM objects with wizards
Delphi makes it easier to write COM server applications by providing wizards that
handle many of the details involved. Delphi provides separate wizards to create the
following:

• A simple COM object
• An Automation object
• An Active Server Object (for embedding in an Active Server page)
• An ActiveX control
• An ActiveX Form
• A transactional object
• A Property page
• A Type library
• An ActiveX library

The wizards handle many of the tasks involved in creating each type of COM object.
They provide the required COM interfaces for each type of object. As shown in
Figure 33.6, with a simple COM object, the wizard implements the one required
COM interface, IUnknown, which provides an interface pointer to the object.

Figure 33.6 Simple COM object interface

The COM object wizard also provides an implementation for IDispatch if you specify
that you are creating an object that supports an IDispatch descendant.

COM
Object

IUnknown

O v e r v i e w o f C O M t e c h n o l o g i e s 33-19

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

As shown inFigure 33.7, for Automation and Active Server objects, the wizard
implements IUnknown and IDispatch, which provides automatic marshaling.

Figure 33.7 Automation object interface

As shown in Figure 33.8, for ActiveX control objects and ActiveX forms, the wizard
implements all the required ActiveX control interfaces, from IUnknown, IDispatch,
IOleObject, IOleControl, and so on. For a complete list of interfaces, see the reference
page for TActiveXControl object.

Figure 33.8 ActiveX object interface

Table 33.2 lists the various wizards and the interfaces they implement:

Table 33.2 Delphi wizards for implementing COM, Automation, and ActiveX objects

Wizard Implemented interfaces What the wizard does

COM server IUnknown (and IDispatch if
you select a default interface
that descends from IDispatch)

Exports routines that handle server registration,
class registration, loading and unloading the
server, and object instantiation.
Creates and manages class factories for objects
implemented on the server.
Provides registry entries for the object that
specify the selected threading model.
Declares the methods that implement a selected
interface, providing skeletal implementations
for you to complete.
Provides a type library, if requested.
Allows you to select an arbitrary interface that is
registered in the type library and implement it.
If you do this, you must use a type library.

Automation
Object

IUnknown

IDispatch

IUnknown

IOleObject

IOleControl

IOleInPlaceObject

ISpecifyPropertyPages

ActiveX
Control
Object

IDispatch

·
··

33-20 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

Automation
server

IUnknown, IDispatch Performs the tasks of a COM server wizard
(described above), plus:
Implements the interface that you specify, either
dual or dispatch. Provides server-side support
for generating events, if requested.
Provides a type library automatically.

Active Server
Object

IUnknown, IDispatch,
(IASPObject)

Performs the tasks of an Automation object
wizard (described above) and optionally
generates an .ASP page which can be loaded
into a Web browser. It leaves you in the Type
Library editor so that you can modify the
object’s properties and methods if needed.
Surfaces the ASP intrinsics as properties so that
you can easily obtain information about the ASP
application and the HTTP messages that
launched it.

ActiveX Control IUnknown, IDispatch,
IPersistStreamInit,
IOleInPlaceActiveObject,
IPersistStorage, IViewObject,
IOleObject, IViewObject2,
IOleControl,
IPerPropertyBrowsing,
IOleInPlaceObject,
ISpecifyPropertyPages

Performs the tasks of the Automation server
wizard (described above), plus:
Generates a CoClass that corresponds to the
VCL control on which the ActiveX control is
based and which implements all the ActiveX
interfaces.
Leaves you in the source code editor so that you
can modify the implementation class.

ActiveForm Same interfaces as ActiveX
Control

Performs the tasks of the ActiveX control
wizard, plus:
Creates a TActiveForm descendant that takes the
place of the pre-existing VCL class in the
ActiveX control wizard. This new class lets you
design the Active Form the same way you
design a form in a Windows application.

Transactional
object

IUnknown, IDispatch,
IObjectControl

Adds a new unit to the current project
containing the MTS or COM+ object definition.
It inserts proprietary GUIDs into the type
library so that Delphi can install the object
properly, and leaves you in the Type Library
editor so that you can define the interface that
the object exposes to clients. You must install
the object separately after it is built.

Property Page IUnknown, IPropertyPage Creates a new property page that you can
design in the Forms designer.

COM+ Event
object

None, by default Creates a COM+ event object that you can
define using the Type Library editor. Unlike the
other object wizards, the COM+ Event object
wizard does not create an implementation unit
because event objects have no implementation
(it is provided by client sinks).

Table 33.2 Delphi wizards for implementing COM, Automation, and ActiveX objects (continued)

Wizard Implemented interfaces What the wizard does

O v e r v i e w o f C O M t e c h n o l o g i e s 33-21

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

You can add additional COM objects or reimplement an existing implementation. To
add a new object, it is easiest to use the wizard a second time. This is because the
wizard sets up an association between the type library and an implementation class,
so that changes you make in the type library editor are automatically applied to your
implementation object.

Code generated by wizards

Delphi’s wizards generate classes that are derived from the Delphi ActiveX
framework (DAX). Despite its name, the Delphi ActiveX framework supports all
types of COM objects, not just ActiveX controls. The classes in this framework
provide the underlying implementation of the standard COM interfaces for the
objects you create using a wizard. Figure 33.9 illustrates the objects in the Delphi
ActiveX framework:

Figure 33.9 Delphi ActiveX framework

Each wizard generates an implementation unit that implements your COM server
object. The COM server object (the implementation object) descends from one of the
classes in DAX:

Type Library None, by default Creates a new type library and associates it with
the active project.

ActiveX library None, by default Creates a new ActiveX or Com server DLL and
exposes the necessary export functions.

Table 33.3 DAX Base classes for generated implementation classes

Wizard Base class from DAX Inherited support

COM server TTypedCOMObject Support for IUnknown and ISupportErrorInfo
interfaces.
Support for aggregation, OLE exception
handling, and safecall calling convention on
dual interfaces.
Support for reading type library information.

Table 33.2 Delphi wizards for implementing COM, Automation, and ActiveX objects (continued)

Wizard Implemented interfaces What the wizard does

33-22 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

Corresponding to the classes in Figure 33.9 is a hierarchy of class factory objects that
handle the creation of these COM objects. The wizard adds code to the initialization
section of your implementation unit that instantiates the appropriate class factory for
your implementation class.

The wizards also generate a type library and its associated unit, which has a name of
the form Project1_TLB. The Project1_TLB unit includes the definitions your
application needs to use the type definitions and interfaces defined in the type
library. For more information on the contents of this file, see “Code generated when
you import type library information” on page 35-5.

You can modify the interface generated by the wizard using the type library editor.
When you do this, the implementation class is automatically updated to reflect those
changes. You need only fill in the bodies of the generated methods to complete the
implementation.

Automation server
Active Server
Object

TAutoObject Everything provided by TTypedCOMObject,
plus:
Support for the IDispatch interface.
Auto-marshaling support.

 ActiveX Control TActiveXControl Everything provided by TAutoObject, plus:
Support for embedding in a container.
Support for in-place activation.
Support for properties and property pages.
The ability to delegate to an associated
windowed control that it creates.

ActiveForm TActiveFormControl Everything provided by TAutoObject, except
that it works with a descendant of TActiveForm
rather than another windowed control class.

MTS object TMTSAutoObject Everything provided by TAutoObject, plus:
Support for the IObjectControl interface.

Property Page TPropertyPage (uses
TActiveXPropertyPage
internally)

Support for IUnknown and ISupportErrorInfo
interfaces.
Support for aggregation, OLE exception
handling, and safecall calling convention on
dual interfaces.
Support for the IPropertyPage interface.

Table 33.3 DAX Base classes for generated implementation classes (continued)

Wizard Base class from DAX Inherited support

W o r k i n g w i t h t y p e l i b r a r i e s 34-1

C h a p t e r

34
Chapter 34Working with type libraries

This chapter describes how to create and edit type libraries using Delphi’s Type
Library editor. Type libraries are files that include information about data types,
interfaces, member functions, and object classes exposed by a COM object. They
provide a way to identify what types of objects and interfaces are available on a
server. For a detailed overview on why and when to use type libraries, see “Type
libraries” on page 33-15.

A type library can contain any and all of the following:

• Information about custom data types such as aliases, enumerations, structures,
and unions.

• Descriptions of one or more COM elements, such as an interface, dispinterface, or
CoClass. Each of these descriptions is commonly referred to as type information.

• Descriptions of constants and methods defined in external units.

• References to type descriptions from other type libraries.

By including a type library with your COM application or ActiveX library, you make
information about the objects in your application available to other applications and
programming tools through COM’s type library tools and interfaces.

With traditional development tools, you create type libraries by writing scripts in the
Interface Definition Language (IDL) or the Object Description Language (ODL), then
run that script through a compiler. The Type Library editor automates some of this
process, easing the burden of creating and modifying your own type libraries.

When you create a COM server of any type (ActiveX control, Automation object,
remote data module, and so on) using Delphi’s wizards, the wizard automatically
generates a type library for you (although in the case of the COM object wizard, this
is optional). Most of the work you do in customizing the generated object starts with
the type library, because that is where you define the properties and methods it
exposes to clients: you change the interface of the CoClass generated by the wizard,
using the Type Library editor. The Type Library editor automatically updates the
implementation unit for your object, so that all you need do is fill in the bodies of the
generated methods.

34-2 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

You can also use the Delphi Type Library Editor in the development of Common
Object Request Broker Architecture (CORBA) applications. With traditional CORBA
tools, you must define object interfaces separately from your application, using the
CORBA Interface Definition Language (IDL). You then run a utility that generates
stub-and-skeleton code from that definition. However, Delphi generates the stub,
skeleton, and IDL for you automatically. You can easily edit your interface using the
Type Library editor and Delphi automatically updates the appropriate source files.

Type Library editor
The Type Library editor enables developers to examine and create type information
for COM objects. Using the Type Library editor can greatly simplify the task of
developing COM objects by centralizing the tasks of defining interfaces, CoClasses,
and types, obtaining GUIDs for new interfaces, associating interfaces with CoClasses,
updating implementation units, and so on.

Note The Type Library editor is also used to define CORBA interfaces in projects that use
the CORBA Object or CORBA Data Module wizard.

The Type Library editor outputs two types of file that represent the contents of the
type library:

Table 34.1 Type Library editor files

File Description

.TLB file The binary type library file. By default, you do not need to use this file, because the
type library is automatically compiled into the application as a resource. However,
you can use this file to explicitly compile the type library into another project or to
deploy the type library separately from the .exe or .ocx. For more information, see
“Opening an existing type library” on page 34-19 and “Deploying type libraries”
on page 34-27.
Note: When using the Type Library editor for CORBA interfaces, the Type Library
editor does not create the .tlb file.

_TLB unit This unit interprets the contents of the type library for use by your application. It
contains all the declarations your application needs to use the elements defined in
the type library. Although you can open this file in the code editor, you should
never edit it—it is maintained by the Type Library editor, so any changes you make
will be overwritten by the Type Library editor. For more details on the contents of
this file, see “Code generated when you import type library information” on
page 35-5.
Note: When using the Type Library editor for CORBA interfaces, this unit defines
the stub and skeleton objects required by the CORBA application.

W o r k i n g w i t h t y p e l i b r a r i e s 34-3

T y p e L i b r a r y e d i t o r

Parts of the Type Library editor

The main elements of the Type Library editor are described in Table 34.2:

These parts are illustrated in Figure 34.1, which shows the Type Library editor
displaying type information for a COM object named cyc.

Figure 34.1 Type Library editor

Toolbar
The Type Library editor’s toolbar located at the top of the Type Library Editor,
contains buttons that you click to add new objects into your type library.

The first group of buttons let you add elements to the type library. When you click a
toolbar button, the icon for that element appears in the object list pane. You can then
customize its attributes in the right pane. Depending on the type of icon you select,
different pages of information appear to the right.

Table 34.2 Type Library editor parts

Part Description

Toolbar Includes buttons to add new types, CoClasses, interfaces, and interface
members to your type library. The toolbar also includes buttons for refreshing
your implementation unit, registering the type library, and saving an IDL file
with the information in your type library.

Object list pane Displays all the existing elements in the type library. When you click on an
item in the object list pane, it displays pages valid for that object.

Status bar Displays syntax errors if you try to add invalid types to your type library.

Pages Display information about the selected object. Which pages appear here
depends on the type of object selected.

34-4 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

The following table lists the elements you can add to your type library:

When you select one of the elements listed above in the object list pane, the second
group of buttons displays members that are valid for that element. For example,
when you select Interface, the Method and Property icons in the second box become
enabled because you can add methods and properties to your interface definition.
When you select Enum, the second group of buttons changes to display the Const
member, which is the only valid member for Enum type information.

The following table lists the members that can be added to elements in the object list
pane:

Icon Meaning

An interface description.

A dispinterface description. (not used for CORBA interface definitions)

A CoClass.

An enumeration.

An alias.

A record.

A union.

A module.

Icon Meaning

A method of the interface, dispinterface, or an entry point in a module.

A property on an interface or dispinterface.

A write-only property. (available from the drop-down list on the property button)

A read-write property. (available from the drop-down list on the property button)

A read-only property. (available from the drop-down list on the property button)

A field in a record or union.

A constant in an enum or a module.

W o r k i n g w i t h t y p e l i b r a r i e s 34-5

T y p e L i b r a r y e d i t o r

In the third box, you can choose to refresh, register, or export your type library (save
it as an IDL file), as described in “Saving and registering type library information” on
page 34-24.

Object list pane
The Object list pane displays all the elements of the current type library in a tree
view. The root of the tree represents the type library itself, and appears as the
following icon:

Descending from the type library node are the elements in the type library:

Figure 34.2 Object list pane

When you select any of these elements (including the type library itself), the pages of
type information to the right change to reflect only the relevant information for that
element. You can use these pages to edit the definition and properties of the selected
element.

You can manipulate the elements in the object list pane by right clicking to get the
object list pane context menu. This menu includes commands that let you use the
Windows clipboard to move or copy existing elements as well as commands to add
new elements or customize the appearance of the Type Library editor.

Status bar
When editing or saving a type library, syntax, translation errors, and warnings are
listed in the Status bar pane.

For example, if you specify a type that the Type Library editor does not support, you
will get a syntax error. For a complete list of types supported by the Type Library
editor, see “Valid types” on page 34-11.

34-6 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Pages of type information
When you select an element in the object list pane, pages of type information appear
in the Type Library editor that are valid for the selected element. Which pages appear
depends on the element selected in the object list panel, as follows:

Table 34.3 Type library pages

Type Info
element

Page of
type information Contents of page

Type library Attributes Name, version, and GUID for the type library, as well as
information linking the type library to help.

Uses List of other type libraries that contain definitions on which
this one depends.

Flags Flags that determine how other applications can use the type
library.

Text All definitions and declarations defining the type library itself
(see discussion below).

Interface Attributes Name, version, and GUID for the interface, the name of the
interface from which it descends, and information linking the
interface to help.

Flags Flags that indicate whether the interface is hidden, dual,
Automation-compatible, and/or extensible.

Text The definitions and declarations for the Interface (see
discussion below).

Dispinterface Attributes Name, version, and GUID for the interface, and information
linking it to help.

Flags Flags that indicate whether the Dispinterface is hidden, dual,
and/or extensible.

Text The definitions and declarations for the Dispinterface. (see
discussion below).

CoClass Attributes Name, version, and GUID for the CoClass, and information
linking it to help.

Implements A List of interfaces that the CoClass implements, as well as
their attributes.

COM+ The attributes of transactional objects, such as the transaction
model, call synchronization, just-in-time activation, object
pooling, and so on. Also includes the attributes of COM+
event objects.

Flags Flags that indicate various attributes of the CoClass, including
how clients can create and use instances, whether it is visible
to users in a browser, whether it is an ActiveX control, and
whether it can be aggregated (act as part of a composite).

Text The definitions and declarations for the CoClass (see
discussion below).

Enumeration Attributes Name, version, and GUID for the enumeration, and
information linking it to help.

Text The definitions and declarations for the enumerated type (see
discussion below).

Alias Attributes Name, version, and GUID for the enumeration, the type the
alias represents, and information linking it to help.

W o r k i n g w i t h t y p e l i b r a r i e s 34-7

T y p e L i b r a r y e d i t o r

Text The definitions and declarations for the alias (see discussion
below).

Record Attributes Name, version, and GUID for the record, and information
linking it to help.

Text The definitions and declarations for the record (see discussion
below).

Union Attributes Name, version, and GUID for the union, and information
linking it to help.

Text The definitions and declarations for the union (see discussion
below).

Module Attributes Name, version, GUID, and associated DLL for the module,
and information linking it to help.

Text The definitions and declarations for the module (see
discussion below).

Method Attributes Name, dispatch ID or DLL entry point, and information
linking it to help.

Parameters Method return type, and a list of all parameters with their
types and any modifiers.

Flags Flags to indicate how clients can view and use the method,
whether this is a default method for the interface, and
whether it is replaceable.

Text The definitions and declarations for the method (see
discussion below).

Property Attributes Name, dispatch ID, type of property access method (getter vs.
setter), and information linking it to help.

Parameters Property access method return type, and a list of all
parameters with their types and any modifiers.

Flags Flags to indicate how clients can view and use the property,
whether this is a default for the interface, whether the
property is replaceable, bindable, and so on.

Text The definitions and declarations for the property access
method (see discussion below).

Const Attributes Name, value, type (for module consts), and information
linking it to help.

Flags Flags to indicate how clients can view and use the constant,
whether this represents a default value, whether the constant
is bindable, and so on.

Text The definitions and declarations for the constant (see
discussion below).

Field Attributes Name, type, and information linking it to help.

Flags Flags to indicate how clients can view and use the field,
whether this represents a default value, whether the field is
bindable, and so on.

Text The definitions and declarations for the field (see discussion
below).

Table 34.3 Type library pages (continued)

Type Info
element

Page of
type information Contents of page

34-8 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Note For more detailed information about the various options you can set on type
information pages, see the online Help for the Type Library editor.

You can use each of the pages of type information to view or edit the values it
displays. Most of the pages organize the information into a set of controls so that you
can type in values or select them from a list without requiring that you know the
syntax of the corresponding declarations. This can prevent many small mistakes such
as typographic errors when specifying values from a limited set. However, you may
find it faster to type in the declarations directly. To do this, use the Text page.

All type library elements have a text page that displays the syntax for the element.
This syntax appears in an IDL subset of Microsoft Interface Definition Language, or
Object Pascal. Any changes you make in other pages of the element are reflected on
the text page. If you add code directly in the text page, changes are reflected in the
other pages of the Type Library editor.

The Type Library editor generates syntax errors if you add identifiers that are
currently not supported by the editor; the editor currently supports only those
identifiers that relate to type library support (not RPC support or constructs used by
the Microsoft IDL compiler for C++ code generation or marshaling support).

Type library elements

The Type Library interface can seem overwhelmingly complicated at first. This is
because it represents information about a great number of elements, each of which
has its own characteristics. However, many of these characteristics are common to all
elements. For example, every element (including the type library itself) has the
following:

• A Name, which is used to describe the element and which is used when referring
to the element in code.

• A GUID (globally unique identifier), which is a globally unique 128-bit value that
COM uses to identify the element. This should always be supplied for the type
library itself and for CoClasses and interfaces. It is optional otherwise.

• A Version number, which distinguishes between multiple versions of the element.
This is always optional, but should be provided for CoClasses and interfaces,
because some tools can’t use them without a version number.

• Information linking the element to a Help topic. These include a Help String, and
Help Context or Help String Context value. The Help Context is used for a
traditional Windows Help system where the type library has a stand-alone Help
file. The Help String Context is used when help is supplied by a separate DLL
instead. The Help Context or Help String Context refers to a Help file or DLL that
is specified on the type library’s Attributes page. This is always optional.

Interfaces
An interface describes the methods (and any properties expressed as ‘get’ and ‘set’
functions) for an object that must be accessed through a virtual function table
(VTable). If an interface is flagged as dual, a dispinterface is also implied and can be

W o r k i n g w i t h t y p e l i b r a r i e s 34-9

T y p e L i b r a r y e d i t o r

accessed through OLE automation. By default, the type library flags all interfaces you
add as dual.

Interfaces can be assigned members: methods and properties. These appear in the
object list pane as children of the interface node. Properties for interfaces are
represented by the ‘get’ and ‘set’ methods used to read and write the property’s
underlying data. They are represented in the tree view using special icons that
indicate their purpose.

Note When a property is specified as Write By Reference, it means it is passed as a pointer
rather than by value. Some applications, such a Visual Basic, use Write By Reference,
if it is present, to optimize performance. To pass the property only by reference
rather than by value, use the property type By Reference Only. To pass the property by
reference as well as by value, select Read|Write|Write By Ref. To invoke this menu,
go to the toolbar and select the arrow next to the property icon.

Once you add the properties or methods using the toolbar button or the object list
pane context menu, you desribe their syntax and attributes by selecting the property
or method and using the pages of type information.

The Attributes page lets you give the property or method a name and dispatch ID (so
that it can be called using IDispatch). For properties, you also assign a type. The
function signature is created using the Parameters page, where you can add, remove,
and rearrange parameters, set their type and any modifiers, and specify function
return types.

Note Members of interfaces that need to raise exceptions should return an HRESULT and
specify a return value parameter (PARAM_RETVAL) for the actual return value.
Declare these methods using the safecall calling convention.

Note that when you assign properties and methods to an interface, they are implicitly
assigned to its associated CoClass. This is why the Type Library editor does not let
you add properties and methods directly to a CoClass.

Dispinterfaces
Interfaces are more commonly used than dispinterfaces to describe the properties
and methods of an object. Dispinterfaces are only accessible through dynamic
binding, while interfaces can have static binding through a vtable.

You can add methods and properties to dispinterfaces in the same way you add them
to interfaces. However, when you create a property for a dispinterface, you can’t
specify a function kind or parameter types.

CoClasses
A CoClass describes a unique COM object that implements one or more interfaces.
When defining a CoClass, you must specify which implemented interface is the
default for the object, and optionally, which dispinterface is the default source for
events. Note that you do not add properties or methods to a CoClass in the Type
Library editor. Properties and methods are exposed to clients by interfaces, which are
associated with the CoClass using the Implements page.

34-10 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Type definitions
Enumerations, aliases, records, and unions all declare types that can then be used
elsewhere in the type library.

Enums consist of a list of constants, each of which must be numeric. Numeric input is
usually an integer in decimal or hexadecimal format. The base value is zero by
default. You can add constants to your enumeration by selecting the enumeration in
the object list pane and clicking the Const button on the toolbar or selecting New|
Const command from the object list pane context menu.

Note It is strongly recommended that you provide help strings for your enumerations to
make their meaning clearer. The following is a sample entry of an enumeration type
for a mouse button and includes a help string for each enumeration element.

mbLeft = 0 [helpstring ‘mbLeft’];

mbRight = 1 [helpstring ‘mbRight’];

mbMiddle = 3 [helpstring ‘mbMiddle’];

An alias creates an alias (type definition) for a type. You can use the alias to define
types that you want to use in other type info such as records or unions. Associate the
alias with the underlying type definition by setting the Type attribute on the
Attributes page.

A record consists of a list of structure members or fields. A union is a record with
only a variant part. Like a record, a union consists of a list of structure members or
fields. However, unlike the members of records, each member of a union occupies
the same physical address, so that only one logical value can be stored.

Add the fields to a record or union by selecting it in the object list pane and clicking
the field button in the toolbar or right clicking and choosing field from the object list
pane context menu. Each field has a name and a type, which you assign by selecting
the field and assigning values using the Attributes page. Records and unions can be
defined with an optional tag.

Members can be of any built-in type, or you can specify a type using alias before you
define the record.

Modules
A module defines a group of functions, typically a set of DLL entry points. You
define a module by

• Specifying a DLL that it represents on the attributes page.

• Adding methods and constants using the toolbar or the object list pane context
menu. For each method or constant, you must then define its attributes by
selecting the it in the object list pane and setting the values on the Attributes page.

For module methods, you must assign a name and DLL entry-point using the
attributes page. Declare the function’s parameters and return type using the
parameters page.

W o r k i n g w i t h t y p e l i b r a r i e s 34-11

T y p e L i b r a r y e d i t o r

For module constants, use the Attributes page to specify a name, type, and value.

Note The Type Library editor does not generate any declarations or implementation
related to a module. The specified DLL must be created as a separate project.

Using the Type Library editor

Using the type library editor, you can create new type libraries or edit existing ones.
Typically, an application developer uses a wizard to create the objects that are
exposed in the type libarary, letting Delphi generate the type library automatically.
Then, the automatically-generated type library is opened in the Type Library editor
so that the interfaces can be defined (or modified), type definitions added, and so on.

However, even if you are not using a wizard to define the objects, you can use the
Type Library editor to define a new type library. In this case, you must create any
implementation classes yourself, because the Type Library editor does not generate
code for CoClasses that were not associated with a type library by a wizard.

The editor supports a subset of valid types in a type library as described below.

The final topics in this section describe how to:

• Create a new type library
• Open an existing type library
• Add an interface to the type library
• Modify an interface
• Add properties and methods to the type library
• Add a CoClass to the type library
• Add an interface to a CoClass
• Add an enumeration to the type library
• Add an alias to the type library
• Add a record or union to the type library
• Add a module to the type library
• Save and register type library information

Valid types
In the Type Library editor, you use different type identifiers, depending on whether
you are working in IDL or Object Pascal. Specify the language you want to use in the
Environment options dialog.

The following types are valid in a type library for COM development. The
Automation compatible column specifies whether the type can be used by an
interface that has its Automation or Dispinterface flag checked.

34-12 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

These are the types that COM can marshal via the type library automatically.

* Word, LongWord, SYSINT, and SYSUINT are Automation-compatible in most applications, but in
older applications they may not be.

Note The Byte (VT_UI1) is Automation-compatible, but is not allowed in a Variant or
OleVariant since many Automation servers do not handle this value correctly.

Besides these IDL types, any interfaces and types defined in the library or defined in
referenced libraries can be used in a type library definition.

The Type Library editor stores type information in the generated type library (.TLB) file
in binary form.

If a parameter type is specified as a Pointer type, the Type Library editor usually
translates that type into a variable parameter. When the type library is saved, the
variable parameter’s associated ElemDesc’s IDL flags are marked IDL_FIN or
IDL_FOUT.

Table 34.4 Valid types

Pascal type IDL type variant type
Automation
compatible Description

Smallint short VT_I2 Yes 2-byte signed integer

Integer long VT_I4 Yes 4-byte signed integer

Single single VT_R4 Yes 4-byte real

Double double VT_R8 Yes 8-byte real

Currency CURRENCY VT_CY Yes currency

TDateTime DATE VT_DATE Yes date

WideString BSTR VT_BSTR Yes binary string

IDispatch IDispatch VT_DISPATCH Yes pointer to IDispatch interface

SCODE SCODE VT_ERROR Yes Ole Error Code

WordBool VARIANT_BOOL VT_BOOL Yes True = -1, False = 0

OleVariant VARIANT VT_VARIANT Yes Ole Variant

IUnknown IUnknown VT_UNKNOWN Yes pointer to IUnknown interface

Shortint byte VT_I1 No 1 byte signed integer

Byte unsigned char VT_UI1 Yes 1 byte unsigned integer

Word unsigned short VT_UI2 Yes* 2 byte unsigned integer

LongWord unsigned long VT_UI4 Yes* 4 byte unsigned integer

Int64 __int64 VT_I8 No 8 byte signed integer

Largeuint uint64 VT_UI8 No 8 byte unsigned integer

SYSINT int VT_INT Yes* system dependent integer
(Win32=Integer)

SYSUINT unsigned int VT_UINT Yes* system dependent unsigned
integer

HResult HRESULT VT_HRESULT No 32 bit error code

Pointer VT_PTR -> VT_VOID No untyped pointer

SafeArray SAFEARRAY VT_SAFEARRAY No OLE Safe Array

PChar LPSTR VT_LPSTR No pointer to Char

PWideChar LPWSTR VT_LPWSTR No pointer to WideChar

W o r k i n g w i t h t y p e l i b r a r i e s 34-13

T y p e L i b r a r y e d i t o r

Often, ElemDesc IDL flags are not marked by IDL_FIN or IDL_FOUT when the type
is preceded with a Pointer. Or, in the case of dispinterfaces, IDL flags are not
typically used. In these cases, you may see a comment next to the variable identifier
such as {IDL_None} or {IDL_In}. These comments are used when saving a type
library to correctly mark the IDL flags.

SafeArrays
COM requires that arrays be passed via a special data type known as a SafeArray.
You can create and destroy SafeArrays by calling special COM functions to do so,
and all elements within a SafeArray must be valid automation-compatible types. The
Delphi compiler has built-in knowledge of COM SafeArrays and automatically calls
the COM API to create, copy, and destroy SafeArrays.

In the Type Library editor, a SafeArray must specify the type of its elements. For
example, the following line from the text page declares a method with a parameter
that is a SafeArray with an element type of Integer:

procedure HighLightLines(Lines: SafeArray of Integer);

Note Although you must specify the element type when declaring a SafeArray type in the
Type Library editor, the declaration in the generated _TLB unit does not indicate the
element type.

Using Object Pascal or IDL syntax
The Text page of the Type Library editor displays your type information in one of
two ways:

• Using an extension of Object Pascal syntax.

• Using the Microsoft IDL.

Note When working on a CORBA object, you use neither of these on the text page. Instead,
you must use the CORBA IDL.

You can select which language you want to use by changing the setting in the
Environment Options dialog. Choose Tools|Environment Options, and specify
either Pascal or IDL as the Language on the Type Library page of the dialog.

Note The choice of Object Pascal or IDL syntax also affects the choices available on the
parameters attributes page.

Like Object Pascal applications in general, identifiers in type libraries are case
insensitive. They can be up to 255 characters long, and must begin with a letter or an
underscore (_).

Attribute specifications
Object Pascal has been extended to allow type libraries to include attribute
specifications. Attribute specifications appear enclosed in square brackets and
separated by commas. Each attribute specification consists of an attribute name
followed (if appropriate) by a value.

34-14 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

The following table lists the attribute names and their corresponding values.

Table 34.5 Attribute syntax

Attribute name Example Applies to

aggregatable [aggregatable] typeinfo

appobject [appobject] CoClass typeinfo

bindable [bindable] members except CoClass
members

control [control] type library, typeinfo

custom [custom '{7B5687A1-F4E9-11D1-92A8-00C04F8C8FC4}' 0] anything

default [default] CoClass members

defaultbind [defaultbind] members except CoClass
members

defaultcollection [defaultcollection] members except CoClass
members

defaultvtbl [defaultvtbl] CoClass members

dispid [dispid] members except CoClass
members

displaybind [displaybind] members except CoClass
members

dllname [dllname 'Helper.dll'] module typeinfo

dual [dual] interface typeinfo

helpfile [helpfile 'c:\help\myhelp.hlp'] type library

helpstringdll [helpstringdll 'c:\help\myhelp.dll'] type library

helpcontext [helpcontext 2005] anything except CoClass
members and parameters

helpstring [helpstring 'payroll interface'] anything except CoClass
members and parameters

helpstringcontext [helpstringcontext $17] anything except CoClass
members and parameters

hidden [hidden] anything except parameters

immediatebind [immediatebind] members except CoClass
members

lcid [lcid $324] type library

licensed [licensed] type library, CoClass
typeinfo

nonbrowsable [nonbrowsable] members except CoClass
members

nonextensible [nonextensible] interface typeinfo

oleautomation [oleautomation] interface typeinfo

predeclid [predeclid] typeinfo

propget [propget] members except CoClass
members

propput [propput] members except CoClass
members

W o r k i n g w i t h t y p e l i b r a r i e s 34-15

T y p e L i b r a r y e d i t o r

Interface syntax
The Object Pascal syntax for declaring interface type information has the form

interfacename = interface[(baseinterface)] [attributes]
functionlist
[propertymethodlist]
end;

For example, the following text declares an interface with two methods and one
property:

Interface1 = interface (IDispatch)
[uuid '{7B5687A1-F4E9-11D1-92A8-00C04F8C8FC4}', version 1.0]
function Calculate(optional seed:Integer=0): Integer;
procedure Reset;
procedure PutRange(Range: Integer) [propput, dispid $00000005]; stdcall;
function GetRange: Integer;[propget, dispid $00000005]; stdcall;

end;

The corresponding syntax in Microsoft IDL is

[uuid ‘{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}’,version 1.0]
interface Interface1 :IDispatch
{

long Calculate([in, optional, defaultvalue(0)] long seed);
void Reset(void);
[propput, id(0x00000005)] void _stdcall PutRange([in] long Value);
[propput, id(0x00000005)] void _stdcall getRange([out, retval] long *Value);

};

propputref [propputref] members except CoClass
members

public [public] alias typeinfo

readonly [readonly] members except CoClass
members

replaceable [replaceable] anything except CoClass
members and parameters

requestedit [requestedit] members except CoClass
members

restricted [restricted] anything except parameters

source [source] all members

uidefault [uidefault] members except CoClass
members

usesgetlasterror [usesgetlasterror] members except CoClass
members

uuid [uuid '{7B5687A1-F4E9-11D1-92A8-00C04F8C8FC4}'] type library, typeinfo
(required)

vararg [vararg] members except CoClass
members

version [version 1.1] type library, typeinfo

Table 34.5 Attribute syntax (continued)

Attribute name Example Applies to

34-16 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Dispatch interface syntax
The Object Pascal syntax for declaring dispinterface type information has the form

dispinterfacename = dispinterface [attributes]
functionlist
[propertylist]
end;

For example, the following text declares a dispinterface with the same methods and
property as the previous interface:

MyDispObj = dispinterface
[uuid ‘{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}’,

version 1.0,
helpstring ‘dispatch interface for MyObj’]
function Calculate(seed:Integer): Integer [dispid 1];
procedure Reset [dispid 2];
property Range: Integer [dispid 3];

end;

The corresponding syntax in Microsoft IDL is

[uuid ‘{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}’,
version 1.0,
helpstring “dispatch interface for MyObj”]

dispinterface Interface1
{

methods:
[id(1)] int Calculate([in] int seed);
[id(2)] void Reset(void);

properties:
[id(3)] int Value;

};

CoClass syntax
The Object Pascal syntax for declaring CoClass type information has the form

classname = coclass(interfacename[interfaceattributes], ...); [attributes];

For example, the following text declares a coclass for the interface IMyInt and
dispinterface DmyInt:

myapp = coclass(IMyInt [source], DMyInt);
[uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,

version 1.0,
helpstring ‘A class’,
appobject]

The corresponding syntax in Microsoft IDL is

[uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,
version 1.0,
helpstring ‘A class’,
appobject]

coclass myapp
{

W o r k i n g w i t h t y p e l i b r a r i e s 34-17

T y p e L i b r a r y e d i t o r

methods:
[source] interface IMyInt);
dispinterface DMyInt;

};

Enum syntax
The Object Pascal syntax for declaring Enum type information has the form

enumname = ([attributes] enumlist);

For example, the following text declares an enumerated type with three values:

location = ([uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,
helpstring ‘location of booth’]

Inside = 1 [helpstring ‘Inside the pavillion’];
Outside = 2 [helpstring ‘Outside the pavillion’];
Offsite = 3 [helpstring ‘Not near the pavillion’];);

The corresponding syntax in Microsoft IDL is

[uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,
helpstring ‘location of booth’]

typedef enum
{

[helpstring ‘Inside the pavillion’] Inside = 1,
[helpstring ‘Outside the pavillion’] Outside = 2,
[helpstring ‘Not near the pavillion’] Offsite = 3

} location;

Alias syntax
The Object Pascal syntax for declaring Alias type information has the form

aliasname = basetype[attributes];

For example, the following text declares DWORD as an alias for integer:

DWORD = Integer [uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’];

The corresponding syntax in Microsoft IDL is

[uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’] typedef long DWORD;

Record syntax
The Object Pascal syntax for declaring Record type information has the form

recordname = record [attributes] fieldlist end;

For example, the following text declares a record:

Tasks = record [uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,
helpstring ‘Task description’]

ID: Integer;
StartDate: TDate;
EndDate: TDate;
Ownername: WideString;
Subtasks: safearray of Integer;

end;

34-18 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

 The corresponding syntax in Microsoft IDL is

[uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,
helpstring ‘Task description’]

typedef struct
{

long ID;
DATE StartDate;
DATE EndDate;
BSTR Ownername;
SAFEARRAY (int) Subtasks;

} Tasks;

Union syntax
The Object Pascal syntax for declaring Union type information has the form

unionname = record [attributes]
case Integer of

0: field1;
1: field2;
...

end;

For example, the following text declares a union:

MyUnion = record [uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,
helpstring ‘item description’]

case Integer of
0: (Name: WideString);
1: (ID: Integer);
3: (Value: Double);

end;

The corresponding syntax in Microsoft IDL is

[uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,
helpstring ‘item description’]

typedef union
{

BSTR Name;
long ID;
double Value;
} MyUnion;

Module syntax
The Object Pascal syntax for declaring Module type information has the form

modulename = module constants entrypoints end;

For example, the following text declares the type information for a module:

MyModule = module [uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,
dllname ‘circle.dll’]

PI: Double = 3.14159;
function area(radius: Double): Double [entry 1]; stdcall;
function circumference(radius: Double): Double [entry 2]; stdcall;

end;

W o r k i n g w i t h t y p e l i b r a r i e s 34-19

T y p e L i b r a r y e d i t o r

The corresponding syntax in Microsoft IDL is

[uuid ‘{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}’,
dllname(“circle.dll”)]

module MyModule
{

double PI = 3.14159;
[entry(1)] double _stdcall area([in] double radius);
[entry(2)] double _stdcall circumference([in] double radius);

};

Creating a new type library
You may want to create a type library that is independent of a particular COM object.
For example, you might want to define a type library that contains type definitions
that you use in several other type libraries. You can then create a type library of basic
definitions and add it to the uses page of other type libraries.

You can also create a type library for an object that is not yet implemented. Once the
type library contains the interface definition, you can use the COM object wizard to
generate a CoClass and implementation.

To create a new type library,

1 Choose File|New|Other to open the New Items dialog box.

2 Choose the ActiveX page.

3 Select the Type Library icon.

4 Choose OK.

The Type Library editor opens with a prompt to enter a name for the type library.

5 Enter a name for the type library. Continue by adding elements to your type
library.

Opening an existing type library
When you use the wizards to create an ActiveX control, Automation object, Active
form, Active Server Page object, COM object, transactional object, remote data
module, or transactional data module, a type library is automatically created with an
implementation unit. In addition, you may have type libraries that are associated
with other products (servers) that are available on your system.

To open a type library that is not currently part of your project,

1 Choose File|Open from the main menu in the IDE.

2 In the Open dialog box, set the File Type to type library.

3 Navigate to the desired type library files and choose Open.

To open a type library associated with the current project,

1 Choose View|Type Library.

34-20 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Note When you use the CORBA Object wizard, you can also choose View|Type Library to
edit the CORBA Object interfaces. What you see is not, technically speaking, a type
library, but you can use it in much the same way.

Now, you can add interfaces, CoClasses, and other elements of the type library such
as enumerations, properties, and methods.

Note Changes you make to any type library information with the Type Library editor can
be automatically reflected in the associated implementation class. If you want to
review the changes before they are added, be sure that the Apply Updates dialog is
on. It is on by default and can be changed in the setting, “Display updates before
refreshing,” on the Tools|Environment Options|Type Library page. For more
information, see “Apply Updates dialog” on page 34-25.

Tip When writing client applications, you do not need to open the type library. You only
need the Project_TLB unit that the Type Library editor creates from a type library, not
the type library itself. You can add this file directly to a client project, or, if the type
library is registered on your system, you can use the Import Type Library dialog
(Project|Import Type Library).

Adding an interface to the type library
To add an interface,

1 On the toolbar, click on the interface icon.

An interface is added to the object list pane prompting you to add a name.

2 Type a name for the interface.

The new interface contains default attributes that you can modify as needed.

You can add properties (represented by getter/setter functions) and methods to suit
the purpose of the interface.

Modifying an interface using the type library
There are several ways to modify an interface or dispinterface once it is created.

• You can change the interface’s attributes using the page of type information that
contains the information you want to change. Select the interface in the object list
pane and then use the controls on the appropriate page of type information. For
example, you may want to change the parent interface using the attributes page, or
use the flags page to change whether or not it is a dual interface.

• You can edit the interface declaration directly by selecting the interface in the
object list pane and then editing the declarations on the Text page.

• You can Add properties and methods to the interface (see the next section).

• You can modify the properties and methods already in your interface by changing
their type information.

• You can associate it with a CoClass by selecting the CoClass in the object list pane,
right-clicking on the Implements page, and choosing Insert Interface.

W o r k i n g w i t h t y p e l i b r a r i e s 34-21

T y p e L i b r a r y e d i t o r

Note When using the type library to add a CORBA interface, most of the information on
the attributes page is irrelevent. You will also not need the Flags page.

If the interface is associated with a CoClass that was generated by a wizard, you can
tell the Type Library editor to apply your changes to the implementation file by
clicking the Refresh button on the toolbar. If you have the Apply Updates dialog
enabled, the Type Library editor notifies you before updating the sources and warns
you of potential problems. For example, if you rename an event interface by mistake,
you may get a warning in your source file that looks like this:

Because of the presence of instance variables in your implementation file,
Delphi was not able to update the file to reflect the change in your event
interface name. As Delphi has updated the type library for you, however, you
must update the implementation file by hand.

You also get a TODO comment in your source file immediately above it.

Warning If you ignore this warning and TODO comment, the code will not compile.

Adding properties and methods to an interface or dispinterface
To add properties or methods to an interface or dispinterface,

1 Select the interface, and choose either a property or method icon from the toolbar.
If you are adding a property, you can click directly on the property icon to create a
read/write property (with both a getter and a setter), or click the down arrow to
display a menu of property types.

The property access method members or method member is added to the object
list pane, prompting you to add a name.

2 Type a name for the member.

The new member contains default settings on its attributes, parameters, and flags
pages that you can modify to suit the member. For example, you will probably want
to assign a type to a property on the attributes page. If you are adding a method, you
will probably want to specify its parameters on the parameters page.

As an alternate approach, you can add properties and methods by typing directly
into the text page using Pascal or IDL syntax. For example, if you are working in
Pascal syntax, you can type the following property declarations into the text page of
an interface:

Interface1 = interface(IDispatch)
 [uuid '{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}',
 version 1.0,
 dual,
 oleautomation]
function AutoSelect: Integer [propget, dispid $00000002]; safecall; // Add this
function AutoSize: WordBool [propget, dispid $00000001]; safecall; // And this
procedure AutoSize(Value: WordBool) [propput, dispid $00000001]; safecall; // And this

end;

34-22 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

If you are working in IDL, you can add the same declarations as follows:

[
 uuid(5FD36EEF-70E5-11D1-AA62-00C04FB16F42),
 version(1.0),
 dual,
 oleautomation
]
interface Interface1: IDispatch
{ // Add everything between the curly braces
[propget, id(0x00000002)]
 HRESULT _stdcall AutoSelect([out, retval] long Value);
 [propget, id(0x00000003)]
 HRESULT _stdcall AutoSize([out, retval] VARIANT_BOOL Value);
 [propput, id(0x00000003)]
 HRESULT _stdcall AutoSize([in] VARIANT_BOOL Value);
};

After you have added members to an interface using the interface text page, the
members appear as separate items in the object list pane, each with its own attributes,
flags, and parameters pages. You can modify each new property or method by
selecting it in the object list pane and using these pages, or by making edits directly in
the text page.

If the interface is associated with a CoClass that was generated by a wizard, you can
tell the Type Library editor to apply your changes to the implementation file by
clicking the Refresh button on the toolbar. The Type Library editor adds new
methods to your implementation class to reflect the new members. You can then
locate the new methods in implementation unit’s source code and fill in their bodies
to complete the implementation.

If you have the Apply Updates dialog enabled, the Type Library editor notifies you of
all changes before updating the sources and warns you of potential problems.

Adding a CoClass to the type library
The easiest way to add a CoClass to your project is to choose File|New|Other from
the main menu in the IDE and use the appropriate wizard on the ActiveX or Multitier
page of the New Items dialog. The advantage to this approach is that, in addition to
adding the CoClass and its interface to the type library, the wizard adds an
implementation unit and updates the project file to include the new implementation
unit in its uses clause.

If you are not using a wizard, however, you can create a CoClass by clicking the
CoClass icon on the toolbar and then specifying its attributes. You will probably
want to give the new CoClass a name (on the Attributes page), and may want to use
the Flags page to indicate information such as whether the CoClass is an application
object, whether it represents an ActiveX control, and so on.

Note When you add a CoClass to a type library using the toolbar instead of a wizard, you
must generate the implementation for the CoClass yourself and update it by hand
every time you change an element on one of the CoClass’s interfaces. You can’t add
members directly to a CoClass. Instead, you implicitly add members when you add
an interface to the CoClass.

W o r k i n g w i t h t y p e l i b r a r i e s 34-23

T y p e L i b r a r y e d i t o r

Adding an interface to a CoClass
CoClasses are defined by the interfaces they present to clients. While you can add
any number of properties and methods to the implementation class of a CoClass,
clients can only see those properties and methods that are exposed by interfaces
associated with the CoClass.

To associate an interface with a CoClass, right-click in the Implements page for the
class and choose Insert Interface to display a list of interfaces from which you can
choose. The list includes interfaces that are defined in the current type library and
those defined in any type libraries that the current type library references. Choose an
interface you want the class to implement. The interface is added to the page with its
GUID and other attributes.

If the CoClass was generated by a wizard, the Type Library editor automatically
updates the implementation class to include skeletal methods for the methods
(including property access methods) of any interfaces you add this way.If you have
the Apply Updates dialog enabled, the Type Library editor notifies you before
updating the sources and warns you of potential problems.

Adding an enumeration to the type library
To add enumerations to a type library,

1 On the toolbar, click on the enum icon.

An enum type is added to the object list pane prompting you to add a name.

2 Type a name for the enumeration.

The new enum is empty and contains default attributes in its attributes page for
you to modify.

Add values to the enum by clicking on the New Const button. Then, select each
enumerated value and assign it a name (and possibly a value) using the attributes
page.

Once you have added an enumeration, the new type is available for use by the type
library or any other type library that references it from its uses page. For example,
you can use the enumeration as the type for a property or parameter.

Adding an alias to the type library
To add an alias to a type library,

1 On the toolbar, click on the alias icon.

An alias type is added to the object list pane prompting you to add a name.

2 Type a name for the alias.

By default, the new alias stands for an Integer type. Use the Attributes page to
change this to the type you want the alias to represent.

Once you have added an alias, the new type is available for use by the type library or
any other type library that references it from its uses page. For example, you can use
the alias as the type for a property or parameter.

34-24 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Adding a record or union to the type library
To add a record or union to a type library,

1 On the toolbar, click on the record icon or the union icon.

The selected type element is added to the object list pane prompting you to add a
name.

2 Type a name for the record or union.

At this point, the new record or union contains no fields.

3 With the record or union selected in the object list pane, click on the field icon in
the toolbar. Specify the field’s name and type, using the Attributes page.

4 Repeat step 3 for as many fields as you need.

Once you have defined the record or union, the new type is available for use by the
type library or any other type library that references it from its uses page. For
example, you can use the record or union as the type for a property or parameter.

Adding a module to the type library
To add a module to a type library,

1 On the toolbar, click on the module icon.

The selected module is added to the object list pane prompting you to add a name.

2 Type a name for the module.

3 On the Attributes page, specify the name of the DLL whose entry points the
Module represents.

4 Add any methods from the DLL you specified in step 3 by clicking on the Method
icon in the toolbar and then using the attributes pages to describe the method.

5 Add any constants you want the module to define by clicking on the Const icon on
the toolbar. For each constant, specify a name, type, and value.

Saving and registering type library information
After modifying your type library, you’ll want to save and register the type library
information.

Saving the type library automatically updates:

• The binary type library file (.tlb extension).

• The Project_TLB unit that represents its contents

• The implementation code for any CoClasses that were generated by a wizard.

Note The type library is stored as a separate binary (.TLB) file, but is also linked into the
server (.EXE, DLL, or .OCX).

Note When using the Type Library editor for CORBA interfaces, the Project_TLB.pas unit
defines the stub and skeleton objects required by the CORBA application.

W o r k i n g w i t h t y p e l i b r a r i e s 34-25

T y p e L i b r a r y e d i t o r

The Type Library editor gives you options for storing your type library information.
Which way you choose depends on what stage you are at in implementing the type
library:

• Save, to save both the .TLB and the Project_TLB unit to disk.
• Refresh, to update the type library units in memory only.
• Register, to add an entry for the type library in your system’s Windows registry.

This is done automatically when the server with which the .TLB is associated is
itself registered.

• Export, to save a .IDL file that contains the type and interface definitions in IDL
syntax.

All the above methods perform syntax checking. When you refresh, register, or save
the type library, Delphi automatically updates the implementation unit of any
CoClasses that were created using a wizard. Optionally, you can review these
updates before they are committed, if you have the Type Library editor option,
Apply Updates on.

Apply Updates dialog
The Apply Updates dialog appears when you refresh, register, or save the type
library if you have selected “Display updates before refreshing’ in the Tools|
Environment Options|Type Library page (which is on by default).

Without this option, the Type Library editor automatically updates the sources of the
associated object when you make changes in the editor. With this option, you have a
chance to veto the proposed changes when you attempt to refresh, save, or register
the type library.

The Apply Updates dialog will warn you about potential errors, and will insert
TODO comments in your source file. For example, if you rename an event by
mistake, you will get a warning in your source file that looks like this:

Because of the presence of instance variables in your implementation file,
Delphi was not able to update the file to reflect the change in your event
interface name. As Delphi has updated the type library for you, however, you
must update the implementation file by hand.

You will also get a TODO comment in your source file immediately above it.

Note If you ignore this warning and TODO comment, the code will not compile.

Saving a type library
Saving a type library

• Performs a syntax and validity check.

• Saves information out to a .TLB file.

• Saves information out to the Project_TLB unit.

• Notifies the IDE’s module manager to update the implementation, if the type
library is associated with a CoClass that was generated by a wizard.

To save the type library, choose File|Save from the Delphi main menu.

34-26 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Refreshing the type library
Refreshing the type library

• Performs a syntax check.

• Regenerates the Delphi type library units in memory only. It does not save any
files to disk.

• Notifies the IDE’s module manager to update the implementation, if the type
library is associated with a CoClass that was generated by a wizard.

To refresh the type library choose the Refresh icon on the Type Library editor toolbar.

Note If you have renamed items in the type library, refreshing the implementation may
create duplicate entries. In this case, you must move your code to the correct entry
and delete any duplicates. Similarly, if you delete items in the type library, refreshing
the implementation does not remove them from CoClasses (under the assumption
that you are merely removing them from visibility to clients). You must delete these
items manually in the implementation unit if they are no longer needed.

Registering the type library
Typically, you do not need to explicitly register a type library because it is registered
automatically when you register your COM server application (see “Registering a
COM object” on page 36-16). However, when you create a type library using the
Type Library wizard, it is not associated with a server object. In this case, you can
register the type library directly using the toolbar.

Registering the type library,

• Performs a syntax check

• Adds an entry to the Windows Registry for the type library

To register the type library, choose the Register icon on the Type Library editor
toolbar.

Exporting an IDL file
Exporting the type library,

• Performs a syntax check.

• Creates an IDL file that contains the type information declarations. This file
describes the type information in either CORBA IDL or Microsoft IDL.

To export the type library, choose the Export icon on the Type Library editor toolbar.

W o r k i n g w i t h t y p e l i b r a r i e s 34-27

D e p l o y i n g t y p e l i b r a r i e s

Deploying type libraries
By default, when you have a type library that was created as part of an ActiveX or
Automation server project, the type library is automatically linked into the .DLL,
.OCX, or EXE as a resource.

You can, however, deploy your application with the type library as a separate .TLB,
as Delphi maintains the type library, if you prefer.

Historically, type libraries for Automation applications were stored as a separate file
with the .TLB extension. Now, typical Automation applications compile the type
libraries into the .OCX or .EXE file directly. The operating system expects the type
library to be the first resource in the executable (.DLL, .OCX, or .EXE) file.

When you make type libraries other than the primary project type library available to
application developers, the type libraries can be in any of the following forms:

• A resource. This resource should have the type TYPELIB and an integer ID. If you
choose to build type libraries with a resource compiler, it must be declared in the
resource (.RC) file as follows:

1 typelib mylib1.tlb
2 typelib mylib2.tlb

There can be multiple type library resources in an ActiveX library. Application
developers use the resource compiler to add the .TLB file to their own ActiveX
library.

• Stand-alone binary files. The .TLB file output by the Type Library editor is a binary
file.

34-28 D e v e l o p e r ’ s G u i d e

C r e a t i n g C O M c l i e n t s 35-1

C h a p t e r

35
Chapter 35Creating COM clients

COM clients are applications that make use of a COM object implemented by another
application or library. The most common types are applications that control an
Automation server (Automation controllers) and applications that host an ActiveX
control (ActiveX containers).

At first glance these two types of COM client are very different: The typical
Automation controller launches an external server EXE and issues commands to
make that server perform tasks on its behalf. The Automation server is usually
nonvisual and out-of-process. The typical ActiveX client, on the other hand, hosts a
visual control, using it much the same way you use any control on the Component
palette. ActiveX servers are always in-process servers.

However, the task of writing these two types of COM client is remarkably similar:
The client application obtains an interface for the server object and uses its properties
and methods. Delphi makes this particularly easy by letting you wrap the server
CoClass in a component on the client, which you can even install on the Component
palette. Samples of such component wrappers appear on two pages of the
Component palette: sample ActiveX wrappers appear on the ActiveX page and
sample Automation objects appear on the Servers page.

When writing a COM client, you must understand the interface that the server
exposes to clients, just as you must understand the properties and methods of a
component from the Component palette to use it in your application. This interface
(or set of interfaces) is determined by the server application, and typically published
in a type library. For specific information on a particular server application’s
published interfaces, you should consult that application’s documentation.

Even if you do not choose to wrap a server object in a component wrapper and install
it on the Component palette, you must make its interface definition available to your
application. To do this, you can import the server’s type information.

Note You can also query the type information directly using COM APIs, but Delphi
provides no special support for this.

35-2 D e v e l o p e r ’ s G u i d e

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Some older COM technologies, such as object linking and embedding (OLE), do not
provide type information in a type library. Instead, they rely on a standard set of
predefined interfaces. These are discussed in “Creating Clients for servers that do not
have a type library” on page 35-15.

Importing type library information
To make information about the COM server available to your client application, you
must import the information about the server that is stored in the server’s type
library. Your application can then use the resulting generated classes to control the
server object.

There are two ways to import type library information:

• You can use the Import Type Library dialog to import all available information
about the server types, objects, and interfaces. This is the most general method,
because it lets you import information from any type library and can optionally
generate component wrappers for all creatable CoClasses in the type library that
are not flagged as Hidden, Restricted, or PreDeclID.

• You can use the Import ActiveX dialog if you are importing from the type library
of an ActiveX control. This imports the same type information, but only creates
component wrappers for CoClasses that represent ActiveX controls.

• You can use the command line utility tlibimp.exe which provides additional
configuration options not available from within the IDE.

• A type library generated using a wizard is automatically imported using the same
mechanism as the import type library menu item.

Regardless of which method you choose to import type library information, the
resulting dialog creates a unit with the name TypeLibName_TLB, where TypeLibName
is the name of the type library. This file contains declarations for the classes, types,
and interfaces defined in the type library. By including it in your project, those
definitions are available to your application so that you can create objects and call
their interfaces. This file may be recreated by the IDE from time to time; as a result,
making manual changes to the file is not recommended.

In addition to adding type definitions to the TypeLibName_TLB unit, the dialog can
also create VCL class wrappers for any CoClasses defined in the type library. When
you use the Import Type Library dialog, these wrappers are optional. When you use
the Import ActiveX dialog, they are always generated for all CoClasses that represent
controls.

The generated class wrappers represent the CoClasses to your application, and
expose the properties and methods of its interfaces. If a CoClass supports the
interfaces for generating events (IConnectionPointContainer and IConnectionPoint), the
VCL class wrapper creates an event sink so that you can assign event handlers for the
events as simply as you can for any other component. If you tell the dialog to install
the generated VCL classes on the Component palette, you can use the Object
Inspector to assign property values and event handlers.

C r e a t i n g C O M c l i e n t s 35-3

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Note The Import Type Library dialog does not create class wrappers for COM+ event
objects. To write a client that responds to events generated by a COM+ event object,
you must create the event sink programmatically. This process is described in
“Handling COM+ events” on page 35-14.

For more details about the code generated when you import a type library, see “Code
generated when you import type library information” on page 35-5.

Using the Import Type Library dialog

To import a type library,

1 Choose Project|Import Type Library.

2 Select the type library from the list.

The dialog lists all the libraries registered on this system. If the type library is not
in the list, choose the Add button, find and select the type library file, choose OK.
This registers the type library, making it available. Then repeat step 2. Note that
the type library could be a stand-alone type library file (.tlb, .olb), or a server that
provides a type library (.dll, .ocx, .exe).

3 If you want to generate a VCL component that wraps a CoClass in the type library,
check Generate Component Wrapper. If you do not generate the component, you
can still use the CoClass by using the definitions in the TypeLibName_TLB unit.
However, you will have to write your own calls to create the server object and, if
necessary, to set up an event sink.

The Import Type Library dialog only imports CoClasses that are have the
CanCreate flag set and that do not have the Hidden, Restricted, or PreDeclID flags
set. These flags can be overridden using the command-line utility tlibimp.exe.

4 If you do not want to install a generated component wrapper on the Component
palette, choose Create Unit. This generates the TypeLibName_TLB unit and, if you
checked Generate Component Wrapper in step 3, adds the declaration of the
component wrapper. This exits the Import Type Library dialog.

5 If you want to install the generated component wrapper on the Component
palette, select the Palette page on which this component will reside and then
choose Install. This generates the TypeLibName_TLB unit, like the Create Unit
button, and then displays the Install component dialog, letting you specify the
package where the components should reside (either an existing package or a new
one). This button is grayed out if no component can be created for the type library.

When you exit the Import Type Library dialog, the new TypeLibName_TLB unit
appears in the directory specified by the Unit dir name control. This file contains
declarations for the elements defined in the type library, as well as the generated
component wrapper if you checked Generate Component Wrapper.

In addition, if you installed the generated component wrapper, a server object that
the type library described now resides on the Component palette. You can use the
Object Inspector to set properties or write an event handler for the server. If you add

35-4 D e v e l o p e r ’ s G u i d e

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

the component to a form or data module, you can right-click on it at design time to
see its property page (if it supports one).

Note The Servers page of the Component palette contains a number of example
Automation servers that were imported this way for you.

Using the Import ActiveX dialog

To import an ActiveX control,

1 Choose Component|Import ActiveX Control.

2 Select the type library from the list.

The dialog lists all the registered libraries that define ActiveX controls. (This is a
subset of the libraries listed in the Import Type Library dialog.) If the type library
is not in the list, choose the Add button, find and select the type library file, choose
OK. This registers the type library, making it available. Then repeat step 2. Note
that the type library could be a stand-alone type library file (.tlb, .olb), or an
ActiveX server (.dll, .ocx).

3 If you do not want to install the ActiveX control on the Component palette, choose
Create Unit. This generates the TypeLibName_TLB unit and adds the declaration of
its component wrapper. This exits the Import ActiveX dialog.

4 If you want to install the ActiveX control on the Component palette, select the
Palette page on which this component will reside and then choose Install. This
generates the TypeLibName_TLB unit, like the Create Unit button, and then
displays the Install component dialog, letting you specify the package where the
components should reside (either an existing package or a new one).

When you exit the Import ActiveX dialog, the new TypeLibName_TLB unit appears in
the directory specified by the Unit dir name control. This file contains declarations
for the elements defined in the type library, as well as the generated component
wrapper for the ActiveX control.

Note Unlike the Import Type Library dialog where it is optional, the import ActiveX
dialog always generates a component wrapper. This is because, as a visual control, an
ActiveX control needs the additional support of the component wrapper so that it can
fit in with VCL forms.

If you installed the generated component wrapper, an ActiveX control now resides
on the Component palette. You can use the Object Inspector to set properties or write
event handlers for this control. If you add the control to a form or data module, you
can right-click on it at design time to see its property page (if it supports one).

Note The ActiveX page of the Component palette contains a number of example ActiveX
controls that were imported this way for you.

C r e a t i n g C O M c l i e n t s 35-5

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Code generated when you import type library information

Once you import a type library, you can view the generated TypeLibName_TLB unit.
At the top, you will find the following:

• Constant declarations giving symbolic names to the GUIDS of the type library and
its interfaces and CoClasses. The names for these constants are generated as
follows:

• The GUID for the type library has the form LBID_TypeLibName, where
TypeLibName is the name of the type library.

• The GUID for an interface has the form IID_InterfaceName, where InterfaceName
is the name of the interface.

• The GUID for a dispinterface has the form DIID_InterfaceName, where
InterfaceName is the name of the dispinterface.

• The GUID for a CoClass has the form CLASS_ClassName, where ClassName is
the name of the CoClass.

• Declarations for the CoClasses in the type library. These map each CoClass to its
default interface.

• Declarations for the interfaces and dispinterfaces in the type library.

• Declarations for a creator class for each CoClass whose default interface supports
Vtable binding. The creator class has two class methods, Create and CreateRemote,
that can be used to instantiate the CoClass locally (Create) or remotely
(CreateRemote).These methods return the default interface for the CoClass.

These declarations provide you with what you need to create instances of the
CoClass and access its interface. All you need do is add the generated
TypeLibName_TLB.pas file to the uses clause of the unit where you wish to bind to a
CoClass and call its interfaces.

Note This portion of the TypeLibName_TLB unit is also generated when you use the Type
Library editor or the command-line utility TLIBIMP.

If you want to use an ActiveX control, you also need the generated VCL wrapper in
addition to the declarations described above. The VCL wrapper handles window
management issues for the control. You may also have generated a VCL wrapper for
other CoClasses in the Import Type Library dialog. These VCL wrappers simplify the
task of creating server objects and calling their methods. They are especially
recommended if you want your client application to respond to events.

The declarations for generated VCL wrappers appear at the bottom of the interface
section. Component wrappers for ActiveX controls are descendants of TOleControl.
Component wrappers for Automation objects descend from TOleServer. The
generated component wrapper adds the properties, events, and methods exposed by
the CoClass’s interface. You can use this component like any other VCL component.

Warning You should not edit the generated TypeLibName_TLB unit. It is regenerated each time
the type library is refreshed, so any changes will be overwritten.

35-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Note For the most up-to-date information about the generated code, refer to the comments
in the automatically-generated TypeLibName_TLB unit.

Controlling an imported object
After importing type library information, you are ready to start programming with
the imported objects. How you proceed depends in part on the objects, and in part on
whether you have chosen to create component wrappers.

Using component wrappers

If you generated a component wrapper for your server object, writing your COM
client application is not very different from writing any other application that
contains VCL components. The server object’s properties, methods, and events are
already encapsulated in the VCL component. You need only assign event handlers,
set property values, and call methods.

To use the properties, methods, and events of the server object, see the
documentation for your server. The component wrapper automatically provides a
dual interface where possible. Delphi determines the VTable layout from information
in the type library.

In addition, your new component inherits certain important properties and methods
from its base class.

ActiveX wrappers
You should always use a component wrapper when hosting ActiveX controls,
because the component wrapper integrates the control’s window into the VCL
framework.

The properties and methods an ActiveX control inherits from TOleControl allow you to
access the underlying interface or obtain information about the control. Most
applications, however, do not need to use these. Instead, you use the imported control
the same way you would use any other VCL control.

Typically, ActiveX controls provide a property page that lets you set their properties.
Property pages are similar to the component editors some components display when
you double-click on them in the form designer. To display an ActiveX control’s
property page, right click and choose Properties.

The way you use most imported ActiveX controls is determined by the server
application. However, ActiveX controls use a standard set of notifications when they
represent the data from a database field. See “Using data-aware ActiveX controls” on
page 35-8 for information on how to host such ActiveX controls.

C r e a t i n g C O M c l i e n t s 35-7

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Automation object wrappers
The wrappers for Automation objects let you control how you want to form the
connection to your server object:

• The ConnectKind property indicates whether the server is local or remote and
whether you want to connect to a server that is already running or if a new
instance should be launched. When connecting to a remote server, you must
specify the machine name using the RemoteMachineName property.

• Once you have specified the ConnectKind, there are three ways you can connect
your component to the server:

• you can explicitly connect to the server by calling the component’s Connect
method.

• You can tell the component to connect automatically when your application
starts up by setting the AutoConnect property to True.

• You do not need to explicitly connect to the server. The component
automatically forms a connection when you use one of the server’s properties
or methods using the component.

Calling methods or accessing properties is the same as using any other component:

TServerComponent1.DoSomething;

Handling events is easy, because you can use the Object Inspector to write event
handlers. Note, however, that the event handler on your component may have
slightly different parameters than those defined for the event in the type library.
Specifically, pointer types (var parameters and interface pointers) are changed to
Variants. You must explicitly cast var parameters to the underlying type before
assigning a value. Interface pointers can be cast to the appropriate interface type
using the as operator.For example, the following code shows an event handler for the
ExcelApplication event, OnNewWorkBook. The event handler has a parameter that
provides the interface of another CoClass (ExcelWorkbook). However, the interface
is not passed as an ExcelWorkbook interface pointer, but rather as an OleVariant.

procedure TForm1.XLappNewWorkbook(Sender: TObject; var Wb:OleVariant);
begin

{ Note how the OleVariant for the interface must be cast to the correct type }
ExcelWorkbook1.ConnectTo((iUnknown(wb) as ExcelWorkbook));

end;

In this example, the event handler assigns the workbook to an ExcelWorkbook
component (ExcelWorkbook1). This demonstrates how to connect a component
wrapper to an existing interface by using the ConnectTo method. The ConnectTo
method is added to the generated code for the component wrapper.

Servers that have an application object expose a Quit method on that object to let
clients terminate the connection. Quit typically exposes functionality that is
equivalent to using the File menu to quit the application. Code to call the Quit
method is generated in your component’s Disconnect method. If it is possible to call
the Quit method with no parameters, the component wrapper also has an AutoQuit
property. AutoQuit causes your controller to call Quit when the component is freed.
If you want to disconnect at some other time, or if the Quit method requires
parameters, you must call it explicitly. Quit appears as a public method on the
generated component.

35-8 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Using data-aware ActiveX controls

When you use a data-aware ActiveX control in a Delphi application, you must
associate it with the database whose data it represents. To do this, you need a data
source component, just as you need a data source for any data-aware VCL control.

After you place the data-aware ActiveX control in the form designer, assign its
DataSource property to the data source that represents the desired dataset. Once you
have specified a data source, you can use the Data Bindings editor to link the
control’s data-bound property to a field in the dataset.

To display the Data Bindings editor, right-click the data-aware ActiveX control to
display a list of options. In addition to the basic options, the additional Data
Bindings item appears. Select this item to see the Data Bindings editor, which lists the
names of fields in the dataset and the bindable properties of the ActiveX control.

To bind a field to a property,

1 In the ActiveX Data Bindings Editor dialog, select a field and a property name.

Field Name lists the fields of the database and Property Name lists the ActiveX
control properties that can be bound to a database field. The dispID of the
property is in parentheses, for example, Value(12).

2 Click Bind and OK.

Note If no properties appear in the dialog, the ActiveX control contains no data-aware
properties. To enable simple data binding for a property of an ActiveX control, use
the type library as described in “Enabling simple data binding with the type library”
on page 38-10.

The following example walks you through the steps of using a data-aware ActiveX
control in the Delphi container. This example uses the Microsoft Calendar Control,
which is available if you have Microsoft Office 97 installed on your system.

1 From the Delphi main menu, choose Component|Import ActiveX Control.

2 Select a data-aware ActiveX control, such as the Microsoft Calendar control 8.0,
change its class name to TCalendarAXControl, and click Install.

3 In the Install dialog, click OK to add the control to the default user package, which
makes the control available on the Palette.

4 Choose Close All and File|New|Application to begin a new application.

5 From the ActiveX tab, drop a TCalendarAXControl object, which you just added to
the Palette, onto the form.

6 From the Data Access tab, drop a DataSource and Table object onto the form.

7 Select the DataSource object and set its DataSet property to Table1.

8 Select the Table object and do the following:

• Set the DatabaseName property to DBDEMOS

• Set the TableName property to EMPLOYEE.DB

• Set the Active property to True

C r e a t i n g C O M c l i e n t s 35-9

C o n t r o l l i n g a n i m p o r t e d o b j e c t

9 Select the TCalendarAXControl object and set its DataSource property to
DataSource1.

10 Select the TCalendarAXControl object, right-click, and choose Data Bindings to
invoke the ActiveX Control Data Bindings Editor.

Field Name lists all the fields in the active database. Property Name lists those
properties of the ActiveX Control that can be bound to a database field. The dispID
of the property is in parentheses.

11 Select the HireDate field and the Value property name, choose Bind, and OK.

The field name and property are now bound.

12 From the Data Controls tab, drop a DBGrid object onto the form and set its
DataSource property to DataSource1.

13 From the Data Controls tab, drop a DBNavigator object onto the form and set its
DataSource property to DataSource1.

14 Run the application.

15 Test the application as follows:

With the HireDate field displayed in the DBGrid object, navigate through the
database using the Navigator object. The dates in the ActiveX control change as
you move through the database.

Example: Printing a document with Microsoft Word

The following steps show how to create an Automation controller that prints a
document using Microsoft Word 8 from Office 97.

Before you begin: Create a new project that consists of a form, a button, and an open
dialog box (TOpenDialog). These controls constitute the Automation controller.

Step 1: Prepare Delphi for this example
For your convenience, Delphi has provided many common servers, such as Word,
Excel, and PowerPoint, on the Component palette. To demonstrate how to import a
server, we use Word. Since it already exists on the Component palette, this first step
asks you to remove the package containing Word so that you can see how to install it
on the palette. Step 4 describes how to return the Component palette to its normal
state.

To remove Word from the Component palette,

1 Choose Component|Install packages.

2 Click Borland Sample Automation Server components and choose Remove.

The Servers page of the Component palette no longer contains any of the servers
supplied with Delphi. (If no other servers have been imported, the Servers page
also disappears.)

35-10 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Step 2: Import the Word type library
To import the Word type library,

1 Choose Project|Import Type Library.

2 In the Import Type Library dialog,

1 Select Microsoft Office 8.0 Object Library.

If Word (Version 8) is not in the list, choose the Add button, go to Program
Files\Microsoft Office\Office, select the Word type library file, MSWord8.olb
choose Add, and then select Word (Version 8) from the list.

2 For Palette Page, choose Servers.

3 Choose Install.

The Install dialog appears. Select the Into New Packages tab and type
WordExample to create a new package containing this type library.

3 Go to the Servers Palette Page, select WordApplication and place it on a form.

4 Write an event handler for the button object as described in the next step.

Step 3: Use a VTable or dispatch interface object to control Microsoft Word
You can use either a VTable or a dispatch object to control Microsoft Word.

Using a VTable interface object
By dropping an instance of the WordApplication object onto your form, you can
easily access the control using a VTable interface object. You simply call on methods
of the class you just created. For Word, this is the TWordApplication class.

1 Select the button, double-click its OnClick event handler and supply the following
event handling code:

procedure TForm1.Button1Click(Sender: TObject);

var
FileName: OleVariant;

begin
 if OpenDialog1.Execute then
 begin
 FileName := OpenDialog1.FileName;

WordApplication1.Documents.Open(FileName,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam);

WordApplication1.ActiveDocument.PrintOut(
EmptyParam,EmptyParam,EmptyParam,
EmptyParam, EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam);

 end;

end;

C r e a t i n g C O M c l i e n t s 35-11

C o n t r o l l i n g a n i m p o r t e d o b j e c t

2 Build and run the program. By clicking the button, Word prompts you for a file to
print.

Using a dispatch interface object
As an alternate, you can use a dispatch interface for late binding. To use a dispatch
interface object, you create and initialize the Application object using the
_ApplicationDisp dispatch wrapper class as follows. Notice that dispinterface
methods are “documented” by the source as returning Vtable interfaces, but, in fact,
you must cast them to dispatch interfaces.

1 Select the button, double-click its OnQuit event handler and supply the following
event handling code:

procedure TForm1.Button1Click(Sender: TObject);
var
MyWord : _ApplicationDisp;
FileName : OleVariant;
begin

if OpenDialog1.Execute then
begin

FileName := OpenDialog1.FileName;
MyWord := CoWordApplication.Create as

_ApplicationDisp;
(MyWord.Documents as DocumentsDisp).Open(FileName,EmptyParam,

EmptyParam,EmptyParam,EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam);

(MyWord.ActiveDocument as _DocumentDisp).PrintOut(EmptyParam,
EmptyParam,EmptyParam,EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam);

MyWord.Quit(EmptyParam,EmptyParam,EmptyParam);
end;

end;

2 Build and run the program. By clicking the button, Word prompts you for a file to
print.

Step 4: Clean up the example
After completing this example, you will want to restore Delphi to its original form.

1 Delete the objects on this Servers page:

• Choose Component|Install Packages.

• From the list, select the WordExample package and click remove.

• Click Yes to the message box asking for confirmation.

• Exit the Install Packages dialog by clicking OK.

2 Return the Borland Sample Automation Server Components package:

• Choose Component|Install Packages.

• Click the Add button.

35-12 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

• In the resulting dialog, choose dclaxserver50.bpl.

• Exit the Install Packages dialog by clicking OK.

Writing client code based on type library definitions

Although you must use a component wrapper for hosting an ActiveX control, you
can write an Automation controller using only the definitions from the type library
that appear in the TypeLibName_TLB unit. This process is a bit more involved that
letting a component do the work, especially if you need to respond to events.

Connecting to a server
Before you can drive an Automation server from your controller application, you
must obtain a reference to an interface it supports. Typically, you connect to a server
through its main interface. For example, you connect to Microsoft Word through the
WordApplication component.

If the main interface is a dual interface, you can use the creator objects in the
TypeLibName_TLB.pas file. The creator classes have the same name as the CoClass,
with the prefix “Co” added. You can connect to a server on the same machine by
calling the Create method, or a server on a remote machine using the CreateRemote
method. Because Create and CreateRemote are class methods, you do not need an
instance of the creator class to call them.

MyInterface := CoServerClassName.Create;
MyInterface := CoServerClassName.CreateRemote('Machine1');

Create and CreateRemote return the default interface for the CoClass.

If the default interface is a dispatch interface, then there is no Creator class generated
for the CoClass. Instead, you can call the global CreateOleObject function, passing in
the GUID for the CoClass (there is a constant for this GUID defined at the top of the
_TLB unit). CreateOleObject returns an IDispatch pointer for the default interface.

Controlling an Automation server using a dual interface
After using the automatically generated creator class to connect to the server, you call
methods of the interface. For example,

var
MyInterface : _Application;

begin
MyInterface := CoWordApplication.Create;
MyInterface.DoSomething;

The interface and creator class are defined in the TypeLibName_TLB unit that is
generated automatically when you import a type library.

For information about dual interfaces, see “Dual interfaces” on page 36-13.

C r e a t i n g C O M c l i e n t s 35-13

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Controlling an Automation server using a dispatch interface
Typically, you use the dual interface to control the Automation server, as described
above. However, you may find a need to control an Automation server with a
dispatch interface because no dual interface is available.

To call the methods of a dispatch interface,

1 Connect to the server, using the global CreateOleObject function.

2 Use the as operator to cast the IDispatch interface returned by CreateOleObject to
the dispinterface for the CoClass. This dispinterface type is declared in the
TypeLibName_TLB unit.

3 Control the Automation server by calling methods of the dispinterface.

Another way to use dispatch interfaces is to assign them to a Variant. By assigning
the interface returned by CreateOleObject to a Variant, you can take advantage of
the Variant type’s built-in support for interfaces. Simply call the methods of the
interface, and the Variant automatically handles all IDispatch calls, fetching the
dispatch ID and invoking the appropriate method. The Variant type includes
built-in support for calling dispatch interfaces, through its var.

V: Variant;
begin

V:= CreateOleObject('TheServerObject');
V.MethodName; { calls the specified method }
...

An advantage of using Variants is that you do not need to import the type library,
because Variants use only the standard IDispatch methods to call the server. The
trade-off is that Variants are slower, because they use dynamic binding at runtime.

For more information on dispatch interfaces, see “Automation interfaces” on
page 36-12.

Handling events in an automation controller
When you generate a Component wrapper for an object whose type library you
import, you can respond to events simply using the events that are added to the
generated component. If you do not use a Component wrapper, however, (or if the
server uses COM+ events), you must write the event sink code yourself.

Handling Automation events programmatically
Before you can handle events, you must define an event sink. This is a class that
implements the event dispatch interface that is defined in the server’s type library.

To write the event sink, create an object that implements the event dispatch interface:

TServerEventsSink = class(TObject, _TheServerEvents)
...{ declare the methods of _TheServerEvents here }
end;

Once you have an instance of your event sink, you must inform the server object of
its existence so that the server can call it. To do this, you call the global
InterfaceConnect procedure, passing it

35-14 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

• The interface to the server that generates events.

• The GUID for the event interface that your event sink handles.

• An IUnknown interface for your event sink.

• A variable that receives a Longint that represents the connection between the
server and your event sink.

{MyInterface is the server interface you got when you connected to the server }
InterfaceConnect(MyInterface, DIID_TheServerEvents,

MyEventSinkObject as IUnknown, cookievar);

After calling InterfaceConnect, your event sink is connected and receives calls from the
server when events occur.

You must terminate the connection before you free your event sink. To do this, call
the global InterfaceDisconnect procedure, passing it all the same parameters except for
the interface to your event sink (and the final parameter is ingoing rather than
outgoing):

InterfaceDisconnect(MyInterface, DIID_TheServerEvents, cookievar);

Note You must be certain that the server has released its connection to your event sink
before you free it. Because you don’t know how the server responds to the disconnect
notification initiated by InterfaceDisconnect, this may lead to a race condition if you
free your event sink immediately after the call. The easiest way to guard against
problems is to have your event sink maintain its own reference count that is not
decremented until the server releases the event sink’s interface.

Handling COM+ events
Under COM+, servers use a special helper object to generate events rather than a set
of special interfaces (IConnectionPointContainer and IConnectionPoint). Because of this,
you can’t use an event sink that descends from TEventDispatcher. TEventDispatcher is
designed to work with those interfaces, not COM+ event objects.

Instead of defining an event sink, your client application defines a subscriber object.
Subscriber objects, like event sinks, provide the implementation of the event
interface. They differ from event sinks in that they subscribe to a particular event
object rather than connecting to a server’s connection point.

To define a subscriber object, use the COM Object wizard, selecting the event object’s
interface as the one you want to implement. The wizard generates an implementation
unit with skeletal methods that you can fill in to create your event handlers. For more
information about using the COM Object wizard to implement an existing interface,
see “Using the COM object wizard” on page 36-2.

Note You may need to add the event object’s interface to the registry using the wizard if it
does not appear in the list of interfaces you can implement.

Once you create the subscriber object, you must subscribe to the event object’s
interface or to individual methods (events) on that interface. There are three types of
subscriptions from which you can choose:

• Transient subscriptions. Like traditional event sinks, transient subscriptions are
tied to the lifetime of an object instance. When the subscriber object is freed, the
subscription ends and COM+ no longer forwards events to it.

C r e a t i n g C O M c l i e n t s 35-15

C r e a t i n g C l i e n t s f o r s e r v e r s t h a t d o n o t h a v e a t y p e l i b r a r y

• Persistent subscriptions. These are tied to the object class rather than a specific
object instance. When the event occurs, COM locates or launches an instance of the
subscriber object and calls its event handler. In-process objects (DLLs) use this
type of subscription.

• Per-user subscriptions. These subscriptions provide a more secure version of
transient subscriptions. Both the subscriber object and the server object that fires
events must be running under the same user account on the same machine.

Note Objects that subscribe to COM+ events must be installed in a COM+ application.

Creating Clients for servers that do not have a type library
Some older COM technologies, such as object linking and embedding (OLE), do not
provide type information in a type library. Instead, they rely on a standard set of
predefined interfaces. To write clients that host such objects, you can use the
TOleContainer component. This component appears on the System page of the
Component palette.

TOleContainer acts as a host site for an Ole2 object. It implements the IOleClientSite
interface and, optionally, IOleDocumentSite. Communication is handled using OLE
verbs.

To use TOleContainer,

1 Place a TOleContainer component on your form.

2 Set the AllowActiveDoc property to True if you want to host an Active document.

3 Set the AllowInPlace property to indicate whether the hosted object should appear
in the TOleContainer, or in a separate window.

4 Write event handlers to respond when the object is activated, deactivated, moved,
or resized.

5 To bind the TOleContainer object at design time, right click and choose Insert
Object. In the Insert Object dialog, choose a server object to host.

6 To bind the TOleContainer object at runtime, you have several methods to choose
from, depending on how you want to identify the server object. These include
CreateObject, which takes a program id, CreateObjectFromFile, which takes the
name of a file to which the object has been saved, CreateObjectFromInfo, which
takes a record containing information on how to create the object, or
CreateLinkToFile, which takes the name of a file to which the object was saved and
links to it rather than embeds it.

7 Once the object is bound, you can access its interface using the OleObjectInterface
property. However, because communication with Ole2 objects was based on OLE
verbs, you will most likely want to send commands to the server using the DoVerb
method.

8 When you want to release the server object, call the DestroyObject method.

35-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g s i m p l e C O M s e r v e r s 36-1

C h a p t e r

36
Chapter 36Creating simple COM servers

Delphi provides wizards to help you create various COM objects. The simplest COM
objects are servers that expose properties and methods (and possibly events) through
a default interface that clients can call.

Note COM servers and Automation is not available for use in CLX applications. This
technology is for use on Windows only and is not cross-platform.

Two wizards, in particular, ease the process of creating simple COM objects:

• The COM Object wizard builds a lightweight COM object whose default interface
descends from IUnknown or that implements an interface already registered on
your system. This wizard provides the most flexibility in the types of COM objects
you can create.

• The Automation Object wizard creates a simple Automation object whose default
interface descends from IDispatch. IDispatch introduces a standard marshaling
mechanism and support for late binding of interface calls.

Note COM defines many standard interfaces and mechanisms for handling specific
situations. The Delphi wizards automate the most common tasks. However, some
tasks, such as custom marshaling, are not supported by any Delphi wizards. For
information on that and other technologies not explicitly supported by Delphi, refer
to the Microsoft Developer’s Network (MSDN) documentation. The Microsoft Web
site also provides current information on COM support.

36-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f c r e a t i n g a C O M o b j e c t

Overview of creating a COM object
Whether you use the Automation object wizard to create a new Automation server or
the COM object wizard to create some other type of COM object, the process you
follow is the same. It involves these steps:

1 Design the COM object.

2 Use the COM Object wizard or the Automation Object wizard to create the server
object.

3 Define the interface that the object exposes to clients.

4 Register the COM object.

5 Test and debug the application.

Designing a COM object
When designing the COM object, you need to decide what COM interfaces you want
to implement. You can write a COM object to implement an interface that has already
been defined, or you can define a new interface for your object to implement. In
addition, you can have your object support more than one interface. For information
about standard COM interfaces that you might want to support, see the MSDN
documentation.

• To create a COM object that implements an existing interface, use the COM Object
wizard.

• To create a COM object that implements a new interface that you define, use either
the COM Object wizard or the Automation Object wizard. The COM object wizard
can generate a new default interface that descends from IUnknown, and the
Automation object gives your object a default interface that descends from
IDispatch. No matter which wizard you use, you can always use the Type Library
editor later to change the parent interface of the default interface that the wizard
generates.

In addition to deciding what interfaces to support, you must decide whether the
COM object is an in-process server, out-of-process server, or remote server. For in-
process servers and for out-of-process and remote servers that use a type library,
COM marshals the data for you. Otherwise, you must consider how to marshal the
data to out-of-process servers. For information on server types, see, “In-process, out-
of-process, and remote servers,” on page 33-6.

Using the COM object wizard
The COM object wizard performs the following tasks:

• Creates a new unit.

C r e a t i n g s i m p l e C O M s e r v e r s 36-3

U s i n g t h e C O M o b j e c t w i z a r d

• Defines a new class that descends from TCOMObject and sets up the class factory
constructor. For more information on the base class, see “Code generated by
wizards” on page 33-21.

• Optionally, adds a type library to your project and adds your object and its
interface to the type library.

Before you create a COM object, create or open the project for the application
containing functionality that you want to implement. The project can be either an
application or ActiveX library, depending on your needs.

To bring up the COM object wizard,

1 Choose File|New|Other to open the New Items dialog box.

2 Select the tab labeled, ActiveX.

3 Double-click the COM object icon.

In the wizard, you must specify the following:

• CoClass name: This is the name of the object as it appears to clients. The class
created to implement your object has this name with a ‘T’ prepended. If you do
not choose to implement an existing interface, the wizard gives your CoClass a
default interface that has this name with an ‘I’ prepended.

• Interface to implement: By default, the wizard gives your object a default
interface that descends from IUnknown. After exiting the wizard, you can then use
the Type Library editor to add properties and methods to this interface. However,
you can also select a pre-defined interface for your object to implement. Click the
List button in the COM object wizard to bring up the Interface Selection wizard,
where you can select any dual or custom interface defined in a type library
registered on your system. The interface you select becomes the default interface
for your new CoClass. The wizard adds all the methods on this interface to the
generated implementation class, so that you only need to fill in the bodies of the
methods in the implementation unit. Note that if you select an existing interface,
the interface is not added to your project’s type library. This means that when
deploying your object, you must also deploy the type library that defines the
interface.

• Instancing: Unless you are creating an in-process server, you need to indicate how
COM launches the application that houses your COM object. If your application
implements more than one COM object, you should specify the same instancing
for all of them. For information on the different possibilities, see “COM object
instancing types” on page 36-5.

• Threading Model: Typically, client requests to your object enter on different
threads of execution. You can specify how COM serializes these threads when it
calls your object. Your choice of threading model determines how the object is
registered. You are responsible for providing any threading support implied by
the model you choose. For information on the different possibilities, see
“Choosing a threading model” on page 36-6. For information on how to provide
thread support to your application, see Chapter 9, “Writing multi-threaded
applications.”

36-4 D e v e l o p e r ’ s G u i d e

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

• Type Library: You can choose whether you want to include a type library for your
object. This is recommended for two reasons: it lets you use the Type Library
editor to define interfaces, thereby updating much of the implementation, and it
gives clients an easy way to obtain information about your object and its
interfaces. If you are implementing an existing interface, Delphi requires your
project to use a type library. This is the only way to provide access to the original
interface declaration. For information on type libraries, see “Type libraries” on
page 33-15 and Chapter 34, “Working with type libraries”.

• Marshaling: If you have opted to create a type library and are willing to confine
yourself to Automation-compatible types, you can let COM handle the marshaling
for you when you are not generating an in-process server. By marking your
object’s interface as OleAutomation in the type library, you enable COM to set up
the proxies and stubs for you and handles passing parameters across process
boundaries. For more information on this process, see “The marshaling
mechanism” on page 33-8. You can only specify whether your interface is
Automation-compatible if you are generating a new interface. If you select an
existing interface, its attributes are already specified in its type library. If your
object’s interface is not marked as OleAutomation, you must either create an in-
process server or write your own marshaling code.

You can optionally add a description of your COM object. This description appears
in the type library for your object if you create one.

Using the Automation object wizard
The Automation object wizard performs the following tasks:

• Creates a new unit.

• Defines a new class that descends from TAutoObject and sets up the class factory
constructor. For more information on the base class, see “Code generated by
wizards” on page 33-21.

• Adds a type library to your project and adds your object and its interface to the
type library.

Before you create an Automation object, create or open the project for an application
containing functionality that you want to expose. The project can be either an
application or ActiveX library, depending on your needs.

To display the Automation wizard:

1 Choose File|New|Other.

2 Select the tab labeled, ActiveX.

3 Double-click the Automation Object icon.

C r e a t i n g s i m p l e C O M s e r v e r s 36-5

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

In the wizard dialog, specify the following:

• CoClass name: This is the name of the object as it appears to clients. Your object’s
default interface is created with a name based on this CoClass name with an ‘I’
prepended, and the class created to implement your object has this name with a ‘T’
prepended.

• Instancing: Unless you are creating an in-process server, you need to indicate how
COM launches the application that houses your COM object. If your application
implements more than one COM object, you should specify the same instancing
for all of them. For information on the different possibilities, see “COM object
instancing types” on page 36-5.

• Threading Model: Typically, client requests to your object enter on different
threads of execution. You can specify how COM serializes these threads when it
calls your object. Your choice of threading model determines how the object is
registered. You are responsible for providing any threading support implied by
the model you choose. For information on the different possibilities, see
“Choosing a threading model” on page 36-6. For information on how to provide
thread support to your application, see Chapter 9, “Writing multi-threaded
applications.”

• Event support: You must indicate whether you want your object to generate
events to which clients can respond. The wizard can provide support for the
interfaces required to generate events and the dispatching of calls to client event
handlers. For information on how events work and what you need to do when
implementing them, see “Exposing events to clients” on page 36-10.

You can optionally add a description of your COM object. This description appears
in the type library for your object.

The Automation object implements a dual interface, which supports both early
(compile-time) binding through the VTable and late (runtime) binding through the
IDispatch interface. For more information, see “Dual interfaces” on page 36-13.

COM object instancing types

Many of the COM wizards require you to specify an instancing mode for the object.
Instancing determines how many instances of your object clients can create in a
single executable. If you specify a Single Instance model, for example, then COM
once a client has instantiated your object, COM removes the application from view so
that other clients must launch their own instances of the application. Because this
affects the visibility of your application as a whole, the instancing mode must be
consistent across all objects in your application that can be instantiated by clients.
That is, you should not create one object in your application that uses Single Instance
mode and another in the same application that uses Multiple Instance mode.

Note Instancing is ignored when your COM object is used only as an in-process server.

36-6 D e v e l o p e r ’ s G u i d e

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

When the wizard creates a new COM object, it can have any of the following
instancing types:

Choosing a threading model

When creating an object using a wizard, you select a threading model that your
object agrees to support. By adding thread support to your COM object, you can
improve its performance, because multiple clients can access your application at the
same time.

Table 36.1 lists the different threading models you can specify.

Instancing Meaning

Internal The object can only be created internally. An external application cannot create an
instance of the object directly, although your application can create the object
hand pass an interface for it to clients.

Single
Instance

Allows clients to create only a single instance of the object for each executable
(application), so creating multiple instances results in launching multiple
instances of the application. Each client has its own dedicated instance of the
server application. This option is commonly used for multiple document interface
(MDI) applications.

Multiple
Instances

Specifies that multiple clients can create instances of the object in the same process
space. Any time a client requests service, a separate instance of the object is
created. (That is, there can be multiple instances in a single executable.)

Table 36.1 Threading models for COM objects

Threading model Description Implementation pros and cons

Single The server provides no thread
support. COM serializes client
requests so that the application
receives one request at a time.

Clients are handled one at a time so
no threading support is needed.
No performance benefit.

Apartment (or Single-
threaded apartment)

COM ensures that only one client
thread can call the object at a time.
All client calls use the thread in
which the object was created.

Objects can safely access their own
instance data, but global data must
be protected using critical sections
or some other form of serialization.
The thread’s local variables are
reliable across multiple calls.
Some performance benefits.

Free (also called multi-
threaded apartment)

Objects can receive calls on any
number of threads at any time.

Objects must protect all instance
and global data using critical
sections or some other form of
serialization.
Thread local variables are not
reliable across multiple calls.

C r e a t i n g s i m p l e C O M s e r v e r s 36-7

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

Note Local variables (except those in callbacks) are always safe, regardless of the threading
model. This is because local variables are stored on the stack and each thread has its
own stack. Local variables may not be safe in callbacks when using free-threading.

The threading model you choose in the wizard determines how the object is
registered in the system Registry. You must make sure that your object
implementation adheres to the threading model you have chosen. For general
information on writing thread-safe code, see Chapter 9, “Writing multi-threaded
applications.”

For in-process servers, setting the threading model in the wizard sets the threading
model key in the CLSID registry entry.

Out-of-process servers are registered as EXE, and Delphi initializes COM for the
highest threading model required. For example, if an EXE includes a free-threaded
object, it is initialized for free threading, which means that it can provide the
expected support for any free-threaded or apartment-threaded objects contained in
the EXE. To manually override threading behavior in EXEs, use the CoInitFlags
variable, which is described in the online help.

Writing an object that supports the free threading model
Use the free threading (or both) model rather than apartment threading whenever
the object needs to be accessed from more than one thread. A common example is a
client application connected to an object on a remote machine. When the remote
client calls a method on that object, the server receives the call on a thread from the
thread pool on the server machine. This receiving thread makes the call locally to the
actual object; and, because the object supports the free threading model, the thread
can make a direct call into the object.

If the object supported the apartment threading model instead, the call would have to
be transferred to the thread on which the object was created, and the result would

Both This is the same as the Free-
threaded model except that
outgoing calls (for example,
callbacks) are guaranteed to
execute in the same thread.

Maximum performance and
flexibility.
Does not require the application to
provide thread support for
parameters supplied to outgoing
calls.

Neutral Multiple clients can call the object
on different threads at the same
time, but COM ensures that no
two calls conflict.

You must guard against thread
conflicts involving global data and
any instance data that is accessed
by multiple methods.
This model should not be used
with objects that have a user
interface (visual controls).
This model is only available under
COM+. Under COM, it is mapped
to the Apartment model.

Table 36.1 Threading models for COM objects (continued)

Threading model Description Implementation pros and cons

36-8 D e v e l o p e r ’ s G u i d e

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

have to be transferred back into the receiving thread before returning to the client.
This approach requires extra marshaling.

To support free threading, you must consider how instance data can be accessed for
each method. If the method is writing to instance data, you must use critical sections
or some other form of serialization, to protect the instance data. Likely, the overhead
of serializing critical calls is less than executing COM’s marshaling code.

Note that if the instance data is read-only, serialization is not needed.

Free-threaded in-process servers can improve performance by acting as the outer
object in an aggregation with the free-threaded marshaler. The free-threaded
marshaler provides a shortcut for COM’s standard thread handling when a free-
threaded DLL is called by a host (client) that is not free-threaded.

To aggregate with the free threaded marshaler, you must

• Call CoCreateFreeThreadedMarshaler, passing your object’s IUnknown interface for
the resulting free-threaded marshaler to use:

CoCreateFreeThreadedMarshaler(self as IUnknown, FMarshaler);

This line assigns the interface for the free-threaded marshaler to a class member,
FMarshaler.

• Using the Type Library editor, add the IMarshal interface to the set of interfaces
your CoClass implements.

• In your object’s QueryInterface method, delegate calls for IDD_IMarshal to the free-
threaded marshaler (stored as FMarshaler above).

Warning The free-threaded marshaler violates the normal rules of COM marshaling to provide
additional efficiency. It should be used with care. In particular, it should only be
aggregated with free-threaded objects in in-process servers, and should only be
instantiated by the object that uses it (not another thread).

Writing an object that supports the apartment threading model
To implement the (single-threaded) apartment threading model, you must follow a
few rules:

• The first thread in the application that gets created is COM’s main thread. This is
typically the thread on which WinMain was called. This must also be the last
thread to uninitialize COM.

• Each thread in the apartment threading model must have a message loop, and the
message queue must be checked frequently.

• When a thread gets a pointer to a COM interface, that pointer may only be used in
that thread.

The single-threaded apartment model is the middle ground between providing no
threading support and full, multi-threading support of the free threading model. A
server committing to the apartment model promises that the server has serialized
access to all of its global data (such as its object count). This is because different
objects may try to access the global data from different threads. However, the object’s
instance data is safe because the methods are always called on the same thread.

C r e a t i n g s i m p l e C O M s e r v e r s 36-9

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

Typically, controls for use in Web browsers use the apartment threading model
because browser applications always initialize their threads as apartment.

Writing an object that supports the neutral threading model
Under COM+, you can use another threading model that is in between free threading
and apartment threading: the neutral model. Like the free-threading model, this
model allows multiple threads to access your object at the same time. There is no
extra marshaling to transfer to the thread on which the object was created. However,
your object is guaranteed to receive no conflicting calls.

Writing an object that uses the neutral threading model follows much the same rules
as writing an apartment-threaded object, except that you do need to guard instance
data against thread conflicts if it can be accessed by different methods in the object’s
interface. Any instance data that is only accessed by a single interface method is
automatically thread-safe.

Defining a COM object’s interface
When you use a wizard to create a COM object, the wizard automatically generates a
type library (unless you specify otherwise in the COM object wizard). The type
library provides a way for host applications to find out what the object can do. It also
lets you define your object’s interface using the Type Library editor. The interfaces
you define in the Type Library editor define what properties, methods, and events
your object exposes to clients.

Note If you selected an existing interface in the COM object wizard, you do not need to
add properties and methods. The definition of the interface is imported from the type
library in which it was defined. Instead, simply locate the methods of the imported
interface in the implementation unit and fill in their bodies.

Adding a property to the object’s interface

When you add a property to your object’s interface using the Type Library editor, it
automatically adds a method to read the property’s value and/or a method to set the
property’s value. The Type Library editor, in turn, adds these methods to your
implementation class, and in your implementation unit creates empty method
implementations for you to complete.

To add a property to your object’s interface,

1 In the type library editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter “I”.
To determine the default, in the Type Library editor, choose the CoClass and
Implements tab, and check the list of implemented interfaces for the one marked,
“Default.”

36-10 D e v e l o p e r ’ s G u i d e

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

2 To expose a read/write property, click the Property button on the toolbar;
otherwise, click the arrow next to the Property button on the toolbar, and then
click the type of property to expose.

3 In the Attributes pane, specify the name and type of the property.

4 On the toolbar, click the Refresh button.

A definition and skeletal implementations for the property access methods are
inserted into the object’s implementation unit.

5 In the implementation unit, locate the access methods for the property. These have
names of the form Get_PropertyName and Set_PropertyName. Add code that gets
or sets the property value of your object. This code may simply call an existing
function inside the application, access a data member that you add to the object
definition, or otherwise implement the property.

Adding a method to the object’s interface

When you add a method to your object’s interface using the Type Library editor, the
Type Library editor can, in turn, add the methods to your implementation class, and
in your implementation unit create empty implementation for you to complete.

To expose a method via your object’s interface,

1 In the Type Library editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter “I”.
To determine the default, in the Type Library editor, choose the CoClass and
Implements tab, and check the list of implemented interfaces for the one marked,
“Default.”

2 Click the Method button.

3 In the Attributes pane, specify the name of the method.

4 In the Parameters pane, specify the method’s return type and add the appropriate
parameters.

5 On the toolbar, click the Refresh button.

A definition and skeletal implementation for the method is inserted into the
object’s implementation unit.

6 In the implementation unit, locate the newly inserted method implementation.
The method is completely empty. Fill in the body to perform whatever task the
method represents.

Exposing events to clients

There are two types of events that a COM object can generate: traditional events and
COM+ events.

• COM+ events require that you create a separate event object using the event object
wizard and add code to call that event object from your server object. For more

C r e a t i n g s i m p l e C O M s e r v e r s 36-11

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

information about generating COM+ events, see “Generating events under
COM+” on page 39-18.

• You can use the wizard to handle much of the work in generating traditional
events. This process is described below.

Note The COM object wizard does not generate event support code. If you want your
object to generate traditional events, you should use the Automation object wizard.

In order for an object to generate events, you need to do the following:

1 In the Automation wizard, check the box, Generate event support code.

The wizard creates an object that includes an Events interface as well as the default
interface. This Events interface has a name of the form ICoClassnameEvents. It is an
outgoing (source) interface, which means that it is not an interface your object
implements, but rather is an interface that clients must implement and which your
object calls. (You can see this by selecting your CoClass, going to the Implements
page, and noting that the Source column on the Events interface says True.)

In addition to the Events interface, the wizard adds the IConnectionPointContainer
interface to the declaration of your implementation class, and adds several class
members for handling events. Of these new class members, the most important are
FConnectionPoint and FConnectionPoints, which implement the IConnectionPoint
and IConnectionPointContainer interfaces using built-in VCL classes.
FConnectionPoint is maintained by another method that the wizard adds,
EventSinkChanged.

2 In the Type Library editor, select the outgoing Events interface for your object.
(This is the one with a name of the form ICoClassNameEvents)

3 Click the Method button from the Type Library toolbar. Each method you add to
the Events interface represents an event handler that the client must implement.

4 In the Attributes pane, specify the name of the event handler, such as MyEvent.

5 On the toolbar, click the Refresh button.

Your object implementation now has everything it needs to accept client event
sinks and maintain a list of interfaces to call when the event occurs. To call these
interfaces, you can create a method to generate each event on clients.

6 In the Code Editor, add a method to your object for firing each event. For example,

unit ev;
interface
uses

ComObj, AxCtrls, ActiveX, Project1_TLB;
type

TMyAutoObject = class (TAutoObject,IConnectionPointContainer, IMyAutoObject)
private

.

.

.
public

procedure Initialize; override;
procedure Fire_MyEvent; { Add a method to fire the event}

36-12 D e v e l o p e r ’ s G u i d e

A u t o m a t i o n i n t e r f a c e s

7 Implement the method you added in the last step so that it iterates through all the
event sinks maintained by your object’s FConnectionPoint member:

procedure TMyAutoObject.Fire_MyEvent;
var

I: Integer;
EventSinkList: TList;
EventSink: IMyAutoObjectEvents;

begin
if FConnectionPoint <> nil then
begin

EventSinkList :=FConnectionPoint.SinkList; {get the list of client sinks }
for I := 0 to EventSinkList.Count - 1 do
begin
EventSink := IUnknown(FEvents[I]) as IMyAutoObjectEvents;
EventSink.MyEvent;

end;
end;

end;

8 Whenever you need to fire the event so that clients are informed of its occurrence,
call the method that dispatches the event to all event sinks:

if EventOccurs then Fire_MyEvent; { Call method you created to fire events.}

Managing events in your Automation object
For a server to support traditional COM events, it must provide the definition of an
outgoing interface which is implemented by a client. This outgoing interface includes
all the event handlers the client must implement to respond to server events.

When a client has implemented the outgoing event interface, it registers its interest in
receiving event notification by querying the server’s IConnectionPointContainer
interface. The IConnectionPointContainer interface returns the server’s
IConnectionPoint interface, which the client then uses to pass the server a pointer to its
implementation of the event handlers (known as a sink).

The server maintains a list of all client sinks and calls methods on them when an
event occurs, as described above.

Automation interfaces
The Automation Object wizard implements a dual interface by default, which means
that the Automation object supports both

• Late binding at runtime, which is through the IDispatch interface. This is
implemented as a dispatch interface, or dispinterface.

• Early binding at compile-time, which is accomplished through directly calling one
of the member functions in the object’s virtual function table (VTable). This is
referred to as a custom interface.

Note Any interfaces generated by the COM object wizard that do not descend from
IDispatch only support VTable calls.

C r e a t i n g s i m p l e C O M s e r v e r s 36-13

A u t o m a t i o n i n t e r f a c e s

Dual interfaces

A dual interface is a custom interface and a dispinterface at the same time. It is
implemented as a COM VTable interface that derives from IDispatch. For those
controllers that can access the object only at runtime, the dispinterface is available.
For objects that can take advantage of compile-time binding, the more efficient
VTable interface is used.

Dual interfaces offer the following combined advantages of VTable interfaces and
dispinterfaces:

• For VTable interfaces, the compiler performs type checking and provides more
informative error messages.

• For Automation controllers that cannot obtain type information, the dispinterface
provides runtime access to the object.

• For in-process servers, you have the benefit of fast access through VTable
interfaces.

• For out-of-process servers, COM marshals data for both VTable interfaces and
dispinterfaces. COM provides a generic proxy/stub implementation that can
marshal the interface based on the information contained in a type library. For
more information on marshaling, see, “Marshaling data,” on page 36-15.

The following diagram depicts the IMyInterface interface in an object that supports a
dual interface named IMyInterface. The first three entries of the VTable for a dual
interface refer to the IUnknown interface, the next four entries refer to the IDispatch
interface, and the remaining entries are COM entries for direct access to members of
the custom interface.

Figure 36.1 Dual interface VTable

QueryInterface

AddRef

Release

GetIDsOfNames

GetTypeInfo

GetTypeInfoCount

Invoke

IUnknown
methods

IDispatch
methods

Method1

Method2

Remaining methods
of IMyInterface

IMyInterface
methods

36-14 D e v e l o p e r ’ s G u i d e

A u t o m a t i o n i n t e r f a c e s

Dispatch interfaces

Automation controllers are clients that use the COM IDispatch interface to access the
COM server objects. The controller must first create the object, then query the object’s
IUnknown interface for a pointer to its IDispatch interface. IDispatch keeps track of
methods and properties internally by a dispatch identifier (dispID), which is a
unique identification number for an interface member. Through IDispatch, a
controller retrieves the object’s type information for the dispatch interface and then
maps interface member names to specific dispIDs. These dispIDs are available at
runtime, and controllers get them by calling the IDispatch method, GetIDsOfNames.

Once it has the dispID, the controller can then call the IDispatch method, Invoke, to
execute the appropriate code (property or method), packaging the parameters for the
property or method into one of the Invoke parameters. Invoke has a fixed compile-time
signature that allows it to accept any number of arguments when calling an interface
method.

The Automation object’s implementation of Invoke must then unpackage the
parameters, call the property or method, and be prepared to handle any errors that
occur. When the property or method returns, the object passes its return value back
to the controller.

This is called late binding because the controller binds to the property or method at
runtime rather than at compile time.

Note When importing a type library, Delphi will query for dispIDs at the time it generates
the code, thereby allowing generated wrapper classes to call Invoke without calling
GetIDsOfNames. This can significantly increase the runtime performance of
controllers.

Custom interfaces

Custom interfaces are user-defined interfaces that allow clients to invoke interface
methods based on their order in the VTable and knowledge of the argument types.
The VTable lists the addresses of all the properties and methods that are members of
the object, including the member functions of the interfaces that it supports. If the
object does not support IDispatch, the entries for the members of the object’s custom
interfaces immediately follow the members of IUnknown.

If the object has a type library, you can access the custom interface through its VTable
layout, which you can get using the Type Library editor. If the object has a type
library and also supports IDispatch, a client can also get the dispIDs of the IDispatch
interface and bind directly to a VTable offset. Delphi’s type library importer
(TLIBIMP) retrieves dispIDs at import time, so clients that use dispinterfaces can
avoid calls to GetIDsOfNames; this information is already in the _TLB unit. However,
clients still need to call Invoke.

C r e a t i n g s i m p l e C O M s e r v e r s 36-15

M a r s h a l i n g d a t a

Marshaling data
For out-of-process and remote servers, you must consider how COM marshals data
outside the current process. You can provide marshaling:

• Automatically, using the IDispatch interface.

• Automatically, by creating a type library with your server and marking the
interface with the OLE Automation flag. COM knows how to marshal all the
Automation-compatible types in the type library and can set up the proxies and
stubs for you. Some type restrictions apply to enable automatic marshaling.

• Manually by implementing all the methods of the IMarshal interface. This is called
custom marshaling.

Note The first method (using IDispatch) is only available on Automation servers. The
second method is automatically available on all objects that are created by wizards
and which use a type library.

Automation compatible types

Function result and parameter types of the methods declared in dual and dispatch
interfaces and interfaces that you mark as OLE Automation must be Automation-
compatible types. The following types are OLE Automation-compatible:

• The predefined valid types such as Smallint, Integer, Single, Double, WideString. For
a complete list, see “Valid types” on page 34-11.

• Enumeration types defined in a type library. OLE Automation-compatible
enumeration types are stored as 32-bit values and are treated as values of type
Integer for purposes of parameter passing.

• Interface types defined in a type library that are OLE Automation safe, that is,
derived from IDispatch and containing only OLE Automation compatible types.

• Dispinterface types defined in a type library.

• Any custom record type defined within the type library.

• IFont, IStrings, and IPicture. Helper objects must be instantiated to map

• an IFont to a TFont
• an IStrings to a TStrings
• an IPicture to a TPicture

The ActiveX control and ActiveForm wizards create these helper objects
automatically when needed. To use the helper objects, call the global routines,
GetOleFont, GetOleStrings, GetOlePicture, respectively.

36-16 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g a C O M o b j e c t

Type restrictions for automatic marshaling

For an interface to support automatic marshaling (also called Automation
marshaling or type library marshaling), the following restrictions apply. When you
edit your object using the type library editor, the editor enforces these restrictions:

• Types must be compatible for cross-platform communication. For example, you
cannot use data structures (other than implementing another property object),
unsigned arguments, AnsiStrings, and so on.

• String data types must be transferred as wide strings (BSTR). PChar and
AnsiString cannot be marshaled safely.

• All members of a dual interface must pass an HRESULT as the function’s return
value. If the method is declared using the safecall calling convention, this
condition is imposed automatically, with the declared return type converted to an
output parameter.

• Members of a dual interface that need to return other values should specify these
parameters as var or out, indicating an output parameter that returns the value of
the function.

Note One way to bypass the Automation types restrictions is to implement a separate
IDispatch interface and a custom interface. By doing so, you can use the full range of
possible argument types. This means that COM clients have the option of using the
custom interface, which Automation controllers can still access. In this case, though,
you must implement the marshaling code manually.

Custom marshaling

Typically, you use automatic marshaling in out-of-process and remote servers
because it is easier—COM does the work for you. However, you may decide to
provide custom marshaling if you think you can improve marshaling performance.
When implementing your own custom marshaling, you must support the IMarshal
interface. For more information, on this approach, see the Microsoft documentation.

Registering a COM object
You can register your server object as an in-process or an out-of-process server. For
more information on the server types, see“In-process, out-of-process, and remote
servers” on page 33-6.

Note Before you remove a COM object from your system, you should unregister it.

C r e a t i n g s i m p l e C O M s e r v e r s 36-17

T e s t i n g a n d d e b u g g i n g t h e a p p l i c a t i o n

Registering an in-process server

To register an in-process server (DLL or OCX),

• Choose Run|Register ActiveX Server.

To unregister an in-process server,

• Choose Run|Unregister ActiveX Server.

Registering an out-of-process server

To register an out-of-process server,

• Run the server with the /regserver command-line option.

You can set command-line options with the Run|Parameters dialog box.

You can also register the server by running it.

To unregister an out-of-process server,

• Run the server with the /unregserver command-line option.

As an alternative, you can use the tregsvr command from the command line or run
the regsvr32.exe from the operating system.

Note If the COM server is intended for use under COM+, you should install it in a COM+
application rather than register it. (Installing the object in a COM+ application
automatically takes care of registration.) For information on how to install an object
in a COM+ application, see “Installing transactional objects” on page 39-22.

Testing and debugging the application
To test and debug your COM server application,

1 Turn on debugging information using the Compiler tab on the Project|Options
dialog box, if necessary. Also, turn on Integrated Debugging in the Tools|
Debugger Options dialog.

2 For an in-process server, choose Run|Parameters, type the name of the
Automation controller in the Host Application box, and choose OK.

3 Choose Run|Run.

4 Set breakpoints in the Automation server.

5 Use the Automation controller to interact with the Automation server.

The Automation server pauses when the breakpoints are reached.

Note As an alternate approach, if you are also writing the Automation controller, you can
debug into an in-process server by enabling COM cross-process support. Use the
General page of the Tools|Debugger Options dialog to enable cross-process support.

36-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r P a g e 37-1

C h a p t e r

37
Chapter 37Creating an Active Server Page

If you are using the Microsoft Internet Information Server (IIS) environment to serve
your Web pages, you can use Active Server Pages (ASP) to create dynamic Web-
based client-server applications. Active Server Pages let you write a script that gets
called every time the server loads the Web page. This script can, in turn, call on
Automation objects to obtain information that it includes in a generated HTML page.
For example, you can write a Delphi Automation server, such as one to create a
bitmap or connect to a database, and use this control to access data that gets updated
every time the server loads the Web page.

On the client side, the ASP acts like a standard HTML document and can be viewed
by users on any platform using any Web Browser.

ASP applications are analogous to applications you write using Delphi’s Web broker
technology. For more information about the Web broker technology, see Chapter 27,
“Creating Internet applications”. ASP differs, however, in the way it separates the UI
design from the implementation of business rules or complex application logic.

• The UI design is managed by the Active Server Page. This is essentially an HTML
document, but it can include embedded script that calls on Active Server objects to
supply it with content that reflects your business rules or application logic.

• The application logic is encapsulated by Active Server objects that expose simple
methods to the Active Server Page, supplying it with the content it needs.

Note Although ASP provides the advantage of separating UI design from application
logic, its performance is limited in scale. For Web sites that respond to extremely
large numbers of clients, an approach based on the Web broker technology is
recommended instead.

The script in your Active Server Pages and the Automation objects you embed in an
active server page can make use of the ASP intrinsics (built-in objects that provide
information about the current application, HTTP messages from the browser, and
so on).

37-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

This chapter shows how to create an Active Server Object using the Delphi Active
Server Object wizard. This special Automation control can then be called by an
Active Server Page and supply it with content.

Here are the steps for creating an Active Server Object:

• Create an Active Server Object for the application.

• Define the Active Server Object’s interface.

• Register the Active Server Object.

• Test and debug the application.

Creating an Active Server Object
An Active Server Object is an Automation object that has access to information about
the entire ASP application and the HTTP messages it uses to communicate with
browsers. It descends from TASPObject or TASPMTSObject (which is in turn a
descendant of TAutoObject), and supports Automation protocols, exposing itself for
other applications (or the script in the Active Server page) to use. You create an
Active Server Object using the Active Server Object wizard.

Your Active Server Object project can be either an executable (exe) or library (dll),
depending on your needs. However, you should be aware of the drawbacks of using
an out-of-process server. These drawbacks are discussed in “Creating ASPs for in-
process or out-of-process servers” on page 37-7.

To display the Active Server Object wizard:

1 Choose File|New|Other.

2 Select the tab labeled, ActiveX.

3 Double-click the Active Server Object icon.

In the wizard, give your new Active Server Object a name, and specify the instancing
and threading models you want to support. These details influence the way your
object can be called. You must write the implementation so that it adheres to the
model (for example, avoiding thread conflicts). The instancing and threading models
involve the same choices that you make for other COM objects. For details, see “COM
object instancing types” on page 36-5 and “Choosing a threading model” on
page 36-6.

The thing that makes an Active Server Object unique is its ability to access
information about the ASP application and the HTTP messages that pass between the
Active Server page and client Web browsers. This information is accessed using the
ASP intrinsics. In the wizard, you can specify how your object accesses these by
setting the Active Server Type:

• If you are working with IIS 3 or IIS 4, you use Page Level Event Methods. Under
this model, your object implements the methods, OnStartPage and OnEndPage,
which are called when the Active Server page loads and unloads. When your
object is loaded, it automatically obtains an IScriptingContext interface, which it

C r e a t i n g a n A c t i v e S e r v e r P a g e 37-3

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

uses to access the ASP intrinsics. These interfaces are, in turn, surfaced as
properties inherited from the base class (TASPObject).

• If you are working with IIS5 or later, you use the Object Context type. Under this
model, your object fetches an IObjectContext interface, which it uses to access the
ASP intrinsics. Again, these interfaces are surfaced as properties in the inherited
base class (TASPMTSObject). One advantage of this latter approach is that your
object has access to all of the other services available through IObjectContext. To
access the IObjectContext interface, simply call GetObjectContext (defined in the mtx
unit) as follows:

ObjectContext := GetObjectContext;

For more information about the services available through IObjectContext, see
Chapter 39, “Creating MTS or COM+ objects”.

You can tell the wizard to generate a simple ASP page to host your new Active Server
Object. The generated page provides a minimal script (written in VBScript) that
creates your Active Server Object based on its ProgID, and indicates where you can
call its methods. This script calls Server.CreateObject to launch your Active Server
Object.

Note Although the generated test script uses VBScript, Active Server Pages also can be
written using Jscript.

When you exit the wizard, a new unit is added to the current project that contains the
definition for the Active Server Object. In addition, the wizard adds a type library
project and opens the Type Library editor. Now you can expose the properties and
methods of the interface through the type library as described in “Defining a COM
object’s interface” on page 36-9. As you write the implementation of your object’s
properties and methods, you can take advantage of the ASP intrinsics (described
below) to obtain information about the ASP application and the HTTP messages it
uses to communicate with browsers.

The Active Server Object, like any other Automation object, implements a dual
interface, which supports both early (compile-time) binding through the VTable and
late (runtime) binding through the IDispatch interface. For more information on dual
interfaces, see “Dual interfaces” on page 36-13.

Using the ASP intrinsics

The ASP intrinsics are a set of COM objects supplied by ASP to the objects running in
an Active Server Page. They let your Active Server Object access information that
reflects the messages passing between your application and the Web browser, as well
as a place to store information that is shared among Active Server Objects that belong
to the same ASP application.

To make these objects easy to access, the base class for your Active Server Object
surfaces them as properties. For a complete understanding of these objects, see the
Microsoft documentation. However, the following topics provide a brief overview.

37-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

Application
The Application object is accessed through an IApplicationObject interface. It
represents the entire ASP application, which is defined as the set of all .asp files in a
virtual directory and its subdirectories. The Application object can be shared by
multiple clients, so it includes locking support that you should use to prevent thread
conflicts.

IApplicationObject includes the following:

Request
The Request object is accessed through an IRequest interface. It provides information
about the HTTP request message that caused the Active Server Page to be opened.

IRequest includes the following:

Table 37.1 IApplicationObject interface members

Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the application using script
commands. This interface has two methods, Remove and RemoveAll,
that you can use to delete one or all objects from the list.

StaticObjects property Lists all the objects that were added to the application with the
<OBJECT> tag.

Lock method Prevents other clients from locking the Application object until you
call Unlock. All clients should call Lock before accessing shared
memory (such as the properties).

Unlock method Releases the lock that was set using the Lock method.

Application_OnEnd event Occurs when the application quits, after the Session_OnEnd event.
The only intrinsics available are Application and Server. The event
handler must be written in VBScript or JScript.

Application_OnStart event Occurs before the new session is created (before Session_OnStart).
The only intrinsics available are Application and Server. The event
handler must be written in VBScript or JScript.

Table 37.2 IRequest interface members

Property, Method, or Event Meaning

ClientCertificate property Indicates the values of all fields in the client certificate that is sent
with the HTTP message.

Cookies property Indicates the values of all Cookie headers on the HTTP message.

Form property Indicates the values of form elements in the HTTP body. These can
be accessed by name.

QueryString property Indicates the values of all variables in the query string from the
HTTP header.

ServerVariables property Indicates the values of various environment variables. These
variables represent most of the common HTTP header variables.

TotalBytes property Indicates the number of bytes in the request body. This is an upper
limit on the number of bytes returned by the BinaryRead method.

BinaryRead method Retrieves the content of a Post message. Call the method, specifying
the maximum number of bytes to read. The resulting content is
returns as a Variant array of bytes. After calling BinaryRead, you
can’t use the Form property.

C r e a t i n g a n A c t i v e S e r v e r P a g e 37-5

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

Response
The Request object is accessed through an IResponse interface. It lets you specify
information about the HTTP response message that is returned to the client browser.

IResponse includes the following:

Session
The Session object is accessed through the ISessionObject interface. It allows you to
store variables that persist for the duration of a client’s interaction with the ASP
application. That is, these variables are not freed when the client moves from page to
page within the ASP application, but only when the client exits the application
altogether.

Table 37.3 IResponse interface members

Property, Method, or Event Meaning

Cookies property Determines the values of all Cookie headers on the HTTP message.

Buffer property Indicates whether page output is buffered When page output is
buffered, the server does not send a response to the client until all
of the server scripts on the current page are processed.

CacheControl property Determines whether proxy servers can cache the output in the
response.

Charset property Adds the name of the character set to the content type header.

ContentType property Specifies the HTTP content type of the response message’s body.

Expires property Specifies how long the response can be cached by a browser before
it expires.

ExpiresAbsolute property Specifies the date and time when the response expires.

IsClientConnected property Indicates whether the client has disconnected from the server.

Pics property Set the value for the pics-label field of the response header.

Status property Indicates the status of the response. This is the value of an HTTP
status header.

AddHeader method Adds an HTTP header with a specified name and value.

AppendToLog method Adds a string to the end of the Web server log entry for this
request.

BinaryWrite method Writes raw (uninterpreted) information to the body of the response
message.

Clear method Erases any buffered HTML output.

End method Stops processing the .asp file and returns the current result.

Flush method Sends any buffered output immediately.

Redirect method Sends a redirect response message, redirecting the client browser to
a different URL.

Write method Writes a variable to the current HTTP output as a string.

37-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

ISessionObject includes the following:

Server
The Server object is accessed through an IServer interface. It provides various utilities
for writing your ASP application.

IServer includes the following:

Table 37.4 ISessionObject interface members

Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the session using the
<OBJECT> tag. You can access any variable in the list by name, or
call the Contents object’s Remove or RemoveAll method to delete
values.

StaticObjects property Lists all the objects that were added to the session with the
<OBJECT> tag.

CodePage property Specifies the code page to use for symbol mapping. Different
locales may use different code pages.

LCID property Specifies the locale identifier to use for interpreting string content.

SessionID property Indicates the session identifier for the current client.

Timeout property Specifies the time, in minutes, that the session persists without a
request (or refresh) from the client until the application terminates.

Abandon method Destroys the session and releases its resources.

Session_OnEnd event Occurs when the session is abandoned or times out. The only
intrinsics available are Application, Server, and Session. The event
handler must be written in VBScript or JScript.

Session_OnStart event Occurs when the server creates a new session is created (after
Application_OnStart but before running the script on the Active
Server Page). All intrinsics are available. The event handler must be
written in VBScript or JScript.

Table 37.5 IServer interface members

Property, Method, or Event Meaning

ScriptTimeout property Same as the Timeout property on the Session object.

CreateObject method Instantiates a specified Active Server Object.

Execute method Executes the script in a specified .asp file.

GetLastError method Returns an ASPError object that describes the error condition.

HTMLEncode method Encodes a string for use in an HTML header, replacing reserved
characters by the appropriate symbolic constants.

MapPath method Maps a specified virtual path (an absolute path on the current
server or a path relative to the current page) into a physical path.

Transfer method Sends all of the current state information to another Active Server
Page for processing.

URLEncode method Applies URL encoding rules, including escape characters, to a
specified string

C r e a t i n g a n A c t i v e S e r v e r P a g e 37-7

R e g i s t e r i n g a n A c t i v e S e r v e r O b j e c t

Creating ASPs for in-process or out-of-process servers

You can use Server.CreateObject in an ASP page to launch either an in-process or
out-of-process server, depending on your requirements. However, launching in-
process servers is more common.

Unlike most in-process servers, an Active Server Object in an in-process server does
not run in the client’s process space. Instead, it runs in the IIS process space. This
means that the client does not need to download your application (as, for example, it
does when you use ActiveX objects). In-process component DLLs are faster and more
secure than out-of-process servers, so they are better suited for server-side use.

Because out-of-process servers are less secure, it is common for IIS to be configured
to not allow out-of-process executables. In this case, creating an out-of-process server
for your Active Server Object would result in an error similar to the following:

Server object error 'ASP 0196'
Cannot launch out of process component
/path/outofprocess_exe.asp, line 11

Also, out-of-process components often create individual server processes for each
object instance, so they are slower than CGI applications. They do not scale as well as
component DLLs.

If performance and scalability are priorities for your site, in-process servers are
highly recommended. However, Intranet sites that receive moderate to low traffic
may use an out-of-process component without adversely affecting the site's overall
performance.

For general information on in-process and out-of-process servers, see, “In-process,
out-of-process, and remote servers,” on page 33-6.

Registering an Active Server Object
You can register the Active Server Page as an in-process or an out-of-process server.
However, in-process servers are more common.

Note When you want to remove the Active Server Page object from your system, you
should first unregister it, removing its entries from the Windows registry.

Registering an in-process server

To register an in-process server (DLL or OCX),

• Choose Run|Register ActiveX Server.

To unregister an in-process server,

• Choose Run|Unregister ActiveX Server.

37-8 D e v e l o p e r ’ s G u i d e

T e s t i n g a n d d e b u g g i n g t h e A c t i v e S e r v e r P a g e a p p l i c a t i o n

Registering an out-of-process server

To register an out-of-process server,

• Run the server with the /regserver command-line option. (You can set command-
line options with the Run|Parameters dialog box.)

You can also register the server by running it.

To unregister an out-of-process server,

• Run the server with the /unregserver command-line option.

Testing and debugging the Active Server Page application
Debugging any in-process server such as an Active Server Object is much like
debugging a DLL. You choose a host application that loads the DLL, and debug as
usual. To test and debug an Active Server Object,

1 Turn on debugging information using the Compiler tab on the Project|Options
dialog box, if necessary. Also, turn on Integrated Debugging in the Tools|
Debugger Options dialog.

2 Choose Run|Parameters, type the name of your Web Server in the Host
Application box, and choose OK.

3 Choose Run|Run.

4 Set breakpoints in the Active Server Object implementation.

5 Use the Web browser to interact with the Active Server Page.

The debugger pauses when the breakpoints are reached.

C r e a t i n g a n A c t i v e X c o n t r o l 38-1

C h a p t e r

38
Chapter 38Creating an ActiveX control

An ActiveX control is a software component that integrates into and extends the
functionality of any host application that supports ActiveX controls, such as
C++Builder, Delphi, Visual Basic, Internet Explorer, and (given a plug-in) Netscape
Navigator. ActiveX controls implement a particular set of interfaces that allow this
integration.

For example, Delphi comes with several ActiveX controls, including charting,
spreadsheet, and graphics controls. You can add these controls to the component
palette in the IDE, and then use them like any standard VCL component, dropping
them on forms and setting their properties using the Object Inspector.

An ActiveX control can also be deployed on the Web, allowing it to be referenced in
HTML documents and viewed with ActiveX-enabled Web browsers.

Delphi provides wizards that let you create two types of ActiveX controls:

• ActiveX controls that wrap VCL classes. By wrapping a VCL class, you can
convert existing components into ActiveX controls or create new ones, test them
out locally, and then convert them into ActiveX controls. ActiveX controls are
typically intended to be embedded in a larger host application.

• Active forms. Active forms let you use the form designer to create a more
elaborate control that acts like a dialog or like a complete application. You develop
the Active form in much the same way that you develop a typical Delphi
application. Active Forms are typically intended for deployment on the Web.

This chapter provides an overview of how to create an ActiveX control in the Delphi
environment. It is not intended to provide complete implementation details of
writing ActiveX control without using a wizard. For that information, refer to your
Microsoft Developer’s Network (MSDN) documentation or search the Microsoft Web
site for ActiveX information.

38-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f A c t i v e X c o n t r o l c r e a t i o n

Overview of ActiveX control creation
Creating ActiveX controls using Delphi is very similar to creating ordinary controls
or forms. This differs markedly from creating other COM objects, where you first
define the object’s interface and then complete the implementation. To create ActiveX
controls (other than Active Forms), you reverse this process, starting with the
implementation of a VCL control, and then generating the interface and type library
once the control is written. When creating Active Forms, the interface and type
library are created at the same time as your form, and then you use the form designer
to implement the form.

The completed ActiveX control consists of a VCL control that provides the
underlying implementation, a COM object that wraps the VCL control, and a type
library that lists the COM object’s properties, methods, and events.

To create a new ActiveX control (other than an Active Form), perform the following
steps:

1 Design and create the custom VCL control that forms the basis of your ActiveX
control.

2 Use the ActiveX control wizard to create an ActiveX control from the VCL control
you created in step 1.

3 Use the ActiveX property page wizard to create one or more property pages for
the control (optional).

4 Associate the property page with the ActiveX control (optional).

5 Register the control.

6 Test the control with all potential target applications.

7 Deploy the ActiveX control on the Web. (optional)

To create a new Active Form, perform the following steps:

1 Use the ActiveForm wizard to create an Active Form, which appears as a blank
form in the IDE, and an associated ActiveX wrapper for that form.

2 Use the form designer to add components to your Active Form and implement its
behavior in the same way you create and implement an ordinary form using the
form designer.

3 Follow steps 3-7 above to give your Active Form a property page, register it, and
deploy it on the Web.

Elements of an ActiveX control

An ActiveX control involves many elements which each perform a specific function.
The elements include a VCL control, a corresponding COM object wrapper that
exposes properties, methods, and events, and one or more associated type libraries.

C r e a t i n g a n A c t i v e X c o n t r o l 38-3

O v e r v i e w o f A c t i v e X c o n t r o l c r e a t i o n

VCL control
The underlying implementation of an ActiveX control in Delphi is a VCL control.
When you create an ActiveX control, you must first design or choose the VCL control
from which you will make your ActiveX control.

The underlying VCL control must be a descendant of TWinControl, because it must
have a window that can be parented by the host application. When you create an
Active form, this object is a descendant of TActiveForm.

Note The ActiveX control wizard lists the available TWinControl descendants from which
you can choose to make an ActiveX control. This list does not include all TWinControl
descendants, however. Some controls, such as THeaderControl, are registered as
incompatible with ActiveX (using the RegisterNonActiveX procedure) and do not
appear in the list.

ActiveX wrapper
The actual COM object is an ActiveX wrapper object for the VCL control. For Active
forms, this class is always TActiveFormControl. For other ActiveX controls, it has a
name of the form TVCLClassX, where TVCLClass is the name of the VCL control class.
Thus, for example, the ActiveX wrapper for TButton would be named TButtonX.

The wrapper class is a descendant of TActiveXControl, which provides support for the
ActiveX interfaces. The ActiveX wrapper inherits this support, which allows it to
forward Windows messages to the VCL control and parent its window in the host
application.

The ActiveX wrapper exposes the VCL control’s properties and methods to clients
via its default interface. The wizard automatically implements most of the wrapper
class’s properties and methods, delegating method calls to the underlying VCL
control. The wizard also provides the wrapper class with methods that fire the VCL
control’s events on clients and assigns these methods as event handlers on the VCL
control.

Type library
The ActiveX control wizards automatically generate a type library that contains the
type definitions for the wrapper class, its default interface, and any type definitions
that these require. This type information provides a way for your control to advertise
its services to host applications. You can view and edit this information using the
Type Library editor. Although this information is stored in a separate, binary type
library file (.TLB extension), it is also automatically compiled into the ActiveX control
DLL as a resource.

Property page
You can optionally give your ActiveX control a property page. The property page
allows the user of a host (client) application to view and edit your control’s
properties. You can group several properties on a page, or use a page to provide a
dialog-like interface for a property. For information on how to create property pages,
see “Creating a property page for an ActiveX control” on page 38-11.

38-4 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a n A c t i v e X c o n t r o l

Designing an ActiveX control
When designing an ActiveX control, you start by creating a custom VCL control. This
forms the basis of your ActiveX control. For information on creating custom controls,
see Part V, “Creating custom components.”

When designing the VCL control, keep in mind that it will be embedded in another
application; this control is not an application in itself. For this reason, you probably
do not want to use elaborate dialog boxes or other major user-interface components.
Your goal is typically to make a simple control that works inside of, and follows the
rules of the main application.

In addition, you should make sure that the types for all properties and methods you
want your object to expose to clients are Automation-compatible, because the
ActiveX control’s interface must support IDispatch. The wizard does not add any
methods to the wrapper class’s interface that have parameters that are not
Automation-compatible. For a list of Automation-compatible types, see “Valid
types” on page 34-11.

The wizards implement all the necessary ActiveX interfaces required using the COM
wrapper class. They also surface all Automation-compatible properties, methods,
and events through the wrapper class’s default interface. Once the wizard has
generated the COM wrapper class and its interface, you can use the Type Library
editor to modify the default interface or augment the wrapper class by implementing
additional interfaces.

Generating an ActiveX control from a VCL control
To generate an ActiveX control from a VCL control, use the ActiveX Control wizard.
The properties, methods, and events of the VCL control become the properties,
methods, and events of the ActiveX control.

Before using the ActiveX control wizard, you must decide what VCL control will
provide the underlying implementation of the generated ActiveX control.

To bring up the ActiveX control wizard,

1 Choose File|New|Other to open the New Items dialog box.

2 Select the tab labeled ActiveX.

3 Double-click the ActiveX Control icon.

In the wizard, select the name of the VCL control that will be wrapped by the new
ActiveX control. The dialog lists all available controls, which are descendants of
TWinControl that are not registered as incompatible with ActiveX using the
RegisterNonActiveX procedure.

Tip If you do not see the control you want in the drop-down list, check whether you have
installed it in the IDE or added its unit to your project.

Once you have selected a VCL control, the wizard automatically generates a name for
the CoClass, the implementation unit for the ActiveX wrapper, and the ActiveX

C r e a t i n g a n A c t i v e X c o n t r o l 38-5

G e n e r a t i n g a n A c t i v e X c o n t r o l b a s e d o n a V C L f o r m

library project. (If you currently have an ActiveX library project open, and it does not
contain a COM+ event object, the current project is automatically used.) You can
change any of these in the wizard (unless you have an ActiveX library project already
open, in which case the project name is not editable).

The wizard always specifies Apartment as the threading model. This is not a problem
if your ActiveX project usually contains only a single control. However, if you add
additional objects to your project, you are responsible for providing thread support.

The wizard also lets you configure various options on your ActiveX control:

• Enabling licensing: You can make your control licensed to ensure that users of the
control can't open it either for design purposes or at runtime unless they have a
license key for the control.

• Including Version information: You can include version information, such as a
copyright or a file description, in the ActiveX control. This information can be
viewed in a browser. Some host clients, such as Visual Basic 4.0, require Version
information or they will not host the ActiveX control. Specify version information
by choosing Project|Options and selecting the Version Info page.

• Including an About box: You can tell the wizard to generate a separate form that
implements an About box for your control. Users of the host application can
display this About box in a development environment. By default, the About box
includes the name of the ActiveX control, an image, copyright information, and an
OK button. You can modify this default form, which the wizard adds to your
project.

When you exit the wizard, it generates the following:

• An ActiveX Library project file, which contains the code required to start an
ActiveX control. You usually don’t change this file.

• A type library, which defines and CoClass for your control, the interface it exposes
to clients, and any type definitions that these require. For more information about
the type library, refer to Chapter 34, “Working with type libraries.”

• An ActiveX implementation unit, which defines and implements the ActiveX
control, a descendant of TActiveXControl. This ActiveX control is a fully-
functioning implementation that requires no additional work on your part.
However, you can modify this class if you want to customize the properties,
methods, and events that the ActiveX control exposes to clients.

• An About box form and unit if you requested them.

• A .LIC file if you enabled licensing.

Generating an ActiveX control based on a VCL form
Unlike other ActiveX controls, Active Forms are not first designed and then wrapped
by an ActiveX wrapper class. Instead, the ActiveForm wizard generates a blank form
that you design later when the wizard leaves you in the Form Designer.

38-6 D e v e l o p e r ’ s G u i d e

L i c e n s i n g A c t i v e X c o n t r o l s

When an ActiveForm is deployed on the Web, Delphi creates an HTML page to
contain the reference to the ActiveForm and specify its location on the page. The
ActiveForm can then displayed and run from a Web browser. Inside the browser, the
form behaves just like a stand-alone Delphi form. The form can contain any VCL
components or ActiveX controls, including custom-built VCL controls.

To start the ActiveForm wizard,

1 Choose File|New|Other to open the New Items dialog box.

2 Select the tab labeled ActiveX.

3 Double-click the ActiveForm icon.

The Active Form wizard looks just like the ActiveX control wizard, except that you
can’t specify the name of the VCL class to wrap. This is because Active forms are
always based on TActiveForm.

As in the ActiveX control wizard, you can change the default names for the CoClass,
implementation unit, and ActiveX library project. Similarly, this wizard lets you
indicate whether you want your Active Form to require a license, whether it should
include version information, and whether you want an About box form.

When you exit the wizard, it generates the following:

• An ActiveX Library project file, which contains the code required to start an
ActiveX control. You usually don’t change this file.

• A type library, which defines and CoClass for your control, the interface it exposes
to clients, and any type definitions that these require. For more information about
the type library, refer to Chapter 34, “Working with type libraries.”

• A form that descends from TActiveForm. This form appears in the form designer,
where you can use it to visually design the Active Form that appears to clients. Its
implementation appears in the generated implementation unit. In the initialization
section of the implementation unit, a class factory is created, setting up
TActiveFormControl as the ActiveX wrapper for this form.

• An About box form and unit if you requested them.

• A .LIC file if you enabled licensing.

At this point, you can add controls and design the form as you like.

After you have designed and compiled the ActiveForm project into an ActiveX
library (which has the OCX extension), you can deploy the project to your Web
server and Delphi creates a test HTML page with a reference to the ActiveForm.

Licensing ActiveX controls
Licensing an ActiveX control consists of providing a license key at design-time and
supporting the creation of licenses dynamically for controls created at runtime.

To provide design-time licenses, the ActiveX wizard creates a key for the control,
which it stores in a file with the same name as the project with the LIC extension. This
.LIC file is added to the project. The user of the control must have a copy of the .LIC

C r e a t i n g a n A c t i v e X c o n t r o l 38-7

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

file to open the control in a development environment. Each control in the project
that has Make Control Licensed checked has a separate key entry in the LIC file.

To support runtime licenses, the wrapper class implements two methods,
GetLicenseString and GetLicenseFilename. These return the license string for the control
and the name of the .LIC file, respectively. When a host application tries to create the
ActiveX control, the class factory for the control calls these methods and compares
the string returned by GetLicenseString with the string stored in the .LIC file.

Runtime licenses for the Internet Explorer require an extra level of indirection
because users can view HTML source code for any Web page, and because an
ActiveX control is copied to the user’s computer before it is displayed. To create
runtime licenses for controls used in Internet Explorer, you must first generate a
license package file (LPK file) and embed this file in the HTML page that contains the
control. The LPK file is essentially an array of ActiveX control CLSIDs and license
keys.

Note To generate the LPK file, use the utility, LPK_TOOL.EXE, which you can download
from the Microsoft Web site (www.microsoft.com).

To embed the LPK file in a Web page, use the HTML objects, <OBJECT> and
<PARAM> as follows:

<OBJECT CLASSID="clsid:6980CB99-f75D-84cf-B254-55CA55A69452">
 <PARAM NAME="LPKPath" VALUE="ctrllic.lpk">
</OBJECT>

The CLSID identifies the object as a license package and PARAM specifies the
relative location of the license package file with respect to the HTML page.

When Internet Explorer tries to display the Web page containing the control, it parses
the LPK file, extracts the license key, and if the license key matches the control’s
license (returned by GetLicenseString), it renders the control on the page. If more than
one LPK is included in a Web page, Internet Explorer ignores all but the first.

For more information, look for Licensing ActiveX Controls on the Microsoft Web site.

Customizing the ActiveX control’s interface
The ActiveX Control and ActiveForm wizards generate a default interface for the
ActiveX wrapper class. This default interface simply exposes the properties,
methods, and events of the original VCL control or form, with the following
exceptions:

• Data-aware properties do not appear. Because ActiveX controls have a different
mechanism for making controls data-aware than VCL controls, the wizards do not
convert properties related to data. See “Enabling simple data binding with the
type library” on page 38-10 for information on how to make your ActiveX control
data-aware.

• Any property, method, or event that type that is not Automation-compatible does
not appear. You may want to add these to the ActiveX control’s interface after the
wizard has finished.

38-8 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

You can add, edit, and remove the properties, methods, and events in an ActiveX
control by editing the type library. You can use the Type Library editor as described
in Chapter 34, “Working with type libraries.”Remember that when you add events,
they should be added to the Events interface, not the ActiveX control’s default
interface.

Note You can add unpublished properties to your ActiveX control’s interface. Such
properties can be set at runtime and will appear in a development environment, but
changes made to them will not persist. That is, when the user of the control changes
the value of a property at design time, the changes are not reflected when the control
is run. If the source is a VCL object and the property is not already published, you
can make properties persistent by creating a descendant of the VCL object and
publishing the property in the descendant.

You may also choose not to expose all of the VCL control’s properties, methods, and
events to host applications. You can use the Type Library editor to remove these from
the interfaces that the wizard generated. When you remove properties and methods
from an interface using the Type Library editor, the Type Library editor does not
remove them from the corresponding implementation class. Edit the ActiveX
wrapper class in the implementation unit to remove these after you have changed the
interface in the Type Library editor.

Warning Any changes you make to the type library will be lost if you regenerate the ActiveX
control from the original VCL control or form.

Tip It is a good idea to check the methods that the wizard adds to your ActiveX wrapper
class. Not only does this give you a chance to note where the wizard omitted any
data-aware properties or methods that were not Automation-compatible, it also lets
you detect methods for which the wizard could not generate an implementation.
Such methods appear with a comment in the implementation that indicates the
problem.

Adding additional properties, methods, and events

You can add additional properties, methods, and events to the control using the type
library editor. The declaration is automatically added to the control’s implementation
unit, type library (TLB) file, and type library unit. The specifics of what Delphi
supplies depends on whether you have added a property or method or whether you
have added an event.

Adding properties and methods
The ActiveX wrapper class implements properties in its interface using read and
write access methods. That is, the wrapper class has COM properties, which appear
on an interface as getter and/or setter methods. Unlike VCL properties, you do not
see a “property” declaration on the interface for COM properties. Rather, you see
methods that are flagged as property access methods. When you add a property to
the ActiveX control’s default interface, the wrapper class definition (which appears in
the _TLB unit that is updated by the Type Library editor) gains one or two new
methods (a getter and/or setter) that you must implement, just as when you add a
method to the interface, the wrapper class gains a corresponding method for you to

C r e a t i n g a n A c t i v e X c o n t r o l 38-9

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

implement. Thus, adding properties to the wrapper class’s interface is essentially the
same as adding methods: the wrapper class definition gains new skeletal method
implementations for you to complete.

Note For details on what appears in the generated _TLB unit, see “Code generated when
you import type library information” on page 35-5.

For example, consider a Caption property, of type TCaption in the underlying VCL
object. To Add this property to the object’s interface, you enter the following when
you add a property to the interface via the type library editor:

property Caption: TCaption read Get_Caption write Set_Caption;

Delphi adds the following declarations to the wrapper class:

function Get_Caption: WideString; safecall;
procedure Set_Caption(const Value: WideString); safecall;

In addition, it adds skeletal method implementations for you to complete:

function TButtonX.Get_Caption: WideString;
begin
end;

procedure TButtonX.Set_Caption(Value: WideString);
begin
end;

Typically, you can implement these methods by simply delegating to the associated
VCL control, which can be accessed using the FDelphiControl member of the wrapper
class:

function TButtonX.Get_Caption: WideString;
begin
 Result := WideString(FDelphiControl.Caption);
end;

procedure TButtonX.Set_Caption(const Value: WideString);
begin
 FDelphiControl.Caption := TCaption(Value);
end;

In some cases, you may need to add code to convert the COM data types to native
Object Pascal types. The preceding example manages this with typecasting.

Note Because the Automation interface methods are declared safecall, you do not have to
implement COM exception code for these methods—the Delphi compiler handles
this for you by generating code around the body of safecall methods to catch Delphi
exceptions and to convert them into COM error info structures and return codes.

Adding events
The ActiveX control can fire events to its container in the same way that an
automation object fires events to clients. This mechanism is described in “Exposing
events to clients” on page 36-10.

If the VCL control you are using as the basis of your ActiveX control has any
published events, the wizards automatically add the necessary support for managing

38-10 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

a list of client event sinks to your ActiveX wrapper class and define the outgoing
dispinterface that clients must implement to respond to events.

You add events to this outgoing dispinterface. To add an event in the type library
editor, select the event interface and click on the method icon. Then manually add the
list of parameters you want include using the parameter page.

Next, you must declare a method in your wrapper class that is of the same type as the
event handler for the event in the underlying VCL control. This is not generated
automatically, because Delphi does not know which event handler you are using:

procedure KeyPressEvent(Sender: TObject; var Key: Char);

Implement this method to use the host application’s event sink, which is stored in the
wrapper class’s FEvents member:

procedure TButtonX.KeyPressEvent(Sender: TObject; var Key: Char);
var

TempKey: Smallint;
begin

TempKey := Smallint(Key); {cast to an OleAutomation compatible type }
if FEvents <> nil then
FEvents.OnKeyPress(TempKey)

Key := Char(TempKey);
end;

Note When firing events in an ActiveX control, you do not need to iterate through a list of
event sinks because the control only has a single host application. This is simpler
than the process for most Automation servers.

Finally, you must assign this event handler to the underlying VCL control, so that it
is called when the event occurs. You make this assignment in the InitializeControl
method:

procedure TButtonX.InitializeControl;
begin

FDelphiControl := Control as TButton;
FDelphiControl.OnClick := ClickEvent;
FDelphiControl.OnKeyPress := KeyPressEvent;

end;

Enabling simple data binding with the type library

With simple data binding, you can bind a property of your ActiveX control to a field
in a database. To do this, the ActiveX control must communicate with its host
application about what value represents field data and when it changes. You enable
this communication by setting the property’s binding flags using the Type Library
editor.

By marking a property bindable, when a user modifies the property (such as a field
in a database), the control notifies its container (the client host application) that the
value has changed and requests that the database record be updated. The container
interacts with the database and then notifies the control whether it succeeded or
failed to update the record.

C r e a t i n g a n A c t i v e X c o n t r o l 38-11

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

Note The container application that hosts your ActiveX control is responsible for
connecting the data-aware properties you enable in the type library to the database.
See “Using data-aware ActiveX controls” on page 35-8 for information on how to write
such a container using Delphi.

Use the type library to enable simple data binding,

1 On the toolbar, click the property that you want to bind.

2 Choose the flags page.

3 Select the following binding attributes:

4 Click the Refresh button on the toolbar to update the type library.

To test a data-binding control, you must register it first.

For example, to convert a TEdit control into a data-bound ActiveX control, create the
ActiveX control from a TEdit and then change the Text property flags to Bindable,
Display Bindable, Default Bindable, and Immediate Bindable. After the control is
registered and imported, it can be used to display data.

Creating a property page for an ActiveX control
A property page is a dialog box similar to the Delphi Object Inspector in which users
can change the properties of an ActiveX control. A property page dialog allows you
to group many properties for a control together to be edited at once. Or, you can
provide a dialog box for more complex properties.

Typically, users access the property page by right-clicking the ActiveX control and
choosing Properties.

Binding attribute Description

Bindable Indicates that the property supports data binding. If marked
bindable, the property notifies its container when the property
value has changed.

Request Edit Indicates that the property supports the OnRequestEdit
notification. This allows the control to ask the container if its value
can be edited by the user.

Display Bindable Indicates that the container can show users that this property is
bindable.

Default Bindable Indicates the single, bindable property that best represents the
object. Properties that have the default bind attribute must also
have the bindable attribute. Cannot be specified on more than one
property in a dispinterface.

Immediate Bindable Allows individual bindable properties on a form to specify this
behavior. When this bit is set, all changes will be notified. The
bindable and request edit attribute bits need to be set for this new
bit to have an effect.

38-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

The process of creating a property page is similar to creating a form, you

1 Create a new property page.

2 Add controls to the property page.

3 Associate the controls on the property page with the properties of an ActiveX
control.

4 Connect the property page to the ActiveX control.

Note When adding properties to an ActiveX control or ActiveForm, you must publish the
properties that you want to persist. If they are not published in the underlying VCL
control, you must make a custom descendant of the VCL control that redeclares the
properties as published and then use the ActiveX control wizard to create an ActiveX
control from the descendant class.

Creating a new property page

You use the Property Page wizard to create a new property page.

To create a new property page,

1 Choose File|New|Other.

2 Select the ActiveX tab.

3 Double-click the Property Page icon.

The wizard creates a new form and implementation unit for the property page. The
form is a descendant of TPropertyPage, which lets you associate the form with the
ActiveX control whose properties it edits.

Adding controls to a property page

You must add a control to the property page for each property of the ActiveX control
that you want the user to access.

For example, the following illustration shows a property page for setting the
MaskEdit property of an ActiveX control.

Figure 38.1 Mask Edit property page in design mode

The list box allows the user to select from a list of sample masks. The edit controls
allow the user to test the mask before applying it to the ActiveX control. You add
controls to the property page the same as you would to a form.

C r e a t i n g a n A c t i v e X c o n t r o l 38-13

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

Associating property page controls with ActiveX control properties

After adding the controls you need to the property page, you must associate each
control with its corresponding property. You make this association by adding code to
the property page’s UpdatePropertyPage and UpdateObject methods.

Updating the property page
Add code to the UpdatePropertyPage method to update the control on the property
page when the properties of the ActiveX control change. You must add code to the
UpdatePropertyPage method to update the property page with the current values of
the ActiveX control’s properties.

You can access the ActiveX control using the property page’s OleObject property,
which is an OleVariant that contains the ActiveX control’s interface.

For example, the following code updates the property page’s edit control
(InputMask) with the current value of the ActiveX control’s EditMask property:

procedure TPropertyPage1.UpdatePropertyPage;
begin

{ Update your controls from OleObject }
InputMask.Text := OleObject.EditMask;

end;

Note It is also possible to write a property page that represents more than one ActiveX
control. In this case, you don’t use the OleObject property. Instead, you must iterate
through a list of interfaces that is maintained by the OleObjects property.

Updating the object
Add code to the UpdateObject method to update the property when the user changes
the controls on the property page. You must add code to the UpdateObject method in
order to set the properties of the ActiveX control to their new values.

Once again you use the OleObject property to access the ActiveX control.

For example, the following code sets the EditMask property of the ActiveX control
using the value in the property page’s edit box control (InputMask):

procedure TPropertyPage1.UpdateObject;
begin

{Update OleObject from your control }
OleObject.EditMask := InputMask.Text;

end;

38-14 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g a n A c t i v e X c o n t r o l

Connecting a property page to an ActiveX control

To connect a property page to an ActiveX control,

1 Add DefinePropertyPage with the GUID constant of the property page as the
parameter to the DefinePropertyPages method implementation in the control’s
implementation for the unit. For example,

procedure TButtonX.DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);
begin

DefinePropertyPage(Class_PropertyPage1);
end;

The GUID constant, Class_PropertyPage1, of the property page can be found in
the property pages unit.

The GUID is defined in the property page’s implementation unit; it is generated
automatically by the Property Page wizard.

2 Add the property page unit to the uses clause of the controls implementation unit.

Registering an ActiveX control
After you have created your ActiveX control, you must register it so that other
applications can find and use it.

To register an ActiveX control:

• Choose Run|Register ActiveX Server.

Note Before you remove an ActiveX control from your system, you should unregister it.

To unregister an ActiveX control:

• Choose Run|Unregister ActiveX Server.

As an alternative, you can use the tregsvr command from the command line or run
the regsvr32.exe from the operating system.

Testing an ActiveX control
To test your control, add it to a package and import it as an ActiveX control. This
procedure adds the ActiveX control to the Delphi component palette. You can drop
the control on a form and test as needed.

Your control should also be tested in all target applications that will use the control.

To debug the ActiveX control, select Run|Parameters and type the client name in the
Host Application edit box.

The parameters then apply to the host application. Selecting Run|Run will run the
host or client application and allow you to set breakpoints in the control.

C r e a t i n g a n A c t i v e X c o n t r o l 38-15

D e p l o y i n g a n A c t i v e X c o n t r o l o n t h e W e b

Deploying an ActiveX control on the Web
Before the ActiveX controls that you create can be used by Web clients, they must be
deployed on your Web server. Every time you make a change to the ActiveX control,
you must recompile and redeploy it so that client applications can see the changes.

Before you can deploy your ActiveX control, you must have a Web Server that will
respond to client messages.

To deploy your ActiveX control, use the following steps:

1 Select Project|Web Deployment Options.

2 On the Project page, set the Target Dir to the location of the ActiveX control DLL
as a path on the Web server. This can be a local path name or a UNC path, for
example, C:\INETPUB\wwwroot.

3 Set the Target URL to the location as a Uniform Resource Locators (URL) of the
ActiveX control DLL (without the file name) on your Web Server, for example,
http://mymachine.inprise.com/. See the documentation for your Web Server for
more information on how to do this.

4 Set the HTML Dir to the location (as a path) where the HTML file that contains a
reference to the ActiveX control should be placed, for example, C:\INETPUB\
wwwroot. This path can be a standard path name or a UNC path.

5 Set desired Web deployment options as described in “Setting options” on
page 38-16.

6 Choose OK.

7 Choose Project|Web Deploy.

This creates a deployment code base that contains the ActiveX control in an
ActiveX library (with the OCX extension). Depending on the options you specify,
this deployment code base can also contain a cabinet (with the CAB extension) or
information (with the INF extension).

The ActiveX library is placed in the Target Directory you specified in step 2. The
HTML file has the same name as the project file but with the HTM extension. It is
created in the HTML Directory specified in step 4. The HTML file contains a URL
reference to the ActiveX library at the location specified in step 3.

Note If you want to put these files on your Web server, use an external utility such as
ftp.

8 Invoke your ActiveX-enabled Web browser and view the created HTML page.

When this HTML page is viewed in the Web browser, your form or control is
displayed and runs as an embedded application within the browser. That is, the
library runs in the same process as the browser application.

http://mymachine.inprise.com/

38-16 D e v e l o p e r ’ s G u i d e

D e p l o y i n g a n A c t i v e X c o n t r o l o n t h e W e b

Setting options

Before deploying an ActiveX control, specify the Web deployment options that
should be followed when creating the ActiveX library.

Web deployment options include settings to allow you to set the following:

• Including additional files: If your ActiveX control depends on any packages or
other additional files, you can indicate that these should be deployed with the
project. By default, these files use the same options that you specify for the entire
project, but you can override these settings using the Packages or Additional files
tab. When you include packages or additional files, Delphi creates a file with the
.INF extension (for INFormation). This file specifies the various files that need to
be downloaded and set up for the ActiveX library to run. The syntax of the INF file
allows URLs pointing to packages or additional files to download.

• CAB file compression: A cabinet is a single file, usually with a CAB file extension,
that stores compressed files in a file library. Cabinet compression can dramatically
decrease download time (up to 70%) of a file. During installation, the browser
decompresses the files stored in a cabinet and copies them to the user’s system.
Each file that you deploy can be CAB file compressed. You can specify that the
ActiveX library use CAB file compression on the Project tab of the Web
Deployment options dialog.

• Version information: You can specify that you want version information included
with your ActiveX control. This information is set in the VersionInfo page of the
Project Options dialog. Part of this information is the release number, which you
can have automatically updated every time you deploy your ActiveX control. If
you include additional packages or files, their Version information resources can
get added to the INF file as well.

Depending on whether you include additional files and whether you use CAB file
compression, the resulting ActiveX library may be an OCX file, a CAB file containing
an OCX file, or an INF file. The following table summarizes the results of choosing
different combinations.

Packages and/or
additional files

CAB file
compression Result

No No An ActiveX library (OCX) file.

No Yes A CAB file containing an ActiveX library file.

Yes No An INF file, an ActiveX library file, and any additional files
and packages.

Yes Yes An INF file, a CAB file containing an ActiveX library, and a
CAB file each for any additional files and packages.

C r e a t i n g M T S o r C O M + o b j e c t s 39-1

C h a p t e r

39
Chapter 39Creating MTS or COM+ objects

Delphi uses the term transactional objects to refer to objects that take advantage of
the transaction services, security, and resource management supplied by Microsoft
Transaction Server (MTS) (for versions of Windows prior to Windows 2000) or
COM+ (for Windows 2000 and later). These objects are designed to work in a large,
distributed environment. They are not available for use in cross-platform
applications due to their dependence on Windows-specific technology.

Delphi provides a wizard that creates transactional objects so that you can take
advantage of the benefits of COM+ attributes or the MTS environment. These
features make creating COM clients and servers, particularly remote servers, easier
to implement.

Note For database applications, Delphi also provides a Transactional Data Module. For
more information, see Chapter 25, “Creating multi-tiered applications”.

Transactional objects make use of a number of low-level services, such as

• Managing system resources, including processes, threads, and database
connections so that your server application can handle many simultaneous users

• Automatically initiating and controlling transactions so that your application is
reliable.

• Creating, executing, and deleting server components when needed.

• Providing role-based security so that only authorized users can access your
application.

• Managing events so that clients can respond to conditions that arise on the server
(COM+ only).

By letting MTS or COM+ provide these underlying services, you can concentrate on
developing the specifics for your particular distributed application. Which
technology you choose (MTS or COM+) depends on the server on which you choose
to run your application. To clients, the difference between the two (or, for that matter,
the fact that the server object uses any of these services) is transparent (unless the
client explicitly manipulates transactional services via a special interface).

39-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t r a n s a c t i o n a l o b j e c t s

Understanding transactional objects
Typically, transactional objects are small, and are used for discrete business
functions. They can implement an application’s business rules, providing views and
transformations of the application state. Consider, for example, the case of a medical
application. Medical records stored in various databases represent the persistent
state of the application, such as a patient’s health history. Transactional objects
update that state to reflect such changes as new patients, test results, and X-ray files.

Transactional objects are distinguished from other COM objects in that they use a set
of attributes supplied by MTS or COM+ for handling issues that arise in a distributed
computing environment. Some of these attributes require the transactional object to
implement the IObjectControl interface. IObjectControl defines methods that are called
when the object is activated or deactivated, where you can manage resources such as
database connections. It also is required for object pooling, which is described in
“Object pooling” on page 39-8.

Note If you are using MTS, your transactional objects must implement IObjectControl.
Under COM+, IObjectControl is not required, but is highly recommended. The
Transactional Object wizard provides an object that derives from IObjectControl.

A client of a transactional object is called a base client. From a base client’s
perspective, a transactional object looks like any other COM object.

Under MTS, the transactional object must be built into a library (DLL), which is then
installed in the MTS runtime environment (the MTS executive, mtxex.exe). That is,
the server object runs in the MTS runtime process space. The MTS executive can be
running in the same process as the base client, as a separate process on the same
machine as the base client, or as a remote server process on a separate machine.

Under COM+, the server application need not be an in-process server. Because the
various services are integrated into the COM libraries, there is no need for a separate
MTS process to intercept calls to the server. Instead, COM itself (or, rather, COM+)
provides the resource management, transaction support, and so on. However, the
server application must still be installed, this time into a COM+ application.

The connection between the base client and the transactional object is handled by a
proxy on the client and a stub on the server, just as with any out-of-process server.
Connection information is maintained by the proxy. The connection between the
base client and proxy remains open as long as the client requires a connection to the
server, so it appears to the client that it has continued access to the server. In reality,
though, the proxy may deactivate and reactivate the object, conserving resources so
that other clients may use the connection. For details on activating and deactivating,
see “Just-in-time activation” on page 39-4.

C r e a t i n g M T S o r C O M + o b j e c t s 39-3

M a n a g i n g r e s o u r c e s

Requirements for a transactional object

In addition to the COM requirements, a transactional object must meet the following
requirements:

• The object must have a standard class factory. This is automatically supplied by
the wizard when you create the object.

• The server must expose its class object by exporting the standard DllGetClassObject
method. Code to do this is supplied by the wizard.

• All object interfaces and CoClasses must be described by a type library, which is
created automatically by the wizard. You can add methods and properties to
interfaces in the type library by using the Type Library editor. The information in
the type library is used by the MTS Explorer or COM+ Component Manager to
extract information about the installed components at runtime.

• The server must only export interfaces that use standard COM marshaling. This is
automatically supplied by the Transactional Object wizard. Delphi’s support of
transactional objects does not allow manual marshaling for custom interfaces. All
interfaces must be implemented as dual interfaces that use COM’s automatic
marshaling support.

• The server must export the DllRegisterServer function and perform self-registration
of its CLSID, ProgID, interfaces, and type library in this routine. This is provided
by the Transactional Object wizard.

When using MTS rather than COM+, the following conditions apply as well:

• MTS requires that the server be a dynamic-link library (DLL). Servers that are
implemented as executable files (.EXE files) cannot execute in the MTS runtime
environment.

• The object must implement the IObjectControl interface. Support for this interface
is automatically added by the Transactional Object wizard.

• A server running in the MTS process space cannot aggregate with COM objects
not running in MTS.

Managing resources
Transactional objects can be administered to better manage the resources used by
your application. These resources include everything from the memory for the object
instances themselves to any resources they use (such as database connections).

In general, you configure how your application manages resources by the way you
install and configure your object. You set your transactional object so that it takes
advantage of the following:

• Just-in-time activation
• Resource pooling
• Object pooling (COM+ only)

If you want your object to take full advantage of these services, however, it must use
the IObjectContext interface to indicate when resources can safely be released.

39-4 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

Accessing the object context

As with any COM object, a transactional object must be created before it is used.
COM clients create an object by calling the COM library function, CoCreateInstance.

Each transactional object must have a corresponding context object. This context
object is implemented automatically by MTS or COM+ and is used to manage the
transactional object. The context object’s interface is IObjectContext. To access most
methods of the object context, you can use the ObjectContext property of the
TMtsAutoObject object. For example, you can use the ObjectContext property as
follows:

if ObjectContext.IsCallerInRole (‘Manager’) ...

Another way to access the Object context is to use methods in the TMtsAutoObject
object:

if IsCallerInRole (‘Manager’) ...

You can use either of the above methods. However, there is a slight advantage of
using the TMtsAutoObject methods rather than referencing the ObjectContext
property when you are testing your application. For a discussion of the differences,
see “Debugging and testing transactional objects” on page 39-21.

Just-in-time activation

The ability for an object to be deactivated and reactivated while clients hold
references to it is called just-in-time activation. From the client's perspective, only a
single instance of the object exists from the time the client creates it to the time it is
finally released. Actually, it is possible that the object has been deactivated and
reactivated many times. By having objects deactivated, clients can hold references to
the object for an extended time without affecting system resources. When an object is
deactivated, all its resources can be released. For example, when an object is
deactivated, it can release its database connection so that other objects can use it.

A transactional object is created in a deactivated state and becomes active upon
receiving a client request. When the transactional object is created, a corresponding
context object is also created. This context object exists for the entire lifetime of the
transactional object, across one or more reactivation cycles. The context object,
accessed by the IObjectContext interface, keeps track of the object during deactivation
and coordinates transactions.

Transactional objects are deactivated as soon as it is safe to do so. This is called as-
soon-as-possible deactivation. A transactional object is deactivated when any of the
following occurs:

• The object requests deactivation with SetComplete or SetAbort: An object calls
the IObjectContext SetComplete method when it has successfully completed its work
and it does not need to save the internal object state for the next call from the
client. An object calls SetAbort to indicate that it cannot successfully complete its
work and its object state does not need to be saved. That is, the object’s state rolls
back to the state prior to the current transaction. Often, objects can be designed to
be stateless, which means that objects deactivate upon return from every method.

C r e a t i n g M T S o r C O M + o b j e c t s 39-5

M a n a g i n g r e s o u r c e s

• A transaction is committed or aborted: When an object's transaction is committed
or aborted, the object is deactivated. Of these deactivated objects, the only ones
that continue to exist are the ones that have references from clients outside the
transaction. Subsequent calls to these objects reactivate them and cause them to
execute in a new transaction.

• The last client releases the object: Of course, when a client releases the object, the
object is deactivated, and the object context is also released.

Note If you install the transactional object under COM+ from the IDE, you can specify
whether object supports just-in-time activation using the COM+ page of the Type
Library editor. Just select the object (CoClass) in the Type Library editor, go to the
COM+ page, and check or uncheck the box for Just In Time Activation. Otherwise, a
system administrator specifies this attribute using the COM+ Component Manager
or MTS Explorer. (The system administrator can also override any settings you
specify using the Type Library editor.)

Resource pooling

Since idle system resources are freed during a deactivation, the freed resources are
available to other server objects. For example, a database connection that is no longer
used by a server object can be reused by another client. This is called resource
pooling. Pooled resources are managed by a resource dispenser.

A resource dispenser caches resources, so that transactional objects that are installed
together can share them. The resource dispenser also manages nondurable shared
state information. In this way, resource dispensers are similar to resource managers
such as the SQL Server, but without the guarantee of durability.

When writing your transactional object, you can take advantage of two types of
resource dispenser that are provided for you already:

• Database resource dispensers

• Shared Property Manager

Before other objects can use pooled resources, you must explicitly release them.

Database resource dispensers
Opening and closing connections to a database can be time-consuming. By using a
resource dispenser to pool database connections, your object can reuse existing
database connections rather than create new ones. For example, if you have a
database lookup and a database update component running in a customer
maintenance application, you can install those components together, and then they
can share database connections. In this way, your application does not need as many
connections and new object instances can access the data more quickly by using a
connection that is already open but not in use.

• If you are using BDE components to connect to your data, the resource dispenser
is the Borland Database Engine (BDE). This resource dispenser is only available
when your transactional object is installed with MTS. To enable the resource

39-6 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

dispenser, use the BDE administrator to turn on MTS POOLING in the System/
Init area of the configuration.

• If you are using the ADO database components to connect to your data, the
resource dispenser is provided by ADO.

Note There is no built-in resource pooling if you are using InterbaseExpress components
for your database access.

For remote transactional data modules, connections are automatically enlisted on an
object's transactions, and the resource dispenser can automatically reclaim and reuse
connections.

Shared property manager
The Shared Property Manager is a resource dispenser that you can use to share state
among multiple objects within a server process. By using the Shared Property
Manager, you avoid having to add a lot of code to your application for managing
shared data: the Shared Property Manager handles it for you by implementing locks
and semaphores to protect shared properties from simultaneous access. The Shared
Property Manager eliminates name collisions by providing shared property groups,
which establish unique name spaces for the shared properties they contain.

To use the Shared Property Manager resource, you first use the
CreateSharedPropertyGroup helper function to create a shared property group. Then
you can write all the properties to that group and read all the properties from that
group. By using a shared property group, the state information is saved across all
deactivations of a transactional object. In addition, state information can be shared
among all transactional objects installed in the same MTS package or COM+
application. You can install transactional objects into a package as described in
“Installing transactional objects” on page 39-22.

For objects to share state, they all must run in the same process. If you want instances
of different components to share properties, you must install them in the same MTS
package or COM+ application. Because there is a risk that administrators may move
components from one package to another, it's safest to limit the use of a shared
property group to instances of objects that are defined in the same DLL or EXE.

Objects sharing properties must have the same activation attribute. If two
components in the same package have different activation attributes, they generally
won't be able to share properties. For example, if one component is configured to run
in a client's process and the other is configured to run in a server process, their objects
will usually run in different processes, even though they're in the same MTS package
or COM+ application.

The following example shows how to add code to support the Shared Property
Manager in a transactional object:

Example: Sharing properties among transactional object instances
This example creates a property group called MyGroup to contain the properties to
be shared among objects and object instances. In this example, there is a Counter
property that is shared. It uses the CreateSharedPropertyGroup helper function to

C r e a t i n g M T S o r C O M + o b j e c t s 39-7

M a n a g i n g r e s o u r c e s

create the property group manager and property group, and then uses the
CreateProperty method of the Group object to create a property called Counter.

To get the value of a property, you use the PropertyByName method of the Group
object as shown below. You can also use the PropertyByPosition method.

unit Unit1;
interface
uses
 MtsObj, Mtx, ComObj, Project2_TLB;
type
 Tfoobar = class(TMtsAutoObject, Ifoobar)
 private
 Group: ISharedPropertyGroup;
 protected
 procedure OnActivate; override;
 procedure OnDeactivate; override;
 procedure IncCounter;
 end;
implementation
uses ComServ;
{ Tfoobar }
procedure Tfoobar.OnActivate;
var
 Exists: WordBool;
 Counter: ISharedProperty;
begin
 Group := CreateSharedPropertyGroup('MyGroup');
 Counter := Group.CreateProperty('Counter', Exists);
end;
procedure Tfoobar.IncCounter;
var
 Counter: ISharedProperty;
begin
 Counter := Group.PropertyByName['Counter'];
 Counter.Value := Counter.Value + 1;
end;
procedure Tfoobar.OnDeactivate;
begin
 Group := nil;
end;
initialization
 TAutoObjectFactory.Create(ComServer, Tfoobar, Class_foobar, ciMultiInstance, tmApartment);
end.

Releasing resources
You are responsible for releasing resources of an object. Typically, you do this by
calling the IObjectContext methods SetComplete and SetAbort after servicing a client
request. These methods release the resources allocated by the resource dispenser.

At this same time, you must release references to all other resources, including
references to other objects (including transactional objects and context objects) and
memory held by any instances of the component (freeing the component).

39-8 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

The only time you would not include these calls is if you want to maintain state
between client calls. For details, see “Stateful and stateless objects” on page 39-11.

Object pooling

Just as you can pool resources, under COM+ you can also pool objects. When an
object is deactivated, COM+ calls the IObjectControl interface method, CanBePooled,
which indicates that the object can be pooled for reuse. If CanBePooled is returns True,
then instead of being destroyed on deactivation, the object is moved to the object
pool. It remains in the object pool for a specified timeout period, during which time it
is available for use to any client requesting it. Only when the object pool is empty is a
new instance of the object created. Objects that return False or that do not support the
IObjectControl interface are destroyed when they are deactivated.

Object pooling is not available under MTS. MTS calls CanBePooled as described, but
no pooling takes place. If your object will only run under COM+ and you want to
allow object pooling, set the object’s Pooled property to True.

Even if an object’s CanBePooled method returns True, it can be configured so that
COM+ does not move it to the object pool. If you install the transactional object
under COM+ from the IDE, you can specify whether COM+ tries to pool the object
using the COM+ page of the Type Library editor. Just select the object (CoClass) in
the type library editor, go to the COM+ page, and check or uncheck the box for
Object Pooling. Otherwise, a system administrator specifies this attribute using the
COM+ Component Manager or MTS Explorer.

Similarly, you can configure the time a deactivated object remains in the object pool
before it is freed If you are installing from the IDE, you can specify this duration
using the Creation Timeout setting on the COM+ page of the type library editor.
Otherwise, a system administrator specifies this attribute using the COM+
Component Manager.

MTS and COM+ transaction support
The transaction support that gives transactional objects their name lets you group
actions into transactions. For example, in a medical records application, if you had a
Transfer component to transfer records from one physician to another, you could
include your Add and Delete methods in the same transaction. That way, either the
entire Transfer works or it can be rolled back to its previous state. Transactions
simplify error recovery for applications that must access multiple databases.

C r e a t i n g M T S o r C O M + o b j e c t s 39-9

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Transactions ensure that

• All updates in a single transaction are either committed or get aborted and rolled
back to their previous state. This is referred to as atomicity.

• A transaction is a correct transformation of the system state, preserving the state
invariants. This is referred to as consistency.

• Concurrent transactions do not see each other's partial and uncommitted results,
which might create inconsistencies in the application state. This is referred to as
isolation. Resource managers use transaction-based synchronization protocols to
isolate the uncommitted work of active transactions.

• Committed updates to managed resources (such as database records) survive
failures, including communication failures, process failures, and server system
failures. This is referred to as durability. Transactional logging allows you to
recover the durable state after disk media failures.

An object's associated context object indicates whether the object is executing within
a transaction and, if so, the identity of the transaction. When an object is part of a
transaction, the services that resource managers and resource dispensers perform on
its behalf execute under the transaction as well. Resource dispensers use the context
object to provide transaction-based services. For example, when an object executing
within a transaction allocates a database connection by using the ADO or BDE
resource dispenser, the connection is automatically enlisted on the transaction. All
database updates using this connection become part of the transaction, and are either
committed or aborted.

Work from multiple objects can be composed into a single transaction. Allowing an
object to either live in its own transaction or be part of a larger group of objects that
belong to a single transaction is a major advantage of MTS and COM+. It allows an
object to be used in various ways, so that application developers can reuse
application code in different applications without rewriting the application logic. In
fact, developers can determine how objects are used in transactions when installing
the transactional object. They can change the transaction behavior simply by adding
an object to a different MTS package or COM+ application. For details about
installing transactional objects, see “Installing transactional objects” on page 39-22.

Transaction attributes

Every transactional object has a transaction attribute that is recorded in the MTS
catalog or that is registered with COM+.

Delphi lets you set the transaction attribute at design time using the Transactional
Object wizard or the Type Library editor.

39-10 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Each transaction attribute can be set to these settings:

Setting the transaction attribute
You can set a transaction attribute when you first create a transactional object using
the Transactional Object wizard.

You can also set (or change) the transaction attribute using the Type Library editor.
To change the transaction attribute in the Type Library editor,

1 Choose View|Type Library to open the Type Library editor.

2 Select the class corresponding to the transactional object.

3 Click the COM+ tab and choose the desired transaction attribute.

Warning When you set the transaction attribute, Delphi inserts a special GUID for the
specified attribute as custom data in the type library. This value is not recognized
outside of Delphi. Therefore, it only has an effect if you install the transactional object
from the IDE. Otherwise, a system administrator must set this value using the MTS
Explorer or COM+ Component Manager.

Requires a
transaction

Objects must execute within the scope of a transaction. When a new
object is created, its object context inherits the transaction from
the context of the client. If the client does not have a transaction
context, a new one is automatically created.

Requires a new
transaction

Objects must execute within their own transactions. When a new
object is created, a new transaction is automatically created for
the object, regardless of whether its client has a transaction. An
object never runs inside the scope of its client's transaction.
Instead, the system always creates independent transactions for
the new objects.

Supports
transactions

Objects can execute within the scope of their client's transactions.
When a new object is created, its object context inherits the
transaction from the context of the client. This enables multiple
objects to be composed in a single transaction. If the client does
not have a transaction, the new context is also created without
one.

Transactions
Ignored

Objects do not run within the scope of transactions. When a new
object is created, its object context is created without a
transaction, regardless of whether the client has a transaction.
This setting is only available under COM+.

Does not support
transactions

The meaning of this setting varies, depending on whether you
install the object under MTS or COM+. Under MTS, this setting
has the same meaning as Transactions Ignored under COM+.
Under COM+, not only is the object context created without a
transaction, this setting prevents the object from being activated if
the client has a transaction.

C r e a t i n g M T S o r C O M + o b j e c t s 39-11

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Note: If the transactional object is already installed, you must first uninstall the object and
reinstall it when changing the transaction attribute. Use Run|Install MTS objects or
Run|Install COM+ objects to do so.

Stateful and stateless objects

Like any COM object, transactional objects can maintain internal state across multiple
interactions with a client. For example, the client could set a property value in one
call, and expect that property value to remain unchanged when it makes the next call.
Such an object is said to be stateful. Transactional objects can also be stateless, which
means the object does not hold any intermediate state while waiting for the next call
from a client.

When a transaction is committed or aborted, all objects that are involved in the
transaction are deactivated, causing them to lose any state they acquired during the
course of the transaction. This helps ensure transaction isolation and database
consistency; it also frees server resources for use in other transactions. Completing a
transaction enables the resources held by an object to be reclaimed when the object is
deactivated. See the following section for information on how to control when the
object’s state is released.

Maintaining state on an object requires the object to remain activated, holding
potentially valuable resources such as database connections.

Influencing how transactions end

A transactional object uses the IObjectContext methods as shown in the following
table to influence how a transaction completes. These methods, together with the
object’s transaction attribute, allow you to enlist one or more objects into a single
transaction.

Table 39.1 IObjectContext methods for transaction support

Method Description

SetComplete Indicates that the object has successfully completed its work for the
transaction. The object is deactivated upon return from the method that first
entered the context. The object reactivates on the next call that requires object
execution.

SetAbort Indicates that the object's work can never be committed and the transaction
should be rolled back. The object is deactivated upon return from the method
that first entered the context. The object reactivates on the next call that
requires object execution.

39-12 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Initiating transactions

Transactions can be controlled in three ways:

• They can be controlled by the client.

Clients can have direct control over transactions by using a transaction context
object (using the ITransactionContext interface).

• They can be controlled by the server.

Servers can control transactions explicitly creating an object context for them.
When the server creates an object this way, the created object is automatically
enlisted in the current transaction.

• Transactions can occur automatically as a result of the object’s transaction
attribute.

Transactional objects can be declared so that their objects always execute within a
transaction, regardless of how the objects are created. This way, objects do not
need to include any logic to handle transactions. This feature also reduces the
burden on client applications. Clients do not need to initiate a transaction simply
because the component that they are using requires it.

Setting up a transaction object on the client side
A client-based application can control transaction context through the
ITransactionContextEx interface. The following code example shows how a client
application uses CreateTransactionContextEx to create the transaction context. This
method returns an interface to this object.

This example wraps the call to the transaction context in a call to OleCheck which is
necessary because the methods of IObjectContext are exposed by Windows directly
and are therefore not declared as safecall.

EnableCommit Indicates that the object's work is not necessarily done, but that its
transactional updates can be committed in their current form. Use this to retain
state across multiple calls from a client while still allowing transactions to
complete. The object is not deactivated until it calls SetComplete or SetAbort.
EnableCommit is the default state when an object is activated. This is why an
object should always call SetComplete or SetAbort before returning from a method,
unless you want the object to maintain its internal state for the next call from a
client.

DisableCommit Indicates that the object's work is inconsistent and that it cannot complete its
work until it receives further method invocations from the client. Call this
before returning control to the client to maintain state across multiple client
calls while keeping the current transaction active.
DisableCommit prevents the object from deactivating and releasing its
resources on return from a method call. Once an object has called
DisableCommit, if a client attempts to commit the transaction before the object
has called EnableCommit or SetComplete, the transaction will abort.

Table 39.1 IObjectContext methods for transaction support (continued)

Method Description

C r e a t i n g M T S o r C O M + o b j e c t s 39-13

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

procedure TForm1.MoveMoneyClick(Sender: TObject);
begin
 Transfer(CLASS_AccountA, CLASS_AccountB, 100);
end;
procedure TForm1.Transfer(DebitAccountId, CreditAccountId: TGuid; Amount: Currency);
var
 TransactionContextEx: ITransactionContextEx;
 CreditAccountIntf, DebitAccountIntf: IAccount;
begin
 TransactionContextEx := CreateTransactionContextEx;
 try
 OleCheck(TransactionContextEx.CreateInstance(DebitAccountId,
 IAccount, DebitAccountIntf));
 OleCheck(TransactionContextEx.CreateInstance(CreditAccountId,
 IAccount, CreditAccountIntf));
 DebitAccountIntf.Debit(Amount);
 CreditAccountIntf.Credit(Amount);
 except
 TransactionContextEx.Abort;
 raise;
 end;
 TransactionContextEx.Commit;
end;

Setting up a transaction object on the server side
To control transaction context from the server side, you create an instance of
ObjectContext. In the following example, the Transfer method is in the transactional
object. In using ObjectContext this way, the instance of the object we are creating will
inherit all the transaction attributes of the object that creates it. We wrap the call in a
call to OleCheck because the methods of IObjectContext are exposed by Windows
directly and are therefore not declared as safecall.

procedure TAccountTransfer.Transfer(DebitAccountId, CreditAccountId: TGuid;
 Amount: Currency);
var
 CreditAccountIntf, DebitAccountIntf: IAccount;
begin
 try
 OleCheck(ObjectContext.CreateInstance(DebitAccountId,
 IAccount, DebitAccountIntf));
 OleCheck(ObjectContext.CreateInstance(CreditAccountId,
 IAccount, CreditAccountIntf));
 DebitAccountIntf.Debit(Amount);
 CreditAccountIntf.Credit(Amount);
 except
 DisableCommit;
 raise;
 end;
 EnableCommit;
end;

39-14 D e v e l o p e r ’ s G u i d e

R o l e - b a s e d s e c u r i t y

Transaction timeout

The transaction timeout sets how long (in seconds) a transaction can remain active.
The system automatically aborts transactions that are still alive after the timeout. By
default, the timeout value is 60 seconds. You can disable transaction timeouts by
specifying a value of 0, which is useful when debugging transactional objects.

To set the timeout value on your computer,

1 In the MTS Explorer or COM+ Component Manager, select Computer, My
Computer.

By default, My Computer corresponds to the local computer.

2 Right-click and choose Properties and then choose the Options tab.

The Options tab is used to set the computer's transaction timeout property.

3 Change the timeout value to 0 to disable transaction timeouts.

4 Click OK to save the setting.

For more information on debugging MTS applications, see “Debugging and testing
transactional objects” on page 39-21.

Role-based security
MTS and COM+ provide role-based security where you assign a role to a logical
group of users. For example, a medical information application might define roles for
Physician, X-ray technician, and Patient.

You define authorization for each object and interface by assigning roles. For
example, in the physicians’ medical application, only the Physician may be
authorized to view all medical records; the X-ray Technician may view only X-rays;
and Patients may view only their own medical record.

Typically, you define roles during application development and assign roles for each
MTS package or COM+ Application. These roles are then assigned to specific users
when the application is deployed. Administrators can configure the roles using the
MTS Explorer or COM+ Component Manager.

If you want to control access to blocks of code rather than entire objects, you can
provide more fine-grained security by using the IObjectContext method,
IsCallerInRole. This method only works if security is enabled, which can be checked
by calling the IObjectContext method IsSecurityEnabled. These methods are
automatically added as methods to your transactional object. For example,

if IsSecurityEnabled then {check if security is enabled }
begin

if IsCallerInRole(‘Physician’) then { check caller’s role }
begin

{ execute the call normally }
end
else

C r e a t i n g M T S o r C O M + o b j e c t s 39-15

O v e r v i e w o f c r e a t i n g t r a n s a c t i o n a l o b j e c t s

{ not a physician, do something appropriate }
end

end
else

{ no security enabled, do something appropriate }
end;

Note For applications that require stronger security, context objects implement the
ISecurityProperty interface, whose methods allow retrieval of the Window’s security
identifier (SID) for the direct caller and creator of the object, as well as the SID for the
clients which are using the object.

Overview of creating transactional objects
The process of creating transactional object is as follows:

1 Use the Transactional Object wizard to create the transactional object.

2 Add methods and properties to the object’s interface using the Type Library
editor. For details on adding methods and properties using the Type Library editor,
see Chapter 34, “Working with type libraries.”

3 When implementing your object’s methods, you can use the IObjectContext
interface to manage transactions, persistent state, and security. In addition, if you
are passing object references, you will need to use extra care so that they are
correctly handled. (See “Passing object references” on page 20.)

4 Debug and test the transactional object.

5 Install the transactional object into an MTS package or COM+ application.

6 Administer your objects using the MTS Explorer or COM+ Component Manager.

Using the Transactional Object wizard
Use the Transactional Object wizard to create a COM object that can take advantage
of the resource management, transaction processing, and role-based security
provided by MTS or COM+.

To bring up the Transactional Object wizard,

1 Choose File|New|Other.

2 Select the tab labeled Multitier.

3 Double-click the Transactional Object icon.

In the wizard, you must specify the following:

• A threading model that indicates how client applications can call your object’s
interface. The threading model determines how the object is registered. You are
responsible for ensuring that the object’s implementation adheres to the selected
model. For more information on threading models, see “Choosing a threading
model for a transactional object” on page 39-16.

39-16 D e v e l o p e r ’ s G u i d e

U s i n g t h e T r a n s a c t i o n a l O b j e c t w i z a r d

• A transaction model

• An indication of whether your object notifies clients of events. Event support is
only provided for traditional events, not COM+ events.

When you complete this procedure, a new unit is added to the current project that
contains the definition for the transactional object. In addition, the wizard adds a
type library to the project and opens it in the Type Library editor. Now you can
expose the properties and methods of the interface through the type library. You
define the interface as you would define any COM object as described in “Defining a
COM object’s interface” on page 36-9.

The transactional object implements a dual interface, which supports both early
(compile-time) binding through the vtable and late (runtime) binding through the
IDispatch interface.

The generated transactional object implements the IObjectControl interface methods,
Activate, Deactivate, and CanBePooled.

It is not strictly necessary to use the transactional object wizard. You can convert any
Automation object into a COM+ transactional object (and any in-process Automation
object into an MTS transactional object) by using the COM+ page of the Type Library
editor and then installing the object into an MTS package or COM+ application.
However, the transactional object wizard provides certain benefits:

• It automatically implements the IObjectControl interface, adding OnActivate and
OnDeactivate events to the object so that you can create event handlers that
respond when the object is activated or deactivated.

• It automatically generates an ObjectContext property so that it is easy for your
object to access the IObjectContext methods to control activation and transactions.

Choosing a threading model for a transactional object

The MTS runtime environment or COM+ manages threads for you. Transactional
objects should not create threads. They must also never terminate a thread that calls
into a DLL.

When you specify the threading model using the Transactional object wizard, you
specify how objects are assigned to threads for method execution.

C r e a t i n g M T S o r C O M + o b j e c t s 39-17

U s i n g t h e T r a n s a c t i o n a l O b j e c t w i z a r d

Note These threading models are similar to those defined by COM objects. However,
because the MTS and COM+ provide more underlying support for threads, the
meaning of each threading model differs here. Also, the free threading model does
not apply to transactional objects due to the built-in support for activities.

Activities
In addition to the threading model, transactional objects achieve concurrency
through activities. Activities are recorded in an object’s context, and the association
between an object and an activity cannot be changed. An activity includes the
transactional object created by the base client, as well as any transactional objects
created by that object and its descendants. These objects can be distributed across one
or more processes, executing on one or more computers.

For example, a physician’s medical application may have a transactional object to
add updates and remove records to various medical databases, each represented by a
different object. This record object may use other objects as well, such as a receipt
object to record the transaction. This results in several transactional objects that are
either directly or indirectly under the control of a base client. These objects all belong
to the same activity.

Table 39.2 Threading models for transactional objects

Threading model Description Implementation pros and cons

Single No thread support. Client requests
are serialized by the calling
mechanism.
All objects of a single-threaded
component execute on the main
thread.
This is compatible with the default
COM threading model, which is
used for components that do not
have a Threading Model Registry
attribute or for COM components
that are not reentrant. Method
execution is serialized across all
objects in the component and
across all components in a process.

Allows components to use libraries
that are not reentrant.
Very limited scalability.
Single-threaded, stateful components
are prone to deadlocks. You can
eliminate this problem by using
stateless objects and calling
SetComplete before returning from
any method.

Apartment
(or Single-threaded
apartment)

Each object is assigned to a thread
apartment, which lasts for the life
of the object; however, multiple
threads can be used for multiple
objects. This is a standard COM
concurrency model. Each
apartment is tied to a specific
thread and has a Windows
message pump.

Provides significant concurrency
improvements over the single
threading model.
Two objects can execute concurrently
as long as they are not in the same
activity.
Similar to a COM apartment, except
that the objects can be distributed
across multiple processes.

39-18 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g e v e n t s u n d e r C O M +

MTS or COM+ tracks the flow of execution through each activity, preventing
inadvertent parallelism from corrupting the application state. This feature results in a
single logical thread of execution throughout a potentially distributed collection of
objects. By having one logical thread, applications are significantly easier to write.

When a transactional object is created from an existing context, using either a
transaction context object or an object context, the new object becomes a member of
the same activity. In other words, the new context inherits the activity identifier of
the context used to create it.

Only a single logical thread of execution is allowed within an activity. This is similar
in behavior to a COM apartment threading model, except that the objects can be
distributed across multiple processes. When a base client calls into an activity, all
other requests for work in the activity (such as from another client thread) are
blocked until after the initial thread of execution returns back to the client.

Under MTS, every transactional object belongs to one activity. Under COM+, you can
configure the way the object participates in activities by setting the call
synchronization. The following options are available:

Generating events under COM+
Before COM+, Automation servers used a set of special interfaces for generating
events. COM+, however, introduces a new system for managing events. Instead of
the server object managing events, keeping track of clients that need to be notified
and calling their interfaces when events occur, the underlying system (COM+)
manages this process.

Table 39.3 Call synchronization options

Option Meaning

Disabled COM+ does not assign activities to the object but it may inherit them with the
caller’s context. If the caller has no transaction or object context, the object is
not assigned to an activity. The result is the same as if the object was not
installed in a COM+ application. This option should not be used if any object
in the application uses a resource manager or if the object supports
transactions or just-in-time activation.

Not Supported COM+ never assigns the object to an activity, regardless of the status of its
caller. This option should not be used if any object in the application uses a
resource manager or if the object supports transactions or just-in-time
activation.

Supported COM+ assigns the object to the same activity as its caller. If the caller does not
belong to an activity, the object does not either. This option should not be used
if any object in the application uses a resource manager or if the object
supports transactions or just-in-time activation.

Required COM+ always assigns the object to an activity, creating one if necessary. This
option must be used if the transaction attribute is Supported or Required.

Requires New COM+ always assigns the object to a new activity, which is distinct from its
caller’s.

C r e a t i n g M T S o r C O M + o b j e c t s 39-19

G e n e r a t i n g e v e n t s u n d e r C O M +

Note Transactional objects installed under COM+ can still use the old system for managing
events. However, letting COM+ handle the process provides greater flexibility. For
example, when COM+ manages events, the client can be an in-process server that is
launched by COM+ when the event occurs.

When a COM+ object generates events, it does not do so directly. Rather, it makes
use of an associated event object that is specifically created to generate events. The
COM+ object calls its event object when it wants to fire an event. When that happens,
COM+ calls all clients that have registered an interest in the particular event object.

Using the Event Object wizard

You can create event objects using the Event Object wizard. The wizard first checks
whether the current project contains any implementation code, because projects
containing COM+ event objects do not include an implementation. They can only
contain event object definitions. (You can, however, include multiple COM+ event
objects in a single project.)

To bring up the Event Object wizard,

1 Choose File|New.

2 Select the tab labeled ActiveX.

3 Double-click the COM+ Event Object icon.

In the Event Object wizard, specify the name of the event object, the name of the
interface that defines the event handlers, and (optionally) a brief description of the
events.

When you exit, the wizard creates a project containing a type library that defines
your event object and its interface. Use the Type Library editor to define the methods
of that interface. These methods are the event handlers that clients implement to
respond to events.

The Event object project includes the project file, _ATL unit to import the ATL
template classes, and the _TLB unit to define the type library information. It does not
include an implementation unit, however, because COM+ event objects have no
implementation. The implementation of the interface is the responsibility of the
client. When your server object calls a COM+ event object, COM+ intercepts the call
and dispatches it to registered clients. Because COM+ event objects require no
implementation object, all you need to do after defining the object’s interface in the Type
Library editor is compile the project and install it with COM+

COM+ places certain restrictions on the interfaces of event objects. The interface you
define in the Type Library editor for your event object must obey the following rules:

• The event object’s interface must derive from IDispatch.

• All method names must be unique across all interfaces of the event object.

• All methods on the event object’s interface must return an HRESULT value.

• The modifier for all parameters of methods must be blank.

39-20 D e v e l o p e r ’ s G u i d e

P a s s i n g o b j e c t r e f e r e n c e s

Firing events using a COM+ event object

When an event occurs, your COM+ object must call the event object and tell it to fire
the event on registered clients. It does this by creating an instance of the event object
and calling the method that corresponds to the event:

Note Objects that fire COM+ events, like the event objects themselves, must be installed in
a COM+ application.

Passing object references
Note Information on passing object references applies only to MTS, not COM+. This

mechanism is needed under MTS because it is necessary to ensure that all pointers to
objects running under MTS are routed through interceptors. Because interceptors are
built into COM+, you do not need to pass object references.

Under MTS, you can pass object references, (for example, for use as a callback) only
in the following ways:

• Through return from an object creation interface, such as CoCreateInstance (or its
equivalent), ITransactionContext.CreateInstance, or IObjectContext.CreateInstance.

• Through a call to QueryInterface.

• Through a method that has called SafeRef to obtain the object reference.

An object reference that is obtained in the above ways is called a safe reference.
Methods invoked using safe references are guaranteed execute within the correct
context.

The MTS runtime environment requires calls to use safe references so that it can
manage context switches and allows transactional objects to have lifetimes that are
independent of client references. Safe references are not necessary under COM+.

Using the SafeRef method
An object can use the SafeRef function to obtain a reference to itself that is safe to pass
outside its context. The unit that defines the SafeRef function is Mtx.

SafeRef takes as input

• A reference to the interface ID (RIID) of the interface that the current object wants
to pass to another object or client.

• A reference to the current object’s IUnknown interface.

SafeRef returns a pointer to the interface specified in the RIID parameter that is safe to
pass outside the current object's context. It returns nil if the object is requesting a safe
reference on an object other than itself, or the interface requested in the RIID
parameter is not implemented.

When an MTS object wants to pass a self-reference to a client or another object (for
example, for use as a callback), it should always call SafeRef first and then pass the
reference returned by this call. An object should never pass a self pointer, or a self-

C r e a t i n g M T S o r C O M + o b j e c t s 39-21

D e b u g g i n g a n d t e s t i n g t r a n s a c t i o n a l o b j e c t s

reference obtained through an internal call to QueryInterface, to a client or to any
other object. Once such a reference is passed outside the object's context, it is no
longer a valid reference.

Calling SafeRef on a reference that is already safe returns the safe reference
unchanged, except that the reference count on the interface is incremented.

When a client calls QueryInterface on a reference that is safe, the reference returned
to the client is also a safe reference.

An object that obtains a safe reference must release the safe reference when finished
with it.

For details on SafeRef see the SafeRef topic in the Microsoft documentation.

Callbacks
Objects can make callbacks to clients and to other transactional objects. For example,
you can have an object that creates another object. The creating object can pass a
reference of itself to the created object; the created object can then use this reference
to call the creating object.

If you choose to use callbacks, note the following restrictions:

• Calling back to the base client or another package requires access-level security on
the client. Additionally, the client must be a DCOM server.

• Intervening firewalls may block calls back to the client.

• Work done on the callback executes in the environment of the object being called.
It may be part of the same transaction, a different transaction, or no transaction.

• Under MTS, the creating object must call SafeRef and pass the returned reference to
the created object in order to call back to itself.

Debugging and testing transactional objects
You can debug local and remote transactional objects. When debugging transactional
objects, you may want to turn off transaction timeouts.

The transaction timeout sets how long (in seconds) a transaction can remain active.
Transactions that are still alive after the timeout are automatically aborted by the
system. By default, the timeout value is 60 seconds. You can disable transaction
timeouts by specifying a value of 0, which is useful when debugging.

For information on remote debugging, see the Remote Debugging topic in Online
help.

When testing a transactional object that you intend to run under MTS, you may first
want to test your object outside the MTS environment to simplify your test
environment.

While developing your server, you cannot rebuild the server when it is still in
memory. You may get a compiler error like, “Cannot write to DLL while executable

39-22 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g t r a n s a c t i o n a l o b j e c t s

is loaded.” To avoid this, you can set the MTS package or COM+ application
properties to shut down the server when it is idle.

To shut down the server when idle,

1 In the MTS Explorer or COM+ Component Manager, right-click the MTS package
or COM+ application in which your transactional object is installed and choose
Properties.

2 Select the Advanced tab.

The Advanced tab determines whether the server process associated with a
package always runs, or whether it shuts down after a certain period of time.

3 Change the timeout value to 0, which shuts down the server as soon as no longer
has a client to service.

4 Click OK to save the setting.

Note When testing outside the MTS environment, you do not reference the ObjectProperty
of TMtsObject directly. The TMtsObject implements methods such as SetComplete and
SetAbort that are safe to call when the object context is nil.

Installing transactional objects
MTS applications consist of a group of in-process MTS objects running in a single
instance of the MTS executive (EXE). A group of COM objects that all run in the same
process is called a package. A single machine can be running several different
packages, where each package is running within a separate MTS EXE.

Under COM+, you work with a similar group, called a COM+ application. In a
COM+ application, the objects need not be in-process, and there is no separate
runtime environment.

You can group your application components into a single MTS package or COM+
application to be managed by a single process. You might want to distribute your
components into different MTS packages or COM+ applications to partition your
application across multiple processes or machines.

To install transactional objects into an MTS package or COM+ application,

1 If your system supports COM+, choose Run|Install COM+ objects. If your system
does not support COM+ but you have MTS installed on your system, choose Run|
Install MTS objects. If your system supports neither MTS nor COM+, you will not
see a menu item for installing transactional objects.

2 In the Install Object dialog box, check the objects to be installed.

3 If you are installing MTS objects, click the Package button to get a list of MTS
packages on your system. If you are installing COM+ objects, click the Application
button. Indicate the MTS package or COM+ application into which you are
installing your objects. You can choose Into New Package or Into New Application
to create a new MTS package or COM+ application in which to install the object.
You can choose Into Existing Package or Into Existing Application to install the
object into an existing listed MTS package or COM+ application.

C r e a t i n g M T S o r C O M + o b j e c t s 39-23

A d m i n i s t e r i n g t r a n s a c t i o n a l o b j e c t s

4 Choose OK to refresh the catalog, which makes the objects available at runtime.

MTS packages can contain components from multiple DLLs, and components from a
single DLL can be installed into different packages. However, a single component
cannot be distributed among multiple packages.

Similarly, COM+ applications can contain components from multiple executables
and different components from a single executable can be installed into different
COM+ applications.

Note You can also install your transactional object using the COM+ Component Manager
or MTS Explorer. Be sure when installing the object with one of these tools that you
apply the settings for the object that appear on the COM+ page of the Type Library
editor. These settings are not applied automatically when you do not install from the
IDE.

Administering transactional objects
Once you have installed transactional objects, you can administer these runtime
objects using the MTS Explorer (if they are installed into an MTS package) or the
COM+ Component Manager (if they are installed into a COM+ application). Both
tools are identical, except that the MTS Explorer operates on the MTS runtime
environment and the COM+ Component Manager operates on COM+ objects.

The COM+ Component Manager and MTS Explorer have a graphical user interface
for managing and deploying transactional objects. Using one of these tools, you can

• Configure transactional objects, MTS packages or COM+ applications, and roles

• View properties of components in an package or COM+ application and view the
MTS packages or COM+ applications installed on a computer

• Monitor and manage transactions for objects that comprise transactions

• Move MTS packages or COM+ applications between computers

• Make a remote transactional object available to a local client

For more details on these tools, see the appropriate Administrator’s Guide from
Microsoft.

39-24 D e v e l o p e r ’ s G u i d e

C r e a t i n g c u s t o m c o m p o n e n t s

P a r t

V
Part VCreating custom components

The chapters in “Creating custom components” present concepts necessary for
designing and implementing custom components in Delphi.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 40-1

C h a p t e r

40
Chapter 40Overview of component creation

This chapter provides an overview of component design and the process of writing
components for Delphi applications. The material here assumes that you are familiar
with Delphi and its standard components.

• VCL and CLX
• Components and classes
• How do you create components?
• What goes into a component?
• Creating a new component
• Testing uninstalled components
• Testing installed components

For information on installing new components, see “Installing component packages”
on page 11-5.

VCL and CLX
Delphi’s components reside in two class hierarchies called the Visual Component
Library (VCL) and the Component Library for Cross Platform (CLX). Figure 40.1
shows the relationship of selected classes that make up the VCL. The CLX hierarchy
is similar to the VCL but Windows controls are called widgets (therefore TWinControl
is called TWidgetControl, for example), and there are other differences. For a more
detailed discussion of class hierarchies and the inheritance relationships among
classes, see Chapter 41, “Object-oriented programming for component writers.” For
an overview of how CLX differs from the VCL, see “CLX versus VCL” on page 10-5
and refer to the CLX online reference for details on the components.

The TComponent class is the shared ancestor of every component in the VCL and
CLX. TComponent provides the minimal properties and events necessary for a
component to work in Delphi. The various branches of the library provide other,
more specialized capabilities.

40-2 D e v e l o p e r ’ s G u i d e

C o m p o n e n t s a n d c l a s s e s

Figure 40.1 Visual Component Library class hierarchy

When you create a component, you add to the VCL or CLX by deriving a new class
from one of the existing class types in the hierarchy.

Components and classes
Because components are classes, component writers work with objects at a different
level from application developers. Creating new components requires that you
derive new classes.

Briefly, there are two main differences between creating components and using them
in applications. When creating components,

• You access parts of the class that are inaccessible to application programmers.
• You add new parts (such as properties) to your components.

Because of these differences, you need to be aware of more conventions and think
about how application developers will use the components you write.

How do you create components?
A component can be almost any program element that you want to manipulate at
design time. Creating a component means deriving a new class from an existing one.
You can derive a new component from any existing component, but the following are
the most common ways to create components:

• Modifying existing controls
• Creating windowed controls
• Creating graphic controls
• Subclassing Windows controls
• Creating nonvisual components

TCustomControl

TApplication

TObject

TPersistent

TComponent

TControl

TGraphicControl TWinControl

TScrollingWinControl

TCustomForm
TForm

TActiveForm

Exception TStream TComObject

TCollection TStringsTGraphicTGraphicObject

TDataSet TMenu TCommonDialog TField

Most visual controls
inherit from

TWinControl.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 40-3

H o w d o y o u c r e a t e c o m p o n e n t s ?

Table 40.1 summarizes the different kinds of components and the classes you use as
starting points for each.

You can also derive classes that are not components and cannot be manipulated on a
form. Delphi includes many such classes, like TRegIniFile and TFont.

Modifying existing controls

The simplest way to create a component is to customize an existing one. You can
derive a new component from any of the components provided with Delphi.

Some controls, such as list boxes and grids, come in several variations on a basic
theme. In these cases, the VCL and CLX includes an abstract class (with the word
“custom” in its name, such as TCustomGrid) from which to derive customized
versions.

For example, you might want to create a special list box that does not have some of
the properties of the standard TListBox class. You cannot remove (hide) a property
inherited from an ancestor class, so you need to derive your component from
something above TListBox in the hierarchy. Rather than force you to start from the
abstract TWinControl (or TWidgetControl in CLX) class and reinvent all the list box
functions, the VCL or CLX provides TCustomListBox, which implements the
properties of a list box but does not publish all of them. When you derive a
component from an abstract class like TCustomListBox, you publish only the
properties you want to make available in your component and leave the rest
protected.

Chapter 42, “Creating properties,” explains publishing inherited properties. Chapter
48, “Modifying an existing component,” and Chapter 50, “Customizing a grid,” show
examples of modifying existing controls.

Creating windowed controls

Windowed controls in the VCL and CLX are objects that appear at runtime and that
the user can interact with. Each windowed control has a window handle, accessed
through its Handle property, that lets the operating system identify and operate on
the control. If using VCL controls, the handle allows the control to receive input focus
and can be passed to Windows API functions. In CLX, these controls are widget-

Table 40.1 Component creation starting points

To do this Start with this type

Modify an existing component Any existing component, such as TButton or TListBox, or
an abstract component type, such as TCustomListBox

Create a windowed (or widget-
based in CLX) control

TWinControl (TWidgetControl in CLX)

Create a graphic control TGraphicControl

Subclassing a control Any Windows (VCL) or widget-based (CLX) control

Create a nonvisual component TComponent

40-4 D e v e l o p e r ’ s G u i d e

H o w d o y o u c r e a t e c o m p o n e n t s ?

based controls. Each widget-based control has a handle, accessed through its Handle
property, that identifies the underlying widget.

All windowed controls descend from the TWinControl (TWidgetControl in CLX) class.
These include most standard windowed controls, such as pushbuttons, list boxes,
and edit boxes. While you could derive an original control (one that’s not related to
any existing control) directly from TWinControl (TWidgetControl in CLX), Delphi
provides the TCustomControl component for this purpose. TCustomControl is a
specialized windowed control that makes it easier to draw complex visual images.

Chapter 50, “Customizing a grid,” presents an example of creating a windowed
control.

Creating graphic controls

If your control does not need to receive input focus, you can make it a graphic
control. Graphic controls are similar to windowed controls, but have no window
handles, and therefore consume fewer system resources. Components like TLabel,
which never receive input focus, are graphic controls. Although these controls cannot
receive focus, you can design them to react to mouse messages.

Delphi supports the creation of custom controls through the TGraphicControl
component. TGraphicControl is an abstract class derived from TControl. Although you
can derive controls directly from TControl, it is better to start from TGraphicControl,
which provides a canvas to paint on and on Windows, handles WM_PAINT
messages; all you need to do is override the Paint method.

Chapter 49, “Creating a graphic component,” presents an example of creating a
graphic control.

Subclassing Windows controls

In traditional Windows programming, you create custom controls by defining a new
window class and registering it with Windows. The window class (which is similar to
the objects or classes in object-oriented programming) contains information shared
among instances of the same sort of control; you can base a new window class on an
existing class, which is called subclassing. You then put your control in a dynamic-
link library (DLL), much like the standard Windows controls, and provide an
interface to it.

Using Delphi, you can create a component “wrapper” around any existing window
class. So if you already have a library of custom controls that you want to use in
Delphi applications, you can create Delphi components that behave like your
controls, and derive new controls from them just as you would with any other
component.

For examples of the techniques used in subclassing Windows controls, see the
components in the StdCtls unit that represent standard Windows controls, such as
TEdit. For CLX examples, see QStdCtls.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 40-5

W h a t g o e s i n t o a c o m p o n e n t ?

Creating nonvisual components

Nonvisual components are used as interfaces for elements like databases (TDataSet or
TSQLConnection) and system clocks (TTimer), and as placeholders for dialog boxes
(TCommonDialog (VCL) or TDialog (CLX) and its descendants). Most of the
components you write are likely to be visual controls. Nonvisual components can be
derived directly from TComponent, the abstract base class for all components.

What goes into a component?
To make your components reliable parts of the Delphi environment, you need to
follow certain conventions in their design. This section discusses the following topics:

• Removing dependencies
• Properties, methods, and events
• Graphics encapsulation
• Registration

Removing dependencies

One quality that makes components usable is the absence of restrictions on what they
can do at any point in their code. By their nature, components are incorporated into
applications in varying combinations, orders, and contexts. You should design
components that function in any situation, without preconditions.

An excellent example of removing dependencies is the Handle property of
TWinControl. If you have written Windows applications before, you know that one of
the most difficult and error-prone aspects of getting a program running is making
sure that you do not try to access a window or control until you have created it by
calling the CreateWindow API function. Delphi windowed controls relieve users from
this concern by ensuring that a valid window handle is always available when
needed. By using a property to represent the window handle, the control can check
whether the window has been created; if the handle is not valid, the control creates a
window and returns the handle. Thus, whenever an application’s code accesses the
Handle property, it is assured of getting a valid handle.

By removing background tasks like creating the window, Delphi components allow
developers to focus on what they really want to do. Before passing a window handle
to an API function, there is no need to verify that the handle exists or to create the
window. The application developer can assume that things will work, instead of
constantly checking for things that might go wrong.

Although it can take time to create components that are free of dependencies, it is
generally time well spent. It not only spares application developers from repetition
and drudgery, but it reduces your documentation and support burdens.

40-6 D e v e l o p e r ’ s G u i d e

W h a t g o e s i n t o a c o m p o n e n t ?

Properties, methods, and events

Aside from the visible image manipulated in the Form designer, the most obvious
attributes of a component are its properties, events, and methods. Each of these has a
chapter devoted to it in this book, but the discussion that follows explains some of
the motivation for their use.

Properties
Properties give the application developer the illusion of setting or reading the value
of a variable, while allowing the component writer to hide the underlying data
structure or to implement special processing when the value is accessed.

There are several advantages to using properties:

• Properties are available at design time. The application developer can set or
change initial values of properties without having to write code.

• Properties can check values or formats as the application developer assigns them.
Validating input at design time prevents errors.

• The component can construct appropriate values on demand. Perhaps the most
common type of error programmers make is to reference a variable that has not
been initialized. By representing data with a property, you can ensure that a value
is always available on demand.

• Properties allow you to hide data under a simple, consistent interface. You can
alter the way information is structured in a property without making the change
visible to application developers.

Chapter 42, “Creating properties,” explains how to add properties to your
components.

Events
An event is a special property that invokes code in response to input or other activity
at runtime. Events give the application developer a way to attach specific blocks of
code to specific runtime occurrences, such as mouse actions and keystrokes. The code
that executes when an event occurs is called an event handler.

Events allow application developers to specify responses to different kinds of input
without defining new components.

Chapter 43, “Creating events,” explains how to implement standard events and how
to define new ones.

Methods
Class methods are procedures and functions that operate on a class rather than on
specific instances of the class. For example, every component’s constructor method
(Create) is a class method. Component methods are procedures and functions that
operate on the component instances themselves. Application developers use
methods to direct a component to perform a specific action or return a value not
contained by any property.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 40-7

W h a t g o e s i n t o a c o m p o n e n t ?

Because they require execution of code, methods can be called only at runtime.
Methods are useful for several reasons:

• Methods encapsulate the functionality of a component in the same object where
the data resides.

• Methods can hide complicated procedures under a simple, consistent interface. An
application developer can call a component’s AlignControls method without
knowing how the method works or how it differs from the AlignControls method
in another component.

• Methods allow updating of several properties with a single call.

Chapter 44, “Creating methods,” explains how to add methods to your components.

Graphics encapsulation

Delphi simplifies Windows graphics by encapsulating various graphic tools into a
canvas. The canvas represents the drawing surface of a window or control and
contains other classes, such as a pen, a brush, and a font. A canvas is like a Windows
device context, but it takes care of all the bookkeeping for you.

If you have written a graphical Windows application, you are familiar with the
requirements imposed by Windows’ graphics device interface (GDI). For example,
GDI limits the number of device contexts available and requires that you restore
graphic objects to their initial state before destroying them.

With Delphi, you do not have to worry about these things. To draw on a form or
other component, you access the component’s Canvas property. If you want to
customize a pen or brush, you set its color or style. When you finish, Delphi disposes
of the resources. Delphi caches resources to avoid recreating them if your application
frequently uses the same kinds of resource.

You still have full access to the Windows GDI, but you will often find that your code
is simpler and runs faster if you use the canvas built into Delphi components.
Graphics features are detailed in Chapter 45, “Using graphics in components.”

CLX graphics encapsulation works differently. A canvas is a painter instead. To draw
on a form or other component, you access the component’s Canvas property. Canvas
is a property and it is also an object called TCanvas. TCanvas is a wrapper around a Qt
painter that is accessible through the Handle property. You can use the handle to
access low-level Qt graphics library functions.

If you want to customize a pen or brush, you set its color or style. When you finish,
Kylix disposes of the resources. CLX also caches the resources.

You can use the canvas built into CLX components by descending from them. How
graphics images work in the component depends on the canvas of the object from
which your component descends.

40-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

Registration

Before you can install your components in the Delphi IDE, you have to register them.
Registration tells Delphi where to place the component on the Component palette.
You can also customize the way Delphi stores your components in the form file. For
information on registering a component, see Chapter 47, “Making components
available at design time.”

Creating a new component
You can create a new component two ways:

• Using the Component wizard
• Creating a component manually

You can use either of these methods to create a minimally functional component
ready to install on the Component palette. After installing, you can add your new
component to a form and test it at both design time and runtime. You can then add
more features to the component, update the Component palette, and continue
testing.

There are several basic steps that you perform whenever you create a new
component. These steps are described below; other examples in this document
assume that you know how to perform them.

1 Create a unit for the new component.

2 Derive your component from an existing component type.

3 Add properties, methods, and events.

4 Register your component with Delphi.

5 Create a Help file for your component and its properties, methods, and events.

6 Create a package (a special dynamic-link library) so that you can install your
component in the Delphi IDE.

When you finish, the complete component includes the following files:

• A package (.BPL) or package collection (.DPC) file
• A compiled package (.DCP) file
• A compiled unit (.DCU) file
• A palette bitmap (.DCR) file
• A Help (.HLP) file

Creating a help file to instruct component users on how to use the component is
optional.

The chapters in the rest of Part V explain all the aspects of building components and
provide several complete examples of writing different kinds of components.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 40-9

C r e a t i n g a n e w c o m p o n e n t

Using the Component wizard

The Component wizard simplifies the initial stages of creating a component. When
you use the Component wizard, you need to specify only these things:

• The class from which it is derived
• The class name for the new component
• The Component palette page where you want it to appear
• The name of the unit in which the component is created
• The search path where the unit is found
• The name of the package in which you want to place the component

The Component wizard performs the same tasks you would when creating a
component manually:

• Creating a unit
• Deriving the component
• Registering the component

The Component wizard cannot add components to an existing unit. You must add
components to existing units manually.

To start the Component wizard, choose one of these two methods:

• Choose Component|New Component.
• Choose File|New|Other and double-click on Component

Figure 40.2 Component wizard

Fill in the fields in the Component wizard:

1 In the Ancestor Type field, specify the class from which you are deriving your new
component.

Note In the drop-down list, many components are listed twice with different unit
names, one for VCL and one for CLX. The CLX-specific units begin with Q (such
as QGraphics instead of Graphics). Be sure to descend from the correct
component.

2 In the Class Name field, specify the name of your new component class.

3 In the Palette Page field, specify the page on the Component palette on which you
want the new component to be installed.

40-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

4 In the Unit file name field, specify the name of the unit you want the component
class declared in.

5 If the unit is not on the search path, edit the search path in the Search Path field as
necessary.

To place the component in a new or existing package, click Component|Install and
use the dialog box that appears to specify a package.

Warning If you derive a component from a VCL or CLX class whose name begins with
“custom” (such as TCustomControl), do not try to place the new component on a form
until you have overridden any abstract methods in the original component. Delphi
cannot create instance objects of a class that has abstract properties or methods.

To see the source code for your unit, click View Unit. (If the Component wizard is
already closed, open the unit file in the Code editor by selecting File|Open.) Delphi
creates a new unit containing the class declaration and the Register procedure, and
adds a uses clause that includes all the standard Delphi units.

The unit looks like this if descending from TCustomControl in the Controls unit:

unit MyControl;

interface

uses
Windows, Messages, SysUtils, Classes, Controls;

type
TMyControl = class(TCustomControl)
private
{ Private declarations }
protected
{ Protected declarations }
public
{ Public declarations }
published
{ Published declarations }

end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TMyControl]);
end;

end.

If descending from TCustomControl in the QControls unit, the only difference is the
uses clause which looks like this:

uses
 Windows, Messages, SysUtils, Classes, QControls;

Where CLX uses separate units, they are replaced with units of the same name
prefixed with a Q; Controls is replaced by QControls.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 40-11

C r e a t i n g a n e w c o m p o n e n t

Creating a component manually

The easiest way to create a new component is to use the Component wizard. You can,
however, perform the same steps manually.

To create a component manually, follow these steps:

1 Creating a unit file
2 Deriving the component
3 Registering the component

Creating a unit file
A unit is a separately compiled module of Object Pascal code. Delphi uses units for
several purposes. Every form has its own unit, and most components (or groups of
related components) have their own units as well

When you create a component, you either create a new unit for the component or add
the new component to an existing unit.

To create a unit, choose File|New|Unit. Delphi creates a new unit file and opens it in
the Code editor.

To open an existing unit, choose File|Open and select the source code unit that you
want to add your component to.

Note When adding a component to an existing unit, make sure that the unit contains only
component code. For example, adding component code to a unit that contains a form
causes errors in the Component palette.

Once you have either a new or existing unit for your component, you can derive the
component class.

Deriving the component
Every component is a class derived from TComponent, from one of its more
specialized descendants (such as TControl or TGraphicControl), or from an existing
component class. “How do you create components?” on page 40-2 describes which
class to derive different kinds of components from.

Deriving classes is explained in more detail in the section “Defining new classes” on
page 41-1.

To derive a component, add an object type declaration to the interface part of the
unit that will contain the component.

A simple component class is a nonvisual component descended directly from
TComponent.

To create a simple component class, add the following class declaration to the
interface part of your component unit:

type
TNewComponent = class(TComponent)
end;

So far the new component does nothing different from TComponent. You have created
a framework on which to build your new component.

40-12 D e v e l o p e r ’ s G u i d e

T e s t i n g u n i n s t a l l e d c o m p o n e n t s

 Registering the component
Registration is a simple process that tells Delphi which components to add to its
component library, and on which pages of the Component palette they should
appear. For a more detailed discussion of the registration process, see Chapter 47,
“Making components available at design time.”

To register a component,

1 Add a procedure named Register to the interface part of the component’s unit.
Register takes no parameters, so the declaration is very simple:

procedure Register;

If you are adding a component to a unit that already contains components, it
should already have a Register procedure declared, so you do not need to change
the declaration.

2 Write the Register procedure in the implementation part of the unit, calling
RegisterComponents for each component you want to register. RegisterComponents is
a procedure that takes two parameters: the name of a Component palette page and
a set of component types. If you are adding a component to an existing
registration, you can either add the new component to the set in the existing
statement, or add a new statement that calls RegisterComponents.

To register a component named TMyControl and place it on the Samples page of the
palette, you would add the following Register procedure to the unit that contains
TMyControl’s declaration:

procedure Register;
begin

RegisterComponents('Samples', [TNewControl]);
end;

This Register procedure places TMyControl on the Samples page of the Component
palette.

Once you register a component, you can compile it into a package (see Chapter 47,
“Making components available at design time”) and install it on the Component
palette.

Testing uninstalled components
You can test the runtime behavior of a component before you install it on the
Component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the Component palette. For information on testing already installed components,
see “Testing installed components” on page 40-14.

You test an uninstalled component by emulating the actions performed by Delphi
when the component is selected from the palette and placed on a form.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 40-13

T e s t i n g u n i n s t a l l e d c o m p o n e n t s

To test an uninstalled component,

1 Add the name of component’s unit to the form unit’s uses clause.

2 Add an object field to the form to represent the component.

This is one of the main differences between the way you add components and the
way Delphi does it. You add the object field to the public part at the bottom of the
form’s type declaration. Delphi would add it above, in the part of the type
declaration that it manages.

Never add fields to the Delphi-managed part of the form’s type declaration. The
items in that part of the type declaration correspond to the items stored in the form
file. Adding the names of components that do not exist on the form can render
your form file invalid.

3 Attach a handler to the form’s OnCreate event.

4 Construct the component in the form’s OnCreate handler.

When you call the component’s constructor, you must pass a parameter specifying
the owner of the component (the component responsible for destroying the
component when the time comes). You will nearly always pass Self as the owner.
In a method, Self is a reference to the object that contains the method. In this case,
in the form’s OnCreate handler, Self refers to the form.

5 Assign the Parent property.

Setting the Parent property is always the first thing to do after constructing a
control. The parent is the component that contains the control visually; usually it is
the form on which the control appears, but it might be a group box or panel.
Normally, you’ll set Parent to Self, that is, the form. Always set Parent before
setting other properties of the control.

Warning If your component is not a control (that is, if TControl is not one of its ancestors),
skip this step. If you accidentally set the form’s Parent property (instead of the
component’s) to Self, you can cause an operating-system problem.

6 Set any other component properties as desired.

Suppose you want to test a new component of type TMyControl in a unit named
MyControl. Create a new project, then follow the steps to end up with a form unit that
looks like this:

unit Unit1;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, MyControl; { 1. Add NewTest to uses clause }

type
TForm1 = class(TForm)

procedure FormCreate(Sender: TObject); { 3. Attach a handler to OnCreate
}

private
{ Private declarations }

public

40-14 D e v e l o p e r ’ s G u i d e

T e s t i n g i n s t a l l e d c o m p o n e n t s

{ Public Declarations }
MyControl1: TMyControl1; { 2. Add an object field }

end;

var
Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin

MyControl1 := TMyControl.Create(Self); { 4. Construct the component }
MyControl1.Parent := Self; { 5. Set Parent property if component is a control }
MyControl1.Left := 12; { 6. Set other properties...)
ƒ ...continue as needed }

end;
end.

Testing installed components
You can test the design-time behavior of a component after you install it on the
Component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the Component palette. For information on testing components that have not yet
been installed, see “Testing uninstalled components” on page 40-12.

Testing your components after installing allows you to debug the component that
only generates design-time exceptions when dropped on a form.

Test an installed component using a second running instance of Delphi:

1 From the Delphi IDE menu select Project|Options|and on the Directories/
Conditionals page, set the Debug Source Path to the component’s source file.

2 Then select Tools|Debugger Options. On the Language Exceptions, page enable
the exceptions you want to track.

3 Open the component source file and set breakpoints.

4 Select Run|Parameters and set the Host Application field to the name and location
of the Delphi executable file.

5 In the Run Parameters dialog, click the Load button to start a second instance of
Delphi.

6 Then drop the components to be tested on the form, which should break on your
breakpoints in the source.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 41-1

C h a p t e r

41
Chapter 41Object-oriented programming for

component writers
If you have written applications with Delphi, you know that a class contains both
data and code, and that you can manipulate classes at design time and at runtime. In
that sense, you’ve become a component user.

When you create new components, you deal with classes in ways that application
developers never need to. You also try to hide the inner workings of the component
from the developers who will use it. By choosing appropriate ancestors for your
components, designing interfaces that expose only the properties and methods that
developers need, and following the other guidelines in this chapter, you can create
versatile, reusable components.

Before you start creating components, you should be familiar with these topics,
which are related to object-oriented programming (OOP):

• Defining new classes
• Ancestors, descendants, and class hierarchies
• Controlling access
• Dispatching methods
• Abstract class members
• Classes and pointers

Defining new classes
The difference between component writers and application developers is that
component writers create new classes while application developers manipulate
instances of classes.

A class is essentially a type. As a programmer, you are always working with types
and instances, even if you do not use that terminology. For example, you create
variables of a type, such as Integer. Classes are usually more complex than simple

41-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g n e w c l a s s e s

data types, but they work the same way: By assigning different values to instances of
the same type, you can perform different tasks.

For example, it is quite common to create a form containing two buttons, one labeled
OK and one labeled Cancel. Each is an instance of the class TButton, but by assigning
different values to their Caption properties and different handlers to their OnClick
events, you make the two instances behave differently.

Deriving new classes

There are two reasons to derive a new class:

• To change class defaults to avoid repetition
• To add new capabilities to a class

In either case, the goal is to create reusable objects. If you design components with
reuse in mind, you can save work later on. Give your classes usable default values,
but allow them to be customized.

To change class defaults to avoid repetition
Most programmers try to avoid repetition. Thus, if you find yourself rewriting the
same lines of code over and over, you place the code in a subroutine or function, or
build a library of routines that you can use in many programs. The same reasoning
holds for components. If you find yourself changing the same properties or making
the same method calls, you can create a new component that does these things by
default.

For example, suppose that each time you create an application, you add a dialog box
to perform a particular operation. Although it is not difficult to recreate the dialog
each time, it is also not necessary. You can design the dialog once, set its properties,
and install a wrapper component associated with it onto the Component palette. By
making the dialog into a reusable component, you not only eliminate a repetitive
task, but you encourage standardization and reduce the likelihood of errors each
time the dialog is recreated.

Chapter 48, “Modifying an existing component,” shows an example of changing a
component’s default properties.

Note If you want to modify only the published properties of an existing component, or to
save specific event handlers for a component or group of components, you may be
able to accomplish this more easily by creating a component template.

To add new capabilities to a class
A common reason for creating new components is to add capabilities not found in
existing components. When you do this, you derive the new component from either
an existing component or an abstract base class, such as TComponent or TControl.

Derive your new component from the class that contains the closest subset of the
features you want. You can add capabilities to a class, but you cannot take them
away; so if an existing component class contains properties that you do not want to
include in yours, you should derive from that component’s ancestor.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 41-3

A n c e s t o r s , d e s c e n d a n t s , a n d c l a s s h i e r a r c h i e s

For example, if you want to add features to a list box, you could derive your
component from TListBox. However, if you want to add new features but exclude
some capabilities of the standard list box, you need to derive your component from
TCustomListBox, the ancestor of TListBox. Then you can recreate (or make visible)
only the list-box capabilities you want, and add your new features.

Chapter 50, “Customizing a grid,” shows an example of customizing an abstract
component class.

Declaring a new component class

In addition to standard components, Delphi provides many abstract classes designed
as bases for deriving new components. Table 40.1 on page 40-3 shows the classes you
can start from when you create your own components.

To declare a new component class, add a class declaration to the component’s unit
file.

Here is the declaration of a simple graphical component:

type
TSampleShape = class(TGraphicControl)
end;

A finished component declaration usually includes property, event, and method
declarations before the end. But a declaration like the one above is also valid, and
provides a starting point for the addition of component features.

Ancestors, descendants, and class hierarchies
Application developers take for granted that every control has properties named Top
and Left that determine its position on the form. To them, it may not matter that all
controls inherit these properties from a common ancestor, TControl. When you create
a component, however, you must know which class to derive it from so that it
inherits the appropriate features. And you must know everything that your control
inherits, so you can take advantage of inherited features without recreating them.

The class from which you derive a component is called its immediate ancestor. Each
component inherits from its immediate ancestor, and from the immediate ancestor of
its immediate ancestor, and so forth. All of the classes from which a component
inherits are called its ancestors; the component is a descendant of its ancestors.

Together, all the ancestor-descendant relationships in an application constitute a
hierarchy of classes. Each generation in the hierarchy contains more than its
ancestors, since a class inherits everything from its ancestors, then adds new
properties and methods or redefines existing ones.

If you do not specify an immediate ancestor, Delphi derives your component from
the default ancestor, TObject. TObject is the ultimate ancestor of all classes in the
object hierarchy.

41-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a c c e s s

The general rule for choosing which object to derive from is simple: Pick the object
that contains as much as possible of what you want to include in your new object, but
which does not include anything you do not want in the new object. You can always
add things to your objects, but you cannot take things out.

Controlling access
There are five levels of access control—also called visibility—on properties, methods,
and fields. Visibility determines which code can access which parts of the class. By
specifying visibility, you define the interface to your components.

Table 41.1 shows the levels of visibility, from most restrictive to most accessible:

Declare members as private if you want them to be available only within the class
where they are defined; declare them as protected if you want them to be available
only within that class and its descendants. Remember, though, that if a member is
available anywhere within a unit file, it is available everywhere in that file. Thus, if you
define two classes in the same unit, the classes will be able to access each other’s
private methods. And if you derive a class in a different unit from its ancestor, all the
classes in the new unit will be able to access the ancestor’s protected methods.

Hiding implementation details

Declaring part of a class as private makes that part invisible to code outside the
class’s unit file. Within the unit that contains the declaration, code can access the part
as if it were public.

Here is an example that shows how declaring a field as private hides it from
application developers. The listing shows two VCL form units. Each form has a
handler for its OnCreate event which assigns a value to a private field. The compiler
allows assignment to the field only in the form where it is declared.

Table 41.1 Levels of visibility within an object

Visibility Meaning Used for

private Accessible only to code in the unit
where the class is defined.

Hiding implementation details.

protected Accessible to code in the unit(s)
where the class and its descendants
are defined.

Defining the component writer’s interface.

public Accessible to all code. Defining the runtime interface.

automated Accessible to all code. Automation
type information is generated.

OLE automation only.

published Accessible to all code and from the
Object Inspector.

Defining the design-time interface.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 41-5

C o n t r o l l i n g a c c e s s

unit HideInfo;
interface

uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms, Dialogs;

type
TSecretForm = class(TForm) { declare new form }

procedure FormCreate(Sender: TObject);
private { declare private part }

FSecretCode: Integer; { declare a private field }
end;

var
SecretForm: TSecretForm;

implementation
procedure TSecretForm.FormCreate(Sender: TObject);
begin

FSecretCode := 42; { this compiles correctly }
end;
end. { end of unit }

unit TestHide; { this is the main form file }

interface
uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms, Dialogs,

HideInfo; { use the unit with TSecretForm }

type
TTestForm = class(TForm)

procedure FormCreate(Sender: TObject);
end;

var
TestForm: TTestForm;

implementation
procedure TTestForm.FormCreate(Sender: TObject);
begin

SecretForm.FSecretCode := 13; { compiler stops with "Field identifier expected" }
end;
end. { end of unit }

Although a program using the HideInfo unit can use objects of type TSecretForm, it
cannot access the FSecretCode field in any of those objects.

Defining the component writer’s interface

Declaring part of a class as protected makes that part visible only to the class itself
and its descendants (and to other classes that share their unit files).

You can use protected declarations to define a component writer’s interface to the class.
Application units do not have access to the protected parts, but derived classes do.
This means that component writers can change the way a class works without
making the details visible to application developers.

Note A common mistake is trying to access protected methods from an event handler.
Event handlers are typically methods of the form, not the component that receives
the event. As a result, they do not have access to the component’s protected methods
(unless the component is declared in the same unit as the form).

41-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a c c e s s

Defining the runtime interface

Declaring part of a class as public makes that part visible to any code that has access
to the class as a whole.

Public parts are available at runtime to all code, so the public parts of a class define
its runtime interface. The runtime interface is useful for items that are not meaningful
or appropriate at design time, such as properties that depend on runtime input or
which are read-only. Methods that you intend for application developers to call must
also be public.

Here is an example that shows two read-only properties declared as part of a
component’s runtime interface:

type
TSampleComponent = class(TComponent)
private

FTempCelsius: Integer; { implementation details are private }
function GetTempFahrenheit: Integer;

public
property TempCelsius: Integer read FTempCelsius; { properties are public }
property TempFahrenheit: Integer read GetTempFahrenheit;

end;
ƒ
function TSampleComponent.GetTempFahrenheit: Integer;
begin

Result := FTempCelsius * 9 div 5 + 32;
end;

Defining the design-time interface

Declaring part of a class as published makes that part public and also generates
runtime type information. Among other things, runtime type information allows the
Object Inspector to access properties and events.

Because they show up in the Object Inspector, the published parts of a class define
that class’s design-time interface. The design-time interface should include any aspects
of the class that an application developer might want to customize at design time, but
must exclude any properties that depend on specific information about the runtime
environment.

Read-only properties cannot be part of the design-time interface because the
application developer cannot assign values to them directly. Read-only properties
should therefore be public, rather than published.

Here is an example of a published property called Temperature. Because it is
published, it appears in the Object Inspector at design time.

type
TSampleComponent = class(TComponent)
private

FTemperature: Integer; { implementation details are private }
published

property Temperature: Integer read FTemperature write FTemperature; { writable! }
end;

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 41-7

D i s p a t c h i n g m e t h o d s

Dispatching methods
Dispatch refers to the way a program determines where a method should be invoked
when it encounters a method call. The code that calls a method looks like any other
procedure or function call. But classes have different ways of dispatching methods.

The three types of method dispatch are

• Static
• Virtual
• Dynamic

Static methods

All methods are static unless you specify otherwise when you declare them. Static
methods work like regular procedures or functions. The compiler determines the
exact address of the method and links the method at compile time.

The primary advantage of static methods is that dispatching them is very quick.
Because the compiler can determine the exact address of the method, it links the
method directly. Virtual and dynamic methods, by contrast, use indirect means to
look up the address of their methods at runtime, which takes somewhat longer.

A static method does not change when inherited by a descendant class. If you declare
a class that includes a static method, then derive a new class from it, the derived class
shares exactly the same method at the same address. This means that you cannot
override static methods; a static method always does exactly the same thing no
matter what class it is called in. If you declare a method in a derived class with the
same name as a static method in the ancestor class, the new method simply replaces
the inherited one in the derived class.

An example of static methods
In the following code, the first component declares two static methods. The second
declares two static methods with the same names that replace the methods inherited
from the first component.

type
TFirstComponent = class(TComponent)

procedure Move;
procedure Flash;

end;

TSecondComponent = class(TFirstComponent)
procedure Move; { different from the inherited method, despite same declaration }
function Flash(HowOften: Integer): Integer; { this is also different }

end;

41-8 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g m e t h o d s

Virtual methods

Virtual methods employ a more complicated, and more flexible, dispatch mechanism
than static methods. A virtual method can be redefined in descendant classes, but
still be called in the ancestor class. The address of a virtual method isn’t determined
at compile time; instead, the object where the method is defined looks up the address
at runtime.

To make a method virtual, add the directive virtual after the method declaration. The
virtual directive creates an entry in the object’s virtual method table, or VMT, which
holds the addresses of all the virtual methods in an object type.

When you derive a new class from an existing one, the new class gets its own VMT,
which includes all the entries from the ancestor’s VMT plus any additional virtual
methods declared in the new class.

Overriding methods
Overriding a method means extending or refining it, rather than replacing it. A
descendant class can override any of its inherited virtual methods.

To override a method in a descendant class, add the directive override to the end of
the method declaration.

Overriding a method causes a compilation error if

• The method does not exist in the ancestor class.

• The ancestor’s method of that name is static.

• The declarations are not otherwise identical (number and type of arguments
parameters differ).

The following code shows the declaration of two simple components. The first
declares three methods, each with a different kind of dispatching. The other, derived
from the first, replaces the static method and overrides the virtual methods.

type
TFirstComponent = class(TCustomControl)

procedure Move; { static method }
procedure Flash; virtual; { virtual method }
procedure Beep; dynamic; { dynamic virtual method }

end;

TSecondComponent = class(TFirstComponent)
procedure Move; { declares new method }
procedure Flash; override; { overrides inherited method }
procedure Beep; override; { overrides inherited method }

end;

Dynamic methods
Dynamic methods are virtual methods with a slightly different dispatch mechanism.
Because dynamic methods don’t have entries in the object’s virtual method table,
they can reduce the amount of memory that objects consume. However, dispatching
dynamic methods is somewhat slower than dispatching regular virtual methods. If a

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 41-9

A b s t r a c t c l a s s m e m b e r s

method is called frequently, or if its execution is time-critical, you should probably
declare it as virtual rather than dynamic.

Objects must store the addresses of their dynamic methods. But instead of receiving
entries in the virtual method table, dynamic methods are listed separately. The
dynamic method list contains entries only for methods introduced or overridden by a
particular class. (The virtual method table, in contrast, includes all of the object’s
virtual methods, both inherited and introduced.) Inherited dynamic methods are
dispatched by searching each ancestor’s dynamic method list, working backwards
through the inheritance tree.

To make a method dynamic, add the directive dynamic after the method declaration.

Abstract class members
When a method is declared as abstract in an ancestor class, you must surface it (by
redeclaring and implementing it) in any descendant component before you can use
the new component in applications. Delphi cannot create instances of a class that
contains abstract members. For more information about surfacing inherited parts of
classes, see Chapter 42, “Creating properties,” and Chapter 44, “Creating methods.”

Classes and pointers
Every class (and therefore every component) is really a pointer. The compiler
automatically dereferences class pointers for you, so most of the time you do not
need to think about this. The status of classes as pointers becomes important when
you pass a class as a parameter. In general, you should pass classes by value rather
than by reference. The reason is that classes are already pointers, which are
references; passing a class by reference amounts to passing a reference to a reference.

41-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g p r o p e r t i e s 42-1

C h a p t e r

42
Chapter 42Creating properties

Properties are the most visible parts of components. The application developer can
see and manipulate them at design time and get immediate feedback as the
components react in the Form designer. Well-designed properties make your
components easier for others to use and easier for you to maintain.

To make the best use of properties in your components, you should understand the
following:

• Why create properties?
• Types of properties
• Publishing inherited properties
• Defining properties
• Creating array properties
• Storing and loading properties

Why create properties?
From the application developer’s standpoint, properties look like variables.
Developers can set or read the values of properties as if they were fields. (About the
only thing you can do with a variable that you cannot do with a property is pass it as
a var parameter.)

Properties provide more power than simple fields because

• Application developers can set properties at design time. Unlike methods, which
are available only at runtime, properties let the developer customize components
before running an application. Properties can appear in the Object Inspector,
which simplifies the programmer’s job; instead of handling several parameters to
construct an object, you let Delphi read the values from the Object Inspector. The
Object Inspector also validates property assignments as soon as they are made.

42-2 D e v e l o p e r ’ s G u i d e

T y p e s o f p r o p e r t i e s

• Properties can hide implementation details. For example, data stored internally in
an encrypted form can appear unencrypted as the value of a property; although
the value is a simple number, the component may look up the value in a database
or perform complex calculations to arrive at it. Properties let you attach complex
effects to outwardly simple assignments; what looks like an assignment to a field
can be a call to a method which implements elaborate processing.

• Properties can be virtual. Hence, what looks like a single property to an
application developer may be implemented differently in different components.

A simple example is the Top property of all controls. Assigning a new value to Top
does not just change a stored value; it repositions and repaints the control. And the
effects of setting a property need not be limited to an individual component; for
example, setting the Down property of a speed button to True sets Down property of
all other speed buttons in its group to False.

Types of properties
A property can be of any type. Different types are displayed differently in the Object
Inspector, which validates property assignments as they are made at design time.

Publishing inherited properties
All components inherit properties from their ancestor classes. When you derive a
new component from an existing one, your new component inherits all the properties
of its immediate ancestor. If you derive from one of the abstract classes, many of the
inherited properties are either protected or public, but not published.

Table 42.1 How properties appear in the Object Inspector

Property type Object Inspector treatment

Simple Numeric, character, and string properties appear as numbers, characters, and
strings. The application developer can edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) appear as editable strings.
The developer can also cycle through the possible values by double-clicking
the value column, and there is a drop-down list that shows all possible values.

Set Properties of set types appear as sets. By double-clicking on the property, the
developer can expand the set and treat each element as a Boolean value (true if
it is included in the set).

Object Properties that are themselves classes often have their own property editors,
specified in the component’s registration procedure. If the class held by a
property has its own published properties, the Object Inspector lets the
developer to expand the list (by double-clicking) to include these properties
and edit them individually. Object properties must descend from TPersistent.

Interface Properties that are interfaces can appear in the Object Inspector as long as the
value is an interface that is implemented by a component (a descendant of
TComponent). Interface properties often have their own property editors.

Array Array properties must have their own property editors; the Object Inspector
has no built-in support for editing them. You can specify a property editor
when you register your components.

C r e a t i n g p r o p e r t i e s 42-3

D e f i n i n g p r o p e r t i e s

To make a protected or public property available at design time in the Object
Inspector, you must redeclare the property as published. Redeclaring means adding
a declaration for the inherited property to the declaration of the descendant class.

If you derive a VCL component from TWinControl, for example, it inherits the
protected DockSite property. By redeclaring DockSite in your new component, you
can change the level of protection to either public or published.

The following code shows a redeclaration of DockSite as published, making it available
at design time.

type
TSampleComponent = class(TWinControl)
published

property DockSite;
end;

When you redeclare a property, you specify only the property name, not the type and
other information described below in “Defining properties”. You can also declare
new default values and specify whether to store the property.

Redeclarations can make a property less restricted, but not more restricted. Thus you
can make a protected property public, but you cannot hide a public property by
redeclaring it as protected.

Defining properties
This section shows how to declare new properties and explains some of the
conventions followed in the standard components. Topics include

• The property declaration
• Internal data storage
• Direct access
• Access methods
• Default property values

The property declaration

A property is declared in the declaration of its component class. To declare a
property, you specify three things:

• The name of the property.

• The type of the property.

• The methods used to read and write the value of the property. If no write method
is declared, the property is read-only.

Properties declared in a published section of the component’s class declaration are
editable in the Object Inspector at design time. The value of a published property is
saved with the component in the form file. Properties declared in a public section are
available at runtime and can be read or set in program code.

42-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s

Here is a typical declaration for a property called Count.

type
TYourComponent = class(TComponent)
private

FCount: Integer; { used for internal storage }
procedure SetCount (Value: Integer); { write method }

public
property Count: Integer read FCount write SetCount;

end;

Internal data storage

There are no restrictions on how you store the data for a property. In general,
however, Delphi components follow these conventions:

• Property data is stored in class fields.

• The fields used to store property data are private and should be accessed only
from within the component itself. Derived components should use the inherited
property; they do not need direct access to the property’s internal data storage.

• Identifiers for these fields consist of the letter F followed by the name of the
property. For example, the raw data for the Width property defined in TControl is
stored in a field called FWidth.

The principle that underlies these conventions is that only the implementation
methods for a property should access the data behind it. If a method or another
property needs to change that data, it should do so through the property, not by
direct access to the stored data. This ensures that the implementation of an inherited
property can change without invalidating derived components.

Direct access

The simplest way to make property data available is direct access. That is, the read and
write parts of the property declaration specify that assigning or reading the property
value goes directly to the internal-storage field without calling an access method.
Direct access is useful when you want to make a property available in the Object
Inspector but changes to its value trigger no immediate processing.

It is common to have direct access for the read part of a property declaration but use
an access method for the write part. This allows the status of the component to be
updated when the property value changes.

The following component-type declaration shows a property that uses direct access
for both the read and the write parts.

type
TSampleComponent = class(TComponent)
private { internal storage is private}

FMyProperty: Boolean; { declare field to hold property value }
published { make property available at design time }

property MyProperty: Boolean read FMyProperty write FMyProperty;
end;

C r e a t i n g p r o p e r t i e s 42-5

D e f i n i n g p r o p e r t i e s

Access methods

You can specify an access method instead of a field in the read and write parts of a
property declaration. Access methods should be protected, and are usually declared
as virtual; this allows descendant components to override the property’s
implementation.

Avoid making access methods public. Keeping them protected ensures that
application developers do not inadvertently modify a property by calling one of
these methods.

Here is a class that declares three properties using the index specifier, which allows
all three properties to have the same read and write access methods:

type
TSampleCalendar = class(TCustomGrid)
public

property Day: Integer index 3 read GetDateElement write SetDateElement;
property Month: Integer index 2 read GetDateElement write SetDateElement;
property Year: Integer index 1 read GetDateElement write SetDateElement;

private
function GetDateElement(Index: Integer): Integer; { note the Index parameter }
procedure SetDateElement(Index: Integer; Value: Integer);

ƒ

Because each element of the date (day, month, and year) is an int, and because setting
each requires encoding the date when set, the code avoids duplication by sharing the
read and write methods for all three properties. You need only one method to read a
date element, and another to write the date element.

Here is the read method that obtains the date element:

function TSampleCalendar.GetDateElement(Index: Integer): Integer;
var

AYear, AMonth, ADay: Word;
begin

DecodeDate(FDate, AYear, AMonth, ADay); { break encoded date into elements }
case Index of

1: Result := AYear;
2: Result := AMonth;
3: Result := ADay;
else Result := -1;

end;
end;

This is the write method that sets the appropriate date element:

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
var

AYear, AMonth, ADay: Word;
begin

if Value > 0 then { all elements must be positive }
begin

DecodeDate(FDate, AYear, AMonth, ADay); { get current date elements }
case Index of { set new element depending on Index }
1: AYear := Value;

42-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s

2: AMonth := Value;
3: ADay := Value;
else Exit;

end;
FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
Refresh; { update the visible calendar }

end;
end;

The read method
The read method for a property is a function that takes no parameters (except as
noted below) and returns a value of the same type as the property. By convention, the
function’s name is Get followed by the name of the property. For example, the read
method for a property called Count would be GetCount. The read method
manipulates the internal storage data as needed to produce the value of the property
in the appropriate type.

The only exceptions to the no-parameters rule are for array properties and properties
that use index specifiers (see “Creating array properties” on page 42-8), both of
which pass their index values as parameters. (Use index specifiers to create a single
read method that is shared by several properties. For more information about index
specifiers, see the Object Pascal Language Guide.)

If you do not declare a read method, the property is write-only. Write-only properties
are seldom used.

The write method
The write method for a property is a procedure that takes a single parameter (except
as noted below) of the same type as the property. The parameter can be passed by
reference or by value, and can have any name you choose. By convention, the write
method’s name is Set followed by the name of the property. For example, the write
method for a property called Count would be SetCount. The value passed in the
parameter becomes the new value of the property; the write method must perform
any manipulation needed to put the appropriate data in the property’s internal
storage.

The only exceptions to the single-parameter rule are for array properties and
properties that use index specifiers, both of which pass their index values as a second
parameter. (Use index specifiers to create a single write method that is shared by
several properties. For more information about index specifiers, see the Object Pascal
Language Guide.)

If you do not declare a write method, the property is read-only.

Write methods commonly test whether a new value differs from the current value
before changing the property. For example, here is a simple write method for an
integer property called Count that stores its current value in a field called FCount.

procedure TMyComponent.SetCount(Value: Integer);
begin

if Value <> FCount then
begin

C r e a t i n g p r o p e r t i e s 42-7

D e f i n i n g p r o p e r t i e s

FCount := Value;
Update;

end;
end;

Default property values

When you declare a property, you can specify a default value for it. Delphi uses the
default value to determine whether to store the property in a form file. If you do not
specify a default value for a property, Delphi always stores the property.

To specify a default value for a property, append the default directive to the
property’s declaration (or redeclaration), followed by the default value. For example,

property Cool Boolean read GetCool write SetCool default True;

Note Declaring a default value does not set the property to that value. The component’s
constructor method should initialize property values when appropriate. However,
since objects always initialize their fields to 0, it is not strictly necessary for the
constructor to set integer properties to 0, string properties to null, or Boolean
properties to False.

Specifying no default value
When redeclaring a property, you can specify that the property has no default value,
even if the inherited property specified one.

To designate a property as having no default value, append the nodefault directive
to the property’s declaration. For example,

property FavoriteFlavor string nodefault;

When you declare a property for the first time, there is no need to include nodefault.
The absence of a declared default value means that there is no default.

Here is the declaration of a component that includes a single Boolean property called
IsTrue with a default value of True. Below the declaration (in the implementation
section of the unit) is the constructor that initializes the property.

type
TSampleComponent = class(TComponent)
private

FIsTrue: Boolean;
public

constructor Create(AOwner: TComponent); override;
published

property IsTrue: Boolean read FIsTrue write FIsTrue default True;
end;

ƒ
constructor TSampleComponent.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { call the inherited constructor }
FIsTrue := True; { set the default value }

end;

42-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a r r a y p r o p e r t i e s

Creating array properties
Some properties lend themselves to being indexed like arrays. For example, the Lines
property of TMemo is an indexed list of the strings that make up the text of the memo;
you can treat it as an array of strings. Lines provides natural access to a particular
element (a string) in a larger set of data (the memo text).

Array properties are declared like other properties, except that

• The declaration includes one or more indexes with specified types. The indexes
can be of any type.

• The read and write parts of the property declaration, if specified, must be
methods. They cannot be fields.

The read and write methods for an array property take additional parameters that
correspond to the indexes. The parameters must be in the same order and of the same
type as the indexes specified in the declaration.

There are a few important differences between array properties and arrays. Unlike
the index of an array, the index of an array property does not have to be an integer
type. You can index a property on a string, for example. In addition, you can
reference only individual elements of an array property, not the entire range of the
property.

The following example shows the declaration of a property that returns a string
based on an integer index.

type
TDemoComponent = class(TComponent)
private

function GetNumberName(Index: Integer): string;
public

property NumberName[Index: Integer]: string read GetNumberName;
end;

ƒ
function TDemoComponent.GetNumberName(Index: Integer): string;
begin

Result := 'Unknown';
case Index of

-MaxInt..-1: Result := 'Negative';
0: Result := 'Zero';
1..100: Result := 'Small';
101..MaxInt: Result := 'Large';

end;
end;

Creating properties for subcomponents
By default, when a property’s value is another component, you assign a value to that
property by adding an instance of the other component to the form or data module
and then assigning that component as the value of the property. However, it is also

C r e a t i n g p r o p e r t i e s 42-9

C r e a t i n g p r o p e r t i e s f o r s u b c o m p o n e n t s

possible for your component to create its own instance of the object that implements
the property value. Such a dedicated component is called a subcomponent.

Subcomponents can be any persistent object (any descendant of TPersistent). Unlike
separate components that happen to be assigned as the value of a property, the
published properties of subcomponents are saved with the component that creates
them. In order for this to work, however, the following conditions must be met:

• The Owner of the subcomponent must be the component that creates it and uses it
as the value of a published property. For subcomponents that are descendants of
TComponent, you can accomplish this by setting the Owner property of the
subcomponent. For other subcomponents, you must override the GetOwner
method of the persistent object so that it returns the creating component.

• If the subcomponent is a descendant of TComponent, it must indicate that it is a
subcomponent by calling the SetSubComponent method. Typically, this call is made
either by the owner when it creates the subcomponent or by the constructor of the
subcomponent.

Typically, properties whose values are subcomponents are read-only. If you allow a
property whose value is a subcomponent to be changed, the property setter must free
the subcomponent when another component is assigned as the property value. In
addition, the component often re-instantiates its subcomponent when the property is
set to nil. Otherwise, once the property is changed to another component, the
subcomponent can never be restored at design time. The following example
illustrates such a property setter for a property whose value is a TTimer:

procedure TDemoComponent.SetTimerProp(Value: TTimer);
begin

if Value <> FTimer then
begin

if Value <> nil then
begin
if (FTimer <> nil and FTimer.Owner = self then

FTimer.Free;
FTimer := Value;
FTimer,FreeNotification(self);

end
else { nil value }
begin
if FTimer.Owner <> self then
{

FTimer := TTimer.Create(self);
FTimer.SetSubComponent(True);
FTimer.FreeNotification(self);

}
end;

end;
end;

Note that the property setter above called the FreeNotification method of the
component that is set as the property value. This call ensures that the component that
is the value of the property sends a notification if it is about to be destroyed. It sends

42-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g p r o p e r t i e s f o r i n t e r f a c e s

this notification by calling the Notification method. You handle this call by overriding
the Notification method, as follows:

procedure TDemoComponent.Notification(AComponent: TComponent; Operation: TOperation);
begin

inherited Notification(AComponent, Operation);
if (Operation = opRemove) and (AComponent = FTimer) then

FTimer := nil;
end;

Creating properties for interfaces
You can use an interface as the value of a published property, much as you can use
an object. However, the mechanism by which your component receives notifications
from the implementation of that interface differs. In the previous topic, the property
setter called the FreeNotification method of the component that was assigned as the
property value. This allowed the component to update itself when the component
that was the value of the property was freed. When the value of the property is an
interface, however, you don’t have access to the component that implements that
interface. As a result, you can’t call its FreeNotification method.

To handle this situation, you can call your component’s ReferenceInterface method:

procedure TDemoComponent.SetMyIntfProp(const Value: IMyInterface);
begin

ReferenceInterface(FIntfField, opRemove);
FIntfField := Value;
ReferenceInterface(FIntfField, opInsert);

end;

Calling ReferenceInterface with a specified interface does the same thing as calling
another component’s FreeNotification method. Thus, after calling ReferenceInterface
from the property setter, you can override the Notification method to handle the
notifications from the implementor of the interface:

procedure TDemoComponent.Notification(AComponent: TComponent; Operation: TOperation);
begin

inherited Notification(AComponent, Operation);
if (Assigned(MyIntfProp)) and (AComponent.IsImplementorOf(MyInftProp)) then

MyIntfProp := nil;
end;

Note that the Notification code assigns nil to the MyIntfProp property, not to the
private field (FIntfField). This ensures that Notification calls the property setter, which
calls ReferenceInterface to remove the notification request that was established when
the property value was set previously. All assignments to the interface property must
be made through the property setter.

C r e a t i n g p r o p e r t i e s 42-11

S t o r i n g a n d l o a d i n g p r o p e r t i e s

Storing and loading properties
Delphi stores forms and their components in form (.dfm in VCL and .xfm in CLX)
files. A form file stores the properties of a form and its components. When Delphi
developers add the components you write to their forms, your components must
have the ability to write their properties to the form file when saved. Similarly, when
loaded into Delphi or executed as part of an application, the components must
restore themselves from the form file.

Most of the time you will not need to do anything to make your components work
with form files because the ability to store a representation and load from it are part
of the inherited behavior of components. Sometimes, however, you might want to
alter the way a component stores itself or the way it initializes when loaded; so you
should understand the underlying mechanism.

These are the aspects of property storage you need to understand:

• Using the store-and-load mechanism
• Specifying default values
• Determining what to store
• Initializing after loading
• Storing and loading unpublished properties

Using the store-and-load mechanism

The description of a form consists of a list of the form’s properties, along with similar
descriptions of each component on the form. Each component, including the form
itself, is responsible for storing and loading its own description.

By default, when storing itself, a component writes the values of all its public and
published properties that differ from their default values, in the order of their
declaration. When loading itself, a component first constructs itself, setting all
properties to their default values, then reads the stored, non-default property values.

This default mechanism serves the needs of most components, and requires no action
at all on the part of the component writer. There are several ways you can customize
the storing and loading process to suit the needs of your particular components,
however.

Specifying default values

Delphi components save their property values only if those values differ from the
defaults. If you do not specify otherwise, Delphi assumes a property has no default
value, meaning the component always stores the property, whatever its value.

To specify a default value for a property, add the default directive and the new
default value to the end of the property declaration.

You can also specify a default value when redeclaring a property. In fact, one reason
to redeclare a property is to designate a different default value.

42-12 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

Note Specifying the default value does not automatically assign that value to the property
on creation of the object. You must make sure that the component’s constructor
assigns the necessary value. A property whose value is not set by a component’s
constructor assumes a zero value—that is, whatever value the property assumes when
its storage memory is set to 0. Thus numeric values default to 0, Boolean values to False,
pointers to nil, and so on. If there is any doubt, assign a value in the constructor method.

The following code shows a component declaration that specifies a default value for
the Align property and the implementation of the component’s constructor that sets
the default value. In this case, the new component is a special case of the standard
panel component that will be used for status bars in a window, so its default
alignment should be to the bottom of its owner.

type
TStatusBar = class(TPanel)
public

constructor Create(AOwner: TComponent); override; { override to set new default }
published

property Align default alBottom; { redeclare with new default value }
end;

ƒ
constructor TStatusBar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { perform inherited initialization }
Align := alBottom; { assign new default value for Align }

end;

Determining what to store

You can control whether Delphi stores each of your components’ properties. By
default, all properties in the published part of the class declaration are stored. You
can choose not to store a given property at all, or you can designate a function that
determines dynamically whether to store the property.

To control whether Delphi stores a property, add the stored directive to the property
declaration, followed by True, False, or the name of a Boolean function.

The following code shows a component that declares three new properties. One is
always stored, one is never stored, and the third is stored depending on the value of a
Boolean function:

type
TSampleComponent = class(TComponent)
protected

function StoreIt: Boolean;
public
ƒ
published

property Important: Integer stored True; { always stored }
property Unimportant: Integer stored False; { never stored }
property Sometimes: Integer stored StoreIt; { storage depends on function value }

end;

C r e a t i n g p r o p e r t i e s 42-13

S t o r i n g a n d l o a d i n g p r o p e r t i e s

Initializing after loading

After a component reads all its property values from its stored description, it calls a
virtual method named Loaded, which performs any required initializations. The call
to Loaded occurs before the form and its controls are shown, so you do not need to
worry about initialization causing flicker on the screen.

To initialize a component after it loads its property values, override the Loaded
method.

Note The first thing to do in any Loaded method is call the inherited Loaded method. This
ensures that any inherited properties are correctly initialized before you initialize
your own component.

The following code comes from the TDatabase component. After loading, the
database tries to reestablish any connections that were open at the time it was stored,
and specifies how to handle any exceptions that occur while connecting.

procedure TDatabase.Loaded;
begin

inherited Loaded; { call the inherited method first}
try

if FStreamedConnected then Open { reestablish connections }
else CheckSessionName(False);

except
if csDesigning in ComponentState then { at design time... }

Application.HandleException(Self) { let Delphi handle the exception }
else raise; { otherwise, reraise }

end;
end;

Storing and loading unpublished properties

By default, only published properties are loaded and saved with a component.
However, it is possible to load and save unpublished properties. This allows you to
have persistent properties that do not appear in the Object Inspector. It also allows
components to store and load property values that Delphi does not know how to
read or write because the value of the property is too complex. For example, the
TStrings object can’t rely on Delphi’s automatic behavior to store and load the strings
it represents and must use the following mechanism.

You can save unpublished properties by adding code that tells Delphi how to load
and save your property’s value.

To write your own code to load and save properties, use the following steps:

1 Create methods to store and load the property value.

2 Override the DefineProperties method, passing those methods to a filer object.

42-14 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

Creating methods to store and load property values
To store and load unpublished properties, you must first create a method to store
your property value and another to load your property value. You have two choices:

• Create a method of type TWriterProc to store your property value and a method of
type TReaderProc to load your property value. This approach lets you take
advantage of Delphi’s built-in capabilities for saving and loading simple types. If
your property value is built out of types that Delphi knows how to save and load,
use this approach.

• Create two methods of type TStreamProc, one to store and one to load your
property’s value. TStreamProc takes a stream as an argument, and you can use the
stream’s methods to write and read your property values.

For example, consider a property that represents a component that is created at
runtime. Delphi knows how to write this value, but does not do so automatically
because the component is not created in the form designer. Because the streaming
system can already load and save components, you can use the first approach. The
following methods load and store the dynamically created component that is the
value of a property named MyCompProperty:

procedure TSampleComponent.LoadCompProperty(Reader: TReader);
begin

if Reader.ReadBoolean then
MyCompProperty := Reader.ReadComponent(nil);

end;
procedure TSampleComponent.StoreCompProperty(Writer: TWriter);
begin

Writer.WriteBoolean(MyCompProperty <> nil);
if MyCompProperty <> nil then

Writer.WriteComponent(MyCompProperty);
end;

Overriding the DefineProperties method
Once you have created methods to store and load your property value, you can
override the component’s DefineProperties method. Delphi calls this method when it
loads or stores the component. In the DefineProperties method, you must call the
DefineProperty method or the DefineBinaryProperty method of the current filer,
passing it the method to use for loading or saving your property value. If your load
and store methods are of type TWriterProc and type TReaderProc, then you call the
filer’s DefineProperty method. If you created methods of type TStreamProc, call
DefineBinaryProperty instead.

No matter which method you use to define the property, you pass it the methods that
store and load your property value as well as a boolean value indicating whether the
property value needs to be written. If the value can be inherited or has a default
value, you do not need to write it.

C r e a t i n g p r o p e r t i e s 42-15

S t o r i n g a n d l o a d i n g p r o p e r t i e s

For example, given the LoadCompProperty method of type TReaderProc and the
StoreCompProperty method of type TWriterProc, you would override DefineProperties
as follows:

procedure TSampleComponent.DefineProperties(Filer: TFiler);
function DoWrite: Boolean;
begin

if Filer.Ancestor <> nil then { check Ancestor for an inherited value }
begin
if TSampleComponent(Filer.Ancestor).MyCompProperty = nil then

Result := MyCompProperty <> nil
else if MyCompProperty = nil or

TSampleComponent(Filer.Ancestor).MyCompProperty.Name <> MyCompProperty.Name then
Result := True

else Result := False;
end
else { no inherited value -- check for default (nil) value }
Result := MyCompProperty <> nil;

end;
begin

inherited; { allow base classes to define properties }
Filer.DefineProperty('MyCompProperty', LoadCompProperty, StoreCompProperty, DoWrite);

end;

42-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g e v e n t s 43-1

C h a p t e r

43
Chapter 43Creating events

An event is a link between an occurrence in the system (such as a user action or a
change in focus) and a piece of code that responds to that occurrence. The responding
code is an event handler, and is nearly always written by the application developer.
Events let application developers customize the behavior of components without
having to change the classes themselves. This is known as delegation.

Events for the most common user actions (such as mouse actions) are built into all the
standard components, but you can also define new events. To create events in a
component, you need to understand the following:

• What are events?
• Implementing the standard events
• Defining your own events

Events are implemented as properties, so you should already be familiar with the
material in Chapter 42, “Creating properties,” before you attempt to create or change
a component’s events.

What are events?
An event is a mechanism that links an occurrence to some code. More specifically, an
event is a method pointer that points to a method in a specific class instance.

From the application developer’s perspective, an event is just a name related to a
system occurrence, such as OnClick, to which specific code can be attached. For
example, a push button called Button1 has an OnClick method. By default, Delphi
generates an event handler called Button1Click in the form that contains the button
and assigns it to OnClick. When a click event occurs in the button, the button calls the
method assigned to OnClick, in this case, Button1Click.

43-2 D e v e l o p e r ’ s G u i d e

W h a t a r e e v e n t s ?

To write an event, you need to understand the following:

• Events are method pointers.
• Events are properties.
• Event types are method-pointer types
• Event-handler types are procedures
• Event handlers are optional.

Events are method pointers

Delphi uses method pointers to implement events. A method pointer is a special
pointer type that points to a specific method in an instance object. As a component
writer, you can treat the method pointer as a placeholder: When your code detects
that an event occurs, you call the method (if any) specified by the user for that event.

Method pointers work just like any other procedural type, but they maintain a
hidden pointer to an object. When the application developer assigns a handler to a
component’s event, the assignment is not just to a method with a particular name,
but rather to a method in a specific instance object. That object is usually the form
that contains the component, but it need not be.

All controls, for example, inherit a dynamic method called Click for handling click
events:

procedure Click; dynamic;

The implementation of Click calls the user’s click-event handler, if one exists. If the
user has assigned a handler to a control’s OnClick event, clicking the control results in
that method being called. If no handler is assigned, nothing happens.

Events are properties

Components use properties to implement their events. Unlike most other properties,
events do not use methods to implement their read and write parts. Instead, event
properties use a private class field of the same type as the property.

By convention, the field’s name is the name of the property preceded by the letter F.
For example, the OnClick method’s pointer is stored in a field called FOnClick of type
TNotifyEvent, and the declaration of the OnClick event property looks like this:

type
TControl = class(TComponent)
private

FOnClick: TNotifyEvent; { declare a field to hold the method pointer }
ƒ

protected
property OnClick: TNotifyEvent read FOnClick write FOnClick;

end;

User clicks Button1 Button1.OnClick points to
Form1.Button1Click

Form1.Button1Click
executes

Occurrence Event Event handler

C r e a t i n g e v e n t s 43-3

W h a t a r e e v e n t s ?

To learn about TNotifyEvent and other event types, see the next section, “Event types
are method-pointer types”.

As with any other property, you can set or change the value of an event at runtime.
The main advantage to having events be properties, however, is that component
users can assign handlers to events at design time, using the Object Inspector.

Event types are method-pointer types

Because an event is a pointer to an event handler, the type of the event property must
be a method-pointer type. Similarly, any code to be used as an event handler must be
an appropriately typed method of an object.

All event-handler methods are procedures. To be compatible with an event of a given
type, an event-handler method must have the same number and type of parameters,
in the same order, passed in the same way.

Delphi defines method types for all its standard events. When you create your own
events, you can use an existing type if that is appropriate, or define one of your own.

Event-handler types are procedures
Although the compiler allows you to declare method-pointer types that are
functions, you should never do so for handling events. Because an empty function
returns an undefined result, an empty event handler that was a function might not
always be valid. For this reason, all your events and their associated event handlers
should be procedures.

Although an event handler cannot be a function, you can still get information from
the application developer’s code using var parameters. When doing this, make sure
you assign a valid value to the parameter before calling the handler so you don’t
require the user’s code to change the value.

An example of passing var parameters to an event handler is the OnKeyPress event, of
type TKeyPressEvent. TKeyPressEvent defines two parameters, one to indicate which
object generated the event, and one to indicate which key was pressed:

type
TKeyPressEvent = procedure(Sender: TObject; var Key: Char) of object;

Normally, the Key parameter contains the character pressed by the user. Under
certain circumstances, however, the user of the component may want to change the
character. One example might be to force all characters to uppercase in an editor. In
that case, the user could define the following handler for keystrokes:

procedure TForm1.Edit1KeyPressed(Sender: TObject; var Key: Char);
begin

Key := UpCase(Key);
end;

You can also use var parameters to let the user override the default handling.

43-4 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s

Event handlers are optional

When creating events, remember that developers using your components may not
attach handlers to them. This means that your component should not fail or generate
errors simply because there is no handler attached to a particular event. (The
mechanics of calling handlers and dealing with events that have no attached handler
are explained in “Calling the event” on page 43-8.)

Events happen almost constantly in a GUI application. Just moving the mouse
pointer across a visual component sends numerous mouse-move messages, which
the component translates into OnMouseMove events. In most cases, developers do not
want to handle the mouse-move events, and this should not cause a problem. So the
components you create should not require handlers for their events.

Moreover, application developers can write any code they want in an event handler.
The components in the VCL and CLX have events written in such a way as to
minimize the chance of an event handler generating errors. Obviously, you cannot
protect against logic errors in application code, but you can ensure that data
structures are initialized before calling events so that application developers do not
try to access invalid data.

Implementing the standard events
The controls that come with Delphi inherit events for the most common occurrences.
These are called the standard events. Although all these events are built into the
controls, they are often protected, meaning developers cannot attach handlers to
them. When you create a control, you can choose to make events visible to users of
your control.

There are three things you need to consider when incorporating the standard events
into your controls:

• Identifying standard events
• Making events visible
• Changing the standard event handling

Identifying standard events

There are two categories of standard events: those defined for all controls and those
defined only for the standard windowed controls.

Standard events for all controls
The most basic events are defined in the class TControl. All controls, whether
windowed, graphical, or custom, inherit these events. The following events are
available in all controls:

OnClick OnDragDrop OnEndDrag OnMouseMove

OnDblClick OnDragOver OnMouseDown OnMouseUp

C r e a t i n g e v e n t s 43-5

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s

The standard events have corresponding protected virtual methods declared in
TControl, with names that correspond to the event names. For example, OnClick
events call a method named Click, and OnEndDrag events call a method named
DoEndDrag.

Standard events for standard controls
In addition to the events common to all controls, standard windowed controls (those
that descend from TWinControl in the VCL and TWidgetControl in CLX) have the
following events:

Like the standard events in TControl, the windowed-control events have
corresponding methods. The standard key events listed above respond to all normal
keystrokes.

VCL Note To respond to special keystrokes (such as the Alt key), however, you must respond to
the WM_GETDLGCODE or CM_WANTSPECIALKEYS message from Windows. See
Chapter 46, “Handling messages” for information on writing message handlers.

Making events visible

The declarations of the standard events in TControl and TWinControl (TWidgetControl
in CLX) are protected, as are the methods that correspond to them. If you are
inheriting from one of these abstract classes and want to make their events accessible
at runtime or design time, you need to redeclare the events as either public or
published.

Redeclaring a property without specifying its implementation keeps the same
implementation methods, but changes the protection level. You can, therefore, take
an event that is defined in TControl but not made visible, and surface it by declaring it
as public or published.

For example, to create a component that surfaces the OnClick event at design time,
you would add the following to the component’s class declaration.

type
TMyControl = class(TCustomControl)
ƒ
published

property OnClick;
end;

OnEnter OnKeyDown OnKeyPress

OnKeyUp OnExit

43-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s

Changing the standard event handling

If you want to change the way your component responds to a certain kind of event,
you might be tempted to write some code and assign it to the event. As an
application developer, that is exactly what you would do. But when you are creating
a component, you must keep the event available for developers who use the
component.

This is the reason for the protected implementation methods associated with each of
the standard events. By overriding the implementation method, you can modify the
internal event handling; and by calling the inherited method you can maintain the
standard handling, including the event for the application developer’s code.

The order in which you call the methods is significant. As a rule, call the inherited
method first, allowing the application developer’s event-handler to execute before
your customizations (and in some cases, to keep the customizations from executing).
There may be times when you want to execute your code before calling the inherited
method, however. For example, if the inherited code is somehow dependent on the
status of the component and your code changes that status, you should make the
changes and then allow the user’s code to respond to them.

Suppose you are writing a component and you want to modify the way it responds
to mouse clicks. Instead of assigning a handler to the OnClick event as a application
developer would, you override the protected method Click:

procedure click override { forward declaration }
ƒ

procedure TMyControl.Click;
begin

inherited Click; { perform standard handling, including calling handler }
... { your customizations go here }
end;

Defining your own events
Defining entirely new events is relatively unusual. There are times, however, when a
component introduces behavior that is entirely different from that of any other
component, so you will need to define an event for it.

There are the issues you will need to consider when defining an event:

• Triggering the event
• Defining the handler type
• Declaring the event
• Calling the event

C r e a t i n g e v e n t s 43-7

D e f i n i n g y o u r o w n e v e n t s

Triggering the event

You need to know what triggers the event. For some events, the answer is obvious.
For example, a mouse-down event occurs when the user presses the left button on
the mouse and Windows sends a WM_LBUTTONDOWN message to the application.
Upon receiving that message, a component calls its MouseDown method, which in
turn calls any code the user has attached to the OnMouseDown event.

But some events are less clearly tied to specific external occurrences. For example, a
scroll bar has an OnChange event, which is triggered by several kinds of occurrence,
including keystrokes, mouse clicks, and changes in other controls. When defining
your events, you must ensure that all the appropriate occurrences call the proper
events.

Two kinds of events
There are two kinds of occurrence you might need to provide events for: user
interactions and state changes. User-interaction events are nearly always triggered by
a message from Windows, indicating that the user did something your component
may need to respond to. State-change events may also be related to messages from
Windows (focus changes or enabling, for example), but they can also occur through
changes in properties or other code.

You have total control over the triggering of the events you define. Define the events
with care so that developers are able to understand and use them.

Defining the handler type

Once you determine when the event occurs, you must define how you want the event
handled. This means determining the type of the event handler. In most cases,
handlers for events you define yourself are either simple notifications or event-
specific types. It is also possible to get information back from the handler.

Simple notifications
A notification event is one that only tells you that the particular event happened,
with no specific information about when or where. Notifications use the type
TNotifyEvent, which carries only one parameter, the sender of the event. All a handler
for a notification “knows” about the event is what kind of event it was, and what
component the event happened to. For example, click events are notifications. When
you write a handler for a click event, all you know is that a click occurred and which
component was clicked.

Notification is a one-way process. There is no mechanism to provide feedback or
prevent further handling of a notification.

Event-specific handlers
In some cases, it is not enough to know which event happened and what component
it happened to. For example, if the event is a key-press event, it is likely that the

43-8 D e v e l o p e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s

handler will want to know which key the user pressed. In these cases, you need
handler types that include parameters for additional information.

If your event was generated in response to a message, it is likely that the parameters
you pass to the event handler come directly from the message parameters.

Returning information from the handler
Because all event handlers are procedures, the only way to pass information back
from a handler is through a var parameter. Your components can use such
information to determine how or whether to process an event after the user’s handler
executes.

For example, all the key events (OnKeyDown, OnKeyUp, and OnKeyPress) pass by
reference the value of the key pressed in a parameter named Key. The event handler
can change Key so that the application sees a different key as being involved in the
event. This is a way to force typed characters to uppercase, for example.

Declaring the event

Once you have determined the type of your event handler, you are ready to declare
the method pointer and the property for the event. Be sure to give the event a
meaningful and descriptive name so that users can understand what the event does.
Try to be consistent with names of similar properties in other components.

Event names start with “On”
The names of most events in Delphi begin with “On.” This is just a convention; the
compiler does not enforce it. The Object Inspector determines that a property is an
event by looking at the type of the property: all method-pointer properties are
assumed to be events and appear on the Events page.

Developers expect to find events in the alphabetical list of names starting with “On.”
Using other kinds of names is likely to confuse them.

Note The main exception to this rule is that many events that occur before and after some
occurrence begin with “Before” and “After”.

Calling the event

You should centralize calls to an event. That is, create a virtual method in your
component that calls the application’s event handler (if it assigns one) and provides
any default handling.

Putting all the event calls in one place ensures that someone deriving a new
component from yours can customize event handling by overriding a single method,
rather than searching through your code for places where you call the event.

C r e a t i n g e v e n t s 43-9

D e f i n i n g y o u r o w n e v e n t s

There are two other considerations when calling the event:

• Empty handlers must be valid.
• Users can override default handling.

Empty handlers must be valid
You should never create a situation in which an empty event handler causes an error,
nor should the proper functioning of your component depend on a particular
response from the application’s event-handling code.

An empty handler should produce the same result as no handler at all. So the code
for calling an application’s event handler should look like this:

if Assigned(OnClick) then OnClick(Self);
... { perform default handling }

You should never have something like this:

if Assigned(OnClick) then OnClick(Self)
else { perform default handling };

Users can override default handling
For some kinds of events, developers may want to replace the default handling or
even suppress all responses. To allow this, you need to pass an argument by
reference to the handler and check for a certain value when the handler returns.

This is in keeping with the rule that an empty handler should have the same effect as
no handler at all. Because an empty handler will not change the values of arguments
passed by reference, the default handling always takes place after calling the empty
handler.

When handling key-press events, for example, application developers can suppress
the component’s default handling of the keystroke by setting the var parameter Key
to a null character (#0). The logic for supporting this looks like

if Assigned(OnKeyPress) then OnKeyPress(Self, Key);
if Key <> #0 then ... { perform default handling }

The actual code is a little different from this because it deals with Windows
messages, but the logic is the same. By default, the component calls any user-
assigned handler, then performs its standard handling. If the user’s handler sets Key
to a null character, the component skips the default handling.

43-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g m e t h o d s 44-1

C h a p t e r

44
Chapter 44Creating methods

Component methods are procedures and functions built into the structure of a class.
Although there are essentially no restrictions on what you can do with the methods
of a component, Delphi does use some standards you should follow. These
guidelines include

• Avoiding dependencies
• Naming methods
• Protecting methods
• Making methods virtual
• Declaring methods

In general, components should not contain many methods and you should minimize
the number of methods that an application needs to call. The features you might be
inclined to implement as methods are often better encapsulated into properties.
Properties provide an interface that suits the Delphi environment and are accessible
at design time.

Avoiding dependencies
At all times when writing components, minimize the preconditions imposed on the
developer. To the greatest extent possible, developers should be able to do anything
they want to a component, whenever they want to do it. There will be times when
you cannot accommodate that, but your goal should be to come as close as possible.

This list gives you an idea of the kinds of dependencies to avoid:

• Methods that the user must call to use the component

• Methods that must execute in a particular order

• Methods that put the component into a state or mode where certain events or
methods could be invalid

44-2 D e v e l o p e r ’ s G u i d e

N a m i n g m e t h o d s

The best way to handle these situations is to ensure that you provide ways out of
them. For example, if calling a method puts your component into a state where
calling another method might be invalid, then write that second method so that if an
application calls it when the component is in a bad state, the method corrects the
state before executing its main code. At a minimum, you should raise an exception in
cases when a user calls a method that is invalid.

In other words, if you create a situation where parts of your code depend on each
other, the burden should be on you to be sure that using the code in incorrect ways
does not cause problems. A warning message, for example, is preferable to a system
failure if the user does not accommodate your dependencies.

Naming methods
Delphi imposes no restrictions on what you name methods or their parameters.
There are a few conventions that make methods easier for application developers,
however. Keep in mind that the nature of a component architecture dictates that
many different kinds of people can use your components.

If you are accustomed to writing code that only you or a small group of programmers
use, you might not think too much about how you name things. It is a good idea to
make your method names clear because people unfamiliar with your code (and even
unfamiliar with coding) might have to use your components.

Here are some suggestions for making clear method names:

• Make names descriptive. Use meaningful verbs.

A name like PasteFromClipboard is much more informative than simply Paste or
PFC.

• Function names should reflect the nature of what they return.

Although it might be obvious to you as a programmer that a function named X
returns the horizontal position of something, a name like GetHorizontalPosition is
more universally understandable.

As a final consideration, make sure the method really needs to be a method. A good
guideline is that method names have verbs in them. If you find that you create a lot of
methods that do not have verbs in their names, consider whether those methods
ought to be properties.

Protecting methods
All parts of classes, including fields, methods, and properties, have a level of
protection or “visibility,” as explained in “Controlling access” on page 41-4.
Choosing the appropriate visibility for a method is simple.

Most methods you write in your components are public or protected. You rarely
need to make a method private, unless it is truly specific to that type of component,
to the point that even derived components should not have access to it.

C r e a t i n g m e t h o d s 44-3

P r o t e c t i n g m e t h o d s

Methods that should be public

Any method that application developers need to call must be declared as public.
Keep in mind that most method calls occur in event handlers, so methods should
avoid tying up system resources or putting the operating system in a state where it
cannot respond to the user.

Note Constructors and destructors should always be public.

Methods that should be protected

Any implementation methods for the component should be protected so that
applications cannot call them at the wrong time. If you have methods that application
code should not call, but that are called in derived classes, declare them as protected.

For example, suppose you have a method that relies on having certain data set up for
it beforehand. If you make that method public, there is a chance that applications
will call it before setting up the data. On the other hand, by making it protected, you
ensure that applications cannot call it directly. You can then set up other, public
methods that ensure that data setup occurs before calling the protected method.

Property-implementation methods should be declared as virtual protected methods.
Methods that are so declared allow the application developers to override the
property implementation, either augmenting its functionality or replacing it
completely. Such properties are fully polymorphic. Keeping access methods
protected ensures that developers do not accidentally call them, inadvertently
modifying a property.

Abstract methods

Sometimes a method is declared as abstract in a Delphi component. In the VCL and
CLX, abstract methods usually occur in classes whose names begin with “custom,”
such as TCustomGrid. Such classes are themselves abstract, in the sense that they are
intended only for deriving descendant classes.

While you can create an instance object of a class that contains an abstract member, it
is not recommended. Calling the abstract member leads to an EAbstractError
exception.

The abstract directive is used to indicate parts of classes that should be surfaced and
defined in descendant components; it forces Component writers to redeclare the
abstract member in descendant classes before actual instances of the class can be
created.

44-4 D e v e l o p e r ’ s G u i d e

M a k i n g m e t h o d s v i r t u a l

Making methods virtual
You make methods virtual when you want different types to be able to execute
different code in response to the same method call.

If you create components intended to be used directly by application developers, you
can probably make all your methods nonvirtual. On the other hand, if you create
abstract components from which other components will be derived, consider making
the added methods virtual. This way, derived components can override the inherited
virtual methods.

Declaring methods
Declaring a method in a component is the same as declaring any class method.

To declare a new method in a component, you do two things:

• Add the declaration to the component’s object-type declaration.
• Implement the method in the implementation part of the component’s unit.

The following code shows a component that defines two new methods, one protected
static method and one public virtual method.

type
TSampleComponent = class(TControl)
protected

procedure MakeBigger; { declare protected static method }

public
function CalculateArea: Integer; virtual; { declare public virtual method }

end;
ƒ

implementation
ƒ
procedure TSampleComponent.MakeBigger; { implement first method }
begin

Height := Height + 5;
Width := Width + 5;

end;

function TSampleComponent.CalculateArea: Integer; { implement second method }
begin

Result := Width * Height;
end;

U s i n g g r a p h i c s i n c o m p o n e n t s 45-1

C h a p t e r

45
Chapter 45Using graphics in components

Windows provides a powerful Graphics Device Interface (GDI) for drawing device-
independent graphics. The GDI, however, imposes extra requirements on the
programmer, such as managing graphic resources. Delphi takes care of all the GDI
drudgery, allowing you to focus on productive work instead of searching for lost
handles or unreleased resources.

As with any part of the Windows API, you can call GDI functions directly from your
Delphi application. But you will probably find that using Delphi’s encapsulation of
the graphic functions is faster and easier.

The topics in this section include

• Overview of graphics
• Using the canvas
• Working with pictures
• Off-screen bitmaps
• Responding to changes

Overview of graphics
Delphi encapsulates the Windows GDI at several levels. The most important to you
as a component writer is the way components display their images on the screen.
When calling GDI functions directly, you need to have a handle to a device context,
into which you have selected various drawing tools such as pens, brushes, and fonts.
After rendering your graphic images, you must restore the device context to its
original state before disposing of it.

CLX Note GDI functions are Windows-specific and do not apply to CLX or cross-platform
applications.

Instead of forcing you to deal with graphics at a detailed level, Delphi provides a
simple yet complete interface: your component’s Canvas property. The canvas
ensures that it has a valid device context, and releases the context when you are not

45-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s

using it. Similarly, the canvas has its own properties representing the current pen,
brush, and font.

The canvas manages all these resources for you, so you need not concern yourself
with creating, selecting, and releasing things like pen handles. You just tell the
canvas what kind of pen it should use, and it takes care of the rest.

One of the benefits of letting Delphi manage graphic resources is that it can cache
resources for later use, which can speed up repetitive operations. For example, if you
have a program that repeatedly creates, uses, and disposes of a particular kind of pen
tool, you need to repeat those steps each time you use it. Because Delphi caches
graphic resources, chances are good that a tool you use repeatedly is still in the cache,
so instead of having to recreate a tool, Delphi uses an existing one.

An example of this is an application that has dozens of forms open, with hundreds of
controls. Each of these controls might have one or more TFont properties. Though
this could result in hundreds or thousands of instances of TFont objects, most
applications wind up using only two or three font handles thanks to a font cache.

Here are two examples of how simple Delphi’s graphics code can be. The first uses
standard GDI functions to draw a yellow ellipse outlined in blue on a window, the
way you would using other development tools. The second uses a canvas to draw the
same ellipse in an application written with Delphi.

procedure TMyWindow.Paint(PaintDC: HDC; var PaintInfo: TPaintStruct);
var

PenHandle, OldPenHandle: HPEN;
BrushHandle, OldBrushHandle: HBRUSH;

begin
PenHandle := CreatePen(PS_SOLID, 1, RGB(0, 0, 255)); { create blue pen }
OldPenHandle := SelectObject(PaintDC, PenHandle); { tell DC to use blue pen }
BrushHandle := CreateSolidBrush(RGB(255, 255, 0)); { create a yellow brush }
OldBrushHandle := SelectObject(PaintDC, BrushHandle); { tell DC to use yellow brush }
Ellipse(HDC, 10, 10, 50, 50); { draw the ellipse }
SelectObject(OldBrushHandle); { restore original brush }
DeleteObject(BrushHandle); { delete yellow brush }
SelectObject(OldPenHandle); { restore original pen }
DeleteObject(PenHandle); { destroy blue pen }

end;

procedure TForm1.FormPaint(Sender: TObject);
begin

with Canvas do
begin

Pen.Color := clBlue; { make the pen blue }
Brush.Color := clYellow; { make the brush yellow }
Ellipse(10, 10, 50, 50); { draw the ellipse }

end;
end;

U s i n g g r a p h i c s i n c o m p o n e n t s 45-3

U s i n g t h e c a n v a s

Using the canvas
The canvas class encapsulates graphics controls at several levels, including high-level
functions for drawing individual lines, shapes, and text; intermediate properties for
manipulating the drawing capabilities of the canvas; and in the VCL, provides low-
level access to the Windows GDI.

Table 45.1 summarizes the capabilities of the canvas.

For detailed information on canvas classes and their methods and properties, see
online Help.

Working with pictures
Most of the graphics work you do in Delphi is limited to drawing directly on the
canvases of components and forms. Delphi also provides for handling stand-alone
graphic images, such as bitmaps, metafiles, and icons, including automatic
management of palettes.

There are three important aspects to working with pictures in Delphi:

• Using a picture, graphic, or canvas
• Loading and storing graphics
• Handling palettes

Using a picture, graphic, or canvas

There are three kinds of classes in Delphi that deal with graphics:

• A canvas represents a bitmapped drawing surface on a form, graphic control,
printer, or bitmap. A canvas is always a property of something else, never a stand-
alone class.

Table 45.1 Canvas capability summary

Level Operation Tools

High Drawing lines and shapes Methods such as MoveTo, LineTo, Rectangle,
and Ellipse

Displaying and measuring text TextOut, TextHeight, TextWidth, and
TextRect methods

Filling areas FillRect and FloodFill methods

Intermediate Customizing text and graphics Pen, Brush, and Font properties

Manipulating pixels Pixels property.

Copying and merging images Draw, StretchDraw, BrushCopy, and CopyRect
methods; CopyMode property

Low Calling Windows GDI functions Handle property

45-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h p i c t u r e s

• A graphic represents a graphic image of the sort usually found in a file or resource,
such as a bitmap, icon, or metafile. Delphi defines classes TBitmap, TIcon, and
TMetafile, all descended from a generic TGraphic. You can also define your own
graphic classes. By defining a minimal standard interface for all graphics, TGraphic
provides a simple mechanism for applications to use different kinds of graphics
easily.

• A picture is a container for a graphic, meaning it could contain any of the graphic
classes. That is, an item of type TPicture can contain a bitmap, an icon, a metafile,
or a user-defined graphic type, and an application can access them all in the same
way through the picture class. For example, the image control has a property
called Picture, of type TPicture, enabling the control to display images from many
kinds of graphics.

Keep in mind that a picture class always has a graphic, and a graphic might have a
canvas. (The only standard graphic that has a canvas is TBitmap.) Normally, when
dealing with a picture, you work only with the parts of the graphic class exposed
through TPicture. If you need access to the specifics of the graphic class itself, you can
refer to the picture’s Graphic property.

Loading and storing graphics

All pictures and graphics in Delphi can load their images from files and store them
back again (or into different files). You can load or store the image of a picture at any
time.

CLX Note You can also load images from and save them to a Qt MIME source, or a stream
object if creating CLX components.

To load an image into a picture from a file, call the picture’s LoadFromFile method. To
save an image from a picture into a file, call the picture’s SaveToFile method.

LoadFromFile and SaveToFile each take the name of a file as the only parameter.
LoadFromFile uses the extension of the file name to determine what kind of graphic
object it will create and load. SaveToFile saves whatever type of file is appropriate for
the type of graphic object being saved.

To load a bitmap into an image control’s picture, for example, pass the name of a
bitmap file to the picture’s LoadFromFile method:

procedure TForm1.LoadBitmapClick(Sender: TObject);
begin

Image1.Picture.LoadFromFile('RANDOM.BMP');
end;

The picture recognizes .bmp as the standard extension for bitmap files, so it creates
its graphic as a TBitmap, then calls that graphic’s LoadFromFile method. Because the
graphic is a bitmap, it loads the image from the file as a bitmap.

U s i n g g r a p h i c s i n c o m p o n e n t s 45-5

W o r k i n g w i t h p i c t u r e s

Handling palettes

For VCL components, when running on a palette-based device (typically, a 256-color
video mode), Delphi controls automatically support palette realization. That is, if you
have a control that has a palette, you can use two methods inherited from TControl to
control how Windows accommodates that palette.

Palette support for controls has these two aspects:

• Specifying a palette for a control
• Responding to palette changes

Most controls have no need for a palette, but controls that contain “rich color”
graphic images (such as the image control) might need to interact with Windows and
the screen device driver to ensure the proper appearance of the control. Windows
refers to this process as realizing palettes.

Realizing palettes is the process of ensuring that the foremost window uses its full
palette, and that windows in the background use as much of their palettes as
possible, then map any other colors to the closest available colors in the “real”
palette. As windows move in front of one another, Windows continually realizes the
palettes.

Note Delphi itself provides no specific support for creating or maintaining palettes, other
than in bitmaps. If you have a palette handle, however, Delphi controls can manage it
for you.

Specifying a palette for a control
To specify a palette for a VCL control, override the control’s GetPalette method to
return the handle of the palette.

Specifying the palette for a control does these things for your application:

• It tells the application that your control’s palette needs to be realized.
• It designates the palette to use for realization.

Responding to palette changes
If your VCL control specifies a palette by overriding GetPalette, Delphi automatically
takes care of responding to palette messages from Windows. The method that
handles the palette messages is PaletteChanged.

The primary role of PaletteChanged is to determine whether to realize the control’s
palette in the foreground or the background. Windows handles this realization of
palettes by making the topmost window have a foreground palette, with other
windows resolved in background palettes. Delphi goes one step further, in that it
also realizes palettes for controls within a window in tab order. The only time you
might need to override this default behavior is if you want a control that is not first in
tab order to have the foreground palette.

45-6 D e v e l o p e r ’ s G u i d e

O f f - s c r e e n b i t m a p s

Off-screen bitmaps
When drawing complex graphic images, a common technique in graphics
programming is to create an off-screen bitmap, draw the image on the bitmap, and
then copy the complete image from the bitmap to the final destination onscreen.
Using an off-screen image reduces flicker caused by repeated drawing directly to the
screen.

The bitmap class in Delphi, which represents bitmapped images in resources and
files, can also work as an off-screen image.

There are two main aspects to working with off-screen bitmaps:

• Creating and managing off-screen bitmaps.
• Copying bitmapped images.

Creating and managing off-screen bitmaps

When creating complex graphic images, you should avoid drawing them directly on
a canvas that appears onscreen. Instead of drawing on the canvas for a form or
control, you can construct a bitmap object, draw on its canvas, and then copy its
completed image to the onscreen canvas.

The most common use of an off-screen bitmap is in the Paint method of a graphic
control. As with any temporary object, the bitmap should be protected with a
try..finally block:

type
TFancyControl = class(TGraphicControl)
protected

procedure Paint; override; { override the Paint method }
end;

procedure TFancyControl.Paint;
var

Bitmap: TBitmap; { temporary variable for the off-screen bitmap }
begin

Bitmap := TBitmap.Create; { construct the bitmap object }
try

{ draw on the bitmap }
{ copy the result into the control's canvas }

finally
Bitmap.Free; { destroy the bitmap object }

end;
end;

Copying bitmapped images

Delphi provides four different ways to copy images from one canvas to another.
Depending on the effect you want to create, you call different methods.

U s i n g g r a p h i c s i n c o m p o n e n t s 45-7

R e s p o n d i n g t o c h a n g e s

Table 45.2 summarizes the image-copying methods in canvas objects.

Responding to changes
All graphic objects, including canvases and their owned objects (pens, brushes, and
fonts) have events built into them for responding to changes in the object. By using
these events, you can make your components (or the applications that use them)
respond to changes by redrawing their images.

Responding to changes in graphic objects is particularly important if you publish
them as part of the design-time interface of your components. The only way to
ensure that the design-time appearance of the component matches the properties set
in the Object Inspector is to respond to changes in the objects.

To respond to changes in a graphic object, assign a method to the class’s OnChange
event.

The shape component publishes properties representing the pen and brush it uses to
draw its shape. The component’s constructor assigns a method to the OnChange
event of each, causing the component to refresh its image if either the pen or brush
changes:

type
TShape = class(TGraphicControl)
public

procedure StyleChanged(Sender: TObject);
end;

ƒ
implementation
ƒ
constructor TShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor! }
Width := 65;
Height := 65;
FPen := TPen.Create; { construct the pen }
FPen.OnChange := StyleChanged; { assign method to OnChange event }
FBrush := TBrush.Create; { construct the brush }
FBrush.OnChange := StyleChanged; { assign method to OnChange event }

end;

procedure TShape.StyleChanged(Sender: TObject);
begin

Invalidate(); { erase and repaint the component }
end;

Table 45.2 Image-copying methods

To create this effect Call this method

Copy an entire graphic. Draw

Copy and resize a graphic. StretchDraw

Copy part of a canvas. CopyRect

Copy a bitmap with raster operations. BrushCopy (VCL)

Copy a graphic repeatedly to tile an area. TiledDraw(CLX)

45-8 D e v e l o p e r ’ s G u i d e

H a n d l i n g m e s s a g e s 46-1

C h a p t e r

46
Chapter 46Handling messages

One of the keys to traditional Windows programming is handling the messages sent
by Windows to applications. Delphi handles most of the common ones for you. It is
possible, however, that you will need to handle messages that Delphi does not
already handle or that you will create your own messages. CLX components do not
handle Windows messages but you can create message handlers for your own
messages.

There are three aspects to working with messages:

• Understanding the message-handling system
• Changing message handling
• Creating new message handlers

Understanding the message-handling system
All Delphi classes have a built-in mechanism for handling messages, called message-
handling methods or message handlers. The basic idea of message handlers is that the
class receives messages of some sort and dispatches them, calling one of a set of
specified methods depending on the message received. If no specific method exists
for a particular message, there is a default handler.

The following diagram shows the message-dispatch system:

The Visual Component Library defines a message-dispatching system that translates
all Windows messages (including user-defined messages) directed to a particular
class into method calls. (Note that for CLX, the dispatch system does not include
MainWndProc and WndProc.) You should never need to alter this message-dispatch
mechanism. All you will need to do is create message-handling methods. See the
section “Declaring a new message-handling method” on page 46-7 for more on this
subject.

Event MainWndProc WndProc Dispatch Handler

46-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t h e m e s s a g e - h a n d l i n g s y s t e m

What’s in a Windows message?

Note This information is applicable when writing VCL components only.

A Windows message is a data record that contains several fields. The most important
of these is an integer-size value that identifies the message. Windows defines many
messages, and the Messages unit declares identifiers for all of them. Other useful
information in a message comes in two parameter fields and a result field.

One parameter contains 16 bits, the other 32 bits. You often see Windows code that
refers to those values as wParam and lParam, for “word parameter” and “long
parameter.” Often, each parameter will contain more than one piece of information,
and you see references to names such as lParamHi, which refers to the high-order
word in the long parameter.

Originally, Windows programmers had to remember or look up in the Windows API
what each parameter contained. More recently, Microsoft has named the parameters.
This so-called “message cracking” makes it much simpler to understand what
information accompanies each message. For example, the parameters to the
WM_KEYDOWN message are now called nVirtKey and lKeyData, which gives much
more specific information than wParam and lParam.

For each type of message, Delphi defines a record type that gives a mnemonic name
to each parameter. For example, mouse messages pass the x- and y-coordinates of the
mouse event in the long parameter, one in the high-order word, and the other in the
low-order word. Using the mouse-message structure, you do not have to worry
about which word is which, because you refer to the parameters by the names XPos
and YPos instead of lParamLo and lParamHi.

Dispatching messages

Note This information is applicable when writing VCL components only.

When an application creates a window, it registers a window procedure with the
Windows kernel. The window procedure is the routine that handles messages for the
window. Traditionally, the window procedure contains a huge case statement with
entries for each message the window has to handle. Keep in mind that “window” in
this sense means just about anything on the screen: each window, each control, and
so on. Every time you create a new type of window, you have to create a complete
window procedure.

Delphi simplifies message dispatching in several ways:

• Each component inherits a complete message-dispatching system.

• The dispatch system has default handling. You define handlers only for messages
you need to respond to specially.

• You can modify small parts of the message handling and rely on inherited
methods for most processing.

The greatest benefit of this message dispatch system is that you can safely send any
message to any component at any time. If the component does not have a handler

H a n d l i n g m e s s a g e s 46-3

C h a n g i n g m e s s a g e h a n d l i n g

defined for the message, the default handling takes care of it, usually by ignoring the
message.

Tracing the flow of messages
Delphi registers a method called MainWndProc as the window procedure for each
type of component in an application. MainWndProc contains an exception-handling
block, passing the message structure from Windows to a virtual method called
WndProc and handling any exceptions by calling the application class’s
HandleException method.

MainWndProc is a nonvirtual method that contains no special handling for any
particular messages. Customizations take place in WndProc, since each component
type can override the method to suit its particular needs.

WndProc methods check for any special conditions that affect their processing so they
can “trap” unwanted messages. For example, while being dragged, components
ignore keyboard events, so the WndProc method of TWinControl passes along
keyboard events only if the component is not being dragged. Ultimately, WndProc
calls Dispatch, a nonvirtual method inherited from TObject, which determines which
method to call to handle the message.

Dispatch uses the Msg field of the message structure to determine how to dispatch a
particular message. If the component defines a handler for that particular message,
Dispatch calls the method. If the component does not define a handler for that
message, Dispatch calls DefaultHandler.

Changing message handling
Note This information is applicable when writing VCL components only.

Before changing the message handling of your components, make sure that is what
you really want to do. Delphi translates most Windows messages into events that
both the component writer and the component user can handle. Rather than
changing the message-handling behavior, you should probably change the event-
handling behavior.

To change message handling in VCL components, you override the message-
handling method. You can also prevent a component from handling a message under
certain circumstances by trapping the message.

Overriding the handler method

To change the way a component handles a particular message, you override the
message-handling method for that message. If the component does not already
handle the particular message, you need to declare a new message-handling method.

To override a message-handling method, you declare a new method in your
component with the same message index as the method it overrides. Do not use the

46-4 D e v e l o p e r ’ s G u i d e

C h a n g i n g m e s s a g e h a n d l i n g

override directive; you must use the message directive and a matching message
index.

Note that the name of the method and the type of the single var parameter do not
have to match the overridden method. Only the message index is significant. For
clarity, however, it is best to follow the convention of naming message-handling
methods after the messages they handle.

For example, to override a component’s handling of the WM_PAINT message, you
redeclare the WMPaint method:

type
TMyComponent = class(...)
ƒ
procedure WMPaint(var Message: TWMPaint); message WM_PAINT;

end;

Using message parameters

Once inside a message-handling method, your component has access to all the
parameters of the message structure. Because the parameter passed to the message
handler is a var parameter, the handler can change the values of the parameters if
necessary. The only parameter that changes frequently is the Result field for the
message: the value returned by the SendMessage call that sends the message.

Note This information is applicable when writing VCL components only.

Because the type of the Message parameter in the message-handling method varies
with the message being handled, you should refer to the documentation on Windows
messages for the names and meanings of individual parameters. If for some reason
you need to refer to the message parameters by their old-style names (WParam,
LParam, and so on), you can typecast Message to the generic type TMessage, which
uses those parameter names.

Trapping messages

Under some circumstances, you might want your components to ignore messages.
That is, you want to keep the component from dispatching the message to its
handler. To trap a message, you override the virtual method WndProc.

For VCL components, the WndProc method screens messages before passing them to
the Dispatch method, which in turn determines which method gets to handle the
message. By overriding WndProc, your component gets a chance to filter out
messages before dispatching them. An override of WndProc for a control derived
from TWinControl looks like this:

procedure TMyControl.WndProc(var Message: TMessage);
begin

{ tests to determine whether to continue processing }
inherited WndProc(Message);

end;

H a n d l i n g m e s s a g e s 46-5

C r e a t i n g n e w m e s s a g e h a n d l e r s

The TControl component defines entire ranges of mouse messages that it filters when
a user is dragging and dropping controls. Overriding WndProc helps this in two
ways:

• It can filter ranges of messages instead of having to specify handlers for each one.

• It can preclude dispatching the message at all, so the handlers are never called.

For CLX, a control might be descended from TWidgetControl and you would override
EventFilter instead of WndProc.

Here is part of the WndProc method for TControl, for example:

procedure TControl.WndProc(var Message: TMessage);
begin

ƒ
if (Message.Msg >= WM_MOUSEFIRST) and (Message.Msg <= WM_MOUSELAST) then

if Dragging then { handle dragging specially }
DragMouseMsg(TWMMouse(Message))

else
ƒ { handle others normally }

end;
ƒ { otherwise process normally }
end;

Creating new message handlers
Because Delphi provides handlers for most common messages, the time you will
most likely need to create new message handlers is when you define your own
messages. Working with user-defined messages has two aspects:

• Defining your own messages

• Declaring a new message-handling method

CLX components do not handle Windows messages but you can create message
handlers for your own messages. Note that you cannot create message handlers for
Qt events because they are objects not message IDs.

Defining your own messages

A number of the standard components define messages for internal use. The most
common reasons for defining messages are broadcasting information not covered by
standard messages and notification of state changes. You can define your own
messages in both VCL and CLX.

Defining a message is a two-step process. The steps are

1 Declaring a message identifier.

2 Declaring a message-record type.

46-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g n e w m e s s a g e h a n d l e r s

Declaring a message identifier
A message identifier is an integer-sized constant. Windows reserves the messages
below 1,024 for its own use, so when you declare your own messages you should
start above that level.

The constant WM_APP represents the starting number for user-defined messages.
When defining message identifiers, you should base them on WM_APP.

Be aware that some standard Windows controls use messages in the user-defined
range. These include list boxes, combo boxes, edit boxes, and command buttons. If
you derive a component from one of these and want to define a new message for it,
be sure to check the Messages unit to see which messages Windows already defines
for that control.

The following code shows two user-defined messages.

const
WM_MYFIRSTMESSAGE = WM_APP + 400;
WM_MYSECONDMESSAGE = WM_APP + 401;

Declaring a message-record type
If you want to give useful names to the parameters of your message, you need to
declare a message-record type for that message. The message-record is the type of the
parameter passed to the message-handling method. If you do not use the message’s
parameters, or if you want to use the old-style parameter notation (wParam, lParam,
and so on), you can use the default message-record, TMessage.

To declare a message-record type, follow these conventions:

1 Name the record type after the message, preceded by a T.

2 Call the first field in the record Msg, of type TMsgParam.

3 Define the next two bytes to correspond to the Word parameter, and the next two
bytes as unused.

Or

Define the next four bytes to correspond to the Longint parameter.

4 Add a final field called Result, of type Longint.

For example, here is the message record for all mouse messages, TWMMouse, which
uses a variant record to define two sets of names for the same parameters.

type
TWMMouse = record

Msg: TMsgParam; (first is the message ID)
Keys: Word; (this is the wParam)
case Integer of (two ways to look at the lParam)
0: {

XPos: Integer; (either as x- and y-coordinates...)
YPos: Integer);

1: {
Pos: TPoint; (... or as a single point)
Result: Longint); (and finally, the result field)

end;

H a n d l i n g m e s s a g e s 46-7

C r e a t i n g n e w m e s s a g e h a n d l e r s

Declaring a new message-handling method

There are two sets of circumstances that require you to declare new message-
handling methods:

• Your component needs to handle a Windows message that is not already handled
by the standard components.

• You have defined your own message for use by your components.

To declare a message-handling method, do the following:

1 Declare the method in a protected part of the component’s class declaration.

2 Make the method a procedure.

3 Name the method after the message it handles, but without any underline
characters.

4 Pass a single var parameter called Message, of the type of the message record.

5 Within the message method implementation, write code for any handling specific
to the component.

6 Call the inherited message handler.

Here is the declaration, for example, of a message handler for a user-defined message
called CM_CHANGECOLOR.

const
CM_CHANGECOLOR = WM_APP + 400;

type
TMyComponent = class(TControl)
ƒ

protected
procedure CMChangeColor(var Message: TMessage); message CM_CHANGECOLOR;

end;

procedure TMyComponent.CMChangeColor(var Message: TMessage);
begin

Color := Message.lParam;
inherited;

end;

46-8 D e v e l o p e r ’ s G u i d e

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-1

C h a p t e r

47
Chapter 47Making components available at

design time
This chapter describes the steps for making the components you create available in
the IDE. Making your components available at design time requires several steps:

• Registering components
• Adding palette bitmaps
• Providing Help for your component
• Adding property editors
• Adding component editors
• Compiling components into packages

Not all these steps apply to every component. For example, if you don’t define any
new properties or events, you don’t need to provide Help for them. The only steps
that are always necessary are registration and compilation.

Once your components have been registered and compiled into packages, they can
be distributed to other developers and installed in the IDE. For information on
installing packages in the IDE, see “Installing component packages” on page 11-5.

Registering components
Registration works on a compilation unit basis, so if you create several components
in a single compilation unit, you can register them all at once.

To register a component, add a Register procedure to the unit. Within the Register
procedure, you register the components and determine where to install them on the
Component palette.

Note If you create your component by choosing Component|New Component in the IDE,
the code required to register your component is added automatically.

47-2 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g c o m p o n e n t s

The steps for manually registering a component are:

• Declaring the Register procedure
• Writing the Register procedure

Declaring the Register procedure

Registration involves writing a single procedure in the unit, which must have the
name Register. The Register procedure must appear in the interface part of the unit,
and (unlike the rest of Object Pascal) its name is case-sensitive.

The following code shows the outline of a simple unit that creates and registers new
components:

unit MyBtns;
interface
type

... { declare your component types here }

procedure Register; { this must appear in the interface section }
implementation

... { component implementation goes here }

procedure Register;
begin

... { register the components }
end;
end.

Within the Register procedure, call RegisterComponents for each component you want
to add to the Component palette. If the unit contains several components, you can
register them all in one step.

Writing the Register procedure

Inside the Register procedure of a unit containing components, you must register
each component you want to add to the Component palette. If the unit contains
several components, you can register them at the same time.

To register a component, call the RegisterComponents procedure once for each page of
the Component palette to which you want to add components. RegisterComponents
involves three important things:

1 Specifying the components
2 Specifying the palette page
3 Using the RegisterComponents function

Specifying the components
Within the Register procedure, pass the component names in an open array, which
you can construct inside the call to RegisterComponents.

RegisterComponents('Miscellaneous', [TMyComponent]);

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-3

A d d i n g p a l e t t e b i t m a p s

You could also register several components on the same page at once, or register
components on different pages, as shown in the following code:

procedure Register;
begin

RegisterComponents('Miscellaneous', [TFirst, TSecond]); { two on this page... }
RegisterComponents('Assorted', [TThird]); { ...one on another... }
RegisterComponents(LoadStr(srStandard), [TFourth]); { ...and one on the Standard page }

end;

Specifying the palette page
The palette-page name is a string. If the name you give for the palette page does not
already exist, Delphi creates a new page with that name. Delphi stores the names of
the standard pages in string-list resources so that international versions of the
product can name the pages in their native languages. If you want to install a
component on one of the standard pages, you should obtain the string for the page
name by calling the LoadStr function, passing the constant representing the string
resource for that page, such as srSystem for the System page.

Using the RegisterComponents function
Within the Register procedure, call RegisterComponents to register the components in
the classes array. RegisterComponents is a function that takes two parameters: the
name of a Component palette page and the array of component classes.

Set the Page parameter to the name of the page on the component palette where the
components should appear. If the named page already exists, the components are
added to that page. If the named page does not exist, Delphi creates a new palette
page with that name.

Call RegisterComponents from the implementation of the Register procedure in one
of the units that defines the custom components. The units that define the
components must then be compiled into a package and the package must be installed
before the custom components are added to the component palette.

procedure Register;
begin

RegisterComponents('System', [TSystem1, TSystem2]); {add to system page}
RegisterComponents('MyCustomPage',[TCustom1, TCustom2]); { new page}

end;

Adding palette bitmaps
Every component needs a bitmap to represent the component on the Component
palette. If you don’t specify your own bitmap, Delphi uses a default bitmap.

Because the palette bitmaps are needed only at design time, you don’t compile them
into the component’s compilation unit. Instead, you supply them in a Windows
resource file with the same name as the unit, but with the extension .DCR (dynamic
component resource). You can create this resource file using the Image editor in
Delphi. Each bitmap should be 24 pixels square.

47-4 D e v e l o p e r ’ s G u i d e

P r o v i d i n g H e l p f o r y o u r c o m p o n e n t

For each component you want to install, supply a palette bitmap file, and within each
palette bitmap file, supply a bitmap for each component you register. The bitmap
image has the same name as the component. Keep the palette bitmap file in the same
directory with the compiled files, so Delphi can find the bitmaps when it installs the
components on the Component palette.

For example, if you create a component named TMyControl in a unit named ToolBox,
you need to create a resource file called TOOLBOX.DCR that contains a bitmap called
TMYCONTROL. The resource names are not case-sensitive, but by convention they
are usually in uppercase letters.

Providing Help for your component
When you select a standard component on a form, or a property or event in the
Object Inspector, you can press F1 to get Help on that item. You can provide
developers with the same kind of documentation for your components if you create
the appropriate Help files.

You can provide a small Help file to describe your components, and your help file
becomes part of the user’s overall Delphi Help system.

See the section “Creating the Help file” on page 47-4 for information on how to
compose the help file for use with a component.

Creating the Help file

You can use any tool you want to create the source file for a Windows Help file (in
.rtf format). Delphi includes the Microsoft Help Workshop, which compiles your
Help files and provides an online help authoring guide. You can find complete
information about creating Help files in the online guide for Help Workshop.

Composing help files for components consists of the steps:

• Creating the entries
• Making component help context-sensitive Adding component help files

Creating the entries
To make your component’s Help integrate seamlessly with the Help for the rest of
the components in the library, observe the following conventions:

1 Each component should have a help topic.

The component topic should show which unit the component is declared in and
briefly describe the component. The component topic should link to secondary
windows that describe the component’s position in the object hierarchy and list all
of its properties, events, and methods. Application developers access this topic by
selecting the component on a form and pressing F1. For an example of a
component topic, place any component on a form and press F1.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-5

P r o v i d i n g H e l p f o r y o u r c o m p o n e n t

The component topic must have a # footnote with a value unique to the topic. The
footnote uniquely identifies each topic by the Help system.

The component topic should have a K footnote for keyword searching in the help
system Index that includes the name of the component class. For example, the
keyword footnote for the TMemo component is “TMemo.”

The component topic should also have a $ footnote that provides the title of the
topic. The title appears in the Topics Found dialog box, the Bookmark dialog box,
and the History window.

2 Each component should include the following secondary navigational topics:

• A hierarchy topic with links to every ancestor of the component in the
component hierarchy.

• A list of all properties available in the component, with links to entries
describing those properties.

• A list of all events available in the component, with links to entries describing
those events.

• A list of methods available in the component, with links to entries describing
those methods.

Links to object classes, properties, methods, or events in the Delphi help system
can be made using Alinks. When linking to an object class, the Alink uses the class
name of the object, followed by an underscore and the string “object”. For
example, to link to the TCustomPanel object, use the following:

!AL(TCustomPanel_object,1)

When linking to a property, method, or event, precede the name of the property,
method, or event by the name of the object that implements it and an underscore.
For example, to link to the Text property which is implemented by TControl, use
the following:

!AL(TControl_Text,1)

To see an example of the secondary navigation topics, display the help for any
component and click on the links labeled hierarchy, properties, methods, or
events.

3 Each property, method, and event that is declared within the component should
have a topic.

A property, event, or method topic should show the declaration of the item and
describe its use. Application developers see these topics either by highlighting the
item in the Object Inspector and pressing F1 or by placing the cursor in the Code
editor on the name of the item and pressing F1. To see an example of a property
topic, select any item in the Object Inspector and press F1.

The property, event, and method topics should include a K footnote that lists the
name of the property, method, or event, and its name in combination with the
name of the component. Thus, the Text property of TControl has the following K
footnote:

Text,TControl;TControl,Text;Text,

The property, method, and event topics should also include a $ footnote that
indicates the title of the topic, such as TControl.Text.

47-6 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

All of these topics should have a topic ID that is unique to the topic, entered as a #
footnote.

Making component help context-sensitive
Each component, property, method, and event topic must have an A footnote. The A
footnote is used to display the topic when the user selects a component and presses
F1, or when a property or event is selected in the Object Inspector and the user
presses F1. The A footnotes must follow certain naming conventions:

If the Help topic is for a component, the A footnote consists of two entries separated
by a semicolon using this syntax:

ComponentClass_Object;ComponentClass

where ComponentClass is the name of the component class.

If the Help topic is for a property or event, the A footnote consists of three entries
separated by semicolons using this syntax:

ComponentClass_Element;Element_Type;Element

where ComponentClass is the name of the component class, Element is the name of the
property, method, or event, and Type is the either Property, Method, or Event

For example, for a property named BackgroundColor of a component named TMyGrid,
the A footnote is

TMyGrid_BackgroundColor;BackgroundColor_Property;BackgroundColor

Adding component help files
To add your Help file to Delphi, use the OpenHelp utility (called oh.exe) located in
the bin directory or accessed using Help|Customize in the IDE.

You will find information about using OpenHelp in the OpenHelp.hlp file, including
adding your Help file to the Help system.

Adding property editors
The Object Inspector provides default editing for all types of properties. You can,
however, provide an alternate editor for specific properties by writing and
registering property editors. You can register property editors that apply only to the
properties in the components you write, but you can also create editors that apply to
all properties of a certain type.

At the simplest level, a property editor can operate in either or both of two ways:
displaying and allowing the user to edit the current value as a text string, and
displaying a dialog box that permits some other kind of editing. Depending on the
property being edited, you might find it useful to provide either or both kinds.

Writing a property editor requires these five steps:

1 Deriving a property-editor class

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-7

A d d i n g p r o p e r t y e d i t o r s

2 Editing the property as text
3 Editing the property as a whole
4 Specifying editor attributes
5 Registering the property editor

Deriving a property-editor class

Both CLX and the VCL define several kinds of property editors, all of which descend
from TPropertyEditor. When you create a property editor, your property-editor class
can either descend directly from TPropertyEditor or indirectly through one of the
property-editor classes described in Table 47.1. The classes in the DesignEditors unit
can be used for both VCL and CLX applications. Some of the property-editor classes,
however, supply specialized dialogs and so are specialized to either VCL or CLX.
These can be found in the WinEditors and CLXEditors units, respectively.

Note All that is absolutely necessary for a property editor is that it descend from
TBasePropertyEditor and that it support the IProperty interface. TPropertyEditor,
however, provides a default implementation of the IProperty interface.

The list in Table 47.1 is not complete. The WinEditors and CLXEditors units also
define some very specialized property editors used by unique properties such as the
component name. The listed property editors are the ones that are the most useful for
user-defined properties.

Table 47.1 Predefined property-editor types

Type Properties edited

TOrdinalProperty All ordinal-property editors (those for integer, character, and enumerated
properties) descend from TOrdinalProperty.

TIntegerProperty All integer types, including predefined and user-defined subranges.

TCharProperty Char-type and subranges of Char, such as ‘A’..’Z’.

TEnumProperty Any enumerated type.

TFloatProperty All floating-point numbers.

TStringProperty Strings.

TSetElementProperty Individual elements in sets, shown as Boolean values

TSetProperty All sets. Sets are not directly editable, but can expand into a list of set-
element properties.

TClassProperty Classes. Displays the name of the class and allows expansion of the class’s
properties.

TMethodProperty Method pointers, most notably events.

TComponentProperty Components in the same form. The user cannot edit the component’s
properties, but can point to a specific component of a compatible type.

TColorProperty Component colors. Shows color constants if applicable, otherwise
displays hexadecimal value. Drop-down list contains the color constants.
Double-click opens the color-selection dialog box.

TFontNameProperty Font names. The drop-down list displays all currently installed fonts.

TFontProperty Fonts. Allows expansion of individual font properties as well as access to
the font dialog box.

47-8 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

The following example shows the declaration of a simple property editor named
TMyPropertyEditor:

type
TFloatProperty = class(TPropertyEditor)
public

function AllEqual: Boolean; override;
function GetValue: string; override;
procedure SetValue(const Value: string); override;

end;

Editing the property as text

All properties need to provide a string representation of their values for the Object
Inspector to display. Most properties also allow the user to type in a new value for
the property. Property-editor classes provide virtual methods you can override to
convert between the text representation and the actual value.

The methods you override are called GetValue and SetValue. Your property editor
also inherits a set of methods used for assigning and reading different sorts of values,
as shown in Table 47.2.

When you override a GetValue method, you will call one of the Get methods, and
when you override SetValue, you will call one of the Set methods.

Displaying the property value
The property editor’s GetValue method returns a string that represents the current
value of the property. The Object Inspector uses this string in the value column for
the property. By default, GetValue returns “unknown”.

To provide a string representation of your property, override the property editor’s
GetValue method.

If the property is not a string value, GetValue must convert the value into a string
representation.

Setting the property value
The property editor’s SetValue method takes a string typed by the user in the Object
Inspector, converts it into the appropriate type, and sets the value of the property. If
the string does not represent a proper value for the property, SetValue should throw
an exception and not use the improper value.

Table 47.2 Methods for reading and writing property values

Property type Get method Set method

Floating point GetFloatValue SetFloatValue

 Method pointer (event) GetMethodValue SetMethodValue

Ordinal type GetOrdValue SetOrdValue

String GetStrValue SetStrValue

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-9

A d d i n g p r o p e r t y e d i t o r s

To read string values into properties, override the property editor’s SetValue method.

SetValue should convert the string and validate the value before calling one of the Set
methods.

Here are the GetValue and SetValue methods for TIntegerProperty. Integer is an ordinal
type, so GetValue calls GetOrdValue and converts the result to a string. SetValue converts
the string to an integer, performs some range checking, and calls SetOrdValue.

function TIntegerProperty.GetValue: string;
begin

with GetTypeData(GetPropType)^ do
if OrdType = otULong then // unsigned

Result := IntToStr(Cardinal(GetOrdValue))
else

Result := IntToStr(GetOrdValue);
end;

procedure TIntegerProperty.SetValue(const Value: string);
procedure Error(const Args: array of const);
begin

raise EPropertyError.CreateResFmt(@SOutOfRange, Args);
end;

var
L: Int64;

begin
L := StrToInt64(Value);
with GetTypeData(GetPropType)^ do

if OrdType = otULong then
begin // unsigned compare and reporting needed
if (L < Cardinal(MinValue)) or (L > Cardinal(MaxValue)) then
// bump up to Int64 to get past the %d in the format string

Error([Int64(Cardinal(MinValue)), Int64(Cardinal(MaxValue))]);
end
else if (L < MinValue) or (L > MaxValue) then
Error([MinValue, MaxValue]);

SetOrdValue(L);
end;

The specifics of the particular examples here are less important than the principle:
GetValue converts the value to a string; SetValue converts the string and validates the
value before calling one of the “Set” methods.

Editing the property as a whole

You can optionally provide a dialog box in which the user can visually edit a
property. The most common use of property editors is for properties that are
themselves classes. An example is the Font property, for which the user can open a
font dialog box to choose all the attributes of the font at once.

To provide a whole-property editor dialog box, override the property-editor class’s
Edit method.

47-10 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

Edit methods use the same Get and Set methods used in writing GetValue and
SetValue methods. In fact, an Edit method calls both a Get method and a Set method.
Because the editor is type-specific, there is usually no need to convert the property
values to strings. The editor generally deals with the value “as retrieved.”

When the user clicks the ‘...’ button next to the property or double-clicks the value
column, the Object Inspector calls the property editor’s Edit method.

Within your implementation of the Edit method, follow these steps:

1 Construct the editor you are using for the property.

2 Read the current value and assign it to the property using a Get method.

3 When the user selects a new value, assign that value to the property using a Set
method.

4 Destroy the editor.

The Color properties found in most components use the standard Windows color dialog
box as a property editor. Here is the Edit method from TColorProperty, which invokes the
dialog box and uses the result:

procedure TColorProperty.Edit;
var

ColorDialog: TColorDialog;
begin

ColorDialog := TColorDialog.Create(Application); { construct the editor }
try

ColorDialog.Color := GetOrdValue; { use the existing value }
if ColorDialog.Execute then { if the user OKs the dialog... }

SetOrdValue(ColorDialog.Color); { ...use the result to set value }
finally

ColorDialog.Free; { destroy the editor }
end;

end;

Specifying editor attributes

The property editor must provide information that the Object Inspector can use to
determine what tools to display. For example, the Object Inspector needs to know
whether the property has subproperties or can display a list of possible values.

To specify editor attributes, override the property editor’s GetAttributes method.

GetAttributes is a method that returns a set of values of type TPropertyAttributes that
can include any or all of the following values:

Table 47.3 Property-editor attribute flags

Flag Related method Meaning if included

paValueList GetValues The editor can give a list of enumerated values.

paSubProperties GetProperties The property has subproperties that can display.

paDialog Edit The editor can display a dialog box for editing the
entire property.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-11

A d d i n g p r o p e r t y e d i t o r s

Color properties are more versatile than most, in that they allow several ways for
users to choose them in the Object Inspector: typing, selection from a list, and
customized editor. TColorProperty’s GetAttributes method, therefore, includes several
attributes in its return value:

function TColorProperty.GetAttributes: TPropertyAttributes;
begin

Result := [paMultiSelect, paDialog, paValueList, paRevertable];
end;

Registering the property editor

Once you create a property editor, you need to register it with Delphi. Registering a
property editor associates a type of property with a specific property editor. You can
register the editor with all properties of a given type or just with a particular property of
a particular type of component.

To register a property editor, call the RegisterPropertyEditor procedure.

RegisterPropertyEditor takes four parameters:

• A type-information pointer for the type of property to edit.

This is always a call to the built-in function TypeInfo, such as TypeInfo(TMyComponent).

• The type of the component to which this editor applies. If this parameter is nil, the
editor applies to all properties of the given type.

paMultiSelect N/A The property should display when the user selects
more than one component.

paAutoUpdate SetValue Updates the component after every change instead
of waiting for approval of the value.

paSortList N/A The Object Inspector should sort the value list.

paReadOnly N/A Users cannot modify the property value.

paRevertable N/A Enables the Revert to Inherited menu item on the
Object Inspector’s context menu. The menu item
tells the property editor to discard the current
property value and return to some previously
established default or standard value.

paFullWidthName N/A The value does not need to be displayed. The Object
Inspector uses its full width for the property name
instead.

paVolatileSubProperties GetProperties The Object Inspector refetches the values of all
subproperties any time the property value changes.

paReference GetComponent
Value

The value is a reference to something else. When
used in conjunction with paSubProperties the
referenced object should be displayed as sub
properties to this property.

Table 47.3 Property-editor attribute flags (continued)

Flag Related method Meaning if included

47-12 D e v e l o p e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s

• The name of the property. This parameter only has meaning if the previous
parameter specifies a particular type of component. In that case, you can specify the
name of a particular property in that component type to which this editor applies.

• The type of property editor to use for editing the specified property.

Here is an excerpt from the procedure that registers the editors for the standard
components on the Component palette:

procedure Register;
begin

RegisterPropertyEditor(TypeInfo(TComponent), nil, ‘‘, TComponentProperty);
RegisterPropertyEditor(TypeInfo(TComponentName), TComponent, ‘Name’,

TComponentNameProperty);
RegisterPropertyEditor(TypeInfo(TMenuItem), TMenu, ‘‘, TMenuItemProperty);

end;

The three statements in this procedure cover the different uses of
RegisterPropertyEditor:

• The first statement is the most typical. It registers the property editor
TComponentProperty for all properties of type TComponent (or descendants of
TComponent that do not have their own editors registered). In general, when you
register a property editor, you have created an editor for a particular type, and you
want to use it for all properties of that type, so the second and third parameters are
nil and an empty string, respectively.

• The second statement is the most specific kind of registration. It registers an editor
for a specific property in a specific type of component. In this case, the editor is for
the Name property (of type TComponentName) of all components.

• The third statement is more specific than the first, but not as limited as the second.
It registers an editor for all properties of type TMenuItem in components of type
TMenu.

Property categories
In the IDE, the Object Inspector lets you selectively hide and display properties based
on property categories. The properties of new custom components can be fit into this
scheme by registering properties in categories. Do this at the same time you register
the component by calling RegisterPropertyInCategory or RegisterPropertiesInCategory.
Use RegisterPropertyInCategory to register a single property. Use
RegisterPropertiesInCategory to register multiple properties in a single function call.
These functions are defined in the unit DesignIntf.

Note that it is not mandatory that you register properties or that you register all of
the properties of a custom component when some are registered. Any property not
explicitly associated with a category is included in the TMiscellaneousCategory
category. Such properties are displayed or hidden in the Object Inspector based on
that default categorization.

In addition to these two functions for registering properties, there is an
IsPropertyInCategory function. This function is useful for creating localization utilities,
in which you must determine whether a property is registered in a given property
category.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-13

P r o p e r t y c a t e g o r i e s

Registering one property at a time

Register one property at a time and associate it with a property category using the
RegisterPropertyInCategory function. RegisterPropertyInCategory comes in four
overloaded variations, each providing a different set of criteria for identifying the
property in the custom component to be associated with the property category.

The first variation lets you identify the property by the property’s name. The line
below registers a property related to visual display of the component, identifying the
property by its name, “AutoSize”.

RegisterPropertyInCategory('Visual', 'AutoSize');

The second variation is much like the first, except that it limits the category to only
those properties of the given name that appear on components of a given type. The
example below registers (into the ‘Help and Hints’ category) a property named
“HelpContext” of a component of the custom class TMyButton.

RegisterPropertyInCategory('Help and Hints', TMyButton, 'HelpContext');

The third variation identifies the property using its type rather than its name. The
example below registers a property based on its type, Integer.

RegisterPropertyInCategory('Visual', TypeInfo(Integer));

The final variation uses both the property’s type and its name to identify the
property. The example below registers a property based on a combination of its type,
TBitmap, and its name, ”Pattern”.

RegisterPropertyInCategory('Visual', TypeInfo(TBitmap), 'Pattern');

See the section Specifying property categories for a list of the available property
categories and a brief description of their uses.

Registering multiple properties at once

Register multiple properties at one time and associate them with a property category
using the RegisterPropertiesInCategory function. RegisterPropertiesInCategory comes in
three overloaded variations, each providing a different set of criteria for identifying
the property in the custom component to be associated with property categories.

The first variation lets you identify properties based on property name or type. The
list is passed as an array of constants. In the example below, any property that either
has the name “Text” or belongs to a class of type TEdit is registered in the category
‘Localizable’.

RegisterPropertiesInCategory('Localizable', ['Text', TEdit]);

The second variation lets you limit the registered properties to those that belong to a
specific component. The list of properties to register include only names, not types.
For example, the following code registers a number of properties into the ‘Help and
Hints’ category for all components:

RegisterPropertiesInCategory('Help and Hints', TComponent, ['HelpContext', 'Hint',
'ParentShowHint', 'ShowHint']);

47-14 D e v e l o p e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s

The third variation lets you limit the registered properties to those that have a
specific type. As with the second variation, the list of properties to register can
include only names:

RegisterPropertiesInCategory('Localizable', TypeInfo(String), ['Text', 'Caption']);

See the section Specifying property categories for a list of the available property
categories and a brief description of their uses.

Specifying property categories

When you register properties in a category, you can use any string you want as the
name of the category. If you use a string that has not been used before, the Object
Inspector generates a new property category class with that name. You can also,
however, register properties into one of the categories that are built-in. The built-in
property categories are described in Table 47.4.:

Table 47.4 Property categories

Category Purpose

Action Properties related to runtime actions; the Enabled and Hint properties of
TEdit are in this category.

Database Properties related to database operations; the DatabaseName and SQL
properties of TQuery are in this category.

Drag, Drop, and
Docking

Properties related to drag-n-drop and docking operations; the
DragCursor and DragKind properties of TImage are in this category.

Help and Hints Properties related to using online help or hints; the HelpContext and Hint
properties of TMemo are in this category.

Layout Properties related to the visual display of a control at design-time; the
Top and Left properties of TDBEdit are in this category.

Legacy Properties related to obsolete operations; the Ctl3D and ParentCtl3D
properties of TComboBox are in this category.

Linkage Properties related to associating or linking one component to another;
the DataSet property of TDataSource is in this category.

Locale Properties related to international locales; the BiDiMode and
ParentBiDiMode properties of TMainMenu are in this category.

Localizable Properties that may require modification in localized versions of an
application. Many string properties (such as Caption) are in this
category, as are properties that determine the size and position of
controls.

Visual Properties related to the visual display of a control at runtime; the Align
and Visible properties of TScrollBox are in this category.

Input Properties related to the input of data (need not be related to database
operations); the Enabled and ReadOnly properties of TEdit are in this
category.

Miscellaneous Properties that do not fit a category or do not need to be categorized
(and properties not explicitly registered to a specific category); the
AllowAllUp and Name properties of TSpeedButton are in this category.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-15

A d d i n g c o m p o n e n t e d i t o r s

Using the IsPropertyInCategory function

An application can query the existing registered properties to determine whether a
given property is already registered in a specified category. This can be especially
useful in situations like a localization utility that checks the categorization of
properties preparatory to performing its localization operations. Two overloaded
variations of the IsPropertyInCategory function are available, allowing for different
criteria in determining whether a property is in a category.

The first variation lets you base the comparison criteria on a combination of the class
type of the owning component and the property’s name. In the command line below,
for IsPropertyInCategory to return True, the property must belong to a TCustomEdit
descendant, have the name “Text”, and be in the property category 'Localizable'.

IsItThere := IsPropertyInCategory('Localizable', TCustomEdit, 'Text');

The second variation lets you base the comparison criteria on a combination of the
class name of the owning component and the property’s name. In the command line
below, for IsPropertyInCategory to return True, the property must be a TCustomEdit
descendant, have the name “Text”, and be in the property category 'Localizable'.

IsItThere := IsPropertyInCategory('Localizable', ‘TCustomEdit’, 'Text');

Adding component editors
Component editors determine what happens when the component is double-clicked
in the designer and add commands to the context menu that appears when the
component is right-clicked. They can also copy your component to the Windows
clipboard in custom formats.

If you do not give your components a component editor, Delphi uses the default
component editor. The default component editor is implemented by the class
TDefaultEditor. TDefaultEditor does not add any new items to a component’s context
menu. When the component is double-clicked, TDefaultEditor searches the properties
of the component and generates (or navigates to) the first event handler it finds.

To add items to the context menu, change the behavior when the component is
double-clicked, or add new clipboard formats, derive a new class from
TComponentEditor and register its use with your component. In your overridden
methods, you can use the Component property of TComponentEditor to access the
component that is being edited.

Adding a custom component editor consists of the steps:

• Adding items to the context menu
• Changing the double-click behavior
• Adding clipboard formats
• Registering the component editor

47-16 D e v e l o p e r ’ s G u i d e

A d d i n g c o m p o n e n t e d i t o r s

Adding items to the context menu

When the user right-clicks the component, the GetVerbCount and GetVerb methods of
the component editor are called to build context menu. You can override these
methods to add commands (verbs) to the context menu.

Adding items to the context menu requires the steps:

• Specifying menu items
• Implementing commands

Specifying menu items
Override the GetVerbCount method to return the number of commands you are
adding to the context menu. Override the GetVerb method to return the strings that
should be added for each of these commands. When overriding GetVerb, add an
ampersand (&) to a string to cause the following character to appear underlined in
the context menu and act as a shortcut key for selecting the menu item. Be sure to add
an ellipsis (...) to the end of a command if it brings up a dialog. GetVerb has a single
parameter that indicates the index of the command.

The following code overrides the GetVerbCount and GetVerb methods to add two
commands to the context menu.

function TMyEditor.GetVerbCount: Integer;
begin

Result := 2;
end;

function TMyEditor.GetVerb(Index: Integer): String;
begin

case Index of
0: Result := ‘&DoThis ...’;
1: Result := ‘Do&That’;

end;
end;

Note Be sure that your GetVerb method returns a value for every possible index indicated
by GetVerbCount.

Implementing commands
When the command provided by GetVerb is selected in the designer, the ExecuteVerb
method is called. For every command you provide in the GetVerb method, implement
an action in the ExecuteVerb method. You can access the component that is being
edited using the Component property of the editor.

For example, the following ExecuteVerb method implements the commands for the
GetVerb method in the previous example.

procedure TMyEditor.ExecuteVerb(Index: Integer);
var

MySpecialDialog: TMyDialog;
begin

case Index of

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-17

A d d i n g c o m p o n e n t e d i t o r s

0: begin
MyDialog := TMySpecialDialog.Create(Application); { instantiate the editor }
if MySpecialDialog.Execute then; { if the user OKs the dialog... }
MyComponent.FThisProperty := MySpecialDialog.ReturnValue; { ...use the value }

MySpecialDialog.Free; { destroy the editor }
end;

1: That; { call the That method }
end;

end;

Changing the double-click behavior

When the component is double-clicked, the Edit method of the component editor is
called. By default, the Edit method executes the first command added to the context
menu. Thus, in the previous example, double-clicking the component executes the
DoThis command.

While executing the first command is usually a good idea, you may want to change
this default behavior. For example, you can provide an alternate behavior if

• you are not adding any commands to the context menu.

• you want to display a dialog that combines several commands when the
component is double-clicked.

Override the Edit method to specify a new behavior when the component is double-
clicked. For example, the following Edit method brings up a font dialog when the
user double-clicks the component:

procedure TMyEditor.Edit;
var

FontDlg: TFontDialog;
begin

FontDlg := TFontDialog.Create(Application);
try

if FontDlg.Execute then
MyComponent.FFont.Assign(FontDlg.Font);

finally
FontDlg.Free

end;
end;

Note If you want a double-click on the component to display the Code editor for an event
handler, use TDefaultEditor as a base class for your component editor instead of
TComponentEditor. Then, instead of overriding the Edit method, override the
protected TDefaultEditor.EditProperty method instead. EditProperty scans through the
event handlers of the component, and brings up the first one it finds. You can change
this to look a particular event instead. For example:

procedure TMyEditor.EditProperty(PropertyEditor: TPropertyEditor;
Continue, FreeEditor: Boolean)

begin
if (PropertyEditor.ClassName = ‘TMethodProperty’) and

(PropertyEditor.GetName = ‘OnSpecialEvent’) then
// DefaultEditor.EditProperty(PropertyEditor, Continue, FreeEditor);

end;

47-18 D e v e l o p e r ’ s G u i d e

A d d i n g c o m p o n e n t e d i t o r s

Adding clipboard formats

By default, when a user chooses Copy while a component is selected in the IDE, the
component is copied in Delphi’s internal format. It can then be pasted into another
form or data module. Your component can copy additional formats to the Clipboard
by overriding the Copy method.

For example, the following Copy method allows a TImage component to copy its
picture to the Clipboard. This picture is ignored by the Delphi IDE, but can be pasted
into other applications.

procedure TMyComponent.Copy;
var

MyFormat : Word;
AData,APalette : THandle;

begin
TImage(Component).Picture.Bitmap.SaveToClipBoardFormat(MyFormat, AData, APalette);
ClipBoard.SetAsHandle(MyFormat, AData);

end;

Registering the component editor

Once the component editor is defined, it can be registered to work with a particular
component class. A registered component editor is created for each component of
that class when it is selected in the form designer.

To create the association between a component editor and a component class, call
RegisterComponentEditor. RegisterComponentEditor takes the name of the component
class that uses the editor, and the name of the component editor class that you have
defined. For example, the following statement registers a component editor class
named TMyEditor to work with all components of type TMyComponent:

RegisterComponentEditor(TMyComponent, TMyEditor);

Place the call to RegisterComponentEditor in the Register procedure where you register
your component. For example, if a new component named TMyComponent and its
component editor TMyEditor are both implemented in the same unit, the following
code registers the component and its association with the component editor.

procedure Register;
begin

RegisterComponents('Miscellaneous', [TMyComponent);
RegisterComponentEditor(classes[0], TMyEditor);

end;

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 47-19

C o m p i l i n g c o m p o n e n t s i n t o p a c k a g e s

Compiling components into packages
Once your components are registered, you must compile them as packages before
they can be installed in the IDE. A package can contain one or several components as
well as custom property editors. For more information about packages, see Chapter
11, “Working with packages and components”.

To create and compile a package, see “Creating and editing packages” on page 11-6.
Put the source-code units for your custom components in the package’s Contains list.
If your components depend on other packages, include those packages in the
Requires list.

To install your components in the IDE, see “Installing component packages” on
page 11-5.

47-20 D e v e l o p e r ’ s G u i d e

M o d i f y i n g a n e x i s t i n g c o m p o n e n t 48-1

C h a p t e r

48
Chapter 48Modifying an existing component

The easiest way to create a component is to derive it from a component that does
nearly everything you want, then make whatever changes you need. What follows is
a simple example that modifies the standard memo component to create a memo that
does not wrap words by default.

The value of the memo component’s WordWrap property is initialized to True. If you
frequently use non-wrapping memos, you can create a new memo component that
does not wrap words by default.

Note To modify published properties or save specific event handlers for an existing
component, it is often easier to use a component template rather than create a new
class.

Modifying an existing component takes only two steps:

• Creating and registering the component

• Modifying the component class

Creating and registering the component
Creation of every component begins the same way: you create a unit, derive a
component class, register it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 40-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit Memos.

• Derive a new component type called TWrapMemo, descended from TMemo.

• Register TWrapMemo on the Samples page of the Component palette.

48-2 D e v e l o p e r ’ s G u i d e

M o d i f y i n g t h e c o m p o n e n t c l a s s

The resulting unit should look like this:

unit Memos;
interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, StdCtrls;

type
TWrapMemo = class(TMemo)
end;

procedure Register;
implementation
procedure Register;
begin

RegisterComponents('Samples', [TWrapMemo]);
end;
end.

If you compile and install the new component now, it behaves exactly like its
ancestor, TMemo. In the next section, you will make a simple change to your
component.

Modifying the component class
Once you have created a new component class, you can modify it in almost any way.
In this case, you will change only the initial value of one property in the memo
component. This involves two small changes to the component class:

• Overriding the constructor.
• Specifying the new default property value.

The constructor actually sets the value of the property. The default tells Delphi what
values to store in the form (.dfm for VCL and .xfm for CLX) file. Delphi stores only
values that differ from the default, so it is important to perform both steps.

Overriding the constructor

When a component is placed on a form at design time, or when an application
constructs a component at runtime, the component’s constructor sets the property
values. When a component is loaded from a form file, the application sets any
properties changed at design time.

Note When you override a constructor, the new constructor must call the inherited
constructor before doing anything else. For more information, see “Overriding
methods” on page 41-8.

For this example, your new component needs to override the constructor inherited
from TMemo to set the WordWrap property to False. To achieve this, add the

M o d i f y i n g a n e x i s t i n g c o m p o n e n t 48-3

M o d i f y i n g t h e c o m p o n e n t c l a s s

constructor override to the forward declaration, then write the new constructor in the
implementation part of the unit:

type
TWrapMemo = class(TMemo)
public { constructors are always public }

constructor Create(AOwner: TComponent); override; { this syntax is always the same }
end;

ƒ
constructor TWrapMemo.Create(AOwner: TComponent); { this goes after implementation }
begin

inherited Create(AOwner); { ALWAYS do this first! }
WordWrap := False; { set the new desired value }

end;

Now you can install the new component on the Component palette and add it to a
form. Note that the WordWrap property is now initialized to False.

If you change an initial property value, you should also designate that value as the
default. If you fail to match the value set by the constructor to the specified default
value, Delphi cannot store and restore the proper value.

Specifying the new default property value

When Delphi stores a description of a form in a form file, it stores the values only of
properties that differ from their defaults. Storing only the differing values keeps the
form files small and makes loading the form faster. If you create a property or change
the default value, it is a good idea to update the property declaration to include the
new default. Form files, loading, and default values are explained in more detail in
Chapter 47, “Making components available at design time.”

To change the default value of a property, redeclare the property name, followed by
the directive default and the new default value. You don’t need to redeclare the
entire property, just the name and the default value.

For the word-wrapping memo component, you redeclare the WordWrap property in
the published part of the object declaration, with a default value of False:

type
TWrapMemo = class(TMemo)
ƒ
published

property WordWrap default False;
end;

Specifying the default property value does not affect the workings of the component.
You must still initialize the value in the component’s constructor. Redeclaring the
default ensures that Delphi knows when to write WordWrap to the form file.

48-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a g r a p h i c c o m p o n e n t 49-1

C h a p t e r

49
Chapter 49Creating a graphic component

A graphic control is a simple kind of component. Because a purely graphic control
never receives focus, it does not have or need a window handle. Users can still
manipulate the control with the mouse, but there is no keyboard interface.

The graphic component presented in this chapter is TShape, the shape component on
the Additional page of the Component palette. Although the component created is
identical to the standard shape component, you need to call it something different to
avoid duplicate identifiers. This chapter calls its shape component TSampleShape and
shows you all the steps involved in creating the shape component:

• Creating and registering the component
• Publishing inherited properties
• Adding graphic capabilities

Creating and registering the component
Creation of every component begins the same way: create a unit, derive a component
class, register it, compile it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 40-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit Shapes.

• Derive a new component type called TSampleShape, descended from
TGraphicControl.

• Register TSampleShape on the Samples page of the Component palette.

49-2 D e v e l o p e r ’ s G u i d e

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

The resulting unit should look like this:

unit Shapes;
interface
uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms;
type

TSampleShape = class(TGraphicControl)
end;

procedure Register;
implementation
procedure Register;
begin

RegisterComponent('Samples', [TSampleShape]);
end;
end.

Publishing inherited properties
Once you derive a component type, you can decide which of the properties and
events declared in the protected parts of the ancestor class you want to surface in the
new component. TGraphicControl already publishes all the properties that enable the
component to function as a control, so all you need to publish is the ability to respond
to mouse events and handle drag-and-drop.

Publishing inherited properties and events is explained in “Publishing inherited
properties” on page 42-2 and “Making events visible” on page 43-5. Both processes
involve redeclaring just the name of the properties in the published part of the class
declaration.

For the shape control, you can publish the three mouse events, the three drag-and-
drop events, and the two drag-and-drop properties:

type
TSampleShape = class(TGraphicControl)
published

property DragCursor; { drag-and-drop properties }
property DragMode;
property OnDragDrop; { drag-and-drop events }
property OnDragOver;
property OnEndDrag;
property OnMouseDown; { mouse events }
property OnMouseMove;
property OnMouseUp;

end;

The sample shape control now makes mouse and drag-and-drop interactions
available to its users.

C r e a t i n g a g r a p h i c c o m p o n e n t 49-3

A d d i n g g r a p h i c c a p a b i l i t i e s

Adding graphic capabilities
Once you have declared your graphic component and published any inherited
properties you want to make available, you can add the graphic capabilities that
distinguish your component. You have two tasks to perform when creating a graphic
control:

1 Determining what to draw.
2 Drawing the component image.

In addition, for the shape control example, you will add some properties that enable
application developers to customize the appearance of the shape at design time.

Determining what to draw

A graphic control can change its appearance to reflect a dynamic condition, including
user input. A graphic control that always looks the same should probably not be a
component at all. If you want a static image, you can import the image instead of
using a control.

In general, the appearance of a graphic control depends on some combination of its
properties. The gauge control, for example, has properties that determine its shape
and orientation and whether it shows its progress numerically as well as graphically.
Similarly, the shape control has a property that determines what kind of shape it
should draw.

To give your control a property that determines the shape it draws, add a property
called Shape. This requires

1 Declaring the property type.
2 Declaring the property.
3 Writing the implementation method.

Creating properties is explained in more detail in Chapter 42, “Creating properties.”

Declaring the property type
When you declare a property of a user-defined type, you must declare the type first,
before the class that includes the property. The most common sort of user-defined
type for properties is enumerated.

For the shape control, you need an enumerated type with an element for each kind of
shape the control can draw.

Add the following type definition above the shape control class’s declaration.

type
TSampleShapeType = (sstRectangle, sstSquare, sstRoundRect, sstRoundSquare,

sstEllipse, sstCircle);
TSampleShape = class(TGraphicControl) { this is already there }

You can now use this type to declare a new property in the class.

49-4 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

Declaring the property
When you declare a property, you usually need to declare a private field to store the
data for the property, then specify methods for reading and writing the property
value. Often, you don’t need to use a method to read the value, but can just point to
the stored data instead.

For the shape control, you will declare a field that holds the current shape, then
declare a property that reads that field and writes to it through a method call.

Add the following declarations to TSampleShape:

type
TSampleShape = class(TGraphicControl)
private

FShape: TSampleShapeType; { field to hold property value }
procedure SetShape(Value: TSampleShapeType);

published
property Shape: TSampleShapeType read FShape write SetShape;

end;

Now all that remains is to add the implementation of SetShape.

Writing the implementation method
When the read or write part of a property definition uses a method instead of directly
accessing the stored property data, you need to implement the method.

Add the implementation of the SetShape method to the implementation part of the
unit:

procedure TSampleShape.SetShape(Value: TSampleShapeType);
begin

if FShape <> Value then { ignore if this isn't a change }
begin

FShape := Value; { store the new value }
Invalidate; { force a repaint with the new shape }

end;
end;

Overriding the constructor and destructor

To change default property values and initialize owned classes for your component,
you must override the inherited constructor and destructor. In both cases, remember
always to call the inherited method in your new constructor or destructor.

Changing default property values
The default size of a graphic control is fairly small, so you can change the width and
height in the constructor. Changing default property values is explained in more
detail in Chapter 48, “Modifying an existing component.”

In this example, the shape control sets its size to a square 65 pixels on each side.

C r e a t i n g a g r a p h i c c o m p o n e n t 49-5

A d d i n g g r a p h i c c a p a b i l i t i e s

Add the overridden constructor to the declaration of the component class:

type
TSampleShape = class(TGraphicControl)
public { constructors are always public }

constructor Create(AOwner: TComponent); override { remember override directive }
end;

1 Redeclare the Height and Width properties with their new default values:

type
TSampleShape = class(TGraphicControl)
ƒ
published

property Height default 65;
property Width default 65;

end;

2 Write the new constructor in the implementation part of the unit:

constructor TSampleShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor }
Width := 65;
Height := 65;

end;

Publishing the pen and brush

By default, a canvas has a thin black pen and a solid white brush. To let developers
change the pen and brush, you must provide classes for them to manipulate at design
time, then copy the classes into the canvas during painting. Classes such as an
auxiliary pen or brush are called owned classes because the component owns them
and is responsible for creating and destroying them.

Managing owned classes requires

1 Declaring the class fields.

2 Declaring the access properties.

3 Initializing owned classes.

4 Setting owned classes’ properties.

Declaring the class fields
Each class a component owns must have a class field declared for it in the
component. The class field ensures that the component always has a pointer to the
owned object so that it can destroy the class before destroying itself. In general, a
component initializes owned objects in its constructor and destroys them in its
destructor.

Fields for owned objects are nearly always declared as private. If applications (or
other components) need access to the owned objects, you can declare published or
public properties for this purpose.

49-6 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

Add fields for a pen and brush to the shape control:

type
TSampleShape = class(TGraphicControl)
private { fields are nearly always private }

FPen: TPen; { a field for the pen object }
FBrush: TBrush; { a field for the brush object }
ƒ

end;

Declaring the access properties
You can provide access to the owned objects of a component by declaring properties
of the type of the objects. That gives developers a way to access the objects at design
time or runtime. Usually, the read part of the property just references the class field,
but the write part calls a method that enables the component to react to changes in
the owned object.

To the shape control, add properties that provide access to the pen and brush fields.
You will also declare methods for reacting to changes to the pen or brush.

type
TSampleShape = class(TGraphicControl)
ƒ
private { these methods should be private }

procedure SetBrush(Value: TBrush);
procedure SetPen(Value: TPen);

published { make these available at design time }
property Brush: TBrush read FBrush write SetBrush;
property Pen: TPen read FPen write SetPen;

end;

Then, write the SetBrush and SetPen methods in the implementation part of the unit:

procedure TSampleShape.SetBrush(Value: TBrush);
begin

FBrush.Assign(Value); { replace existing brush with parameter }
end;

procedure TSampleShape.SetPen(Value: TPen);
begin

FPen.Assign(Value); { replace existing pen with parameter }
end;

To directly assign the contents of Value to FBrush...

FBrush := Value;

...would overwrite the internal pointer for FBrush, lose memory, and create a number
of ownership problems.

Initializing owned classes
If you add classes to your component, the component’s constructor must initialize
them so that the user can interact with the objects at runtime. Similarly, the
component’s destructor must also destroy the owned objects before destroying the
component itself.

C r e a t i n g a g r a p h i c c o m p o n e n t 49-7

A d d i n g g r a p h i c c a p a b i l i t i e s

Because you have added a pen and a brush to the shape control, you need to initialize
them in the shape control’s constructor and destroy them in the control’s destructor:

1 Construct the pen and brush in the shape control constructor:

constructor TSampleShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor }
Width := 65;
Height := 65;
FPen := TPen.Create; { construct the pen }
FBrush := TBrush.Create; { construct the brush }

end;

2 Add the overridden destructor to the declaration of the component class:

type
TSampleShape = class(TGraphicControl)
public { destructors are always public}

constructor Create(AOwner: TComponent); override;
destructor Destroy; override; { remember override directive }

end;

3 Write the new destructor in the implementation part of the unit:

destructor TSampleShape.Destroy;
begin

FPen.Free; { destroy the pen object }
FBrush.Free; { destroy the brush object }
inherited Destroy; { always call the inherited destructor, too }

end;

Setting owned classes’ properties
As the final step in handling the pen and brush classes, you need to make sure that
changes in the pen and brush cause the shape control to repaint itself. Both pen and
brush classes have OnChange events, so you can create a method in the shape control
and point both OnChange events to it.

Add the following method to the shape control, and update the component’s
constructor to set the pen and brush events to the new method:

type
TSampleShape = class(TGraphicControl)
published

procedure StyleChanged(Sender: TObject);
end;

ƒ
implementation
ƒ
constructor TSampleShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor }
Width := 65;
Height := 65;
FPen := TPen.Create; { construct the pen }
FPen.OnChange := StyleChanged; { assign method to OnChange event }

49-8 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

FBrush := TBrush.Create; { construct the brush }
FBrush.OnChange := StyleChanged; { assign method to OnChange event }

end;

procedure TSampleShape.StyleChanged(Sender: TObject);
begin

Invalidate; { erase and repaint the component }
end;

With these changes, the component redraws to reflect changes to either the pen or the
brush.

Drawing the component image

The essential element of a graphic control is the way it paints its image on the screen.
The abstract type TGraphicControl defines a method called Paint that you override to
paint the image you want on your control.

The Paint method for the shape control needs to do several things:

• Use the pen and brush selected by the user.
• Use the selected shape.
• Adjust coordinates so that squares and circles use the same width and height.

Overriding the Paint method requires two steps:

1 Add Paint to the component’s declaration.
2 Write the Paint method in the implementation part of the unit.

For the shape control, add the following declaration to the class declaration:

type
TSampleShape = class(TGraphicControl)
ƒ
protected

procedure Paint; override;
ƒ
end;

Then write the method in the implementation part of the unit:

procedure TSampleShape.Paint;
begin

with Canvas do
begin

Pen := FPen; { copy the component's pen }
Brush := FBrush; { copy the component's brush }
case FShape of
sstRectangle, sstSquare:

Rectangle(0, 0, Width, Height); { draw rectangles and squares }
sstRoundRect, sstRoundSquare:

RoundRect(0, 0, Width, Height, Width div 4, Height div 4); { draw rounded shapes }
sstCircle, sstEllipse:

Ellipse(0, 0, Width, Height); { draw round shapes }
end;

end;
end;

C r e a t i n g a g r a p h i c c o m p o n e n t 49-9

A d d i n g g r a p h i c c a p a b i l i t i e s

Paint is called whenever the control needs to update its image. Controls are painted
when they first appear or when a window in front of them goes away. In addition,
you can force repainting by calling Invalidate, as the StyleChanged method does.

Refining the shape drawing

The standard shape control does one more thing that your sample shape control does
not yet do: it handles squares and circles as well as rectangles and ellipses. To do that,
you need to write code that finds the shortest side and centers the image.

Here is a refined Paint method that adjusts for squares and ellipses:

procedure TSampleShape.Paint;
var

X, Y, W, H, S: Integer;
begin

with Canvas do
begin

Pen := FPen; { copy the component's pen }
Brush := FBrush; { copy the component's brush }
W := Width; { use the component width }
H := Height; { use the component height }
if W < H then S := W else S := H; { save smallest for circles/squares }

case FShape of { adjust height, width and position }
sstRectangle, sstRoundRect, sstEllipse:

begin
X := 0; { origin is top-left for these shapes }
Y := 0;

end;
sstSquare, sstRoundSquare, sstCircle:

begin
X := (W - S) div 2; { center these horizontally... }
Y := (H - S) div 2; { ...and vertically }
W := S; { use shortest dimension for width... }
H := S; { ...and for height }

end;
end;

case FShape of
sstRectangle, sstSquare:

Rectangle(X, Y, X + W, Y + H); { draw rectangles and squares }
sstRoundRect, sstRoundSquare:

RoundRect(X, Y, X + W, Y + H, S div 4, S div 4); { draw rounded shapes }
sstCircle, sstEllipse:

Ellipse(X, Y, X + W, Y + H); { draw round shapes }
end;

end;
end;

49-10 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g a g r i d 50-1

C h a p t e r

50
Chapter 50Customizing a grid

Delphi provides abstract components you can use as the basis for customized
components. The most important of these are grids and list boxes. In this chapter,
you will see how to create a small one-month calendar from the basic grid
component, TCustomGrid.

Creating the calendar involves these tasks:

• Creating and registering the component
• Publishing inherited properties
• Changing initial values
• Resizing the cells
• Filling in the cells
• Navigating months and years
• Navigating days

The resulting component is similar to the TCalendar component on the Samples page
of the Component palette.

Creating and registering the component
Creation of every component begins the same way: create a unit, derive a component
class, register it, compile it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 40-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit CalSamp.

• Derive a new component type called TSampleCalendar, descended from
TCustomGrid.

• Register TSampleCalendar on the Samples page of the Component palette.

50-2 D e v e l o p e r ’ s G u i d e

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

The resulting unit descending from TCustomGrid in the VCL should look like this:

unit CalSamp;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Grids;

type
TSampleCalendar = class(TCustomGrid)
end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TSampleCalendar]);
end;

end.

If descending from the CLX version of TCustomGrid, only the uses clause would
differ showing CLX units instead.

If you install the calendar component now, you will find that it appears on the
Samples page. The only properties available are the most basic control properties.
The next step is to make some of the more specialized properties available to users of
the calendar.

Note While you can install the sample calendar component you have just compiled, do not
try to place it on a form yet. The TCustomGrid component has an abstract DrawCell
method that must be redeclared before instance objects can be created. Overriding
the DrawCell method is described in “Filling in the cells” below.

Publishing inherited properties
The abstract grid component, TCustomGrid, provides a large number of protected
properties. You can choose which of those properties you want to make available to
users of the calendar control.

To make inherited protected properties available to users of your components,
redeclare the properties in the published part of your component’s declaration.

For the calendar control, publish the following properties and events, as shown here:

type
TSampleCalendar = class(TCustomGrid)
published

property Align; { publish properties }
property BorderStyle;
property Color;
property Font;
property GridLineWidth;
property ParentColor;

C u s t o m i z i n g a g r i d 50-3

C h a n g i n g i n i t i a l v a l u e s

property ParentFont;
property OnClick; { publish events }
property OnDblClick;
property OnDragDrop;
property OnDragOver;
property OnEndDrag;
property OnKeyDown;
property OnKeyPress;
property OnKeyUp;

end;

There are a number of other properties you could also publish, but which do not
apply to a calendar, such as the Options property that would enable the user to
choose which grid lines to draw.

If you install the modified calendar component to the Component palette and use it
in an application, you will find many more properties and events available in the
calendar, all fully functional. You can now start adding new capabilities of your own
design.

Changing initial values
A calendar is essentially a grid with a fixed number of rows and columns, although
not all the rows always contain dates. For this reason, you have not published the
grid properties ColCount and RowCount, because it is highly unlikely that users of the
calendar will want to display anything other than seven days per week. You still
must set the initial values of those properties so that the week always has seven days,
however.

To change the initial values of the component’s properties, override the constructor
to set the desired values. The constructor must be virtual.

Remember that you need to add the constructor to the public part of the
component’s object declaration, then write the new constructor in the
implementation part of the component’s unit. The first statement in the new
constructor should always be a call to the inherited constructor.

type
TSampleCalendar = class(TCustomGrid
public

constructor Create(AOwner: TComponent); override;
ƒ
end;

ƒ
constructor TSampleCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { call inherited constructor }
ColCount := 7; { always seven days/week }
RowCount := 7; { always six weeks plus the headings }
FixedCols := 0; { no row labels }
FixedRows := 1; { one row for day names }
ScrollBars := ssNone; { no need to scroll }
Options := Options - [goRangeSelect] + [goDrawFocusSelected]; {disable range selection}

end;

50-4 D e v e l o p e r ’ s G u i d e

R e s i z i n g t h e c e l l s

The calendar now has seven columns and seven rows, with the top row fixed, or
nonscrolling.

Resizing the cells
VCL When a user or application changes the size of a window or control, Windows sends

a message called WM_SIZE to the affected window or control so it can adjust any
settings needed to later paint its image in the new size. Your VCL component can
respond to that message by altering the size of the cells so they all fit inside the
boundaries of the control. To respond to the WM_SIZE message, you will add a
message-handling method to the component.

Creating a message-handling method is described in detail in “Creating new
message handlers” on page 46-5.

In this case, the calendar control needs a response to WM_SIZE, so add a protected
method called WMSize to the control indexed to the WM_SIZE message, then write
the method so that it calculates the proper cell size to allow all cells to be visible in the
new size:

type
TSampleCalendar = class(TCustomGrid)
protected

procedure WMSize(var Message: TWMSize); message WM_SIZE;
ƒ
end;

ƒ
procedure TSampleCalendar.WMSize(var Message: TWMSize);
var

GridLines: Integer; { temporary local variable }
begin

GridLines := 6 * GridLineWidth; { calculate combined size of all lines }
DefaultColWidth := (Message.Width - GridLines) div 7; { set new default cell width }
DefaultRowHeight := (Message.Height - GridLines) div 7; { and cell height }

end;

Now when the calendar is resized, it displays all the cells in the largest size that will
fit in the control.

CLX In CLX, changes to the size of a window or control are automatically notified by a call
to the protected BoundsChanged method. Your CLX component can respond to this
notification by altering the size of the cells so they all fit inside the boundaries of the
control.

In this case, the calendar control needs to override BoundsChanged so that it calculates
the proper cell size to allow all cells to be visible in the new size:

type
TSampleCalendar = class(TCustomGrid)
protected

procedure BoundsChanged; override;
ƒ
end;

C u s t o m i z i n g a g r i d 50-5

F i l l i n g i n t h e c e l l s

ƒ
procedure TSampleCalendar.BoundsChanged;
var

GridLines: Integer; { temporary local variable }
begin

GridLines := 6 * GridLineWidth; { calculate combined size of all lines }
DefaultColWidth := (Width - GridLines) div 7; { set new default cell width }
DefaultRowHeight := (Height - GridLines) div 7; { and cell height }
inherited; {now call the inherited method }

end;

Filling in the cells
A grid control fills in its contents cell-by-cell. In the case of the calendar, that means
calculating which date, if any, belongs in each cell. The default drawing for grid cells
takes place in a virtual method called DrawCell.

To fill in the contents of grid cells, override the DrawCell method.

The easiest part to fill in is the heading cells in the fixed row. The runtime library
contains an array with short day names, so for the calendar, use the appropriate one
for each column:

type
TSampleCalendar = class(TCustomGrid)
protected

procedure DrawCell(ACol, ARow: Longint; ARect: TRect; AState: TGridDrawState);
override;

end;
ƒ
procedure TSampleCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect;

AState: TGridDrawState);
begin

if ARow = 0 then
Canvas.TextOut(ARect.Left, ARect.Top, ShortDayNames[ACol + 1]); { use RTL strings }

end;

Tracking the date

For the calendar control to be useful, users and applications must have a mechanism
for setting the day, month, and year. Delphi stores dates and times in variables of
type TDateTime. TDateTime is an encoded numeric representation of the date and
time, which is useful for programmatic manipulation, but not convenient for human
use.

You can therefore store the date in encoded form, providing runtime access to that
value, but also provide Day, Month, and Year properties that users of the calendar
component can set at design time.

Tracking the date in the calendar consists of the processes:

• Storing the internal date

50-6 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

• Accessing the day, month, and year
• Generating the day numbers
• Selecting the current day

Storing the internal date
To store the date for the calendar, you need a private field to hold the date and a
runtime-only property that provides access to that date.

Adding the internal date to the calendar requires three steps:

1 Declare a private field to hold the date:

type
TSampleCalendar = class(TCustomGrid)
private

FDate: TDateTime;
ƒ

2 Initialize the date field in the constructor:

constructor TSampleCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { this is already here }
ƒ { other initializations here }
FDate := Date; { get current date from RTL }

end;

3 Declare a runtime property to allow access to the encoded date.

You’ll need a method for setting the date, because setting the date requires
updating the onscreen image of the control:

type
TSampleCalendar = class(TCustomGrid)
private

procedure SetCalendarDate(Value: TDateTime);
public

property CalendarDate: TDateTime read FDate write SetCalendarDate;
ƒ

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin

FDate := Value; { set new date value }
Refresh; { update the onscreen image }

end;

Accessing the day, month, and year
An encoded numeric date is fine for applications, but humans prefer to work with
days, months, and years. You can provide alternate access to those elements of the
stored, encoded date by creating properties.

Because each element of the date (day, month, and year) is an integer, and because
setting each requires encoding the date when set, you can avoid duplicating the code
each time by sharing the implementation methods for all three properties. That is,
you can write two methods, one to read an element and one to write one, and use
those methods to get and set all three properties.

C u s t o m i z i n g a g r i d 50-7

F i l l i n g i n t h e c e l l s

To provide design-time access to the day, month, and year, you do the following:

1 Declare the three properties, assigning each a unique index number:

type
TSampleCalendar = class(TCustomGrid)
public

property Day: Integer index 3 read GetDateElement write SetDateElement;
property Month: Integer index 2 read GetDateElement write SetDateElement;
property Year: Integer index 1 read GetDateElement write SetDateElement;

ƒ

2 Declare and write the implementation methods, setting different elements for each
index value:

type
TSampleCalendar = class(TCustomGrid)
private

function GetDateElement(Index: Integer): Integer; { note the Index parameter }
procedure SetDateElement(Index: Integer; Value: Integer);

ƒ
function TSampleCalendar.GetDateElement(Index: Integer): Integer;
var

AYear, AMonth, ADay: Word;
begin

DecodeDate(FDate, AYear, AMonth, ADay); { break encoded date into elements }
case Index of

1: Result := AYear;
2: Result := AMonth;
3: Result := ADay;
else Result := -1;

end;
end;

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
var

AYear, AMonth, ADay: Word;
begin

if Value > 0 then { all elements must be positive }
begin

DecodeDate(FDate, AYear, AMonth, ADay); { get current date elements }
case Index of { set new element depending on Index }
1: AYear := Value;
2: AMonth := Value;
3: ADay := Value;
else Exit;

end;
FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
Refresh; { update the visible calendar }

end;
end;

Now you can set the calendar’s day, month, and year at design time using the Object
Inspector or at runtime using code. Of course, you have not yet added the code to
paint the dates into the cells, but now you have the needed data.

50-8 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

Generating the day numbers
Putting numbers into the calendar involves several considerations. The number of
days in the month depends on which month it is, and whether the given year is a leap
year. In addition, months start on different days of the week, dependent on the
month and year. Use the IsLeapYear function to determine whether the year is a leap
year. Use the MonthDays array in the SysUtils unit to get the number of days in the
month.

Once you have the information on leap years and days per month, you can calculate
where in the grid the individual dates go. The calculation is based on the day of the
week the month starts on.

Because you will need the month-offset number for each cell you fill in, the best
practice is to calculate it once when you change the month or year, then refer to it
each time. You can store the value in a class field, then update that field each time the
date changes.

To fill in the days in the proper cells, you do the following:

1 Add a month-offset field to the object and a method that updates the field value:

type
TSampleCalendar = class(TCustomGrid)
private

FMonthOffset: Integer; { storage for the offset }
ƒ
protected

procedure UpdateCalendar; virtual; { property for offset access }
end;

ƒ
procedure TSampleCalendar.UpdateCalendar;
var

AYear, AMonth, ADay: Word;
FirstDate: TDateTime; { date of the first day of the month }

begin
if FDate <> 0 then { only calculate offset if date is valid }
begin

DecodeDate(FDate, AYear, AMonth, ADay); { get elements of date }
FirstDate := EncodeDate(AYear, AMonth, 1); { date of the first }
FMonthOffset := 2 - DayOfWeek(FirstDate); { generate the offset into the grid }

end;
Refresh; { always repaint the control }

end;

2 Add statements to the constructor and the SetCalendarDate and SetDateElement
methods that call the new update method whenever the date changes:

constructor TSampleCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { this is already here }
ƒ { other initializations here }
UpdateCalendar; { set proper offset }

end;

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);

C u s t o m i z i n g a g r i d 50-9

F i l l i n g i n t h e c e l l s

begin
FDate := Value; { this was already here }
UpdateCalendar; { this previously called Refresh }

end;

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin

ƒ
FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
UpdateCalendar; { this previously called Refresh }

end;
end;

3 Add a method to the calendar that returns the day number when passed the row
and column coordinates of a cell:

function TSampleCalendar.DayNum(ACol, ARow: Integer): Integer;
begin

Result := FMonthOffset + ACol + (ARow - 1) * 7; { calculate day for this cell }
if (Result < 1) or (Result > MonthDays[IsLeapYear(Year), Month]) then

Result := -1; { return -1 if invalid }
end;

Remember to add the declaration of DayNum to the component’s type declaration.

4 Now that you can calculate where the dates go, you can update DrawCell to fill in
the dates:

procedure TCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect; AState: TGridDrawState);
var

TheText: string;
TempDay: Integer;

begin
if ARow = 0 then { if this is the header row ...}

TheText := ShortDayNames[ACol + 1] { just use the day name }
else begin

TheText := ''; { blank cell is the default }
TempDay := DayNum(ACol, ARow); { get number for this cell }
if TempDay <> -1 then TheText := IntToStr(TempDay); { use the number if valid }

end;
with ARect, Canvas do

TextRect(ARect, Left + (Right - Left - TextWidth(TheText)) div 2,
Top + (Bottom - Top - TextHeight(TheText)) div 2, TheText);

end;

Now if you reinstall the calendar component and place one on a form, you will see
the proper information for the current month.

Selecting the current day
Now that you have numbers in the calendar cells, it makes sense to move the
selection highlighting to the cell containing the current day. By default, the selection
starts on the top left cell, so you need to set the Row and Column properties both
when constructing the calendar initially and when the date changes.

50-10 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g m o n t h s a n d y e a r s

To set the selection on the current day, change the UpdateCalendar method to set Row
and Column before calling Refresh:

procedure TSampleCalendar.UpdateCalendar;
begin

if FDate <> 0 then
begin

ƒ { existing statements to set FMonthOffset }
Row := (ADay - FMonthOffset) div 7 + 1;
Col := (ADay - FMonthOffset) mod 7;

end;
Refresh; { this is already here }

end;

Note that you are now reusing the ADay variable previously set by decoding the
date.

Navigating months and years
Properties are useful for manipulating components, especially at design time. But
sometimes there are types of manipulations that are so common or natural, often
involving more than one property, that it makes sense to provide methods to handle
them. One example of such a natural manipulation is a “next month” feature for a
calendar. Handling the wrapping around of months and incrementing of years is
simple, but very convenient for the developer using the component.

The only drawback to encapsulating common manipulations into methods is that
methods are only available at runtime. However, such manipulations are generally
only cumbersome when performed repeatedly, and that is fairly rare at design time.

For the calendar, add the following four methods for next and previous month and
year. Each of these methods uses the IncMonth function in a slightly different manner
to increment or decrement CalendarDate, by increments of a month or a year. After
incrementing or decrementing CalendarDate, decode the date value to fill the Year,
Month, and Day properties with corresponding new values.

procedure TCalendar.NextMonth;
begin

DecodeDate(IncMonth(CalendarDate, 1), Year, Month, Day);
end;

procedure TCalendar.PrevMonth;
begin

DecodeDate(IncMonth(CalendarDate, -1), Year, Month, Day);
end;

procedure TCalendar.NextYear;
begin

DecodeDate(IncMonth(CalendarDate, 12), Year, Month, Day);
end;

procedure TCalendar.PrevYear;
begin

DecodeDate(IncMonth(CalendarDate, -12), Year, Month, Day);
end;

C u s t o m i z i n g a g r i d 50-11

N a v i g a t i n g d a y s

Be sure to add the declarations of the new methods to the class declaration.

Now when you create an application that uses the calendar component, you can
easily implement browsing through months or years.

Navigating days
Within a given month, there are two obvious ways to navigate among the days. The
first is to use the arrow keys, and the other is to respond to clicks of the mouse. The
standard grid component handles both as if they were clicks. That is, an arrow
movement is treated like a click on an adjacent cell.

The process of navigating days consists of

• Moving the selection
• Providing an OnChange event
• Excluding blank cells

Moving the selection

The inherited behavior of a grid handles moving the selection in response to either
arrow keys or clicks, but if you want to change the selected day, you need to modify
that default behavior.

To handle movements within the calendar, override the Click method of the grid.

When you override a method such as Click that is tied in with user interactions, you
will nearly always include a call to the inherited method, so as not to lose the
standard behavior.

The following is an overridden Click method for the calendar grid. Be sure to add the
declaration of Click to TSampleCalendar, including the override directive afterward.

procedure TSampleCalendar.Click;
var

TempDay: Integer;
begin

inherited Click; { remember to call the inherited method! }
TempDay := DayNum(Col, Row); { get the day number for the clicked cell }
if TempDay <> -1 then Day := TempDay; { change day if valid }

end;

Providing an OnChange event

Now that users of the calendar can change the date within the calendar, it makes
sense to allow applications to respond to those changes.

Add an OnChange event to TSampleCalendar.

50-12 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a y s

1 Declare the event, a field to store the event, and a dynamic method to call the
event:

type
TSampleCalendar = class(TCustomGrid)
private

FOnChange: TNotifyEvent;
protected

procedure Change; dynamic;
ƒ
published

property OnChange: TNotifyEvent read FOnChange write FOnChange;
ƒ

2 Write the Change method:

procedure TSampleCalendar.Change;
begin

if Assigned(FOnChange) then FOnChange(Self);
end;

3 Add statements calling Change to the end of the SetCalendarDate and
SetDateElement methods:

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin

FDate := Value;
UpdateCalendar;
Change; { this is the only new statement }

end;

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin

ƒ { many statements setting element values }
FDate := EncodeDate(AYear, AMonth, ADay);
UpdateCalendar;
Change; { this is new }

end;
end;

Applications using the calendar component can now respond to changes in the date
of the component by attaching handlers to the OnChange event.

Excluding blank cells

As the calendar is written, the user can select a blank cell, but the date does not
change. It makes sense, then, to disallow selection of the blank cells.

To control whether a given cell is selectable, override the SelectCell method of the
grid.

SelectCell is a function that takes a column and row as parameters, and returns a
Boolean value indicating whether the specified cell is selectable.

C u s t o m i z i n g a g r i d 50-13

N a v i g a t i n g d a y s

You can override SelectCell to return False if the cell does not contain a valid date:

function TSampleCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin

if DayNum(ACol, ARow) = -1 then Result := False { -1 indicates invalid date }
else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited value }

end;

Now if the user clicks a blank cell or tries to move to one with an arrow key, the
calendar leaves the current cell selected.

50-14 D e v e l o p e r ’ s G u i d e

M a k i n g a c o n t r o l d a t a a w a r e 51-1

C h a p t e r

51
Chapter 51Making a control data aware

When working with database connections, it is often convenient to have controls that
are data aware. That is, the application can establish a link between the control and
some part of a database. Delphi includes data-aware labels, edit boxes, list boxes,
combo boxes, lookup controls, and grids. You can also make your own controls data
aware. For more information about using data-aware controls, see Chapter 15,
“Using data controls”.

There are several degrees of data awareness. The simplest is read-only data
awareness, or data browsing, the ability to reflect the current state of a database. More
complicated is editable data awareness, or data editing, where the user can edit the
values in the database by manipulating the control. Note also that the degree of
involvement with the database can vary, from the simplest case, a link with a single
field, to more complex cases, such as multiple-record controls.

This chapter first illustrates the simplest case, making a read-only control that links
to a single field in a dataset. The specific control used will be the TSampleCalendar
calendar created in Chapter 50, “Customizing a grid”. You can also use the standard
calendar control on the Samples page of the Component palette, TCalendar.

The chapter then continues with an explanation of how to make the new data-
browsing control a data-editing control.

Creating a data-browsing control
Creating a data-aware calendar control, whether it is a read-only control or one in
which the user can change the underlying data in the dataset, involves the following
steps:

• Creating and registering the component

• Adding the data link

• Responding to data changes

51-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Creating and registering the component

Creation of every component begins the same way: create a unit, derive a component
class, register it, compile it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 40-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit DBCal.

• Derive a new component class called TDBCalendar, descended from the VCL
component TSampleCalendar. Chapter 50, “Customizing a grid,” shows you how to
create the TSampleCalendar component.

• Register TDBCalendar on the Samples page of the Component palette.

The resulting unit should look like this:

unit DBCal;

interface

uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Grids, Calendar;

type
TDBCalendar = class(TSampleCalendar)
end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TDBCalendar]);
end;

end.

You can now proceed with making the new calendar a data browser.

Making the control read-only

Because this data calendar will be read-only with respect to the data, it makes sense
to make the control itself read-only, so users will not make changes within the control
and expect them to be reflected in the database.

Making the calendar read-only involves,

• Adding the ReadOnly property.
• Allowing needed updates.

Note that if you started with the TCalendar component from Delphi’s Samples page
instead of TSampleCalendar, it already has a ReadOnly property, so you can skip these
steps.

M a k i n g a c o n t r o l d a t a a w a r e 51-3

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Adding the ReadOnly property
By adding a ReadOnly property, you will provide a way to make the control read-
only at design time. When that property is set to True, you can make all cells in the
control unselectable.

1 Add the property declaration and a private field to hold the value:

type
TDBCalendar = class(TSampleCalendar)
private

FReadOnly: Boolean; { field for internal storage }
public

constructor Create(AOwner: TComponent); override; { must override to set default }
published

property ReadOnly: Boolean read FReadOnly write FReadOnly default True;
end;

ƒ
constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor! }
FReadOnly := True; { set the default value }

end;

2 Override the SelectCell method to disallow selection if the control is read-only. Use
of SelectCell is explained in “Excluding blank cells” on page 50-12.

function TDBCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin

if FReadOnly then Result := False { cannot select if read only }
else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited method }

end;

Remember to add the declaration of SelectCell to the type declaration of TDBCalendar,
and append the override directive.

If you now add the calendar to a form, you will find that the component ignores
clicks and keystrokes. It also fails to update the selection position when you change
the date.

Allowing needed updates
The read-only calendar uses the SelectCell method for all kinds of changes, including
setting the Row and Col properties. The UpdateCalendar method sets Row and Col
every time the date changes, but because SelectCell disallows changes, the selection
remains in place, even though the date changes.

To get around this absolute prohibition on changes, you can add an internal Boolean
flag to the calendar, and permit changes when that flag is set to True:

type
TDBCalendar = class(TSampleCalendar)
private

FUpdating: Boolean; { private flag for internal use }
protected

function SelectCell(ACol, ARow: Longint): Boolean; override;
public

51-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

procedure UpdateCalendar; override; { remember the override directive }
end;

ƒ
function TDBCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin

if (not FUpdating) and FReadOnly then Result := False { allow select if updating }
else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited method }

end;

procedure TDBCalendar.UpdateCalendar;
begin

FUpdating := True; { set flag to allow updates }
try

inherited UpdateCalendar; { update as usual }
finally

FUpdating := False; { always clear the flag }
end;

end;

The calendar still disallows user changes, but now correctly reflects changes made in
the date by changing the date properties. Now that you have a true read-only
calendar control, you are ready to add the data-browsing ability.

Adding the data link

The connection between a control and a database is handled by a class called a data
link. The datalink class that connects a control with a single field in a database is
TFieldDataLink (VCL or CLX). There are also data links for entire tables.

A data-aware control owns its datalink class. That is, the control has the responsibility
for constructing and destroying the data link. For details on management of owned
classes, see Chapter 49, “Creating a graphic component”.

Establishing a data link as an owned class requires these three steps:

1 Declaring the class field

2 Declaring the access properties

3 Initializing the data link

Declaring the class field
A component needs a field for each of its owned classes, as explained in “Declaring
the class fields” on page 49-5. In this case, the calendar needs a field of type
TFieldDataLink for its data link.

Declare a field for the data link in the calendar:

type
TDBCalendar = class(TSampleCalendar)
private

FDataLink: TFieldDataLink;
ƒ
end;

M a k i n g a c o n t r o l d a t a a w a r e 51-5

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Before you can compile the application, you need to add DB and DBCtrls to the unit’s
uses clause.

Declaring the access properties
Every data-aware control has a DataSource property that specifies which data-source
class in the application provides the data to the control. In addition, a control that
accesses a single field needs a DataField property to specify that field in the data
source.

Unlike the access properties for the owned classes in the example in Chapter 49,
“Creating a graphic component”, these access properties do not provide access to the
owned classes themselves, but rather to corresponding properties in the owned class.
That is, you will create properties that enable the control and its data link to share the
same data source and field.

Declare the DataSource and DataField properties and their implementation methods,
then write the methods as “pass-through” methods to the corresponding properties
of the datalink class:

An example of declaring access properties
type

TDBCalendar = class(TSampleCalendar)
private { implementation methods are private }

...
function GetDataField: string; { returns the name of the data field }
function GetDataSource: TDataSource; { returns reference to the data source }
procedure SetDataField(const Value: string); { assigns name of data field }
procedure SetDataSource(Value: TDataSource); { assigns new data source }

published { make properties available at design time }
property DataField: string read GetDataField write SetDataField;
property DataSource: TDataSource read GetDataSource write SetDataSource;

end;
ƒ
function TDBCalendar.GetDataField: string;
begin

Result := FDataLink.FieldName;
end;

function TDBCalendar.GetDataSource: TDataSource;
begin

Result := FDataLink.DataSource;
end;

procedure TDBCalendar.SetDataField(const Value: string);
begin

FDataLink.FieldName := Value;
end;

procedure TDBCalendar.SetDataSource(Value: TDataSource);
begin

FDataLink.DataSource := Value;
end;

51-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Now that you have established the links between the calendar and its data link, there
is one more important step. You must construct the data link class when the calendar
control is constructed, and destroy the data link before destroying the calendar.

Initializing the data link
A data-aware control needs access to its data link throughout its existence, so it must
construct the datalink object as part of its own constructor, and destroy the datalink
object before it is itself destroyed.

Override the Create and Destroy methods of the calendar to construct and destroy the
datalink object, respectively:

type
TDBCalendar = class(TSampleCalendar)
public { constructors and destructors are always public }

constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
ƒ

end;
ƒ
constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor first
}

FDataLink := TFieldDataLink.Create; { construct the datalink object }
FDataLink.Control := self; {let the datalink know about the calendar }
FReadOnly := True; { this is already here }

end;

destructor TDBCalendar.Destroy;
begin

FDataLink.Free; { always destroy owned objects first... }
inherited Destroy; { ...then call inherited destructor

}
end;

Now you have a complete data link, but you have not yet told the control what data
it should read from the linked field. The next section explains how to do that.

Responding to data changes

Once a control has a data link and properties to specify the data source and data field,
it needs to respond to changes in the data in that field, either because of a move to a
different record or because of a change made to that field.

Datalink classes all have events named OnDataChange. When the data source
indicates a change in its data, the datalink object calls any event handler attached to
its OnDataChange event.

To update a control in response to data changes, attach a handler to the data link’s
OnDataChange event.

M a k i n g a c o n t r o l d a t a a w a r e 51-7

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

In this case, you will add a method to the calendar, then designate it as the handler
for the data link’s OnDataChange.

Declare and implement the DataChange method, then assign it to the data link’s
OnDataChange event in the constructor. In the destructor, detach the OnDataChange
handler before destroying the object.

type
TDBCalendar = class(TSampleCalendar)
private { this is an internal detail, so make it private }

procedure DataChange(Sender: TObject); { must have proper parameters for event
}

end;
ƒ

constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor first
}

FReadOnly := True; { this is already here }
FDataLink := TFieldDataLink.Create; { construct the datalink object }
FDataLink.OnDataChange := DataChange; { attach handler to event }

end;

destructor TDBCalendar.Destroy;
begin

FDataLink.OnDataChange := nil; { detach handler before destroying object }
FDataLink.Free; { always destroy owned objects first... }
inherited Destroy; { ...then call inherited destructor

}
end;

procedure TDBCalendar.DataChange(Sender: TObject);
begin

if FDataLink.Field = nil then { if there is no field assigned...
}

CalendarDate := 0 { ...set to invalid date }
else CalendarDate := FDataLink.Field.AsDateTime; { otherwise, set calendar to the date }

end;

You now have a data-browsing control.

Creating a data-editing control
When you create a data-editing control, you create and register the component and
add the data link just as you do for a data-browsing control. You also respond to data
changes in the underlying field in a similar manner, but you must handle a few more
issues.

For example, you probably want your control to respond to both key and mouse
events. Your control must respond when the user changes the contents of the control.
When the user exits the control, you want the changes made in the control to be
reflected in the dataset.

51-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

The data-editing control described here is the same calendar control described in the
first part of the chapter. The control is modified so that it can edit as well as view the
data in its linked field.

Modifying the existing control to make it a data-editing control involves:

• Changing the default value of FReadOnly.
• Handling mouse-down and key-down messages.
• Updating the field datalink class.
• Modifying the Change method.
• Updating the dataset.

Changing the default value of FReadOnly

Because this is a data-editing control, the ReadOnly property should be set to False by
default. To make the ReadOnly property False, change the value of FReadOnly in the
constructor:

constructor TDBCalendar.Create(AOwner: TComponent);
begin

ƒ
FReadOnly := False; { set the default value }
ƒ

end;

Handling mouse-down and key-down messages

When the user of the control begins interacting with it, the control receives either
mouse-down messages (WM_LBUTTONDOWN, WM_MBUTTONDOWN, or
WM_RBUTTONDOWN) or a key-down message (WM_KEYDOWN) from Windows.
If using CLX, notification is from the operating system in the form of system events.
To enable a control to respond to these messages, you must write handlers that
respond to these messages.

• Responding to mouse-down messages
• Responding to key-down messages

Responding to mouse-down messages
A MouseDown method is a protected method for a control’s OnMouseDown event. The
control itself calls MouseDown in response to a Windows mouse-down message.
When you override the inherited MouseDown method, you can include code that
provides other responses in addition to calling the OnMouseDown event.

To override MouseDown, add the MouseDown method to the TDBCalendar class:

type
TDBCalendar = class(TSampleCalendar);
ƒ

protected
procedure MouseDown(Button: TButton, Shift: TShiftState, X: Integer, Y: Integer);
override;

ƒ
end;

M a k i n g a c o n t r o l d a t a a w a r e 51-9

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

procedure TDBCalendar.MouseDown(Button: TButton; Shift: TShiftState; X, Y: Integer);
var

MyMouseDown: TMouseEvent;
begin

if not ReadOnly and FDataLink.Edit then
inherited MouseDown(Button, Shift, X, Y)

else
begin

MyMouseDown := OnMouseDown;
if Assigned(MyMouseDown then MyMouseDown(Self, Button, Shift, X, Y);

end;
end;

When MouseDown responds to a mouse-down message, the inherited MouseDown
method is called only if the control’s ReadOnly property is False and the datalink
object is in edit mode, which means the field can be edited. If the field cannot be
edited, the code the programmer put in the OnMouseDown event handler, if one
exists, is executed.

Responding to key-down messages
A KeyDown method is a protected method for a control’s OnKeyDown event. The
control itself calls KeyDown in response to a Windows key-down message. When
overriding the inherited KeyDown method, you can include code that provides other
responses in addition to calling the OnKeyDown event.

To override KeyDown, follow these steps:

1 Add a KeyDown method to the TDBCalendar class:

type
TDBCalendar = class(TSampleCalendar);
ƒ

protected
procedure KeyDown(var Key: Word; Shift: TShiftState; X: Integer; Y: Integer);
override;

ƒ
end;

2 Implement the KeyDown method:

procedure KeyDown(var Key: Word; Shift: TShiftState);
var

MyKeyDown: TKeyEvent;
begin

if not ReadOnly and (Key in [VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT, VK_END,
VK_HOME, VK_PRIOR, VK_NEXT]) and FDataLink.Edit then
inherited KeyDown(Key, Shift)

else
begin
MyKeyDown := OnKeyDown;
if Assigned(MyKeyDown) then MyKeyDown(Self, Key, Shift);

end;
end;

51-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

When KeyDown responds to a mouse-down message, the inherited KeyDown method
is called only if the control’s ReadOnly property is False, the key pressed is one of the
cursor control keys, and the datalink object is in edit mode, which means the field can
be edited. If the field cannot be edited or some other key is pressed, the code the
programmer put in the OnKeyDown event handler, if one exists, is executed.

Updating the field datalink class

There are two types of data changes:

• A change in a field value that must be reflected in the data-aware control.

• A change in the data-aware control that must be reflected in the field value.

The TDBCalendar component already has a DataChange method that handles a change
in the field’s value in the dataset by assigning that value to the CalendarDate property.
The DataChange method is the handler for the OnDataChange event. So the calendar
component can handle the first type of data change.

Similarly, the field datalink class also has an OnUpdateData event that occurs as the
user of the control modifies the contents of the data-aware control. The calendar
control has a UpdateData method that becomes the event handler for the
OnUpdateData event. UpdateData assigns the changed value in the data-aware control
to the field data link.

1 To reflect a change made to the value in the calendar in the field value, add an
UpdateData method to the private section of the calendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure UpdateData(Sender: TObject);
ƒ

end;

2 Implement the UpdateData method:

procedure UpdateData(Sender: TObject);
begin

FDataLink.Field.AsDateTime := CalendarDate; { set field link to calendar date }
end;

3 Within the constructor for TDBCalendar, assign the UpdateData method to the
OnUpdateData event:

constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
FReadOnly := True;
FDataLink := TFieldDataLink.Create;
FDataLink.OnDataChange := DataChange;
FDataLink.OnUpdateData := UpdateData;

end;

M a k i n g a c o n t r o l d a t a a w a r e 51-11

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

Modifying the Change method

The Change method of the TDBCalendar is called whenever a new date value is set.
Change calls the OnChange event handler, if one exists. The component user can write
code in the OnChange event handler to respond to changes in the date.

When the calendar date changes, the underlying dataset should be notified that a
change has occurred. You can do that by overriding the Change method and adding
one more line of code. These are the steps to follow:

1 Add a new Change method to the TDBCalendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure Change; override;
ƒ

end;

2 Write the Change method, calling the Modified method that informs the dataset the
data has changed, then call the inherited Change method:

procedure TDBCalendar.Change;
begin

FDataLink.Modified; { call the Modified method }
inherited Change; { call the inherited Change method }

end;

Updating the dataset

So far, a change within the data-aware control has changed values in the field
datalink class. The final step in creating a data-editing control is to update the dataset
with the new value. This should happen after the person changing the value in the
data-aware control exits the control by clicking outside the control or pressing the Tab
key. This process works differently in the VCL and CLX.

VCL VCL has defined message control IDs for operations on controls. For example, the
CM_EXIT message is sent to the control when the user exits the control. You can
write message handlers that respond to the message. In this case, when the user exits
the control, the CMExit method, the message handler for CM_EXIT, responds by
updating the record in the dataset with the changed values in the field datalink class.
For more information about message handlers, see Chapter 46, “Handling
messages.”

To update the dataset within a message handler, follow these steps:

1 Add the message handler to the TDBCalendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure CMExit(var Message: TWMNoParams); message CM_EXIT;
ƒ

end;

51-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

2 Implement the CMExit method so it looks like this:

procedure TDBCalendar.CMExit(var Message: TWMNoParams);
begin

try
FDataLink.UpdateRecord; { tell data link to update database }

except
on Exception do SetFocus; { if it failed, don't let focus leave }

end;
inherited;

end;

CLX In CLX, TWidgetControl has a protected DoExit method that is called when input
focus shifts away from the control. This method calls the event handler for the OnExit
event. You can override this method to update the record in the dataset before
generating the OnExit event handler.

To update the dataset when the user exits the control, follow these steps:

1 Add an override for the DoExit method to the TDBCalendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure DoExit; override;
ƒ

end;

2 Implement the DoExit method so it looks like this:

procedure TDBCalendar.CMExit(var Message: TWMNoParams);
begin

try
FDataLink.UpdateRecord; { tell data link to update database }

except
on Exception do SetFocus; { if it failed, don't let focus leave }

end;
inherited; { let the inherited method generate an OnExit event }

end;

M a k i n g a d i a l o g b o x a c o m p o n e n t 52-1

C h a p t e r

52
Chapter 52Making a dialog box a component

You will find it convenient to make a frequently used dialog box into a component
that you add to the Component palette. Your dialog box components will work just
like the components that represent the standard common dialog boxes. The goal is to
create a simple component that a user can add to a project and set properties for at
design time.

Making a dialog box a component requires these steps:

1 Defining the component interface
2 Creating and registering the component
3 Creating the component interface
4 Testing the component

The Delphi “wrapper” component associated with the dialog box creates and
executes the dialog box at runtime, passing along the data the user specified. The
dialog-box component is therefore both reusable and customizable.

In this chapter, you will see how to create a wrapper component around the generic
About Box form provided in the Delphi Object Repository.

Note Copy the files ABOUT.PAS and ABOUT.DFM into your working directory.

There are not many special considerations for designing a dialog box that will be
wrapped into a component. Nearly any form can operate as a dialog box in this
context.

Defining the component interface
Before you can create the component for your dialog box, you need to decide how
you want developers to use it. You create an interface between your dialog box and
applications that use it.

For example, look at the properties for the common dialog box components. They
enable the developer to set the initial state of the dialog box, such as the caption and

52-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d r e g i s t e r i n g t h e c o m p o n e n t

initial control settings, then read back any needed information after the dialog box
closes. There is no direct interaction with the individual controls in the dialog box,
just with the properties in the wrapper component.

The interface must therefore contain enough information that the dialog box form
can appear in the way the developer specifies and return any information the
application needs. You can think of the properties in the wrapper component as
being persistent data for a transient dialog box.

In the case of the About box, you do not need to return any information, so the
wrapper’s properties only have to contain the information needed to display the
About box properly. Because there are four separate fields in the About box that the
application might affect, you will provide four string-type properties to provide for
them.

Creating and registering the component
Creation of every component begins the same way: create a unit, derive a component
class, register it, compile it, and install it on the component palette. This process is
outlined in “Creating a new component” on page 40-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit AboutDlg.

• Derive a new component type called TAboutBoxDlg, descended from TComponent.

• Register TAboutBoxDlg on the Samples page of the component palette.

The resulting unit should look like this:

unit AboutDlg;
interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms;
type

TAboutBoxDlg = class(TComponent)
end;

procedure Register;
implementation
procedure Register;
begin

RegisterComponents('Samples', [TAboutBoxDlg]);
end;
end.

The new component now has only the capabilities built into TComponent. It is the
simplest nonvisual component. In the next section, you will create the interface
between the component and the dialog box.

M a k i n g a d i a l o g b o x a c o m p o n e n t 52-3

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e

Creating the component interface
These are the steps to create the component interface:

1 Including the form unit
2 Adding interface properties
3 Adding the Execute method

Including the form unit

For your wrapper component to initialize and display the wrapped dialog box, you
must add the form’s unit to the uses clause of the wrapper component’s unit.

Append About to the uses clause of the AboutDlg unit.

The uses clause now looks like this:

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms,
About;

The form unit always declares an instance of the form class. In the case of the About
box, the form class is TAboutBox, and the About unit includes the following
declaration:

var
AboutBox: TAboutBox;

So by adding About to the uses clause, you make AboutBox available to the wrapper
component.

Adding interface properties

Before proceeding, decide on the properties your wrapper needs to enable
developers to use your dialog box as a component in their applications. Then, you
can add declarations for those properties to the component’s class declaration.

Properties in wrapper components are somewhat simpler than the properties you
would create if you were writing a regular component. Remember that in this case,
you are just creating some persistent data that the wrapper can pass back and forth to
the dialog box. By putting that data in the form of properties, you enable developers
to set data at design time so that the wrapper can pass it to the dialog box at runtime.

Declaring an interface property requires two additions to the component’s class
declaration:

• A private class field, which is a variable the wrapper uses to store the value of the
property

• The published property declaration itself, which specifies the name of the
property and tells it which field to use for storage

52-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e

Interface properties of this sort do not need access methods. They use direct access to
their stored data. By convention, the class field that stores the property’s value has
the same name as the property, but with the letter F in front. The field and the
property must be of the same type.

For example, to declare an integer-type interface property called Year, you would
declare it as follows:

type
TMyWrapper = class(TComponent)
private

FYear: Integer; { field to hold the Year-property data }
published

property Year: Integer read FYear write FYear; { property matched with storage }
end;

For this About box, you need four string-type properties—one each for the product
name, the version information, the copyright information, and any comments.

type
TAboutBoxDlg = class(TComponent)
private

FProductName, FVersion, FCopyright, FComments: string; { declare fields }

published
property ProductName: string read FProductName write FProductName;
property Version: string read FVersion write FVersion;
property Copyright: string read FCopyright write FCopyright;
property Comments: string read FComments write FComments;

end;

When you install the component onto the component palette and place the
component on a form, you will be able to set the properties, and those values will
automatically stay with the form. The wrapper can then use those values when
executing the wrapped dialog box.

Adding the Execute method

The final part of the component interface is a way to open the dialog box and return a
result when it closes. As with the common-dialog-box components, you will use a
boolean function called Execute that returns True if the user clicks OK, or False if the
user cancels the dialog box.

The declaration for the Execute method always looks like this:

type
TMyWrapper = class(TComponent)
public

function Execute: Boolean;
end;

The minimum implementation for Execute needs to construct the dialog box form,
show it as a modal dialog box, and return either True or False, depending on the
return value from ShowModal.

M a k i n g a d i a l o g b o x a c o m p o n e n t 52-5

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e

Here is the minimal Execute method for a dialog-box form of type TMyDialogBox:

function TMyWrapper.Execute: Boolean;
begin

DialogBox := TMyDialogBox.Create(Application); { construct the form }
try

Result := (DialogBox.ShowModal = IDOK); { execute; set result based on how closed }
finally

DialogBox.Free; { dispose of the form }
end;

end;

Note the use of a try..finally block to ensure that the application disposes of the
dialog box object even if an exception occurs. In general, whenever you construct an
object this way, you should use a try..finally block to protect the block of code and
make certain the application frees any resources it allocates.

In practice, there will be more code inside the try..finally block. Specifically, before
calling ShowModal, the wrapper will set some of the dialog box’s properties based on
the wrapper component’s interface properties. After ShowModal returns, the wrapper
will probably set some of its interface properties based on the outcome of the dialog
box execution.

In the case of the About box, you need to use the wrapper component’s four interface
properties to set the contents of the labels in the About box form. Because the About
box does not return any information to the application, there is no need to do
anything after calling ShowModal. Write the About box wrapper’s Execute method so
that it looks like this:

Within the public part of the TAboutDlg class, add the declaration for the Execute
method:

type
TAboutDlg = class(TComponent)

public
function Execute: Boolean;

end;

function TAboutBoxDlg.Execute: Boolean;
begin

AboutBox := TAboutBox.Create(Application); { construct About box }
try

if ProductName = '' then { if product name's left blank... }
ProductName := Application.Title; { ...use application title instead }

AboutBox.ProductName.Caption := ProductName; { copy product name }
AboutBox.Version.Caption := Version; { copy version info }
AboutBox.Copyright.Caption := Copyright; { copy copyright info }
AboutBox.Comments.Caption := Comments; { copy comments }
AboutBox.Caption := 'About ' + ProductName; { set About-box caption }
with AboutBox do begin
ProgramIcon.Picture.Graphic := Application.Icon; { copy icon }
Result := (ShowModal = IDOK); { execute and set result }

end;
finally

AboutBox.Free; { dispose of About box }
end;

end;

52-6 D e v e l o p e r ’ s G u i d e

T e s t i n g t h e c o m p o n e n t

Testing the component
Once you have installed the dialog-box component, you can use it as you would any
of the common dialog boxes, by placing one on a form and executing it. A quick way
to test the About box is to add a command button to a form and execute the dialog
box when the user clicks the button.

For example, if you created an About dialog box, made it a component, and added it
to the Component palette, you can test it with the following steps:

1 Create a new project.

2 Place an About-box component on the main form.

3 Place a command button on the form.

4 Double-click the command button to create an empty click-event handler.

5 In the click-event handler, type the following line of code:

AboutBoxDlg1.Execute;

6 Run the application.

When the main form appears, click the command button. The About box appears
with the default project icon and the name Project1. Choose OK to close the dialog
box.

You can further test the component by setting the various properties of the About
box component and again running the application.

I n d e x I-1

Symbols
& (ampersand) character 3-19,

6-33
... (ellipsis) buttons 15-21

A
Abort procedure

preventing edits 18-19
AbortOnKeyViol

property 20-51
AbortOnProblem

property 20-51
About box 52-2, 52-3

adding properties 52-4
adding to ActiveX

controls 38-5
executing 52-5

About unit 52-3
AboutDlg unit 52-2
absolute addressing 10-9
abstract classes 40-3
accelerators 3-19, 6-33
Access tables

local transactions 20-31
access violations

strings 4-46
Acquire method 9-7
Action 6-16
Action band 6-16
action bands 6-18
Action client 6-17
action editor

adding actions 28-4
changing actions 28-6

action items 28-3, 28-4, 28-5 to
28-8

adding 28-4
caution for changing 28-3
chaining 28-8
default 28-5, 28-7
enabling and disabling 28-6
event handlers 28-4
page producers and 28-15
responding to requests 28-7
selecting 28-6, 28-7
Web dispatchers 29-17

Action List editor 6-18
action lists 3-27, 6-17, 6-18, 6-23

to 6-50

Action Manager 6-16, 6-17, 6-18,
6-21

Action Manager editor 6-18,
6-19, 6-21

Action property 3-18
action requests

HTML 29-15
action responses 29-15
ActionBand 6-17
ActionLink property 3-18
actions 6-23 to 6-50

action classes 6-26
executing 6-24
predefined 6-28
registering 6-28
updating 6-26
Web adapters 29-8

Actions property 28-4
actions, 6-17
activation attribute

shared properties 39-6
Active Documents 33-10, 33-13

to 33-14
See also IOleDocumentSite

interface
Active property

client sockets 32-6
datasets 18-4
server sockets 32-7
sessions 20-17, 20-18

active scripting 29-9
Active Server Object

wizard 37-2 to 37-3
Active Server Objects 37-1 to

37-8
creating 37-2 to 37-7
debugging 37-8
in-process servers 37-7
out-of-process servers 37-7
registering 37-7 to 37-8

Active Server Pages 33-10,
33-12 to 33-13, 37-1 to 37-8

creating 37-3
HTML documents 37-1
UI design 37-1

ActiveAggs property 23-13
ActiveFlag property 16-19
ActiveForms 38-1, 38-5 to 38-6

as database Web
applications 25-33

creating 38-2

multi-tiered
applications 25-32

vs. InternetExpress 25-32
wizard 38-5 to 38-6

ActiveX 33-13, 38-1
comparison to ASP 37-7
interfaces 33-19
vs. InternetExpress 25-32
Web applications 33-13,

38-1, 38-15 to 38-16
ActiveX controls 13-5, 33-10,

33-13, 33-22, 38-1 to 38-16
adding methods 38-8 to 38-9
adding properties 38-8 to

38-9
component wrappers 35-5,

35-6, 35-8 to 35-9
creating 38-2, 38-4 to 38-6
data-aware 35-8 to 35-9, 38-7,

38-10 to 38-11
debugging 38-14
designing 38-4
elements 38-2 to 38-3
embedding in HTML 28-14
event handling 38-9 to 38-10
from VCL controls 38-4 to

38-6
importing 35-4
interfaces 38-7 to 38-11
licensing 38-5, 38-6 to 38-7
persistent properties 38-12
property pages 35-6, 38-3,

38-11 to 38-14
registering 38-14
threading model 38-5
type libraries 33-16, 38-3
using Automation-

compatible types 38-4, 38-7
Web applications 33-13,

38-1, 38-15 to 38-16
Web deployment 38-15 to

38-16
wizard 38-4 to 38-5

ActiveX Data Objects
See ADO

ActiveX page (Component
palette) 3-30, 35-4

activities
transactional objects 39-17 to

39-18
ActnList unit 6-28

Index

I-2 D e v e l o p e r ’ s G u i d e

adapter components
using 29-13

adapter dispatcher 29-4
adapter dispatcher

components 29-4
adapter dispatcher

requests 29-15
AdapterPageProducer 29-3
adapters

actions 29-8
errors 29-8
fields 29-8
records 29-8
Web applications 29-8

Add Fields dialog box 19-4
Add method

menus 6-41
persistent columns 15-18
strings 3-51

Add to Interface
command 25-17

Add To Repository
command 5-20

AddAlias method 20-24
AddFieldDef method 18-38
AddFontResource

function 13-13
AddIndex method 23-8
AddIndexDef method 18-38
Additional page (Component

palette) 3-29
AddObject method 3-52
AddParam method 18-52
AddPassword method 20-21
AddRef method 4-20, 4-24, 4-25,

33-4
Address property

TSocketConnection 25-25
addresses

socket connections 32-3, 32-4
AddStandardAlias

method 20-25
AddStrings method 3-51
ADO 14-1, 18-2, 21-1, 21-2

components 21-1 to 21-20
overview 21-1 to 21-2

data stores 21-2, 21-3
deployment 13-6
implicit transactions 21-6 to

21-7
providers 21-3
resource dispensers 39-6

ADO commands 21-7, 21-16 to
21-20

asynchronous 21-18

canceling 21-18
executing 21-17 to 21-18
iterating over 17-12
parameters 21-19 to 21-20
retrieving data 21-18 to 21-19
specifying 21-17

ADO connections 21-2 to 21-8
asynchronous 21-5
connecting to data

stores 21-2 to 21-7
events 21-7 to 21-8
executing commands 21-5
timing out 21-5

ADO datasets 21-9 to 21-16
asynchronous fetching 21-11

to 21-12
batch updates 21-12 to 21-14
connecting 21-9 to 21-10
data files 21-14 to 21-15
executing commands 21-20
index-based searches 18-27

ADO objects 21-1
Connection object 21-4
RDS DataSpace 21-16
Recordset 21-9, 21-10

ADO page (Component
palette) 3-29, 14-1, 21-1

ADOExpress 21-1
ADT fields 19-22, 19-23 to 19-25

displaying 15-21, 19-23
flattening 15-21
persistent fields 19-24

ADTG files 21-14
AfterApplyUpdates

event 23-30, 24-8
AfterCancel event 18-21
AfterClose event 18-4
AfterConnect event 17-3, 25-28
AfterDelete event 18-19
AfterDisconnect event 17-4,

25-29
AfterDispatch event 28-5, 28-8
AfterEdit event 18-17
AfterGetRecords event 24-7
AfterInsert event 18-18
AfterOpen event 18-4
AfterPost event 18-20
AfterScroll event 18-5
AggFields property 23-13
aggregate fields 19-6, 23-13

defining 19-10
displaying 19-10

Aggregates property 23-11,
23-13

aggregation
client datasets 23-11 to 23-13
COM 33-9
interfaces 4-23

aliases
BDE 20-3, 20-14, 20-24 to

20-26
creating 20-24 to 20-25
deleting 20-26
local 20-25
specifying 20-13, 20-14 to

20-15
Type Library editor 34-10,

34-17, 34-23
AliasName property 20-14
Align property 3-19, 6-4

panels 6-43
status bars 3-42
text controls 7-7

Alignment property 3-34
column headers 15-20
data grids 15-19
data-aware memo

controls 15-9
decision grids 16-12
fields 19-11
memos 3-32
rich text controls 3-32
status bars 3-42

AllowAllUp property 3-35
speed buttons 6-45
tool buttons 6-47

AllowDelete property 15-27
AllowGrayed property 3-35
AllowInsert property 15-27
alTop constant 6-43
ampersand (&) character 3-19,

6-33
analog video 8-32
ancestor classes 3-5, 3-8, 41-3

default 41-3
Anchor property 3-19
animation controls 3-45, 8-29 to

8-30
example 8-30

ANSI character sets 4-39, 12-3
AnsiChar 4-39
AnsiString 4-41
Apache applications 27-6

creating 28-1, 29-2
debugging 27-8

Apache DLLs 13-9
deployment 13-10

Apache Server DLLs 27-6
creating 28-1, 29-2

I n d e x I-3

apartment threading 36-8 to
36-9

Append method 18-18, 18-19
Insert vs. 18-18

AppendRecord method 18-21
application adapter 29-4
application components, Web

applications 29-4
Application Module Page

Options 29-3
application servers 14-13, 25-1,

25-11 to 25-18
callbacks 25-17
dropping connections 25-28
identifying 25-24
interface 25-16 to 25-18
interfaces 25-29
multiple data modules 25-21

to 25-22
opening connections 25-28
registering 25-11, 25-22
remote data modules 5-19
writing 25-12

Application variable 6-3, 28-3
applications

Apache 27-6, 28-1, 29-2
bi-directional 12-4
CGI stand-alone 29-2
client/server 25-1

network protocols 20-15
COM 5-14, 33-3 to 33-10,

33-18, 36-1 to 36-17
creating 3-23
cross-platform 10-1 to 10-29

creating 10-1
database 14-1

cross-platform 10-23
deploying 13-1
files 13-2
graphical 40-7, 45-1
international 12-1
ISAPI 27-6, 28-1, 29-2
MDI 5-2
MTS 5-14
multi-threaded 9-1
multi-tiered 25-1 to 25-42

overview 25-3 to 25-4
NSAPI 27-6, 28-1, 29-2
portable 10-1 to 10-29
porting 10-17
realizing palettes 45-5
SDI 5-2
service 5-4
status information 3-42
Web Broker 28-1 to 28-20

Web server 5-11, 29-2
Web-based client

applications 25-31 to 25-42
WebSnap 29-1 to 29-26
WebSnap tutorial 29-18
Win-CGI stand-alone 29-2

Apply method 20-45
Apply Updates dialog 34-25
ApplyRange method 18-34
ApplyUpdates method 10-28,

20-32
BDE datasets 20-35
client datasets 21-12, 23-6,

23-19, 23-19 to 23-20, 24-3
providers 23-20, 24-3, 24-8
TDatabase 20-35
TXMLTransformClient 26-10

AppServer property 23-31, 24-3,
25-17, 25-29

Arc method 8-4
architecture

BDE-based applications 20-1
to 20-2

database applications 14-5 to
14-14, 20-1 to 20-2

client 25-4
server 25-5

multi-tiered 25-4, 25-5
Web-based 25-31

Web Broker server
applications 28-3

array fields 19-22, 19-25 to 19-26
displaying 15-21, 19-23
flattening 15-21
persistent fields 19-25

arrays 42-2, 42-8
safe 34-13

as reserved word
early binding 25-29

AS_ApplyUpdates method 24-3
AS_DataRequest method 24-3
AS_Execute method 24-3
AS_GetParams method 24-3
AS_GetProviderNames

method 24-3
AS_GetRecords method 24-3
AS_RowRequest method 24-3
ASCII tables 20-5
ASP 33-10, 33-12 to 33-13, 37-1

to 37-8
comparison to ActiveX 37-7
comparison to Web

broker 37-1
generating pages 37-3
HTML documents 37-1

performance limitations 37-1
scripting language 33-13,

37-3
UI design 37-1

ASP intrinsics 37-3 to 37-6
accessing 37-2 to 37-3
Application object 37-4
Request object 37-4
Response object 37-5
Server object 37-6
Session object 37-5 to 37-6

assembler code 10-20
Assign Local Data

command 23-13
Assign method

string lists 3-51
AssignedValues property 15-21
assignment statements 42-2

object variables 3-10
AssignValue method 19-16
Associate property 3-33
as-soon-as-possible

deactivation 25-7, 39-4
atomicity

transactions 14-4, 39-9
attribute specifications

type libraries 34-13
attributes

property editors 47-10
Attributes property

parameters 18-45, 18-51
TADOConnection 21-6

audio clips 8-30
AutoCalcFields property 18-22
AutoComplete property 25-7
AutoDisplay property 15-9,

15-10
AutoEdit property 15-5
AutoHotKeys property 6-33
Automation

Active Server Objects 37-2
early binding 33-17
IDispatch interface 36-14
interfaces 36-12 to 36-14
late binding 36-14
optimizing 33-17
type checking 36-13
type compatibility 34-11,

36-15 to 36-16
type descriptions 33-12

Automation controllers 33-12,
35-1, 35-12 to 35-15, 36-14

creating objects 35-12
dispatch interfaces 35-13
dual interfaces 35-12

I-4 D e v e l o p e r ’ s G u i d e

events 35-13 to 35-15
example 35-9 to 35-12

Automation objects 33-12
 See also COM objects
component wrappers 35-7

example 35-9 to 35-12
wizard 36-4 to 36-9

Automation servers 33-10,
33-12

 See also COM objects
accessing objects 36-14
type libraries 33-16

AutoPopup property 6-49
AutoSelect property 3-32
AutoSessionName

property 20-17, 20-29, 28-17
AutoSize property 3-19, 3-31,

6-4, 13-13, 15-8
averages

decision cubes 16-5
.AVI files 8-32
AVI clips 3-45, 8-29, 8-32

B
Background 6-20
backgrounds 12-9
Bands property 3-36, 6-48
base clients 39-2
base unit 4-59, 4-61
.bashrc 10-15
batch files 10-14
batch operations 20-8, 20-47 to

20-52
appending data 20-49
copying datasets 20-49
deleting records 20-50
different databases 20-49
error handling 20-51 to 20-52
executing 20-51
mapping data types 20-50
modes 20-8, 20-49
setting up 20-47 to 20-48
updating data 20-49

batch updates 21-12 to 21-14
applying 21-14
canceling 21-14

BatchMove method 20-8
BDE

See Borland Database Engine
BDE Administration

utility 20-14, 20-54
BDE datasets 14-1, 18-2, 20-2 to

20-12
applying cached

updates 20-35

batch operations 20-47 to
20-52

copying 20-49
databases 20-3 to 20-4
decision support components

and 16-4
local database support 20-5

to 20-7
sessions 20-3 to 20-4
types 20-2

BDE page (Component
palette) 3-29, 14-1

BeforeApplyUpdates
event 23-30, 24-8

BeforeCancel event 18-21
BeforeClose event 18-4
BeforeConnect event 17-3, 25-28
BeforeDelete event 18-19
BeforeDisconnect event 17-4,

25-28
BeforeDispatch event 28-5, 28-7
BeforeEdit event 18-17
BeforeGetRecords event 24-7
BeforeInsert event 18-18
BeforeOpen event 18-4
BeforePost event 18-20
BeforeScroll event 18-5
BeforeUpdateRecord

event 20-32, 20-39, 23-21, 24-11
BeginDrag method 7-1
BeginRead method 9-8
BeginTrans method 17-6
BeginWrite method 9-8
Beveled 3-34
beveled panels 3-45
BevelKind property 3-22
bevels 3-45
bi-directional applications 12-4

methods 12-7 to 12-8
properties 12-6

bi-directional cursors 18-48
bi-directional properties 10-8
bin directory 10-16
BinaryOp method 4-30
bitmap buttons 3-35
bitmap objects 8-3
bitmaps 3-44, 8-17 to 8-18, 45-4

adding scrollable 8-16
adding to components 47-3
associating with strings 3-52,

7-12
blank 8-17
brushes 8-9
brushes property 8-8, 8-9
destroying 8-21

drawing on 8-18
drawing surfaces 45-3
draw-item events 7-15
graphical controls vs. 49-3
in frames 6-15
internationalizing 12-10
loading 45-4
offscreen 45-6 to 45-7
replacing 8-20
ScanLine property 8-9
scrolling 8-17
setting initial size 8-17
temporary 8-17
toolbars 6-46
when they appear in

application 8-2
BLOB fields 15-2

displaying values 15-8, 15-9
fetch on demand 24-5
getting values 20-4
viewing graphics 15-9

BLOBs 15-8, 15-9
caching 20-4

blocking connections 32-10
event handling 32-9
non-blocking vs. 32-9

BlockMode property 32-9, 32-10
bmBlocking 32-10
BMPDlg unit 8-20
bmThreadBlocking 32-9, 32-10
Bof property 18-6, 18-8
Bookmark property 18-9
bookmarks 18-9 to 18-10

filtering records 21-10 to
21-11

support by dataset
types 18-9

BookmarkValid method 18-9
Boolean fields 15-2, 15-12
Boolean values 42-2, 42-12, 51-3
borders

panels 3-40
BorderWidth property 3-40
Borland Database Engine 5-10,

14-1, 18-2, 20-1
aliases 20-3, 20-14, 20-16,

20-24 to 20-26
availability 20-25
creating 20-24 to 20-25
deleting 20-26
heterogeneous

queries 20-10
specifying 20-13, 20-14 to

20-15
API calls 20-1, 20-4

I n d e x I-5

batch operations 20-47 to
20-52

cached updates 20-32 to
20-47

update errors 20-37
closing connections 20-19
connecting to

databases 20-12 to 20-16
datasets 20-2
default connection

properties 20-18
deploying 13-8, 13-14
driver names 20-14
drivers 20-1, 20-14
heterogeneous queries 20-9

to 20-10
implicit transactions 20-30
managing connections 20-19

to 20-21
ODBC drivers 20-16
opening database

connections 20-19
resource dispensers 39-5
retrieving data 18-47, 20-2,

20-10
sessions 20-16
table types 20-5
utilities 20-53 to 20-54
Web applications 13-10

bounding rectangles 8-11
.BPL files 11-1, 13-3
briefcase model 14-14
brokering connections 25-27
Brush property 3-44, 8-4, 8-8,

45-3
BrushCopy method 45-3, 45-7
brushes 8-8 to 8-9, 49-5

bitmap property 8-9
changing 49-7
colors 8-8
styles 8-8

business rules 25-2, 25-12
ASP 37-1
transactional objects 39-2

business-to-business
communication

XML 30-1
ButtonAutoSize property 16-10
buttons 3-34 to 3-35

adding to toolbars 6-43 to
6-45, 6-46

assigning glyphs to 6-44
disabling on toolbars 6-46
navigator 15-28
toolbars and 6-42

ButtonStyle property
data grids 15-19, 15-20, 15-21

By Reference Only
COM interface

properties 34-9
ByteType 4-44

C
.CAB files 38-16
cabinets 38-16
CacheBlobs property 20-4
cached updates 23-15 to 23-23

ADO 21-12 to 21-14
applying 21-14
canceling 21-14

BDE 20-32 to 20-47
applying 20-11, 20-33 to

20-37
multiple tables 20-39,

20-43
error handling 20-37 to

20-39
updating read-only

datasets 20-11
client datasets 14-10 to 14-14,

23-15, 23-19 to 23-23
applying 20-11, 23-19 to

23-20
multiple tables 20-39,

20-43
transactions 17-6
update errors 23-22 to

23-23, 24-11
updating read-only

datasets 20-11
master/detail

relationships 23-17
overview 23-16 to 23-17
providers 24-8
update objects 23-18

CachedUpdates property 10-28,
20-32

caching resources 45-2
calculated fields 18-22 to 18-23,

19-6
assigning values 19-7
client datasets 23-10 to 23-11
defining 19-7 to 19-8
lookup fields and 19-9

calendar components 3-39
calendars 50-1 to 50-13

adding dates 50-5 to 50-10
defining properties and

events 50-2, 50-6, 50-11

making read-only 51-2 to
51-4

moving through 50-10 to
50-13

resizing 50-4
selecting current day 50-9

call synchronization 39-18
callbacks

multi-tiered
applications 25-17

limits 25-10
transactional objects 39-21

CanBePooled method 39-8
Cancel method 18-17, 18-20,

21-18
Cancel property 3-34
CancelBatch method 10-29,

21-12, 21-14
CancelRange method 18-34
CancelUpdates method 10-29,

20-33, 21-12, 23-6
CanModify property

data grids 15-25
datasets 15-5, 18-16, 18-37
queries 20-10

Canvas property 3-45, 40-7
canvases 40-7, 45-1, 45-3

adding shapes 8-11 to 8-12,
8-14

common properties,
methods 8-4

default drawing tools 49-5
drawing lines 8-5, 8-10, 8-27

to 8-28
changing pen width 8-6
event handlers 8-25

drawing vs. painting 8-4
overview 8-1 to 8-3
palettes 45-5
refreshing the screen 8-2

Caption property 3-19
column headers 15-20
decision grids 16-12
group boxes and radio

groups 3-39
invalid entries 6-32
labels 3-41
TForm 3-41

cascaded deletes 24-6
cascaded updates 24-6
case sensitivity 10-14

indexes 23-8
Cast method 4-29
CastTo method 4-30
CDaudio disks 8-32

I-6 D e v e l o p e r ’ s G u i d e

CellDrawState function 16-12
CellRect method 3-43
cells (grids) 3-43
Cells function 16-12
Cells property 3-43
CellValueArray function 16-12
CGI applications 13-10

creating 29-2
CGI programs 27-5, 27-6

creating 28-2
change log 23-5, 23-19, 23-33

saving changes 23-6
undoing changes 23-5

Change method 51-11
ChangeBounds property 10-21
ChangeCount property 10-28,

20-32, 23-5
ChangedTableName

property 20-51
CHANGEINDEX 23-7
ChangeScale property 10-21
Char data type 4-39, 12-3
character sets 4-43, 12-2, 12-2 to

12-4
ANSI 12-3
default 12-2
international sort

orders 12-10
multibyte 12-3
multibyte conversions 12-3
OEM 12-3

character types 4-39, 12-3
characters 42-2
Chart Editing dialog 16-15 to

16-18
Chart FX 13-5
check boxes 3-35, 15-2

data-aware 15-12 to 15-13
CHECK constraint 24-12
Checked property 3-35
check-list boxes 3-37
CheckSynchronize routine 9-5
child controls 3-19
Chord method 8-4
circles, drawing 49-9
circular references 6-2
class factories 33-6

added by wizard 36-3
class fields 49-4

declaring 49-5
naming 43-2

class pointers 41-9
classes 4-1, 40-2, 40-3, 41-1, 42-2

abstract 40-3
accessing 41-4 to 41-6, 49-6

ancestor 41-3
creating 41-1
default 41-3
defined 41-2
defining 40-11

static methods and 41-7
virtual methods and 41-8

derived 41-8
deriving new 41-2, 41-8
descendant 41-3, 41-8
hierarchy 41-3
inheritance 41-7
instantiating 41-2
passing as parameters 41-9
properties as 42-2
property editors as 47-7
protected part 41-5
public part 41-6
published part 41-6

Clear method
fields 19-16
string lists 3-51, 3-52

ClearSelection method 7-9
click events 8-24, 8-25, 43-1,

43-2, 43-7
Click method 43-2

overriding 43-6, 50-11
client applications

architecture 25-4
as Web server

applications 25-31
COM 33-3, 33-9, 35-1 to

35-15
creating 25-23 to 25-30, 35-1

to 35-15
interfaces 32-2
multi-tiered 25-2, 25-4
network protocols 20-15
sockets and 32-1
supplying queries 24-6
thin 25-2, 25-32
transactional objects 39-2
type libraries 34-20, 35-2 to

35-6
user interfaces 25-1
Web Services 31-8 to 31-10

client connections 32-2, 32-3
accepting requests 32-7
opening 32-6
port numbers 32-5

client datasets 23-1 to 23-34,
25-3

aggregating data 23-11 to
23-13

applying updates 23-19 to
23-20

calculated fields 23-10 to
23-11

connecting to other
datasets 14-10 to 14-14,
23-23 to 23-30

constraints 23-6 to 23-7,
23-28 to 23-29

disabling 23-29
copying data 23-13 to 23-14
creating tables 23-32
deleting indexes 23-9
deploying 13-6
editing 23-5
file-based applications 23-31

to 23-34
filtering records 23-2 to 23-5
grouping data 23-9 to 23-10
index-based searches 18-27
indexes 23-7 to 23-10

adding 23-8
limiting records 23-28
loading files 23-32
merging changes 23-33
merging data 23-14
navigation 23-2
parameters 23-26 to 23-28
providers and 23-23 to 23-30
refreshing records 23-29 to

23-30
resolving update

errors 23-20, 23-22 to 23-23
saving changes 23-6
saving files 23-33 to 23-34
sharing data 23-14
specifying providers 23-24 to

23-25
supplying queries 23-31
switching indexes 23-9
types 23-17 to 23-18
undoing changes 23-5
updating records 23-19 to

23-23
with unidirectional

datasets 22-10
client requests 27-4 to 27-6, 28-8
client sockets 32-3, 32-6 to 32-7

assigning hosts 32-4
connecting to servers 32-8
error messages 32-8
event handling 32-8
identifying servers 32-6
properties 32-6
requesting services 32-6

I n d e x I-7

Windows socket objects 32-6
client/server applications 5-10
clients See client applications
clients, action lists 6-17
Clipboard 7-8, 7-9, 15-9

clearing selection 7-9
formats

adding 47-15, 47-18
graphics and 8-21 to 8-23
graphics objects 8-3, 15-9
testing contents 7-10
testing for images 8-22

Clipbrd unit 7-8
CloneCursor method 23-14
Close method

connection components 17-3
database connections 20-19
datasets 18-4
sessions 20-18

CloseDatabase method 20-19
CloseDataSets method 17-12
CLSIDs 33-5, 33-6, 33-15

license package file 38-7
CLX 3-1

applications 10-1
deployment 13-6
object constructors 10-13
vs VCL 10-5

clx60.bpl 13-6
CM_EXIT message 51-11
CMExit method 51-11
CoClasses 33-6

ActiveX controls 38-4
CLSIDs 33-6
component wrappers 35-1,

35-3
limitations 35-2

creating 33-6, 34-19, 35-5,
35-12

declarations 35-5
naming 36-3, 36-5
Type Library editor 34-9,

34-16, 34-22 to 34-23
updating 34-21

code 44-4
portable 10-15, 10-17

Code editor 2-4
displaying 47-17
event handlers and 3-26
opening packages 11-8
overview 2-4

Code Insight
templates 5-3

code pages 12-3
code templates 5-3

ColCount property 15-27
color depths 13-11

programming for 13-13
color grids 8-6
Color property 3-19, 3-41, 3-44

brushes 8-8
column headers 15-20
data grids 15-19
decision grids 16-12
pens 8-5, 8-6

ColorChanged property 10-21
colors

internationalization
and 12-10

pens 8-6
Cols property 3-43
column headers 3-41, 15-17,

15-20
columns 3-43

decision grids 16-11
default state 15-15, 15-21
deleting 15-16
including in HTML

tables 28-19
persistent 15-15, 15-16 to

15-17
creating 15-17 to 15-21
deleting 15-18
inserting 15-18
reordering 15-19

properties 15-16, 15-19 to
15-20

resetting 15-21
Columns editor

creating persistent
columns 15-17

deleting columns 15-18
reordering columns 15-19

Columns property 3-37, 15-17
grids 15-15
radio groups 3-39

ColWidths property 3-43, 7-14
COM 5-14

aggregation 33-9
applications 33-18

distributed 5-14
parts 33-3 to 33-10

clients 33-3, 33-9, 34-20, 35-1
to 35-15

containers 33-9, 35-1
controllers 33-9, 35-1
definition 33-1 to 33-2
early binding 33-16
extensions 33-2, 33-10 to

33-12

dependencies 33-11
interfaces 33-3 to 33-5, 36-3

adding to type
libraries 34-20

Automation 36-12 to
36-14

dispatch identifiers 36-14
dual interfaces 36-13 to

36-14
implementing 33-6, 33-22
interface pointer 33-4
IUnknown 33-4
marshaling 33-8 to 33-9
modifying 34-20 to 34-22,

36-9 to 36-12
optimizing 33-17
type information 33-15

overview 33-1 to 33-22
proxy 33-7, 33-8
specification 33-1, 33-2
stubs 33-8
technologies 33-11
wizards 33-18 to 33-22, 36-1

COM interfaces, raising
exceptions 34-9

COM library 33-2
COM objects 33-3, 33-5 to 33-9,

36-1 to 36-17
aggregating 33-9
component wrappers 35-1,

35-2, 35-3, 35-6 to 35-12
creating 36-2 to 36-16
debugging 36-17
designing 36-2
instancing 36-5 to 36-6
interfaces 33-3, 36-9 to 36-14
lifetime management 4-20
registering 36-16 to 36-17
threading models 36-6 to

36-9
type checking 33-17
wizard 36-2 to 36-4, 36-5 to

36-9
COM servers 33-3, 33-5 to 33-9,

36-1 to 36-17
designing 36-2
in-process 33-6
optimizing 33-17
out-of-process 33-7
remote 33-7

COM+ 5-14, 25-6, 33-10, 33-14,
39-1

 See also transactional objects
call synchronization 39-18
configuring activities 39-18

I-8 D e v e l o p e r ’ s G u i d e

event objects 39-19
creating 39-19
wizard 39-19

events 35-14 to 35-15, 39-18
to 39-20

firing 39-20
in-process servers 33-7
interface pointers 33-5
object pooling 39-8
transactional objects 33-14 to

33-15
transactions 25-18
vs. MTS 39-1

COM+ applications 39-6, 39-22
COM+ Component

Manager 39-23
combo boxes 3-37, 10-8, 15-2,

15-11
data-aware 15-10 to 15-12
lookup 15-20
owner-draw 7-11

measure-item events 7-14
COMCTL32.DLL 6-43
command objects 21-16 to 21-20

iterating over 17-12
command switches 10-14
Command Text editor 18-43
CommandCount

property 17-12, 21-7
Commands property 17-12,

21-7
commands, action lists 6-18
CommandText property 18-43,

21-15, 21-16, 21-17, 21-19, 22-6,
22-7, 23-31

CommandTimeout
property 21-5, 21-18

CommandType property 21-15,
21-16, 21-17, 22-5, 22-6, 22-7,
23-31

Commit method 17-8
CommitTrans method 17-8
CommitUpdates method 10-29,

20-33, 20-35
common dialog boxes 3-45, 52-1

creating 52-2
executing 52-4

communications 32-1
protocols 20-15, 27-2, 32-2
standards 27-2

Compare method 4-32
CompareBookmarks

method 18-9
CompareOp method 4-33
compiler directives 10-19

libraries 5-9
package-specific 11-10
strings 4-49

compiler directives, string and
character types 4-49

compiler options 5-3
compile-time errors

override directive and 41-8
compiling code 2-4
component editors 47-15 to

47-18
default 47-15
registering 47-18

component interfaces
creating 52-3
properties, declaring 52-3

Component palette 3-28
ActiveX page 3-30, 35-4
adding components 11-6,

47-1, 47-3
Additional page 3-29
ADO page 3-29, 14-1, 21-1
BDE page 3-29, 14-1
Data Access page 3-29, 14-2,

25-2
Data Controls page 14-15,

15-1, 15-2
DataSnap page 3-29, 25-2,

25-6
dbDirect page 14-2
dbExpress page 3-29, 22-2
Decision Cube page 14-15,

16-1
Dialogs page 3-30
FastNet page 3-29
frames 6-14
Indy Clients page 3-30
Indy Misc page 3-30
Indy Servers page 3-30
InterBase page 3-29, 14-2
Internet page 3-29
InternetExpress page 3-29
pages listed 3-29
QReport page 3-30
Samples page 3-30
Servers page 3-30
Standard page 3-29
System page 3-29
Win 3.1 page 3-30
Win32 page 3-29

component templates 6-12,
6-13, 41-2

and frames 6-14, 6-15
Component wizard 40-9
component wrappers 40-4, 52-2

ActiveX controls 35-6, 35-8
to 35-9

Automation objects 35-7
example 35-9 to 35-12

COM objects 35-1, 35-2, 35-3,
35-6 to 35-12

initializing 52-3
components 3-1, 3-12 to 3-21,

40-1, 41-1, 42-2
abstract 40-3
adding to Component

Palette 47-1
adding to existing unit 40-11
adding to units 40-11
changing 48-1 to 48-3
common properties 3-18 to

3-20, 3-21 to 3-22
context menus 47-15, 47-16

to 47-17
creating 40-2, 40-8
cross-platform 3-29
custom 3-30, 6-12
customizing 40-3, 42-1, 43-1
data-aware 51-1
data-browsing 51-1 to 51-7
data-editing 51-7 to 51-11
dependencies 40-5
derived classes 40-3, 40-11,

49-2
dispatcher 29-13
double-click 47-15, 47-17
grouping 3-39 to 3-41
initializing 42-13, 49-6, 51-6
installing 3-30, 11-5 to 11-6,

47-19
interfaces 41-4, 41-5, 52-1

design-time 41-6
runtime 41-6

memory management 3-11
nonvisual 3-46, 40-5, 40-11,

52-2
online help 47-4
ownership 3-11
packages 47-19
page producers 29-6
palette bitmaps 47-3
registering 40-12
registration 47-2
renaming 3-7 to 3-8
resizing 3-34
resources, freeing 52-5
responding to events 43-6,

43-7, 43-9, 51-6
standard 3-28 to 3-30
testing 40-12, 40-14, 52-6

I n d e x I-9

Web applications 29-4
ComputerName property 25-24
conditional compilation 10-18,

10-19
ConfigMode property 20-25
configuration files 10-15
connected line segments 8-10
Connected property 17-3

connection components 17-3
connection components

database 14-7 to 14-9, 17-1 to
17-14, 20-3

accessing metadata 17-12
to 17-14

ADO 21-2 to 21-8
BDE 20-12 to 20-16
binding 20-13 to 20-15,

21-2 to 21-4, 22-3 to 22-5
dbExpress 22-2 to 22-5
executing SQL

commands 17-10 to
17-11, 21-5

implicit 17-2, 20-3, 20-13,
20-19, 20-20, 21-3

in remote data
modules 25-6

statements per
connection 22-3

DataSnap 14-14, 25-3, 25-4 to
25-5, 25-23, 25-23 to 25-30

dropping
connections 25-28

managing
connections 25-28

opening
connections 25-28

protocols 25-8 to 25-11,
25-24

Connection Editor 22-5
connection names 22-4 to 22-5

changing 22-5
defining 22-5
deleting 22-5

connection parameters 20-14 to
20-15

ADO 21-3 to 21-4
dbExpress 22-4, 22-5
login information 17-4, 21-4

Connection property 21-3, 21-9
Connection String Editor 21-4
ConnectionBroker 23-24
ConnectionName property 22-4
ConnectionObject property 21-4
connections

client 32-3

CORBA 25-10 to 25-11, 25-27
database 17-2 to 17-5

asynchronous 21-5
closing 20-19
limiting 25-8
managing 20-19 to 20-21
naming 22-4 to 22-5
network protocols 20-15
opening 20-18, 20-19
persistent 20-18
pooling 25-6, 39-5 to 39-6
temporary 20-20

database servers 17-3, 20-15
DCOM 25-8 to 25-9, 25-24
dropping 25-28
HTTP 25-9 to 25-10, 25-26
opening 25-28, 32-6
protocols 25-8 to 25-11, 25-24
SOAP 25-10, 25-26
TCP/IP 25-9, 25-25, 32-2 to

32-3
terminating 32-7

ConnectionString
property 17-2, 17-4, 21-3, 21-10

ConnectionTimeout
property 21-5

ConnectOptions property 21-5
consistency

transactions 14-4, 39-9
console applications 5-3

CGI 27-6
Console Wizard 5-3
CONSTRAINT constraint 24-12
ConstraintErrorMessage

property 19-11, 19-21, 19-22
constraints

controls 6-4
data 19-21 to 19-22

client datasets 23-6 to
23-7, 23-28 to 23-29

creating 19-21
disabling 23-29
importing 19-21 to 19-22,

23-29, 24-12, 24-13
Constraints property 6-4, 23-7,

24-13
constructors 3-11, 40-13, 42-12,

44-3, 50-3, 50-4, 51-6
cross-platform 10-22
multiple 6-9
overriding 48-2
owned objects and 49-5, 49-6

contained objects 33-9
Contains list (packages) 11-6,

11-7, 11-9, 47-19

Content method
page producers 28-14

content producers 28-4, 28-13
event handling 28-15, 28-16

Content property
Web response objects 28-12

ContentFromStream method
page producers 28-14

ContentFromString method
page producers 28-14

ContentStream property
Web response objects 28-12

context IDs 5-26
context menus

adding items 47-16 to 47-17
Menu designer 6-37
toolbars 6-49

context numbers (Help) 3-42
ContextHelp 5-29
controlling Unknown 4-24, 4-26
controls 3-2, 3-12 to 3-21

as ActiveX control
implementation 38-3

changing 40-3
custom 40-4
data-aware 15-1 to 15-30
data-browsing 51-1 to 51-7
data-editing 51-7 to 51-11
display options 3-19
generating ActiveX

controls 38-2, 38-4 to 38-6
graphical 45-3, 49-1 to 49-9

creating 40-4, 49-3
drawing 49-3 to 49-9
events 45-7

grouping 3-39 to 3-41
moving through 3-19, 3-22
owner-draw 7-11, 7-13

declaring 7-12
palettes and 45-5
position 3-19
receiving focus 40-4
repainting 49-7, 49-9, 50-4
resizing 45-7, 50-4
shape 49-7
size 3-19
standard

displaying data 15-4,
19-17, 19-17

windowed 40-3
ControlType property 16-9,

16-15
conversion

complex 4-60
currency 4-62

I-10 D e v e l o p e r ’ s G u i d e

conversion class 4-62 to 4-64
conversion factor 4-62
conversion families 4-59

example creating 4-59
conversion families,

registering 4-60
conversion family 4-58
conversion utilities 4-58
conversions

field values 19-16, 19-17 to
19-19

PChar 4-47
string 4-47

Convert function 4-58, 4-59,
4-60, 4-62, 4-64

cool bars 3-36, 6-42, 6-43
adding 6-48
configuring 6-48
designing 6-42 to 6-50
hiding 6-49

coordinates
current drawing

position 8-24
Copy (Object Repository) 5-20
CopyFile function 4-53
CopyFrom function 4-57
CopyMode property 45-3
CopyRect method 8-4, 45-3,

45-7
CopyToClipboard method 7-9

data-aware memo
controls 15-9

graphics 15-9
CORBA 4-17

connecting to application
servers 25-27

multi-tiered database
applications 25-10 to 25-11

CORBA connections 25-10 to
25-11, 25-27

CORBA Data Module
wizard 25-15 to 25-16

CORBA data modules 25-5
instancing 25-16
threading models 25-16

Count property
string lists 3-50
TSessionList 20-29

Create Data Set command 18-38
Create method 3-11
Create Submenu command

(Menu designer) 6-34, 6-37
CREATE TABLE 17-10
Create Table command 18-38
CreateDataSet method 18-38

CreateFile function 4-53
CreateObject method 37-3
CreateParam method 23-27
CreateSharedPropertyGroup

39-6
CreateSuspended

parameter 9-11
CreateTable method 18-38
CreateTransactionContextEx

example 39-12 to 39-13
CreateWidget property 10-22
creating a Web page

module 29-23
creator classes

CoClasses 35-5, 35-12
critical sections 9-7

warning about use 9-8
cross-platform

applications 3-29, 10-1 to 10-29
creating 10-1

cross-platform
development 6-17, 6-18

crosstabs 16-2 to 16-3, 16-10
defined 16-2
multidimensional 16-3
one-dimensional 16-2
summary values 16-2, 16-3

crtl.dcu 13-6
currency

formats 12-10
internationalizing 12-10

currency conversion
example 4-62

Currency property
fields 19-11

CursorChanged property 10-21
cursors 18-5

bi-directional 18-48
cloning 23-14
linking 18-35, 22-12
moving 18-6, 18-7, 18-28,

18-29
to first row 18-6, 18-8
to last row 18-6, 18-7
with conditions 18-10

synchronizing 18-40
unidirectional 18-48

CursorType property 21-12,
21-13

CurValue property 24-11
custom components 3-30
custom controls 40-4

libraries 40-4
Custom property 25-41
custom Variants 4-27 to 4-39

binary operations 4-30 to
4-32

clearing 4-35
comparison operators 4-32

to 4-33
copying 4-34
creating 4-27, 4-28 to 4-36
enabling 4-36
loading and saving

values 4-35 to 4-36
memory 4-34, 4-35
methods 4-37 to 4-39
properties 4-37 to 4-39
storing data 4-28, 4-31, 4-34,

4-35
typecasting 4-29 to 4-30,

4-31, 4-32, 4-36
unary operators 4-34
writing utilities 4-36 to 4-37

CustomConstraint
property 19-11, 19-21, 23-7

customizing components 42-1
CutToClipboard method 7-9

data-aware memo
controls 15-9

graphics 15-9

D
data

 See also records
accessing 51-1
analyzing 14-15, 16-2
changing 18-16 to 18-22
default values 15-10, 19-20
displaying 19-17, 19-17

current values 15-8
disabling repaints 15-6
in grids 15-15, 15-26

display-only 15-8
entering 18-18
formats,

internationalizing 12-10
graphing 14-15
printing 14-16
reporting 14-16
synchronizing forms 15-4

data access
components 5-10, 14-1

threads 9-4
cross-platform 13-7, 14-2
mechanisms 5-10, 14-1 to

14-2, 18-2
Data Access page (Component

palette) 3-29, 14-2, 25-2
data binding 38-10

I n d e x I-11

Data Bindings editor 35-8
data brokers 23-24, 25-1
data compression

TSocketConnection 25-25
data constraints See constraints
Data Controls page (Component

palette) 3-29, 14-15, 15-1, 15-2
Data Definition

Language 17-10, 18-42, 20-8,
22-10

Data Dictionary 19-12 to 19-14,
20-52 to 20-53, 25-3

constraints 24-13
data fields 19-6

defining 19-6 to 19-7
data filters 18-12 to 18-15

blank fields 18-14
client datasets 23-3 to 23-5

using parameters 23-28
defining 18-13 to 18-15
enabling/disabling 18-12
operators 18-14
queries vs. 18-12
setting at runtime 18-15
using bookmarks 21-10 to

21-11
data formats

default 19-14
data grids 15-2, 15-14, 15-15 to

15-26
customizing 15-16 to 15-21
default state 15-15

restoring 15-21
displaying data 15-15, 15-16,

15-26
ADT fields 15-21
array fields 15-21

drawing 15-25
editing data 15-6, 15-25
events 15-25 to 15-26
getting values 15-16
inserting columns 15-17
properties 15-27
removing columns 15-16,

15-18
reordering columns 15-19
runtime options 15-23 to

15-24
data integrity 14-5, 24-12
data links 51-4 to 51-6

initializing 51-6
Data Manipulation

Language 17-10, 18-42, 20-8
data members 3-2
data modules 14-6, 29-6

accessing from forms 5-18
creating 5-15
database components 20-16
editing 5-15
remote vs. standard 5-15
sessions 20-17
Web 29-3, 29-5
Web applications and 28-2
Web Broker

applications 28-4
data packets 26-4

application-defined
information 23-14, 24-6

controlling fields 24-4
converting to XML

documents 26-1 to 26-8
copying 23-13 to 23-14
editing 24-7
ensuring unique

records 24-4
fetching 23-25 to 23-26, 24-7
including field

properties 24-5
limiting client edits 24-5
mapping to XML

documents 26-2
read-only 24-5
refreshing updated

records 24-6
XML 25-32, 25-33, 25-36

editing 25-37
fetching 25-36 to 25-37

Data property 23-5, 23-13,
23-14, 23-33

data sources 14-6, 15-3 to 15-5
disabling 15-4
enabling 15-4
events 15-4

data stores 21-2
data types

persistent fields 19-6
data-aware controls 14-15, 15-1

to 15-30, 19-17, 51-1
associating with

datasets 15-3 to 15-4
common features 15-2
creating 51-1 to 51-12
data-browsing 51-1 to 51-7
data-editing 51-7 to 51-11
destroying 51-6
disabling repaints 15-6, 18-8
displaying data 15-6 to 15-7

current values 15-8
in grids 15-15, 15-26

displaying graphics 15-9

editing 15-5 to 15-6, 18-17
entering data 19-14
grids 15-14
inserting records 18-18
list 15-2
read-only 15-8
refreshing data 15-6
representing fields 15-7
responding to changes 51-6

database applications 5-10, 14-1
architecture 14-5 to 14-14,

25-31
cross-platform 10-23
deployment 13-6
distributed 5-11
file-based 14-9 to 14-10,

21-14 to 21-15, 23-31 to
23-34

multi-tiered 25-3 to 25-4
porting 10-25
scaling 14-11
XML and 26-1 to 26-10

database components 5-10,
20-3, 20-12 to 20-16

applying cached
updates 20-35

identifying databases 20-13
to 20-15

sessions and 20-13, 20-20 to
20-21

shared 20-16
temporary 20-20

dropping 20-20
database connections 17-2 to

17-5
dropping 17-3, 17-3 to 17-4
limiting 25-8
maintaining 17-3
persistent 20-18
pooling 25-6, 39-5 to 39-6

Database Desktop 20-54
database drivers

BDE 20-1, 20-3, 20-14
dbExpress 22-3

database engines
See also Borland Database

Engine
third-party 13-7

Database Explorer 20-14, 20-53
database management

systems 25-1
database navigator 15-2, 15-28

to 15-30, 18-5, 18-6
buttons 15-28
deleting data 18-20

I-12 D e v e l o p e r ’ s G u i d e

editing 18-17
enabling/disabling

buttons 15-28, 15-29
help hints 15-30

Database parameter 22-4
Database Properties

editor 20-14
viewing connection

parameters 20-15
database servers 5-10, 17-3,

20-15
connecting 14-7 to 14-9
constraints 19-21, 19-21 to

19-22, 24-12
describing 17-2
types 14-2

DatabaseCount property 20-21
DatabaseName property 17-2,

20-3, 20-14
heterognous queries 20-9

databases 5-10, 14-1 to 14-5,
51-1

access properties 51-5 to 51-6
accessing 18-1
adding data 18-21
aliases and 20-14
choosing 14-3
connecting 17-1 to 17-14
file-based 14-3
generating HTML

responses 28-17 to 28-20
identifying 20-13 to 20-15
implicit connections 17-2
logging in 14-4, 17-4 to 17-5
naming 20-14
relational 14-1
security 14-3 to 14-4
transactions 14-4 to 14-5
types 14-2
unauthorized access 17-4
Web applications and 28-17

Databases property 20-21
DataChange method 51-10
DataCLX 10-6
data-entry validation 19-15
DataField property 15-10, 51-5

lookup list and combo
boxes 15-12

DataRequest method 23-30,
24-3

dataset fields 19-22, 19-26 to
19-27

displaying 15-23
persistent 18-36

dataset page producers 28-18

converting field values 28-18
DataSet property

data grids 15-16
providers 24-2

dataset providers 14-11
See providers

DataSetCount property 17-12
DataSetField property 18-36
datasets 14-7, 18-1 to 18-53

adding records 18-18 to
18-19, 18-21

ADO-based 21-9 to 21-16
BDE-based 20-2 to 20-12
categories 18-23 to 18-24
changing data 18-16 to 18-22
closing 18-4 to 18-5

posting records 18-20
w/o disconnecting 17-12

creating 18-37 to 18-39
current row 18-5
cursors 18-5
custom 18-2
decision components

and 16-4 to 16-6
deleting records 18-19 to

18-20
editing 18-17 to 18-18
fields 18-1
filtering records 18-12 to

18-15
HTML documents 28-19,

28-20
iterating over 17-12
marking records 18-9 to

18-10
modes 18-3 to 18-4
navigating 15-28, 18-5 to

18-8, 18-16
opening 18-4
posting records 18-20
providers and 24-2
queries 18-23, 18-41 to 18-48
read-only

updating 20-11
searching 18-10 to 18-12

extending a search 18-29
multiple columns 18-11
partial keys 18-29
using indexes 18-11,

18-12, 18-27 to 18-29
states 18-3 to 18-4
stored procedures 18-23,

18-48 to 18-53
tables 18-23, 18-24 to 18-41

undoing changes 18-20 to
18-21

unidirectional 22-1 to 22-18
unindexed 18-21

DataSets property 17-12
DataSnap page (Component

palette) 3-29, 25-2, 25-6
DataSource property

ActiveX controls 35-8
data grids 15-16
data navigators 15-30
data-aware controls 51-5
lookup list and combo

boxes 15-12
queries 18-46

DataType property
parameters 18-44, 18-45,

18-51
date fields

formatting 19-14
dates

calendar components 3-39
entering 3-39
internationalizing 12-10

DateTimePicker
component 3-39

DAX 33-2, 33-21 to 33-22
Day property 50-5
DB/2 driver

deploying 13-9
dBASE tables 20-5

accessing data 20-9
adding records 18-19
DatabaseName 20-3
indexes 20-6
local transactions 20-31
password protection 20-21 to

20-23
renaming 20-7

DBChart component 14-15
DBCheckBox component 15-2,

15-12 to 15-13
DBComboBox component 15-2,

15-10 to 15-11
DBConnection property 23-16
DBCtrlGrid component 15-2,

15-26 to 15-27
properties 15-27

dbDirect page (Component
palette) 14-2

DBEdit component 15-2, 15-8
dbExpress 10-23 to 10-28, 13-7,

14-2, 22-1 to 22-2
components 22-1 to 22-18
debugging 22-17 to 22-18

I n d e x I-13

deploying 22-1
drivers 22-3
metadata 22-12 to 22-17

dbExpress applications 13-10
dbExpress page (Component

palette) 3-29, 22-2
DBGrid component 15-2, 15-15

to 15-26
events 15-25
properties 15-19

DBGridColumns
component 15-15

DBImage component 15-2, 15-9
to 15-10

DBListBox component 15-2,
15-10 to 15-11

DBLogDlg unit 17-4
DBLookupComboBox

component 15-2, 15-11 to
15-12

DBLookupListBox
component 15-2, 15-11 to
15-12

DBMemo component 15-2, 15-8
to 15-9

DBMS 25-1
DBNavigator component 15-2,

15-28 to 15-30
DBRadioGroup

component 15-2, 15-13 to
15-14

DBRichEdit component 15-2,
15-9

DBSession property 20-3
DBText component 15-2, 15-8
dbxconnections.ini 22-4, 22-5
dbxdrivers.ini 22-3
DCOM 33-7, 33-8

connecting to application
server 23-25, 25-24

distributing
applications 5-14

InternetExpress
applications 25-36

multi-tiered
applications 25-8 to 25-9

DCOM connections 25-8 to
25-9, 25-24

DCOMCnfg.exe 25-36
.DCP files 11-2, 11-12
.DCR files 47-3
.DCU files 11-2, 11-12
DDL 17-10, 18-42, 18-47, 20-8,

22-10
debugging

Active Server Objects 37-8

ActiveX controls 38-14
COM objects 36-17
dbExpress

applications 22-17 to 22-18
transactional objects 39-21 to

39-22
Web server applications 27-7

to 27-9, 29-2
debugging code 2-5
debugging Web server

applications 28-2
Decision Cube Editor 16-7 to

16-8
Cube Capacity 16-19
Dimension Settings 16-8
Memory Control 16-8

Decision Cube page
(Component palette) 14-15,
16-1

decision cubes 16-7 to 16-8
design options 16-8
dimension maps 16-5, 16-7,

16-8, 16-19
dimensions

opening/closing 16-9
paged 16-20

displaying data 16-9, 16-11
drilling down 16-5, 16-9,

16-11, 16-20
getting data 16-4
memory management 16-8
pivoting 16-5, 16-9
properties 16-7
refreshing 16-7
subtotals 16-5

decision datasets 16-4 to 16-6
decision graphs 16-13 to 16-18

customizing 16-15 to 16-18
data series 16-17 to 16-18
dimensions 16-14
display options 16-15
graph types 16-16
pivot states 16-9
runtime behaviors 16-19
templates 16-16

decision grids 16-10 to 16-13
dimensions

drilling down 16-11
opening/closing 16-11
reordering 16-11
selecting 16-12

events 16-12
pivot states 16-9, 16-11
properties 16-12
runtime behaviors 16-18

decision pivots 16-9 to 16-10

dimension buttons 16-10
orientation 16-10
properties 16-10
runtime behaviors 16-18

decision queries
defining 16-6

Decision Query editor 16-6
decision sources 16-9

events 16-9
properties 16-9

decision support
components 14-15, 16-1 to
16-20

adding 16-3 to 16-4
assigning data 16-4 to 16-6
design options 16-8
memory management 16-19
runtime 16-18 to 16-19

declarations
classes 41-9, 49-5

protected 41-5
public 41-6
published 41-6

event handlers 43-5, 43-8,
50-12

message handlers 46-4, 46-5,
46-7

methods 8-15, 44-4
dynamic 41-9
public 44-3
static 41-7
virtual 41-8

new component types 41-3
properties 42-3, 42-3 to 42-6,

42-7, 42-12, 43-8, 49-4
stored 42-12
user-defined types 49-3

variables
example 3-10

DECnet protocol (Digital) 32-1
default

ancestor class 41-3
directive 42-11, 48-3
handlers

events 43-9
message 46-3
overriding 43-9

project options 5-3
property values 42-7

changing 48-2, 48-3
specifying 42-11 to 42-12

reserved word 42-7
values 15-10

Default checkbox 5-3
Default property

action items 28-7

I-14 D e v e l o p e r ’ s G u i d e

DEFAULT_ORDER 23-7
DefaultColWidth property 3-43
DefaultDatabase property 21-4
DefaultDrawing property 7-12,

15-25
DefaultExpression

property 19-20, 23-7
DefaultHandler method 46-3
DefaultPage property 29-18
DefaultRowHeight

property 3-43
delegation 43-1
Delete command (Menu

designer) 6-37
Delete method 18-19

string lists 3-51, 3-52
DELETE statements 20-39,

20-42, 24-9
Delete Table command 18-40
Delete Templates command

(Menu designer) 6-37, 6-39
Delete Templates dialog

box 6-39
DeleteAlias method 20-26
DeleteFile function 4-50
DeleteFontResource

function 13-13
DeleteIndex method 23-9
DeleteRecords method 18-40
DeleteSQL property 20-40
DeleteTable method 18-40
Delphi

ActiveX framework
(DAX) 33-2, 33-21 to 33-22

delta packets 24-8, 24-9
editing 24-8, 24-9
screening updates 24-11
XML 25-36, 25-37 to 25-38

Delta property 23-5, 23-19
$DENYPACKAGEUNIT

compiler directive 11-10
DEPLOY 13-8, 13-14
deploying

ActiveX controls 13-5
applications 13-1
Borland Database

Engine 13-8
CLX applications 13-6
database applications 13-6
dbExpress 22-1
DLL files 13-5
fonts 13-13
general applications 13-1
MIDAS applications 13-9
package files 13-3

SQL Links 13-8
dereferencing object

pointers 41-9
deriving classes 41-8
descendant classes 3-8, 41-3

redefining methods 41-8
design tools 2-2
designing

applications 2-2
DESIGNONLY compiler

directive 11-10
design-time interfaces 41-6
design-time packages 11-1, 11-5

to 11-6
destination datasets,

defined 20-48
Destroy method 3-11
destructors 3-11, 44-3, 51-6

owned objects and 49-5, 49-6
developer support 1-3
device contexts 8-1, 8-2, 40-7,

45-1
device-independent

graphics 45-1
DeviceType property 8-31

3-7
.DFM files 3-7, 10-2, 12-10, 42-11

generating 12-13
diacritical marks 12-10
dialog boxes 52-1 to 52-6

common 3-45
creating 52-1
internationalizing 12-9,

12-10
multipage 3-40
property editors as 47-9
setting initial state 52-1
Windows common 52-1

creating 52-2
executing 52-4

Dialogs page (Component
palette) 3-30

digital audio tapes 8-32
DimensionMap property 16-5,

16-7
Dimensions property 16-12
Direction property

parameters 18-45, 18-51
directives 10-19

$ELSEIF 10-19
$ENDIF 10-19
$H compiler 4-41, 4-49
$IF 10-19
$IFDEF 10-18
$IFEND 10-19

$IFNDEF 10-18
$LIBPREFIX compiler 5-9
$LIBSUFFIX compiler 5-9
$LIBVERSION compiler 5-9
$MESSAGE compiler 10-20
$P compiler 4-49
$V compiler 4-49
$X compiler 4-49
conditional

compilation 10-18
default 42-11, 48-3
dynamic 41-9
override 41-8, 46-3
protected 43-5
public 43-5
published 42-3, 43-5, 52-3
stored 42-12
string-related 4-49
virtual 41-8

directories, Linux 10-16
Directory directive 13-10
DirtyRead 17-9
DisableCommit method 39-12
DisableConstraints

method 23-29
DisableControls method 15-6
DisabledImages property 6-46
disconnected model 14-14
dispatch actions 29-4
dispatch interfaces 36-12, 36-14

calling methods 35-13
identifiers 36-14
type compatibility 36-15
type libraries 34-9
Type Library editor 34-16

Dispatch method 46-3, 46-4
dispatcher components 29-13

adapters 29-13
dispatcher, Web 28-2, 28-4 to

28-5
dispatchers

action items 29-17
dispatching requests

WebSnap 29-12
dispIDs 33-15, 36-14

binding to 36-14
dispinterfaces 25-30, 36-12,

36-13, 36-14
dynamic binding 34-9
type libraries 34-9

displatcher components 29-4
DisplayFormat property 15-25,

19-11, 19-15
DisplayLabel property 15-17,

19-11

I n d e x I-15

DisplayWidth property 15-16,
19-11

distributed applications
database 5-11
MTS and COM+ 5-14

distributed COM 33-7, 33-8
distributed data processing 25-2
DllGetClassObject 39-3
DllRegisterServer 39-3
DLLs 10-15

Apache 13-10
COM servers 33-6

threading models 36-7
creating 5-9
deployment 13-9
embedding in HTML 28-14
HTTP servers 27-5, 27-6
installing 13-5
internationalizing 12-12,

12-13
MTS 39-2
packages 11-1, 11-2

DML 17-10, 18-42, 18-47, 20-8
.DMT files 6-38, 6-39
docking 7-4
docking site 7-5
Document Object Model

See DOM
Document Type Definition file

See DTD file
documentation

ordering 1-3
DocumentElement

property 30-3
DoExit method 51-12
DOM 30-2, 30-2 to 30-3

implementations 30-2
using 30-3

double-clicks
components 47-15
responding to 47-17

Down property 3-35
speed buttons 6-44

.DPK files 11-2, 11-6

.DPL files 11-2, 11-12
drag cursors 7-2
drag object 7-3
drag-and-dock 3-20, 3-22, 7-4 to

7-6
drag-and-drop 3-20, 7-1 to 7-4

customizing 7-3
DLLs 7-4
events 49-2
getting state information 7-3
mouse pointer 7-4

DragCursor property 3-20
DragMode property 3-20, 7-1

grids 15-19
draw grids 3-43
Draw method 8-4, 45-3, 45-7
drawing modes 8-28
drawing tools 45-1, 45-7, 49-5

assigning as default 6-45
changing 8-13, 49-7
handling multiple in an

application 8-12
testing for 8-12, 8-13

DrawShape 8-15
drill-down forms 15-14
drintf unit 20-52
drive letters 10-15
driver names 20-14
DriverName property 20-14,

22-3
DropConnections

method 20-13, 20-20
drop-down lists

in data grids 15-20
drop-down menus 6-34 to 6-35
DropDownCount

property 3-38, 15-11
DropDownMenu property 6-49
DropDownRows property

data grids 15-20, 15-21
lookup combo boxes 15-12

DTD file 30-2
dual interfaces 36-13 to 36-14

Active Server Objects 37-3
calling methods 35-12
parameters 36-16
transactional objects 39-3,

39-16
type compatibility 36-15

durability
resource dispensers 39-5
transactions 14-4, 39-9

dynamic binding 25-29
dynamic columns 15-15

properties 15-16
dynamic directives 41-9
dynamic fields 19-2 to 19-3
dynamic memory 3-55
dynamic methods 41-8

E
EAbort 4-16
early binding 25-29

Automation 33-17, 36-12
COM 33-16

EBX register 10-9, 10-21

Edit control 3-31
edit controls 3-31 to 3-32, 7-6,

15-2, 15-8
multi-line 15-8
rich edit formats 15-9
selecting text 7-8, 7-9

Edit method 18-17, 47-9, 47-10
edit mode 18-17

canceling 18-17
EditFormat property 15-25,

19-11, 19-15
editing code 2-3, 2-4
editing script 29-10
EditKey method 18-27, 18-29
EditMask property 19-14

fields 19-11
EditRangeEnd method 18-33
EditRangeStart method 18-33
Ellipse method 8-4, 8-11, 45-3
ellipses

drawing 8-11, 49-9
ellipsis (...)

buttons in grids 15-21
$ELSEIF directive 10-19
Embed HTML tag

(<EMBED>) 28-14
EmptyDataSet method 18-40,

23-26
EmptyStr variable 4-46
EmptyTable method 18-40
EnableCommit method 39-12
EnableConstraints

method 23-29
EnableControls method 15-6
Enabled property

action items 28-6
data sources 15-4, 15-5
data-aware controls 15-7
menus 6-41, 7-10
speed buttons 6-45

EnabledChanged
property 10-21

encapsulation 3-5
encryption

TSocketConnection 25-25
end of file character 10-14
end user adapter 29-4
endpoints

socket connections 32-5
EndRead method 9-8
EndWrite method 9-8
enumerated types 42-2, 49-3

constants vs. 8-13
declaring 8-12

I-16 D e v e l o p e r ’ s G u i d e

Type Library editor 34-10,
34-17, 34-23

EOF marker 4-57
Eof property 18-6, 18-7
EPasswordInvalid 4-17
EReadError 4-56
ERemotableException 31-7
error messages

internationalizing 12-10
ErrorAddr variable 4-17
errors

sockets 32-8
Web adapters 29-8

Euro conversions 4-62
European currency

conversion 4-64
event handlers 3-7, 3-25 to 3-28,

10-21, 40-6, 43-2, 51-6
associating with events 3-27
declarations 43-5, 43-8, 50-12
default, overriding 43-9
defined 3-25
deleting 3-28
displaying the Code

editor 47-17
drawing lines 8-25
empty 43-9
locating 3-26
menus 3-28, 7-11

as templates 6-40
methods 43-3, 43-5

overriding 43-6
parameters 43-3, 43-8, 43-9

notification events 43-7
passing parameters by

reference 43-9
pointers 43-2, 43-3, 43-8
responding to button

clicks 8-13
Sender parameter 3-27
shared 3-27 to 3-28, 8-15
types 43-3, 43-7 to 43-8
writing 3-9, 3-26

event notification 6-5
event notifications 6-5
event objects 9-9

COM+ 39-19
event sinks 36-12

defining 35-13 to 35-14
EventFilter 6-5, 46-5
events 3-25 to 3-28, 10-21, 40-6,

43-1 to 43-9
accessing 43-5
ActiveX controls 38-9 to

38-10

ADO connections 21-7 to
21-8

application-level 6-3
associating with

handlers 3-27
Automation

controllers 35-10, 35-13 to
35-15

Automation objects 36-5
COM 36-10, 36-12
COM objects 36-10 to 36-12

component
wrappers 35-2

COM+ 35-14 to 35-15, 39-18
to 39-20

firing 39-20
cross-platform 10-22
data grids 15-25 to 15-26
data sources 15-4
data-aware controls

enabling 15-7
default 3-26
defining new 43-6 to 43-9
field objects 19-15 to 19-16
graphical controls 45-7
implementing 43-2, 43-4
inherited 43-4
interfaces 36-11
login 17-5
message handling 46-3, 46-6
mouse 8-23 to 8-25

testing for 8-26
naming 43-8
objects and 3-10
providing help 47-4
responding to 43-6, 43-7,

43-9, 51-6
retrieving 43-3
shared 3-27
signalling 9-9
standard 43-4, 43-4 to 43-6
system 3-4
timeout 9-10
types 3-3
user 3-3
waiting for 9-9
XML brokers 25-38

EWriteError 4-56
Exception 4-16
exception handling 4-4 to 4-17

creating a handler 4-10
declaring the object 4-16
default handlers 4-12
executing cleanup code 4-5
flow of control 4-6
overview 4-4 to 4-17

protecting blocks of code 4-4
protecting resource

allocations 4-7
resource protection

blocks 4-8
scope 4-12
See also exceptions
statements 4-11
TApplication 4-15

exceptions 4-4 to 4-17, 10-15,
44-2, 46-3, 52-5

classes 4-13
COM interfaces 34-9
component 4-14
handling 4-5
instances 4-11
nested 4-6
raising 4-17
reraising 4-13
responding to 4-5
RTL 4-9
See also exception handling
silent 4-15
threads 9-6
user-defined 4-16

exclusive locks
tables 20-6

Exclusive property 20-6
ExecProc method 18-53, 22-10
ExecSQL method 18-47, 22-10

update objects 20-45
executable files 10-15

COM servers 33-7
threading models 36-7

internationalizing 12-12,
12-13

Execute method
ADO commands 21-17 to

21-18, 21-19
client datasets 23-27, 24-3
connection

components 17-10
dialogs 3-46, 52-4
providers 24-3
TBatchMove 20-51
threads 9-4

ExecuteOptions property 21-11
ExecuteTarget method 6-28
Expandable property 15-23
Expanded property

columns 15-22, 15-23
data grids 15-20

Expression property 23-11
ExprText property 19-10
Extensible Markup Language

See XML

I n d e x I-17

F
factory 29-5
FastNet page (Component

palette) 3-29
features

non-portable Windows 10-8
Fetch Params command 23-26
FetchAll method 10-29, 20-33
FetchBlobs method 23-26, 24-3
FetchDetails method 23-26, 24-3
fetch-on-demand 23-26
FetchOnDemand

property 23-26
FetchParams method 23-26,

24-3
field attributes 19-12 to 19-14

assigning 19-13
in data packets 24-5
removing 19-14

field datalink class 51-10
field definitions 18-38

copying 18-38
Field Link designer 18-35
field objects 19-1 to 19-28

accessing values 19-19 to
19-20

defining 19-5 to 19-10
deleting 19-10
display and edit

properties 19-11
dynamic 19-2 to 19-3

vs. persistent 19-2
events 19-15 to 19-16
persistent 19-3 to 19-16

vs. dynamic 19-2
properties 19-1, 19-10 to

19-15
runtime 19-12
sharing 19-12

field types
converting 19-16, 19-17 to

19-19
FieldByName method 18-31,

19-20
FieldCount property

persistent fields 15-17
FieldDefs property 18-38
FieldKind property 19-11
FieldName property 19-5,

19-11, 25-40
data grids 15-20
decision grids 16-12
persistent fields 15-17

fields 19-1 to 19-28

abstract data types 19-22 to
19-28

activating 19-16
adding to forms 8-26 to 8-27
assigning values 18-21
changing values 15-5
databases 51-5, 51-6
default formats 19-14
default values 19-20
displaying values 15-10,

19-17
entering data 18-18, 19-14
hidden 24-5
limiting valid data 19-21 to

19-22
listing 17-13
message records 46-2, 46-4,

46-6
mutually-exclusive

options 15-2
null values 18-21
persistent columns

and 15-17
properties 19-1
read-only 15-5
retrieving data 19-17
updating values 15-5
Web adapters 29-8

Fields editor 5-18, 19-3
applying field

attributes 19-13
creating persistent

fields 19-4 to 19-5, 19-5 to
19-10

defining attribute sets 19-13
deleting persistent

fields 19-10
list of fields 19-4
navigation buttons 19-4
removing attribute sets 19-14
reordering columns 15-19
title bar 19-4

Fields property 19-19
FieldValues property 19-19
file I/O

types 4-53
file lists

dragging items 7-2, 7-3
dropping items 7-3

file permissions 10-15
file streams

changing the size of 4-57
component streaming 4-54
creating 4-54
end of marker 4-57

exceptions 4-56
file I/O 4-54 to 4-57
getting a handle 4-53
opening 4-54
portable 4-53
TMemoryStream 4-54

FileAge function 4-52
file-based applications 14-9 to

14-10
client datasets 23-31 to 23-34

FileExists function 4-51
FileGetDate function 4-52
FileName property

client datasets 14-9, 23-32,
23-33

files 4-50 to 4-57
 See also file streams
copying 4-53
copying bytes from 4-57
date-time routines 4-52
deleting 4-50
finding 4-51
form 10-2
graphics 8-18 to 8-21, 45-4
handles 4-53, 4-55
incompatible types 4-53
manipulating 4-50 to 4-53
modes 4-55
position 4-57
reading from 4-55
renaming 4-52
resource 6-42
routines

date-time routines 4-52
runtime library 4-50
Windows API 4-53

seeking 4-56
sending over the Web 28-12
size 4-57
strings 4-56
types

I/O 4-53
text 4-53
typed 4-53
untyped 4-53

working with 4-50 to 4-57
writing to 4-55

files streams 4-54 to 4-57
FileSetDate function 4-52
fill patterns 8-8
FillRect method 8-4, 45-3
Filter property 18-13, 18-13 to

18-14
Filtered property 18-12

I-18 D e v e l o p e r ’ s G u i d e

FilterGroup property 21-12,
21-13

FilterOnBookmarks
method 21-11

FilterOptions property 18-15
filters 18-12 to 18-15

blank fields 18-14
case sensitivity 18-15
client datasets 23-3 to 23-5

using parameters 23-28
comparing strings 18-15
defining 18-13 to 18-15
enabling/disabling 18-12
operators 18-14
options for text fields 18-15
queries vs. 18-12
ranges vs. 18-30
setting at runtime 18-15
using bookmarks 21-10 to

21-11
finally reserved word 45-6, 52-5
FindClose procedure 4-51
FindDatabase method 20-20
FindFirst function 4-51
FindFirst method 18-16
FindKey method 18-27, 18-28

EditKey vs. 18-29
FindLast method 18-16
FindNearest method 18-27,

18-28
FindNext function 4-51
FindNext method 18-16
FindPrior method 18-16
FindResourceHInstance

function 12-13
FindSession method 20-29
First Impression 13-5
First method 18-6
FixedColor property 3-43
FixedCols property 3-43
FixedOrder property 3-36, 6-48
FixedRows property 3-43
FixedSize property 3-36
flags 51-3
FlipChildren method 12-7
FloodFill method 8-4, 45-3
fly-by help 3-42
fly-over help 15-30
focus 3-18, 40-4

fields 19-16
moving 3-33

FocusControl method 19-16
FocusControl property 3-41
Font property 3-19, 3-31, 3-41,

8-4, 45-3

column headers 15-20
data grids 15-20
data-aware memo

controls 15-9
FontChanged property 10-21
fonts 13-13

height of 8-5
Footer property 28-19
FOREIGN KEY constraint 24-13
foreign translations 12-1
form files 3-16, 10-2, 12-13
form linking 6-2
Format property 16-12
formatting data

international
applications 12-10

forms 2-2, 3-23
accessing from other

forms 3-9
adding fields to 8-26 to 8-27
adding to projects 3-8, 6-1 to

6-2
adding unit references 6-2
as components 52-1
as new object types 3-5 to 3-7
creating at runtime 6-6
displaying 6-6
drill down 15-14
global variable for 6-6
instantiating 3-6
linking 6-2
main 6-1
master/detail tables 15-14
memory management 6-6
modal 6-6
modeless 6-6, 6-7
navigating among

controls 3-19, 3-22
passing arguments to 6-8 to

6-9
querying properties

example 6-9
referencing 6-2
retrieving data from 6-9 to

6-12
sharing event handlers 8-15
synchronizing data 15-4
using local variables to

create 6-7
Formula One 13-5
Found property 18-16
FoxPro tables

local transactions 20-31
FrameRect method 8-4
frames 6-12, 6-13 to 6-16

and component
templates 6-14, 6-15

graphics 6-15
resources 6-15
sharing and

distributing 6-16
FReadOnly 51-8
Free method 3-11, 10-13
free threading 36-7 to 36-8
FreeBookmark method 18-9
freeing resources 52-5
free-threaded marshaler 36-8
FromCommon 4-62
functions 40-6

events and 43-3
graphics 45-1
naming 44-2
reading properties 42-6,

47-8, 47-10
Windows API 40-3, 45-1

G
$G compiler directive 11-10,

11-12
GDI applications 40-7, 45-1
Generate event support

code 36-11
geometric shapes

drawing 49-9
GetAliasDriverName

method 20-26
GetAliasNames method 20-26
GetAliasParams method 20-26
GetAttributes method 47-10
GetBookmark method 18-9
GetConfigParams

method 20-26
GetData method

fields 19-16
GetDatabaseNames

method 20-26
GetDriverNames method 20-26
GetDriverParams method 20-26
GetFieldByName method 28-9
GetFieldNames method 17-13,

20-26
GetFloatValue method 47-8
GetGroupState method 23-10
GetHandle 5-24
GetHelpFile 5-24
GetHelpStrings 5-25
GetIDsOfNames method 36-14
GetIndexNames method 17-14,

18-26
GetMethodValue method 47-8

I n d e x I-19

GetNextPacket method 10-29,
20-33, 23-25, 23-26, 24-3

GetOptionalParam
method 23-15, 24-6

GetOrdValue method 47-8
GetPalette method 45-5
GetParams method 24-3
GetPassword method 20-22
GetProcedureNames

method 17-13
GetProcedureParams

method 17-14
GetProperties method 47-10
GetRecords method 24-3, 24-7
GetSessionNames

method 20-29
GetStoredProcNames

method 20-26
GetStrValue method 47-8
GetTableNames method 17-13,

20-26
GetValue method 47-8
GetVersionEx function 13-14
GetViewerName 5-23
GetXML method 26-10
Global Offset Table

(GOT) 10-20
Glyph property 3-35, 6-44
GNU assembler 10-17
GNU make utility 10-15
GotoBookmark method 18-9
GotoCurrent method 18-40
GotoKey method 18-27, 18-28
GotoNearest method 18-27,

18-28
Graph Custom Control 13-5
Graphic property 8-17, 8-21,

45-4
graphical controls 40-4, 45-3,

49-1 to 49-9
bitmaps vs. 49-3
creating 40-4, 49-3
drawing 49-3 to 49-9
events 45-7
saving system resources 40-4

graphics 45-1 to 45-7
adding controls 8-17
adding to HTML 28-14
associating with strings 3-52
changing images 8-20
complex 45-6
containers 45-4
copying 8-21
deleting 8-21
displaying 3-44

drawing lines 8-5, 8-10, 8-27
to 8-28

changing pen width 8-6
event handlers 8-25

drawing tools 45-1, 45-7,
49-5

changing 49-7
drawing vs. painting 8-4
file formats 8-3
files 8-18 to 8-21
functions, calling 45-1
in frames 6-15
internationalizing 12-9
loading 8-19, 45-4
methods 45-3, 45-4, 45-6

copying images 45-7
palettes 45-5

owner-draw controls 7-11
pasting 8-22
programming overview 8-1

to 8-3
redrawing images 45-7
replacing 8-20
resizing 8-20, 15-9, 45-7
rubber banding

example 8-23 to 8-28
saving 8-19, 45-4
standalone 45-3
storing 45-4
types of objects 8-3

graphics boxes 15-2
graphics methods

palettes 45-5
graphics objects

threads 9-5
GridLineWidth property 3-43
grids 3-43, 15-2, 50-1, 50-2, 50-5,

50-11
 See alsodecision grids
adding rows 18-18
color 8-6
customizing 15-16 to 15-21
data-aware 15-14, 15-26
default state 15-15

restoring 15-21
displaying data 15-15, 15-16,

15-26
drawing 15-25
editing data 15-6, 15-25
getting values 15-16
inserting columns 15-17
removing columns 15-16,

15-18
reordering columns 15-19

runtime options 15-23 to
15-24

group boxes 3-39
Grouped property

tool buttons 6-47
GroupIndex property 3-35

menus 6-41
speed buttons 6-44, 6-45

grouping components 3-39 to
3-41

grouping levels 23-9
maintained aggregates 23-12

GroupLayout property 16-10
Groups property 16-10
GUI applications 3-23
GUIDs 4-22, 33-4, 34-8

generating 4-22

H
$H compiler directive 4-41, 4-49
Handle property 4-55, 10-22,

32-6, 40-3, 40-4, 40-5, 45-3
device context 8-1, 8-2

HandleException 4-15
HandleException method 46-3
handles

resource modules 12-13
socket connections 32-6

HandleShared property 20-16
HandlesTarget method 6-28
HasConstraints property 19-11
HasFormat method 7-10, 8-22
header controls 3-41
Header property 28-19
headers

HTTP requests 27-4
owner-draw 7-11

Height property 3-19, 3-22, 6-4
list boxes 15-10
TScreen 13-12

Help 47-4
context sensitive 3-42
hints 3-42
tool-tip 3-42
type information 34-8

Help Hints 15-30
Help Manager 5-22, 5-22 to 5-31
Help selector 5-30
Help selectors 5-27
Help system 5-22

interfaces 5-22
registering objects 5-27

Help systems 47-4
files 47-4
keywords 47-5

I-20 D e v e l o p e r ’ s G u i d e

tool buttons 6-49
Help viewers 5-22
HelpContext 5-28, 5-29
HelpContext property 3-42
HelpFile 5-29
HelpFile property 3-42
HelpIntfs.pas 5-22
HelpKeyword 5-28, 5-29
HelpSystem 5-28, 5-29
HelpType 5-28, 5-29
heterogeneous queries 20-9 to

20-10
Local SQL 20-9

hidden fields 24-5
Hiding unused items and

categories in action bands 6-22
hierarchy (classes) 41-3
Hint property 3-42
hints 3-42
Hints property 15-30
home directory 10-15
horizontal track bars 3-33
HorzScrollBar 3-33
host names 32-4

IP addresses vs. 32-4
Host property

TSocketConnection 25-25
HostName property

TCorbaConnection 25-27
hosts 25-25, 32-4

addresses 32-4
URLs 27-3

hot keys 3-33
HotImages property 6-46
HotKey property 3-33
HTML commands 28-13

database information 28-18
generating 28-14

HTML documents 27-4
ASP and 37-1
databases and 28-17
dataset page

producers 28-18
datasets 28-19, 28-20
embedded ActiveX

controls 38-1
embedding tables 28-19
generated for

ActiveForms 38-6
HTTP response

messages 27-5
InternetExpress

applications 25-34
page producers 28-13 to

28-17

style sheets 25-40
table producers 28-18 to

28-20
templates 25-39, 25-41 to

25-42, 28-13 to 28-15
HTML forms 25-39
HTML Result view 29-1
HTML tables 28-14, 28-19

captions 28-19
creating 28-18 to 28-20
setting properties 28-19

HTML templates 25-41 to 25-42,
28-13 to 28-17

default 25-39, 25-41
WebSnap page

producers 29-9
HTMLDoc property 25-39,

28-14
HTMLFile property 28-14
HTML-transparent tags

converting 28-13, 28-14
parameters 28-13
predefined 25-41 to 25-42,

28-14
syntax 28-13

HTTP 27-3
connecting to application

server 25-26
message headers 27-3
multi-tiered

applications 25-9 to 25-10
overview 27-4 to 27-6
request headers 27-4, 28-9,

37-4
request messages See request

messages
response headers 28-12, 37-5
response messages See

response messages
SOAP 31-1
status codes 28-11

HTTP request messages 29-12
HTTP responses

actions 29-15
httpd.conf 13-10
httpsrvr.dll 25-10, 25-13, 25-26
HyperHelp viewer 5-22
hypertext links

adding to HTML 28-14

I
IApplicationObject

interface 37-4
IAppServer interface 23-30,

23-31, 24-3 to 24-4, 25-5

calling 25-29
extending 25-16
local providers 24-3
remote providers 24-3
state information 25-20
transactions 25-18
XML brokers 25-34

icon 6-21
IConnectionPoint

interface 36-12
IConnectionPointContainer

interface 36-12
icons 3-44, 45-4

graphics object 8-3
toolbars 6-46
tree views 3-38

ICustomHelpViewer 5-22, 5-23,
5-24

implementing 5-23
IDataIntercept interface 25-25
IDefaultPageFileName 29-7
identifiers

class fields 43-2
events 43-8
invalid 6-32
message-record types 46-6
methods 44-2
property settings 42-6

ideographic characters 12-3,
12-4

abbreviations and 12-9
IDispatch interface 33-8, 33-18,

36-12, 36-14
Automation 33-12
identifiers 36-14

IDL (Interface Definition
Language) 33-16, 33-18, 34-1

Type Library editor 34-8
IDL compiler 33-18
IDL files

exporting from type
library 34-26

IDOMImplementation 30-3
IETF protocols and

standards 27-2
IExtendedHelpViewer 5-22,

5-26
$IFDEF directive 10-18
$IFEND directive 10-19
$IFNDEF directive 10-18
IGetDefaultAction 29-7
IGetProducerComponent 29-7
IGetScriptObject 29-6
IGetWebAppComponents 29-7
IGetWebAppServices 29-7

I n d e x I-21

IHelpManager 5-23, 5-30
IHelpSelector 5-23, 5-26, 5-27
IHelpSystem 5-23, 5-30
IIDs 33-4
IInterface interface 4-20, 4-24,

4-25
implemented in

TInterfacedObject 4-21
IInvokable 4-27, 31-3
IIS 37-1

version 37-2
IIteratorObjectSupport 29-6
Image HTML tag

() 28-14
image requests 29-16
ImageIndex property 6-46, 6-48
ImageList 6-19
ImageMap HTML tag

(<MAP>) 28-14
images 3-44, 15-2, 45-3

adding 8-17
adding control for 7-13
adding to menus 6-35
brushes 8-9
changing 8-20
controls for 8-2, 8-16
displaying 3-44
drawing 49-8
erasing 8-21
in frames 6-15
internationalizing 12-9
redrawing 45-7
reducing flicker 45-6
regenerating 8-2
saving 8-19
scrolling 8-17
tool buttons 6-46

Images property
tool buttons 6-46

IMalloc interface 4-18
IMarshal interface 36-15, 36-16
IME 12-8
ImeMode property 12-8
ImeName property 12-8
implements keyword 4-22, 4-23
$IMPLICITBUILD compiler

directive 11-10
Import ActiveX Control

command 35-2, 35-4
Import Type Library

command 35-2, 35-3
ImportedConstraint

property 19-11, 19-21
$IMPORTEDDATA compiler

directive 11-10
Increment property 3-33

incremental fetching 23-25,
25-20

incremental search 15-10
Indent property 3-38, 6-45, 6-47,

6-48
index definitions 18-38

copying 18-38
index files 20-6
Index Files editor 20-6
Index property

fields 19-11
index reserved word 50-7
index-based searches 18-11,

18-12, 18-27 to 18-29
IndexDefs property 18-38
indexes 18-25 to 18-36, 42-8

batch moves and 20-49,
20-50

client datasets 23-7 to 23-10
dBASE tables 20-6 to 20-7
deleting 23-9
grouping data 23-9 to 23-10
listing 17-14, 18-26
master/detail

relationships 18-35
ranges 18-30
searching on partial

keys 18-29
sorting records 18-25 to

18-27, 23-7
specifying 18-26 to 18-27

IndexFieldCount
property 18-26

IndexFieldNames
property 18-27, 22-7, 23-8

IndexName vs. 18-27
IndexFields property 18-26
IndexFiles property 20-6
IndexName property 20-6, 22-7,

23-9
IndexFieldNames vs. 18-27

IndexOf method 3-50, 3-51
Indy Clients page (Component

palette) 3-30
Indy Misc page (Component

palette) 3-30
Indy Servers page (Component

palette) 3-30
INFINITE constant 9-10
Informix drivers

deploying 13-9
Inherit (Object Repository) 5-20
inheritance 3-5, 3-8
inherited

events 43-4
methods 43-6

properties 49-2, 50-2
publishing 42-2

inheriting from classes 3-8 to
3-12, 41-7

INI files
Win-CGI programs 27-7

ini files 10-7
InitWidget property 10-22
inner objects 33-9
INotifyWebActivate 29-6
in-process servers 33-6

ActiveX 33-13
ASP 37-7
MTS 39-2

input controls 3-32
input focus 40-4

fields 19-16
Input Mask editor 19-14
input method editor 12-8
input parameters 18-50
input/output parameters 18-50
INSERT 17-11
Insert command (Menu

designer) 6-37
Insert From Resource command

(Menu designer) 6-37, 6-42
Insert from Resource dialog

box 6-42
Insert From Template command

(Menu designer) 6-37, 6-38
Insert method 18-18, 18-19

Append vs. 18-18
menus 6-41
strings 3-51

INSERT statements 20-39,
20-43, 24-9

Insert Template dialog box 6-39
InsertObject method 3-52
InsertRecord method 18-21
InsertSQL property 20-40
Install COM+ objects

command 39-22
Install MTS objects

command 39-22
installation programs 13-2
Installing transactional

objects 39-22
InstallShield Express 2-5, 13-1

deploying
applications 13-2
BDE 13-8
packages 13-3
SQL Links 13-9

instances 43-2
instancing

COM objects 36-5 to 36-6

I-22 D e v e l o p e r ’ s G u i d e

CORBA data modules 25-16
remote data modules 25-14

IntegralHeight property 3-37,
15-10

integrated debugger 2-5
integrity violations 20-51
InterBase driver

deploying 13-9
InterBase Express

deployment 13-7
InterBase page (Component

palette) 3-29, 14-2
InterBase tables 20-9
InterBaseExpress 10-24
interceptors 33-5
Interface Definition Language

(IDL) 34-1
interface keyword 4-17
interface pointer 33-5
interfaces 4-17 to 4-27, 41-4,

41-5, 52-1, 52-3
ActiveX 33-19

customizing 38-7 to 38-11
adding methods 36-10
adding properties 36-9 to

36-10
aggregation 4-22, 4-23
application servers 25-16 to

25-18, 25-29
as operator 4-21
Automation 36-12 to 36-14
CLSIDs 4-26
COM 4-26, 5-14, 33-1, 33-3 to

33-5, 34-8 to 34-9, 35-1, 36-3,
36-9 to 36-14

declarations 35-5
events 36-11

COM+ event objects 39-19
components 4-25
controlling Unknown 4-24,

4-26
CORBA 4-26
Ctrl+Shift+G 4-22
custom 36-14
delegation 4-22
deriving 4-20
design-time 41-6
dispatch 36-14
distributed applications 4-26
DOM 30-2
dynamic binding 4-21, 34-9,

36-12
Dynamic Invocation

Interface 4-27
dynamic querying 4-20

early binding 25-29
example code 4-18, 4-23, 4-24
extending single

inheritance 4-17, 4-18
Help system 5-22
IIDs 4-22, 4-26
IInterface,

implementing 4-20
implementing 33-6, 36-3
inner objects 4-23
internationalizing 12-9,

12-10, 12-13
invokable 4-26, 31-2, 31-3 to

31-4
language feature 4-18
late binding 25-29
lifetime management 4-20,

4-24
marshaling 4-27
memory management 4-21,

4-24
nonvisual program

elements 40-5
object destruction 4-24
optimizing code 4-25
outer objects 4-23
outgoing 36-11, 36-12
overview 4-17 to 4-27
polymorphism 4-18
procedures 4-20
properties 42-10
properties, declaring 52-3
reference counting 4-20,

4-21, 4-24 to 4-26
reusing code 4-22
runtime 41-6
sharing between classes 4-18
SOAP 4-26
TComponent 4-25
type libraries 33-12, 33-17,

35-5, 36-9
Type Library editor 34-8 to

34-9, 34-15, 34-20, 36-9
using 4-17 to 4-27
Web data modules 29-6
Web modules 29-7
Web page modules 29-7
Web Services 31-1
XML nodes 30-4

interfaces and WebSnap 29-6,
29-7

InternalCalc fields 19-6, 23-10 to
23-11

indexes and 23-8

international applications
abbreviations and 12-9
converting keyboard

input 12-8
localizing 12-13

internationalizing
applications 12-1

Internet Engineering Task
Force 27-2

Internet Information Server
(IIS) 37-1

version 37-2
Internet page (Component

palette) 3-29
Internet servers 27-1 to 27-9
Internet standards and

protocols 27-2
InternetExpress 5-13, 25-33 to

25-42
vs. ActiveForms 25-32

InternetExpress page
(Component palette) 3-29

intranets
host names 32-4

InTransaction property 17-7
Invalidate method 49-9
invocation registry 31-4, 31-6
invokable interfaces 4-26, 31-2,

31-3 to 31-4
calling 31-9 to 31-10
defining 31-2
implementing 31-6 to 31-7
namespaces 31-4
registering 31-4
URI 31-9

Invoke method 36-14
IObjectContext interface 33-14,

37-3, 39-4
methods to end

transactions 39-11
IObjectControl interface 33-14,

39-2
IOleClientSite interface 35-15
IOleDocumentSite

interface 35-15
IP addresses 32-4, 32-6

host names 32-4
host names vs. 32-4
hosts 32-4

IPageResult 29-7
IPaint interface 4-19
IPersist interface 4-18
IProducerEditorViewSupport

29-7
IProvideClassInfo 33-16

I n d e x I-23

IProviderSupport interface 24-2
IPX/SPX protocols 32-1
IRequest interface 37-4
IResponse interface 37-5
IRotate interface 4-19
is reserved word 3-10
ISAPI applications 27-6

creating 28-1, 29-2
debugging 27-8
request messages 28-2

ISAPI DLLs 13-9
IsCallerInRole method 25-6,

39-14
IScriptingContext interface 37-2
ISecurityProperty

interface 39-15
IServer interface 37-6
ISessionObject interface 37-5
ISetWebContentOptions 29-7
isolation

transactions 14-4, 39-9
ISpecialWinHelpViewer 5-22
IsSecurityEnabled 39-14
IsValidChar method 19-16
ItemHeight property 3-37

combo boxes 15-11
list boxes 15-11

ItemIndex property 3-37
radio groups 3-39

Items property
list boxes 3-37
radio controls 15-13
radio groups 3-39

ITypeComp 33-17
ITypeInfo 33-17
ITypeInfo2 33-17
ITypeLib 33-17
ITypeLib2 33-17
IUnknown interface 4-26, 33-3,

33-4, 33-18
Automation

controllers 36-14
IVarStreamable 4-35 to 4-36
IVarStreamable interface 4-35
IWebVariablesContainer 29-6
IXMLNode 30-4 to 30-5, 30-6

J
javascript libraries 25-33, 25-35

to 25-36
locating 25-35

just-in-time activation 25-7, 39-4
to 39-5

enabling 39-5

K
K footnotes (Help systems) 47-5
KeepConnection property 17-3,

17-12, 20-18
KeepConnections

property 20-13, 20-18
key fields 18-32

multiple 18-31, 18-32
key violations 20-51
keyboard events 43-3, 43-9

internationalization 12-8
keyboard mappings 12-9, 12-10
keyboard shortcuts 3-33

adding to menus 6-33 to 6-34
key-down messages 43-5, 51-8
KeyDown method 51-9
KeyExclusive property 18-29,

18-33
KeyField property 15-12
KeyFieldCount property 18-29
KeyViolTableName

property 20-51
keyword-based help 5-26
KeywordHelp 5-29
keywords 47-5

protected 43-5
Kind property

bitmap buttons 3-35
Kylix 10-1

L
labels 3-41, 12-9, 15-2, 40-4

columns 15-17
Last method 18-6
late binding 25-29

Automation 36-12, 36-14
Layout property 3-35
-LEpath compiler

directive 11-12
leap years 50-8
Left property 3-19, 3-21, 3-22,

6-4
LeftCol property 3-43
LeftPromotion method 4-32,

4-33
Length function 4-46
libmidas.dcu 13-6
$LIBPREFIX directive 5-9
libraries

custom controls 40-4
LibraryName property 22-3
$LIBSUFFIX directive 5-9
$LIBVERSION directive 5-9
.LIC file 38-7

license agreement 13-15
license keys 38-6
license package file 38-7
licensing

ActiveX controls 38-5, 38-6
to 38-7

Internet Explorer 38-7
line ending characters 10-14
lines

drawing 8-5, 8-10, 8-10, 8-27
to 8-28

changing pen width 8-6
event handlers 8-25

erasing 8-28
Lines property 3-32, 42-8
LineSize property 3-33
LineTo method 8-4, 8-7, 8-10,

45-3
Link HTML tag (<A>) 28-14
Linux

directories 10-16
operating

environment 10-14
list boxes 3-37, 15-2, 15-11, 50-1

data-aware 15-10 to 15-12
dragging items 7-2, 7-3
dropping items 7-3
owner-draw 7-11

draw-item events 7-15
measure-item events 7-14

populating 15-10
storing properties

example 6-9
list controls 3-36 to 3-39
List property 20-29
list views

owner draw 7-11
listening connections 32-2, 32-3,

32-7, 32-9
closing 32-7
port numbers 32-5

ListField property 15-12
lists

string 3-47 to 3-52
using in threads 9-5

ListSource property 15-12
-LNpath compiler

directive 11-12
Loaded method 42-13
LoadFromFile method

ADO datasets 21-14
client datasets 14-9, 23-32
graphics 8-19, 45-4
strings 3-48

I-24 D e v e l o p e r ’ s G u i d e

LoadFromStream method
client datasets 23-32

LoadPackage function 11-4
LoadParamListItems

procedure 17-14
LoadParamsFromIniFile

method 22-5
LoadParamsOnConnect

property 22-4
local databases 14-3

accessing 20-5
aliases 20-25
BDE support 20-5 to 20-7
renaming tables 20-7

Local SQL 20-9, 20-10
heterogeneous queries 20-9

local transactions 20-31 to 20-32
locale settings 4-44
locales 12-2

data formats and 12-10
resource modules 12-10

LocalHost property
client sockets 32-6

localization 12-13
localizing applications 12-2
resources 12-10, 12-12, 12-13

localizing applications 12-13
LocalPort property

client sockets 32-6
Locate method 18-10
Lock method 9-7
locking objects

nesting calls 9-7
threads 9-7

LockList method 9-7
LockType property 21-12, 21-13
LogChanges property 23-5,

23-33
logging in

SOAP connections 25-27
Web connections 25-26

logical values 15-2, 15-12
Login dialog box 17-4
login events 17-5
login information

specifying 17-4
login scripts 17-4 to 17-5
LoginPrompt property 17-4
long strings 4-41
lookup combo boxes 15-2, 15-11

to 15-12
in data grids 15-20
lookup fields 15-11
populating 15-20

secondary data
sources 15-12

lookup fields 15-11, 19-6
caching values 19-9
defining 19-8 to 19-9
in data grids 15-20
performance 19-9
providing values

programmatically 19-9
specifying 15-20

lookup list boxes 15-2, 15-11 to
15-12

lookup fields 15-11
secondary data

sources 15-12
Lookup method 18-11
lookup values 15-17
LookupCache property 19-9
LookupDataSet property 19-9,

19-11
LookupKeyFields

property 19-9, 19-11
LookupResultField

property 19-11
lParam parameter 46-2
.LPK file 38-7
LPK_TOOL.EXE 38-7
-LUpackage compiler

directive 11-12

M
main form 6-1
main VCL thread 9-4

OnTerminate event 9-6
MainMenu component 6-30
maintained aggregates 14-15,

23-11 to 23-13
aggregate fields 19-10
specifying 23-11 to 23-12
subtotals 23-12
summary operators 23-11
values 23-13

MainWndProc method 46-3
make utility 10-15
Man pages 5-22
mappings

XML 26-2 to 26-3
defining 26-4

Mappings property 20-50
Margin property 3-35
marshaling 33-7

COM interfaces 33-8 to 33-9,
36-4, 36-15 to 36-16

custom 36-16

IDispatch interface 33-12,
36-15

transactional objects 39-3
Web Services 31-5

mask edit controls 3-31
masks 19-14
master/detail forms 15-14

example 18-35 to 18-36
master/detail

relationships 15-14, 18-34 to
18-36, 18-46 to 18-47

cascaded deletes 24-6
cascaded updates 24-6
client datasets 23-17
indexes 18-35
multi-tiered

applications 25-19
nested tables 18-36, 25-19
referential integrity 14-5
unidirectional datasets 22-12

MasterFields property 18-34,
22-12

MasterSource property 18-34,
22-12

Max property
progress bars 3-42
track bars 3-33

MaxDimensions property 16-19
MaxLength property 3-31

data-aware memo
controls 15-8

data-aware rich edit
controls 15-9

MaxRecords property 25-37
MaxRows property 28-19
MaxStmtsPerConn

property 22-3
MaxSummaries property 16-19
MaxTitleRows property 15-23
MaxValue property 19-11
MBCS 4-43
MDAC 13-6
MDI applications 5-1 to 5-2

creating 5-2
menus

merging 6-41 to 6-42
specifying active 6-41

measurement units 4-60
measurements

converting 4-58
media devices 8-30
media players 3-23, 8-30 to 8-33

example 8-32
member functions 3-3
Memo control 3-31

I n d e x I-25

memo controls 7-6, 42-8
properties 3-31

memo fields 15-2, 15-8 to 15-9
rich edit 15-9

memory management
COM objects 4-20
components 3-11
decision components 16-8,

16-19
dynamic vs. virtual

methods 41-8
forms 6-6
interfaces 4-25

Menu 6-17
menu components 6-30
Menu designer 3-28, 6-29 to

6-31
context menu 6-37

menu items 6-32 to 6-34
adding 6-32, 6-40
defined 6-29
deleting 6-33, 6-37
editing 6-36
grouping 6-33
moving 6-35
naming 6-32, 6-40
nesting 6-34
placeholders 6-37
separator bars 6-33
setting properties 6-36 to

6-37
underlining letters 6-33

Menu property 6-41
menus 6-29 to 6-40

accessing commands 6-33
adding 6-31 to 6-36

drop-down 6-34 to 6-35
from other

applications 6-42
adding images 6-35
disabling items 7-10
displaying 6-36, 6-37
handling events 3-28, 6-40
internationalizing 12-9,

12-10
moving among 6-37
moving items 6-35
naming 6-32
owner-draw 7-11
pop-up 7-10, 7-11
reusing 6-37
saving as templates 6-38,

6-39 to 6-40
templates 6-31, 6-37, 6-38 to

6-40

deleting 6-39
loading 6-38

menus, action lists 6-17
merge modules 13-3
MergeChangeLog method 23-6,

23-33
$MESSAGE directive 10-20
message headers (HTTP) 27-3,

27-4
message loop

threads 9-4
message-based servers

See Web server applications
messages 46-1 to 46-7, 50-4

cracking 46-2
defined 46-2
handlers 46-1, 46-2, 50-4

creating 46-5 to 46-7
declarations 46-4, 46-5,

46-7
default 46-3
methods, redefining 46-7
overriding 46-3

handling 46-3 to 46-5
identifiers 46-6
key 51-8
mouse 51-8
mouse- and key-down 51-8
record

types, declaring 46-6
records 46-2, 46-4
trapping 46-4
user-defined 46-5, 46-7
Windows 6-5

messaging 10-21
metadata 17-12 to 17-14

dbExpress 22-12 to 22-17
modifying 22-10 to 22-11
obtaining from

providers 23-25
metafiles 3-44, 8-1, 8-18, 45-4

when to use 8-3
method pointers 43-2, 43-3, 43-8
Method property 28-9
methods 3-3, 8-15, 40-6, 44-1,

50-10
adding to ActiveX

controls 38-8 to 38-9
adding to interfaces 36-10
calling 43-6, 44-3, 49-4
declaring 8-15, 44-4

dynamic 41-9
public 44-3
static 41-7
virtual 41-8

deleting 3-28
dispatching 41-7
drawing 49-8, 49-9
event handlers 43-3, 43-5

overriding 43-6
graphics 45-3, 45-4, 45-6,

45-7
palettes 45-5

inherited 43-6
initialization 42-13
message-handling 46-1, 46-3,

46-4
naming 44-2
objects and 3-5, 3-7
overriding 41-8, 46-3, 46-4,

50-11
properties and 42-5 to 42-6,

44-1, 44-2, 49-4
protected 44-3
public 44-3
redefining 41-8, 46-7
virtual 41-8, 44-4

MethodType property 28-6,
28-10

Microsoft Server DLLs 27-6
creating 28-1, 29-2
request messages 28-2

Microsoft SQL Server
deploying driver 13-9

Microsoft Transaction
Server 5-14, 33-14, 39-1

midas.dll 23-1, 25-3
midaslib.dcu 25-3
MIDI files 8-32
MIDL 33-18

See also IDL
mime 8-21
MIME messages 27-5
Min property

progress bars 3-42
track bars 3-33

MinSize property 3-34
MinValue property 19-11
MM film 8-32
mobile computing 14-14
modal forms 6-6
Mode property 20-49

pens 8-5
modeless forms 6-6, 6-7
Modified method 51-11
Modified property 3-32
Modifiers property 3-33
ModifyAlias method 20-25
ModifySQL property 20-40
modules 40-11

I-26 D e v e l o p e r ’ s G u i d e

Type Library editor 34-10 to
34-11, 34-18, 34-24

Month property 50-5
MonthCalendar

component 3-39
months, returning current 50-8
mouse buttons 8-24

clicking 8-24, 8-25
mouse-move events

and 8-25
mouse events 8-23 to 8-25, 49-2

defined 8-23
dragging and dropping 7-1

to 7-4
parameters 8-24
state information 8-24
testing for 8-26

mouse messages 46-2, 51-8
mouse pointer

drag-and-drop 7-4
mouse-down messages 51-8
MouseDown method 51-8
MouseToCell method 3-43
.MOV files 8-32
Move method

string lists 3-51, 3-52
MoveBy method 18-7
MoveCount property 20-51
MoveFile function 4-52
MovePt 8-28
MoveTo method 8-4, 8-7, 45-3
.MPG files 8-32
Msg parameter 46-3
MSI technology 13-3
MTS 5-14, 25-6, 33-10, 33-14,

39-1
 See also transactional objects
in-process servers 39-2
object references 39-20 to

39-21
requirements 39-3
runtime environment 39-2
transactional objects 33-14 to

33-15
transactions 25-18
vs. COM+ 39-1

MTS executive 39-2
MTS Explorer 39-23
MTS packages 39-6, 39-22
multibyte character codes 12-3
multibyte character set 12-3
multibyte characters

(MBCS) 10-17, 10-22
multidimensional

crosstabs 16-3

multi-line text controls 15-8,
15-9

multimedia 8-32
multipage dialog boxes 3-40
multiple document interface 5-1

to 5-2
multiprocessing

threads 9-1
multi-read exclusive-write

synchronizer 9-8
warning about use 9-8

MultiSelect property 3-37
multitasking 10-15
multi-threaded applications 9-1

sessions 20-13, 20-28 to 20-29
Multitier page (New Items

dialog) 25-2
multi-tiered applications 14-3,

14-12, 25-1 to 25-42
advantages 25-2
architecture 25-4, 25-5
building 25-11 to 25-30
callbacks 25-17
components 25-2 to 25-3
deploying 13-9
master/detail

relationships 25-19
overview 25-3 to 25-4
parameters 23-26
server licenses 25-3
Web applications 25-31 to

25-42
building 25-33, 25-34 to

25-42
multi-tiered architecture 25-4,

25-5
Web-based 25-31

mutually exclusive options 6-45
MyBase 23-31

N
Name property

fields 19-11
menu items 3-28
parameters 18-51

named connections 22-4 to 22-5
adding 22-5
deleting 22-5
loading at runtime 22-4
renaming 22-5

namespaces
invokable interfaces 31-4

naming conventions
events 43-8
fields 43-2

message-record types 46-6
methods 44-2
properties 42-6

navigator 15-2, 15-28 to 15-30,
18-5, 18-6

buttons 15-28
deleting data 18-20
editing 18-17
enabling/disabling

buttons 15-28, 15-29
help hints 15-30
sharing among

datasets 15-30
NDX indexes 20-6
nested details 18-36, 19-26 to

19-27, 25-19
fetch on demand 24-5

nested tables 18-36, 19-26 to
19-27, 25-19

NetCLX 5-11, 10-6
NetFileDir property 20-24
Netscape Server DLLs 27-6

creating 28-1, 29-2
request messages 28-2

network control files 20-24
networks

connecting to
databases 20-15

neutral threading 36-9
New command 40-11
New Field dialog box 19-5

defining fields 19-6, 19-7,
19-8, 19-10

Field properties 19-5
Field type 19-6
Lookup definition 19-6

Dataset 19-9
Key Fields 19-9
Lookup Keys 19-9
Result Field 19-9

Type 19-6
New Items dialog 5-19, 5-20,

5-21
New Thread Object dialog 9-2
New WebSnap

Application 29-2
newsgroups 1-3
NewValue property 20-37,

24-11
Next method 18-6
NextRecordSet method 18-53,

22-9
non-blocking connections 32-9

to 32-10
blocking vs. 32-9

I n d e x I-27

no-nonsense license
agreement 13-15

non-production index files 20-6
nonvisual components 40-5,

40-11, 52-2
nonvisual objects 3-11
NOT NULL constraint 24-12
NOT NULL UNIQUE

constraint 24-12
notebook dividers 3-40
notification events 43-7
NotifyID 5-23
NSAPI applications 27-6

creating 28-1, 29-2
debugging 27-8
request messages 28-2

null values
ranges 18-31

null-terminated
wide strings 4-42

numbers 42-2
internationalizing 12-10
property values 42-12

numeric fields
formatting 19-14

NumericScale property 18-45,
18-51

NumGlyphs property 3-35

O
Object Broker 25-27
object constructors 10-13
object contexts 39-4

ASP 37-3
transactions 39-9

object fields 19-22 to 19-28
types 19-22

Object HTML tag
(<OBJECT>) 28-14

Object Inspector 3-7, 3-24, 42-2,
47-6

editing array properties 42-2
help with 47-4
selecting menus 6-38

Object Pascal 10-22
overview 3-4

object pooling 39-8
disabling 39-8
remote data modules 25-8

Object Repository 5-19 to 5-22,
6-12

adding items 5-19
specifying shared

directory 5-20
using items from 5-20 to 5-21

Object Repostory
database components 20-16
sessions 20-17

object variables 3-10
ObjectBroker property 25-25,

25-26, 25-28
ObjectContext property

example 39-13
ObjectName property

TCorbaConnection 25-27
object-oriented

programming 3-4 to 3-12, 41-1
to 41-9

declarations 41-3, 41-9
classes 41-5, 41-6
methods 41-7, 41-8, 41-9

defined 3-4
inheritance 3-8

object-oriented programming
(OOP) 3-2

objects 3-1, 3-5 to 3-12, 4-1
 See also COM objects
accessing 3-8 to 3-9
creating 3-11
customizing 3-8
defined 3-5
destroying 3-11
dragging and dropping 7-1
events and 3-7
helper 3-46
inheritance 3-8 to 3-12
instantiating 3-6, 43-2
multiple instances 3-6
nonvisual 3-11
owned 49-5 to 49-8

initializing 49-6
properties 3-5
scripting 29-11
temporary 45-6
TObject 3-14
type declarations 3-10

Objects property 3-43
string lists 3-52, 7-15

ObjectView property 15-22,
18-36, 19-23

.OCX files 13-5
ODBC drivers

using with ADO 21-1, 21-2
using with the BDE 20-1,

20-15, 20-16
ODL (Object Description

Language) 33-16, 34-1
OEM character sets 12-3
OEMConvert property 3-32
offscreen bitmaps 45-6 to 45-7

OldValue property 20-37, 24-11
OLE

containers 3-23
merging menus 6-41

OLE Automation See
Automation

OLE DB 21-1, 21-2
OleObject property 38-13
OLEView 33-18
OnAccept event

server sockets 32-9
OnAction event 28-7
OnAfterPivot event 16-9
OnBeforePivot event 16-9
OnBeginTransComplete

event 17-6, 21-8
OnCalcFields event 18-22, 19-7,

23-10
OnCellClick event 15-26
OnChange event 19-15, 45-7,

49-7, 50-11, 51-11
OnClick event 3-34, 43-1, 43-2,

43-4
buttons 3-6
menus 3-28

OnClientConnect event 32-7
OnClientDisconnect event 32-7
OnColEnter event 15-26
OnColExit event 15-26
OnColumnMoved event 15-19,

15-26
OnCommitTransComplete

event 17-8, 21-8
OnConnect event

client sockets 32-8
OnConnectComplete event 21-7
OnConnecting event

server sockets 32-9
OnConstrainedResize event 6-4
OnCreate event 40-13
OnDataChange event 15-4,

51-6, 51-10
OnDataRequest event 23-30,

24-3, 24-12
OnDblClick event 15-26, 43-4
OnDecisionDrawCell

event 16-12
OnDecisionExamineCell

event 16-13
OnDeleteError event 18-20
OnDisconnect event 21-8

client sockets 32-7
OnDragDrop event 7-2, 15-26,

43-4

I-28 D e v e l o p e r ’ s G u i d e

OnDragOver event 7-2, 15-26,
43-4

OnDrawCell event 3-43
OnDrawColumnCell

event 15-25, 15-26
OnDrawDataCell event 15-26
OnDrawItem event 7-15
OnEditButtonClick event 15-21,

15-26
OnEditError event 18-17
OnEndDrag event 7-3, 15-26,

43-4
OnEndPage method 37-2
OnEnter event 15-26, 43-5
OnError event

sockets 32-8
one-to-many

relationships 18-34, 22-12
OnExecuteComplete event 21-8
OnExit event 15-26, 51-12
OnFilterRecord event 18-13,

18-14 to 18-15
OnGetData event 24-7
OnGetDataSetProperties

event 24-6
OnGetTableName event 20-11,

23-21, 24-12
OnGetText event 19-15
OnGetThread event 32-9
OnHandleActive event

client sockets 32-8
OnHTMLTag event 25-42,

28-15, 28-16
OnIdle event handler 9-5
OnInfoMessage event 21-8
OnKeyDown event 15-26, 43-5,

51-9
OnKeyPress event 15-26, 43-5
OnKeyUp event 15-26, 43-5
OnLayoutChange event 16-9
online help 47-4
OnLogin event 17-5
OnMeasureItem event 7-14
OnMouseDown event 8-23,

8-24, 43-4, 51-8
parameters passed to 8-23

OnMouseMove event 8-23,
8-25, 43-4

parameters passed to 8-23
OnMouseUp event 8-14, 8-23,

8-25, 43-4
parameters passed to 8-23

OnNewDimensions event 16-9
OnNewRecord event 18-18
OnPaint event 3-45, 8-2

OnPassword event 20-13, 20-22
OnPopup event 7-11
OnPostError event 18-20
OnReceive 32-10
OnReceive event 32-8
OnReconcileError event 10-28,

20-32, 23-20, 23-22
OnRefresh event 16-7
OnRequestRecords event 25-37
OnResize event 8-2
OnRollbackTransComplete

event 17-8, 21-8
OnScroll event 3-32
OnSend 32-10
OnSend event 32-8
OnSetText event 19-15
OnStartDrag event 15-26
OnStartPage method 37-2
OnStartup event 20-18
OnStateChange event 15-4,

16-9, 18-4
OnSummaryChange event 16-9
OnTerminate event 9-6
OnTitleClick event 15-26
OnTranslate event 26-7
OnUpdateData event 15-4, 24-8,

24-9
OnUpdateError event 10-28,

20-32, 20-37 to 20-39, 23-22,
24-11

OnUpdateRecord event 20-32,
20-36 to 20-37, 20-39, 20-45

OnValidate event 19-15
OnWillConnect event 17-5, 21-7
Open method

connection components 17-3
datasets 18-4
queries 18-47
server sockets 32-7
sessions 20-18

OpenDatabase method 20-18,
20-19

OpenSession method 20-29
OpenString 4-42
optimizing code

interfaces 4-25
optimizing system

resources 40-4
optional parameters 23-15, 24-6
options

Web application
module 29-3

Options property 3-43
data grids 15-23
decision grids 16-12

providers 24-5 to 24-6
TSQLClientDataSet 23-16

Oracle drivers
deploying 13-9

Oracle tables 20-12
Oracle8

limits on creating
tables 18-39

ORDER BY clause 18-25
Orientation property

data grids 15-27
track bars 3-33

Origin property 8-27, 19-11
outer objects 33-9
outlines, drawing 8-5
out-of-process servers 33-7

ASP 37-7
output parameters 18-50, 23-26
Overload property 20-12
overloaded stored

procedures 20-12
override directive 41-8, 46-3
overriding

methods 41-8, 46-3, 46-4,
50-11

owned objects 49-5 to 49-8
initializing 49-6

Owner property 3-11, 40-13
owner-draw controls 3-52, 7-11

declaring 7-12
drawing 7-13, 7-15
list boxes 3-37, 3-38
sizing 7-14

OwnerDraw property 7-12

P
$P compiler directive 4-49
package

dynamically loading 11-4
Package Collection Editor 11-13
package collection files 11-13
package files 13-3
packages 11-1 to 11-14, 47-19

collections 11-13
compiler directives 11-10
compiling 11-10 to 11-12

options 11-10
components 47-19
Contains list 11-6, 11-7, 11-9,

47-19
creating 5-9, 11-6 to 11-11
custom 11-4
default settings 11-7
deploying applications 11-2,

11-13

I n d e x I-29

design-only option 11-7
design-time 11-1, 11-5 to

11-6
DLLs 11-1, 11-2
duplicate references 11-9
editing 11-7
file-name extensions 11-1
installing 11-5 to 11-6
internationalizing 12-12,

12-13
options 11-7
referencing 11-3
Requires list 11-6, 11-7, 11-8,

47-19
runtime 11-1, 11-2 to 11-4,

11-7
source files 11-2, 11-12
using 5-9
using in applications 11-3 to

11-4
PacketRecords property 10-29,

20-33, 23-25
page controls 3-40

adding pages 3-41
page dispatcher 29-4
page dispatchers

dispatchers
page 29-18

page modules 29-3, 29-7
Web 29-6

page name 29-6
page producers 28-13 to 28-17,

29-6, 29-9
chaining 28-16
components 29-6
Content method 28-14
ContentFromStream 28-14
ContentFromString 28-14
converting templates 28-14
data-aware 25-38 to 25-42,

28-18
event handling 28-15, 28-16
templates 29-6, 29-9
types 29-3

PageSize property 3-33
paint boxes 3-45
Paint method 45-6, 49-8, 49-9
paintboxes 3-23
palette bitmap files 47-3
PaletteChanged method 45-5
PaletteChanged property 10-21
palettes 45-5

default behavior 45-5
specifying 45-5

PanelHeight property 15-27

panels
adding speed buttons 6-44
attaching to form tops 6-43
beveled 3-45
speed buttons 3-35

Panels property 3-42
PanelWidth property 15-27
panes 3-34

resizing 3-34
PAnsiChar 4-42
PAnsiString 4-47
Paradox tables 20-3, 20-5

accessing data 20-9
adding records 18-19
batch moves 20-51, 20-52
DatabaseName 20-3
directories 20-24
local transactions 20-31
network control files 20-24
password protection 20-21 to

20-23
renaming 20-7
retrieving indexes 18-26

parallel processes
threads 9-1

ParamBindMode
property 20-12

ParamByName method
queries 18-45
stored procedures 18-52

ParamCheck property 18-44,
22-11

parameter collection
editor 18-44, 18-50

parameterized queries 18-42,
18-43 to 18-46

creating
at design time 18-44
at runtime 18-45

parameters
binding modes 20-12
classes as 41-9
client datasets 23-26 to 23-28

filtering records 23-28
dual interfaces 36-16
event handlers 43-3, 43-7,

43-8, 43-9
from XML brokers 25-37
HTML tags 28-13
input 18-50
input/output 18-50
messages 46-2, 46-3, 46-4,

46-6
mouse events 8-23, 8-24
output 18-50, 23-26

property settings 42-6
array properties 42-8

result 18-50
TXMLTransformClient 26-9

Parameters property 21-19
TADOCommand 21-19
TADOQuery 18-44
TADOStoredProc 18-50

ParamName property 25-40
Params property

client datasets 23-26, 23-27
queries 18-44, 18-45
stored procedures 18-50
TDatabase 20-15
TSQLConnection 22-4
XML brokers 25-37

ParamType property 18-45,
18-51

ParamValues property 18-45
parent controls 3-19
parent properties 3-19
Parent property 40-13
ParentColumn property 15-23
ParentShowHint property 3-42
partial keys

searching 18-29
setting ranges 18-32

passthrough SQL 20-30, 20-30
to 20-31

passwords
dBASE tables 20-21 to 20-23
implicit connections

and 20-13
Paradox tables 20-21 to 20-23

PasteFromClipboard
method 7-9

data-aware memo
controls 15-9

graphics 15-9
PathInfo property 28-6
pathnames 10-15
paths (URLs) 27-3
patterns 8-9
.PCE files 11-13
PChar 4-42

string conversions 4-47
PDOXUSRS.NET 20-24
Pen property 8-4, 8-5, 45-3
PenPos property 8-4, 8-7
pens 8-5, 49-5

brushes 8-5
changing 49-7
colors 8-6
default settings 8-6
drawing modes 8-28

I-30 D e v e l o p e r ’ s G u i d e

getting position of 8-7
position, setting 8-7, 8-24
style 8-6
width 8-6

PENWIN.DLL 11-11
persistent columns 15-15, 15-16

to 15-17
creating 15-17 to 15-21
deleting 15-16, 15-18
inserting 15-18
reordering 15-19

persistent fields 15-15, 19-3 to
19-16

ADT fields 19-24
array fields 19-25
creating 19-4 to 19-5, 19-5 to

19-10
creating tables 18-38
data packets and 24-4
data types 19-6
dataset fields 18-36
defining 19-5 to 19-10
deleting 19-10
listing 19-4, 19-5
naming 19-5
ordering 19-5
properties 19-10 to 19-15
special types 19-5, 19-6
switching to dynamic 19-3

persistent subscriptions 35-15
per-user subscriptions 35-15
PickList property 15-20
picture objects 8-3, 45-4
Picture property 3-44, 8-17

in frames 6-15
pictures 8-17, 45-3 to 45-5

changing 8-20
loading 8-19
replacing 8-20
saving 8-19

Pie method 8-4
Pixel property 8-4, 45-3
pixels

reading and setting 8-9
Pixels property 8-5, 8-9
pmCopy constant 8-28
pmNotXor constant 8-28
pointers

class 41-9
default property

values 42-12
method 43-2, 43-3, 43-8

Polygon method 8-5, 8-11
polygons 8-11

drawing 8-11

PolyLine method 8-5, 8-10
polylines 8-10

drawing 8-10
polymorphism 3-2, 3-5
pop-up menus 7-10 to 7-11

displaying 6-36
drop-down menus and 6-34

PopupMenu component 6-30
PopupMenu property 7-10
Port property

server sockets 32-7
TSocketConnection 25-25

portable code 10-17
porting applications 10-1 to

10-29
ports 32-5

client sockets 32-6
multiple connections 32-5
server sockets 32-7
services and 32-2

Position property 3-33, 3-42
position-independent code

(PIC) 10-9, 10-20
Post method 18-20

Edit and 18-17
Precision property

fields 19-11
parameters 18-45, 18-51

preexisting controls 40-4
Prepared property

queries 18-47
stored procedures 18-53
unidirectional datasets 22-8

primary indexes
batch moves and 20-49,

20-50
PRIMARY KEY constraint 24-13
printing 3-54
Prior method 18-6
priorities

using threads 9-1, 9-2
Priority property 9-3
private 3-9
private properties 42-5
private section 4-2
PrivateDir property 20-24
problem tables 20-51
ProblemCount property 20-51
ProblemTableName

property 20-51, 20-52
ProcedureName property 18-49
procedures 40-6, 43-3

naming 44-2
property settings 47-11

processes 10-15

programming templates 5-3
progress bars 3-42
project files

changing 2-3
distributing 2-5

Project Manager 6-2
project options 5-3

default 5-3
Project Options dialog box 5-3
project templates 5-21
projects

adding forms 6-1 to 6-2
properties 3-2, 42-1 to 42-13

accessing 42-5 to 42-6
adding to ActiveX

controls 38-8 to 38-9
adding to interfaces 36-9 to

36-10
array 42-2, 42-8
as classes 42-2
changing 47-6 to 47-12, 48-2,

48-3
COM 33-3, 34-9

By Reference Only 34-9
Write By Reference 34-9

common dialog boxes 52-1
declaring 42-3, 42-3 to 42-6,

42-7, 42-12, 43-8, 49-4
stored 42-12
user-defined types 49-3

default values 42-7, 42-11 to
42-12

redefining 48-2, 48-3
editing

as text 47-8
events and 43-1, 43-2
HTML tables 28-19
inherited 42-2, 49-2, 50-2
interfaces 42-10
internal data storage 42-4,

42-6
loading 42-13
nodefault 42-7
objects and 3-5
overview 40-6
providing help 47-4
published 50-2
read and write 42-5
reading values 47-8
read-only 41-6, 42-6, 51-2
redeclaring 42-11, 43-5
rich text controls 3-31
setting 3-24 to 3-25
specifying values 42-11, 47-8
storing 42-12

I n d e x I-31

storing and loading
unpublished 42-13 to 42-15

subcomponents 42-8
types 42-2, 42-8, 47-8, 49-3
updating 40-7
viewing 47-8
wrapper components 52-3
write-only 42-6
writing values 42-6, 47-8

property editors 3-25, 42-2, 47-6
to 47-12

as derived classes 47-7
attributes 47-10
dialog boxes as 47-9
registering 47-11 to 47-12

property page wizard 38-12
property pages 38-11 to 38-14

ActiveX controls 35-6, 38-3,
38-14

adding controls 38-12 to
38-14

associating with ActiveX
control properties 38-13

creating 38-12 to 38-14
imported controls 35-4
updating 38-13
updating ActiveX

controls 38-13
property settings

reading 42-8
writing 42-8

Proportional property 8-3
protected 3-9

directive 43-5
events 43-5
keyword 42-3, 43-5
part of classes 41-5

protected section 4-2
protocols

choosing 25-8 to 25-11
connection components 25-8

to 25-11, 25-24
Internet 27-2, 32-1
network connections 20-15

Provider property 21-4
ProviderFlags property 24-5,

24-10
ProviderName property 14-12,

23-24, 24-3, 25-23, 25-37, 26-9
providers 24-1 to 24-13

applying updates 24-4, 24-8
to 24-11

screening updates 24-11
associating with

datasets 24-2

associating with XML
documents 24-2, 26-8

client datasets and 23-23 to
23-30

client-generated
events 24-12

data constraints 24-12
error handling 24-11
external 14-11, 23-17, 23-23,

24-1
internal 23-17, 23-23, 24-1
local 23-24, 24-3
remote 23-24, 24-3, 25-6
supplying data to XML

documents 26-9 to 26-10
using update objects 20-11
XML 26-8

providing 24-1, 25-3
proxy 33-7, 33-8

transactional objects 39-2
PString 4-47
public 3-9

directive 43-5
keyword 43-5
part of classes 41-6
properties 42-11

public section 4-2
published 3-9, 42-3

directive 42-3, 43-5, 52-3
keyword 43-5
part of classes 41-6
properties 42-11, 42-12

example 49-2, 50-2
PVCS Version Manager 2-5
PWideChar 4-42
PWideString 4-47

Q
QReport page (Component

palette) 3-30
Qt library 10-22
Qt widget 10-13
qualifiers 3-8 to 3-9
queries 18-23, 18-41 to 18-48

BDE-based 20-2, 20-8 to
20-11

concurrent 20-17
live result sets 20-10 to

20-11
bi-directional cursors 18-48
executing 18-47 to 18-48
filtering vs. 18-12
heterogeneous 20-9 to 20-10
HTML tables 28-20

master/detail
relationships 18-46 to 18-47

optimizing 18-47, 18-48
parameterized 18-42
parameters 18-43 to 18-46

binding 18-44
from client datasets 23-27
master/detail

relationships 18-46 to
18-47

named 18-44
properties 18-44 to 18-45
setting at design

time 18-44
setting at runtime 18-45
unnamed 18-44

preparing 18-47
result sets 18-48
running

update objects 20-45
specifying 18-42 to 18-43,

22-6
specifying the

database 18-41
unidirectional cursors 18-48
update objects 20-46 to 20-47
Web applications 28-20

Query Builder 18-43
query part (URLs) 27-3
Query property

update objects 20-46
QueryInterface method 4-20,

4-24, 4-26, 33-4
aggregation 33-9

query-type datasets
See queries

R
radio buttons 3-35, 15-2

data-aware 15-13 to 15-14
grouping 3-39
selecting 15-13, 15-14

radio groups 3-39
raise reserved word 4-17
ranges 18-30 to 18-34

applying 18-34
boundaries 18-32
canceling 18-34
changing 18-33
filters vs. 18-30
indexes and 18-30
null values 18-31, 18-32
specifying 18-30 to 18-33

raster operations 45-7
.RC files 6-42

I-32 D e v e l o p e r ’ s G u i d e

RDBMS 14-3, 25-1
RDSConnection property 21-16
Read method

TFileStream 4-55
read method 42-6
read reserved word 42-8, 49-4
ReadBuffer method

TFileStream 4-56
ReadCommitted 17-9
reading property settings 42-6
README 13-14, 13-15
read-only fields 15-5
read-only properties 41-6, 42-6,

51-2
ReadOnly property 3-31, 51-3,

51-8, 51-9
data grids 15-20, 15-25
data-aware controls 15-5
data-aware memo

controls 15-8
data-aware rich edit

controls 15-9
fields 19-12
tables 18-37

read-only tables 18-37
read-only-datasets

updating 14-10
realizing palettes 45-5
ReasonString property 28-11
rebars 6-42, 6-48
ReceiveBuf method 32-8
Receiveln method 32-8
RecNo property

client datasets 23-2
Reconcile method 10-29, 20-33
RecordCount property

TBatchMove 20-51
records

adding 18-18 to 18-19, 18-21
appending 18-19

batch operations 20-8,
20-49

comparison to objects 3-5
copying

batch operations 20-8,
20-49

deleting 18-19 to 18-20, 18-40
batch operations 20-8,

20-50
displaying 15-26
fetching 22-8, 23-25 to 23-26

asynchronous 21-11 to
21-12

filtering 18-12 to 18-15

finding 18-10 to 18-12, 18-27
to 18-29

iterating through 18-7
marking 18-9 to 18-10
moving through 15-28, 18-5

to 18-8, 18-16
posting 15-6, 18-20

data grids 15-25
when closing

datasets 18-20
reconciling updates 23-22
refreshing 15-6, 23-29 to

23-30
repeating searches 18-29
search criteria 18-10, 18-11
sorting 18-25 to 18-27
synchronizing current 18-40
Type Library editor 34-10,

34-17, 34-24
updating 18-21 to 18-22, 24-8

to 24-11, 25-37 to 25-38
batch operations 20-8,

20-49
client datasets 23-19 to

23-23
delta packets 24-8, 24-9
from XML

documents 26-10
identifying tables 24-11
multiple 24-6
queries and 20-11
screening updates 24-11

Web adapters 29-8
RecordSet property 21-19
Recordset property 21-10
RecordsetState property 21-10
RecordStatus property 21-12,

21-13
Rectangle method 8-5, 8-11,

45-3
rectangles

drawing 8-11, 49-9
redefining methods 41-8
redrawing images 45-7
Reduced XML Data file

See XDR file
reference counting

COM objects 4-20, 33-4
interfaces 4-24 to 4-26

reference fields 19-22, 19-27 to
19-28

displaying 15-23
references

forms 6-2
packages 11-3

referential integrity 14-5
Refresh method 15-6, 23-29
RefreshLookupList

property 19-9
RefreshRecord method 23-29,

24-3
Register method 8-3
Register procedure 40-12, 47-2
RegisterComponents

procedure 11-6, 40-12, 47-2
RegisterConversionType

function 4-59, 4-60
RegisterHelpViewer 5-31
registering

Active Server Objects 37-7 to
37-8

ActiveX controls 38-14
COM objects 36-16 to 36-17
component editors 47-18
components 40-12
conversion families 4-59
property editors 47-11 to

47-12
registering Help objects 5-27
RegisterNonActiveX

procedure 38-3
RegisterPooled procedure 25-8
RegisterPropertyEditor

procedure 47-11
RegisterTypeLib function 33-17
RegisterViewer function 5-27
Registry 12-10
registry 10-15
REGSERV32.EXE 13-5
relational databases 14-1
Release method 4-20, 4-24, 4-25,

33-4
TCriticalSection 9-7

release notes 13-15
releasing mouse buttons 8-25
relocateable code 10-20
remotable class registry 31-5,

31-7
remotable classes

exceptions 31-7
registering 31-5

remote applications
TCP/IP 32-1

remote connections 32-2 to 32-3
multiple 32-5
opening 32-6, 32-7
sending/receiving

information 32-9
terminating 32-7

I n d e x I-33

Remote Data Module
wizard 25-13 to 25-14

remote data modules 5-19, 25-3,
25-5, 25-11, 25-13 to 25-16

child 25-21
instancing 25-14
multiple 25-21 to 25-22,

25-30 to 25-31
parent 25-21
pooling 25-8
stateless 25-7, 25-8, 25-19 to

25-21
threading models 25-13,

25-14
Remote Database Management

system 14-3
remote database servers 14-2
remote servers 20-9, 33-7

maintaining
connections 20-18

unauthorized access 17-4
RemoteHost property

client sockets 32-6
RemotePort property

client sockets 32-6
RemoteServer property 23-24,

25-23, 25-28, 25-34, 25-37, 26-9
RemoveAllPasswords

method 20-22
RemovePassword

method 20-22
RenameFile function 4-52, 4-53
repainting controls 49-7, 49-9,

50-4
RepeatableRead 17-9
reports 14-16
Repository 5-19 to 5-22, 6-12

adding items 5-19
using items from 5-20 to 5-21

Repository dialog 5-19
RepositoryID property 25-24,

25-27
request

actions and HTML 29-15
Request for Comment (RFC)

documents 27-2
request headers 28-9
request messages 28-2, 28-3,

37-4
action items and 28-5
contents 28-10
dispatching 28-5
header information 28-8 to

28-10
HTTP overview 27-4 to 27-6

processing 28-5
responding to 28-7 to 28-8,

28-12
types 28-9
XML brokers 25-37

request objects
header information 28-4

RequestLive property 20-10
RequestRecords method 25-37
requests

adapters 29-15
dispatching 29-12
images

HTTP requests
images 29-16

Requires list (packages) 11-6,
11-7, 11-8, 47-19

ResetEvent method 9-9
resizing controls 3-34, 13-12,

50-4
graphics 45-7

ResolveToDataSet
property 24-4

resolving 24-1, 25-4
resource dispensers 39-5

ADO 39-6
BDE 39-5

Resource DLLs
dynamic switching 12-13
wizard 12-10

resource files 6-42
loading 6-42

resource modules 12-10, 12-12
resource pooling 39-5 to 39-7
resources 40-7, 45-1

caching 45-2
freeing 52-5
isolating 12-10
localizing 12-10, 12-12, 12-13
strings 12-10
system, optimizing 40-4

resourcestring reserved
word 12-10

response headers 28-12
response messages 28-3, 37-5

contents 28-12, 28-13 to 28-20
creating 28-10 to 28-12, 28-13

to 28-20
database information 28-17

to 28-20
header information 28-11 to

28-12
sending 28-8, 28-12
status information 28-11

response templates 28-13

responses
actions 29-15
adapters 29-15
images

HTTP responses
images 29-17

RestoreDefaults method 15-21
Result parameter 46-6
result parameters 18-50
Resume method 9-10, 9-11
retaining aborts 21-6
retaining commits 21-6
ReturnValue property 9-9
RevertRecord method 10-29,

20-33, 23-6
RFC documents 27-2
rich text controls 3-32, 7-6, 15-9

properties 3-31
rich text edit controls 3-31

properties 3-31
rich-text memo fields 15-2
RightPromotion method 4-31,

4-33
role-based security 39-14
Rollback method 17-8
RollbackTrans method 17-8
root directory 10-16
rounded rectangles 8-11
RoundRect method 8-5, 8-11
RowAttributes property 28-19
RowCount property 15-12,

15-27
RowHeights property 3-43, 7-14
RowRequest method 24-3
rows 3-43

decision grids 16-11
Web adapters 29-8

Rows property 3-43
RowsAffected property 18-48
RPC 33-8
RTL 10-6
RTTI 41-6

invokable interfaces 31-2
rubber banding example 8-23 to

8-28
$RUNONLY compiler

directive 11-10
runtime interfaces 41-6
runtime packages 11-1, 11-2 to

11-4
runtime type information 41-6

S
safe arrays 34-13
safe references 39-20

I-34 D e v e l o p e r ’ s G u i d e

SafeArray 34-13
safecall calling convention 34-9,

38-9
SafeRef method 39-20
Samples page (Component

palette) 3-30
Save as Template command

(Menu designer) 6-37, 6-39
Save Attributes command 19-13
Save Template dialog box 6-40
SaveConfigFile method 20-25
SavePoint property 23-6
SaveToFile method 8-19

ADO datasets 21-14
client datasets 14-9, 23-33
graphics 45-4
strings 3-48

SaveToStream method
client datasets 23-33

scalability 14-11
ScaleBy property

TCustomForm 13-12
Scaled property

TCustomForm 13-12
ScanLine property

bitmap 8-9
bitmap example 8-18

schema information 22-12 to
22-17

fields 22-15
indexes 22-16
stored procedures 22-14,

22-16 to 22-17
tables 22-14

ScktSrvr.exe 25-9, 25-13, 25-25
SCM 5-4
scope (objects) 3-8 to 3-9
screen

refreshing 8-2
resolution 13-11

programming for 13-11,
13-12

Screen variable 6-3, 12-9
script objects 29-11
ScriptAlias directive 13-10
scripting 29-9
scripts

active 29-9
editing and viewing 29-10
generating in

WebSnap 29-10
scripts (URLs) 27-3
scroll bars 3-32

text windows 7-7 to 7-8
scrollable bitmaps 8-16

ScrollBars property 3-43, 7-7
data-aware memo

controls 15-8
SDI applications 5-1 to 5-2
search lists (Help systems) 47-5
search path 10-15
search path separator 10-16
Sections property 3-41
security

databases 14-3 to 14-4, 17-4
to 17-5

local tables 20-21 to 20-23
DCOM 25-36
multi-tiered

applications 25-2
registering socket

connections 25-9
SOAP connections 25-26
transactional data

modules 25-6, 25-9
transactional objects 39-14 to

39-15
Web connections 25-10,

25-26
Seek method

ADO datasets 18-27
seeking

files 4-56
Select Menu command (Menu

designer) 6-37
Select Menu dialog box 6-37
SELECT statements 18-42
SelectAll method 3-32
SelectCell method 50-12, 51-3
Selection property 3-43
SelectKeyword 5-27
selectors

Help 5-27
SelEnd property 3-33
Self parameter 40-13
SelLength property 3-32, 7-8
SelStart property 3-32, 3-33, 7-8
SelText property 3-32, 7-8
SendBuf method 32-8
Sender parameter 3-27

example 8-7
Sendln method 32-8
SendStream method 32-8
separator bars (menus) 6-33
server applications

architecture 25-5
COM 33-5 to 33-9, 36-1 to

36-17
interfaces 32-2

multi-tiered 25-5 to 25-11,
25-11 to 25-18

registering 25-11, 25-22
services 32-1
Web Services 31-2 to 31-8

server connections 32-2, 32-3
port numbers 32-5

server sockets 32-7
accepting client

requests 32-7
accepting clients 32-9
error messages 32-8
event handling 32-9
specifying 32-6
Windows socket objects 32-7

server types 29-2
ServerGUID property 25-24
ServerName property 25-24
servers

Internet 27-1 to 27-9
Web application

debugger 29-2
Servers page (Component

palette) 3-30
server-side 29-9
server-side scripting 29-9
service applications 5-4 to 5-8

example 5-6
example code 5-4, 5-6

Service Control Manager 5-4
Service Start name 5-8
service threads 5-6
services 5-4 to 5-8

example 5-6
example code 5-4, 5-6
implementing 32-1 to 32-2,

32-7
installing 5-4
name properties 5-8
network servers 32-1
ports and 32-2
requesting 32-6
uninstalling 5-4

Session variable 20-3, 20-16
SessionName property 20-3,

20-13, 20-28, 28-17
sessions 20-16 to 20-29

activating 20-17 to 20-18
associated databases 20-20 to

20-21
closing 20-18
closing connections 20-19
creating 20-27, 20-28
current state 20-17
databases and 20-13

I n d e x I-35

datasets and 20-3 to 20-4
default 20-3, 20-13, 20-16 to

20-17
default connection

properties 20-18
getting information 20-26 to

20-27
implicit database

connections 20-13
managing aliases 20-24
managing connections 20-19

to 20-21
methods 20-13
multiple 20-13, 20-27, 20-28

to 20-29
multi-threaded

applications 20-13, 20-28 to
20-29

naming 20-28, 28-17
opening connections 20-19
passwords 20-21
restarting 20-18
Web applications 28-17

Sessions property 20-29
sessions service 29-4
Sessions variable 20-17, 20-28
set types 42-2
SetAbort method 39-4, 39-7,

39-11
SetBrushStyle method 8-8
SetComplete method 25-18,

39-4, 39-7, 39-11
SetData method 19-16
SetEvent method 9-9
SetFields method 18-21
SetFloatValue method 47-8
SetKey method 18-27

EditKey vs. 18-29
SetLength procedure 4-46
SetMethodValue method 47-8
SetOptionalParam

method 23-15
SetOrdValue method 47-8
SetPenStyle method 8-7
SetProvider method 23-24
SetRange method 18-32
SetRangeEnd method 18-31

SetRange vs. 18-32
SetRangeStart method 18-30

SetRange vs. 18-32
sets 42-2
SetSchemaInfo method 22-12
SetStrValue method 47-8
SetValue method 47-8
Shape property 3-44

shapes 3-44, 8-11 to 8-12, 8-14
drawing 8-11, 8-14
filling 8-8
filling with bitmap

property 8-9
outlining 8-5

shared object files 10-9, 10-15
shared objects 10-22
shared property groups 39-6
Shared Property Manager 39-6

to 39-7
example 39-6 to 39-7

sharing forms and dialogs 5-19
to 5-22

shell scripts 10-14
Shift states 8-24
short strings 4-40
ShortCut property 6-34
shortcuts

adding to menus 6-33 to 6-34
ShortString 4-41
Show method 6-7, 6-8
ShowAccelChar property 3-42
ShowButtons property 3-38
ShowColumnHeaders

property 3-39
ShowFocus property 15-27
ShowHint property 3-42, 15-30
ShowHintChanged

property 10-21
ShowLines property 3-38
ShowModal method 6-6
ShowRoot property 3-38
ShutDown 5-24
signalling events 9-9
signals 10-15
Simple Object Access Protocol

See SOAP
simple types 42-2
single document interface 5-1 to

5-2
single-tiered applications 14-3,

14-9, 14-12
file-based 14-9

Size property
fields 19-12
parameters 18-45, 18-51

slow processes
using threads 9-1

SOAP 31-1
connecting to application

servers 25-26
multi-tiered

applications 25-10
SOAP connections 25-10, 25-26

SOAP Data Module
wizard 25-15

SOAP data modules 25-5
SOAP fault packets 31-7
socket components 32-5 to 32-7
socket connections 25-9, 25-25,

32-2 to 32-3
closing 32-7
endpoints 32-3, 32-5
multiple 32-5
opening 32-6, 32-7
sending/receiving

information 32-9
types 32-2

socket dispatcher
application 25-9, 25-13, 25-25

socket objects
clients 32-6

sockets 32-1 to 32-10
accepting client

requests 32-3
assigning hosts 32-4
describing 32-3
error handling 32-8
event handling 32-8 to 32-9,

32-10
implementing services 32-1

to 32-2, 32-7
network addresses 32-3, 32-4
providing information 32-4
reading from 32-10
reading/writing 32-9 to

32-10
writing to 32-10

SoftShutDown 5-24
software license

requirements 13-14
sort order 12-10

client datasets 23-7
descending 23-8
setting 18-27
TSQLTable 22-7

Sorted property 3-37, 15-11
SortFieldNames property 22-7
source code

editing 2-3
optimizing 8-15
reusing 6-12
viewing

specific event
handlers 3-26

source datasets, defined 20-48
source files

changing 2-3

I-36 D e v e l o p e r ’ s G u i d e

packages 11-2, 11-6, 11-8,
11-12

source files, sharing 10-13
SourceXml property 26-6
SourceXmlDocument

property 26-6
SourceXmlFile property 26-6
Spacing property 3-35
SparseCols property 16-9
SparseRows property 16-9
speed buttons 3-35

adding to toolbars 6-43 to
6-45

assigning glyphs 6-44
centering 6-44
engaging as toggles 6-45
event handlers 8-13
for drawing tools 8-13
grouping 6-45
initial state, setting 6-44
operational modes 6-43

spin edit controls 3-33
splitters 3-34
SPX/IPX 20-15
SQL 14-2, 20-8

executing commands 17-10
to 17-11

local 20-9
standards 24-12

Decision Query editor
and 16-6

SQL Builder 18-43
SQL Explorer 20-53, 25-3

defining attribute sets 19-13
SQL Links 13-8, 20-1

deploying 13-8, 13-14
driver files 13-9
drivers 20-9, 20-15, 20-31

SQL Monitor 20-53
SQL property 18-42 to 18-43

changing 18-47
SQL queries 18-42 to 18-43

copying 18-43
executing 18-47 to 18-48
loading from files 18-43
modifying 18-43
optimizing 18-48
parameters 18-43 to 18-46,

20-41 to 20-42
binding 18-44
master/detail

relationships 18-46 to
18-47

setting at design
time 18-44

setting at runtime 18-45
preparing 18-47
result sets 18-48
update objects 20-45

SQL servers
logging in 14-4

SQL statements
client-supplied 23-31, 24-6
decision datasets 16-4, 16-5
executing 22-9 to 22-10
generating

providers 24-4, 24-9 to
24-10

TSQLDataSet 22-8
parameters 17-11
passthrough SQL 20-30
provider-generated 24-11
update objects and 20-40 to

20-43
SQLConnection property 22-2,

22-17
SQLPASSTHRUMODE 20-31
squares, drawing 49-9
standard components 3-28 to

3-30
standard events 43-4, 43-4 to

43-6
customizing 43-6

Standard page (Component
palette) 3-29

StartTransaction method 17-6,
17-7

state information
communicating 24-7, 24-8,

25-19 to 25-21
managing 39-5
mouse events 8-24
shared properties 39-6
transactional objects 39-11
transactions 39-11

State property 3-35
datasets 18-3, 19-8
grid columns 15-15
grids 15-15, 15-17

stateless objects 39-11
static binding 25-29

COM 33-16
static methods 41-7
static text 3-42
static text component 3-41
status bars 3-42

internationalizing 12-9
owner draw 7-11

status information 3-42
StatusCode property 28-11

StatusFilter property 10-28,
20-32, 21-12, 23-6, 23-18, 24-8

StdConvs unit 4-59, 4-60
Step property 3-42
StepBy method 3-42
StepIt method 3-42
storage media 3-55
stored directive 42-12
stored procedures 14-5, 18-23,

18-48 to 18-53
BDE-based 20-2, 20-11 to

20-12
parameter binding 20-12

creating 22-11
dbExpress 22-7
executing 18-53
listing 17-13
overloaded 20-12
parameters 18-50 to 18-52

design time 18-50 to 18-51
from client datasets 23-27
properties 18-51
runtime 18-52

preparing 18-52 to 18-53
specifying the

database 18-49
stored procedure-type datasets

See stored procedures
StoredProcName

property 18-49
StrByteType 4-44
streams 3-55
Stretch property 15-9
StretchDraw method 8-5, 45-3,

45-7
string fields

size 19-6
string grids 3-43
String List editor

displaying 15-10
string lists 3-47 to 3-52

adding objects 7-13
adding to 3-51
associated objects 3-52
copying 3-51
creating 3-48 to 3-50
deleting strings 3-51
finding strings 3-50
iterating through 3-50
loading from files 3-48
long-term 3-49
moving strings 3-51
owner-draw controls 7-12 to

7-13
position in 3-50, 3-51

I n d e x I-37

saving to files 3-48
short-term 3-48
sorting 3-51
substrings 3-50

string operators 4-50
string properties 4-41
string reserved word 4-41

default type 4-40
property types 4-41

strings 4-39, 42-2, 42-8
2-byte conversions 12-3
associating graphics 7-13
compiler directives 4-49
declaring and

initializing 4-46
extended character sets 4-50
files 4-56
local variables 4-48
long 4-41
memory corruption 4-49
mixing and converting

types 4-47
PChar conversions 4-47
reference counting

issues 4-41, 4-47
returning 42-8
routines

case sensitivity 4-43
Multi-byte character

support 4-44
runtime library 4-42

size 7-8
sorting 12-10
starting position 7-8
translating 12-2, 12-8, 12-10
truncating 12-3
types overview 4-40
variable parameters 4-49

Strings property 3-50
StrNextChar function 10-17
Structured Query Language

 See SQL
stubs

COM 33-8
transactional objects 39-2

Style property 3-37, 7-12
brushes 3-44, 8-8
combo boxes 3-38, 15-11
list boxes 3-37
pens 8-5
tool buttons 6-47
web items 25-40

style sheets 25-40
StyleChanged property 10-21
StyleRule property 25-40

styles 10-6
Styles property 25-40
StylesFile property 25-41
subclassing Windows

controls 40-4
subcomponents

properties 42-8
submenus 6-34
subscriber objects 35-14 to 35-15

persistent
subscriptions 35-15

per-user subscriptions 35-15
transient subscriptions 35-14

Subtotals property 16-12
summary values

crosstabs 16-2, 16-3
decision cubes 16-19
decision graphs 16-15
maintained aggregates 23-13

support services 1-3
SupportCallbacks

property 25-18
Suspend method 9-11
Sybase driver

deploying 13-9
symbolic links 10-16
Synchronize method 9-4
synchronizing data

on multiple forms 15-4
system events 10-21
system notifications 10-21
System page (Component

palette) 3-29
system resources,

conserving 40-4

T
tab controls 3-40

owner-draw 7-11
tab order 3-22
tab sets 3-40
Table HTML tag

(<TABLE>) 28-14
table producers 28-18 to 28-20

setting properties 28-19
TableAttributes property 28-19
TableName property 18-25,

18-38, 22-7
TableOfContents 5-27
tables 18-23, 18-24 to 18-41

BDE-based 20-2, 20-4 to 20-8
access rights 20-6
appending records 20-8
batch operations 20-8
binding 20-5

closing 20-5
copying records 20-8
deleteing records 20-8
exclusive locks 20-6
index-based

searches 18-27
updating records 20-8

creating 18-37 to 18-39
indexes 18-38
persistent fields 18-38

dbExpress 22-6 to 22-7
defining 18-37 to 18-38
deleting 18-40
displaying in grids 15-16
emptying 18-40
field and index

definitions 18-38
preloading 18-38

indexes 18-25 to 18-36
inserting records 18-18 to

18-19, 18-21
listing 17-13
master/detail

relationships 18-34 to 18-36
nested 18-36
non-database grids 3-43
ranges 18-30 to 18-34
read-only 18-37
searching 18-27 to 18-29
sorting 18-25, 22-7
specifying the

database 18-24
synchronizing 18-41

table-type datasets
See tables

TableType property 18-37, 20-5
to 20-6

TabOrder property 3-22
tabs

draw-item events 7-15
Tabs property 3-40
TabStop property 3-22
TabStopChanged

property 10-21
tabular display (grids) 3-43
tabular grids 15-26
TAction 6-20
TActionClientItem 6-22
TActionList 6-18
TActionMainMenuBar 6-16,

6-17, 6-18, 6-19, 6-21
TActionManager 6-16, 6-18,

6-19
TActionToolBar 6-16, 6-17, 6-18,

6-19, 6-21

I-38 D e v e l o p e r ’ s G u i d e

TActiveForm 38-3, 38-6
TAdapterDispatcher 29-13
TAdapterPageProducer 29-10
TADOCommand 21-2, 21-7,

21-9, 21-16 to 21-20
TADOConnection 14-8, 17-1,

21-2, 21-2 to 21-8, 21-9
connecting to data

stores 21-3 to 21-4
TADODataSet 21-2, 21-9, 21-15

to 21-16
TADOQuery 21-2, 21-9

SQL command 21-17
TADOStoredProc 21-2, 21-9
TADOTable 21-2, 21-9
Tag property 19-12
TApacheApplication 27-6
TApacheRequest 27-6
TApacheResponse 27-6
TApplication 5-23, 5-29, 10-6
TApplicationEvents 6-3
targets, action lists 6-18
TASM code 10-17
TASPObject 37-2
TBatchMove 20-47 to 20-52

error handling 20-51 to 20-52
TBCDField

default formatting 19-15
TBDEClientDataSet 20-2
TBDEDataSet 18-2
TBevel 3-45
TBitmap 45-4
TBrush 3-44
tbsCheck constant 6-47
TCalendar 50-1
TCanvas

using 3-54
TCGIApplication 27-6, 27-7
TCGIRequest 27-7
TCGIResponse 27-7
TCharProperty type 47-7
TClassProperty type 47-7
TClientDataSet 23-17
TClientDataset 5-18
TClientSocket 32-6
TColorProperty type 47-7
TComObject

aggregation 4-24
TComponent 3-12, 3-15, 40-5
TComponentProperty type 47-7
TControl 3-16, 3-18, 40-4, 43-4,

43-5
common events 3-20
common properties 3-18

TConvType values 4-59

TConvTypeInfo 4-62
TCoolBand 3-36
TCoolBar 6-43
TCorbaConnection 25-27
TCorbaDataModule 25-5
TCP/IP 20-15, 32-1

clients 32-6
connecting to application

server 25-25
multi-tiered

applications 25-9
servers 32-7

TCurrencyField
default formatting 19-15

TCustomADODataSet 18-2
TCustomClientDataSet 18-2
TCustomContentProducer

28-13
TCustomControl 40-4
TCustomEdit 10-8
TCustomGrid 50-1, 50-2
TCustomIniFile 3-52
TCustomizeDlg 6-22
TCustomListBox 40-3
TCustomVariantType 4-27, 4-28

to 4-36
TDatabase 14-8, 17-1, 20-3,

20-12 to 20-16
DatabaseName

property 20-3
temporary instances 20-20

dropping 20-20
TDataSet 18-1

descendants 18-2 to 18-3
TDataSetProvider 24-1, 24-2
TDataSetTableProducer 28-20
TDataSource 15-3 to 15-5
TDateField

default formatting 19-15
TDateTime type 50-5
TDateTimeField

default formatting 19-15
TDBChart 14-15
TDBCheckBox 15-2, 15-12 to

15-13
TDBComboBox 15-2, 15-10,

15-10 to 15-11
TDBCtrlGrid 15-2, 15-26 to

15-27
properties 15-27

TDBEdit 15-2, 15-8
TDBGrid 15-2, 15-15 to 15-26

events 15-25
properties 15-19

TDBGridColumns 15-15

TDBImage 15-2, 15-9 to 15-10
TDBListBox 15-2, 15-10, 15-10 to

15-11
TDBLookupComboBox 15-2,

15-10, 15-11 to 15-12
TDBLookupListBox 15-2, 15-10,

15-11 to 15-12
TDBMemo 15-2, 15-8 to 15-9
TDBNavigator 15-2, 15-28 to

15-30, 18-5, 18-6
TDBRadioGroup 15-2, 15-13 to

15-14
TDBRichEdit 15-2, 15-9
TDBText 15-2, 15-8
TDCOMConnection 25-24
TDecisionCube 16-1, 16-4, 16-7

to 16-8
events 16-7

TDecisionDrawState 16-12
TDecisionGraph 16-1, 16-2,

16-13 to 16-18
TDecisionGrid 16-1, 16-2, 16-10

to 16-13
events 16-12
properties 16-12

TDecisionPivot 16-1, 16-2, 16-9
to 16-10

properties 16-10
TDecisionQuery 16-1, 16-4, 16-6
TDecisionSource 16-1, 16-9

events 16-9
properties 16-9

TDefaultEditor 47-15
TDependency_object 5-8
TDragObject 7-3
TDragObjectEx 7-3
technical support 1-3
temperature units 4-61
templates 5-19, 5-21

component 6-12, 6-13
decision graphs 16-16
HTML 28-13 to 28-17, 29-9
menus 6-31, 6-37, 6-38 to

6-40
loading 6-38

page producers 29-6
producer 29-6
programming 5-3
Web Broker

applications 28-2
temporary objects 45-6
TEnumProperty type 47-7
terminal type 10-15
Terminate method 9-6
Terminated property 9-6

I n d e x I-39

test server, Web Application
Debugger 29-2

testing
components 40-12, 40-14,

52-6
values 42-6

TEvent 9-9
text

copying, cutting, pasting 7-9
deleting 7-9
in controls 7-6
internationalizing 12-9
owner-draw controls 7-11
printing 3-32
reading right to left 12-6
searching for 3-32
selecting 7-8, 7-8 to 7-9
working with 7-6 to 7-11

text controls 3-31 to 3-32
Text property 3-31, 3-32, 3-37,

3-42
TextHeight method 8-5, 45-3
TextOut method 8-5, 45-3
TextRect method 8-5, 45-3
TextWidth method 8-5, 45-3
TField 18-1, 19-1 to 19-28

events 19-15 to 19-16
methods 19-16
properties 19-1, 19-10 to

19-15
runtime 19-12

TFieldDataLink 51-4
TFiler 4-54
TFileStream 3-55, 4-54

file I/O 4-54 to 4-57
TFloatField

default formatting 19-15
TFloatProperty type 47-7
TFMTBcdField

default formatting 19-15
TFontNameProperty type 47-7
TFontProperty type 47-7
TForm

scroll-bar properties 3-33
TForm component 3-5
TFrame 6-13
TGraphic 45-4
TGraphicControl 40-4, 49-2
The 9-6
THeaderControl 3-41
thin client applications 25-2,

25-32
thread function 9-4
thread objects 9-1

defining 9-2

initializing 9-2
limitations 9-2

Thread Status box 9-12
thread variables 9-5
thread-aware objects 9-4
ThreadID property 9-12
threading models 36-6 to 36-9

ActiveX controls 38-5
Automation objects 36-5
COM objects 36-3
CORBA data modules 25-16
remote data modules 25-13
system registry 36-7
transactional data

modules 25-14
transactional objects 39-16 to

39-17
thread-local variables 9-5

OnTerminate event 9-6
threads 9-1 to 9-12

activities 39-18
avoiding simultaneous

access 9-7
BDE and 20-13
blocking execution 9-7
coordinating 9-4, 9-7 to 9-10
creating 9-10
critical sections 9-7
data access components 9-4
exceptions 9-6
executing 9-10
freeing 9-2, 9-3
graphics objects 9-5
ids 9-12
initializing 9-2
ISAPI/NSAPI

programs 28-2, 28-17
limits on number 9-11
locking objects 9-7
message loop and 9-4
priorities 9-1, 9-2

overriding 9-11
process space 9-4
returning values 9-9
service 5-6
stopping 9-11
terminating 9-5
using lists 9-5
VCL thread 9-4
waiting for 9-9

multiple 9-9
waiting for events 9-9

thread-safe objects 9-4
threadvar 9-5

three-tiered applications See
multi-tiered applications

THTMLTableAttributes 28-18
THTMLTableColumn 28-19
THTTPRio 31-9
THTTPSoapDispatcher 31-2,

31-3
THTTPSOAPPascalInvoker

31-3
THTTPSoapPascalInvoker 31-2
TIBCustomDataSet 18-2
TIBDatabase 14-8, 17-1
TickMarks property 3-33
TickStyle property 3-33
TIcon 45-4
tiers 25-1
TiledDraw method 45-7
TImage

in frames 6-15
TImageList 6-46
time

internationalizing 12-10
time conversion 4-59
time fields

formatting 19-14
timeout events 9-10
timers 3-23
times

entering 3-39
TIniFile 3-52
TIntegerProperty type 47-7,

47-9
TInterfacedObject 4-24

deriving from 4-21
dynamic binding 4-22
implementing IInterface 4-21

TInvokableClass 31-6
TInvokeableVariantType 4-27,

4-37 to 4-38
TISAPIApplication 27-6
TISAPIRequest 27-6
TISAPIResponse 27-6
Title property

data grids 15-20
TKeyPressEvent type 43-3
TLabel 3-41, 40-4
.TLB files 33-16, 34-2, 34-27
TLIBIMP 33-18, 35-5, 36-14
tlibimp.exe 35-2
TListBox 40-3
TLocalConnection 23-24
TMainMenu 6-18
TMemIniFile 3-52, 10-7
TMemoryStream 3-55
TMessage 46-4, 46-6

I-40 D e v e l o p e r ’ s G u i d e

TMetafile 45-4
TMethodProperty type 47-7
TMsg 6-5
TMTSDataModule 25-5
TMultiReadExclusiveWriteSync

hronizer 9-8
TNestedDataSet 18-36
TNotifyEvent 43-7
TObject 3-12, 4-1, 41-3
ToCommon 4-62
ToggleButton 10-8
toggles 6-45, 6-47
TOleContainer 35-15

Active Documents 33-14
TOleControl 35-5, 35-6
TOleServer 35-5
tool buttons 6-46

adding images 6-46
disabling 6-46
engaging as toggles 6-47
getting help with 6-49
grouping/ungrouping 6-47
in multiple rows 6-47
initial state, setting 6-46
wrapping 6-47

Toolbar 6-17
toolbars 3-36, 6-18, 6-42

action lists 6-17
adding 6-45 to 6-47
adding panels as 6-43 to 6-45
context menus 6-49
default drawing tool 6-45
designing 6-42 to 6-50
disabling buttons 6-46
hiding 6-49
inserting buttons 6-43 to

6-45, 6-46
owner-draw 7-11
setting margins 6-45
speed buttons 3-35
transparent 6-47, 6-48

tool-tip help 3-42
Top property 3-19, 3-21, 3-22,

6-4, 6-44
TopRow property 3-43
TOrdinalProperty type 47-7
TPageControl 3-40
TPageDispatcher 29-13
TPageProducer 28-13
TPaintBox 3-45
TPanel 3-39, 6-42
tpHigher constant 9-3
tpHighest constant 9-3
TPicture type 45-4
tpIdle constant 9-3

tpLower constant 9-3
tpLowest constant 9-3
tpNormal constant 9-3
TPopupMenu 6-49
TPrinter 3-54

using 3-54
TPropertyAttributes 47-10
TPropertyEditor class 47-7
TPropertyPage 38-12
tpTimeCritical constant 9-3
TPublishableVariantType 4-27,

4-39
TQuery 20-2, 20-8 to 20-11

decision datasets and 16-5
TQueryTableProducer 28-20
track bars 3-33
transaction attributes 39-9 to

39-11
setting 39-10
transactional data

modules 25-15
transaction isolation level 17-9

local transactions 20-31
specifying 17-9

transaction parameters
isolation level 17-9

Transactional Data Module
wizard 25-14 to 25-15

transactional data
modules 25-5, 25-6 to 25-7

database connections 25-6,
25-7

pooling 25-6
interface 25-18
security 25-9
threading models 25-14
transaction attributes 25-15

Transactional Object
wizard 39-15 to 39-18

transactional objects 33-10,
33-14 to 33-15, 39-1 to 39-23

activities 39-17 to 39-18
administering 33-15, 39-23
callbacks 39-21
characteristics 39-2 to 39-3
creating 39-15 to 39-18
debugging 39-21 to 39-22
dual interfaces 39-3
installing 39-22 to 39-23
managing resources 39-3 to

39-8
marshaling 39-3
object contexts 39-4
pooling database

connections 39-5 to 39-6

releasing resources 39-7
requirements 39-3
security 39-14 to 39-15
sharing properties 39-6 to

39-7
stateless 39-11
transactions 39-5, 39-8 to

39-14
attributes 39-9 to 39-11
automatic 39-12
client-controlled 39-12,

39-12 to 39-13
server-controlled 39-12,

39-13
timeouts 39-14, 39-21

type libraries 39-3
transactions 14-4 to 14-5, 17-5 to

17-9
ADO 21-6 to 21-7, 21-8

retaining aborts 21-6
retaining commits 21-6

applying updates 17-6, 25-18
atomicity 14-4, 39-9
automatic 39-12
BDE 20-30 to 20-32

controlling 20-30 to 20-31
implicit 20-30

cached updates 20-34
client-controlled 39-12, 39-12

to 39-13
committing 17-8
composed of multiple

objects 39-9
consistency 14-4, 39-9
durability 14-4, 39-9
ending 17-7 to 17-9, 39-11 to

39-12
IAppServer 25-18
isolation 14-4, 39-9

levels 17-9
local 20-31 to 20-32
local tables 17-6
MTS and COM+ 39-8 to

39-14
multi-tiered

applications 25-18
nested 17-6

committing 17-8
object contexts 39-9
overlapped 17-7
rolling back 17-8 to 17-9
server-controlled 39-12,

39-13
spanning multiple

databases 39-8

I n d e x I-41

starting 17-6 to 17-7
timeouts 39-14, 39-21
transaction components 17-7
transactional data

modules 25-7, 25-15, 25-18
transactional objects 39-5
using SQL commands 17-6,

20-30
transfer records 52-2
transformation files 26-1 to 26-6

TXMLTransform 26-7
TXMLTransformClient 26-9
TXMLTransformProvider

26-8
user-defined nodes 26-5,

26-7 to 26-8
TransformGetData

property 26-9
TransformRead property 26-8
TransformSetParams

property 26-9
TransformWrite property 26-8
transient subscriptions 35-14
TransIsolation property 17-9

local transactions 20-31
translating character

strings 12-2, 12-8, 12-10
2-byte conversions 12-3

translation 12-9
translation tools 12-1
Transliterate property 19-12,

20-48
transparent backgrounds 12-9
Transparent property 3-42
transparent toolbars 6-47, 6-48
TReader 4-54
tree views 3-38

owner-draw 7-11
TRegIniFile 10-7
TRegistry 3-52
TRegistryIniFile 3-52
TRegSvr 13-5, 33-18
TRemotable 31-5
TRemoteDataModule 25-5
triangles 8-11
triggers 14-5
try reserved word 45-6, 52-5
TScrollBox 3-33, 3-40
TSearchRec 4-51
TServerSocket 32-7
TService_object 5-8
TSession 20-16 to 20-29

adding 20-27, 20-28
TSetElementProperty type 47-7
TSetProperty type 47-7

TSharedConnection 25-31
TSoapDataModule 25-5
TSocketConnection 25-25
TSpinEdit control 3-33
TSQLClientDataSet 22-2
TSQLConnection 14-8, 17-1,

22-2 to 22-5
binding 22-3 to 22-5
monitoring messages 22-17

TSQLDataSet 22-2, 22-6, 22-7
TSQLMonitor 22-17 to 22-18
TSQLQuery 22-2, 22-6
TSQLStoredProc 22-2, 22-7
TSQLTable 22-2, 22-7
TSQLTimeStampField

default formatting 19-15
TStoredProc 20-2, 20-11 to 20-12
TStream 3-55
TStringList 3-47 to 3-52, 5-25
TStringProperty type 47-7
TStrings 3-47 to 3-52
TStringStream 3-55
TTabControl 3-40
TTable 20-2, 20-4 to 20-8

decision datasets and 16-5
TThread 9-2
TThreadList 9-5, 9-7
TTimeField

default formatting 19-15
TToolBar 6-18, 6-43, 6-45
TToolButton 6-43
TTreeView 3-38
TTypedComObject

type library
requirement 33-16

TUpdateSQL 20-39 to 20-47
providers and 20-11

tutorial
WebSnap 29-18

TVarData record 4-27, 4-28
TWebActionItem 28-3
TWebAppDataModule 29-5
TWebApplication 27-6
TWebAppPageModule 29-5
TWebConnection 25-26
TWebContext 29-13
TWebDataModule 29-5, 29-7
TWebDispatcher 29-13, 29-17
TWebPageModule 29-5, 29-7
TWebRequest 27-6
TWebResponse 27-6, 28-3
TWidgetControl 10-6
TWinCGIRequest 27-7
TWinCGIResponse 27-7

TWinControl 3-17, 10-6, 12-9,
40-4, 43-5

common events 3-22
common properties 3-21

two-phase commit 25-18
two-tiered applications 14-3,

14-9, 14-12
TWriter 4-54
TWSDLHTMLPublish 31-7
TXMLDocument 30-3, 30-8
TXMLTransform 26-6 to 26-8

source documents 26-6
TXMLTransformClient 26-9 to

26-10
parameters 26-9

TXMLTransformProvider 24-1,
24-2, 26-8

type declarations
enumerated types 8-12
objects and 3-10
properties 49-3

type definitions
Type Library editor 34-10

type information 33-15, 34-1
dispinterfaces 36-13
Help 34-8
IDispatch interface 36-14
importing 35-2 to 35-6

type libraries 33-10, 33-12, 33-15
to 33-17, 34-1 to 34-27

_TLB unit 33-22, 34-2, 34-20,
35-2, 35-5 to 35-6, 36-14

accessing 33-16 to 33-17,
34-19 to 34-20, 35-2 to 35-6

Active Server Objects 37-3
ActiveX controls 38-3
adding

interfaces 34-20
methods 34-21 to 34-22
properties 34-21 to 34-22

benefits 33-17
browsers 33-17
browsing 33-18
contents 33-15, 34-1, 35-5 to

35-6
creating 33-16, 34-19
deploying 34-27
exporting as IDL 34-26
generated by wizards 34-1
IDL and ODL 33-16
importing 35-2 to 35-6
including as resources 34-27,

38-3
interfaces 33-17

I-42 D e v e l o p e r ’ s G u i d e

modifying interfaces 34-20
to 34-22

opening 34-19 to 34-20
optimizing

performance 34-9
registering 33-18, 34-26
registering objects 33-17
saving 34-25
tools 33-18
transactional objects 39-3
type checking 33-17
uninstalling 33-17
unregistering 33-18
valid types 34-11 to 34-13
when to use 33-16

Type Library editor 33-16, 34-2
to 34-26

aliases 34-10, 34-17
adding 34-23

application servers 25-17
binding attributes 38-11
CoClasses 34-9, 34-16

adding 34-22 to 34-23
COM+ page 39-5, 39-8
dispatch interfaces 34-16
dispinterfaces 34-9
elements 34-8 to 34-11

common
characteristics 34-8

enumerated types 34-10,
34-17

adding 34-23
error messages 34-5, 34-8,

34-25
interfaces 34-8 to 34-9, 34-15

adding 34-20
modifying 34-20 to 34-22

methods
adding 34-21 to 34-22

modules 34-10 to 34-11,
34-18

adding 34-24
Object list pane 34-5
Object Pascal vs. IDL 34-11,

34-13 to 34-19
opening libraries 34-19 to

34-20
parts 34-3 to 34-8
properties

adding 34-21 to 34-22
records 34-17
records and unions 34-10

adding 34-24
saving and registering type

information 34-24 to 34-26

selecting elements 34-5
status bar 34-5
syntax 34-11, 34-13 to 34-19
text page 34-8, 34-21
toolbar 34-3 to 34-5
type definitions 34-10
type information pages 34-6

to 34-8
for aliases 34-6 to 34-7
for CoClasses 34-6
for consts 34-7
for dispinterfaces 34-6
for enumerations 34-6
for fields 34-7
for interfaces 34-6
for methods 34-7
for modules 34-7
for properties 34-7
for type libraries 34-6
for unions 34-7

unions 34-18
updating 34-26

type reserved word 8-12
types

Automation 36-15 to 36-16
Char 12-3
message-record 46-6
properties 42-2, 42-8, 47-8
type libraries 34-11 to 34-13
user-defined 49-3
Web modules 29-5
Web Services 31-5 to 31-6

U
UCS standard 10-22
UDP protocol 32-1
UnaryOp method 4-34
Unassociate Attributes

command 19-14
undocking controls 7-6
UndoLastChange method 23-5
Unicode characters 4-39, 12-4

strings 4-41, 4-43
unidirectional cursors 18-48
unidirectional datasets 22-1 to

22-18
binding 22-5 to 22-7
connecting to servers 22-2
editing data 22-10
executing commands 22-9 to

22-10
fetching data 22-8
fetching metadata 22-12 to

22-17
limitations 22-1

preparing 22-8
types 22-2

UniDirectional property 18-48
unindexed datasets 18-19, 18-21
unions

Type Library editor 34-10,
34-18, 34-24

units
accessing from other

units 3-9
adding components 40-11
existing

adding a
component 40-11

including packages 11-3
units, in conversion 4-59
Unlock method 9-7
UnlockList method 9-7
UnregisterPooled

procedure 25-8
UnRegisterTypeLib

function 33-17
update errors

resolving 23-20, 23-22 to
23-23, 24-8, 24-11

response messages 25-38
update objects 20-39 to 20-47,

23-18
executing 20-45 to 20-46
parameters 20-41 to 20-42,

20-46, 20-46 to 20-47
providers and 20-11
queries 20-46 to 20-47
SQL statements 20-40 to

20-43
using multiple 20-43 to 20-46

Update SQL editor 20-40 to
20-41

Options page 20-41
SQL page 20-41

UPDATE statements 20-39,
20-43, 24-9

UpdateBatch method 10-28,
21-12, 21-14

UpdateCalendar method 51-3
UpdateMode property 24-10

client datasets 23-21
UpdateObject method 38-13
UpdateObject property 20-11,

20-32, 20-39, 20-44
UpdatePropertyPage

method 38-13
UpdateRecordTypes

property 10-28, 20-32, 23-18

I n d e x I-43

UpdatesPending
property 10-28, 20-32

UpdateStatus property 10-28,
20-32, 21-12, 23-18, 24-9

UpdateTarget method 6-28
updating

actions 6-26
up-down controls 3-33
URIs

URLs vs. 27-3
URL property 25-26, 28-9, 31-9
URLs 27-3

host names 32-4
IP addresses 32-4
javascript libraries 25-35
SOAP connections 25-26
URIs vs. 27-3
Web browsers 27-4
Web connections 25-26

Use Unit command 5-18, 6-2
USEPACKAGE macro 11-7
user interfaces 3-23, 14-15 to

14-16
forms 6-1 to 6-2
isolating 14-6
layout 6-4
multi-record 15-14
organizing data 15-7, 15-14
single record 15-7

user list service 29-4
user-defined messages 46-5,

46-7
user-defined types 49-3
uses clause 3-9, 10-6

adding data modules 5-18
avoiding circular

references 6-2
including packages 11-3

UTF-8 character set 10-17

V
$V compiler directive 4-49
validating data entry 19-15
Value property

aggregates 23-13
fields 19-17
parameters 18-45, 18-51

ValueChecked property 15-13
values 42-2

Boolean 42-2, 42-12, 51-3
default data 15-10
default property 42-7, 42-11

to 42-12
redefining 48-2, 48-3

testing 42-6

Values property
radio groups 15-14

ValueUnchecked
property 15-13

var reserved word
event handlers 43-3

VarCmplx unit 4-35
variables

declaring
example 3-10

object 3-10
objects and 3-10

Variant type 4-27
Variants

custom 4-27 to 4-39
VCL 40-1 to 40-2

main thread 9-4
objects 3-1
overview 3-1 to 3-23
TComponent branch 3-15
TControl branch 3-16
TObject branch 3-14
TPersistent branch 3-14
TWinControl branch 3-17

VCL applications
porting 10-2 to 10-16

VCL60 package 11-1, 11-9
PENWIN.DLL 11-11

vcl60.bpl 13-6
VendorLib property 22-3
version control 2-5
version information

ActiveX controls 38-5
type information 34-8

vertical track bars 3-33
VertScrollBar 3-33
video casettes 8-32
video clips 8-29, 8-30
viewing scripts 29-10
ViewStyle property 3-38
virtual

directive 41-8
method tables 41-8
methods 41-8, 44-4

properties as 42-2
property editors 47-8 to

47-9
visibility 3-9
Visible property 3-2

cool bars 6-49
fields 19-12
menus 6-41
toolbars 6-49

VisibleButtons property 15-28,
15-29

VisibleChanged property 10-21
VisibleColCount property 3-43
VisibleRowCount property 3-43
VisiBroker ORB 25-13
VisualCLX 10-6
VisualSpeller Control 13-5
vtables 33-4

COM interface pointer 33-4
component wrappers 35-6
creator classes and 35-5,

35-12
dual interfaces 36-13
type libraries and 33-16
vs dispinterfaces 34-9

W
W3C 30-2
WaitFor method 9-9, 9-10
WantReturns property 3-32
WantTabs property 3-32

data-aware memo
controls 15-8

data-aware rich edit
controls 15-9

.WAV files 8-32
wchar_t widechar 10-22
$WEAKPACKAGEUNIT

compiler directive 11-10
Web adapters

actions 29-8
errors 29-8
fields 29-8
records 29-8

Web application debugger 27-7,
28-2, 29-2

Web application modules
interfaces 29-7

Web applications
ActiveX 33-13, 38-1, 38-15 to

38-16
multi-tiered clients 25-32

adapters 29-8
ASP 33-12, 37-1
database 25-31 to 25-42
deployment 13-9
object 28-3

Web Broker 5-11, 27-1 to 27-2
Web Broker server

applications 28-1 to 28-20
accessing databases 28-17
adding to projects 28-3
architecture 28-3
creating 28-1 to 28-3
creating responses 28-7

I-44 D e v e l o p e r ’ s G u i d e

event handling 28-5, 28-7,
28-8

managing database
connections 28-17

overview 28-1 to 28-4
posting data to 28-10
querying tables 28-20
response templates 28-13
sending files 28-12
templates 28-2
Web dispatcher 28-4

Web browsers 27-4
URLs 27-4

Web connections 25-9 to 25-10,
25-26

Web data modules 29-3, 29-5
interfaces 29-6
structure 29-5

Web deployment 38-15 to 38-16
multi-tiered

applications 25-33
Web Deployment Options

dialog box 38-16
Web dispatcher 28-2, 28-4 to

28-5
auto-dispatching

objects 25-37, 28-5
DLL-based applications

and 28-3
handling requests 28-3, 28-8
selecting action items 28-6,

28-7
Web dispatchers

action items 29-17
Web items 25-39

properties 25-40 to 25-41
Web modules 28-2, 28-4, 29-5 to

29-7
adding database

sessions 28-17
DLLs and, caution 28-3
types 29-5

Web page editor 25-39 to 25-40
Web page modules 29-3, 29-6

interfaces 29-7
Web pages 27-4

InternetExpress page
producer 25-38 to 25-42

Web scripting 29-9
Web server applications 5-11,

27-1 to 27-9
ASP 37-1
creating 29-2
debugging 27-7 to 27-9
multi-tiered 25-33 to 25-42

overview 27-6 to 27-9
resource locations 27-3
standards 27-2
types 27-6

Web servers 25-33, 27-1 to 27-9,
37-6

client requests and 27-5
debugging 28-2
types

types of Web servers 29-2
Web Service Definition

Language See WSDL
Web Services 31-1 to 31-10

clients 31-8 to 31-10
complex types 31-5 to 31-6
exceptions 31-7
implementation classes 31-6

to 31-7
registering 31-6

namespaces 31-4
servers 31-2 to 31-8

writing 31-2 to 31-3
wizard 31-3

Web Services importer 31-9
Web site (Delphi support) 1-3
WebContext 29-13
WebDispatch property 25-37
WebPageItems property 25-39
WebSnap 27-1 to 27-2
WebSnap applications

overview 29-1 to 29-26
WebSnap tutorial 29-18
wide characters 12-4

runtime library routines 4-43
WideChar 4-39, 4-41
widechar 10-22
WideString 4-41 to 4-42
widestrings 10-22
WidgetDestroyed

property 10-21
widgets 3-17, 10-6, 10-22
Width property 3-19, 3-42, 6-4

data grid columns 15-16
data grids 15-20
pens 8-5, 8-6
TScreen 13-12

Win 3.1 page (Component
palette) 3-30

WIN32 10-18
Win32 page (Component

palette) 3-29
WIN64 10-18
Win-CGI programs 27-5, 27-7

creating 28-2, 29-2
INI files 27-7

window
class 40-4
controls 40-3
handles 40-3, 40-4, 40-5
message handling 50-4
procedures 46-2, 46-3

Windows
API functions 40-3, 45-1
common dialog boxes 52-1

creating 52-2
executing 52-4

controls, subclassing 40-4
device contexts 40-7, 45-1
events 43-4
Graphics Device Interface

(GDI) 8-1
messages 46-2
pen width support 8-6

windows
resizing 3-34

Windows messaging 10-17
Windows NT

debugging Web server
applications 27-9

Windows socket objects 32-5
client sockets 32-6
clients 32-6
server sockets 32-7

wininet.dll 25-26, 25-27
wizards 5-19

Active Server Object 33-20,
37-2 to 37-3

ActiveForm 33-20, 38-5 to
38-6

ActiveX controls 33-20, 38-4
to 38-5

ActiveX library 33-21
Automation object 33-20,

36-4 to 36-9
COM 33-18 to 33-22, 36-1
COM object 33-19, 34-19,

36-2 to 36-4, 36-5 to 36-9
COM+ Event object 33-20,

39-19
Component 40-9
Console Wizard 5-3
CORBA Data Module 25-15

to 25-16
property page 33-20, 38-12
Remote Data Module 25-13

to 25-14
Resource DLL 12-10
SOAP Data Module 25-15
Transactional Data

Module 25-14 to 25-15

I n d e x I-45

transactional object 33-20,
39-15 to 39-18

Type Library 33-21, 34-19
Web Services 31-3
WebSnap applications 29-1

to 29-26
XML Data Binding 30-5 to

30-8
WM_APP constant 46-6
WM_KEYDOWN message 51-8
WM_LBUTTONBUTTON

message 51-8
WM_MBUTTONDOWN

message 51-8
WM_PAINT message 46-4
WM_PAINT messages 8-2
WM_RBUTTONDOWN

message 51-8
WM_SIZE message 50-4
WndProc method 46-3, 46-4
word wrapping 7-7
WordWrap property 3-32, 7-7,

48-1
data-aware memo

controls 15-9
wParam parameter 46-2
Wrap property 6-47
Wrapable property 6-47
wrappers 40-4, 52-2

 See also component wrappers
initializing 52-3

Write By Reference
COM interface

properties 34-9
Write method

TFileStream 4-55

write method 42-6
write reserved word 42-8, 49-4
WriteBuffer method

TFileStream 4-56
write-only properties 42-6
WSDL 31-2

files 31-8
importing 31-8 to 31-9
publishing 31-7 to 31-8

X
$X compiler directive 4-49
XDR file 30-2
Xerox Network System

(XNS) 32-1
.xfm files 3-7, 10-2
XML 26-1, 30-1

database applications 26-1 to
26-10

document type
declaration 30-1

mappings 26-2 to 26-3
defining 26-4

parsers 30-2
processing instructions 30-1
SOAP 31-1

XML brokers 25-34, 25-36 to
25-38

HTTP messages 25-37
XML Data Binding wizard 30-5

to 30-8
XML documents 26-1, 30-1 to

30-8
components 30-3, 30-8

converting to data
packets 26-1 to 26-8

generating interfaces
for 30-6

nodes 30-2, 30-4 to 30-5
attributes 26-5, 30-5
children 30-5
mapping to fields 26-2
properties 30-6
transformation files 26-1
values 30-4

publishing database
information 26-9

root node 30-3, 30-6, 30-8
XML files 21-14
XML Schema Data file

See XSD file
XML schemas 30-2
XML Tree 29-1
XMLBroker property 25-40
XMLDataFile property 24-2,

26-8
XMLDataSetField

property 25-40
XMLMapper 26-2, 26-4 to 26-6
XSD file 30-2
XSL Tree 29-1

Y
Year property 50-5

Z
-Z compiler directive 11-12

I-46 D e v e l o p e r ’ s G u i d e

Object Pascal
Language Guide

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

Object Pascal

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1983, 2001 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Printed in the U.S.A.

ALP0000WW21000 1E0R0501
0102030405-9 8 7 6 5 4 3 2 1
D3

iii

Chapter 1
Introduction 1-1
What’s in this manual? 1-1

Using Object Pascal 1-1
Typographical conventions 1-2

Other sources of information 1-2
Software registration and technical support . . 1-3

Part I
Basic language description

Chapter 2
Overview 2-1
Program organization 2-1

Pascal source files 2-1
Other files used to build applications 2-2
Compiler-generated files 2-3

Example programs. 2-3
A simple console application 2-3
A more complicated example 2-4
A native application 2-5

Chapter 3
Programs and units 3-1
Program structure and syntax 3-1

The program heading 3-2
The program uses clause 3-2
The block . 3-2

Unit structure and syntax 3-3
The unit heading 3-3
The interface section 3-4
The implementation section. 3-4
The initialization section. 3-4
The finalization section 3-5

Unit references and the uses clause 3-5
The syntax of a uses clause 3-6
Multiple and indirect unit references 3-6
Circular unit references 3-7

Chapter 4
Syntactic elements 4-1
Fundamental syntactic elements 4-1

Special symbols 4-2
Identifiers . 4-2

Qualified identifiers 4-2

Reserved words 4-3
Directives. . 4-3
Numerals . 4-4
Labels . 4-4
Character strings 4-4

Comments and compiler directives 4-5
Expressions . 4-5

Operators. . 4-6
Arithmetic operators 4-6
Boolean operators 4-7
Logical (bitwise) operators 4-8
String operators 4-9
Pointer operators. 4-9
Set operators 4-10
Relational operators 4-10
Class operators 4-11
The @ operator 4-12
Operator precedence rules 4-12

Function calls 4-13
Set constructors 4-13
Indexes . 4-14
Typecasts . 4-14

Value typecasts 4-14
Variable typecasts 4-15

Declarations and statements 4-16
Declarations 4-16
Statements 4-17
Simple statements 4-17

Assignment statements 4-17
Procedure and function calls 4-18
Goto statements 4-18

Structured statements. 4-19
Compound statements 4-20
With statements 4-20
If statements 4-22
Case statements 4-23
Control loops 4-25
Repeat statements 4-25
While statements. 4-25
For statements 4-26

Blocks and scope 4-27
Blocks . 4-27
Scope . 4-28

Naming conflicts 4-29

Contents

iv

Chapter 5
Data types, variables, and constants 5-1
About types. 5-1
Simple types . 5-2

Ordinal types 5-2
Integer types. 5-3
Character types 5-5
Boolean types 5-5
Enumerated types 5-6
Subrange types 5-8

Real types . 5-9
String types . 5-10

Short strings. 5-12
Long strings 5-12
WideString 5-13

About extended character sets 5-13
Working with null-terminated strings 5-13

Using pointers, arrays, and string
constants 5-14

Mixing Pascal strings and
null-terminated strings 5-15

Structured types 5-16
Sets . 5-17
Arrays . 5-18

Static arrays 5-18
Dynamic arrays 5-19
Array types and assignments 5-21

Records . 5-21
Variant parts in records 5-22

File types .5-24
Pointers and pointer types 5-25

Overview of pointers 5-25
Pointer types 5-27

Character pointers 5-27
Other standard pointer types 5-27

Procedural types 5-28
Procedural types in statements

and expressions 5-29
Variant types . 5-30

Variant type conversions 5-31
Variants in expressions 5-33
Variant arrays 5-33
OleVariant . 5-34

Type compatibility and identity 5-34
Type identity 5-34
Type compatibility 5-35
Assignment-compatibility5-35

Declaring types. 5-36
Variables . 5-37

Declaring variables 5-37
Absolute addresses 5-38
Dynamic variables 5-38
Thread-local variables 5-38

Declared constants 5-39
True constants 5-39

Constant expressions 5-41
Resource strings 5-41

Typed constants 5-42
Array constants 5-43
Record constants 5-43
Procedural constants 5-44
Pointer constants. 5-44

Chapter 6
Procedures and functions 6-1
Declaring procedures and functions 6-1

Procedure declarations 6-2
Function declarations 6-3
Calling conventions 6-4
Forward and interface declarations 6-5
External declarations 6-6

Linking to object files 6-6
Importing functions from libraries. 6-7

Overloading procedures and functions 6-8
Local declarations 6-10

Nested routines 6-10
Parameters . 6-11

Parameter semantics 6-11
Value and variable parameters 6-12
Constant parameters 6-13
Out parameters. 6-13
Untyped parameters. 6-14

String parameters 6-15
Array parameters 6-15

Open array parameters 6-15
Variant open array parameters 6-16

Default parameters 6-17
Default parameters and

overloaded routines 6-18
Default parameters in forward and

interface declarations 6-19
Calling procedures and functions 6-19

Open array constructors 6-19

Chapter 7
Classes and objects 7-1
Class types . 7-2

Inheritance and scope. 7-3

v

TObject and TClass 7-3
Compatibility of class types 7-3
Object types 7-4

Visibility of class members 7-4
Private, protected, and public members . 7-5
Published members. 7-5
Automated members 7-6

Forward declarations and mutually
dependent classes. 7-6

Fields . 7-7
Methods. 7-8

Method declarations and implementations . 7-8
Inherited 7-9
Self . 7-9

Method binding 7-10
Static methods. 7-10
Virtual and dynamic methods. 7-10
Abstract methods 7-12

Overloading methods 7-12
Constructors 7-13
Destructors 7-14
Message methods 7-15

Implementing message methods 7-16
Message dispatching 7-16

Properties . 7-17
Property access 7-17
Array properties 7-19
Index specifiers7-20
Storage specifiers 7-21
Property overrides and redeclarations 7-22

Class references 7-23
Class-reference types. 7-23

Constructors and class references 7-24
Class operators 7-24

The is operator 7-24
The as operator 7-25

Class methods 7-25
Exceptions . 7-26

When to use exceptions 7-26
Declaring exception types7-27
Raising and handling exceptions 7-27

Try...except statements 7-28
Re-raising exceptions 7-30
Nested exceptions 7-31
Try...finally statements 7-31

Standard exception classes and routines. . . 7-32

Chapter 8
Standard routines and I/O 8-1
File input and output 8-1

Text files . 8-3
Untyped files. 8-4

Text-file device drivers 8-4
Device functions 8-5

The Open function. 8-5
The InOut function 8-5
The Flush function. 8-6
The Close function. 8-6

Handling null-terminated strings 8-6
Wide-character strings 8-7

Other standard routines 8-7

Part II
Special topics

Chapter 9
Libraries and packages 9-1
Calling dynamically loadable libraries 9-1

Static loading 9-1
Dynamic loading. 9-2

Writing dynamically loadable libraries. 9-3
The exports clause. 9-5
Library initialization code 9-5
Global variables in a library 9-6
Libraries and system variables. 9-6
Exceptions and runtime errors in libraries . . 9-7
Shared-memory manager (Windows only) . . 9-8

Packages . 9-8
Package declarations and source files 9-9

Naming packages 9-10
The requires clause 9-10
The contains clause 9-10

Compiling packages 9-11
Generated files 9-11
Package-specific compiler directives . . 9-11
Package-specific command-line

compiler switches 9-12

Chapter 10
Object interfaces 10-1
Interface types 10-1

IInterface and inheritance 10-2

vi

Interface identification 10-3
Calling conventions for interfaces 10-3
Interface properties. 10-4
Forward declarations 10-4

Implementing interfaces 10-4
Method resolution clauses. 10-5
Changing inherited implementations 10-6
Implementing interfaces by delegation . . .10-6

Delegating to an interface-type property.10-7
Delegating to a class-type property 10-7

Interface references 10-8
Interface assignment-compatibility. 10-9
Interface typecasts 10-10

Interface querying 10-10
Automation objects (Windows only) 10-10

Dispatch interface types (Windows only) . 10-10
Dispatch interface methods

(Windows only) 10-11
Dispatch interface properties 10-11

Accessing Automation objects
(Windows only) 10-11

Automation object method-call syntax . 10-12
Dual interfaces (Windows only) 10-13

Chapter 11
Memory management 11-1
The memory manager (Windows only) 11-1

Variables. . 11-2
Internal data formats 11-2

Integer types 11-3
Character types 11-3
Boolean types 11-3
Enumerated types 11-3
Real types . 11-4

The Real48 type 11-4
The Single type 11-4
The Double type 11-5
The Extended type 11-5
The Comp type 11-5
The Currency type 11-5

Pointer types 11-5
Short string types. 11-5
Long string types 11-6
Wide string types 11-6
Set types . 11-7
Static array types 11-7

Dynamic array types 11-7
Record types 11-8
File types . 11-8
Procedural types. 11-10
Class types11-10
Class reference types 11-11
Variant types11-11

Chapter 12
Program control 12-1
Parameters and function results. 12-1

Parameter passing. 12-1
Register saving conventions 12-3

Function results 12-3
Method calls 12-3

Constructors and destructors. 12-4
Exit procedures 12-4

Chapter 13
Inline assembler code 13-1
The asm statement 13-1

Register use 13-2
Assembler statement syntax 13-2

Labels . 13-2
Instruction opcodes 13-2

RET instruction sizing. 13-3
Automatic jump sizing 13-3

Assembler directives 13-3
Operands . 13-7

Expressions . 13-8
Differences between Object Pascal and

assembler expressions. 13-8
Expression elements 13-9

Constants 13-9
Registers 13-10
Symbols13-11

Expression classes 13-12
Expression types. 13-14
Expression operators 13-15

Assembler procedures and functions 13-17

Appendix A
Object Pascal grammar A-1

Index I-1

vii

4.1 Reserved words 4-3
4.2 Directives 4-3
4.3 Binary arithmetic operators 4-6
4.4 Unary arithmetic operators 4-7
4.5 Boolean operators 4-7
4.6 Logical (bitwise) operators 4-8
4.7 String operators 4-9
4.8 Character-pointer operators 4-9
4.9 Set operators 4-10
4.10 Relational operators 4-11
4.11 Precedence of operators. 4-12
5.1 Generic integer types for 32-bit

implementations of Object Pascal 5-3
5.2 Fundamental integer types 5-4
5.3 Fundamental real types 5-9
5.4 Generic real types 5-10
5.5 String types. 5-10
5.6 Selected pointer types declared in System and

SysUtils . 5-27
5.7 Variant type conversion rules 5-32
5.8 Types for integer constants 5-40
6.1 Calling conventions 6-5
8.1 Input and output procedures/functions . 8-1

8.2 Null-terminated string functions 8-6
8.3 Other standard routines 8-7
9.1 Compiled package files 9-11
9.2 Package-specific compiler directives . . . 9-11
9.3 Package-specific command-line compiler

switches 9-12
11.1 Long string dynamic memory layout . . 11-6
11.2 Wide string dynamic memory layout

(Windows only) 11-6
11.3 Dynamic array memory layout 11-7
11.4 Type alignment masks 11-8
11.5 Virtual method table layout11-10
13.1 Built-in assembler reserved words 13-7
13.2 String examples and their values 13-10
13.3 CPU registers 13-10
13.4 Symbols recognized by the built-in assembler

assembler 13-11
13.5 Predefined type symbols. 13-14
13.6 Precedence of built-in assembler expression

operators. 13-15
13.7 Definitions of built-in assembler expression

operators. 13-15

Tables

viii

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

This manual describes the Object Pascal programming language as it is used in
Borland development tools.

What’s in this manual?
The first seven chapters describe most of the language elements used in ordinary
programming. Chapter 8 summarizes standard routines for file I/O and string
manipulation.

The next chapters describe language extensions and restrictions for dynamic-link
libraries and packages (Chapter 9), and for object interfaces (Chapter 10). The final
three chapters address advanced topics: memory management (Chapter 11),
program control (Chapter 12), and assembly-language routines within Object Pascal
programs (Chapter 13).

Using Object Pascal

The Object Pascal Language Guide is written to describe the Object Pascal language for
use on either the Linux or Windows operating systems. Differences in the language
relating to platform dependencies are noted where necessary.

Most Delphi/Kylix application developers write and compile their Object Pascal
code in the integrated development environment (IDE). Working in the IDE allows
the product to handle many details of setting up projects and source files, such as
maintenance of dependency information among units. Borland products may enforce
certain constraints on program organization that are not, strictly speaking, part of the
Object Pascal language specification. For example, certain file- and program-naming
conventions can be avoided if you write your programs outside of the IDE and
compile them from the command prompt.

1-2 O b j e c t P a s c a l L a n g u a g e G u i d e

O t h e r s o u r c e s o f i n f o r m a t i o n

This manual generally assumes that you are working in the IDE and that you are
building applications that use the Visual Component Library (VCL) and/or the
Borland Component Library for Cross Platform (CLX). Occasionally, however,
Borland-specific rules are distinguished from rules that apply to all Object Pascal
programming.

Typographical conventions

Identifiers—that is, names of constants, variables, types, fields, properties,
procedures, functions, programs, units, libraries, and packages—appear in italics in
the text. Object Pascal operators, reserved words, and directives are in boldface type.
Example code and text that you would type literally (into a file or at the command
prompt) are in monospaced type.

In displayed program listings, reserved words and directives appear in boldface, just
as they do in the text:

function Calculate(X, Y: Integer): Integer;
begin

ƒ
end;

This is how the Code editor displays reserved words and directives, if you have the
Syntax Highlight option turned on.

Some program listings, like the example above, contain ellipsis marks (... or ƒ). The
ellipses represent additional code that would be included in an actual file. They are
not meant to be copied literally.

In syntax descriptions, italics indicate placeholders for which, in real code, you would
substitute syntactically valid constructions. For example, the heading of the function
declaration above could be represented as

function functionName(argumentList): returnType;

Syntax descriptions can also contain ellipsis marks (...) and subscripts:

function functionName(arg1, ..., argn): ReturnType;

Other sources of information
The online Help system for your development tool provides information about the
IDE and user interface as well as the most up-to-date reference material for the VCL
and/or CLX. Many programming topics, such as database development, are covered
in depth in the Developer’s Guide. For an overview of the documentation set, see the
Quick Start manual that came with your software package.

I n t r o d u c t i o n 1-3

S o f t w a r e r e g i s t r a t i o n a n d t e c h n i c a l s u p p o r t

Software registration and technical support
Borland Software Corporation offers a range of support plans to fit the needs of
individual developers, consultants, and corporations. To receive help with this
product, return the registration card and select the plan that best suits your needs.
For additional information about technical support and other Borland services,
contact your local sales representative or visit us online at
http://www.borland.com/.

http://www.borland.com/.

1-4 O b j e c t P a s c a l L a n g u a g e G u i d e

B a s i c l a n g u a g e d e s c r i p t i o n

P a r t

I
Part IBasic language description

The chapters in Part I present the essential language elements required for most
programming tasks. These chapters include:

• Chapter 2, “Overview”

• Chapter 3, “Programs and units”

• Chapter 4, “Syntactic elements”

• Chapter 5, “Data types, variables, and constants”

• Chapter 6, “Procedures and functions”

• Chapter 7, “Classes and objects”

• Chapter 8, “Standard routines and I/O”

O v e r v i e w 2-1

C h a p t e r

2
Chapter2Overview

Object Pascal is a high-level, compiled, strongly typed language that supports
structured and object-oriented design. Its benefits include easy-to-read code, quick
compilation, and the use of multiple unit files for modular programming.

Object Pascal has special features that support Borland’s component framework and
RAD environment. For the most part, descriptions and examples in this manual
assume that you are using Object Pascal to develop applications using Borland
development tools such as Delphi or Kylix.

Program organization
Programs are usually divided into source-code modules called units. Each program
begins with a heading, which specifies a name for the program. The heading is
followed by an optional uses clause, then a block of declarations and statements. The
uses clause lists units that are linked into the program; these units, which can be
shared by different programs, often have uses clauses of their own.

The uses clause provides the compiler with information about dependencies among
modules. Because this information is stored in the modules themselves, Object Pascal
programs do not require makefiles, header files, or preprocessor “include” directives.
(The Project Manager generates a makefile each time a project is loaded in the IDE,
but saves these files only for project groups that include more than one project.)

For further discussion of program structure and dependencies, see Chapter 3,
“Programs and units”.

Pascal source files

The compiler expects to find Pascal source code in files of three kinds:

• unit source files (which end with the .pas extension)

2-2 O b j e c t P a s c a l L a n g u a g e G u i d e

P r o g r a m o r g a n i z a t i o n

• project files (which end with the .dpr extension)
• package source files (which end with the .dpk extension)

Unit source files contain most of the code in an application. Each application has a
single project file and several unit files; the project file—which corresponds to the
“main” program file in traditional Pascal—organizes the unit files into an
application. Borland development tools automatically maintain a project file for each
application.

If you are compiling a program from the command line, you can put all your source
code into unit (.pas) files. But if you use the IDE to build your application, you must
have a project (.dpr) file.

Package source files are similar to project files, but they are used to construct special
dynamically linkable libraries called packages. For more information about packages,
see Chapter 9, “Libraries and packages”.

Other files used to build applications

In addition to source-code modules, Borland products use several non-Pascal files to
build applications. These files are maintained automatically and include

• form files, which end with the .dfm (Delphi) or .xfm (Kylix) extension,
• resource files, which end with the .res extension, and
• project options files, which end with the .dof (Delphi) or .kof (Kylix) extension.

A form file is either a text file or a compiled resource file that can contain bitmaps,
strings, and so forth. Each form file represents a single form, which usually
corresponds to a window or dialog box in an application. The IDE allows you to view
and edit form files as text, and to save form files as either text or binary. Although the
default behavior is to save form files as text, they are usually not edited manually; it
is more common to use Borland’s visual design tools for this purpose. Each project
has at least one form, and each form has an associated unit (.pas) file that, by default,
has the same name as the form file.

In addition to form files, each project uses a resource (.res) file to hold the bitmap for
the application’s icon. By default, this file has the same name as the project (.dpr) file.
To change an application’s icon, use the Project Options dialog.

A project options (.dof or .kof) file contains compiler and linker settings, search
directories, version information, and so forth. Each project has an associated project
options file with the same name as the project (.dpr) file. Usually, the options in this
file are set from Project Options dialog.

Various tools in the IDE store data in files of other types. Desktop settings (.dsk or
.desk) files contain information about the arrangement of windows and other
configuration options; desktop settings can be project-specific or environment-wide.
These files have no direct effect on compilation.

O v e r v i e w 2-3

E x a m p l e p r o g r a m s

Compiler-generated files

The first time you build an application or a standard dynamic-link library, the
compiler produces a compiled unit .dcu (Windows) .dcu/.dpu (Linux) file for each
new unit used in your project; all the .dcu (Windows) .dcu/.dpu (Linux) files in your
project are then linked to create a single executable or shared library file. The first
time you build a package, the compiler produces a .dcu (Windows) .dpu (Linux) file
for each new unit contained in the package, and then creates both a .dcp and a
package file. (For more information about libraries and packages, see Chapter 9.) If
you use the –GD switch, the linker generates a map file and a .drc file; the .drc file,
which contains string resources, can be compiled into a resource file.

When you rebuild a project, individual units are not recompiled unless their source
(.pas) files have changed since the last compilation, or their .dcu (Windows) .dcu/
.dpu (Linux) files cannot be found, or you explicitly tell the compiler to reprocess
them. In fact, it is not necessary for a unit’s source file to be present at all, as long as
the compiler can find the compiled unit file.

Example programs
The examples that follow illustrate basic features of Object Pascal programming. The
examples show simple Object Pascal applications that cannot be compiled from the
IDE; but you can compile them from the command line.

A simple console application

The program below is a simple console application that you can compile and run
from the command prompt.

program Greeting;

{$APPTYPE CONSOLE}

var MyMessage: string;

begin
MyMessage := 'Hello world!';
Writeln(MyMessage);

end.

The first line declares a program called Greeting. The {$APPTYPE CONSOLE} directive tells
the compiler that this is a console application, to be run from the command line. The
next line declares a variable called MyMessage, which holds a string. (Object Pascal
has genuine string data types.) The program then assigns the string “Hello world!” to
the variable MyMessage, and sends the contents of MyMessage to the standard output
using the Writeln procedure. (Writeln is defined implicitly in the System unit, which
the compiler automatically includes in every application.)

2-4 O b j e c t P a s c a l L a n g u a g e G u i d e

E x a m p l e p r o g r a m s

You can type this program into a file called Greeting.pas or Greeting.dpr and
compile it by entering

On Delphi: DCC32 Greeting

On Kylix: dcc Greeting

on the command line. The resulting executable prints the message “Hello world!”

Aside from its simplicity, this example differs in several important ways from
programs that you are likely to write with Borland development tools. First, it is a
console application. Borland development tools are typically used to write
applications with graphical interfaces; hence, you would not ordinarily call Writeln.
Moreover, the entire example program (save for Writeln) is in a single file. In a typical
application, the program heading—the first line of the example—would be placed in
a separate project file that would not contain any of the actual application logic, other
than a few calls to methods defined in unit files.

A more complicated example

The next example shows a program that is divided into two files: a project file and a
unit file. The project file, which you can save as Greeting.dpr, looks like this:

program Greeting;

{$APPTYPE CONSOLE}

uses Unit1;

begin
PrintMessage('Hello World!');

end.

The first line declares a program called Greeting, which, once again, is a console
application. The uses Unit1; clause tells the compiler that Greeting includes a unit
called Unit1. Finally, the program calls the PrintMessage procedure, passing to it the
string “Hello World!” Where does the PrintMessage procedure come from? It’s
defined in Unit1. Here’s the source code for Unit1, which you can save in a file called
Unit1.pas:

unit Unit1;

interface

procedure PrintMessage(msg: string);

implementation

procedure PrintMessage(msg: string);
begin

Writeln(msg);
end;

end.

O v e r v i e w 2-5

E x a m p l e p r o g r a m s

Unit1 defines a procedure called PrintMessage that takes a single string as an
argument and sends the string to the standard output. (In Pascal, routines that do not
return a value are called procedures. Routines that return a value are called functions.)
Notice that PrintMessage is declared twice in Unit1. The first declaration, under the
reserved word interface, makes PrintMessage available to other modules (such as
Greeting) that use Unit1. The second declaration, under the reserved word
implementation, actually defines PrintMessage.

You can now compile Greeting from the command line by entering

On Delphi: DCC32 Greeting

On Kylix: dcc Greeting

There’s no need to include Unit1 as a command-line argument. When the compiler
processes Greeting.dpr, it automatically looks for unit files that the Greeting program
depends on. The resulting executable does the same thing as our first example: it
prints the message “Hello world!”

A native application

Our next example is an application built using VCL or CLX components in the IDE.
This program uses automatically generated form and resource files, so you won’t be
able to compile it from the source code alone. But it illustrates important features of
Object Pascal. In addition to multiple units, the program uses classes and objects,
which are discussed in Chapter 7, “Classes and objects”.

The program includes a project file and two new unit files. First, the project file:

program Greeting; { comments are enclosed in braces }

uses
Forms, {change the unit name to QForms on Linux}
Unit1 in ‘Unit1.pas’ { the unit for Form1 },
Unit2 in ‘Unit2.pas’ { the unit for Form2 };

{$R *.res} { this directive links the project's resource file }

begin
{ calls to Application }
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.CreateForm(TForm2, Form2);
Application.Run;

end.

Once again, our program is called Greeting. It uses three units: Forms, which is part of
VCL and CLX; Unit1, which is associated with the application’s main form (Form1);
and Unit2, which is associated with another form (Form2).

The program makes a series of calls to an object named Application, which is an
instance of the TApplication class defined in the Forms unit. (Every project has an
automatically generated Application object.) Two of these calls invoke a TApplication

2-6 O b j e c t P a s c a l L a n g u a g e G u i d e

E x a m p l e p r o g r a m s

method named CreateForm. The first call to CreateForm creates Form1, an instance of
the TForm1 class defined in Unit1. The second call to CreateForm creates Form2, an
instance of the TForm2 class defined in Unit2.

Unit1 looks like this:

unit Unit1;

interface

uses { these units are part of the Visual Component Library (VCL) }
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls;

{
On Linux, the uses clause looks like this:
uses { these units are part of CLX }

SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;
}

type
TForm1 = class(TForm)

Button1: TButton;
procedure Button1Click(Sender: TObject);

end;

var
Form1: TForm1;

implementation

uses Unit2; { this is where Form2 is defined }

{$R *.dfm} { this directive links Unit1's form file }

procedure TForm1.Button1Click(Sender: TObject);
begin

Form2.ShowModal;
end;

end.

Unit1 creates a class named TForm1 (derived from TForm) and an instance of this
class, Form1. TForm1 includes a button—Button1, an instance of TButton—and a
procedure named TForm1.Button1Click that is called at runtime whenever the user
presses Button1. TForm1.Button1Click hides Form1 and it displays Form2 (the call to
Form2.ShowModal). Form2 is defined in Unit2:

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

O v e r v i e w 2-7

E x a m p l e p r o g r a m s

{
On Linux, the uses clause looks like this:
uses { these units are part of CLX }

SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;
}
type

TForm2 = class(TForm)
Label1: TLabel;
CancelButton: TButton;
procedure CancelButtonClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

end;

var
Form2: TForm2;

implementation

uses Unit1;

{$R *.dfm}

procedure TForm2.CancelButtonClick(Sender: TObject);
begin

Form2.Close;
end;

end.

Unit2 creates a class named TForm2 and an instance of this class, Form2. TForm2
includes a button (CancelButton, an instance of TButton) and a label (Label1, an
instance of TLabel). You can’t see this from the source code, but Label1 displays a
caption that reads “Hello world!” The caption is defined in Form2’s form file,
Unit2.dfm.

Unit2 defines one procedure. TForm2.CancelButtonClick is called at runtime whenever
the user presses CancelButton; it closes Form2. This procedure (along with Unit1’s
TForm1.Button1Click) is known as an event handler because it responds to events that
occur while the program is running. Event handlers are assigned to specific events by
the form (.dfm on Windows .xfm on Linux) files for Form1 and Form2.

When the Greeting program starts, Form1 is displayed and Form2 is invisible. (By
default, only the first form created in the project file is visible at runtime. This is
called the project’s main form.) When the user presses the button on Form1, Form1
disappears and is replaced by Form2, which displays the “Hello world!” greeting.
When the user closes Form2 (by pressing CancelButton or the Close button on the title
bar), Form1 reappears.

2-8 O b j e c t P a s c a l L a n g u a g e G u i d e

P r o g r a m s a n d u n i t s 3-1

C h a p t e r

3
Chapter3Programs and units

A program is constructed from source-code modules called units. Each unit is stored
in its own file and compiled separately; compiled units are linked to create an
application. Units allow you to

• divide large programs into modules that can be edited separately.

• create libraries that you can share among programs.

• distribute libraries to other developers without making the source code available.

In traditional Pascal programming, all source code, including the main program, is
stored in .pas files. Borland tools use a project (.dpr) file to store the “main” program,
while most other source code resides in unit (.pas) files. Each application—or
project—consists of a single project file and one or more unit files. (Strictly speaking,
you needn’t explicitly use any units in a project, but all programs automatically use
the System unit.) To build a project, the compiler needs either a source file or a
compiled unit file for each unit.

Program structure and syntax
A program contains

• a program heading,

• a uses clause (optional), and

• a block of declarations and statements.

The program heading specifies a name for the program. The uses clause lists units
used by the program. The block contains declarations and statements that are
executed when the program runs. The IDE expects to find these three elements in a
single project (.dpr) file.

3-2 O b j e c t P a s c a l L a n g u a g e G u i d e

P r o g r a m s t r u c t u r e a n d s y n t a x

The example below shows the project file for a program called Editor.

1 program Editor;
2
3 uses
4 Forms, {change to QForms in Linux}
5 REAbout in 'REAbout.pas' {AboutBox},
6 REMain in 'REMain.pas' {MainForm};
7
8 {$R *.res}
9

10 begin
11 Application.Title := 'Text Editor';
12 Application.CreateForm(TMainForm, MainForm);
13 Application.Run;
14 end.

Line 1 contains the program heading. The uses clause is on lines 3 through 6. Line 8 is
a compiler directive that links the project’s resource file into the program. Lines 10
through 14 contain the block of statements that are executed when the program runs.
Finally, the project file, like all source files, ends with a period.

This is, in fact, a fairly typical project file. Project files are usually short, since most of
a program’s logic resides in its unit files. Project files are generated and maintained
automatically, and it is seldom necessary to edit them manually.

The program heading

The program heading specifies the program’s name. It consists of the reserved word
program, followed by a valid identifier, followed by a semicolon. The identifier must
match the project file name. In the example above, since the program is called Editor,
the project file should be called EDITOR.dpr.

In standard Pascal, a program heading can include parameters after the program
name:

program Calc(input, output);

Borland’s Object Pascal compiler ignores these parameters.

The program uses clause

The uses clause lists units that are incorporated into the program. These units may in
turn have uses clauses of their own. For more information about the uses clause, see
“Unit references and the uses clause” on page 3-5.

The block

The block contains a simple or structured statement that is executed when the
program runs. In most programs, the block consists of a compound statement—
bracketed between the reserved words begin and end—whose component

P r o g r a m s a n d u n i t s 3-3

U n i t s t r u c t u r e a n d s y n t a x

statements are simply method calls to the project’s Application object. (Every project
has an Application variable that holds an instance of TApplication, TWebApplication, or
TServiceApplication.) The block can also contain declarations of constants, types,
variables, procedures, and functions; these declarations must precede the statement
part of the block.

Unit structure and syntax
A unit consists of types (including classes), constants, variables, and routines
(functions and procedures). Each unit is defined in its own unit (.pas) file.

A unit file begins with a unit heading, which is followed by the interface,
implementation, initialization, and finalization sections. The initialization and
finalization sections are optional. A skeleton unit file looks like this:

unit Unit1;

interface

uses { List of units goes here }

{ Interface section goes here }

implementation

uses { List of units goes here }

{ Implementation section goes here }

initialization
{ Initialization section goes here }

finalization
{ Finalization section goes here }

end.

The unit must conclude with the word end followed by a period.

The unit heading

The unit heading specifies the unit’s name. It consists of the reserved word unit,
followed by a valid identifier, followed by a semicolon. For applications developed
using Borland tools, the identifier must match the unit file name. Thus, the unit
heading

unit MainForm;

would occur in a source file called MAINFORM.pas, and the file containing the
compiled unit would be MAINFORM.dcu.

3-4 O b j e c t P a s c a l L a n g u a g e G u i d e

U n i t s t r u c t u r e a n d s y n t a x

Unit names must be unique within a project. Even if their unit files are in different
directories, two units with the same name cannot be used in a single program.

The interface section

The interface section of a unit begins with the reserved word interface and continues
until the beginning of the implementation section. The interface section declares
constants, types, variables, procedures, and functions that are available to clients—
that is, to other units or programs that use the unit where they are declared. These
entities are called public because a client can access them as if they were declared in
the client itself.

The interface declaration of a procedure or function includes only the routine’s
heading. The block of the procedure or function follows in the implementation
section. Thus procedure and function declarations in the interface section work like
forward declarations, although the forward directive isn’t used.

The interface declaration for a class must include declarations for all class members.

The interface section can include its own uses clause, which must appear
immediately after the word interface. For information about the uses clause, see
“Unit references and the uses clause” on page 3-5.

The implementation section

The implementation section of a unit begins with the reserved word implementation
and continues until the beginning of the initialization section or, if there is no
initialization section, until the end of the unit. The implementation section defines
procedures and functions that are declared in the interface section. Within the
implementation section, these procedures and functions may be defined and called in
any order. You can omit parameter lists from public procedure and function
headings when you define them in the implementation section; but if you include a
parameter list, it must match the declaration in the interface section exactly.

In addition to definitions of public procedures and functions, the implementation
section can declare constants, types (including classes), variables, procedures, and
functions that are private to the unit—that is, inaccessible to clients.

The implementation section can include its own uses clause, which must appear
immediately after the word implementation. For information about the uses clause,
see “Unit references and the uses clause” on page 3-5.

The initialization section

The initialization section is optional. It begins with the reserved word initialization
and continues until the beginning of the finalization section or, if there is no
finalization section, until the end of the unit. The initialization section contains
statements that are executed, in the order in which they appear, on program start-up.

P r o g r a m s a n d u n i t s 3-5

U n i t r e f e r e n c e s a n d t h e u s e s c l a u s e

So, for example, if you have defined data structures that need to be initialized, you
can do this in the initialization section.

The initialization sections of units used by a client are executed in the order in which
the units appear in the client’s uses clause.

The finalization section

The finalization section is optional and can appear only in units that have an
initialization section. The finalization section begins with the reserved word
finalization and continues until the end of the unit. It contains statements that are
executed when the main program terminates. Use the finalization section to free
resources that are allocated in the initialization section.

Finalization sections are executed in the opposite order from initializations. For
example, if your application initializes units A, B, and C, in that order, it will finalize
them in the order C, B, and A.

Once a unit’s initialization code starts to execute, the corresponding finalization
section is guaranteed to execute when the application shuts down. The finalization
section must therefore be able to handle incompletely initialized data, since, if a
runtime error occurs, the initialization code might not execute completely.

Unit references and the uses clause
A uses clause lists units used by the program, library, or unit in which the clause
appears. (For information about libraries, see Chapter 9, “Libraries and packages”.)
A uses clause can occur in

• the project file for a program or library,

• the interface section of a unit, and

• the implementation section of a unit.

Most project files contain a uses clause, as do the interface sections of most units. The
implementation section of a unit can contain its own uses clause as well.

The System unit is used automatically by every application and cannot be listed
explicitly in the uses clause. (System implements routines for file I/O, string
handling, floating point operations, dynamic memory allocation, and so forth.) Other
standard library units, such as SysUtils, must be included in the uses clause. In most
cases, all necessary units are placed in the uses clause when your project generates
and maintains a source file.

For more information about the placement and content of the uses clause, see
“Multiple and indirect unit references” on page 3-6 and “Circular unit references” on
page 3-7.

3-6 O b j e c t P a s c a l L a n g u a g e G u i d e

U n i t r e f e r e n c e s a n d t h e u s e s c l a u s e

The syntax of a uses clause

A uses clause consists of the reserved word uses, followed by one or more comma-
delimited unit names, followed by a semicolon. Examples:

uses Forms, Main;

uses Windows, Messages, SysUtils, Strings, Classes, Unit2, MyUnit;

uses SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;

In the uses clause of a program or library, any unit name may be followed by the
reserved word in and the name of a source file, with or without a directory path, in
single quotation marks; directory paths can be absolute or relative. Examples:

uses Windows, Messages, SysUtils, Strings in 'C:\Classes\Strings.pas', Classes;

uses
QForms,
Main,
Extra in '../extra/extra.pas';

Include in ... after a unit name when you need to specify the unit’s source file. Since
the IDE expects unit names to match the names of the source files in which they
reside, there is usually no reason to do this. Using in is necessary only when the
location of the source file is unclear, for example when

• You have used a source file that is in a different directory from the project file, and
that directory is not in the compiler’s search path or the general Library search
path.

• Different directories in the compiler’s search path have identically named units.

• You are compiling a console application from the command line, and you have
named a unit with an identifier that doesn’t match the name of its source file.

The compiler also relies on the in ... construction to determine which units are part of
a project. Only units that appear in a project (.dpr) file’s uses clause followed by in
and a file name are considered to be part of the project; other units in the uses clause
are used by the project without belonging to it. This distinction has no effect on
compilation, but it affects IDE tools like the Project Manager and Project Browser.

In the uses clause of a unit, you cannot use in to tell the compiler where to find a
source file. Every unit must be in the compiler’s search path, the general Library
search path, or the same directory as the unit that uses it. Moreover, unit names must
match the names of their source files.

Multiple and indirect unit references

The order in which units appear in the uses clause determines the order of their
initialization (see “The initialization section” on page 3-4) and affects the way
identifiers are located by the compiler. If two units declare a variable, constant, type,
procedure, or function with the same name, the compiler uses the one from the unit
listed last in the uses clause. (To access the identifier from the other unit, you would
have to add a qualifier: UnitName.Identifier.)

P r o g r a m s a n d u n i t s 3-7

U n i t r e f e r e n c e s a n d t h e u s e s c l a u s e

A uses clause need include only units used directly by the program or unit in which
the clause appears. That is, if unit A references constants, types, variables,
procedures, or functions that are declared in unit B, then A must use B explicitly. If B
in turn references identifiers from unit C, then A is indirectly dependent on C; in this
case, C needn’t be included in a uses clause in A, but the compiler must still be able to
find both B and C in order to process A.

The example below illustrates indirect dependency.

program Prog;
uses Unit2;
const a = b;
ƒ

unit Unit2;
interface
uses Unit1;
const b = c;
ƒ

unit Unit1;
interface
const c = 1;
ƒ

In this example, Prog depends directly on Unit2, which depends directly on Unit1.
Hence Prog is indirectly dependent on Unit1. Because Unit1 does not appear in Prog’s
uses clause, identifiers declared in Unit1 are not available to Prog.

To compile a client module, the compiler needs to locate all units that the client
depends on, directly or indirectly. Unless the source code for these units has
changed, however, the compiler needs only their .dcu (Windows) or .dcu/.dpu
(Linux) files, not their source (.pas) files.

When changes are made in the interface section of a unit, other units that depend on
it must be recompiled. But when changes are made only in the implementation or
other sections of a unit, dependent units don’t have to be recompiled. The compiler
tracks these dependencies automatically and recompiles units only when necessary.

Circular unit references

When units reference each other directly or indirectly, the units are said to be
mutually dependent. Mutual dependencies are allowed as long as there are no
circular paths connecting the uses clause of one interface section to the uses clause of
another. In other words, starting from the interface section of a unit, it must never be
possible to return to that unit by following references through interface sections of
other units. For a pattern of mutual dependencies to be valid, each circular reference
path must lead through the uses clause of at least one implementation section.

3-8 O b j e c t P a s c a l L a n g u a g e G u i d e

U n i t r e f e r e n c e s a n d t h e u s e s c l a u s e

In the simplest case of two mutually dependent units, this means that the units
cannot list each other in their interface uses clauses. So the following example leads
to a compilation error:

unit Unit1;
interface
uses Unit2;
ƒ

unit Unit2;
interface
uses Unit1;
ƒ

However, the two units can legally reference each other if one of the references is
moved to the implementation section:

unit Unit1;
interface
uses Unit2;
ƒ

unit Unit2;
interface
ƒ
implementation
uses Unit1;
ƒ

To reduce the chance of circular references, it’s a good idea to list units in the
implementation uses clause whenever possible. Only when identifiers from another
unit are used in the interface section is it necessary to list that unit in the interface
uses clause.

S y n t a c t i c e l e m e n t s 4-1

C h a p t e r

4
Chapter4Syntactic elements

Object Pascal uses the ASCII character set, including the letters A through Z and a
through z, the digits 0 through 9, and other standard characters. It is not case-
sensitive. The space character (ASCII 32) and the control characters (ASCII 0 through
31—including ASCII 13, the return or end-of-line character) are called blanks.

Fundamental syntactic elements, called tokens, combine to form expressions,
declarations, and statements. A statement describes an algorithmic action that can be
executed within a program. An expression is a syntactic unit that occurs within a
statement and denotes a value. A declaration defines an identifier (such as the name of
a function or variable) that can be used in expressions and statements, and, where
appropriate, allocates memory for the identifier.

Fundamental syntactic elements
On the simplest level, a program is a sequence of tokens delimited by separators. A
token is the smallest meaningful unit of text in a program. A separator is either a blank
or a comment. Strictly speaking, it is not always necessary to place a separator
between two tokens; for example, the code fragment

Size:=20;Price:=10;

is perfectly legal. Convention and readability, however, dictate that we write this as

Size := 20;
Price := 10;

Tokens are categorized as special symbols, identifiers, reserved words, directives, numerals,
labels, and character strings. A separator can be part of a token only if the token is a
character string. Adjacent identifiers, reserved words, numerals, and labels must
have one or more separators between them.

4-2 O b j e c t P a s c a l L a n g u a g e G u i d e

F u n d a m e n t a l s y n t a c t i c e l e m e n t s

Special symbols

Special symbols are nonalphanumeric characters, or pairs of such characters, that
have fixed meanings. The following single characters are special symbols.

$ & ' () * + , – . / : ; < = > @ [] ^ { }

The following character pairs are also special symbols.

(* (. *) .) .. // := <= >= <>

The left bracket—[—is equivalent to the character pair of left parenthesis and
period—(. ; the right bracket—]—is equivalent to the character pair of period and
right parenthesis— .) . The left-parenthesis–plus–asterisk and asterisk–plus–right-
parenthesis—(* *)—are equivalent to the left and right brace—{ } .

Notice that !, " (double quotation marks), %, ?, \, _ (underscore), | (pipe), and
~ (tilde) are not special characters.

Identifiers

Identifiers denote constants, variables, fields, types, properties, procedures,
functions, programs, units, libraries, and packages. An identifier can be of any
length, but only the first 255 characters are significant. An identifier must begin with
a letter or an underscore (_) and cannot contain spaces; letters, digits, and
underscores are allowed after the first character. Reserved words cannot be used as
identifiers.

Since Object Pascal is case-insensitive, an identifier like CalculateValue could be
written in any of these ways:

CalculateValue
calculateValue
calculatevalue
CALCULATEVALUE

On Linux, the only identifiers for which case is important are unit names. Since unit
names correspond to file names, inconsistencies in case can sometimes affect
compilation.

Qualified identifiers
When you use an identifier that has been declared in more than one place, it is
sometimes necessary to qualify the identifier. The syntax for a qualified identifier is

identifier1.identifier2

where identifier1 qualifies identifier2. For example, if two units each declare a variable
called CurrentValue, you can specify that you want to access the CurrentValue in Unit2
by writing

Unit2.CurrentValue

Qualifiers can be iterated. For example,

Form1.Button1.Click

calls the Click method in Button1 of Form1.

S y n t a c t i c e l e m e n t s 4-3

F u n d a m e n t a l s y n t a c t i c e l e m e n t s

If you don’t qualify an identifier, its interpretation is determined by the rules of scope
described in “Blocks and scope” on page 4-27.

Reserved words

The following reserved words cannot be redefined or used as identifiers.

In addition to the words in Table 4.1, private, protected, public, published, and
automated act as reserved words within object type declarations, but are otherwise
treated as directives. The words at and on also have special meanings.

Directives

Directives are words that are sensitive in specific locations within source code.
Directives have special meanings in Object Pascal, but, unlike reserved words,
appear only in contexts where user-defined identifiers cannot occur. Hence—
although it is inadvisable to do so—you can define an identifier that looks exactly
like a directive.

Table 4.1 Reserved words

and downto in or string

array else inherited out then

as end initialization packed threadvar

asm except inline procedure to

begin exports interface program try

case file is property type

class finalization label raise unit

const finally library record until

constructor for mod repeat uses

destructor function nil resourcestring var

dispinterface goto not set while

div if object shl with

do implementation of shr xor

Table 4.2 Directives

absolute dynamic message private resident

abstract export name protected safecall

assembler external near public stdcall

automated far nodefault published stored

cdecl forward overload read varargs

contains implements override readonly virtual

default index package register write

deprecated library pascal reintroduce writeonly

dispid local platform requires

4-4 O b j e c t P a s c a l L a n g u a g e G u i d e

F u n d a m e n t a l s y n t a c t i c e l e m e n t s

Numerals

Integer and real constants can be represented in decimal notation as sequences of
digits without commas or spaces, and prefixed with the + or – operator to indicate
sign. Values default to positive (so that, for example, 67258 is equivalent to +67258) and
must be within the range of the largest predefined real or integer type.

Numerals with decimal points or exponents denote reals, while other numerals
denote integers. When the character E or e occurs within a real, it means “times ten to
the power of”. For example, 7E–2 means 7 × 10–2, and 12.25e+6 and 12.25e6 both mean
12.25 × 106.

The dollar-sign prefix indicates a hexadecimal numeral—for example, $8F. For the
Integer type (16-bit integer), the sign of a hexadecimal is determined by the leftmost
(most significant) bit of its binary representation. For all other types, you must use a
prefixed + or - operator to indicate sign.

For more information about real and integer types, see Chapter 5, “Data types,
variables, and constants”. For information about the data types of numerals, see
“True constants” on page 5-39.

Labels

A label is a sequence of no more than four digits—that is, a numeral between 0 and
9999. Leading zeros are not significant. Identifiers can also function as labels.

Labels are used in goto statements. For more information about goto statements and
labels, see “Goto statements” on page 4-18.

Character strings

A character string, also called a string literal or string constant, consists of a quoted
string, a control string, or a combination of quoted and control strings. Separators can
occur only within quoted strings.

A quoted string is a sequence of up to 255 characters from the extended ASCII
character set, written on one line and enclosed by apostrophes. A quoted string with
nothing between the apostrophes is a null string. Two sequential apostrophes in a
quoted string denote a single character, namely an apostrophe. For example,

'BORLAND' { BORLAND }
'You''ll see' { You'll see }
'''' { ' }
'' { null string }
' ' { a space }

A control string is a sequence of one or more control characters, each of which consists
of the # symbol followed by an unsigned integer constant from 0 to 255 (decimal or
hexadecimal) and denotes the corresponding ASCII character. The control string

#89#111#117

is equivalent to the quoted string

S y n t a c t i c e l e m e n t s 4-5

C o m m e n t s a n d c o m p i l e r d i r e c t i v e s

'You'

You can combine quoted strings with control strings to form larger character strings.
For example, you could use

'Line 1'#13#10'Line 2'

to put a carriage-return–line-feed between “Line 1” and “Line 2”. However, you
cannot concatenate two quoted strings in this way, since a pair of sequential
apostrophes is interpreted as a single character. (To concatenate quoted strings, use
the + operator described in “String operators” on page 4-9, or simply combine them
into a single quoted string.)

A character string’s length is the number of characters in the string. A character string
of any length is compatible with any string type and with the PChar type. A character
string of length 1 is compatible with any character type, and, when extended syntax
is enabled ({$X+}), a character string of length n ≥ 1 is compatible with zero-based
arrays and packed arrays of n characters. For more information about string types,
see Chapter 5, “Data types, variables, and constants”.

Comments and compiler directives
Comments are ignored by the compiler, except when they function as separators
(delimiting adjacent tokens) or compiler directives.

There are several ways to construct comments:

{ Text between a left brace and a right brace constitutes a comment. }

(* Text between a left-parenthesis-plus-asterisk and an
asterisk-plus-right-parenthesis also constitutes a comment. *)

// Any text between a double-slash and the end of the line constitutes a comment.

A comment that contains a dollar sign ($) immediately after the opening { or (* is a
compiler directive. For example,

{$WARNINGS OFF}

tells the compiler not to generate warning messages.

Expressions
An expression is a construction that returns a value. For example,

X { variable }
@X { address of a variable }
15 { integer constant }
InterestRate { variable }
Calc(X,Y) { function call }
X * Y { product of X and Y }
Z / (1 - Z) { quotient of Z and (1 - Z) }
X = 1.5 { Boolean }
C in Range1 { Boolean }
not Done { negation of a Boolean }

4-6 O b j e c t P a s c a l L a n g u a g e G u i d e

E x p r e s s i o n s

['a','b','c'] { set }
Char(48) { value typecast }

The simplest expressions are variables and constants (described in Chapter 5, “Data
types, variables, and constants”). More complex expressions are built from simpler
ones using operators, function calls, set constructors, indexes, and typecasts.

Operators

Operators behave like predefined functions that are part of the Object Pascal
language. For example, the expression (X + Y) is built from the variables X and Y—
called operands—with the + operator; when X and Y represent integers or reals, (X + Y)
returns their sum. Operators include @, not, ^, *, /, div, mod, and, shl, shr, as, +, –, or,
xor, =, >, <, <>, <=, >=, in, and is.

The operators @, not, and ^ are unary (taking one operand). All other operators are
binary (taking two operands), except that + and – can function as either unary or
binary. A unary operator always precedes its operand (for example, -B), except for ^,
which follows its operand (for example, P^). A binary operator is placed between its
operands (for example, A = 7).

Some operators behave differently depending on the type of data passed to them. For
example, not performs bitwise negation on an integer operand and logical negation
on a Boolean operand. Such operators appear below under multiple categories.

Except for ^, is, and in, all operators can take operands of type Variant. For details,
see “Variant types” on page 5-30.

The sections that follow assume some familiarity with Object Pascal data types. For
information about data types, see Chapter 5, “Data types, variables, and constants”.

For information about operator precedence in complex expressions, see “Operator
precedence rules” on page 4-12.

Arithmetic operators
Arithmetic operators, which take real or integer operands, include +, –, *, /, div, and
mod.

Table 4.3 Binary arithmetic operators

Operator Operation Operand types Result type Example

+ addition integer, real integer, real X + Y

– subtraction integer, real integer, real Result - 1

* multiplication integer, real integer, real P * InterestRate

/ real division integer, real real X / 2

div integer division integer integer Total div UnitSize

mod remainder integer integer Y mod 6

S y n t a c t i c e l e m e n t s 4-7

E x p r e s s i o n s

The following rules apply to arithmetic operators.

• The value of x/y is of type Extended, regardless of the types of x and y. For other
arithmetic operators, the result is of type Extended whenever at least one operand
is a real; otherwise, the result is of type Int64 when at least one operand is of type
Int64; otherwise, the result is of type Integer. If an operand’s type is a subrange of
an integer type, it is treated as if it were of the integer type.

• The value of x div y is the value of x/y rounded in the direction of zero to the
nearest integer.

• The mod operator returns the remainder obtained by dividing its operands. In
other words, x mod y = x – (x div y) * y.

• A runtime error occurs when y is zero in an expression of the form x/y, x div y, or
x mod y.

Boolean operators
The Boolean operators not, and, or, and xor take operands of any Boolean type and
return a value of type Boolean.

These operations are governed by standard rules of Boolean logic. For example, an
expression of the form x and y is True if and only if both x and y are True.

Complete versus short-circuit Boolean evaluation
The compiler supports two modes of evaluation for the and and or operators:
complete evaluation and short-circuit (partial) evaluation. Complete evaluation means
that each conjunct or disjunct is evaluated, even when the result of the entire
expression is already determined. Short-circuit evaluation means strict left-to-right
evaluation that stops as soon as the result of the entire expression is determined. For
example, if the expression A and B is evaluated under short-circuit mode when A is
False, the compiler won’t evaluate B; it knows that the entire expression is False as
soon as it evaluates A.

Table 4.4 Unary arithmetic operators

Operator Operation Operand type Result type Example

+ sign identity integer, real integer, real +7

– sign negation integer, real integer, real -X

Table 4.5 Boolean operators

Operator Operation Operand types Result type Example

not negation Boolean Boolean not (C in MySet)

and conjunction Boolean Boolean Done and (Total > 0)

or disjunction Boolean Boolean A or B

xor exclusive disjunction Boolean Boolean A xor B

4-8 O b j e c t P a s c a l L a n g u a g e G u i d e

E x p r e s s i o n s

Short-circuit evaluation is usually preferable because it guarantees minimum
execution time and, in most cases, minimum code size. Complete evaluation is
sometimes convenient when one operand is a function with side effects that alter the
execution of the program.

Short-circuit evaluation also allows the use of constructions that might otherwise
result in illegal runtime operations. For example, the following code iterates through
the string S, up to the first comma.

while (I <= Length(S)) and (S[I] <> ',') do
begin

ƒ
Inc(I);

end;

In a case where S has no commas, the last iteration increments I to a value which is
greater than the length of S. When the while condition is next tested, complete
evaluation results in an attempt to read S[I], which could cause a runtime error.
Under short-circuit evaluation, in contrast, the second part of the while condition—
(S[I] <> ',')—is not evaluated after the first part fails.

Use the $B compiler directive to control evaluation mode. The default state is {$B–},
which enables short-circuit evaluation. To enable complete evaluation locally, add
the {$B+} directive to your code. You can also switch to complete evaluation on a
project-wide basis by selecting Complete Boolean Evaluation in the Compiler
Options dialog.

Note If either operand involves a variant, the compiler always performs complete
evaluation (even in the {$B–} state).

Logical (bitwise) operators
The following logical operators perform bitwise manipulation on integer operands.
For example, if the value stored in X (in binary) is 001101 and the value stored in Y is
100001, the statement

Z := X or Y;

assigns the value 101101 to Z.

The following rules apply to bitwise operators.

• The result of a not operation is of the same type as the operand.

Table 4.6 Logical (bitwise) operators

Operator Operation Operand types Result type Examples

not bitwise negation integer integer not X

and bitwise and integer integer X and Y

or bitwise or integer integer X or Y

xor bitwise xor integer integer X xor Y

shl bitwise shift left integer integer X shl 2

shr bitwise shift right integer integer Y shr I

S y n t a c t i c e l e m e n t s 4-9

E x p r e s s i o n s

• If the operands of an and, or, or xor operation are both integers, the result is of the
predefined integer type with the smallest range that includes all possible values of
both types.

• The operations x shl y and x shr y shift the value of x to the left or right by y bits,
which is equivalent to multiplying or dividing x by 2y; the result is of the same
type as x. For example, if N stores the value 01101 (decimal 13), then N shl 1
returns 11010 (decimal 26). Note that the value of y is interpreted modulo the size
of the type of x. Thus for example, if x is an integer, x shl 40 is interpreted as x shl 8
because an integer is 32 bits and 40 mod 32 is 8.

String operators
The relational operators =, <>, <, >, <=, and >= all take string operands (see
“Relational operators” on page 4-10). The + operator concatenates two strings.

The following rules apply to string concatenation.

• The operands for + can be strings, packed strings (packed arrays of type Char), or
characters. However, if one operand is of type WideChar, the other operand must
be a long string.

• The result of a + operation is compatible with any string type. However, if the
operands are both short strings or characters, and their combined length is greater
than 255, the result is truncated to the first 255 characters.

Pointer operators
The relational operators <, >, <=, and >= can take operands of type PChar (see
“Relational operators” on page 4-10). The following operators also take pointers as
operands. For more information about pointers, see “Pointers and pointer types” on
page 5-25.

The ^ operator dereferences a pointer. Its operand can be a pointer of any type except
the generic Pointer, which must be typecast before dereferencing.

P = Q is True just in case P and Q point to the same address; otherwise, P <> Q is True.

Table 4.7 String operators

Operator Operation Operand types Result type Example

+ concatenation string, packed string, character string S + '. '

Table 4.8 Character-pointer operators

Operator Operation Operand types Result type Example

+ pointer addition character pointer, integer character pointer P + I

- pointer subtraction character pointer, integer character pointer, integer P - Q

^ pointer dereference pointer base type of pointer P^

= equality pointer Boolean P = Q

<> inequality pointer Boolean P <> Q

4-10 O b j e c t P a s c a l L a n g u a g e G u i d e

E x p r e s s i o n s

You can use the + and – operators to increment and decrement the offset of a
character pointer. You can also use – to calculate the difference between the offsets of
two character pointers. The following rules apply.

• If I is an integer and P is a character pointer, then P + I adds I to the address given
by P; that is, it returns a pointer to the address I characters after P. (The expression
I + P is equivalent to P + I.) P – I subtracts I from the address given by P; that is, it
returns a pointer to the address I characters before P.

• If P and Q are both character pointers, then P – Q computes the difference between
the address given by P (the higher address) and the address given by Q (the lower
address); that is, it returns an integer denoting the number of characters between P
and Q. P + Q is not defined.

Set operators
The following operators take sets as operands.

The following rules apply to +, –, and *.

• An ordinal O is in X + Y if and only if O is in X or Y (or both). O is in X – Y if and
only if O is in X but not in Y. O is in X * Y if and only if O is in both X and Y.

• The result of a +, –, or * operation is of the type set of A..B, where A is the smallest
ordinal value in the result set and B is the largest.

The following rules apply to <=, >=, =, <>, and in.

• X <= Y is True just in case every member of X is a member of Y; Z >= W is
equivalent to W <= Z. U = V is True just in case U and V contain exactly the same
members; otherwise, U <> V is True.

• For an ordinal O and a set S, O in S is True just in case O is a member of S.

Relational operators
Relational operators are used to compare two operands. The operators =, <>, <=, and
>= also apply to sets (see “Set operators” on page 4-10); = and <> also apply to
pointers (see “Pointer operators” on page 4-9).

Table 4.9 Set operators

Operator Operation Operand types Result type Example

+ union set set Set1 + Set2

– difference set set S - T

* intersection set set S * T

<= subset set Boolean Q <= MySet

>= superset set Boolean S1 >= S2

= equality set Boolean S2 = MySet

<> inequality set Boolean MySet <> S1

in membership ordinal, set Boolean A in Set1

S y n t a c t i c e l e m e n t s 4-11

E x p r e s s i o n s

For most simple types, comparison is straightforward. For example, I = J is True just
in case I and J have the same value, and I <> J is True otherwise. The following rules
apply to relational operators.

• Operands must be of compatible types, except that a real and an integer can be
compared.

• Strings are compared according to the ordering of the extended ASCII character
set. Character types are treated as strings of length 1.

• Two packed strings must have the same number of components to be compared.
When a packed string with n components is compared to a string, the packed
string is treated as a string of length n.

• The operators <, >, <=, and >= apply to PChar operands only if the two pointers
point within the same character array.

• The operators = and <> can take operands of class and class-reference types. With
operands of a class type, = and <> are evaluated according the rules that apply to
pointers: C = D is True just in case C and D point to the same instance object, and C
<> D is True otherwise. With operands of a class-reference type, C = D is True just
in case C and D denote the same class, and C <> D is True otherwise. For more
information about classes, see Chapter 7, “Classes and objects”.

Class operators
The operators as and is take classes and instance objects as operands; as operates on
interfaces as well. For more information, see Chapter 7, “Classes and objects” and
Chapter 10, “Object interfaces”.

The relational operators = and <> also operate on classes. See “Relational operators”
on page 4-10.

Table 4.10 Relational operators

Operator Operation Operand types
Result
type Example

= equality simple, class, class reference, interface, string,
packed string

Boolean I = Max

<> inequality simple, class, class reference, interface, string,
packed string

Boolean X <> Y

< less-than simple, string, packed string, PChar Boolean X < Y

> greater-than simple, string, packed string, PChar Boolean Len > 0

<= less-than-or-
equal-to

simple, string, packed string, PChar Boolean Cnt <= I

>= greater-than-
or-equal-to

simple, string, packed string, PChar Boolean I >= 1

4-12 O b j e c t P a s c a l L a n g u a g e G u i d e

E x p r e s s i o n s

The @ operator
The @ operator returns the address of a variable, or of a function, procedure, or
method; that is, @ constructs a pointer to its operand. For more information about
pointers, see “Pointers and pointer types” on page 5-25. The following rules apply to
@.

• If X is a variable, @X returns the address of X. (Special rules apply when X is a
procedural variable; see “Procedural types in statements and expressions” on
page 5-29.) The type of @X is Pointer if the default {$T–} compiler directive is in
effect. In the {$T+} state, @X is of type ^T, where T is the type of X.

• If F is a routine (a function or procedure), @F returns F’s entry point. The type of
@F is always Pointer.

• When @ is applied to a method defined in a class, the method identifier must be
qualified with the class name. For example,

@TMyClass.DoSomething

points to the DoSomething method of TMyClass. For more information about
classes and methods, see Chapter 7, “Classes and objects”.

Operator precedence rules
In complex expressions, rules of precedence determine the order in which operations
are performed.

An operator with higher precedence is evaluated before an operator with lower
precedence, while operators of equal precedence associate to the left. Hence the
expression

X + Y * Z

multiplies Y times Z, then adds X to the result; * is performed first, because is has a
higher precedence than +. But

X - Y + Z

first subtracts Y from X, then adds Z to the result; – and + have the same precedence,
so the operation on the left is performed first.

You can use parentheses to override these precedence rules. An expression within
parentheses is evaluated first, then treated as a single operand. For example,

(X + Y) * Z

multiplies Z times the sum of X and Y.

Table 4.11 Precedence of operators

Operators Precedence

@, not first (highest)

*, /, div, mod, and, shl, shr, as second

+, –, or, xor third

=, <>, <, >, <=, >=, in, is fourth (lowest)

S y n t a c t i c e l e m e n t s 4-13

E x p r e s s i o n s

Parentheses are sometimes needed in situations where, at first glance, they seem not
to be. For example, consider the expression

X = Y or X = Z

The intended interpretation of this is obviously

(X = Y) or (X = Z)

Without parentheses, however, the compiler follows operator precedence rules and
reads it as

(X = (Y or X)) = Z

—which results in a compilation error unless Z is Boolean.

Parentheses often make code easier to write and to read, even when they are, strictly
speaking, superfluous. Thus the first example above could be written as

X + (Y * Z)

Here the parentheses are unnecessary (to the compiler), but they spare both
programmer and reader from having to think about operator precedence.

Function calls

Because functions return a value, function calls are expressions. For example, if
you’ve defined a function called Calc that takes two integer arguments and returns an
integer, then the function call Calc(24, 47) is an integer expression. If I and J are
integer variables, then I + Calc(J, 8) is also an integer expression. Examples of
function calls include

Sum(A, 63)
Maximum(147, J)
Sin(X + Y)
Eof(F)
Volume(Radius, Height)
GetValue
TSomeObject.SomeMethod(I,J);

For more information about functions, see Chapter 6, “Procedures and functions”.

Set constructors

A set constructor denotes a set-type value. For example,

[5, 6, 7, 8]

denotes the set whose members are 5, 6, 7, and 8. The set constructor

[5..8]

could also denote the same set.

The syntax for a set constructor is

[item1, ..., itemn]

4-14 O b j e c t P a s c a l L a n g u a g e G u i d e

E x p r e s s i o n s

where each item is either an expression denoting an ordinal of the set’s base type or a
pair of such expressions with two dots (..) in between. When an item has the form x..y,
it is shorthand for all the ordinals in the range from x to y, inclusive; but if x is greater
than y, then x..y denotes nothing and [x..y] is the empty set. The set constructor []
denotes the empty set, while [x] denotes the set whose only member is the value of x.

Examples of set constructors:

[red, green, MyColor]
[1, 5, 10..K mod 12, 23]
['A'..'Z', 'a'..'z', Chr(Digit + 48)]

For more information about sets, see “Sets” on page 5-17.

Indexes

Strings, arrays, array properties, and pointers to strings or arrays can be indexed. For
example, if FileName is a string variable, the expression FileName[3] returns the third
character in the string denoted by FileName, while FileName[I + 1] returns the
character immediately after the one indexed by I. For information about strings, see
“String types” on page 5-10. For information about arrays and array properties, see
“Arrays” on page 5-18 and “Array properties” on page 7-19.

Typecasts

It is sometimes useful to treat an expression as if it belonged to different type. A
typecast allows you to do this by, in effect, temporarily changing an expression’s
type. For example, Integer('A') casts the character A as an integer.

The syntax for a typecast is

typeIdentifier(expression)

If the expression is a variable, the result is called a variable typecast; otherwise, the
result is a value typecast. While their syntax is the same, different rules apply to the
two kinds of typecast.

Value typecasts
In a value typecast, the type identifier and the cast expression must both be ordinal
types or both be pointer types. Examples of value typecasts include

Integer('A')
Char(48)
Boolean(0)
Color(2)
Longint(@Buffer)

The resulting value is obtained by converting the expression in parentheses. This
may involve truncation or extension if the size of the specified type differs from that
of the expression. The expression’s sign is always preserved.

S y n t a c t i c e l e m e n t s 4-15

E x p r e s s i o n s

The statement

I := Integer('A');

assigns the value of Integer('A')—that is, 65—to the variable I.

A value typecast cannot be followed by qualifiers and cannot appear on the left side
of an assignment statement.

Variable typecasts
You can cast any variable to any type, provided their sizes are the same and you do
not mix integers with reals. (To convert numeric types, rely on standard functions
like Int and Trunc.) Examples of variable typecasts include

Char(I)
Boolean(Count)
TSomeDefinedType(MyVariable)

Variable typecasts can appear on either side of an assignment statement. Thus

var MyChar: char;
ƒ
Shortint(MyChar) := 122;

assigns the character z (ASCII 122) to MyChar.

You can cast variables to a procedural type. For example, given the declarations

type Func = function(X: Integer): Integer;
var

F: Func;
P: Pointer;
N: Integer;

you can make the following assignments.

F := Func(P); { Assign procedural value in P to F }
Func(P) := F; { Assign procedural value in F to P }
@F := P; { Assign pointer value in P to F }
P := @F; { Assign pointer value in F to P }
N := F(N); { Call function via F }
N := Func(P)(N); { Call function via P }

Variable typecasts can also be followed by qualifiers, as illustrated in the following
example.

type
TByteRec = record

Lo, Hi: Byte;
end;
TWordRec = record

Low, High: Word;
end;
PByte = ^Byte;

var
B: Byte;
W: Word;
L: Longint;

4-16 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r a t i o n s a n d s t a t e m e n t s

P: Pointer;
begin

W := $1234;
B := TByteRec(W).Lo;
TByteRec(W).Hi := 0;
L := $01234567;
W := TWordRec(L).Low;
B := TByteRec(TWordRec(L).Low).Hi;
B := PByte(L)^;

end;

In this example, TByteRec is used to access the low- and high-order bytes of a word,
and TWordRec to access the low- and high-order words of a long integer. You could
call the predefined functions Lo and Hi for the same purpose, but a variable typecast
has the advantage that it can be used on the left side of an assignment statement.

For information about typecasting pointers, see “Pointers and pointer types” on
page 5-25. For information about casting class and interface types, see “The as
operator” on page 7-25 and “Interface typecasts” on page 10-10.

Declarations and statements
Aside from the uses clause (and reserved words like implementation that demarcate
parts of a unit), a program consists entirely of declarations and statements, which are
organized into blocks.

Declarations

The names of variables, constants, types, fields, properties, procedures, functions,
programs, units, libraries, and packages are called identifiers. (Numeric constants like
26057 are not identifiers.) Identifiers must be declared before you can use them; the
only exceptions are a few predefined types, routines, and constants that the compiler
understands automatically, the variable Result when it occurs inside a function block,
and the variable Self when it occurs inside a method implementation.

A declaration defines an identifier and, where appropriate, allocates memory for it.
For example,

var Size: Extended;

declares a variable called Size that holds an Extended (real) value, while

function DoThis(X, Y: string): Integer;

declares a function called DoThis that takes two strings as arguments and returns an
integer. Each declaration ends with a semicolon. When you declare several variables,
constants, types, or labels at the same time, you need only write the appropriate
reserved word once:

var
Size: Extended;
Quantity: Integer;
Description: string;

S y n t a c t i c e l e m e n t s 4-17

D e c l a r a t i o n s a n d s t a t e m e n t s

The syntax and placement of a declaration depend on the kind of identifier you are
defining. In general, declarations can occur only at the beginning of a block or at the
beginning of the interface or implementation section of a unit (after the uses clause).
Specific conventions for declaring variables, constants, types, functions, and so forth
are explained in the chapters on those topics.

The “hint” directives platform, deprecated, and library may be appended to any
declaration, except that units cannot be declared with deprecated. In the case of a
procedure or function declaration, the hint directive should be separated from the
rest of the declaration with a semicolon. Examples:

procedure SomeOldRoutine; stdcall; deprecated;

var VersionNumber: Real library;

type AppError = class(Exception)
ƒ

end platform;

When source code is compiled in the {$HINTS ON} {$WARNINGS ON} state, each
reference to an identifier declared with one of these directives generates an
appropriate hint or warning. Use platform to mark items that are specific to a
particular operating environment (such as Windows or Linux), deprecated to
indicate that an item is obsolete or supported only for backward compatibility, and
library to flag dependencies on a particular library or component framework (such
as VCL or CLX).

Statements

Statements define algorithmic actions within a program. Simple statements—like
assignments and procedure calls—can combine to form loops, conditional
statements, and other structured statements.

Multiple statements within a block, and in the initialization or finalization section of
a unit, are separated by semicolons.

Simple statements

A simple statement doesn’t contain any other statements. Simple statements include
assignments, calls to procedures and functions, and goto jumps.

Assignment statements
An assignment statement has the form

variable := expression

where variable is any variable reference—including a variable, variable typecast,
dereferenced pointer, or component of a structured variable—and expression is any
assignment-compatible expression. (Within a function block, variable can be replaced
with the name of the function being defined. See Chapter 6, “Procedures and
functions”.) The := symbol is sometimes called the assignment operator.

4-18 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r a t i o n s a n d s t a t e m e n t s

An assignment statement replaces the current value of variable with the value of
expression. For example,

I := 3;

assigns the value 3 to the variable I. The variable reference on the left side of the
assignment can appear in the expression on the right. For example,

I := I + 1;

increments the value of I. Other assignment statements include

X := Y + Z;
Done := (I >= 1) and (I < 100);
Hue1 := [Blue, Succ(C)];
I := Sqr(J) - I * K;
Shortint(MyChar) := 122;
TByteRec(W).Hi := 0;
MyString[I] := 'A';
SomeArray[I + 1] := P^;
TMyObject.SomeProperty := True;

Procedure and function calls
A procedure call consists of the name of a procedure (with or without qualifiers),
followed by a parameter list (if required). Examples include

PrintHeading;
Transpose(A, N, M);
Find(Smith, William);
Writeln('Hello world!');
DoSomething();
Unit1.SomeProcedure;
TMyObject.SomeMethod(X,Y);

With extended syntax enabled ({$X+}), function calls, like calls to procedures, can be
treated as statements in their own right:

MyFunction(X);

When you use a function call in this way, its return value is discarded.

For more information about procedures and functions, see Chapter 6, “Procedures
and functions”.

Goto statements
A goto statement, which has the form

goto label

transfers program execution to the statement marked by the specified label. To mark
a statement, you must first declare the label. Then precede the statement you want to
mark with the label and a colon:

label: statement

Declare labels like this:

label label;

S y n t a c t i c e l e m e n t s 4-19

D e c l a r a t i o n s a n d s t a t e m e n t s

You can declare several labels at once:

label label1, ..., labeln;

A label can be any valid identifier or any numeral between 0 and 9999.

The label declaration, marked statement, and goto statement must belong to the same
block. (See “Blocks and scope” on page 4-27.) Hence it is not possible to jump into or
out of a procedure or function. Do not mark more than one statement in a block with
the same label.

For example,

label StartHere;
ƒ
StartHere: Beep;
goto StartHere;

creates an infinite loop that calls the Beep procedure repeatedly.

The goto statement is generally discouraged in structured programming. It is,
however, sometimes used as a way of exiting from nested loops, as in the following
example.

procedure FindFirstAnswer;
var X, Y, Z, Count: Integer;
label FoundAnAnswer;
begin

Count := SomeConstant;
for X := 1 to Count do

for Y := 1 to Count do
for Z := 1 to Count do
if ... { some condition holds on X, Y, and Z } then

goto FoundAnAnswer;

ƒ {code to execute if no answer is found }
Exit;

FoundAnAnswer:
ƒ { code to execute when an answer is found }

end;

Notice that we are using goto to jump out of a nested loop. Never jump into a loop or
other structured statement, since this can have unpredictable effects.

Structured statements

Structured statements are built from other statements. Use a structured statement
when you want to execute other statements sequentially, conditionally, or
repeatedly.

• A compound or with statement simply executes a sequence of constituent
statements.

• A conditional statement—that is, an if or case statement—executes at most one of
its constituents, depending on specified criteria.

4-20 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r a t i o n s a n d s t a t e m e n t s

• Loop statements—including repeat, while, and for loops—execute a sequence of
constituent statements repeatedly.

• A special group of statements—including raise, try...except, and try...finally
constructions—create and handle exceptions. For information about exception
generation and handling, see “Exceptions” on page 7-26.

Compound statements
A compound statement is a sequence of other (simple or structured) statements to be
executed in the order in which they are written. The compound statement is
bracketed by the reserved words begin and end, and its constituent statements are
separated by semicolons. For example:

begin
Z := X;
X := Y;
Y := Z;

end;

The last semicolon before end is optional. So we could have written this as

begin
Z := X;
X := Y;
Y := Z

end;

Compound statements are essential in contexts where Object Pascal syntax requires a
single statement. In addition to program, function, and procedure blocks, they occur
within other structured statements, such as conditionals or loops. For example:

begin
I := SomeConstant;
while I > 0 do
begin

ƒ
I := I - 1;

end;
end;

You can write a compound statement that contains only a single constituent
statement; like parentheses in a complex term, begin and end sometimes serve to
disambiguate and to improve readability. You can also use an empty compound
statement to create a block that does nothing:

begin
end;

With statements
A with statement is a shorthand for referencing the fields of a record or the fields,
properties, and methods of an object. The syntax of a with statement is

with obj do statement

or

with obj1, ..., objn do statement

S y n t a c t i c e l e m e n t s 4-21

D e c l a r a t i o n s a n d s t a t e m e n t s

where obj is a variable reference denoting an object or record, and statement is any
simple or structured statement. Within statement, you can refer to fields, properties,
and methods of obj using their identifiers alone—without qualifiers.

For example, given the declarations

type TDate = record
Day: Integer;
Month: Integer;
Year: Integer;

end;

var OrderDate: TDate;

you could write the following with statement.

with OrderDate do
if Month = 12 then
begin

Month := 1;
Year := Year + 1;

end
else

Month := Month + 1;

This is equivalent to

if OrderDate.Month = 12 then
begin

OrderDate.Month := 1;
OrderDate.Year := OrderDate.Year + 1;

end
else

OrderDate.Month := OrderDate.Month + 1;

If the interpretation of obj involves indexing arrays or dereferencing pointers, these
actions are performed once, before statement is executed. This makes with statements
efficient as well as concise. It also means that assignments to a variable within
statement cannot affect the interpretation of obj during the current execution of the
with statement.

Each variable reference or method name in a with statement is interpreted, if
possible, as a member of the specified object or record. If there is another variable or
method of the same name that you want to access from the with statement, you need
to prepend it with a qualifier, as in the following example.

with OrderDate do
begin

Year := Unit1.Year
ƒ

end;

When multiple objects or records appear after with, the entire statement is treated
like a series of nested with statements. Thus

with obj1, obj2, ..., objn do statement

4-22 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r a t i o n s a n d s t a t e m e n t s

is equivalent to

with obj1 do
with obj2 do

ƒ

with objn do
statement

In this case, each variable reference or method name in statement is interpreted, if
possible, as a member of objn; otherwise it is interpreted, if possible, as a member of
objn–1; and so forth. The same rule applies to interpreting the objs themselves, so that,
for instance, if objn is a member of both obj1 and obj2, it is interpreted as obj2.objn.

If statements
There are two forms of if statement: if...then and the if...then...else. The syntax of an
if...then statement is

if expression then statement

where expression returns a Boolean value. If expression is True, then statement is
executed; otherwise it is not. For example,

if J <> 0 then Result := I/J;

The syntax of an if...then...else statement is

if expression then statement1 else statement2

where expression returns a Boolean value. If expression is True, then statement1 is
executed; otherwise statement2 is executed. For example,

if J = 0 then
Exit

else
Result := I/J;

The then and else clauses contain one statement each, but it can be a structured
statement. For example,

if J <> 0 then
begin

Result := I/J;
Count := Count + 1;

end
else if Count = Last then

Done := True
else

Exit;

Notice that there is never a semicolon between the then clause and the word else.
You can place a semicolon after an entire if statement to separate it from the next
statement in its block, but the then and else clauses require nothing more than a
space or carriage return between them. Placing a semicolon immediately before else
(in an if statement) is a common programming error.

A special difficulty arises in connection with nested if statements. The problem arises
because some if statements have else clauses while others do not, but the syntax for

S y n t a c t i c e l e m e n t s 4-23

D e c l a r a t i o n s a n d s t a t e m e n t s

the two kinds of statement is otherwise the same. In a series of nested conditionals
where there are fewer else clauses than if statements, it may not seem clear which
else clauses are bound to which ifs. Consider a statement of the form

if expression1 then if expression2 then statement1 else statement2;

There would appear to be two ways to parse this:

if expression1 then [if expression2 then statement1 else statement2];

if expression1 then [if expression2 then statement1] else statement2;

The compiler always parses in the first way. That is, in real code, the statement

if ... { expression1 } then
if ... { expression2 } then

... { statement1 }
else

... { statement2 } ;

is equivalent to

if ... { expression1 } then
begin

if ... { expression2 } then
... { statement1 }

else
... { statement2 }

end;

The rule is that nested conditionals are parsed starting from the innermost
conditional, with each else bound to the nearest available if on its left. To force the
compiler to read our example in the second way, you would have to write it
explicitly as

if ... { expression1 } then
begin

if ... { expression2 } then
... { statement1 }

end
else

... { statement2 } ;

Case statements
The case statement provides a readable alternative to complex nested if conditionals.
A case statement has the form

case selectorExpression of
caseList1: statement1;
ƒ
caseListn: statementn;

end

where selectorExpression is any expression of an ordinal type (string types are invalid)
and each caseList is one of the following:

4-24 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r a t i o n s a n d s t a t e m e n t s

• A numeral, declared constant, or other expression that the compiler can evaluate
without executing your program. It must be of an ordinal type compatible with
selectorExpression. Thus 7, True, 4 + 5 * 3, 'A', and Integer('A') can all be used as
caseLists, but variables and most function calls cannot. (A few built-in functions
like Hi and Lo can occur in a caseList. See “Constant expressions” on page 5-41.)

• A subrange having the form First..Last, where First and Last both satisfy the
criterion above and First is less than or equal to Last.

• A list having the form item1, ..., itemn, where each item satisfies one of the criteria
above.

Each value represented by a caseList must be unique in the case statement; subranges
and lists cannot overlap. A case statement can have a final else clause:

case selectorExpression of
caseList1: statement1;
ƒ
caseListn: statementn;

else
statements;

end

where statements is a semicolon-delimited sequence of statements. When a case
statement is executed, at most one of statement1 ... statementn is executed. Whichever
caseList has a value equal to that of selectorExpression determines the statement to be
used. If none of the caseLists has the same value as selectorExpression, then the
statements in the else clause (if there is one) are executed.

The case statement

case I of
1..5: Caption := 'Low';
6..9: Caption := 'High';
0, 10..99: Caption := 'Out of range';

else
Caption := '';

end;

is equivalent to the nested conditional

if I in [1..5] then
Caption := 'Low'
else if I in [6..10] then

Caption := 'High'
else if (I = 0) or (I in [10..99]) then

Caption := 'Out of range'
else
Caption := '';

Other examples of case statements:

case MyColor of
Red: X := 1;
Green: X := 2;
Blue: X := 3;
Yellow, Orange, Black: X := 0;

S y n t a c t i c e l e m e n t s 4-25

D e c l a r a t i o n s a n d s t a t e m e n t s

end;

case Selection of
Done: Form1.Close;
Compute: CalculateTotal(UnitCost, Quantity);

else
Beep;

end;

Control loops
Loops allow you to execute a sequence of statements repeatedly, using a control
condition or variable to determine when the execution stops. Object Pascal has three
kinds of control loop: repeat statements, while statements, and for statements.

You can use the standard Break and Continue procedures to control the flow of a
repeat, while, or for statement. Break terminates the statement in which it occurs,
while Continue begins executing the next iteration of the sequence. For more
information about these procedures, see the online Help.

Repeat statements
The syntax of a repeat statement is

repeat statement1; ...; statementn; until expression

where expression returns a Boolean value. (The last semicolon before until is
optional.) The repeat statement executes its sequence of constituent statements
continually, testing expression after each iteration. When expression returns True, the
repeat statement terminates. The sequence is always executed at least once because
expression is not evaluated until after the first iteration.

Examples of repeat statements include

repeat
K := I mod J;
I := J;
J := K;

until J = 0;

repeat
Write('Enter a value (0..9): ');
Readln(I);

until (I >= 0) and (I <= 9);

While statements
A while statement is similar to a repeat statement, except that the control condition is
evaluated before the first execution of the statement sequence. Hence, if the condition
is false, the statement sequence is never executed.

The syntax of a while statement is

while expression do statement

where expression returns a Boolean value and statement can be a compound statement.
The while statement executes its constituent statement repeatedly, testing expression
before each iteration. As long as expression returns True, execution continues.

4-26 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r a t i o n s a n d s t a t e m e n t s

Examples of while statements include

while Data[I] <> X do I := I + 1;

while I > 0 do
begin

if Odd(I) then Z := Z * X;
I := I div 2;
X := Sqr(X);

end;

while not Eof(InputFile) do
begin

Readln(InputFile, Line);
Process(Line);

end;

For statements
A for statement, unlike a repeat or while statement, requires you to specify explicitly
the number of iterations you want the loop to go through. The syntax of a for
statement is

for counter := initialValue to finalValue do statement

or

for counter := initialValue downto finalValue do statement

where

• counter is a local variable (declared in the block containing the for statement) of
ordinal type, without any qualifiers.

• initialValue and finalValue are expressions that are assignment-compatible with
counter.

• statement is a simple or structured statement that does not change the value of
counter.

The for statement assigns the value of initialValue to counter, then executes statement
repeatedly, incrementing or decrementing counter after each iteration. (The for...to
syntax increments counter, while the for...downto syntax decrements it.) When
counter returns the same value as finalValue, statement is executed once more and the
for statement terminates. In other words, statement is executed once for every value
in the range from initialValue to finalValue. If initialValue is equal to finalValue,
statement is executed exactly once. If initialValue is greater than finalValue in a for...to
statement, or less than finalValue in a for...downto statement, then statement is never
executed. After the for statement terminates, the value of counter is undefined.

For purposes of controlling execution of the loop, the expressions initialValue and
finalValue are evaluated only once, before the loop begins. Hence the for...to
statement is almost, but not quite, equivalent to this while construction:

begin
counter := initialValue;
while counter <= finalValue do

S y n t a c t i c e l e m e n t s 4-27

B l o c k s a n d s c o p e

begin
statement;
counter := Succ(counter);

end;
end

The difference between this construction and the for...to statement is that the while
loop re-evaluates finalValue before each iteration. This can result in noticeably slower
performance if finalValue is a complex expression, and it also means that changes to
the value of finalValue within statement can affect execution of the loop.

Examples of for statements:

for I := 2 to 63 do
if Data[I] > Max then

Max := Data[I];

for I := ListBox1.Items.Count - 1 downto 0 do
ListBox1.Items[I] := UpperCase(ListBox1.Items[I]);

for I := 1 to 10 do
for J := 1 to 10 do
begin

X := 0;
for K := 1 to 10 do

X := X + Mat1[I, K] * Mat2[K, J];
Mat[I, J] := X;

end;

for C := Red to Blue do Check(C);

Blocks and scope
Declarations and statements are organized into blocks, which define local namespaces
(or scopes) for labels and identifiers. Blocks allow a single identifier, such as a variable
name, to have different meanings in different parts of a program. Each block is part
of the declaration of a program, function, or procedure; each program, function, or
procedure declaration has one block.

Blocks

A block consists of a series of declarations followed by a compound statement. All
declarations must occur together at the beginning of the block. So the form of a block
is

declarations
begin

statements
end

The declarations section can include, in any order, declarations for variables, constants
(including resource strings), types, procedures, functions, and labels. In a program

4-28 O b j e c t P a s c a l L a n g u a g e G u i d e

B l o c k s a n d s c o p e

block, the declarations section can also include one or more exports clauses (see
Chapter 9, “Libraries and packages”).

For example, in a function declaration like

function UpperCase(const S: string): string;
var

Ch: Char;
L: Integer;
Source, Dest: PChar;

begin
ƒ

end;

the first line of the declaration is the function heading and all of the succeeding lines
make up the block. Ch, L, Source, and Dest are local variables; their declarations apply
only to the UpperCase function block and override—in this block only—any
declarations of the same identifiers that may occur in the program block or in the
interface or implementation section of a unit.

Scope

An identifier, such as a variable or function name, can be used only within the scope
of its declaration. The location of a declaration determines its scope. An identifier
declared within the declaration of a program, function, or procedure has a scope
limited to the block in which it is declared. An identifier declared in the interface
section of a unit has a scope that includes any other units or programs that use the
unit where the declaration occurs. Identifiers with narrower scope—especially
identifiers declared in functions and procedures—are sometimes called local, while
identifiers with wider scope are called global.

The rules that determine identifier scope are summarized below.

If the identifier is declared in ... its scope extends ...

the declaration of a program, function, or
procedure

from the point where it is declared to the end of
the current block, including all blocks enclosed
within that scope.

the interface section of a unit from the point where it is declared to the end of
the unit, and to any other unit or program that
uses that unit. (See Chapter 3, “Programs and
units”.)

the implementation section of a unit, but not
within the block of any function or procedure

from the point where it is declared to the end of
the unit. The identifier is available to any
function or procedure in the unit, including the
initialization and finalization sections, if present.

the definition of a record type (that is, the
identifier is the name of a field in the record)

from the point of its declaration to the end of the
record-type definition. (See “Records” on
page 5-21.)

the definition of a class (that is, the identifier is
the name of a data field property or method in
the class)

from the point of its declaration to the end of the
class-type definition, and also includes
descendants of the class and the blocks of all
methods in the class and its descendants. (See
Chapter 7, “Classes and objects”.)

S y n t a c t i c e l e m e n t s 4-29

B l o c k s a n d s c o p e

Naming conflicts
When one block encloses another, the former is called the outer block and the latter the
inner block. If an identifier declared in an outer block is redeclared in an inner block,
the inner declaration overrides the outer one and determines the meaning of the
identifier for the duration of the inner block. For example, if you declare a variable
called MaxValue in the interface section of a unit, and then declare another variable
with the same name in a function declaration within that unit, any unqualified
occurrences of MaxValue in the function block are governed by the second, local
declaration. Similarly, a function declared within another function creates a new,
inner scope in which identifiers used by the outer function can be redeclared locally.

The use of multiple units further complicates the definition of scope. Each unit listed
in a uses clause imposes a new scope that encloses the remaining units used and the
program or unit containing the uses clause. The first unit in a uses clause represents
the outermost scope and each succeeding unit represents a new scope inside the
previous one. If two or more units declare the same identifier in their interface
sections, an unqualified reference to the identifier selects the declaration in the
innermost scope—that is, in the unit where the reference itself occurs, or, if that unit
doesn’t declare the identifier, in the last unit in the uses clause that does declare the
identifier.

The System unit is used automatically by every program or unit. The declarations in
System, along with the predefined types, routines, and constants that the compiler
understands automatically, always have the outermost scope.

You can override these rules of scope and by-pass an inner declaration by using a
qualified identifier (see “Qualified identifiers” on page 4-2) or a with statement (see
“With statements” on page 4-20).

4-30 O b j e c t P a s c a l L a n g u a g e G u i d e

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-1

C h a p t e r

5
Chapter5Data types, variables, and constants

A type is essentially a name for a kind of data. When you declare a variable you must
specify its type, which determines the set of values the variable can hold and the
operations that can be performed on it. Every expression returns data of a particular
type, as does every function. Most functions and procedures require parameters of
specific types.

Object Pascal is a “strongly typed” language, which means that it distinguishes a
variety of data types and does not always allow you to substitute one type for
another. This is usually beneficial because it lets the compiler treat data intelligently
and validate your code more thoroughly, preventing hard-to-diagnose runtime
errors. When you need greater flexibility, however, there are mechanisms to
circumvent strong typing. These include typecasting (see “Typecasts” on page 4-14),
pointers (see “Pointers and pointer types” on page 5-25), variants (see “Variant types”
on page 5-30), variant parts in records (see “Variant parts in records” on page 5-22),
and absolute addressing of variables (see “Absolute addresses” on page 5-38).

About types
There are several ways to categorize Object Pascal data types:

• Some types are predefined (or built-in); the compiler recognizes these automatically,
without the need for a declaration. Almost all of the types documented in this
language reference are predefined. Other types are created by declaration; these
include user-defined types and the types defined in the product libraries.

• Types can be classified as either fundamental or generic. The range and format of a
fundamental type is the same in all implementations of Object Pascal, regardless
of the underlying CPU and operating system. The range and format of a generic
type is platform-specific and could vary across different implementations. Most
predefined types are fundamental, but a handful of integer, character, string, and
pointer types are generic. It’s a good idea to use generic types when possible, since
they provide optimal performance and portability. However, changes in storage

5-2 O b j e c t P a s c a l L a n g u a g e G u i d e

S i m p l e t y p e s

format from one implementation of a generic type to the next could cause
compatibility problems—for example, if you are streaming data to a file.

• Types can be classified as simple, string, structured, pointer, procedural, or variant. In
addition, type identifiers themselves can be regarded as belonging to a special
“type” because they can be passed as parameters to certain functions (such as
High, Low, and SizeOf).

The outline below shows the taxonomy of Object Pascal data types.

simple
ordinal

integer
character
Boolean
enumerated
subrange

real
string
structured

set
array
record
file
class
class reference
interface

pointer
procedural
variant
type identifier

The standard function SizeOf operates on all variables and type identifiers. It returns
an integer representing the amount of memory (in bytes) used to store data of the
specified type. For example, SizeOf(Longint) returns 4, since a Longint variable uses
four bytes of memory.

Type declarations are illustrated in the sections that follow. For general information
about type declarations, see “Declaring types” on page 5-36.

Simple types
Simple types, which include ordinal types and real types, define ordered sets of
values.

Ordinal types

Ordinal types include integer, character, Boolean, enumerated, and subrange types. An
ordinal type defines an ordered set of values in which each value except the first has

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-3

S i m p l e t y p e s

a unique predecessor and each value except the last has a unique successor. Further,
each value has an ordinality which determines the ordering of the type. In most cases,
if a value has ordinality n, its predecessor has ordinality n–1 and its successor has
ordinality n+1.

• For integer types, the ordinality of a value is the value itself.
• Subrange types maintain the ordinalities of their base types.
• For other ordinal types, by default the first value has ordinality 0, the next value

has ordinality 1, and so forth. The declaration of an enumerated type can explicitly
override this default.

Several predefined functions operate on ordinal values and type identifiers. The most
important of them are summarized below.

For example, High(Byte) returns 255 because the highest value of type Byte is 255, and
Succ(2) returns 3 because 3 is the successor of 2.

The standard procedures Inc and Dec increment and decrement the value of an
ordinal variable. For example, Inc(I) is equivalent to I := Succ(I) and, if I is an
integer variable, to I := I + 1.

Integer types
An integer type represents a subset of the whole numbers. The generic integer types
are Integer and Cardinal; use these whenever possible, since they result in the best
performance for the underlying CPU and operating system. The table below gives
their ranges and storage formats for the current 32-bit Object Pascal compiler.

Function Parameter Return value Remarks

Ord ordinal expression ordinality of expression’s
value

Does not take Int64
arguments.

Pred ordinal expression predecessor of expression’s
value

Do not use on properties
that have a write procedure.

Succ ordinal expression successor of expression’s
value

Do not use on properties
that have a write procedure.

High ordinal type identifier or
variable of ordinal type

highest value in type Also operates on short-string
types and arrays.

Low ordinal type identifier or
variable of ordinal type

lowest value in type Also operates on short-string
types and arrays.

Table 5.1 Generic integer types for 32-bit implementations of Object Pascal

Type Range Format

Integer –2147483648..2147483647 signed 32-bit

Cardinal 0..4294967295 unsigned 32-bit

5-4 O b j e c t P a s c a l L a n g u a g e G u i d e

S i m p l e t y p e s

Fundamental integer types include Shortint, Smallint, Longint, Int64, Byte, Word, and
Longword.

In general, arithmetic operations on integers return a value of type Integer—which, in
its current implementation, is equivalent to the 32-bit Longint. Operations return a
value of type Int64 only when performed on an Int64 operand. Hence the following
code produces incorrect results.

var
I: Integer;
J: Int64;
ƒ

I := High(Integer);
J := I + 1;

To get an Int64 return value in this situation, cast I as Int64:

ƒ
J := Int64(I) + 1;

For more information, see “Arithmetic operators” on page 4-6.

Note Most standard routines that take integer arguments truncate Int64 values to 32 bits.
However, the High, Low, Succ, Pred, Inc, Dec, IntToStr, and IntToHex routines fully
support Int64 arguments. Also, the Round, Trunc, StrToInt64, and StrToInt64Def
functions return Int64 values. A few routines—including Ord—cannot take Int64
values at all.

When you increment the last value or decrement the first value of an integer type, the
result wraps around the beginning or end of the range. For example, the Shortint type
has the range –128..127; hence, after execution of the code

var I: Shortint;
ƒ

I := High(Shortint);
I := I + 1;

the value of I is –128. If compiler range-checking is enabled, however, this code
generates a runtime error.

Table 5.2 Fundamental integer types

Type Range Format

Shortint –128..127 signed 8-bit

Smallint –32768..32767 signed 16-bit

Longint –2147483648..2147483647 signed 32-bit

Int64 –263..263–1 signed 64-bit

Byte 0..255 unsigned 8-bit

Word 0..65535 unsigned 16-bit

Longword 0..4294967295 unsigned 32-bit

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-5

S i m p l e t y p e s

Character types
The fundamental character types are AnsiChar and WideChar. AnsiChar values are
byte-sized (8-bit) characters ordered according to the locale character set which is
possibly multibyte. AnsiChar was originally modeled after the ANSI character set
(thus its name) but has now been broadened to refer to the current locale character
set.

WideChar characters use more than one byte to represent every character. In the
current implementations, WideChar is word-sized (16-bit) characters ordered
according to the Unicode character set (note that it could be longer in future
implementations). The first 256 Unicode characters correspond to the ANSI
characters.

The generic character type is Char, which is equivalent to AnsiChar. Because the
implementation of Char is subject to change, it’s a good idea to use the standard
function SizeOf rather than a hard-coded constant when writing programs that may
need to handle characters of different sizes.

A string constant of length 1, such as 'A', can denote a character value. The
predefined function Chr returns the character value for any integer in the range of
AnsiChar or WideChar; for example, Chr(65) returns the letter A.

Character values, like integers, wrap around when decremented or incremented past
the beginning or end of their range (unless range-checking is enabled). For example,
after execution of the code

var
Letter: Char;
I: Integer;

begin
Letter := High(Letter);
for I := 1 to 66 do

Inc(Letter);
end;

Letter has the value A (ASCII 65).

For more information about Unicode characters, see “About extended character sets”
on page 5-13 and “Working with null-terminated strings” on page 5-13.

Boolean types
The four predefined Boolean types are Boolean, ByteBool, WordBool, and LongBool.
Boolean is the preferred type. The others exist to provide compatibility with other
languages and operating system libraries.

A Boolean variable occupies one byte of memory, a ByteBool variable also occupies
one byte, a WordBool variable occupies two bytes (one word), and a LongBool variable
occupies four bytes (two words).

5-6 O b j e c t P a s c a l L a n g u a g e G u i d e

S i m p l e t y p e s

Boolean values are denoted by the predefined constants True and False. The
following relationships hold.

A value of type ByteBool, LongBool, or WordBool is considered True when its ordinality
is nonzero. If such a value appears in a context where a Boolean is expected, the
compiler automatically converts any value of nonzero ordinality to True.

The remarks above refer to the ordinality of Boolean values—not to the values
themselves. In Object Pascal, Boolean expressions cannot be equated with integers or
reals. Hence, if X is an integer variable, the statement

if X then ...;

generates a compilation error. Casting the variable to a Boolean type is unreliable,
but each of the following alternatives will work.

if X <> 0 then ...; { use longer expression that returns Boolean value }

var OK: Boolean { use Boolean variable }
ƒ

if X <> 0 then OK := True;
if OK then ...;

Enumerated types
An enumerated type defines an ordered set of values by simply listing identifiers that
denote these values. The values have no inherent meaning. To declare an
enumerated type, use the syntax

type typeName = (val1, ..., valn)

where typeName and each val are valid identifiers. For example, the declaration

type Suit = (Club, Diamond, Heart, Spade);

defines an enumerated type called Suit whose possible values are Club, Diamond,
Heart, and Spade, where Ord(Club) returns 0, Ord(Diamond) returns 1, and so forth.

When you declare an enumerated type, you are declaring each val to be a constant of
type typeName. If the val identifiers are used for another purpose within the same
scope, naming conflicts occur. For example, suppose you declare the type

type TSound = (Click, Clack, Clock);

Unfortunately, Click is also the name of a method defined for TControl and all of the
objects in the VCL and/or CLX that descend from it. So if you’re writing an
application and you create an event handler like

Boolean ByteBool, WordBool, LongBool

False < True False <> True

Ord(False) = 0 Ord(False) = 0

Ord(True) = 1 Ord(True) <> 0

Succ(False) = True Succ(False) = True

Pred(True) = False Pred(False) = True

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-7

S i m p l e t y p e s

procedure TForm1.DBGrid1Enter(Sender: TObject);
var Thing: TSound;
begin

ƒ
Thing := Click;
ƒ

end;

you’ll get a compilation error; the compiler interprets Click within the scope of the
procedure as a reference to TForm’s Click method. You can work around this by
qualifying the identifier; thus, if TSound is declared in MyUnit, you would use

Thing := MyUnit.Click;

A better solution, however, is to choose constant names that are not likely to conflict
with other identifiers. Examples:

type
TSound = (tsClick, tsClack, tsClock);
TMyColor = (mcRed, mcBlue, mcGreen, mcYellow, mcOrange);
Answer = (ansYes, ansNo, ansMaybe);

You can use the (val1, ..., valn) construction directly in variable declarations, as if it
were a type name:

var MyCard: (Club, Diamond, Heart, Spade);

But if you declare MyCard this way, you can’t declare another variable within the
same scope using these constant identifiers. Thus

var Card1: (Club, Diamond, Heart, Spade);
var Card2: (Club, Diamond, Heart, Spade);

generates a compilation error. But

var Card1, Card2: (Club, Diamond, Heart, Spade);

compiles cleanly, as does

type Suit = (Club, Diamond, Heart, Spade);
var

Card1: Suit;
Card2: Suit;

Enumerated types with explicitly assigned ordinality
By default, the ordinalities of enumerated values start from 0 and follow the
sequence in which their identifiers are listed in the type declaration. You can override
this by explicitly assigning ordinalities to some or all of the values in the declaration.
To assign an ordinality to a value, follow its identifier with = constantExpression,
where constantExpression is a constant expression that evaluates to an integer. (See
“Constant expressions” on page 5-41) For example,

type Size = (Small = 5, Medium = 10, Large = Small + Medium);

defines a type called Size whose possible values include Small, Medium, and Large,
where Ord(Small) returns 5, Ord(Medium) returns 10, and Ord(Large) returns 15.

An enumerated type is, in effect, a subrange whose lowest and highest values
correspond to the lowest and highest ordinalities of the constants in the declaration.

5-8 O b j e c t P a s c a l L a n g u a g e G u i d e

S i m p l e t y p e s

In the example above, the Size type has 11 possible values whose ordinalities range
from 5 to 15. (Hence the type array[Size] of Char represents an array of 11 characters.)
Only three of these values have names, but the others are accessible through
typecasts and through routines such as Pred, Succ, Inc, and Dec. In the following
example, “anonymous” values in the range of Size are assigned to the variable X.

var X: Size;
X := Small; // Ord(X) = 5
X := Size(6); // Ord(X) = 6
Inc(X); // Ord(X) = 7

Any value that isn’t explicitly assigned an ordinality has ordinality one greater than
that of the previous value in the list. If the first value isn’t assigned an ordinality, its
ordinality is 0. Hence, given the declaration

type SomeEnum = (e1, e2, e3 = 1);

SomeEnum has only two possible values: Ord(e1) returns 0, Ord(e2) returns 1, and
Ord(e3) also returns 1; because e2 and e3 have the same ordinality, they represent the
same value.

Subrange types
A subrange type represents a subset of the values in another ordinal type (called the
base type). Any construction of the form Low..High, where Low and High are constant
expressions of the same ordinal type and Low is less than High, identifies a subrange
type that includes all values between Low and High. For example, if you declare the
enumerated type

type TColors = (Red, Blue, Green, Yellow, Orange, Purple, White, Black);

you can then define a subrange type like

type TMyColors = Green..White;

Here TMyColors includes the values Green, Yellow, Orange, Purple, and White.

You can use numeric constants and characters (string constants of length 1) to define
subrange types:

type
SomeNumbers = -128..127;
Caps = 'A'..'Z';

When you use numeric or character constants to define a subrange, the base type is
the smallest integer or character type that contains the specified range.

The Low..High construction itself functions as a type name, so you can use it directly
in variable declarations. For example,

var SomeNum: 1..500;

declares an integer variable whose value can be anywhere in the range from 1 to 500.

The ordinality of each value in a subrange is preserved from the base type. (In the
first example above, if Color is a variable that holds the value Green, Ord(Color) returns
2 regardless of whether Color is of type TColors or TMyColors.) Values do not wrap
around the beginning or end of a subrange, even if the base is an integer or character

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-9

S i m p l e t y p e s

type; incrementing or decrementing past the boundary of a subrange simply converts
the value to the base type. Hence, while

type Percentile = 0..99;
var I: Percentile;
ƒ
I := 100;

produces an error,

ƒ
I := 99;
Inc(I);

assigns the value 100 to I (unless compiler range-checking is enabled).

The use of constant expressions in subrange definitions introduces a syntactic
difficulty. In any type declaration, when the first meaningful character after = is a left
parenthesis, the compiler assumes that an enumerated type is being defined. Hence
the code

const
X = 50;
Y = 10;

type
Scale = (X - Y) * 2..(X + Y) * 2;

produces an error. Work around this problem by rewriting the type declaration to
avoid the leading parenthesis:

type
Scale = 2 * (X - Y)..(X + Y) * 2;

Real types

A real type defines a set of numbers that can be represented with floating-point
notation. The table below gives the ranges and storage formats for the fundamental
real types.

Table 5.3 Fundamental real types

Type Range Significant digits Size in bytes

Real48 2.9 x 10–39 .. 1.7 x 1038 11–12 6

Single 1.5 x 10–45 .. 3.4 x 1038 7–8 4

Double 5.0 x 10–324 .. 1.7 x 10308 15–16 8

Extended 3.6 x 10–4951 .. 1.1 x 104932 19–20 10

Comp –263+1 .. 263 –1 19–20 8

Currency –922337203685477.5808.. 922337203685477.5807 19–20 8

5-10 O b j e c t P a s c a l L a n g u a g e G u i d e

S t r i n g t y p e s

The generic type Real, in its current implementation, is equivalent to Double.

Note The six-byte Real48 type was called Real in earlier versions of Object Pascal. If you are
recompiling code that uses the older, six-byte Real type, you may want to change it to
Real48. You can also use the {$REALCOMPATIBILITY ON} compiler directive to
turn Real back into the six-byte type.

The following remarks apply to fundamental real types.

• Real48 is maintained for backward compatibility. Since its storage format is not
native to the Intel CPU family, it results in slower performance than other floating-
point types.

• Extended offers greater precision than other real types but is less portable. Be
careful using Extended if you are creating data files to share across platforms.

• The Comp (computational) type is native to the Intel CPU and represents a 64-bit
integer. It is classified as a real, however, because it does not behave like an
ordinal type. (For example, you cannot increment or decrement a Comp value.)
Comp is maintained for backward compatibility only. Use the Int64 type for better
performance.

• Currency is a fixed-point data type that minimizes rounding errors in monetary
calculations. It is stored as a scaled 64-bit integer with the four least-significant
digits implicitly representing decimal places. When mixed with other real types in
assignments and expressions, Currency values are automatically divided or
multiplied by 10000.

String types
A string represents a sequence of characters. Object Pascal supports the following
predefined string types.

AnsiString, sometimes called the long string, is the preferred type for most purposes.

String types can be mixed in assignments and expressions; the compiler
automatically performs required conversions. But strings passed by reference to a

Table 5.4 Generic real types

Type Range Significant digits Size in bytes

Real 5.0 x 10–324 .. 1.7 x 10308 15–16 8

Table 5.5 String types

Type Maximum length Memory required Used for

ShortString 255 characters 2 to 256 bytes backward compatibility

AnsiString ~231 characters 4 bytes to 2GB 8-bit (ANSI) characters

WideString ~230 characters 4 bytes to 2GB Unicode characters;
multiuser servers and multi-
language applications

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-11

S t r i n g t y p e s

function or procedure (as var and out parameters) must be of the appropriate type.
Strings can be explicitly cast to a different string type (see “Typecasts” on page 4-14).

The reserved word string functions like a generic type identifier. For example,

var S: string;

creates a variable S that holds a string. In the default {$H+} state, the compiler
interprets string (when it appears without a bracketed number after it) as AnsiString.
Use the {$H–} directive to turn string into ShortString.

The standard function Length returns the number of characters in a string. The
SetLength procedure adjusts the length of a string. See the online Help for details.

Comparison of strings is defined by the ordering of the characters in corresponding
positions. Between strings of unequal length, each character in the longer string
without a corresponding character in the shorter string takes on a greater-than value.
For example, “AB” is greater than “A”; that is, 'AB' > 'A' returns True. Zero-length
strings hold the lowest values.

You can index a string variable just as you would an array. If S is a string variable
and i an integer expression, S[i] represents the ith character—or, strictly speaking,
the ith byte—in S. For a ShortString or AnsiString, S[i] is of type AnsiChar; for a
WideString, S[i] is of type WideChar. The statement MyString[2] := 'A'; assigns the
value A to the second character of MyString. The following code uses the standard
UpCase function to convert MyString to uppercase.

var I: Integer;
begin

I := Length(MyString);
while I > 0 do
begin

MyString[I] := UpCase(MyString[I]);
I := I - 1;

end;
end;

Be careful indexing strings in this way, since overwriting the end of a string can cause
access violations. Also, avoid passing long-string indexes as var parameters, because
this results in inefficient code.

You can assign the value of a string constant—or any other expression that returns a
string—to a variable. The length of the string changes dynamically when the
assignment is made. Examples:

MyString := 'Hello world!';
MyString := 'Hello ' + 'world';
MyString := MyString + '!';
MyString := ' '; { space }
MyString := ''; { empty string }

For more information, see “Character strings” on page 4-4 and “String operators” on
page 4-9.

5-12 O b j e c t P a s c a l L a n g u a g e G u i d e

S t r i n g t y p e s

Short strings

A ShortString is 0 to 255 characters long. While the length of a ShortString can change
dynamically, its memory is a statically allocated 256 bytes; the first byte stores the
length of the string, and the remaining 255 bytes are available for characters. If S is a
ShortString variable, Ord(S[0]), like Length(S), returns the length of S; assigning a
value to S[0], like calling SetLength, changes the length of S. ShortString uses 8-bit
ANSI characters and is maintained for backward compatibility only.

Object Pascal supports short-string types—in effect, subtypes of ShortString—whose
maximum length is anywhere from 0 to 255 characters. These are denoted by a
bracketed numeral appended to the reserved word string. For example,

var MyString: string[100];

creates a variable called MyString whose maximum length is 100 characters. This is
equivalent to the declarations

type CString = string[100];
var MyString: CString;

Variables declared in this way allocate only as much memory as the type requires—
that is, the specified maximum length plus one byte. In our example, MyString uses
101 bytes, as compared to 256 bytes for a variable of the predefined ShortString type.

When you assign a value to a short-string variable, the string is truncated if it exceeds
the maximum length for the type.

The standard functions High and Low operate on short-string type identifiers and
variables. High returns the maximum length of the short-string type, while Low
returns zero.

Long strings

AnsiString, also called a long string, represents a dynamically allocated string whose
maximum length is limited only by available memory. It uses 8-bit ANSI characters.

A long-string variable is a pointer occupying four bytes of memory. When the
variable is empty—that is, when it contains a zero-length string—the pointer is nil
and the string uses no additional storage. When the variable is nonempty, it points to
a dynamically allocated block of memory that contains the string value, a 32-bit
length indicator, and a 32-bit reference count. This memory is allocated on the heap,
but its management is entirely automatic and requires no user code.

Because long-string variables are pointers, two or more of them can reference the
same value without consuming additional memory. The compiler exploits this to
conserve resources and execute assignments faster. Whenever a long-string variable
is destroyed or assigned a new value, the reference count of the old string (the
variable’s previous value) is decremented and the reference count of the new value
(if there is one) is incremented; if the reference count of a string reaches zero, its
memory is deallocated. This process is called reference-counting. When indexing is
used to change the value of a single character in a string, a copy of the string is made
if—but only if—its reference count is greater than one. This is called copy-on-write
semantics.

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-13

S t r i n g t y p e s

WideString

The WideString type represents a dynamically allocated string of 16-bit Unicode
characters. In most respects it is similar to AnsiString.

On Win32, WideString is compatible with the COM BSTR type. Borland development
tools have support features that convert AnsiString values to WideString, but you may
need to explicitly cast or convert your strings to WideString.

About extended character sets
Windows and Linux both support single-byte and multibyte character sets as well as
Unicode. With a single-byte character set (SBCS), each byte in a string represents one
character. The ANSI character set used by many Western operating systems is a
single-byte character set.

In a multibyte character set (MBCS), some characters are represented by one byte and
others by more than one byte. The first byte of a multibyte character is called the lead
byte. In general, the lower 128 characters of a multibyte character set map to the 7-bit
ASCII characters, and any byte whose ordinal value is greater than 127 is the lead
byte of a multibyte character. Only single-byte characters can contain the null value
(#0). Multibyte character sets—especially double-byte character sets (DBCS)—are
widely used for Asian languages, while the UTF-8 character set used by Linux is a
multibyte encoding of Unicode.

In the Unicode character set, each character is represented by two bytes. Thus a
Unicode string is a sequence not of individual bytes but of two-byte words. Unicode
characters and strings are also called wide characters and wide character strings. The
first 256 Unicode characters map to the ANSI character set. The Windows operating
system supports Unicode (UCS-2). The Linux operating system supports UCS-4, a
superset of UCS-2. Delphi/Kylix supports UCS-2 on both platforms.

Object Pascal supports single-byte and multibyte characters and strings through the
Char, PChar, AnsiChar, PAnsiChar, and AnsiString types. Indexing of multibyte strings
is not reliable, since S[i] represents the ith byte (not necessarily the ith character) in S.
However, the standard string-handling functions have multibyte-enabled
counterparts that also implement locale-specific ordering for characters. (Names of
multibyte functions usually start with Ansi-. For example, the multibyte version of
StrPos is AnsiStrPos.) Multibyte character support is operating-system dependent and
based on the current locale.

Object Pascal supports Unicode characters and strings through the WideChar,
PWideChar, and WideString types.

Working with null-terminated strings

Many programming languages, including C and C++, lack a dedicated string data
type. These languages, and environments that are built with them, rely on null-
terminated strings. A null-terminated string is a zero-based array of characters that
ends with NULL (#0); since the array has no length indicator, the first NULL
character marks the end of the string. You can use Object Pascal constructions and

5-14 O b j e c t P a s c a l L a n g u a g e G u i d e

S t r i n g t y p e s

special routines in the SysUtils unit (see Chapter 8, “Standard routines and I/O”) to
handle null-terminated strings when you need to share data with systems that use
them.

For example, the following type declarations could be used to store null-terminated
strings.

type
TIdentifier = array[0..15] of Char;
TFileName = array[0..259] of Char;
TMemoText = array[0..1023] of WideChar;

With extended syntax enabled ({$X+}), you can assign a string constant to a statically
allocated zero-based character array. (Dynamic arrays won’t work for this purpose.)
If you initialize an array constant with a string that is shorter than the declared length
of the array, the remaining characters are set to #0. For more information about
arrays, see “Arrays” on page 5-18.

Using pointers, arrays, and string constants
To manipulate null-terminated strings, it is often necessary to use pointers. (See
“Pointers and pointer types” on page 5-25.) String constants are assignment-
compatible with the PChar and PWideChar types, which represent pointers to null-
terminated arrays of Char and WideChar values. For example,

var P: PChar;
ƒ

P := 'Hello world!';

points P to an area of memory that contains a null-terminated copy of “Hello world!”
This is equivalent to

const TempString: array[0..12] of Char = 'Hello world!'#0;
var P: PChar;
ƒ

P := @TempString;

You can also pass string constants to any function that takes value or const
parameters of type PChar or PWideChar—for example StrUpper('Hello world!'). As
with assignments to a PChar, the compiler generates a null-terminated copy of the
string and gives the function a pointer to that copy. Finally, you can initialize PChar
or PWideChar constants with string literals, alone or in a structured type. Examples:

const
Message: PChar = 'Program terminated';

Prompt: PChar = 'Enter values: ';
Digits: array[0..9] of PChar = (

'Zero', 'One', 'Two', 'Three', 'Four',
'Five', 'Six', 'Seven', 'Eight', 'Nine');

Zero-based character arrays are compatible with PChar and PWideChar. When you
use a character array in place of a pointer value, the compiler converts the array to a
pointer constant whose value corresponds to the address of the first element of the
array. For example,

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-15

S t r i n g t y p e s

var
MyArray: array[0..32] of Char;
MyPointer: PChar;

begin
MyArray := 'Hello';
MyPointer := MyArray;
SomeProcedure(MyArray);
SomeProcedure(MyPointer);

end;

This code calls SomeProcedure twice with the same value.

A character pointer can be indexed as if it were an array. In the example above,
MyPointer[0] returns H. The index specifies an offset added to the pointer before it is
dereferenced. (For PWideChar variables, the index is automatically multiplied by
two.) Thus, if P is a character pointer, P[0] is equivalent to P^ and specifies the first
character in the array, P[1] specifies the second character in the array, and so forth;
P[-1] specifies the “character” immediately to the left of P[0]. The compiler performs no
range checking on these indexes.

The StrUpper function illustrates the use of pointer indexing to iterate through a null-
terminated string:

function StrUpper(Dest, Source: PChar; MaxLen: Integer): PChar;
var

I: Integer;
begin

I := 0;
while (I < MaxLen) and (Source[I] <> #0) do
begin

Dest[I] := UpCase(Source[I]);
Inc(I);

end;
Dest[I] := #0;
Result := Dest;

end;

Mixing Pascal strings and null-terminated strings
You can mix long strings (AnsiString values) and null-terminated strings (PChar
values) in expressions and assignments, and you can pass PChar values to functions
or procedures that take long-string parameters. The assignment S := P, where S is a
string variable and P is a PChar expression, copies a null-terminated string into a long
string.

In a binary operation, if one operand is a long string and the other a PChar, the PChar
operand is converted to a long string.

You can cast a PChar value as a long string. This is useful when you want to perform
a string operation on two PChar values. For example,

S := string(P1) + string(P2);

5-16 O b j e c t P a s c a l L a n g u a g e G u i d e

S t r u c t u r e d t y p e s

You can also cast a long string as a null-terminated string. The following rules apply.

• If S is a long-string expression, PChar(S) casts S as a null-terminated string; it
returns a pointer to the first character in S.

On Windows: For example, if Str1 and Str2 are long strings, you could call the
Win32 API MessageBox function like this:

MessageBox(0, PChar(Str1), PChar(Str2), MB_OK);

(The declaration of MessageBox is in the Windows interface unit.)

On Linux: For example, if Str is a long string, you could call the opendir system
function like this:

opendir(PChar(Str));

(The declaration of opendir is in the Libc interface unit.)

• You can also use Pointer(S) to cast a long string to an untyped pointer. But if S is
empty, the typecast returns nil.

• When you cast a long-string variable to a pointer, the pointer remains valid until
the variable is assigned a new value or goes out of scope. If you cast any other
long-string expression to a pointer, the pointer is valid only within the statement
where the typecast is performed.

• When you cast a long-string expression to a pointer, the pointer should usually be
considered read-only. You can safely use the pointer to modify the long string
only when all of the following conditions are satisfied.

• The expression cast is a long-string variable.

• The string is not empty.

• The string is unique—that is, has a reference count of one. To guarantee that the
string is unique, call the SetLength, SetString, or UniqueString procedure.

• The string has not been modified since the typecast was made.

• The characters modified are all within the string. Be careful not to use an out-of-
range index on the pointer.

The same rules apply when mixing WideString values with PWideChar values.

Structured types
Instances of a structured type hold more than one value. Structured types include
sets, arrays, records, and files as well as class, class-reference, and interface types. (For
information about class and class-reference types, see Chapter 7, “Classes and
objects”. For information about interfaces, see Chapter 10, “Object interfaces”.)
Except for sets, which hold ordinal values only, structured types can contain other
structured types; a type can have unlimited levels of structuring.

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-17

S t r u c t u r e d t y p e s

By default, the values in a structured type are aligned on word or double-word
boundaries for faster access. When you declare a structured type, you can include the
reserved word packed to implement compressed data storage. For example,

type TNumbers = packed array[1..100] of Real;

Using packed slows data access and, in the case of a character array, affects type
compatibility. For more information, see Chapter 11, “Memory management”.

Sets

A set is a collection of values of the same ordinal type. The values have no inherent
order, nor is it meaningful for a value to be included twice in a set.

The range of a set type is the power set of a specific ordinal type, called the base type;
that is, the possible values of the set type are all the subsets of the base type,
including the empty set. The base type can have no more than 256 possible values,
and their ordinalities must fall between 0 and 255. Any construction of the form

set of baseType

where baseType is an appropriate ordinal type, identifies a set type.

Because of the size limitations for base types, set types are usually defined with
subranges. For example, the declarations

type
TSomeInts = 1..250;
TIntSet = set of TSomeInts;

create a set type called TIntSet whose values are collections of integers in the range
from 1 to 250. You could accomplish the same thing with

type TIntSet = set of 1..250;

Given this declaration, you can create a sets like this:

var Set1, Set2: TIntSet;
ƒ

Set1 := [1, 3, 5, 7, 9];
Set2 := [2, 4, 6, 8, 10]

You can also use the set of ... construction directly in variable declarations:

var MySet: set of 'a'..'z';
ƒ

MySet := ['a','b','c'];

Other examples of set types include

set of Byte
set of (Club, Diamond, Heart, Spade)
set of Char;

The in operator tests set membership:

if 'a' in MySet then ... { do something } ;

Every set type can hold the empty set, denoted by []. For more information about
sets, see “Set constructors” on page 4-13 and “Set operators” on page 4-10.

5-18 O b j e c t P a s c a l L a n g u a g e G u i d e

S t r u c t u r e d t y p e s

Arrays

An array represents an indexed collection of elements of the same type (called the
base type). Because each element has a unique index, arrays, unlike sets, can
meaningfully contain the same value more than once. Arrays can be allocated
statically or dynamically.

Static arrays
Static array types are denoted by constructions of the form

array[indexType1, ..., indexTypen] of baseType

where each indexType is an ordinal type whose range does not exceed 2GB. Since the
indexTypes index the array, the number of elements an array can hold is limited by
the product of the sizes of the indexTypes. In practice, indexTypes are usually integer
subranges.

In the simplest case of a one-dimensional array, there is only a single indexType. For
example,

var MyArray: array[1..100] of Char;

declares a variable called MyArray that holds an array of 100 character values. Given
this declaration, MyArray[3] denotes the third character in MyArray. If you create a
static array but don’t assign values to all its elements, the unused elements are still
allocated and contain random data; they are like uninitialized variables.

A multidimensional array is an array of arrays. For example,

type TMatrix = array[1..10] of array[1..50] of Real;

is equivalent to

type TMatrix = array[1..10, 1..50] of Real;

Whichever way TMatrix is declared, it represents an array of 500 real values. A
variable MyMatrix of type TMatrix can be indexed like this: MyMatrix[2,45]; or like
this: MyMatrix[2][45]. Similarly,

packed array[Boolean,1..10,TShoeSize] of Integer;

is equivalent to

packed array[Boolean] of packed array[1..10] of packed array[TShoeSize] of Integer;

The standard functions Low and High operate on array type identifiers and variables.
They return the low and high bounds of the array’s first index type. The standard
function Length returns the number of elements in the array’s first dimension.

A one-dimensional, packed, static array of Char values is called a packed string.
Packed-string types are compatible with string types and with other packed-string
types that have the same number of elements. See “Type compatibility and identity”
on page 5-34.

An array type of the form array[0..x] of Char is called a zero-based character array.
Zero-based character arrays are used to store null-terminated strings and are
compatible with PChar values. See “Working with null-terminated strings” on
page 5-13.

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-19

S t r u c t u r e d t y p e s

Dynamic arrays
Dynamic arrays do not have a fixed size or length. Instead, memory for a dynamic
array is reallocated when you assign a value to the array or pass it to the SetLength
procedure. Dynamic-array types are denoted by constructions of the form

array of baseType

For example,

var MyFlexibleArray: array of Real;

declares a one-dimensional dynamic array of reals. The declaration does not allocate
memory for MyFlexibleArray. To create the array in memory, call SetLength. For
example, given the declaration above,

SetLength(MyFlexibleArray, 20);

allocates an array of 20 reals, indexed 0 to 19. Dynamic arrays are always integer-
indexed, always starting from 0.

Dynamic-array variables are implicitly pointers and are managed by the same
reference-counting technique used for long strings. To deallocate a dynamic array,
assign nil to a variable that references the array or pass the variable to Finalize; either
of these methods disposes of the array, provided there are no other references to it.
Dynamic arrays of length 0 have the value nil. Do not apply the dereference operator
(^) to a dynamic-array variable or pass it to the New or Dispose procedure.

If X and Y are variables of the same dynamic-array type, X := Y points X to the same
array as Y. (There is no need to allocate memory for X before performing this
operation.) Unlike strings and static arrays, dynamic arrays are not automatically
copied before they are written to. For example, after this code executes—

var
A, B: array of Integer;

begin
SetLength(A, 1);
A[0] := 1;
B := A;
B[0] := 2;

end;

—the value of A[0] is 2. (If A and B were static arrays, A[0] would still be 1.)

Assigning to a dynamic-array index (for example, MyFlexibleArray[2] := 7) does not
reallocate the array. Out-of-range indexes are not reported at compile time.

When dynamic-array variables are compared, their references are compared, not
their array values. Thus, after execution of the code

var
A, B: array of Integer;

begin
SetLength(A, 1);
SetLength(B, 1);
A[0] := 2;
B[0] := 2;

end;

A = B returns False but A[0] = B[0] returns True.

5-20 O b j e c t P a s c a l L a n g u a g e G u i d e

S t r u c t u r e d t y p e s

To truncate a dynamic array, pass it to SetLength or Copy and assign the result back to
the array variable. (The SetLength procedure is usually faster.) For example, if A is a
dynamic array, A := SetLength(A, 0, 20) truncates all but the first 20 elements of A.

Once a dynamic array has been allocated, you can pass it to the standard functions
Length, High, and Low. Length returns the number of elements in the array, High
returns the array’s highest index (that is, Length–1), and Low returns 0. In the case of a
zero-length array, High returns –1 (with the anomalous consequence that High <
Low).

Note In some function and procedure declarations, array parameters are represented as
array of baseType, without any index types specified. For example,

function CheckStrings(A: array of string): Boolean;

This indicates that the function operates on all arrays of the specified base type,
regardless of their size, how they are indexed, or whether they are allocated statically
or dynamically. See “Open array parameters” on page 6-15.

Multidimensional dynamic arrays
To declare multidimensional dynamic arrays, use iterated array of ... constructions.
For example,

type TMessageGrid = array of array of string;
var Msgs: TMessageGrid;

declares a two-dimensional array of strings. To instantiate this array, call SetLength
with two integer arguments. For example, if I and J are integer-valued variables,

SetLength(Msgs,I,J);

allocates an I-by-J array, and Msgs[0,0] denotes an element of that array.

You can create multidimensional dynamic arrays that are not rectangular. The first
step is to call SetLength, passing it parameters for the first n dimensions of the array.
For example,

var Ints: array of array of Integer;
SetLength(Ints,10);

allocates ten rows for Ints but no columns. Later, you can allocate the columns one at
a time (giving them different lengths); for example

SetLength(Ints[2], 5);

makes the third column of Ints five integers long. At this point (even if the other
columns haven’t been allocated) you can assign values to the third column—for
example, Ints[2,4] := 6.

The following example uses dynamic arrays (and the IntToStr function declared in
the SysUtils unit) to create a triangular matrix of strings.

var
A : array of array of string;
I, J : Integer;

begin
SetLength(A, 10);
for I := Low(A) to High(A) do

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-21

S t r u c t u r e d t y p e s

begin
SetLength(A[I], I);
for J := Low(A[I]) to High(A[I]) do

A[I,J] := IntToStr(I) + ',' + IntToStr(J) + ' ';
end;

end;

Array types and assignments
Arrays are assignment-compatible only if they are of the same type. Because Pascal
uses name-equivalence for types, the following code will not compile.

var
Int1: array[1..10] of Integer;
Int2: array[1..10] of Integer;
ƒ

Int1 := Int2;

To make the assignment work, declare the variables as

var Int1, Int2: array[1..10] of Integer;

or

type IntArray = array[1..10] of Integer;
var

Int1: IntArray;
Int2: IntArray;

Records

A record (analogous to a structure in some languages) represents a heterogeneous set
of elements. Each element is called a field; the declaration of a record type specifies a
name and type for each field. The syntax of a record type declaration is

type recordTypeName = record
fieldList1: type1;
ƒ
fieldListn: typen;

end

where recordTypeName is a valid identifier, each type denotes a type, and each fieldList
is a valid identifier or a comma-delimited list of identifiers. The final semicolon is
optional.

For example, the following declaration creates a record type called TDateRec.

type
TDateRec = record

Year: Integer;
Month: (Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec);
Day: 1..31;

end;

5-22 O b j e c t P a s c a l L a n g u a g e G u i d e

S t r u c t u r e d t y p e s

Each TDateRec contains three fields: an integer value called Year, a value of an
enumerated type called Month, and another integer between 1 and 31 called Day. The
identifiers Year, Month, and Day are the field designators for TDateRec, and they behave
like variables. The TDateRec type declaration, however, does not allocate any
memory for the Year, Month, and Day fields; memory is allocated when you
instantiate the record, like this:

var Record1, Record2: TDateRec;

This variable declaration creates two instances of TDateRec, called Record1 and
Record2.

You can access the fields of a record by qualifying the field designators with the
record’s name:

Record1.Year := 1904;
Record1.Month := Jun;
Record1.Day := 16;

Or use a with statement:

with Record1 do
begin

Year := 1904;
Month := Jun;
Day := 16;

end;

You can now copy the values of Record1’s fields to Record2:

Record2 := Record1;

Because the scope of a field designator is limited to the record in which it occurs, you
don’t have to worry about naming conflicts between field designators and other
variables.

Instead of defining record types, you can use the record ... construction directly in
variable declarations:

var S: record
Name: string;
Age: Integer;

end;

However, a declaration like this largely defeats the purpose of records, which is to
avoid repetitive coding of similar groups of variables. Moreover, separately declared
records of this kind will not be assignment-compatible, even if their structures are
identical.

Variant parts in records
A record type can have a variant part, which looks like a case statement. The variant
part must follow the other fields in the record declaration.

To declare a record type with a variant part, use the following syntax.

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-23

S t r u c t u r e d t y p e s

type recordTypeName = record
fieldList1: type1;
ƒ
fieldListn: typen;

case tag: ordinalType of
constantList1: (variant1);
ƒ
constantListn: (variantn);

end;

The first part of the declaration—up to the reserved word case—is the same as that of
a standard record type. The remainder of the declaration—from case to the optional
final semicolon—is called the variant part. In the variant part,

• tag is optional and can be any valid identifier. If you omit tag, omit the colon (:)
after it as well.

• ordinalType denotes an ordinal type.

• Each constantList is a constant denoting a value of type ordinalType, or a comma-
delimited list of such constants. No value can be represented more than once in the
combined constantLists.

• Each variant is a comma-delimited list of declarations resembling the fieldList: type
constructions in the main part of the record type. That is, a variant has the form

fieldList1: type1;
ƒ

fieldListn: typen;

where each fieldList is a valid identifier or comma-delimited list of identifiers, each
type denotes a type, and the final semicolon is optional. The types must not be long
strings, dynamic arrays, variants (that is, Variant types), or interfaces, nor can they
be structured types that contain long strings, dynamic arrays, variants, or
interfaces; but they can be pointers to these types.

Records with variant parts are complicated syntactically but deceptively simple
semantically. The variant part of a record contains several variants which share the
same space in memory. You can read or write to any field of any variant at any time;
but if you write to a field in one variant and then to a field in another variant, you may
be overwriting your own data. The tag, if there is one, functions as an extra field (of
type ordinalType) in the non-variant part of the record.

Variant parts have two purposes. First, suppose you want to create a record type that
has fields for different kinds of data, but you know that you will never need to use all
of the fields in a single record instance. For example,

type
TEmployee = record
FirstName, LastName: string[40];
BirthDate: TDate;
case Salaried: Boolean of

True: (AnnualSalary: Currency);
False: (HourlyWage: Currency);

end;

5-24 O b j e c t P a s c a l L a n g u a g e G u i d e

S t r u c t u r e d t y p e s

The idea here is that every employee has either a salary or an hourly wage, but not
both. So when you create an instance of TEmployee, there is no reason to allocate
enough memory for both fields. In this case, the only difference between the variants
is in the field names, but the fields could just as easily have been of different types.
Consider some more complicated examples:

type
TPerson = record
FirstName, LastName: string[40];
BirthDate: TDate;
case Citizen: Boolean of

True: (Birthplace: string[40]);
False: (Country: string[20];

EntryPort: string[20];
EntryDate, ExitDate: TDate);

end;

type
TShapeList = (Rectangle, Triangle, Circle, Ellipse, Other);
TFigure = record

case TShapeList of
Rectangle: (Height, Width: Real);
Triangle: (Side1, Side2, Angle: Real);
Circle: (Radius: Real);
Ellipse, Other: ();

end;

For each record instance, the compiler allocates enough memory to hold all the fields
in the largest variant. The optional tag and the constantLists (like Rectangle, Triangle,
and so forth in the last example above) play no role in the way the compiler manages
the fields; they are there only for the convenience of the programmer.

The second reason for variant parts is that they let you treat the same data as
belonging to different types, even in cases where the compiler would not allow a
typecast. For example, if you have a 64-bit Real as the first field in one variant and a
32-bit Integer as the first field in another, you can assign a value to the Real field and
then read back the first 32 bits of it as the value of the Integer field (passing it, say, to a
function that requires integer parameters).

File types

A file is an ordered set of elements of the same type. Standard I/O routines use the
predefined TextFile or Text type, which represents a file containing characters
organized into lines. For more information about file input and output, see
Chapter 8, “Standard routines and I/O”.

To declare a file type, use the syntax

type fileTypeName = file of type

where fileTypeName is any valid identifier and type is a fixed-size type. Pointer
types—whether implicit or explicit—are not allowed, so a file cannot contain
dynamic arrays, long strings, classes, objects, pointers, variants, other files, or
structured types that contain any of these.

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-25

P o i n t e r s a n d p o i n t e r t y p e s

For example,

type
PhoneEntry = record

FirstName, LastName: string[20];
PhoneNumber: string[15];
Listed: Boolean;

end;
PhoneList = file of PhoneEntry;

declares a file type for recording names and telephone numbers.

You can also use the file of ... construction directly in a variable declaration. For
example,

var List1: file of PhoneEntry;

The word file by itself indicates an untyped file:

var DataFile: file;

For more information, see “Untyped files” on page 8-4.

Files are not allowed in arrays or records.

Pointers and pointer types
A pointer is a variable that denotes a memory address. When a pointer holds the
address of another variable, we say that it points to the location of that variable in
memory or to the data stored there. In the case of an array or other structured type, a
pointer holds the address of the first element in the structure.

Pointers are typed to indicate the kind of data stored at the addresses they hold. The
general-purpose Pointer type can represent a pointer to any data, while more
specialized pointer types reference only specific types of data. Pointers occupy four
bytes of memory.

Overview of pointers

To see how pointers work, look at the following example.

1 var
2 X, Y: Integer; // X and Y are Integer variables
3 P: ^Integer; // P points to an Integer
4 begin
5 X := 17; // assign a value to X
6 P := @X; // assign the address of X to P
7 Y := P^; // dereference P; assign the result to Y
8 end;

Line 2 declares X and Y as variables of type Integer. Line 3 declares P as a pointer to
an Integer value; this means that P can point to the location of X or Y. Line 5 assigns a
value to X, and line 6 assigns the address of X (denoted by @X) to P. Finally, line 7

5-26 O b j e c t P a s c a l L a n g u a g e G u i d e

P o i n t e r s a n d p o i n t e r t y p e s

retrieves the value at the location pointed to by P (denoted by ^P) and assigns it to Y.
After this code executes, X and Y have the same value, namely 17.

The @ operator, which we have used here to take the address of a variable, also
operates on functions and procedures. For more information, see “The @ operator”
on page 4-12 and “Procedural types in statements and expressions” on page 5-29.

The symbol ^ has two purposes, both of which are illustrated in our example. When
it appears before a type identifier—

^typeName

—it denotes a type that represents pointers to variables of type typeName. When it
appears after a pointer variable—

pointer^

—it dereferences the pointer; that is, it returns the value stored at the memory address
held by the pointer.

Our example may seem like a roundabout way of copying the value of one variable
to another—something that we could have accomplished with a simple assignment
statement. But pointers are useful for several reasons. First, understanding pointers
will help you to understand Object Pascal, since pointers often operate behind the
scenes in code where they don’t appear explicitly. Any data type that requires large,
dynamically allocated blocks of memory uses pointers. Long-string variables, for
instance, are implicitly pointers, as are class variables. Moreover, some advanced
programming techniques require the use of pointers.

Finally, pointers are sometimes the only way to circumvent Object Pascal’s strict data
typing. By referencing a variable with an all-purpose Pointer, casting the Pointer to a
more specific type, and then dereferencing it, you can treat the data stored by any
variable as if it belonged to any type. For example, the following code assigns data
stored in a real variable to an integer variable.

type
 PInteger = ^Integer;
var

R: Single;
I: Integer;
P: Pointer;
PI: PInteger;

begin
ƒ

 P := @R;
 PI := PInteger(P);
 I := PI^;
end;

Of course, reals and integers are stored in different formats. This assignment simply
copies raw binary data from R to I, without converting it.

In addition to assigning the result of an @ operation, you can use several standard
routines to give a value to a pointer. The New and GetMem procedures assign a
memory address to an existing pointer, while the Addr and Ptr functions return a
pointer to a specified address or variable.

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-27

P o i n t e r s a n d p o i n t e r t y p e s

Dereferenced pointers can be qualified and can function as qualifiers, as in the
expression P1^.Data^.

The reserved word nil is a special constant that can be assigned to any pointer. When
nil is assigned to a pointer, the pointer doesn’t reference anything.

Pointer types

You can declare a pointer to any type, using the syntax

type pointerTypeName = ^type

When you define a record or other data type, it’s a common practice also to define a
pointer to that type. This makes it easy to manipulate instances of the type without
copying large blocks of memory.

Standard pointer types exist for many purposes. The most versatile is Pointer, which
can point to data of any kind. But a Pointer variable cannot be dereferenced; placing
the ^ symbol after a Pointer variable causes a compilation error. To access the data
referenced by a Pointer variable, first cast it to another pointer type and then
dereference it.

Character pointers
The fundamental types PAnsiChar and PWideChar represent pointers to AnsiChar and
WideChar values, respectively. The generic PChar represents a pointer to a Char (that
is, in its current implementation, to an AnsiChar). These character pointers are used to
manipulate null-terminated strings. (See “Working with null-terminated strings” on
page 5-13.)

Other standard pointer types
The System and SysUtils units declare many standard pointer types that are
commonly used.

Table 5.6 Selected pointer types declared in System and SysUtils

Pointer type Points to variables of type

PAnsiString, PString AnsiString

PByteArray TByteArray (declared in SysUtils). Used to typecast dynamically
allocated memory for array access.

PCurrency, PDouble,
PExtended, PSingle

Currency, Double, Extended, Single

PInteger Integer

POleVariant OleVariant

PShortString ShortString. Useful when porting legacy code that uses the old PString
type.

PTextBuf TTextBuf (declared in SysUtils). TTextBuf is the internal buffer type in a
TTextRec file record.)

PVarRec TVarRec (declared in System)

PVariant Variant

5-28 O b j e c t P a s c a l L a n g u a g e G u i d e

P r o c e d u r a l t y p e s

Procedural types
Procedural types allow you to treat procedures and functions as values that can be
assigned to variables or passed to other procedures and functions. For example,
suppose you define a function called Calc that takes two integer parameters and
returns an integer:

function Calc(X,Y: Integer): Integer;

You can assign the Calc function to the variable F:

var F: function(X,Y: Integer): Integer;
F := Calc;

If you take any procedure or function heading and remove the identifier after the
word procedure or function, what’s left is the name of a procedural type. You can
use such type names directly in variable declarations (as in the example above) or to
declare new types:

type
TIntegerFunction = function: Integer;
TProcedure = procedure;
TStrProc = procedure(const S: string);
TMathFunc = function(X: Double): Double;

var
F: TIntegerFunction; { F is a parameterless function that returns an integer }
Proc: TProcedure; { Proc is a parameterless procedure }
SP: TStrProc; { SP is a procedure that takes a string parameter }
M: TMathFunc; { M is a function that takes a Double (real) parameter

and returns a Double }
procedure FuncProc(P: TIntegerFunction); { FuncProc is a procedure whose only parameter

is a parameterless integer-valued function }

The variables above are all procedure pointers—that is, pointers to the address of a
procedure or function. If you want to reference a method of an instance object (see
Chapter 7, “Classes and objects”), you need to add the words of object to the
procedural type name. For example

type
TMethod = procedure of object;
TNotifyEvent = procedure(Sender: TObject) of object;

These types represent method pointers. A method pointer is really a pair of pointers;
the first stores the address of a method, and the second stores a reference to the object
the method belongs to. Given the declarations

PWideString WideString

PWordArray TWordArray (declared in SysUtils). Used to typecast dynamically
allocated memory for arrays of 2-byte values.

Table 5.6 Selected pointer types declared in System and SysUtils (continued)

Pointer type Points to variables of type

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-29

P r o c e d u r a l t y p e s

type
TNotifyEvent = procedure(Sender: TObject) of object;
TMainForm = class(TForm)

procedure ButtonClick(Sender: TObject);
ƒ

end;
var

MainForm: TMainForm;
OnClick: TNotifyEvent

we could make the following assignment.

OnClick := MainForm.ButtonClick;

Two procedural types are compatible if they have

• the same calling convention,
• the same return value (or no return value), and
• the same number of parameters, with identically typed parameters in

corresponding positions. (Parameter names do not matter.)

Procedure pointer types are always incompatible with method pointer types. The
value nil can be assigned to any procedural type.

Nested procedures and functions (routines declared within other routines) cannot be
used as procedural values, nor can predefined procedures and functions. If you want
to use a predefined routine like Length as a procedural value, write a wrapper for it:

function FLength(S: string): Integer;
begin

Result := Length(S);
end;

Procedural types in statements and expressions

When a procedural variable is on the left side of an assignment statement, the
compiler expects a procedural value on the right. The assignment makes the variable
on the left a pointer to the function or procedure indicated on the right. In other
contexts, however, using a procedural variable results in a call to the referenced
procedure or function. You can even use a procedural variable to pass parameters:

var
F: function(X: Integer): Integer;
I: Integer;

function SomeFunction(X: Integer): Integer;
ƒ

F := SomeFunction; // assign SomeFunction to F
I := F(4); // call function; assign result to I

In assignment statements, the type of the variable on the left determines the
interpretation of procedure or method pointers on the right. For example,

var
F, G: function: Integer;
I: Integer;

5-30 O b j e c t P a s c a l L a n g u a g e G u i d e

V a r i a n t t y p e s

function SomeFunction: Integer;
ƒ

F := SomeFunction; // assign SomeFunction to F
G := F; // copy F to G
I := G; // call function; assign result to I

The first statement assigns a procedural value to F. The second statement copies that
value to another variable. The third statement makes a call to the referenced function
and assigns the result to I. Because I is an integer variable, not a procedural one, the
last assignment actually calls the function (which returns an integer).

In some situations it is less clear how a procedural variable should be interpreted.
Consider the statement

if F = MyFunction then ...;

In this case, the occurrence of F results in a function call; the compiler calls the
function pointed to by F, then calls the function MyFunction, then compares the
results. The rule is that whenever a procedural variable occurs within an expression,
it represents a call to the referenced procedure or function. In a case where F
references a procedure (which doesn’t return a value), or where F references a
function that requires parameters, the statement above causes a compilation error. To
compare the procedural value of F with MyFunction, use

if @F = @MyFunction then ...;

@F converts F into an untyped pointer variable that contains an address, and
@MyFunction returns the address of MyFunction.

To get the memory address of a procedural variable (rather than the address stored
in it), use @@. For example, @@F returns the address of F.

The @ operator can also be used to assign an untyped pointer value to a procedural
variable. For example,

var StrComp: function(Str1, Str2: PChar): Integer;
ƒ

@StrComp := GetProcAddress(KernelHandle, 'lstrcmpi');

calls the GetProcAddress function and points StrComp to the result.

Any procedural variable can hold the value nil, which means that it points to
nothing. But attempting to call a nil-valued procedural variable is an error. To test
whether a procedural variable is assigned, use the standard function Assigned:

if Assigned(OnClick) then OnClick(X);

Variant types
Sometimes it is necessary to manipulate data whose type varies or cannot be
determined at compile time. In these cases, one option is to use variables and
parameters of type Variant, which represent values that can change type at runtime.
Variants offer greater flexibility but consume more memory than regular variables,
and operations on them are slower than on statically bound types. Moreover, illicit
operations on variants often result in runtime errors, where similar mistakes with

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-31

V a r i a n t t y p e s

regular variables would have been caught at compile time. You can also create
custom variant types.

By default, Variants can hold values of any type except records, sets, static arrays,
files, classes, class references, and pointers. In other words, variants can hold
anything but structured types and pointers. They can hold interfaces, whose methods
and properties can be accessed through them. (See Chapter 10, “Object interfaces”.)
They can hold dynamic arrays, and they can hold a special kind of static array called
a variant array. (See “Variant arrays” on page 5-33.) Variants can mix with other
variants and with integer, real, string, and Boolean values in expressions and
assignments; the compiler automatically performs type conversions.

Variants that contain strings cannot be indexed. That is, if V is a variant that holds a
string value, the construction V[1] causes a runtime error.

You can define custom Variants that extend the Variant type to hold arbitrary values.
For example, you can define a Variant string type that allows indexing or that holds a
particular class reference, record type, or static array. Custom Variant types are
defined by creating descendants to the TCustomVariantType class.

A variant occupies 16 bytes of memory and consists of a type code and a value, or
pointer to a value, of the type specified by the code. All variants are initialized on
creation to the special value Unassigned. The special value Null indicates unknown or
missing data.

The standard function VarType returns a variant’s type code. The varTypeMask
constant is a bit mask used to extract the code from VarType’s return value, so that,
for example,

VarType(V) and varTypeMask = varDouble

returns True if V contains a Double or an array of Double. (The mask simply hides the
first bit, which indicates whether the variant holds an array.) The TVarData record
type defined in the System unit can be used to typecast variants and gain access to
their internal representation. See the online Help on VarType for a list if codes, and
note that new type codes may be added in future implementations of Object Pascal.

Variant type conversions

All integer, real, string, character, and Boolean types are assignment-compatible with
Variant. Expressions can be explicitly cast as variants, and the VarAsType and VarCast
standard routines can be used to change the internal representation of a variant. The
following code demonstrates the use of variants and some of the automatic
conversions performed when variants are mixed with other types.

var
V1, V2, V3, V4, V5: Variant;
I: Integer;
D: Double;
S: string;

begin
V1 := 1; { integer value }
V2 := 1234.5678; { real value }

5-32 O b j e c t P a s c a l L a n g u a g e G u i d e

V a r i a n t t y p e s

V3 := 'Hello world!'; { string value }
V4 := '1000'; { string value }
V5 := V1 + V2 + V4; { real value 2235.5678}
I := V1; { I = 1 (integer value) }
D := V2; { D = 1234.5678 (real value) }
S := V3; { S = 'Hello world!' (string value) }
I := V4; { I = 1000 (integer value) }
S := V5; { S = '2235.5678' (string value) }

end;

The compiler performs type conversions according to the following rules.

Out-of-range assignments often result in the target variable getting the highest value
in its range. Invalid assignments or casts raise the EVariantError exception.

Table 5.7 Variant type conversion rules

Target
Source integer real string character Boolean

integer converts
integer
formats

converts to
real

converts to
string
representation

same as
string
(left)

returns False if 0,
True otherwise

real rounds to
nearest integer

converts real
formats

converts to
string
representation
using regional
settings

same as
string
(left)

returns False if 0,
True otherwise

string converts to
integer,
truncating if
necessary;
raises
exception if
string is not
numeric

converts to
real using
regional
settings; raises
exception if
string is not
numeric

converts
string/
character
formats

same as
string
(left)

returns False if
string is “false”
(non–case-
sensitive) or a
numeric string
that evaluates to
0, True if string is
“true” or a
nonzero numeric
string; raises
exception
otherwise

character same as string
(above)

same as string
(above)

same as string
(above)

same as
string-to-
string

same as string
(above)

Boolean False = 0,
True = –1
(255 if Byte)

False = 0,
True = –1

False = “0”,
True = “–1”

same as
string
(left)

False = False,
True = True

Unassigned returns 0 returns 0 returns empty
string

same as
string
(left)

returns False

Null raises
exception

raises
exception

raises
exception

same as
string
(left)

raises exception

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-33

V a r i a n t t y p e s

Special conversion rules apply to the TDateTime real type declared in the System unit.
When a TDateTime is converted to any other type, it treated as a normal Double. When
an integer, real, or Boolean is converted to a TDateTime, it is first converted to a
Double, then read as a date-time value. When a string is converted to a TDateTime, it is
interpreted as a date-time value using the regional settings. When an Unassigned
value is converted to TDateTime, it is treated like the real or integer value 0.
Converting a Null value to TDateTime raises an exception.

On Windows, if a variant references a COM interface, any attempt to convert it reads
the object’s default property and converts that value to the requested type. If the
object has no default property, an exception is raised.

Variants in expressions

All operators except ^, is, and in take variant operands. Operations on variants
return Variant values; they return Null if one or both operands is Null, and raise an
exception if one or both operands is Unassigned. In a binary operation, if only one
operand is a variant, the other is converted to a variant.

The return type of an operation is determined by its operands. In general, the same
rules that apply to operands of statically bound types apply to variants. For example,
if V1 and V2 are variants that hold an integer and a real value, then V1 + V2 returns a
real-valued variant. (See “Operators” on page 4-6.) With variants, however, you can
perform binary operations on combinations of values that would not be allowed
using statically typed expressions. When possible, the compiler converts mismatched
variants using the rules summarized in Table 5.7. For example, if V3 and V4 are
variants that hold a numeric string and an integer, the expression V3 + V4 returns an
integer-valued variant; the numeric string is converted to an integer before the
operation is performed.

Variant arrays

You cannot assign an ordinary static array to a variant. Instead, create a variant array
by calling either of the standard functions VarArrayCreate or VarArrayOf. For
example,

V: Variant;
ƒ

V := VarArrayCreate([0,9], varInteger);

creates a variant array of integers (of length 10) and assigns it to the variant V. The
array can be indexed using V[0], V[1], and so forth, but it is not possible to pass a
variant array element as a var parameter. Variant arrays are always indexed with
integers.

The second parameter in the call to VarArrayCreate is the type code for the array’s
base type. For a list of these codes, see the online Help on VarType. Never pass the
code varString to VarArrayCreate; to create a variant array of strings, use varOleStr.

Variants can hold variant arrays of different sizes, dimensions, and base types. The
elements of a variant array can be of any type allowed in variants except ShortString

5-34 O b j e c t P a s c a l L a n g u a g e G u i d e

T y p e c o m p a t i b i l i t y a n d i d e n t i t y

and AnsiString, and if the base type of the array is Variant, its elements can even be
heterogeneous. Use the VarArrayRedim function to resize a variant array. Other
standard routines that operate on variant arrays include VarArrayDimCount,
VarArrayLowBound, VarArrayHighBound, VarArrayRef, VarArrayLock, and
VarArrayUnlock.

When a variant containing a variant array is assigned to another variant or passed as
a value parameter, the entire array is copied. Don’t perform such operations
unnecessarily, since they are memory-inefficient.

OleVariant

The OleVariant type exists on both the Windows and Linux platforms. The main
difference between Variant and OleVariant is that Variant can contain data types that
only the current application knows what to do with. OleVariant can only contain the
data types defined as compatible with Ole Automation which means that the data
types that can be passed between programs or across the network without worrying
about whether the other end will know how to handle the data.

When you assign a Variant that contains custom data (such as a Pascal string, or a one
of the new custom variant types) to an OleVariant, the runtime library tries to convert
the Variant into one of the OleVariant standard data types (such as a Pascal string
converts to an Ole BSTR string). For example, if a variant containing an AnsiString is
assigned to an OleVariant, the AnsiString becomes a WideString. The same is true
when passing a Variant to an OleVariant function parameter.

Type compatibility and identity
To understand which operations can be performed on which expressions, we need to
distinguish several kinds of compatibility among types and values. These include
type identity, type compatibility, and assignment-compatibility.

Type identity

Type identity is almost straightforward. When one type identifier is declared using
another type identifier, without qualification, they denote the same type. Thus, given
the declarations

type
T1 = Integer;
T2 = T1;
T3 = Integer;
T4 = T2;

T1, T2, T3, T4, and Integer all denote the same type. To create distinct types, repeat the
word type in the declaration. For example,

type TMyInteger = type Integer;

creates a new type called TMyInteger which is not identical to Integer.

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-35

T y p e c o m p a t i b i l i t y a n d i d e n t i t y

Language constructions that function as type names denote a different type each time
they occur. Thus the declarations

type
TS1 = set of Char;
TS2 = set of Char;

create two distinct types, TS1 and TS2. Similarly, the variable declarations

var
S1: string[10];
S2: string[10];

create two variables of distinct types. To create variables of the same type, use

var S1, S2: string[10];

or

type MyString = string[10];
var

S1: MyString;
S2: MyString;

Type compatibility

Every type is compatible with itself. Two distinct types are compatible if they satisfy
at least one of the following conditions.

• They are both real types.
• They are both integer types.
• One type is a subrange of the other.
• Both types are subranges of the same type.
• Both are set types with compatible base types.
• Both are packed-string types with the same number of components.
• One is a string type and the other is a string, packed-string, or Char type.
• One type is Variant and the other is an integer, real, string, character, or Boolean

type.
• Both are class, class-reference, or interface types, and one type is derived from the

other.
• One type is PChar or PWideChar and the other is a zero-based character array of the

form array[0..n] of Char.
• One type is Pointer (an untyped pointer) and the other is any pointer type.
• Both types are (typed) pointers to the same type and the {$T+} compiler directive

is in effect.
• Both are procedural types with the same result type, the same number of

parameters, and type-identity between parameters in corresponding positions.

Assignment-compatibility

Assignment-compatibility is not a symmetric relation. An expression of type T2 can
be assigned to a variable of type T1 if the value of the expression falls in the range of
T1 and at least one of the following conditions is satisfied.

5-36 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r i n g t y p e s

• T1 and T2 are of the same type, and it is not a file type or structured type that
contains a file type at any level.

• T1 and T2 are compatible ordinal types.
• T1 and T2 are both real types.
• T1 is a real type and T2 is an integer type.
• T1 is PChar or any string type and the expression is a string constant.
• T1 and T2 are both string types.
• T1 is a string type and T2 is a Char or packed-string type.
• T1 is a long string and T2 is PChar.
• T1 and T2 are compatible packed-string types.
• T1 and T2 are compatible set types.
• T1 and T2 are compatible pointer types.
• T1 and T2 are both class, class-reference, or interface types and T2 is a derived

from T1.
• T1 is an interface type and T2 is a class type that implements T1.
• T1 is PChar or PWideChar and T2 is a zero-based character array of the form

array[0..n] of Char.
• T1 and T2 are compatible procedural types. (A function or procedure identifier is

treated, in certain assignment statements, as an expression of a procedural type.
See “Procedural types in statements and expressions” on page 5-29.)

• T1 is Variant and T2 is an integer, real, string, character, Boolean, or interface type.
• T1 is an integer, real, string, character, or Boolean type and T2 is Variant.
• T1 is the IUnknown or IDispatch interface type and T2 is Variant. (The variant’s type

code must be varEmpty, varUnknown, or varDispatch if T1 is IUnknown, and
varEmpty or varDispatch if T1 is IDispatch.)

Declaring types
A type declaration specifies an identifier that denotes a type. The syntax for a type
declaration is

type newTypeName = type

where newTypeName is a valid identifier. For example, given the type declaration

type TMyString = string;

you can make the variable declaration

var S: TMyString;

A type identifier’s scope doesn’t include the type declaration itself (except for pointer
types). So you cannot, for example, define a record type that uses itself recursively.

When you declare a type that is identical to an existing type, the compiler treats the
new type identifier as an alias for the old one. Thus, given the declarations

type TValue = Real;
var

X: Real;
Y: TValue;

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-37

V a r i a b l e s

X and Y are of the same type; at runtime, there is no way to distinguish TValue from
Real. This is usually of little consequence, but if your purpose in defining a new type
is to utilize runtime type information—for example, to associate a property editor
with properties of a particular type—the distinction between “different name” and
“different type” becomes important. In this case, use the syntax

type newTypeName = type type

For example,

type TValue = type Real;

forces the compiler to create a new, distinct type called TValue.

Variables
A variable is an identifier whose value can change at runtime. Put differently, a
variable is a name for a location in memory; you can use the name to read or write to
the memory location. Variables are like containers for data, and, because they are
typed, they tell the compiler how to interpret the data they hold.

Declaring variables

The basic syntax for a variable declaration is

var identifierList: type;

where identifierList is a comma-delimited list of valid identifiers and type is any valid
type. For example,

var I: Integer;

declares a variable I of type Integer, while

var X, Y: Real;

declares two variables—X and Y—of type Real.

Consecutive variable declarations do not have to repeat the reserved word var:

var
X, Y, Z: Double;
I, J, K: Integer;
Digit: 0..9;
Okay: Boolean;

Variables declared within a procedure or function are sometimes called local, while
other variables are called global. Global variables can be initialized at the same time
they are declared, using the syntax

var identifier: type = constantExpression;

where constantExpression is any constant expression representing a value of type type.
(For more information about constant expressions, see “Constant expressions” on
page 5-41.) Thus the declaration

5-38 O b j e c t P a s c a l L a n g u a g e G u i d e

V a r i a b l e s

var I: Integer = 7;

is equivalent to the declaration and statement

var I: Integer;
ƒ

I := 7;

Multiple variable declarations (such as var X, Y, Z: Real;) cannot include
initializations, nor can declarations of variant and file-type variables.

If you don’t explicitly initialize a global variable, the compiler initializes it to 0. Local
variables, in contrast, cannot be initialized in their declarations and contain random
data until a value is assigned to them.

When you declare a variable, you are allocating memory which is freed
automatically when the variable is no longer used. In particular, local variables exist
only until the program exits from the function or procedure in which they are
declared. For more information about variables and memory management, see
Chapter 11, “Memory management”.

Absolute addresses
You can create a new variable that resides at the same address as another variable. To
do so, put the directive absolute after the type name in the declaration of the new
variable, followed by the name of an existing (previously declared) variable. For
example,

var
Str: string[32];
StrLen: Byte absolute Str;

specifies that the variable StrLen should start at the same address as Str. Since the first
byte of a short string contains the string’s length, the value of StrLen is the length of
Str.

You cannot initialize a variable in an absolute declaration or combine absolute with
any other directives.

Dynamic variables
You can create dynamic variables by calling the GetMem or New procedure. Such
variables are allocated on the heap and are not managed automatically. Once you
create one, it is your responsibility ultimately to free the variable’s memory; use
FreeMem to destroy variables created by GetMem and Dispose to destroy variables
created by New. Other standard routines that operate on dynamic variables include
ReallocMem, Initialize, StrAlloc, and StrDispose.

Long strings, wide strings, dynamic arrays, variants, and interfaces are also heap-
allocated dynamic variables, but their memory is managed automatically.

Thread-local variables
Thread-local (or thread) variables are used in multithreaded applications. A thread-
local variable is like a global variable, except that each thread of execution gets its

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-39

D e c l a r e d c o n s t a n t s

own private copy of the variable, which cannot be accessed from other threads.
Thread-local variables are declared with threadvar instead of var. For example,

threadvar X: Integer;

Thread-variable declarations

• cannot occur within a procedure or function.
• cannot include initializations.
• cannot specify the absolute directive.

Do not create pointer- or procedural-type thread variables, and do not use thread
variables in dynamically loadable libraries (other than packages).

Dynamic variables that are ordinarily managed by the compiler—long strings, wide
strings, dynamic arrays, variants, and interfaces—can be declared with threadvar,
but the compiler does not automatically free the heap-allocated memory created by
each thread of execution. If you use these data types in thread variables, it is your
responsibility to dispose of their memory. For example,

threadvar S: AnsiString;
S := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
ƒ

S := ''; // free the memory used by S

(You can free a variant by setting it to Unassigned and an interface or dynamic array
by setting it to nil.)

Declared constants
Several different language constructions are referred to as “constants”. There are
numeric constants (also called numerals) like 17, and string constants (also called
character strings or string literals) like 'Hello world!'; for information about numeric
and string constants, see Chapter 4, “Syntactic elements”. Every enumerated type
defines constants that represent the values of that type. There are predefined
constants like True, False, and nil. Finally, there are constants that, like variables, are
created individually by declaration.

Declared constants are either true constants or typed constants. These two kinds of
constant are superficially similar, but they are governed by different rules and used
for different purposes.

True constants

A true constant is a declared identifier whose value cannot change. For example,

const MaxValue = 237;

declares a constant called MaxValue that returns the integer 237. The syntax for
declaring a true constant is

const identifier = constantExpression

5-40 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r e d c o n s t a n t s

where identifier is any valid identifier and constantExpression is an expression that the
compiler can evaluate without executing your program. (See “Constant expressions”
on page 5-41 for more information.)

If constantExpression returns an ordinal value, you can specify the type of the declared
constant using a value typecast. For example

const MyNumber = Int64(17);

declares a constant called MyNumber, of type Int64, that returns the integer 17.
Otherwise, the type of the declared constant is the type of the constantExpression.

• If constantExpression is a character string, the declared constant is compatible with
any string type. If the character string is of length 1, it is also compatible with any
character type.

• If constantExpression is a real, its type is Extended. If it is an integer, its type is given
by the table below.

Here are some examples of constant declarations:

const
Min = 0;
Max = 100;
Center = (Max - Min) div 2;
Beta = Chr(225);
NumChars = Ord('Z') - Ord('A') + 1;
Message = 'Out of memory';
ErrStr = ' Error: ' + Message + '. ';
ErrPos = 80 - Length(ErrStr) div 2;
Ln10 = 2.302585092994045684;
Ln10R = 1 / Ln10;
Numeric = ['0'..'9'];
Alpha = ['A'..'Z', 'a'..'z'];
AlphaNum = Alpha + Numeric;

Table 5.8 Types for integer constants

Range of constant
(hexadecimal)

Range of constant
(decimal)

Type

–$8000000000000000..–$80000001 –263..–2147483649 Int64

–$80000000..–$8001 –2147483648..–32769 Integer

–$8000..–$81 –32768..–129 Smallint

–$80..–1 –128..–1 Shortint

0..$7F 0..127 0..127

$80..$FF 128..255 Byte

$0100..$7FFF 256..32767 0..32767

$8000..$FFFF 32768..65535 Word

$10000..$7FFFFFFF 65536..2147483647 0..2147483647

$80000000..$FFFFFFFF 2147483648..4294967295 Cardinal

$100000000..$7FFFFFFFFFFFFFFF 4294967296..263–1 Int64

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-41

D e c l a r e d c o n s t a n t s

Constant expressions
A constant expression is an expression that the compiler can evaluate without
executing the program in which it occurs. Constant expressions include numerals;
character strings; true constants; values of enumerated types; the special constants
True, False, and nil; and expressions built exclusively from these elements with
operators, typecasts, and set constructors. Constant expressions cannot include
variables, pointers, or function calls, except calls to the following predefined
functions:

This definition of a constant expression is used in several places in Object Pascal’s
syntax specification. Constant expressions are required for initializing global
variables, defining subrange types, assigning ordinalities to values in enumerated
types, specifying default parameter values, writing case statements, and declaring
both true and typed constants.

Examples of constant expressions:

100
'A'
256 - 1
(2.5 + 1) / (2.5 - 1)
'Borland' + ' ' + 'Developer'
Chr(32)
Ord('Z') - Ord('A') + 1

Resource strings
Resource strings are stored as resources and linked into the executable or library so
that they can be modified without recompiling the program. For more information,
see the online Help topics on localizing applications.

Resource strings are declared like other true constants, except that the word const is
replaced by resourcestring. The expression to the right of the = symbol must be a
constant expression and must return a string value. For example,

resourcestring
CreateError = 'Cannot create file %s'; { for explanations of format specifiers, }
OpenError = 'Cannot open file %s'; { see 'Format strings' in the online Help }
LineTooLong = 'Line too long';
ProductName = 'Borland Rocks\000\000';
SomeResourceString = SomeTrueConstant;

The compiler automatically resolves naming conflicts among resource strings in
different libraries.

Abs
Chr
Hi

High
Length
Lo

Low
Odd
Ord

Pred
Round
SizeOf

Succ
Swap
Trunc

5-42 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r e d c o n s t a n t s

Typed constants

Typed constants, unlike true constants, can hold values of array, record, procedural,
and pointer types. Typed constants cannot occur in constant expressions.

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-43

D e c l a r e d c o n s t a n t s

In the default {$J-} compiler state, typed constants can not have new values assigned
to them; they are, in effect, read-only variables. However, if the {$J+} compiler
directive is in effect, typed constants can have new values assigned to them; they
behave essentially like initialized variables.

Declare a typed constant like this:

const identifier: type = value

where identifier is any valid identifier, type is any type except files and variants, and
value is an expression of type type. For example,

const Max: Integer = 100;

In most cases, value must be a constant expression; but if type is an array, record,
procedural, or pointer type, special rules apply.

Array constants
To declare an array constant, enclose the values of the array’s elements, separated by
commas, in parentheses at the end of the declaration. These values must be
represented by constant expressions. For example,

const Digits: array[0..9] of Char = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9');

declares a typed constant called Digits that holds an array of characters.

Zero-based character arrays often represent null-terminated strings, and for this
reason string constants can be used to initialize character arrays. So the declaration
above can be more conveniently represented as

const Digits: array[0..9] of Char = '0123456789';

To define a multidimensional array constant, enclose the values of each dimension in
a separate set of parentheses, separated by commas. For example,

type TCube = array[0..1, 0..1, 0..1] of Integer;
const Maze: TCube = (((0, 1), (2, 3)), ((4, 5), (6,7)));

creates an array called Maze where

Maze[0,0,0] = 0
Maze[0,0,1] = 1
Maze[0,1,0] = 2
Maze[0,1,1] = 3
Maze[1,0,0] = 4
Maze[1,0,1] = 5
Maze[1,1,0] = 6
Maze[1,1,1] = 7

Array constants cannot contain file-type values at any level.

Record constants
To declare a record constant, specify the value of each field—as fieldName: value,
with the field assignments separated by semicolons—in parentheses at the end of the
declaration. The values must be represented by constant expressions. The fields must
be listed in the order in which they appear in the record type declaration, and the tag

5-44 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r e d c o n s t a n t s

field, if there is one, must have a value specified; if the record has a variant part, only
the variant selected by the tag field can be assigned values.

Examples:

type
TPoint = record

X, Y: Single;
end;
TVector = array[0..1] of TPoint;
TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
TDate = record

D: 1..31;
M: TMonth;
Y: 1900..1999;

end;
const

Origin: TPoint = (X: 0.0; Y: 0.0);
Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));
SomeDay: TDate = (D: 2; M: Dec; Y: 1960);

Record constants cannot contain file-type values at any level.

Procedural constants
To declare a procedural constant, specify the name of a function or procedure that is
compatible with the declared type of the constant. For example,

function Calc(X, Y: Integer): Integer;
begin
ƒ

end;

type TFunction = function(X, Y: Integer): Integer;
const MyFunction: TFunction = Calc;

Given these declarations, you can use the procedural constant MyFunction in a
function call:

I := MyFunction(5, 7)

You can also assign the value nil to a procedural constant.

Pointer constants
When you declare a pointer constant, you must initialize it to a value that can be
resolved—at least as a relative address—at compile time. There are three ways to do
this: with the @ operator, with nil, and (if the constant is of type PChar) with a string
literal. For example, if I is a global variable of type Integer, you can declare a constant
like

const PI: ^Integer = @I;

The compiler can resolve this because global variables are part of the code segment.
So are functions and global constants:

const PF: Pointer = @MyFunction;

D a t a t y p e s , v a r i a b l e s , a n d c o n s t a n t s 5-45

Because string literals are allocated as global constants, you can initialize a PChar
constant with a string literal:

const WarningStr: PChar = 'Warning!';

Addresses of local (stack-allocated) and dynamic (heap-allocated) variables cannot
be assigned to pointer constants.

5-46 O b j e c t P a s c a l L a n g u a g e G u i d e

P r o c e d u r e s a n d f u n c t i o n s 6-1

C h a p t e r

6
Chapter6Procedures and functions

Procedures and functions, referred to collectively as routines, are self-contained
statement blocks that can be called from different locations in a program. A function
is a routine that returns a value when it executes. A procedure is a routine that does
not return a value.

Function calls, because they return a value, can be used as expressions in
assignments and operations. For example,

I := SomeFunction(X);

calls SomeFunction and assigns the result to I. Function calls cannot appear on the left
side of an assignment statement.

Procedure calls—and, when extended syntax is enabled ({$X+}), function calls—can
be used as complete statements. For example,

DoSomething;

calls the DoSomething routine; if DoSomething is a function, its return value is
discarded.

Procedures and functions can call themselves recursively.

Declaring procedures and functions
When you declare a procedure or function, you specify its name, the number and
type of parameters it takes, and, in the case of a function, the type of its return value;
this part of the declaration is sometimes called the prototype, heading, or header. Then
you write a block of code that executes whenever the procedure or function is called;
this part is sometimes called the routine’s body or block.

The standard procedure Exit can occur within the body of any procedure or function.
Exit halts execution of the routine where it occurs and immediately passes program
control back to the point from which the routine was called.

6-2 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r i n g p r o c e d u r e s a n d f u n c t i o n s

Procedure declarations

A procedure declaration has the form

procedure procedureName(parameterList); directives;
localDeclarations;
begin

statements
end;

where procedureName is any valid identifier, statements is a sequence of statements
that execute when the procedure is called, and (parameterList), directives;, and
localDeclarations; are optional.

• For information about the parameterList, see “Parameters” on page 6-11.

• For information about directives, see “Calling conventions” on page 6-4, “Forward
and interface declarations” on page 6-5, “External declarations” on page 6-6,
“Overloading procedures and functions” on page 6-8, and “Writing dynamically
loadable libraries” on page 9-3. If you include more than one directive, separate
them with semicolons.

• For information about localDeclarations, which declares local identifiers, see “Local
declarations” on page 6-10.

Here is an example of a procedure declaration:

procedure NumString(N: Integer; var S: string);
var

V: Integer;
begin

V := Abs(N);
S := '';
repeat

S := Chr(V mod 10 + Ord('0')) + S;
V := V div 10;

until V = 0;
if N < 0 then S := '-' + S;

end;

Given this declaration, you can call the NumString procedure like this:

NumString(17, MyString);

This procedure call assigns the value “17” to MyString (which must be a string
variable).

Within a procedure’s statement block, you can use variables and other identifiers
declared in the localDeclarations part of the procedure. You can also use the parameter
names from the parameter list (like N and S in the example above); the parameter list
defines a set of local variables, so don’t try to redeclare the parameter names in the
localDeclarations section. Finally, you can use any identifiers within whose scope the
procedure declaration falls.

P r o c e d u r e s a n d f u n c t i o n s 6-3

D e c l a r i n g p r o c e d u r e s a n d f u n c t i o n s

Function declarations

A function declaration is like a procedure declaration except that it specifies a return
type and a return value. Function declarations have the form

function functionName(parameterList): returnType; directives;
localDeclarations;
begin

statements
end;

where functionName is any valid identifier, returnType is any type, statements is a
sequence of statements that execute when the function is called, and (parameterList),
directives;, and localDeclarations; are optional.

• For information about the parameterList, see “Parameters” on page 6-11.

• For information about directives, see “Calling conventions” on page 6-4, “Forward
and interface declarations” on page 6-5, “External declarations” on page 6-6,
“Overloading procedures and functions” on page 6-8, and “Writing dynamically
loadable libraries” on page 9-3. If you include more than one directive, separate
them with semicolons.

• For information about localDeclarations, which declares local identifiers, see “Local
declarations” on page 6-10.

The function’s statement block is governed by the same rules that apply to
procedures. Within the statement block, you can use variables and other identifiers
declared in the localDeclarations part of the function, parameter names from the
parameter list, and any identifiers within whose scope the function declaration falls.
In addition, the function name itself acts as a special variable that holds the function’s
return value, as does the predefined variable Result.

For example,

function WF: Integer;
begin

WF := 17;
end;

defines a constant function called WF that takes no parameters and always returns
the integer value 17. This declaration is equivalent to

function WF: Integer;
begin

Result := 17;
end;

Here is a more complicated function declaration:

function Max(A: array of Real; N: Integer): Real;
var

X: Real;
I: Integer;

begin
X := A[0];

6-4 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r i n g p r o c e d u r e s a n d f u n c t i o n s

for I := 1 to N - 1 do
if X < A[I] then X := A[I];

Max := X;
end;

You can assign a value to Result or to the function name repeatedly within a
statement block, as long as you assign only values that match the declared return
type. When execution of the function terminates, whatever value was last assigned to
Result or to the function name becomes the function’s return value. For example,

function Power(X: Real; Y: Integer): Real;
var

I: Integer;
begin

Result := 1.0;
I := Y;
while I > 0 do
begin

if Odd(I) then Result := Result * X;
I := I div 2;
X := Sqr(X);

end;
end;

Result and the function name always represent the same value. Hence

function MyFunction: Integer;
begin

MyFunction := 5;
Result := Result * 2;
MyFunction := Result + 1;

end;

returns the value 11. But Result is not completely interchangeable with the function
name. When the function name appears on the left side of an assignment statement,
the compiler assumes that it is being used (like Result) to track the return value; when
the function name appears anywhere else in the statement block, the compiler
interprets it as a recursive call to the function itself. Result, on the other hand, can be
used as a variable in operations, typecasts, set constructors, indexes, and calls to
other routines.

As long as extended syntax is enabled ({$X+}), Result is implicitly declared in every
function. Do not try to redeclare it.

If execution terminates without an assignment being made to Result or the function
name, then the function’s return value is undefined.

Calling conventions

When you declare a procedure or function, you can specify a calling convention using
one of the directives register, pascal, cdecl, stdcall, and safecall. For example,

function MyFunction(X, Y: Real): Real; cdecl;
ƒ

P r o c e d u r e s a n d f u n c t i o n s 6-5

D e c l a r i n g p r o c e d u r e s a n d f u n c t i o n s

Calling conventions determine the order in which parameters are passed to the
routine. They also affect the removal of parameters from the stack, the use of registers
for passing parameters, and error and exception handling. The default calling
convention is register.

• The register and pascal conventions pass parameters from left to right; that is, the
leftmost parameter is evaluated and passed first and the rightmost parameter is
evaluated and passed last. The cdecl, stdcall, and safecall conventions pass
parameters from right to left.

• For all conventions except cdecl, the procedure or function removes parameters
from the stack upon returning. With the cdecl convention, the caller removes
parameters from the stack when the call returns.

• The register convention uses up to three CPU registers to pass parameters, while
the other conventions pass all parameters on the stack.

• The safecall convention implements exception “firewalls.” On Windows, this
implements interprocess COM error notification.

The table below summarizes calling conventions.

The default register convention is the most efficient, since it usually avoids creation
of a stack frame. (Access methods for published properties must use register.) The
cdecl convention is useful when you call functions from shared libraries written in C
or C++, while stdcall and safecall are recommended, in general, for calls to external
code. On Windows, the operating system APIs are stdcall and safecall. Other
operating systems generally use cdecl. (Note that stdcall is more efficient than cdecl.)

The safecall convention must be used for declaring dual-interface methods (see
Chapter 10, “Object interfaces”). The pascal convention is maintained for backward
compatibility. For more information on calling conventions, see Chapter 12,
“Program control”.

The directives near, far, and export refer to calling conventions in 16-bit Windows
programming. They have no effect in 32-bit applications and are maintained for
backward compatibility only.

Forward and interface declarations

The forward directive replaces the block, including local variable declarations and
statements, in a procedure or function declaration. For example,

function Calculate(X, Y: Integer): Real; forward;

Table 6.1 Calling conventions

Directive Parameter order Clean-up Passes parameters in registers?

register Left-to-right Routine Yes

pascal Left-to-right Routine No

cdecl Right-to-left Caller No

stdcall Right-to-left Routine No

safecall Right-to-left Routine No

6-6 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r i n g p r o c e d u r e s a n d f u n c t i o n s

declares a function called Calculate. Somewhere after the forward declaration, the
routine must be redeclared in a defining declaration that includes a block. The defining
declaration for Calculate might look like this:

function Calculate;
ƒ { declarations }

begin
ƒ { statement block }

end;

Ordinarily, a defining declaration does not have to repeat the routine’s parameter list
or return type, but if it does repeat them, they must match those in the forward
declaration exactly (except that default parameters can be omitted). If the forward
declaration specifies an overloaded procedure or function (see “Overloading
procedures and functions” on page 6-8), then the defining declaration must repeat
the parameter list.

Between a forward declaration and its defining declaration, you can place nothing
except other declarations. The defining declaration can be an external or assembler
declaration, but it cannot be another forward declaration.

The purpose of a forward declaration is to extend the scope of a procedure or
function identifier to an earlier point in the source code. This allows other procedures
and functions to call the forward-declared routine before it is actually defined.
Besides letting you organize your code more flexibly, forward declarations are
sometimes necessary for mutual recursions.

The forward directive is not allowed in the interface section of a unit. Procedure and
function headers in the interface section, however, behave like forward declarations
and must have defining declarations in the implementation section. A routine
declared in the interface section is available from anywhere else in the unit and from
any other unit or program that uses the unit where it is declared.

External declarations

The external directive, which replaces the block in a procedure or function
declaration, allows you to call routines that are compiled separately from your
program. External routines can come from object files or dynamically loadable
libraries.

When importing a C++ function that takes a variable number of parameters, use the
varargs directive. For example,

function printf(Format: PChar): Integer; cdecl; varargs;

The varargs directive works only with external routines and only with the cdecl
calling convention.

Linking to object files
To call routines from a separately compiled object file, first link the object file to your
application using the $L (or $LINK) compiler directive. For example,

On Windows: {$L BLOCK.OBJ}

On Linux: {$L block.o}

P r o c e d u r e s a n d f u n c t i o n s 6-7

D e c l a r i n g p r o c e d u r e s a n d f u n c t i o n s

links BLOCK.OBJ (Windows) or block.o (Linux) into the program or unit in which it
occurs. Next, declare the functions and procedures that you want to call:

procedure MoveWord(var Source, Dest; Count: Integer); external;
procedure FillWord(var Dest; Data: Integer; Count: Integer); external;

Now you can call the MoveWord and FillWord routines from BLOCK.OBJ (Windows)
or block.o (Linux).

Declarations like the ones above are frequently used to access external routines
written in assembly language. You can also place assembly-language routines
directly in your Object Pascal source code; for more information, see Chapter 13,
“Inline assembler code”.

Importing functions from libraries
To import routines from a dynamically loadable library (.so or .DLL), attach a
directive of the form

external stringConstant;

to the end of a normal procedure or function header, where stringConstant is the
name of the library file in single quotation marks. For example, on Windows

function SomeFunction(S: string): string; external 'strlib.dll';

imports a function called SomeFunction from strlib.dll.

On Linux,

function SomeFunction(S: string): string; external 'strlib.so';

imports a function called SomeFunction from strlib.so.

You can import a routine under a different name from the one it has in the library. If
you do this, specify the original name in the external directive:

external stringConstant1 name stringConstant2;

where the first stringConstant gives the name of the library file and the second
stringConstant is the routine’s original name.

On Windows: For example, the following declaration imports a function from
user32.dll (part of the Windows API).

function MessageBox(HWnd: Integer; Text, Caption: PChar; Flags: Integer): Integer;
stdcall; external 'user32.dll' name 'MessageBoxA';

The function’s original name is MessageBoxA, but it is imported as MessageBox.

Instead of a name, you can use a number to identify the routine you want to import:

external stringConstant index integerConstant;

where integerConstant is the routine’s index in the export table.

On Linux: For example, the following declaration imports a standard system
function from libc.so.6.

function OpenFile(const PathName: PChar; Flags: Integer): Integer; cdecl;
external 'libc.so.6' name 'open';

6-8 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r i n g p r o c e d u r e s a n d f u n c t i o n s

The function’s original name is open, but it is imported as OpenFile.

In your importing declaration, be sure to match the exact spelling and case of the
routine’s name. Later, when you call the imported routine, the name is case-
insensitive.

For more information about libraries, see Chapter 9, “Libraries and packages”.

Overloading procedures and functions

You can declare more than one routine in the same scope with the same name. This is
called overloading. Overloaded routines must be declared with the overload directive
and must have distinguishing parameter lists. For example, consider the declarations

function Divide(X, Y: Real): Real; overload;
begin

Result := X/Y;
end;

function Divide(X, Y: Integer): Integer; overload;
begin

Result := X div Y;
end;

These declarations create two functions, both called Divide, that take parameters of
different types. When you call Divide, the compiler determines which function to
invoke by looking at the actual parameters passed in the call. For example,
Divide(6.0, 3.0) calls the first Divide function, because its arguments are real-valued.

You can pass to an overloaded routine parameters that are not identical in type with
those in any of the routine’s declarations, but that are assignment-compatible with
the parameters in more than one declaration. This happens most frequently when a
routine is overloaded with different integer types or different real types—for
example,

procedure Store(X: Longint); overload;
procedure Store(X: Shortint); overload;

In these cases, when it is possible to do so without ambiguity, the compiler invokes
the routine whose parameters are of the type with the smallest range that
accommodates the actual parameters in the call. (Remember that real-valued
constant expressions are always of type Extended.)

Overloaded routines must be distinguished by the number of parameters they take
or the types of their parameters. Hence the following pair of declarations causes a
compilation error.

function Cap(S: string): string; overload;
ƒ

procedure Cap(var Str: string); overload;
ƒ

P r o c e d u r e s a n d f u n c t i o n s 6-9

D e c l a r i n g p r o c e d u r e s a n d f u n c t i o n s

But the declarations

function Func(X: Real; Y: Integer): Real; overload;
ƒ

function Func(X: Integer; Y: Real): Real; overload;
ƒ

are legal.

When an overloaded routine is declared in a forward or interface declaration, the
defining declaration must repeat the routine’s parameter list.

The compiler can distinguish between overloaded functions that contain AnsiString/
PChar and WideString/WideChar parameters in the same parameter position.
String constants or literals passed into such an overload situation are translated into
the native string or character type, which is AnsiString/PChar.

 procedure test(const S: String); overload;
 procedure test(const W: WideString); overload;

var
 a: string;
 b: widestring;
 begin
 a := 'a';
 b := 'b';
 test(a); // calls String version
 test(b); // calls WideString version
 test('abc'); // calls String version
 test(WideString('abc')); // calls widestring version
 end;

Variants can also be used as parameters in overloaded function declarations. Variant
is considered more general than any simple type. Preference is always given to exact
type matches over variant matches. If a variant is passed into such an overload
situation, and an overload that takes a variant exists in that parameter position, it is
considered to be an exact match for the Variant type.

This can cause some minor side effects with float types. Float types are matched by
size. If there is no exact match for the float variable passed to the overload call but a
variant parameter is available, the variant is taken over any smaller float type.

For example:

 procedure foo(i: integer); overload;
 procedure foo(d: double); overload;
 procedure foo(v: variant); overload;
 var
 v: variant;
 begin
 foo(1); // integer version
 foo(v); // variant version
 foo(1.2); // variant version (float literals -> extended precision)
 end;

This example calls the variant version of foo, not the double version, because the 1.2
constant is implicitly an extended type and extended is not an exact match for

6-10 O b j e c t P a s c a l L a n g u a g e G u i d e

D e c l a r i n g p r o c e d u r e s a n d f u n c t i o n s

double. Extended is also not an exact match for variant, but variant is considered a
more general type (whereas double is a smaller type than extended).

foo(Double(1.2));

This typecast does not work. You should use typed consts instead.

const d: double = 1.2;
 begin
 foo(d);
 end;

The above code works correctly, and calls the double version.

const s: single = 1.2;
 begin
 foo(s);
 end;

The above code also calls the double version of foo. Single is a better fit to double
than to variant.

When declaring a set of overloaded routines, the best way to avoid float promotion to
variant is to declare a version of your overloaded function for each float type (Single,
Double, Extended) along with the variant version.

If you use default parameters in overloaded routines, be careful of ambiguous
parameter signatures. For more information, see “Default parameters and
overloaded routines” on page 6-18.

You can limit the potential effects of overloading by qualifying a routine’s name
when you call it. For example, Unit1.MyProcedure(X, Y) can call only routines declared
in Unit1; if no routine in Unit1 matches the name and parameter list in the call, an
error results.

For information about distributing overloaded methods in a class hierarchy, see
“Overloading methods” on page 7-12. For information about exporting overloaded
routines from a shared library, see “The exports clause” on page 9-5.

Local declarations

The body of a function or procedure often begins with declarations of local variables
used in the routine’s statement block. These declarations can also include constants,
types, and other routines. The scope of a local identifier is limited to the routine
where it is declared.

Nested routines
Functions and procedures sometimes contain other functions and procedures within
the local-declarations section of their blocks. For example, the following declaration
of a procedure called DoSomething contains a nested procedure.

procedure DoSomething(S: string);
var

X, Y: Integer;

P r o c e d u r e s a n d f u n c t i o n s 6-11

P a r a m e t e r s

procedure NestedProc(S: string);
begin

ƒ
end;

begin
ƒ

NestedProc(S);
ƒ

end;

The scope of a nested routine is limited to the procedure or function in which it is
declared. In our example, NestedProc can be called only within DoSomething.

For real examples of nested routines, look at the DateTimeToString procedure, the
ScanDate function, and other routines in the SysUtils unit.

Parameters
Most procedure and function headers include a parameter list. For example, in the
header

function Power(X: Real; Y: Integer): Real;

the parameter list is (X: Real; Y: Integer).

A parameter list is a sequence of parameter declarations separated by semicolons and
enclosed in parentheses. Each declaration is a comma-delimited series of parameter
names, followed in most cases by a colon and a type identifier, and in some cases by
the = symbol and a default value. Parameter names must be valid identifiers. Any
declaration can be preceded by one of the reserved words var, const, and out.
Examples:

(X, Y: Real)
(var S: string; X: Integer)
(HWnd: Integer; Text, Caption: PChar; Flags: Integer)
(const P; I: Integer)

The parameter list specifies the number, order, and type of parameters that must be
passed to the routine when it is called. If a routine does not take any parameters, omit
the identifier list and the parentheses in its declaration:

procedure UpdateRecords;
begin
ƒ

end;

Within the procedure or function body, the parameter names (X and Y in the first
example above) can be used as local variables. Do not redeclare the parameter names
in the local declarations section of the procedure or function body.

Parameter semantics

Parameters are categorized in several ways:

6-12 O b j e c t P a s c a l L a n g u a g e G u i d e

P a r a m e t e r s

• Every parameter is classified as value, variable, constant, or out. Value parameters
are the default; the reserved words var, const, and out indicate variable, constant,
and out parameters, respectively.

• Value parameters are always typed, while constant, variable, and out parameters
can be either typed or untyped.

• Special rules apply to array parameters. See “Array parameters” on page 6-15.

Files and instances of structured types that contain files can be passed only as
variable (var) parameters.

Value and variable parameters
Most parameters are either value parameters (the default) or variable (var)
parameters. Value parameters are passed by value, while variable parameters are
passed by reference. To see what this means, consider the following functions.

function DoubleByValue(X: Integer): Integer; // X is a value parameter
begin

X := X * 2;
Result := X;

end;

function DoubleByRef(var X: Integer): Integer; // X is a variable parameter
begin

X := X * 2;
Result := X;

end;

These functions return the same result, but only the second one—DoubleByRef—can
change the value of a variable passed to it. Suppose we call the functions like this:

var
I, J, V, W: Integer;

begin
I := 4;
V := 4;
J := DoubleByValue(I); // J = 8, I = 4
W := DoubleByRef(V); // W = 8, V = 8

end;

After this code executes, the variable I, which was passed to DoubleByValue, has the
same value we initially assigned to it. But the variable V, which was passed to
DoubleByRef, has a different value.

A value parameter acts like a local variable that gets initialized to the value passed in
the procedure or function call. If you pass a variable as a value parameter, the
procedure or function creates a copy of it; changes made to the copy have no effect on
the original variable and are lost when program execution returns to the caller.

A variable parameter, on the other hand, acts like a pointer rather than a copy.
Changes made to the parameter within the body of a function or procedure persist
after program execution returns to the caller and the parameter name itself has gone
out of scope.

P r o c e d u r e s a n d f u n c t i o n s 6-13

P a r a m e t e r s

Even if the same variable is passed in two or more var parameters, no copies are
made. This is illustrated in the following example.

procedure AddOne(var X, Y: Integer);
begin

X := X + 1;
Y := Y + 1;

end;

var I: Integer;
begin

I := 1;
AddOne(I, I);

end;

After this code executes, the value of I is 3.

If a routine’s declaration specifies a var parameter, you must pass an assignable
expression—that is, a variable, typed constant (in the {$J+} state), dereferenced
pointer, field, or indexed variable—to the routine when you call it. To use our
previous examples, DoubleByRef(7) produces an error, although DoubleByValue(7) is
legal.

Indexes and pointer dereferences passed in var parameters—for example,
DoubleByRef(MyArray[I])—are evaluated once, before execution of the routine.

Constant parameters
A constant (const) parameter is like a local constant or read-only variable. Constant
parameters are similar to value parameters, except that you can’t assign a value to a
constant parameter within the body of a procedure or function, nor can you pass one
as a var parameter to another routine. (But when you pass an object reference as a
constant parameter, you can still modify the object’s properties.)

Using const allows the compiler to optimize code for structured- and string-type
parameters. It also provides a safeguard against unintentionally passing a parameter
by reference to another routine.

Here, for example, is the header for the CompareStr function in the SysUtils unit:

function CompareStr(const S1, S2: string): Integer;

Because S1 and S2 are not modified in the body of CompareStr, they can be declared
as constant parameters.

Out parameters
An out parameter, like a variable parameter, is passed by reference. With an out
parameter, however, the initial value of the referenced variable is discarded by the
routine it is passed to. The out parameter is for output only; that is, it tells the
function or procedure where to store output, but doesn’t provide any input.

For example, consider the procedure heading

procedure GetInfo(out Info: SomeRecordType);

When you call GetInfo, you must pass it a variable of type SomeRecordType:

var MyRecord: SomeRecordType;

6-14 O b j e c t P a s c a l L a n g u a g e G u i d e

P a r a m e t e r s

ƒ
GetInfo(MyRecord);

But you’re not using MyRecord to pass any data to the GetInfo procedure; MyRecord is
just a container where you want GetInfo to store the information it generates. The call
to GetInfo immediately frees the memory used by MyRecord, before program control
passes to the procedure.

Out parameters are frequently used with distributed-object models like COM and
CORBA. In addition, you should use out parameters when you pass an uninitialized
variable to a function or procedure.

Untyped parameters
You can omit type specifications when declaring var, const, and out parameters.
(Value parameters must be typed.) For example,

procedure TakeAnything(const C);

declares a procedure called TakeAnything that accepts a parameter of any type. When
you call such a routine, you cannot pass it a numeral or untyped numeric constant.

Within a procedure or function body, untyped parameters are incompatible with
every type. To operate on an untyped parameter, you must cast it. In general, the
compiler cannot verify that operations on untyped parameters are valid.

The following example uses untyped parameters in a function called Equal that
compares a specified number of bytes of any two variables.

function Equal(var Source, Dest; Size: Integer): Boolean;
type

TBytes = array[0..MaxInt - 1] of Byte;
var

N: Integer;
begin

N := 0;
while (N < Size) and (TBytes(Dest)[N] = TBytes(Source)[N]) do

Inc(N);
Equal := N = Size;

end;

Given the declarations

type
TVector = array[1..10] of Integer;
TPoint = record

X, Y: Integer;
end;

var
Vec1, Vec2: TVector;
N: Integer;
P: TPoint;

you could make the following calls to Equal:

Equal(Vec1, Vec2, SizeOf(TVector)) // compare Vec1 to Vec2
Equal(Vec1, Vec2, SizeOf(Integer) * N) // compare first N elements of Vec1 and Vec2
Equal(Vec1[1], Vec1[6], SizeOf(Integer) * 5) // compare first 5 to last 5 elements of Vec1

P r o c e d u r e s a n d f u n c t i o n s 6-15

P a r a m e t e r s

Equal(Vec1[1], P, 4) // compare Vec1[1] to P.X and Vec1[2] to P.Y

String parameters

When you declare routines that take short-string parameters, you cannot include
length specifiers in the parameter declarations. That is, the declaration

procedure Check(S: string[20]); // syntax error

causes a compilation error. But

type TString20 = string[20];
procedure Check(S: TString20);

is valid. The special identifier OpenString can be used to declare routines that take
short-string parameters of varying length:

procedure Check(S: OpenString);

When the {$H–} and {$P+} compiler directives are both in effect, the reserved word
string is equivalent to OpenString in parameter declarations.

Short strings, OpenString, $H, and $P are supported for backward compatibility only.
In new code, you can avoid these considerations by using long strings.

Array parameters

When you declare routines that take array parameters, you cannot include index type
specifiers in the parameter declarations. That is, the declaration

procedure Sort(A: array[1..10] of Integer); // syntax error

causes a compilation error. But

type TDigits = array[1..10] of Integer;
procedure Sort(A: TDigits);

is valid. For most purposes, however, open array parameters are a better solution.

Open array parameters
Open array parameters allow arrays of different sizes to be passed to the same
procedure or function. To define a routine with an open array parameter, use the
syntax array of type (rather than array[X..Y] of type) in the parameter declaration.
For example,

function Find(A: array of Char): Integer;

declares a function called Find that takes a character array of any size and returns an
integer.

Note The syntax of open array parameters resembles that of dynamic array types, but they
do not mean the same thing. The example above creates a function that takes any
array of Char elements, including (but not limited to) dynamic arrays. To declare
parameters that must be dynamic arrays, you need to specify a type identifier:

type TDynamicCharArray = array of Char;

6-16 O b j e c t P a s c a l L a n g u a g e G u i d e

P a r a m e t e r s

function Find(A: TDynamicCharArray): Integer;

For information about dynamic arrays, see “Dynamic arrays” on page 5-19.

Within the body of a routine, open array parameters are governed by the following
rules.

• They are always zero-based. The first element is 0, the second element is 1, and so
forth. The standard Low and High functions return 0 and Length–1, respectively.
The SizeOf function returns the size of the actual array passed to the routine.

• They can be accessed by element only. Assignments to an entire open array
parameter are not allowed.

• They can be passed to other procedures and functions only as open array
parameters or untyped var parameters. They cannot be passed to SetLength.

• Instead of an array, you can pass a variable of the open array parameter’s base
type. It will be treated as an array of length 1.

When you pass an array as an open array value parameter, the compiler creates a
local copy of the array within the routine’s stack frame. Be careful not to overflow the
stack by passing large arrays.

The following examples use open array parameters to define a Clear procedure that
assigns zero to each element in an array of reals and a Sum function that computes
the sum of the elements in an array of reals.

procedure Clear(var A: array of Real);
var

I: Integer;
begin

for I := 0 to High(A) do A[I] := 0;
end;

function Sum(const A: array of Real): Real;
var

I: Integer;
S: Real;

begin
S := 0;
for I := 0 to High(A) do S := S + A[I];
Sum := S;

end;

When you call routines that use open array parameters, you can pass open array
constructors to them. See “Open array constructors” on page 6-19.

Variant open array parameters
Variant open array parameters allow you to pass an array of differently-typed
expressions to a single procedure or function. To define a routine with a variant open
array parameter, specify array of const as the parameter’s type. Thus

procedure DoSomething(A: array of const);

declares a procedure called DoSomething that can operate on heterogeneous arrays.

P r o c e d u r e s a n d f u n c t i o n s 6-17

P a r a m e t e r s

The array of const construction is equivalent to array of TVarRec. TVarRec, declared
in the System unit, represents a record with a variant part that can hold values of
integer, Boolean, character, real, string, pointer, class, class reference, interface, and
variant types. TVarRec’s VType field indicates the type of each element in the array.
Some types are passed as pointers rather than values; in particular, long strings are
passed as Pointer and must be typecast to string. See the online Help on TVarRec for
details.

The following example uses a variant open array parameter in a function that creates
a string representation of each element passed to it and concatenates the results into a
single string. The string-handling routines called in this function are defined in
SysUtils.

function MakeStr(const Args: array of const): string;
const

BoolChars: array[Boolean] of Char = ('F', 'T');
var

I: Integer;
begin

Result := '';
for I := 0 to High(Args) do

with Args[I] do
case VType of
vtInteger: Result := Result + IntToStr(VInteger);
vtBoolean: Result := Result + BoolChars[VBoolean];
vtChar: Result := Result + VChar;
vtExtended: Result := Result + FloatToStr(VExtended^);
vtString: Result := Result + VString^;
vtPChar: Result := Result + VPChar;
vtObject: Result := Result + VObject.ClassName;
vtClass: Result := Result + VClass.ClassName;
vtAnsiString: Result := Result + string(VAnsiString);
vtCurrency: Result := Result + CurrToStr(VCurrency^);
vtVariant: Result := Result + string(VVariant^);
vtInt64: Result := Result + IntToStr(VInt64^);

end;
end;

We can call this function using an open array constructor (see “Open array
constructors” on page 6-19). For example,

MakeStr(['test', 100, ' ', True, 3.14159, TForm])

returns the string “test100 T3.14159TForm”.

Default parameters

You can specify default parameter values in a procedure or function heading. Default
values are allowed only for typed const and value parameters. To provide a default
value, end the parameter declaration with the = symbol followed by a constant
expression that is assignment-compatible with the parameter’s type.

For example, given the declaration

6-18 O b j e c t P a s c a l L a n g u a g e G u i d e

P a r a m e t e r s

procedure FillArray(A: array of Integer; Value: Integer = 0);

the following procedure calls are equivalent.

FillArray(MyArray);
FillArray(MyArray, 0);

A multiple-parameter declaration cannot specify a default value. Thus, while

function MyFunction(X: Real = 3.5; Y: Real = 3.5): Real;

is legal,

function MyFunction(X, Y: Real = 3.5): Real; // syntax error

is not.

Parameters with default values must occur at the end of the parameter list. That is, all
parameters following the first declared default value must also have default values.
So the following declaration is illegal.

procedure MyProcedure(I: Integer = 1; S: string); // syntax error

Default values specified in a procedural type override those specified in an actual
routine. Thus, given the declarations

type TResizer = function(X: Real; Y: Real = 1.0): Real;
function Resizer(X: Real; Y: Real = 2.0): Real;
var

F: TResizer;
N: Real;

the statements

F := Resizer;
F(N);

result in the values (N, 1.0) being passed to Resizer.

Default parameters are limited to values that can be specified by a constant
expression. (See “Constant expressions” on page 5-41.) Hence parameters of a
dynamic-array, procedural, class, class-reference, or interface type can have no value
other than nil as their default. Parameters of a record, variant, file, static-array, or
object type cannot have default values at all.

For information about calling routines with default parameter values, see “Calling
procedures and functions” on page 6-19.

Default parameters and overloaded routines
If you use default parameter values in an overloaded routine, avoid ambiguous
parameter signatures. Consider, for example, the following.

procedure Confused(I: Integer); overload;
ƒ

procedure Confused(I: Integer; J: Integer = 0); overload;
ƒ

Confused(X); // Which procedure is called?

In fact, neither procedure is called. This code generates a compilation error.

P r o c e d u r e s a n d f u n c t i o n s 6-19

C a l l i n g p r o c e d u r e s a n d f u n c t i o n s

Default parameters in forward and interface declarations
If a routine has a forward declaration or appears in the interface section of a unit,
default parameter values—if there are any—must be specified in the forward or
interface declaration. In this case, the default values can be omitted from the defining
(implementation) declaration; but if the defining declaration includes default values,
they must match those in the forward or interface declaration exactly.

Calling procedures and functions
When you call a procedure or function, program control passes from the point where
the call is made to the body of the routine. You can make the call using the routine’s
declared name (with or without qualifiers) or using a procedural variable that points
to the routine. In either case, if the routine is declared with parameters, your call to it
must pass parameters that correspond in order and type to the routine’s parameter
list. The parameters you pass to a routine are called actual parameters, while the
parameters in the routine’s declaration are called formal parameters.

When calling a routine, remember that

• expressions used to pass typed const and value parameters must be assignment-
compatible with the corresponding formal parameters.

• expressions used to pass var and out parameters must be identically typed with
the corresponding formal parameters, unless the formal parameters are untyped.

• only assignable expressions can be used to pass var and out parameters.

• if a routine’s formal parameters are untyped, numerals and true constants with
numeric values cannot be used as actual parameters.

When you call a routine that uses default parameter values, all actual parameters
following the first accepted default must also use the default values; calls of the form
SomeFunction(,,X) are not legal.

You can omit parentheses when passing all and only the default parameters to a
routine. For example, given the procedure

procedure DoSomething(X: Real = 1.0; I: Integer = 0; S: string = '');

the following calls are equivalent.

DoSomething();
DoSomething;

Open array constructors

Open array constructors allow you to construct arrays directly within function and
procedure calls. They can be passed only as open array parameters or variant open
array parameters.

An open array constructor, like a set constructor, is a sequence of expressions
separated by commas and enclosed in brackets.

6-20 O b j e c t P a s c a l L a n g u a g e G u i d e

For example, given the declarations

var I, J: Integer;
procedure Add(A: array of Integer);

you could call the Add procedure with the statement

Add([5, 7, I, I + J]);

This is equivalent to

var Temp: array[0..3] of Integer;
ƒ

Temp[0] := 5;
Temp[1] := 7;
Temp[2] := I;
Temp[3] := I + J;
Add(Temp);

Open array constructors can be passed only as value or const parameters. The
expressions in a constructor must be assignment-compatible with the base type of the
array parameter. In the case of a variant open array parameter, the expressions can be
of different types.

C l a s s e s a n d o b j e c t s 7-1

C h a p t e r

7
Chapter7Classes and objects

A class, or class type, defines a structure consisting of fields, methods, and properties.
Instances of a class type are called objects. The fields, methods, and properties of a
class are called its components or members.

• A field is essentially a variable that is part of an object. Like the fields of a record, a
class’s fields represent data items that exist in each instance of the class.

• A method is a procedure or function associated with a class. Most methods
operate on objects—that is, instances of a class. Some methods (called class
methods) operate on class types themselves.

• A property is an interface to data associated with an object (often stored in a field).
Properties have access specifiers, which determine how their data are read and
modified. From other parts of a program—outside of the object itself—a property
appears in most respects like a field.

Objects are dynamically allocated blocks of memory whose structure is determined
by their class type. Each object has a unique copy of every field defined in the class,
but all instances of a class share the same methods. Objects are created and destroyed
by special methods called constructors and destructors.

A variable of a class type is actually a pointer that references an object. Hence more
than one variable can refer to the same object. Like other pointers, class-type
variables can hold the value nil. But you don’t have to explicitly dereference a class-
type variable to access the object it points to. For example, SomeObject.Size := 100
assigns the value 100 to the Size property of the object referenced by SomeObject; you
would not write this as SomeObject^.Size := 100.

7-2 O b j e c t P a s c a l L a n g u a g e G u i d e

C l a s s t y p e s

Class types
A class type must be declared and given a name before it can be instantiated. (You
cannot define a class type within a variable declaration.) Declare classes only in the
outermost scope of a program or unit, not in a procedure or function declaration.

A class type declaration has the form

type className = class (ancestorClass)
memberList

end;

where className is any valid identifier, (ancestorClass) is optional, and memberList
declares members—that is, fields, methods, and properties—of the class. If you omit
(ancestorClass), then the new class inherits directly from the predefined TObject class.
If you include (ancestorClass) and memberList is empty, you can omit end. A class type
declaration can also include a list of interfaces implemented by the class; see
“Implementing interfaces” on page 10-4.

Methods appear in a class declaration as function or procedure headings, with no
body. Defining declarations for each method occur elsewhere in the program.

For example, here is the declaration of the TMemoryStream class from the Classes unit.

type
TMemoryStream = class(TCustomMemoryStream)
 private
 FCapacity: Longint;
 procedure SetCapacity(NewCapacity: Longint);
 protected
 function Realloc(var NewCapacity: Longint): Pointer; virtual;
 property Capacity: Longint read FCapacity write SetCapacity;
 public
 destructor Destroy; override;
 procedure Clear;
 procedure LoadFromStream(Stream: TStream);
 procedure LoadFromFile(const FileName: string);
 procedure SetSize(NewSize: Longint); override;
 function Write(const Buffer; Count: Longint): Longint; override;
 end;

TMemoryStream descends from TStream (in the Classes unit), inheriting most of its
members. But it defines—or redefines—several methods and properties, including its
destructor method, Destroy. Its constructor, Create, is inherited without change from
TObject, and so is not redeclared. Each member is declared as private, protected, or
public (this class has no published members); for explanations of these terms, see
“Visibility of class members” on page 7-4.

Given this declaration, you can create an instance of TMemoryStream as follows:

var stream: TMemoryStream;
stream := TMemoryStream.Create;

C l a s s e s a n d o b j e c t s 7-3

C l a s s t y p e s

Inheritance and scope

When you declare a class, you can specify its immediate ancestor. For example,

type TSomeControl = class(TControl);

declares a class called TSomeControl that descends from TControl. A class type
automatically inherits all of the members from its immediate ancestor. Each class can
declare new members and can redefine inherited ones, but a class cannot remove
members defined in an ancestor. Hence TSomeControl contains all of the members
defined in TControl and in each of TControl‘s ancestors.

The scope of a member’s identifier starts at the point where the member is declared,
continues to the end of the class declaration, and extends over all descendants of the
class and the blocks of all methods defined in the class and its descendants.

TObject and TClass
The TObject class, declared in the System unit, is the ultimate ancestor of all other
classes. TObject defines only a handful of methods, including a basic constructor and
destructor. In addition to TObject, the System unit declares the class-reference type
TClass:

TClass = class of TObject;

For more information about TObject, see the online help. For more information about
class-reference types, see “Class references” on page 7-23.

If the declaration of a class type doesn’t specify an ancestor, the class inherits directly
from TObject. Thus

type TMyClass = class
ƒ

end;

is equivalent to

type TMyClass = class(TObject)
ƒ

end;

The latter form is recommended for readability.

Compatibility of class types
A class type is assignment-compatible with its ancestors. Hence a variable of a class
type can reference an instance of any descendant type. For example, given the
declarations

type
TFigure = class(TObject);
TRectangle = class(TFigure);
TSquare = class(TRectangle);

var
Fig: TFigure;

the variable Fig can be assigned values of type TFigure, TRectangle, and TSquare.

7-4 O b j e c t P a s c a l L a n g u a g e G u i d e

C l a s s t y p e s

Object types
As an alternative to class types, you can declare object types using the syntax

type objectTypeName = object (ancestorObjectType)
memberList

end;

where objectTypeName is any valid identifier, (ancestorObjectType) is optional, and
memberList declares fields, methods, and properties. If (ancestorObjectType) is
omitted, then the new type has no ancestor. Object types cannot have published
members.

Since object types do not descend from TObject, they provide no built-in constructors,
destructors, or other methods. You can create instances of an object type using the
New procedure and destroy them with the Dispose procedure, or you can simply
declare variables of an object type, just as you would with records.

Object types are supported for backward compatibility only. Their use is not
recommended.

Visibility of class members

Every member of a class has an attribute called visibility, which is indicated by one of
the reserved words private, protected, public, published, or automated. For
example,

published property Color: TColor read GetColor write SetColor;

declares a published property called Color. Visibility determines where and how a
member can be accessed, with private representing the least accessibility, protected
representing an intermediate level of accessibility, and public, published, and
automated representing the greatest accessibility.

If a member’s declaration appears without its own visibility specifier, the member
has the same visibility as the one that precedes it. Members at the beginning of a class
declaration that don’t have a specified visibility are by default published, provided
the class is compiled in the {$M+} state or is derived from a class compiled in the
{$M+} state; otherwise, such members are public.

For readability, it is best to organize a class declaration by visibility, placing all the
private members together, followed by all the protected members, and so forth. This
way each visibility reserved word appears at most once and marks the beginning of a
new “section” of the declaration. So a typical class declaration should like this:

type
TMyClass = class(TControl)
private
ƒ { private declarations here}

protected
ƒ { protected declarations here }

public
ƒ { public declarations here }

published
ƒ { published declarations here }

end;

C l a s s e s a n d o b j e c t s 7-5

C l a s s t y p e s

You can increase the visibility of a member in a descendant class by redeclaring it,
but you cannot decrease its visibility. For example, a protected property can be made
public in a descendant, but not private. Moreover, published members cannot
become public in a descendant class. For more information, see “Property overrides
and redeclarations” on page 7-22.

Private, protected, and public members
A private member is invisible outside of the unit or program where its class is
declared. In other words, a private method cannot be called from another module,
and a private field or property cannot be read or written to from another module. By
placing related class declarations in the same module, you can give the classes access
to one another’s private members without making those members more widely
accessible.

A protected member is visible anywhere in the module where its class is declared and
from any descendant class, regardless of the module where the descendant class
appears. In other words, a protected method can be called, and a protected field or
property read or written to, from the definition of any method belonging to a class
that descends from the one where the protected member is declared. Members that
are intended for use only in the implementation of derived classes are usually
protected.

A public member is visible wherever its class can be referenced.

Published members
Published members have the same visibility as public members. The difference is that
runtime type information (RTTI) is generated for published members. RTTI allows an
application to query the fields and properties of an object dynamically and to locate
its methods. RTTI is used to access the values of properties when saving and loading
form files, to display properties in the Object Inspector, and to associate specific
methods (called event handlers) with specific properties (called events).

Published properties are restricted to certain data types. Ordinal, string, class,
interface, and method-pointer types can be published. So can set types, provided the
upper and lower bounds of the base type have ordinal values between 0 and 31. (In
other words, the set must fit in a byte, word, or double word.) Any real type except
Real48 can be published. Properties of an array type (as distinct from array properties,
discussed below) cannot be published.

Some properties, although publishable, are not fully supported by the streaming
system. These include properties of record types, array properties of all publishable
types (see “Array properties” on page 7-19), and properties of enumerated types that
include anonymous values (see “Enumerated types with explicitly assigned
ordinality” on page 5-7). If you publish a property of this kind, the Object Inspector
won’t display it correctly, nor will the property’s value be preserved when objects are
streamed to disk.

All methods are publishable, but a class cannot publish two or more overloaded
methods with the same name. Fields can be published only if they are of a class or
interface type.

7-6 O b j e c t P a s c a l L a n g u a g e G u i d e

C l a s s t y p e s

A class cannot have published members unless it is compiled in the {$M+} state or
descends from a class compiled in the {$M+} state. Most classes with published
members derive from TPersistent, which is compiled in the {$M+} state, so it is
seldom necessary to use the $M directive.

Automated members
Automated members have the same visibility as public members. The difference is
that Automation type information (required for Automation servers) is generated for
automated members. Automated members typically appear only in Windows classes
and is not recommended for Linux programming. The automated reserved word is
maintained for backward compatibility. The TAutoObject class in the ComObj unit
does not use automated.

The following restrictions apply to methods and properties declared as automated.

• The types of all properties, array property parameters, method parameters, and
function results must be automatable. The automatable types are Byte, Currency,
Real, Double, Longint, Integer, Single, Smallint, AnsiString, WideString, TDateTime,
Variant, OleVariant, WordBool, and all interface types.

• Method declarations must use the default register calling convention. They can be
virtual, but not dynamic.

• Property declarations can include access specifiers (read and write) but other
specifiers (index, stored, default, and nodefault) are not allowed. Access
specifiers must list a method identifier that uses the default register calling
convention; field identifiers are not allowed.

• Property declarations must specify a type. Property overrides are not allowed.

The declaration of an automated method or property can include a dispid directive.
Specifying an already used ID in a dispid directive causes an error.

On Windows, this directive must be followed by an integer constant that specifies an
Automation dispatch ID for the member. Otherwise, the compiler automatically
assigns the member a dispatch ID that is one larger than the largest dispatch ID used
by any method or property in the class and its ancestors. For more information about
Automation (on Windows only), see “Automation objects (Windows only)” on
page 10-10.

Forward declarations and mutually dependent classes

If the declaration of a class type ends with the word class and a semicolon—that is, if
it has the form

type className = class;

with no ancestor or class members listed after the word class—then it is a forward
declaration. A forward declaration must be resolved by a defining declaration of the
same class within the same type declaration section. In other words, between a
forward declaration and its defining declaration, nothing can occur except other type
declarations.

C l a s s e s a n d o b j e c t s 7-7

F i e l d s

Forward declarations allow mutually dependent classes. For example,

type
TFigure = class; // forward declaration
TDrawing = class

Figure: TFigure;
ƒ

end;

TFigure = class // defining declaration
Drawing: TDrawing;
ƒ

end;

Do not confuse forward declarations with complete declarations of types that derive
from TObject without declaring any class members.

type
TFirstClass = class; // this is a forward declaration

TSecondClass = class // this is a complete class declaration
end; //

TThirdClass = class(TObject); // this is a complete class declaration

Fields
A field is like a variable that belongs to an object. Fields can be of any type, including
class types. (That is, fields can hold object references.) Fields are usually private.

To define a field member of a class, simply declare the field as you would a variable.
All field declarations must occur before any property or method declarations. For
example, the following declaration creates a class called TNumber whose only
member, other than the methods is inherits from TObject, is an integer field called Int.

type TNumber = class
Int: Integer;

end;

Fields are statically bound; that is, references to them are fixed at compile time. To
see what this means, consider the following code.

type
TAncestor = class

Value: Integer;
end;

TDescendant = class(TAncestor)
Value: string; // hides the inherited Value field

end;

var
MyObject: TAncestor;

begin
MyObject := TDescendant.Create;
MyObject.Value := 'Hello!'; // error
TDescendant(MyObject).Value := 'Hello!'; // works!

end;

7-8 O b j e c t P a s c a l L a n g u a g e G u i d e

M e t h o d s

Although MyObject holds an instance of TDescendant, it is declared as TAncestor. The
compiler therefore interprets MyObject.Value as referring to the (integer) field
declared in TAncestor. Both fields, however, exist in the TDescendant object; the
inherited Value is hidden by the new one, and can be accessed through a typecast.

Methods
A method is a procedure or function associated with a class. A call to a method
specifies the object (or, if it is a class method, the class) that the method should
operate on. For example,

SomeObject.Free

calls the Free method in SomeObject.

Method declarations and implementations

Within a class declaration, methods appear as procedure and function headings,
which work like forward declarations. Somewhere after the class declaration, but
within the same module, each method must be implemented by a defining
declaration. For example, suppose the declaration of TMyClass includes a method
called DoSomething:

type
TMyClass = class(TObject)

ƒ
procedure DoSomething;
ƒ

end;

A defining declaration for DoSomething must occur later in the module:

procedure TMyClass.DoSomething;
begin
ƒ

end;

While a class can be declared in either the interface or the implementation section of a
unit, defining declarations for a class’s methods must be in the implementation
section.

In the heading of a defining declaration, the method name is always qualified with
the name of the class to which it belongs. The heading can repeat the parameter list
from the class declaration; if it does so, the order, type, and names of the parameters
must match exactly, and, if the method is a function, so must the return value.

Method declarations can include special directives that are not used with other
functions or procedures. Directives should appear in the class declaration only, not in
the defining declaration, and should always be listed in the following order:

reintroduce; overload; binding; calling convention; abstract; warning

C l a s s e s a n d o b j e c t s 7-9

M e t h o d s

where binding is virtual, dynamic, or override; calling convention is register, pascal,
cdecl, stdcall, or safecall; and warning is platform, deprecated, or library.

Inherited
The reserved word inherited plays a special role in implementing polymorphic
behavior. It can occur in method definitions, with or without an identifier after it.

If inherited is followed by the name of a member, it represents a normal method call
or reference to a property or field—except that the search for the referenced member
begins with the immediate ancestor of the enclosing method’s class. For example,
when

inherited Create(...);

occurs in the definition of a method, it calls the inherited Create.

When inherited has no identifier after it, it refers to the inherited method with the
same name as the enclosing method. In this case, inherited takes no explicit
parameters, but passes to the inherited method the same parameters with which the
enclosing method was called. For example,

inherited;

occurs frequently in the implementation of constructors. It calls the inherited
constructor with the same parameters that were passed to the descendant.

Self
Within the implementation of a method, the identifier Self references the object in
which the method is called. For example, here is the implementation of TCollection’s
Add method in the Classes unit.

function TCollection.Add: TCollectionItem;
begin

Result := FItemClass.Create(Self);
end;

The Add method calls the Create method in the class referenced by the FItemClass
field, which is always a TCollectionItem descendant. TCollectionItem.Create takes a
single parameter of type TCollection, so Add passes it the TCollection instance object
where Add is called. This is illustrated in the following code.

var MyCollection: TCollection;
ƒ

MyCollection.Add // MyCollection is passed to the TCollectionItem.Create method

Self is useful for a variety of reasons. For example, a member identifier declared in a
class type might be redeclared in the block of one of the class’s methods. In this case,
you can access the original member identifier as Self.Identifier.

For information about Self in class methods, see “Class methods” on page 7-25.

7-10 O b j e c t P a s c a l L a n g u a g e G u i d e

M e t h o d s

Method binding

Methods can be static (the default), virtual, or dynamic. Virtual and dynamic methods
can be overridden, and they can be abstract. These designations come into play when a
variable of one class type holds a value of a descendant class type. They determine
which implementation is activated when a method is called.

Static methods
Methods are by default static. When a static method is called, the declared (compile-
time) type of the class or object variable used in the method call determines which
implementation to activate. In the following example, the Draw methods are static.

type
TFigure = class

procedure Draw;
end;
TRectangle = class(TFigure)

procedure Draw;
end;

Given these declarations, the following code illustrates the effect of calling a static
method. In the second call to Figure.Draw, the Figure variable references an object of
class TRectangle, but the call invokes the implementation of Draw in TFigure, because
the declared type of the Figure variable is TFigure.

var
Figure: TFigure;
Rectangle: TRectangle;

begin
Figure := TFigure.Create;
Figure.Draw; // calls TFigure.Draw
Figure.Destroy;
Figure := TRectangle.Create;
Figure.Draw; // calls TFigure.Draw
TRectangle(Figure).Draw; // calls TRectangle.Draw
Figure.Destroy;
Rectangle := TRectangle.Create;
Rectangle.Draw; // calls TRectangle.Draw
Rectangle.Destroy;

end;

Virtual and dynamic methods
To make a method virtual or dynamic, include the virtual or dynamic directive in its
declaration. Virtual and dynamic methods, unlike static methods, can be overridden in
descendant classes. When an overridden method is called, the actual (runtime) type
of the class or object used in the method call—not the declared type of the variable—
determines which implementation to activate.

To override a method, redeclare it with the override directive. An override
declaration must match the ancestor declaration in the order and type of its
parameters and in its result type (if any).

C l a s s e s a n d o b j e c t s 7-11

M e t h o d s

In the following example, the Draw method declared in TFigure is overridden in two
descendant classes.

type
TFigure = class

procedure Draw; virtual;
end;
TRectangle = class(TFigure)

procedure Draw; override;
end;
TEllipse = class(TFigure)

procedure Draw; override;
end;

Given these declarations, the following code illustrates the effect of calling a virtual
method through a variable whose actual type varies at runtime.

var
Figure: TFigure;

begin
Figure := TRectangle.Create;
Figure.Draw; // calls TRectangle.Draw
Figure.Destroy;
Figure := TEllipse.Create;
Figure.Draw; // calls TEllipse.Draw
Figure.Destroy;

end;

Only virtual and dynamic methods can be overridden. All methods, however, can be
overloaded; see “Overloading methods”.

Virtual versus dynamic
Virtual and dynamic methods are semantically equivalent. They differ only in the
implementation of method-call dispatching at runtime. Virtual methods optimize for
speed, while dynamic methods optimize for code size.

In general, virtual methods are the most efficient way to implement polymorphic
behavior. Dynamic methods are useful when a base class declares many overridable
methods which are inherited by many descendant classes in an application, but only
occasionally overridden.

Overriding versus hiding
If a method declaration specifies the same method identifier and parameter signature
as an inherited method, but doesn’t include override, the new declaration merely
hides the inherited one without overriding it. Both methods exist in the descendant
class, where the method name is statically bound. For example,

type
T1 = class(TObject)

procedure Act; virtual;
end;
T2 = class(T1)

procedure Act; // Act is redeclared, but not overridden
end;

7-12 O b j e c t P a s c a l L a n g u a g e G u i d e

M e t h o d s

var
SomeObject: T1;

begin
SomeObject := T2.Create;
SomeObject.Act; // calls T1.Act

end;

Reintroduce
The reintroduce directive suppresses compiler warnings about hiding previously
declared virtual methods. For example,

procedure DoSomething; reintroduce; // the ancestor class also has a DoSomething method

Use reintroduce when you want to hide an inherited virtual method with a new one.

Abstract methods
An abstract method is a virtual or dynamic method that has no implementation in the
class where it is declared. Its implementation is deferred to a descendant class.
Abstract methods must be declared with the directive abstract after virtual or
dynamic. For example,

procedure DoSomething; virtual; abstract;

You can call an abstract method only in a class or instance of a class in which the
method has been overridden.

Overloading methods

A method can be redeclared using the overload directive. In this case, if the
redeclared method has a different parameter signature from its ancestor, it overloads
the inherited method without hiding it. Calling the method in a descendant class
activates whichever implementation matches the parameters in the call.

If you overload a virtual method, use the reintroduce directive when you redeclare it
in descendant classes. For example,

type
T1 = class(TObject)

procedure Test(I: Integer); overload; virtual;
end;
T2 = class(T1)

procedure Test(S: string); reintroduce; overload;
end;
ƒ

SomeObject := T2.Create;
SomeObject.Test('Hello!'); // calls T2.Test
SomeObject.Test(7); // calls T1.Test

Within a class, you cannot publish multiple overloaded methods with the same
name. Maintenance of runtime type information requires a unique name for each
published member.

C l a s s e s a n d o b j e c t s 7-13

M e t h o d s

type
TSomeClass = class
published

function Func(P: Integer): Integer;
function Func(P: Boolean): Integer // error
ƒ

Methods that serve as property read or write specifiers cannot be overloaded.

The implementation of an overloaded method must repeat the parameter list from
the class declaration. For more information about overloading, see “Overloading
procedures and functions” on page 6-8.

Constructors

A constructor is a special method that creates and initializes instance objects. The
declaration of a constructor looks like a procedure declaration, but it begins with the
word constructor. Examples:

constructor Create;
constructor Create(AOwner: TComponent);

Constructors must use the default register calling convention. Although the
declaration specifies no return value, a constructor returns a reference to the object it
creates or is called in.

A class can have more than one constructor, but most have only one. It is
conventional to call the constructor Create.

To create an object, call the constructor method in a class type. For example,

MyObject := TMyClass.Create;

This allocates storage for the new object on the heap, sets the values of all ordinal
fields to zero, assigns nil to all pointer and class-type fields, and makes all string
fields empty. Other actions specified in the constructor implementation are
performed next; typically, objects are initialized based on values passed as
parameters to the constructor. Finally, the constructor returns a reference to the
newly allocated and initialized object. The type of the returned value is the same as
the class type specified in the constructor call.

If an exception is raised during execution of a constructor that was invoked on a class
reference, the Destroy destructor is automatically called to destroy the unfinished
object.

When a constructor is called using an object reference (rather than a class reference),
it does not create an object. Instead, the constructor operates on the specified object,
executing only the statements in the constructor’s implementation, and then returns
a reference to the object. A constructor is typically invoked on an object reference in
conjunction with the reserved word inherited to execute an inherited constructor.

Here is an example of a class type and its constructor.

7-14 O b j e c t P a s c a l L a n g u a g e G u i d e

M e t h o d s

type
TShape = class(TGraphicControl)
private

FPen: TPen;
FBrush: TBrush;
procedure PenChanged(Sender: TObject);
procedure BrushChanged(Sender: TObject);

public
constructor Create(Owner: TComponent); override;
destructor Destroy; override;
ƒ

end;

constructor TShape.Create(Owner: TComponent);
begin

inherited Create(Owner); // Initialize inherited parts
Width := 65; // Change inherited properties
Height := 65;
FPen := TPen.Create; // Initialize new fields
FPen.OnChange := PenChanged;
FBrush := TBrush.Create;
FBrush.OnChange := BrushChanged;

end;

The first action of a constructor is usually to call an inherited constructor to initialize
the object’s inherited fields. The constructor then initializes the fields introduced in
the descendant class. Because a constructor always clears the storage it allocates for a
new object, all fields start with a value of zero (ordinal types), nil (pointer and class
types), empty (string types), or Unassigned (variants). Hence there is no need to
initialize fields in a constructor’s implementation except to nonzero or nonempty
values.

When invoked through a class-type identifier, a constructor declared as virtual is
equivalent to a static constructor. When combined with class-reference types,
however, virtual constructors allow polymorphic construction of objects—that is,
construction of objects whose types aren’t known at compile time. (See “Class
references” on page 7-23.)

Destructors

A destructor is a special method that destroys the object where it is called and
deallocates its memory. The declaration of a destructor looks like a procedure
declaration, but it begins with the word destructor. Examples:

destructor Destroy;
destructor Destroy; override;

Destructors must use the default register calling convention. Although a class can
have more than one destructor, it is recommended that each class override the
inherited Destroy method and declare no other destructors.

To call a destructor, you must reference an instance object. For example,

MyObject.Destroy;

C l a s s e s a n d o b j e c t s 7-15

M e t h o d s

When a destructor is called, actions specified in the destructor implementation are
performed first. Typically, these consist of destroying any embedded objects and
freeing resources that were allocated by the object. Then the storage that was
allocated for the object is disposed of.

Here is an example of a destructor implementation.

destructor TShape.Destroy;
begin

FBrush.Free;
FPen.Free;
inherited Destroy;

end;

The last action in a destructor’s implementation is typically to call the inherited
destructor to destroy the object’s inherited fields.

When an exception is raised during creation of an object, Destroy is automatically
called to dispose of the unfinished object. This means that Destroy must be prepared
to dispose of partially constructed objects. Because a constructor sets the fields of a
new object to zero or empty values before performing other actions, class-type and
pointer-type fields in a partially constructed object are always nil. A destructor
should therefore check for nil values before operating on class-type or pointer-type
fields. Calling the Free method (defined in TObject), rather than Destroy, offers a
convenient way of checking for nil values before destroying an object.

Message methods

Message methods implement responses to dynamically dispatched messages. The
message method syntax is supported on all platforms. The VCL uses message
methods to respond to Windows messages. CLX does not use message methods to
respond to system events.

A message method is created by including the message directive in a method
declaration, followed by an integer constant between 1 and 49151 which specifies the
message ID. For message methods in VCL controls, the integer constant can be one of
the Windows message IDs defined, along with corresponding record types, in the
Messages unit. A message method must be a procedure that takes a single var
parameter.

For example, on Windows:

type
TTextBox = class(TCustomControl)
private

procedure WMChar(var Message: TWMChar); message WM_CHAR;
ƒ

end;

For example, on Linux or for cross-platform programming, you would handle
messages as follows:

7-16 O b j e c t P a s c a l L a n g u a g e G u i d e

M e t h o d s

const
ID_REFRESH = $0001;

type
TTextBox = class(TCustomControl)
private

procedure Refresh(var Message: TMessageRecordType); message ID_REFRESH;
ƒ

end;

A message method does not have to include the override directive to override an
inherited message method. In fact, it doesn’t have to specify the same method name
or parameter type as the method it overrides. The message ID alone determines
which message the method responds to and whether it is an override.

Implementing message methods
The implementation of a message method can call the inherited message method, as
in this example (for Windows):

procedure TTextBox.WMChar(var Message: TWMChar);
begin

if Chr(Message.CharCode) = #13 then
ProcessEnter

else
inherited;

end;

On Linux or for cross-platform programming, you would write the same example as
follows:

procedure TTextBox.Refresh(var Message: TMessageRecordType);
begin

if Chr(Message.Code) = #13 then
...

else
inherited;

end;

The inherited statement searches backward through the class hierarchy and invokes
the first message method with the same ID as the current method, automatically
passing the message record to it. If no ancestor class implements a message method
for the given ID, inherited calls the DefaultHandler method originally defined in
TObject.

The implementation of DefaultHandler in TObject simply returns without performing
any actions. By overriding DefaultHandler, a class can implement its own default
handling of messages. On Windows, the DefaultHandler method for VCL controls
calls the Windows DefWindowProc function.

Message dispatching
Message handlers are seldom called directly. Instead, messages are dispatched to an
object using the Dispatch method inherited from TObject:

procedure Dispatch(var Message);

C l a s s e s a n d o b j e c t s 7-17

P r o p e r t i e s

The Message parameter passed to Dispatch must be a record whose first entry is a field
of type Cardinal containing a message ID.

Dispatch searches backward through the class hierarchy (starting from the class of the
object where it is called) and invokes the first message method for the ID passed to it.
If no message method is found for the given ID, Dispatch calls DefaultHandler.

Properties
A property, like a field, defines an attribute of an object. But while a field is merely a
storage location whose contents can be examined and changed, a property associates
specific actions with reading or modifying its data. Properties provide control over
access to an object’s attributes, and they allow attributes to be computed.

The declaration of a property specifies a name and a type, and includes at least one
access specifier. The syntax of a property declaration is

property propertyName[indexes]: type index integerConstant specifiers;

where

• propertyName is any valid identifier.

• [indexes] is optional and is a sequence of parameter declarations separated by
semicolons. Each parameter declaration has the form identifier1, ..., identifiern:
type. For more information, see “Array properties” on page 7-19.

• type must be a predefined or previously declared data type. That is, property
declarations like property Num: 0..9 ... are invalid.

• the index integerConstant clause is optional. For more information, see “Index
specifiers” on page 7-20.

• specifiers is a sequence of read, write, stored, default (or nodefault), and
implements specifiers. Every property declaration must have at least one read or
write specifier. (For information about implements, see “Implementing interfaces
by delegation” on page 10-6.)

Properties are defined by their access specifiers. Unlike fields, properties cannot be
passed as var parameters, nor can the @ operator be applied to a property. The reason
is that a property doesn’t necessarily exist in memory. It could, for instance, have a
read method that retrieves a value from a database or generates a random value.

Property access

Every property has a read specifier, a write specifier, or both. These are called access
specifiers and they have the form

read fieldOrMethod
write fieldOrMethod

7-18 O b j e c t P a s c a l L a n g u a g e G u i d e

P r o p e r t i e s

where fieldOrMethod is the name of a field or method declared in the same class as the
property or in an ancestor class.

• If fieldOrMethod is declared in the same class, it must occur before the property
declaration. If it is declared in an ancestor class, it must be visible from the
descendant; that is, it cannot be a private field or method of an ancestor class
declared in a different unit.

• If fieldOrMethod is a field, it must be of the same type as the property.

• If fieldOrMethod is a method, it cannot be overloaded. Moreover, access methods
for a published property must use the default register calling convention.

• In a read specifier, if fieldOrMethod is a method, it must be a parameterless
function whose result type is the same as the property’s type.

• In a write specifier, if fieldOrMethod is a method, it must be a procedure that takes
a single value or const parameter of the same type as the property.

For example, given the declaration

property Color: TColor read GetColor write SetColor;

the GetColor method must be declared as

function GetColor: TColor;

and the SetColor method must be declared as one of these:

procedure SetColor(Value: TColor);
procedure SetColor(const Value: TColor);

(The name of SetColor‘s parameter, of course, doesn’t have to be Value.)

When a property is referenced in an expression, its value is read using the field or
method listed in the read specifier. When a property is referenced in an assignment
statement, its value is written using the field or method listed in the write specifier.

The example below declares a class called TCompass with a published property called
Heading. The value of Heading is read through the FHeading field and written through
the SetHeading procedure.

type
THeading = 0..359;
TCompass = class(TControl)
private

FHeading: THeading;
procedure SetHeading(Value: THeading);

published
property Heading: THeading read FHeading write SetHeading;
ƒ

end;

Given this declaration, the statements

if Compass.Heading = 180 then GoingSouth;
Compass.Heading := 135;

C l a s s e s a n d o b j e c t s 7-19

P r o p e r t i e s

correspond to

if Compass.FHeading = 180 then GoingSouth;
Compass.SetHeading(135);

In the TCompass class, no action is associated with reading the Heading property; the
read operation consists of retrieving the value stored in the FHeading field. On the
other hand, assigning a value to the Heading property translates into a call to the
SetHeading method, which, presumably, stores the new value in the FHeading field as
well as performing other actions. For example, SetHeading might be implemented like
this:

procedure TCompass.SetHeading(Value: THeading);
begin

if FHeading <> Value then
begin

FHeading := Value;
Repaint; // update user interface to reflect new value

end;
end;

A property whose declaration includes only a read specifier is a read-only property,
and one whose declaration includes only a write specifier is a write-only property. It
is an error to assign a value to a read-only property or use a write-only property in an
expression.

Array properties

Array properties are indexed properties. They can represent things like items in a list,
child controls of a control, and pixels of a bitmap.

The declaration of an array property includes a parameter list that specifies the
names and types of the indexes. For example,

property Objects[Index: Integer]: TObject read GetObject write SetObject;
property Pixels[X, Y: Integer]: TColor read GetPixel write SetPixel;
property Values[const Name: string]: string read GetValue write SetValue;

The format of an index parameter list is the same as that of a procedure’s or
function’s parameter list, except that the parameter declarations are enclosed in
brackets instead of parentheses. Unlike arrays, which can use only ordinal-type
indexes, array properties allow indexes of any type.

For array properties, access specifiers must list methods rather than fields. The
method in a read specifier must be a function that takes the number and type of
parameters listed in the property’s index parameter list, in the same order, and
whose result type is identical to the property’s type. The method in a write specifier
must be a procedure that takes the number and type of parameters listed in the
property’s index parameter list, in the same order, plus an additional value or const
parameter of the same type as the property.

For example, the access methods for the array properties above might be declared as

function GetObject(Index: Integer): TObject;
function GetPixel(X, Y: Integer): TColor;

7-20 O b j e c t P a s c a l L a n g u a g e G u i d e

P r o p e r t i e s

function GetValue(const Name: string): string;
procedure SetObject(Index: Integer; Value: TObject);
procedure SetPixel(X, Y: Integer; Value: TColor);
procedure SetValue(const Name, Value: string);

An array property is accessed by indexing the property identifier. For example, the
statements

if Collection.Objects[0] = nil then Exit;
Canvas.Pixels[10, 20] := clRed;
Params.Values['PATH'] := 'C:\DELPHI\BIN';

correspond to

if Collection.GetObject(0) = nil then Exit;
Canvas.SetPixel(10, 20, clRed);
Params.SetValue('PATH', 'C:\DELPHI\BIN');

On Linux, you would use a path such as ‘/usr/local/bin’ in place of ‘C:\DELPHI\
BIN’ in the above example.

The definition of an array property can be followed by the default directive, in which
case the array property becomes the default property of the class. For example,

type
TStringArray = class
public

property Strings[Index: Integer]: string ...; default;
ƒ

end;

If a class has a default property, you can access that property with the abbreviation
object[index], which is equivalent to object.property[index]. For example, given the
declaration above, StringArray.Strings[7] can be abbreviated to StringArray[7]. A class
can have only one default property. Changing or hiding the default property in
descendant classes may lead to unexpected behavior, since the compiler always
determines an object’s default property statically.

Index specifiers

Index specifiers allow several properties to share the same access method while
representing different values. An index specifier consists of the directive index
followed by an integer constant between –2147483647 and 2147483647. If a property
has an index specifier, its read and write specifiers must list methods rather than
fields. For example,

type
TRectangle = class
private

FCoordinates: array[0..3] of Longint;
function GetCoordinate(Index: Integer): Longint;
procedure SetCoordinate(Index: Integer; Value: Longint);

public
property Left: Longint index 0 read GetCoordinate write SetCoordinate;
property Top: Longint index 1 read GetCoordinate write SetCoordinate;

C l a s s e s a n d o b j e c t s 7-21

P r o p e r t i e s

property Right: Longint index 2 read GetCoordinate write SetCoordinate;
property Bottom: Longint index 3 read GetCoordinate write SetCoordinate;
property Coordinates[Index: Integer]: Longint read GetCoordinate write SetCoordinate;
ƒ

end;

An access method for a property with an index specifier must take an extra value
parameter of type Integer. For a read function, it must be the last parameter; for a
write procedure, it must be the second-to-last parameter (preceding the parameter
that specifies the property value). When a program accesses the property, the
property’s integer constant is automatically passed to the access method.

Given the declaration above, if Rectangle is of type TRectangle, then

Rectangle.Right := Rectangle.Left + 100;

corresponds to

Rectangle.SetCoordinate(2, Rectangle.GetCoordinate(0) + 100);

Storage specifiers

The optional stored, default, and nodefault directives are called storage specifiers.
They have no effect on program behavior, but control the way runtime type
information (RTTI) is maintained. Specifically, storage specifiers determine whether
or not to save the values of published properties in form files.

The stored directive must be followed by True, False, the name of a Boolean field, or
the name of a parameterless method that returns a Boolean value. For example,

property Name: TComponentName read FName write SetName stored False;

If a property has no stored directive, it is treated as if stored True were specified.

The default directive must be followed by a constant of the same type as the
property. For example,

property Tag: Longint read FTag write FTag default 0;

To override an inherited default value without specifying a new one, use the
nodefault directive. The default and nodefault directives are supported only for
ordinal types and for set types, provided the upper and lower bounds of the set’s
base type have ordinal values between 0 and 31; if such a property is declared
without default or nodefault, it is treated as if nodefault were specified. For reals,
pointers, and strings, there is an implicit default value of 0, nil, and '' (the empty
string), respectively.

When saving a component’s state, the storage specifiers of the component’s
published properties are checked. If a property’s current value is different from its
default value (or if there is no default value) and the stored specifier is True, then the
property’s value is saved. Otherwise, the property’s value is not saved.

Note Storage specifiers are not supported for array properties. The default directive has a
different meaning when used in an array property declaration. See “Array
properties” on page 7-19.

7-22 O b j e c t P a s c a l L a n g u a g e G u i d e

P r o p e r t i e s

Property overrides and redeclarations

A property declaration that doesn’t specify a type is called a property override.
Property overrides allow you to change a property’s inherited visibility or specifiers.
The simplest override consists only of the reserved word property followed by an
inherited property identifier; this form is used to change a property’s visibility. For
example, if an ancestor class declares a property as protected, a derived class can
redeclare it in a public or published section of the class. Property overrides can
include read, write, stored, default, and nodefault directives; any such directive
overrides the corresponding inherited directive. An override can replace an inherited
access specifier, add a missing specifier, or increase a property’s visibility, but it
cannot remove an access specifier or decrease a property’s visibility. An override can
include an implements directive, which adds to the list of implemented interfaces
without removing inherited ones.

The following declarations illustrate the use of property overrides.

type
TAncestor = class
ƒ

protected
property Size: Integer read FSize;
property Text: string read GetText write SetText;
property Color: TColor read FColor write SetColor stored False;
ƒ

end;
type

TDerived = class(TAncestor)
ƒ

protected
property Size write SetSize;

published
property Text;
property Color stored True default clBlue;
ƒ

end;

The override of Size adds a write specifier to allow the property to be modified. The
overrides of Text and Color change the visibility of the properties from protected to
published. The property override of Color also specifies that the property should be
filed if its value isn’t clBlue.

A redeclaration of a property that includes a type identifier hides the inherited
property rather than overriding it. This means that a new property is created with the
same name as the inherited one. Any property declaration that specifies a type must
be a complete declaration, and must therefore include at least one access specifier.

Whether a property is hidden or overridden in a derived class, property look-up is
always static. That is, the declared (compile-time) type of the variable used to identify
an object determines the interpretation of its property identifiers. Hence, after the
following code executes, reading or assigning a value to MyObject.Value invokes
Method1 or Method2, even though MyObject holds an instance of TDescendant. But you

C l a s s e s a n d o b j e c t s 7-23

C l a s s r e f e r e n c e s

can cast MyObject to TDescendant to access the descendant class’s properties and their
access specifiers.

type
TAncestor = class

ƒ
property Value: Integer read Method1 write Method2;

end;

TDescendant = class(TAncestor)
ƒ

property Value: Integer read Method3 write Method4;
end;

var MyObject: TAncestor;
ƒ

MyObject := TDescendant.Create;

Class references
Sometimes operations are performed on a class itself, rather than on instances of a
class (that is, objects). This happens, for example, when you call a constructor method
using a class reference. You can always refer to a specific class using its name, but at
times it is necessary to declare variables or parameters that take classes as values, and
in these situations you need class-reference types.

Class-reference types

A class-reference type, sometimes called a metaclass, is denoted by a construction of
the form

class of type

where type is any class type. The identifier type itself denotes a value whose type is
class of type. If type1 is an ancestor of type2, then class of type2 is assignment-
compatible with class of type1. Thus

type TClass = class of TObject;
var AnyObj: TClass;

declares a variable called AnyObj that can hold a reference to any class. (The
definition of a class-reference type cannot occur directly in a variable declaration or
parameter list.) You can assign the value nil to a variable of any class-reference type.

To see how class-reference types are used, look at the declaration of the constructor
for TCollection (in the Classes unit):

type TCollectionItemClass = class of TCollectionItem;
ƒ

constructor Create(ItemClass: TCollectionItemClass);

This declaration says that to create a TCollection instance object, you must pass to the
constructor the name of a class descending from TCollectionItem.

7-24 O b j e c t P a s c a l L a n g u a g e G u i d e

C l a s s r e f e r e n c e s

Class-reference types are useful when you want to invoke a class method or virtual
constructor on a class or object whose actual type is unknown at compile time.

Constructors and class references
A constructor can be called using a variable of a class-reference type. This allows
construction of objects whose type isn’t known at compile time. For example,

type TControlClass = class of TControl;

function CreateControl(ControlClass: TControlClass;
const ControlName: string; X, Y, W, H: Integer): TControl;

begin
Result := ControlClass.Create(MainForm);
with Result do
begin

Parent := MainForm;
Name := ControlName;
SetBounds(X, Y, W, H);
Visible := True;

end;
end;

The CreateControl function requires a class-reference parameter to tell it what kind of
control to create. It uses this parameter to call the class’s constructor. Because class-
type identifiers denote class-reference values, a call to CreateControl can specify the
identifier of the class to create an instance of. For example,

CreateControl(TEdit, 'Edit1', 10, 10, 100, 20);

Constructors called using class references are usually virtual. The constructor
implementation activated by the call depends on the runtime type of the class
reference.

Class operators

Every class inherits from TObject methods called ClassType and ClassParent that
return, respectively, a reference to the class of an object and of an object’s immediate
ancestor. Both methods return a value of type TClass (where TClass = class of
TObject), which can be cast to a more specific type. Every class also inherits a method
called InheritsFrom that tests whether the object where it is called descends from a
specified class. These methods are used by the is and as operators, and it is seldom
necessary to call them directly.

The is operator
The is operator, which performs dynamic type checking, is used to verify the actual
runtime class of an object. The expression

object is class

returns True if object is an instance of the class denoted by class or one of its
descendants, and False otherwise. (If object is nil, the result is False.) If the declared

C l a s s e s a n d o b j e c t s 7-25

C l a s s r e f e r e n c e s

type of object is unrelated to class—that is, if the types are distinct and one is not an
ancestor of the other—a compilation error results. For example,

if ActiveControl is TEdit then TEdit(ActiveControl).SelectAll;

This statement casts a variable to TEdit after first verifying that the object it references
is an instance of TEdit or one of its descendants.

The as operator
The as operator performs checked typecasts. The expression

object as class

returns a reference to the same object as object, but with the type given by class. At
runtime, object must be an instance of the class denoted by class or one of its
descendants, or be nil; otherwise an exception is raised. If the declared type of object
is unrelated to class—that is, if the types are distinct and one is not an ancestor of the
other—a compilation error results. For example,

with Sender as TButton do
begin
 Caption := '&Ok';
 OnClick := OkClick;
end;

The rules of operator precedence often require as typecasts to be enclosed in
parentheses. For example,

(Sender as TButton).Caption := '&Ok';

Class methods

A class method is a method (other than a constructor) that operates on classes instead
of objects. The definition of a class method must begin with the reserved word class.
For example,

type
TFigure = class
public

class function Supports(Operation: string): Boolean; virtual;
class procedure GetInfo(var Info: TFigureInfo); virtual;
ƒ

end;

The defining declaration of a class method must also begin with class. For example,

class procedure TFigure.GetInfo(var Info: TFigureInfo);
begin

ƒ
end;

In the defining declaration of a class method, the identifier Self represents the class
where the method is called (which could be a descendant of the class in which it is
defined). If the method is called in the class C, then Self is of the type class of C. Thus

7-26 O b j e c t P a s c a l L a n g u a g e G u i d e

E x c e p t i o n s

you cannot use Self to access fields, properties, and normal (object) methods, but you
can use it to call constructors and other class methods.

A class method can be called through a class reference or an object reference. When it
is called through an object reference, the class of the object becomes the value of Self.

Exceptions
An exception is raised when an error or other event interrupts normal execution of a
program. The exception transfers control to an exception handler, which allows you to
separate normal program logic from error-handling. Because exceptions are objects,
they can be grouped into hierarchies using inheritance, and new exceptions can be
introduced without affecting existing code. An exception can carry information, such
as an error message, from the point where it is raised to the point where it is handled.

When an application uses the SysUtils unit, all runtime errors are automatically
converted into exceptions. Errors that would otherwise terminate an application—
such as insufficient memory, division by zero, and general protection faults—can be
caught and handled.

When to use exceptions

Exceptions provide an elegant way to trap runtime errors without halting the
program and without awkward conditional statements. The complexity of Object
Pascal’s exception-handling mechanism, however, makes it inefficient, and it should
therefore be used judiciously. While it is possible to raise exceptions for almost any
reason, and to protect almost any block of code by wrapping it in a try...except or
try...finally statement, in practice these tools are best reserved for special situations.

Exception handling is appropriate for errors whose chances of occurring are low or
difficult to assess, but whose consequences are likely to be catastrophic (such as
crashing the application); for error conditions that are complicated or difficult to test
for in if...then statements; and when you need to respond to exceptions raised by the
operating system or by routines whose source code you don’t control. Exceptions are
commonly used for hardware, memory, I/O, and operating-system errors.

Conditional statements are often the best way to test for errors. For example, suppose
you want to make sure that a file exists before trying to open it. You could do it this
way:

try
AssignFile(F, FileName);
Reset(F); // raises an EInOutError exception if file is not found

except
on Exception do ...

end;

But you could also avoid the overhead of exception handling by using

if FileExists(FileName) then // returns False if file is not found; raises no exception
begin

C l a s s e s a n d o b j e c t s 7-27

E x c e p t i o n s

AssignFile(F, FileName);
Reset(F);

end;

Assertions provide another way of testing a Boolean condition anywhere in your
source code. When an Assert statement fails, the program either halts or (if it uses the
SysUtils unit) raises an EAssertionFailed exception. Assertions should be used only to
test for conditions that you do not expect to occur. For more information, see the
online Help for the standard procedure Assert.

Declaring exception types

Exception types are declared just like other classes. In fact, it is possible to use an
instance of any class as an exception, but it is recommended that exceptions be
derived from the Exception class defined in SysUtils.

You can group exceptions into families using inheritance. For example, the following
declarations in SysUtils define a family of exception types for math errors.

type
 EMathError = class(Exception);
 EInvalidOp = class(EMathError);
 EZeroDivide = class(EMathError);
 EOverflow = class(EMathError);
 EUnderflow = class(EMathError);

Given these declarations, you can define a single EMathError exception handler that
also handles EInvalidOp, EZeroDivide, EOverflow, and EUnderflow.

Exception classes sometimes define fields, methods, or properties that convey
additional information about the error. For example,

type EInOutError = class(Exception)
ErrorCode: Integer;

end;

Raising and handling exceptions

To create an exception object, call the exception class’s constructor within a raise
statement. For example,

raise EMathError.Create;

In general, the form of a raise statement is

raise object at address

where object and at address are both optional. If object is omitted, the statement re-
raises the current exception; see “Re-raising exceptions” on page 7-30. When an
address is specified, it is usually a pointer to a procedure or function; use this option
to raise the exception from an earlier point in the stack than the one where the error
actually occurred.

7-28 O b j e c t P a s c a l L a n g u a g e G u i d e

E x c e p t i o n s

When an exception is raised—that is, referenced in a raise statement—it is governed
by special exception-handling logic. A raise statement never returns control in the
normal way. Instead, it transfers control to the innermost exception handler that can
handle exceptions of the given class. (The innermost handler is the one whose
try...except block was most recently entered but has not yet exited.)

For example, the function below converts a string to an integer, raising an
ERangeError exception if the resulting value is outside a specified range.

function StrToIntRange(const S: string; Min, Max: Longint): Longint;
begin

Result := StrToInt(S); // StrToInt is declared in SysUtils
if (Result < Min) or (Result > Max) then

raise ERangeError.CreateFmt(
'%d is not within the valid range of %d..%d',
[Result, Min, Max]);

end;

Notice the CreateFmt method called in the raise statement. Exception and its
descendants have special constructors that provide alternative ways to create
exception messages and context IDs. See the online Help for details.

A raised exception is destroyed automatically after it is handled. Never attempt to
destroy a raised exception manually.

Note Raising an exception in the initialization section of a unit may not produce the
intended result. Normal exception support comes from the SysUtils unit, which must
be initialized before such support is available. If an exception occurs during
initialization, all initialized units—including SysUtils—are finalized and the
exception is re-raised. Then the exception is caught and handled, usually by
interrupting the program.

Try...except statements
Exceptions are handled within try...except statements. For example,

try
X := Y/Z;

except
on EZeroDivide do HandleZeroDivide;

end;

This statement attempts to divide Y by Z, but calls a routine named HandleZeroDivide
if an EZeroDivide exception is raised.

The syntax of a try...except statement is

try statements except exceptionBlock end

where statements is a sequence of statements (delimited by semicolons) and
exceptionBlock is either

• another sequence of statements or
• a sequence of exception handlers, optionally followed by

else statements

C l a s s e s a n d o b j e c t s 7-29

E x c e p t i o n s

An exception handler has the form

on identifier: type do statement

where identifier: is optional (if included, identifier can be any valid identifier), type is a
type used to represent exceptions, and statement is any statement.

A try...except statement executes the statements in the initial statements list. If no
exceptions are raised, the exception block (exceptionBlock) is ignored and control
passes to the next part of the program.

If an exception is raised during execution of the initial statements list, either by a raise
statement in the statements list or by a procedure or function called from the
statements list, an attempt is made to “handle” the exception:

• If any of the handlers in the exception block matches the exception, control passes
to the first such handler. An exception handler “matches” an exception just in case
the type in the handler is the class of the exception or an ancestor of that class.

• If no such handler is found, control passes to the statement in the else clause, if
there is one.

• If the exception block is just a sequence of statements without any exception
handlers, control passes to the first statement in the list.

If none of the conditions above is satisfied, the search continues in the exception
block of the next-most-recently entered try...except statement that has not yet exited.
If no appropriate handler, else clause, or statement list is found there, the search
propagates to the next-most-recently entered try...except statement, and so forth. If
the outermost try...except statement is reached and the exception is still not handled,
the program terminates.

When an exception is handled, the stack is traced back to the procedure or function
containing the try...except statement where the handling occurs, and control is
transferred to the executed exception handler, else clause, or statement list. This
process discards all procedure and function calls that occurred after entering the
try...except statement where the exception is handled. The exception object is then
automatically destroyed through a call to its Destroy destructor and control is passed
to the statement following the try...except statement. (If a call to the Exit, Break, or
Continue standard procedure causes control to leave the exception handler, the
exception object is still automatically destroyed.)

In the example below, the first exception handler handles division-by-zero
exceptions, the second one handles overflow exceptions, and the final one handles all
other math exceptions. EMathError appears last in the exception block because it is
the ancestor of the other two exception classes; if it appeared first, the other two
handlers would never be invoked.

try
ƒ

except
on EZeroDivide do HandleZeroDivide;
on EOverflow do HandleOverflow;
on EMathError do HandleMathError;

end;

7-30 O b j e c t P a s c a l L a n g u a g e G u i d e

E x c e p t i o n s

An exception handler can specify an identifier before the name of the exception class.
This declares the identifier to represent the exception object during execution of the
statement that follows on...do. The scope of the identifier is limited to that statement.
For example,

try
ƒ

except
on E: Exception do ErrorDialog(E.Message, E.HelpContext);

end;

If the exception block specifies an else clause, the else clause handles any exceptions
that aren’t handled by the block’s exception handlers. For example,

try
ƒ

except
on EZeroDivide do HandleZeroDivide;
on EOverflow do HandleOverflow;
on EMathError do HandleMathError;

else
HandleAllOthers;

end;

Here, the else clause handles any exception that isn’t an EMathError.

An exception block that contains no exception handlers, but instead consists only of a
list of statements, handles all exceptions. For example,

try
ƒ

except
HandleException;

end;

Here, the HandleException routine handles any exception that occurs as a result of
executing the statements between try and except.

Re-raising exceptions
When the reserved word raise occurs in an exception block without an object
reference following it, it raises whatever exception is handled by the block. This
allows an exception handler to respond to an error in a limited way and then re-raise
the exception. Re-raising is useful when a procedure or function has to clean up after
an exception occurs but cannot fully handle the exception.

For example, the GetFileList function allocates a TStringList object and fills it with file
names matching a specified search path:

function GetFileList(const Path: string): TStringList;
var

I: Integer;
SearchRec: TSearchRec;

begin
Result := TStringList.Create;
try

I := FindFirst(Path, 0, SearchRec);

C l a s s e s a n d o b j e c t s 7-31

E x c e p t i o n s

while I = 0 do
begin

Result.Add(SearchRec.Name);
I := FindNext(SearchRec);

end;
except

Result.Free;
raise;

end;
end;

GetFileList creates a TStringList object, then uses the FindFirst and FindNext functions
(defined in SysUtils) to initialize it. If the initialization fails—for example because the
search path is invalid, or because there is not enough memory to fill in the string
list—GetFileList needs to dispose of the new string list, since the caller does not yet
know of its existence. For this reason, initialization of the string list is performed in a
try...except statement. If an exception occurs, the statement’s exception block
disposes of the string list, then re-raises the exception.

Nested exceptions
Code executed in an exception handler can itself raise and handle exceptions. As long
as these exceptions are also handled within the exception handler, they do not affect
the original exception. However, once an exception raised in an exception handler
propagates beyond that handler, the original exception is lost. This is illustrated by
the Tan function below.

type
ETrigError = class(EMathError);

function Tan(X: Extended): Extended;
begin

try
Result := Sin(X) / Cos(X);

except
on EMathError do

raise ETrigError.Create('Invalid argument to Tan');
end;

end;

If an EMathError exception occurs during execution of Tan, the exception handler
raises an ETrigError. Since Tan does not provide a handler for ETrigError, the
exception propagates beyond the original exception handler, causing the EMathError
exception to be destroyed. To the caller, it appears as if the Tan function has raised an
ETrigError exception.

Try...finally statements
Sometimes you want to ensure that specific parts of an operation are completed,
whether or not the operation is interrupted by an exception. For example, when a
routine acquires control of a resource, it is often important that the resource be
released, regardless of whether the routine terminates normally. In these situations,
you can use a try...finally statement.

7-32 O b j e c t P a s c a l L a n g u a g e G u i d e

E x c e p t i o n s

The following example shows how code that opens and processes a file can ensure
that the file is ultimately closed, even if an error occurs during execution.

Reset(F);
try
ƒ // process file F

finally
CloseFile(F);

end;

The syntax of a try...finally statement is

try statementList1 finally statementList2 end

where each statementList is a sequence of statements delimited by semicolons. The
try...finally statement executes the statements in statementList1 (the try clause). If
statementList1 finishes without raising exceptions, statementList2 (the finally clause) is
executed. If an exception is raised during execution of statementList1, control is
transferred to statementList2; once statementList2 finishes executing, the exception is
re-raised. If a call to the Exit, Break, or Continue procedure causes control to leave
statementList1, statementList2 is automatically executed. Thus the finally clause is
always executed, regardless of how the try clause terminates.

If an exception is raised but not handled in the finally clause, that exception is
propagated out of the try...finally statement, and any exception already raised in the
try clause is lost. The finally clause should therefore handle all locally raised
exceptions, so as not to disturb propagation of other exceptions.

Standard exception classes and routines

The SysUtils unit declares several standard routines for handling exceptions,
including ExceptObject, ExceptAddr, and ShowException. SysUtils and other units also
include dozens of exception classes, all of which (aside from OutlineError) derive
from Exception.

The Exception class has properties called Message and HelpContext that can be used to
pass an error description and a context ID for context-sensitive online
documentation. It also defines various constructor methods that allow you to specify
the description and context ID in different ways. See the online Help for details.

S t a n d a r d r o u t i n e s a n d I / O 8-1

C h a p t e r

8
Chapter8Standard routines and I/O

This chapter discusses text and file I/O and summarizes standard library routines.
Many of the procedures and functions listed here are defined in the System unit,
which is implicitly compiled with every application. Others are built into the
compiler but are treated as if they were in the System unit.

Some standard routines are in units such as SysUtils, which must be listed in a uses
clause to make them available in programs. You cannot, however, list System in a
uses clause, nor should you modify the System unit or try to rebuild it explicitly.

For more information about the routines listed here, see the online Help.

File input and output
The table below lists input and output routines.

Table 8.1 Input and output procedures and functions

Procedure or
function Description

Append Opens an existing text file for appending.

AssignFile Assigns the name of an external file to a file variable.

BlockRead Reads one or more records from an untyped file.

BlockWrite Writes one or more records into an untyped file.

ChDir Changes the current directory.

CloseFile Closes an open file.

Eof Returns the end-of-file status of a file.

Eoln Returns the end-of-line status of a text file.

Erase Erases an external file.

FilePos Returns the current file position of a typed or untyped file.

FileSize Returns the current size of a file; not used for text files.

8-2 O b j e c t P a s c a l L a n g u a g e G u i d e

F i l e i n p u t a n d o u t p u t

A file variable is any variable whose type is a file type. There are three classes of file:
typed, text, and untyped. The syntax for declaring file types is given in “File types” on
page 5-24.

Before a file variable can be used, it must be associated with an external file through a
call to the AssignFile procedure. An external file is typically a named disk file, but it
can also be a device, such as the keyboard or the display. The external file stores the
information written to the file or supplies the information read from the file.

Once the association with an external file is established, the file variable must be
“opened” to prepare it for input or output. An existing file can be opened via the
Reset procedure, and a new file can be created and opened via the Rewrite procedure.
Text files opened with Reset are read-only and text files opened with Rewrite and
Append are write-only. Typed files and untyped files always allow both reading and
writing regardless of whether they were opened with Reset or Rewrite.

Every file is a linear sequence of components, each of which has the component type
(or record type) of the file. The components are numbered starting with zero.

Files are normally accessed sequentially. That is, when a component is read using the
standard procedure Read or written using the standard procedure Write, the current
file position moves to the next numerically ordered file component. Typed files and
untyped files can also be accessed randomly through the standard procedure Seek,
which moves the current file position to a specified component. The standard
functions FilePos and FileSize can be used to determine the current file position and
the current file size.

Flush Flushes the buffer of an output text file.

GetDir Returns the current directory of a specified drive.

IOResult Returns an integer value that is the status of the last I/O function performed.

MkDir Creates a subdirectory.

Read Reads one or more values from a file into one or more variables.

Readln Does what Read does and then skips to beginning of next line in the text file.

Rename Renames an external file.

Reset Opens an existing file.

Rewrite Creates and opens a new file.

RmDir Removes an empty subdirectory.

Seek Moves the current position of a typed or untyped file to a specified component.
Not used with text files.

SeekEof Returns the end-of-file status of a text file.

SeekEoln Returns the end-of-line status of a text file.

SetTextBuf Assigns an I/O buffer to a text file.

Truncate Truncates a typed or untyped file at the current file position.

Write Writes one or more values to a file.

Writeln Does the same as Write, and then writes an end-of-line marker to the text file.

Table 8.1 Input and output procedures and functions (continued)

Procedure or
function Description

S t a n d a r d r o u t i n e s a n d I / O 8-3

F i l e i n p u t a n d o u t p u t

When a program completes processing a file, the file must be closed using the
standard procedure CloseFile. After a file is closed, its associated external file is
updated. The file variable can then be associated with another external file.

By default, all calls to standard I/O procedures and functions are automatically
checked for errors, and if an error occurs an exception is raised (or the program is
terminated if exception handling is not enabled). This automatic checking can be
turned on and off using the {$I+} and {$I–} compiler directives. When I/O checking is
off—that is, when a procedure or function call is compiled in the {$I–} state—an I/O
error doesn’t cause an exception to be raised; to check the result of an I/O operation,
you must call the standard function IOResult instead.

You must call the IOResult function to clear an error, even if you aren’t interested in
the error. If you don’t clear an error and {$I+} is the current state, the next I/O
function call will fail with the lingering IOResult error.

Text files

This section summarizes I/O using file variables of the standard type Text.

When a text file is opened, the external file is interpreted in a special way: It is
considered to represent a sequence of characters formatted into lines, where each line
is terminated by an end-of-line marker (a carriage-return character, possibly
followed by a linefeed character). The type Text is distinct from the type file of Char.

For text files, there are special forms of Read and Write that let you read and write
values that are not of type Char. Such values are automatically translated to and from
their character representation. For example, Read(F, I), where I is a type Integer
variable, reads a sequence of digits, interprets that sequence as a decimal integer, and
stores it in I.

There are two standard text-file variables, Input and Output. The standard file
variable Input is a read-only file associated with the operating system’s standard
input (typically, the keyboard). The standard file variable Output is a write-only file
associated with the operating system’s standard output (typically, the display).
Before an application begins executing, Input and Output are automatically opened,
as if the following statements were executed:

AssignFile(Input, '');
Reset(Input);
AssignFile(Output, '');
Rewrite(Output);

Note Text-oriented I/O is available only in console applications—that is, applications
compiled with the “Generate console application” option checked on the Linker page
of the Project Options dialog box or with the -cc command-line compiler option. In a
GUI (non-console) application, any attempt to read or write using Input or Output
will produce an I/O error.

Some of the standard I/O routines that work on text files don’t need to have a file
variable explicitly given as a parameter. If the file parameter is omitted, Input or
Output is assumed by default, depending on whether the procedure or function is

8-4 O b j e c t P a s c a l L a n g u a g e G u i d e

T e x t - f i l e d e v i c e d r i v e r s

input- or output-oriented. For example, Read(X) corresponds to Read(Input, X) and
Write(X) corresponds to Write(Output, X).

If you do specify a file when calling one of the input or output routines that work on
text files, the file must be associated with an external file using AssignFile, and
opened using Reset, Rewrite, or Append. An exception is raised if you pass a file that
was opened with Reset to an output-oriented procedure or function. An exception is
also raised if you pass a file that was opened with Rewrite or Append to an input-
oriented procedure or function.

Untyped files

Untyped files are low-level I/O channels used primarily for direct access to disk files
regardless of type and structuring. An untyped file is declared with the word file
and nothing more. For example,

var DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra parameter to
specify the record size used in data transfers. For historical reasons, the default
record size is 128 bytes. A record size of 1 is the only value that correctly reflects the
exact size of any file. (No partial records are possible when the record size is 1.)

Except for Read and Write, all typed-file standard procedures and functions are also
allowed on untyped files. Instead of Read and Write, two procedures called BlockRead
and BlockWrite are used for high-speed data transfers.

Text-file device drivers
You can define your own text-file device drivers for your programs. A text-file device
driver is a set of four functions that completely implement an interface between
Object Pascal’s file system and some device.

The four functions that define each device driver are Open, InOut, Flush, and Close.
The function header of each function is

function DeviceFunc(var F: TTextRec): Integer;

where DeviceFunc is the name of the function (that is, Open, InOut, Flush, or Close). For
information about the TTextRec type, see the online Help. The return value of a
device-interface function becomes the value returned by IOResult. If the return value
is zero, the operation was successful.

To associate the device-interface functions with a specific file, you must write a
customized Assign procedure. The Assign procedure must assign the addresses of the
four device-interface functions to the four function pointers in the text-file variable.
In addition, it should store the fmClosed “magic” constant in the Mode field, store the
size of the text-file buffer in BufSize, store a pointer to the text-file buffer in BufPtr,
and clear the Name string.

Assuming, for example, that the four device-interface functions are called DevOpen,
DevInOut, DevFlush, and DevClose, the Assign procedure might look like this:

S t a n d a r d r o u t i n e s a n d I / O 8-5

T e x t - f i l e d e v i c e d r i v e r s

procedure AssignDev(var F: Text);
begin

with TTextRec(F) do
begin

Mode := fmClosed;
BufSize := SizeOf(Buffer);
BufPtr := @Buffer;
OpenFunc := @DevOpen;
InOutFunc := @DevInOut;
FlushFunc := @DevFlush;
CloseFunc := @DevClose;
Name[0] := #0;

end;
end;

The device-interface functions can use the UserData field in the file record to store
private information. This field isn’t modified by the product file system at any time.

Device functions

The functions that make up a text-file device driver are described below.

The Open function
The Open function is called by the Reset, Rewrite, and Append standard procedures to
open a text file associated with a device. On entry, the Mode field contains fmInput,
fmOutput, or fmInOut to indicate whether the Open function was called from Reset,
Rewrite, or Append.

The Open function prepares the file for input or output, according to the Mode value.
If Mode specified fmInOut (indicating that Open was called from Append), it must be
changed to fmOutput before Open returns.

Open is always called before any of the other device-interface functions. For that
reason, AssignDev only initializes the OpenFunc field, leaving initialization of the
remaining vectors up to Open. Based on Mode, Open can then install pointers to either
input- or output-oriented functions. This saves the InOut, Flush functions and the
CloseFile procedure from determining the current mode.

The InOut function
The InOut function is called by the Read, Readln, Write, Writeln, Eof, Eoln, SeekEof,
SeekEoln, and CloseFile standard routines whenever input or output from the device is
required.

When Mode is fmInput, the InOut function reads up to BufSize characters into BufPtr^,
and returns the number of characters read in BufEnd. In addition, it stores zero in
BufPos. If the InOut function returns zero in BufEnd as a result of an input request, Eof
becomes True for the file.

When Mode is fmOutput, the InOut function writes BufPos characters from BufPtr^,
and returns zero in BufPos.

8-6 O b j e c t P a s c a l L a n g u a g e G u i d e

H a n d l i n g n u l l - t e r m i n a t e d s t r i n g s

The Flush function
The Flush function is called at the end of each Read, Readln, Write, and Writeln. It can
optionally flush the text-file buffer.

If Mode is fmInput, the Flush function can store zero in BufPos and BufEnd to flush the
remaining (unread) characters in the buffer. This feature is seldom used.

If Mode is fmOutput, the Flush function can write the contents of the buffer exactly like
the InOut function, which ensures that text written to the device appears on the
device immediately. If Flush does nothing, the text doesn’t appear on the device until
the buffer becomes full or the file is closed.

The Close function
The Close function is called by the CloseFile standard procedure to close a text file
associated with a device. (The Reset, Rewrite, and Append procedures also call Close if
the file they are opening is already open.) If Mode is fmOutput, then before calling
Close, the file system calls the InOut function to ensure that all characters have been
written to the device.

Handling null-terminated strings
Object Pascal’s extended syntax allows the Read, Readln, Str, and Val standard
procedures to be applied to zero-based character arrays, and allows the Write,
Writeln, Val, AssignFile, and Rename standard procedures to be applied to both zero-
based character arrays and character pointers. In addition, the following functions
are provided for handling null-terminated strings. For more information about null-
terminated strings, see “Working with null-terminated strings” on page 5-13.

Table 8.2 Null-terminated string functions

Function Description

StrAlloc Allocates a character buffer of a given size on the heap.

StrBufSize Returns the size of a character buffer allocated using StrAlloc or StrNew.

StrCat Concatenates two strings.

StrComp Compares two strings.

StrCopy Copies a string.

StrDispose Disposes a character buffer allocated using StrAlloc or StrNew.

StrECopy Copies a string and returns a pointer to the end of the string.

StrEnd Returns a pointer to the end of a string.

StrFmt Formats one or more values into a string.

StrIComp Compares two strings without case sensitivity.

StrLCat Concatenates two strings with a given maximum length of the resulting string.

StrLComp Compares two strings for a given maximum length.

StrLCopy Copies a string up to a given maximum length.

StrLen Returns the length of a string.

StrLFmt Formats one or more values into a string with a given maximum length.

S t a n d a r d r o u t i n e s a n d I / O 8-7

O t h e r s t a n d a r d r o u t i n e s

Standard string-handling functions have multibyte-enabled counterparts that also
implement locale-specific ordering for characters. Names of multibyte functions start
with Ansi-. For example, the multibyte version of StrPos is AnsiStrPos. Multibyte
character support is operating-system dependent and based on the current locale.

Wide-character strings

The System unit provides three functions, WideCharToString, WideCharLenToString,
and StringToWideChar, that can be used to convert null-terminated wide character
strings to single- or double-byte long strings.

For more information about wide-character strings, see “About extended character
sets” on page 5-13.

Other standard routines
The table below lists frequently used procedures and functions found in Borland
product libraries. This is not an exhaustive inventory of standard routines. For more
information about these and other routines, see the online Help.

StrLIComp Compares two strings for a given maximum length without case sensitivity.

StrLower Converts a string to lowercase.

StrMove Moves a block of characters from one string to another.

StrNew Allocates a string on the heap.

StrPCopy Copies a Pascal string to a null-terminated string.

StrPLCopy Copies a Pascal string to a null-terminated string with a given maximum length.

StrPos Returns a pointer to the first occurrence of a given substring within a string.

StrRScan Returns a pointer to the last occurrence of a given character within a string.

StrScan Returns a pointer to the first occurrence of a given character within a string.

StrUpper Converts a string to uppercase.

Table 8.2 Null-terminated string functions (continued)

Function Description

Table 8.3 Other standard routines

Procedure or
function Description

Abort Ends the process without reporting an error.

Addr Returns a pointer to a specified object.

AllocMem Allocates a memory block and initializes each byte to zero.

ArcTan Calculates the arctangent of the given number.

Assert Tests whether a boolean expression is True.

Assigned Tests for a nil (unassigned) pointer or procedural variable.

Beep Generates a standard beep using the computer speaker.

8-8 O b j e c t P a s c a l L a n g u a g e G u i d e

O t h e r s t a n d a r d r o u t i n e s

Break Causes control to exit a for, while, or repeat statement.

ByteToCharIndex Returns the position of the character containing a specified byte in a string.

Chr Returns the character for a specified value.

Close Terminates the association between a file variable and an external file.

CompareMem Performs a binary comparison of two memory images.

CompareStr Compares strings case sensitively.

CompareText Compares strings by ordinal value and is not case sensitive.

Continue Returns control to the next iteration of for, while, or repeat statements.

Copy Returns a substring of a string or a segment of a dynamic array.

Cos Calculates the cosine of an angle.

CurrToStr Converts a currency variable to a string.

Date Returns the current date.

DateTimeToStr Converts a variable of type TDateTime to a string.

DateToStr Converts a variable of type TDateTime to a string.

Dec Decrements an ordinal variable.

Dispose Releases memory allocated for a dynamic variable.

ExceptAddr Returns the address at which the current exception was raised.

Exit Exits from the current procedure.

Exp Calculates the exponential of X.

FillChar Fills contiguous bytes with a specified value.

Finalize Uninitializes a dynamically allocated variable.

FloatToStr Converts a floating point value to a string.

FloatToStrF Converts a floating point value to a string, using specified format.

FmtLoadStr Returns formatted output using a resourced format string.

FmtStr Assembles a formatted string from a series of arrays.

Format Assembles a string from a format string and a series of arrays.

FormatDateTime Formats a date-and-time value.

FormatFloat Formats a floating point value.

FreeMem Disposes of a dynamic variable.

GetMem Creates a dynamic variable and a pointer to the address of the block.

GetParentForm Returns the form or property page that contains a specified control.

Halt Initiates abnormal termination of a program.

Hi Returns the high-order byte of an expression as an unsigned value.

High Returns the highest value in the range of a type, array, or string.

Inc Increments an ordinal variable.

Initialize Initializes a dynamically allocated variable.

Insert Inserts a substring at a specified point in a string.

Int Returns the integer part of a real number.

IntToStr Converts an integer to a string.

Table 8.3 Other standard routines (continued)

Procedure or
function Description

S t a n d a r d r o u t i n e s a n d I / O 8-9

O t h e r s t a n d a r d r o u t i n e s

Length Returns the length of a string or array.

Lo Returns the low-order byte of an expression as an unsigned value.

Low Returns the lowest value in the range of a type, array, or string.

LowerCase Converts an ASCII string to lowercase.

MaxIntValue Returns the largest signed value in an integer array.

MaxValue Returns the largest signed value in an array.

MinIntValue Returns the smallest signed value in an integer array.

MinValue Returns smallest signed value in an array.

New Creates a new dynamic variable and references it with a specified pointer.

Now Returns the current date and time.

Ord Returns the ordinal value of an ordinal-type expression.

Pos Returns the index of the first character of a specified substring in a string.

Pred Returns the predecessor of an ordinal value.

Ptr Converts a specified address to a pointer.

Random Generates random numbers within a specified range.

ReallocMem Reallocates a dynamic variable.

Round Returns the value of a real rounded to the nearest whole number.

SetLength Sets the dynamic length of a string variable or array.

SetString Sets the contents and length of the given string.

ShowException Displays an exception message with its address.

ShowMessage Displays a message box with an unformatted string and an OK button.

ShowMessageFmt Displays a message box with a formatted string and an OK button.

Sin Returns the sine of an angle in radians.

SizeOf Returns the number of bytes occupied by a variable or type.

Sqr Returns the square of a number.

Sqrt Returns the square root of a number.

Str Formats a string and returns it to a variable.

StrToCurr Converts a string to a currency value.

StrToDate Converts a string to a date format (TDateTime).

StrToDateTime Converts a string to a TDateTime.

StrToFloat Converts a string to a floating-point value.

StrToInt Converts a string to an integer.

StrToTime Converts a string to a time format (TDateTime).

StrUpper Returns a string in upper case.

Succ Returns the successor of an ordinal value.

Sum Returns the sum of the elements from an array.

Time Returns the current time.

TimeToStr Converts a variable of type TDateTime to a string.

Trunc Truncates a real number to an integer.

Table 8.3 Other standard routines (continued)

Procedure or
function Description

8-10 O b j e c t P a s c a l L a n g u a g e G u i d e

O t h e r s t a n d a r d r o u t i n e s

For information on format strings, see “Format strings” in the online Help.

UniqueString Ensures that a string has only one reference. (The string may be copied to
produce a single reference.)

UpCase Converts a character to uppercase.

UpperCase Returns a string in uppercase.

VarArrayCreate Creates a variant array.

VarArrayDimCount Returns number of dimensions of a variant array.

VarARrayHighBound Returns high bound for a dimension in a variant array.

VarArrayLock Locks a variant array and returns a pointer to the data.

VarArrayLowBound Returns the low bound of a dimension in a variant array.

VarArrayOf Creates and fills a one-dimensional variant array.

VarArrayRedim Resizes a variant array.

VarArrayRef Returns a reference to the passed variant array.

VarArrayUnlock Unlocks a variant array.

VarAsType Converts a variant to specified type.

VarCast Converts a variant to a specified type, storing the result in a variable.

VarClear Clears a variant.

VarCopy Copies a variant.

VarToStr Converts variant to string.

VarType Returns type code of specified variant.

Table 8.3 Other standard routines (continued)

Procedure or
function Description

S p e c i a l t o p i c s

P a r t

II
Part IISpecial topics

The chapters in Part II cover specialized language features and advanced topics.
These chapters include:

• Chapter 9, “Libraries and packages”

• Chapter 10, “Object interfaces”

• Chapter 11, “Memory management”

• Chapter 12, “Program control”

• Chapter 13, “Inline assembler code”

L i b r a r i e s a n d p a c k a g e s 9-1

C h a p t e r

9
Chapter9Libraries and packages

A dynamically loadable library is a dynamic-link library (DLL) on Windows or a
shared object library file on Linux. It is a collection of routines that can be called by
applications and by other DLLs or shared objects. Like units, dynamically loadable
libraries contain sharable code or resources. But this type of library is a separately
compiled executable that is linked at runtime to the programs that use it.

To distinguish them from standalone executables, on Windows files containing
compiled DLLs are named with the .DLL extension. On Linux, files containing
shared object files are named with a .so extension. Object Pascal programs can call
DLLs or shared objects written in other languages, and applications written in other
languages can call DLLs or shared objects written in Object Pascal.

Calling dynamically loadable libraries
You can call operating system routines directly, but they are not linked to your
application until runtime. This means that the library need not be present when you
compile your program. It also means that there is no compile-time validation of
attempts to import a routine.

Before you can call routines defined in a shared object, you must import them. This
can be done in two ways: by declaring an external procedure or function, or by direct
calls to the operating system. Whichever method you use, the routines are not linked
to your application until runtime.

Object Pascal does not support importing of variables from shared libraries.

Static loading
The simplest way to import a procedure or function is to declare it using the external
directive. For example,

On Windows: procedure DoSomething; external 'MYLIB.DLL';

On Linux: procedure DoSomething; external 'mylib.so';

9-2 O b j e c t P a s c a l L a n g u a g e G u i d e

C a l l i n g d y n a m i c a l l y l o a d a b l e l i b r a r i e s

If you include this declaration in a program, MYLIB.DLL (Windows) or mylib.so
(Linux) is loaded once, when the program starts. Throughout execution of the
program, the identifier DoSomething always refers to the same entry point in the same
shared library.

Declarations of imported routines can be placed directly in the program or unit
where they are called. To simplify maintenance, however, you can collect external
declarations into a separate “import unit” that also contains any constants and types
required for interfacing with the library. Other modules that use the import unit can
call any routines declared in it.

For more information about external declarations, see “External declarations” on
page 6-6.

Dynamic loading
You can access routines in a library through direct calls to OS library functions,
including LoadLibrary, FreeLibrary, and GetProcAddress. In Windows, these functions
are declared in Windows.pas; on Linux, they are implemented for compatibility in
SysUtils.pas; the actual Linux OS routines are dlopen, dlclose, and dlsym (all declared
in Kylix’s Libc unit; see the man pages for more information). In this case, use
procedural-type variables to reference the imported routines.

For example, on Windows or Linux:

uses Windows, ...; {On Linux, replace Windows with SysUtils }

type
TTimeRec = record

Second: Integer;
Minute: Integer;
Hour: Integer;

end;

TGetTime = procedure(var Time: TTimeRec);
THandle = Integer;

var
Time: TTimeRec;
Handle: THandle;
GetTime: TGetTime;
ƒ

begin
Handle := LoadLibrary('libraryname');
if Handle <> 0 then
begin

@GetTime := GetProcAddress(Handle, 'GetTime');
if @GetTime <> nil then
begin

GetTime(Time);
with Time do
WriteLn('The time is ', Hour, ':', Minute, ':', Second);

end;
FreeLibrary(Handle);

end;
end;

L i b r a r i e s a n d p a c k a g e s 9-3

W r i t i n g d y n a m i c a l l y l o a d a b l e l i b r a r i e s

When you import routines this way, the library is not loaded until the code
containing the call to LoadLibrary executes. The library is later unloaded by the call to
FreeLibrary. This allows you to conserve memory and to run your program even
when some of the libraries it uses are not present.

This same example can also be written on Linux as follows:

uses Libc, ...;

type
TTimeRec = record

Second: Integer;
Minute: Integer;
Hour: Integer;

end;

TGetTime = procedure(var Time: TTimeRec);
THandle = Pointer;

var
Time: TTimeRec;
Handle: THandle;
GetTime: TGetTime;
ƒ

begin
Handle := dlopen('datetime.so', RTLD_LAZY);
if Handle <> 0 then
begin

@GetTime := dlsym(Handle, 'GetTime');
if @GetTime <> nil then
begin

GetTime(Time);
with Time do
WriteLn('The time is ', Hour, ':', Minute, ':', Second);

end;
dlclose(Handle);

end;
end;

In this case, when importing routines, the shared object is not loaded until the code
containing the call to dlopen executes. The shared object is later unloaded by the call
to dlclose. This also allows you to conserve memory and to run your program even
when some of the shared objects it uses are not present.

Writing dynamically loadable libraries
The main source for a dynamically loadable library is identical to that of a program,
except that it begins with the reserved word library (instead of program).

Only routines that a library explicitly exports are available for importing by other
libraries or programs. The following example shows a library with two exported
functions, Min and Max.

9-4 O b j e c t P a s c a l L a n g u a g e G u i d e

W r i t i n g d y n a m i c a l l y l o a d a b l e l i b r a r i e s

library MinMax;

function Min(X, Y: Integer): Integer; stdcall;
begin

if X < Y then Min := X else Min := Y;
end;

function Max(X, Y: Integer): Integer; stdcall;
begin

if X > Y then Max := X else Max := Y;
end;

exports
Min,
Max;

begin
end.

If you want your library to be available to applications written in other languages, it’s
safest to specify stdcall in the declarations of exported functions. Other languages
may not support Object Pascal’s default register calling convention.

Libraries can be built from multiple units. In this case, the library source file is
frequently reduced to a uses clause, an exports clause, and the initialization code. For
example,

library Editors;

uses EdInit, EdInOut, EdFormat, EdPrint;

exports
InitEditors,
DoneEditors name Done,
InsertText name Insert,
DeleteSelection name Delete,
FormatSelection,
PrintSelection name Print,
ƒ

SetErrorHandler;

begin
InitLibrary;

end.

You can put exports clauses in the interface or implementation section of a unit. Any
library that includes such a unit in its uses clause automatically exports the routines
listed the unit’s exports clauses—without the need for an exports clause of its own.

The directive local, which marks routines as unavailable for export, is platform-
specific and has no effect in Windows programming.

On Linux, the local directive provides a slight performance optimization for routines
that are compiled into a library but are not exported. This directive can be specified
for standalone procedures and functions, but not for methods. A routine declared
with local—for example,

function Contraband(I: Integer): Integer; local;

—does not refresh the EBX register and hence

L i b r a r i e s a n d p a c k a g e s 9-5

W r i t i n g d y n a m i c a l l y l o a d a b l e l i b r a r i e s

• cannot be exported from a library.
• cannot be declared in the interface section of a unit.
• cannot have its address taken or be assigned to a procedural-type variable.
• if it is a pure assembler routine, cannot be called from another unit unless the caller

sets up EBX.

The exports clause

A routine is exported when it is listed in an exports clause, which has the form

exports entry1, ..., entryn;

where each entry consists of the name of a procedure, function, or variable (which
must be declared prior to the exports clause), followed by a parameter list (only if
exporting a routine that is overloaded), and an optional name specifier. You can
qualify the procedure or function name with the name of a unit.

(Entries can also include the directive resident, which is maintained for backward
compatibility and is ignored by the compiler.)

On Windows only, an index specifier consists of the directive index followed by a
numeric constant between 1 and 2,147,483,647. (For more efficient programs, use low
index values.) If an entry has no index specifier, the routine is automatically assigned
a number in the export table.

Note Use of index specifiers, which are supported for backward compatibility only, is
discouraged and may cause problems for other development tools.

A name specifier consists of the directive name followed by a string constant. If an
entry has no name specifier, the routine is exported under its original declared name,
with the same spelling and case. Use a name clause when you want to export a
routine under a different name. For example,

exports
DoSomethingABC name 'DoSomething';

When you export an overloaded function or procedure from a dynamically loadable
library, you must specify its parameter list in the exports clause. For example,

exports
Divide(X, Y: Integer) name 'Divide_Ints',
Divide(X, Y: Real) name 'Divide_Reals';

On Windows, do not include index specifiers in entries for overloaded routines.

An exports clause can appear anywhere and any number of times in the declaration
part of a program or library, or in the interface or implementation section of a unit.
Programs seldom contain an exports clause.

Library initialization code

The statements in a library’s block constitute the library’s initialization code. These
statements are executed once every time the library is loaded. They typically perform
tasks like registering window classes and initializing variables. Library initialization

9-6 O b j e c t P a s c a l L a n g u a g e G u i d e

W r i t i n g d y n a m i c a l l y l o a d a b l e l i b r a r i e s

code can also install an exit procedure using the ExitProc variable, as described in
“Exit procedures” on page 12-4; the exit procedure executes when the library is
unloaded.

Library initialization code can signal an error by setting the ExitCode variable to a
nonzero value. ExitCode is declared in the System unit and defaults to zero, indicating
successful initialization. If a library’s initialization code sets ExitCode to another
value, the library is unloaded and the calling application is notified of the failure.
Similarly, if an unhandled exception occurs during execution of the initialization
code, the calling application is notified of a failure to load the library.

Here is an example of a library with initialization code and an exit procedure.

library Test;

var
SaveExit: Pointer;

procedure LibExit;
begin

ƒ // library exit code
ExitProc := SaveExit; // restore exit procedure chain

end;

begin
ƒ // library initialization code
SaveExit := ExitProc; // save exit procedure chain
ExitProc := @LibExit; // install LibExit exit procedure

end.

When a library is unloaded, it’s exit procedures are executed by repeated calls to the
address stored in ExitProc, until ExitProc becomes nil. The initialization parts of all
units used by a library are executed before the library’s initialization code, and the
finalization parts of those units are executed after the library’s exit procedure.

Global variables in a library

Global variables declared in a shared library cannot be imported by an Object Pascal
application.

A library can be used by several applications at once, but each application has a copy
of the library in its own process space with its own set of global variables. For
multiple libraries—or multiple instances of a library—to share memory, they must
use memory-mapped files. Refer to the your system documentation for further
information.

Libraries and system variables

Several variables declared in the System unit are of special interest to those
programming libraries. Use IsLibrary to determine whether code is executing in an
application or in a library; IsLibrary is always False in an application and True in a
library. During a library’s lifetime, HInstance contains its instance handle. CmdLine is
always nil in a library.

L i b r a r i e s a n d p a c k a g e s 9-7

W r i t i n g d y n a m i c a l l y l o a d a b l e l i b r a r i e s

The DLLProc variable allows a library to monitor calls that the operating system
makes to the library entry point. This feature is normally used only by libraries that
support multithreading. DLLProc is available on both Windows and Linux but its use
differs on each. On Windows, DLLProc is used in multithreading applications; on
Linux, it is used to determine when your library is being unloaded. You should use
finalization sections, rather than exit procedures, for all exit behavior. (See “The
finalization section” on page 3-5.)

To monitor operating-system calls, create a callback procedure that takes a single
integer parameter—for example,

procedure DLLHandler(Reason: Integer);

—and assign the address of the procedure to the DLLProc variable. When the
procedure is called, it passes to it one of the following values.

On Linux, these are defined in the Libc unit.

In the body of the procedure, you can specify actions to take depending on which
parameter is passed to the procedure.

Exceptions and runtime errors in libraries

When an exception is raised but not handled in a dynamically loadable library, it
propagates out of the library to the caller. If the calling application or library is itself
written in Object Pascal, the exception can be handled through a normal try...except
statement.

Note Under Linux this is only possible if the library and application have both been built
with the same set of (base) runtime packages (which contains the EH code) or if both
link to ShareExcept.

If the calling application or library is written in another language, the exception can
be handled as an operating-system exception with the exception code $0EEDFACE.
The first entry in the ExceptionInformation array of the operating-system exception
record contains the exception address, and the second entry contains a reference to
the Object Pascal exception object.

Generally, you should not let exceptions escape from your library. On Windows,
Delphi exceptions map to the OS exception model; Linux does not have an exception
model.

If a library does not use the SysUtils unit, exception support is disabled. In this case,
when a runtime error occurs in the library, the calling application terminates.

DLL_PROCESS_DETACH Indicates that the library is detaching from the
address space of the calling process as a result of a
clean exit or a call to FreeLibrary or (dlclose on Linux).

DLL_THREAD_ATTACH Indicates that the current process is creating a new
thread (Windows only).

DLL_THREAD_DETACH Indicates that a thread is exiting cleanly (Windows
only).

9-8 O b j e c t P a s c a l L a n g u a g e G u i d e

P a c k a g e s

Because the library has no way of knowing whether it was called from an Object
Pascal program, it cannot invoke the application’s exit procedures; the application is
simply aborted and removed from memory.

Shared-memory manager (Windows only)

On Windows, if a DLL exports routines that pass long strings or dynamic arrays as
parameters or function results (whether directly or nested in records or objects), then
the DLL and its client applications (or DLLs) must all use the ShareMem unit. The
same is true if one application or DLL allocates memory with New or GetMem which
is deallocated by a call to Dispose or FreeMem in another module. ShareMem should
always be the first unit listed in any program or library uses clause where it occurs.

ShareMem is the interface unit for the BORLANDMM.DLL memory manager, which
allows modules to share dynamically allocated memory. BORLANDMM.DLL must
be deployed with applications and DLLs that use ShareMem. When an application or
DLL uses ShareMem, its memory manager is replaced by the memory manager in
BORLANDMM.DLL.

Linux uses glibc’s malloc to manage shared memory.

Packages
A package is a specially compiled library used by applications, the IDE, or both.
Packages allow you to rearrange when code resides without affecting the source
code. This is sometimes referred to as application partitioning.

Runtime packages provide functionality when a user runs an application. Design-time
packages are used to install components in the IDE and to create special property
editors for custom components. A single package can function at both design time
and runtime, and design-time packages frequently work by referencing runtime
packages in their requires clauses.

To distinguish them from other libraries, packages are stored in files:

• On Windows, package files end with the .bpl (Borland package library) extension.

• On Linux, packages generally begin with the prefix bpl and have a .so extension.

Ordinarily, packages are loaded statically when an applications starts. But you can
use the LoadPackage and UnloadPackage routines (in the SysUtils unit) to load packages
dynamically.

Note When an application utilizes packages, the name of each packaged unit still must
appear in the uses clause of any source file that references it. For more information
about packages, see the online Help.

L i b r a r i e s a n d p a c k a g e s 9-9

P a c k a g e s

Package declarations and source files

Each package is declared in a separate source file, which should be saved with the
.dpk extension to avoid confusion with other files containing Object Pascal code. A
package source file does not contain type, data, procedure, or function declarations.
Instead, it contains

• A name for the package.

• A list of other packages required by the new package. These are packages to which
the new package is linked.

• A list of unit files contained by, or bound into, the package when it is compiled. The
package is essentially a wrapper for these source-code units, which provide the
functionality of the compiled package.

A package declaration has the form

package packageName;
requiresClause;
containsClause;

end.

where packageName is any valid identifier. The requiresClause and containsClause are
both optional. For example, the following code declares the DATAX package.

package DATAX;
requires

baseclx,
visualclx;
contains Db, DBLocal, DBXpress, ... ;

end.

The requires clause lists other, external packages used by the package being
declared. It consists of the directive requires, followed by a comma-delimited list of
package names, followed by a semicolon. If a package does not reference other
packages, it does not need a requires clause.

The contains clause identifies the unit files to be compiled and bound into the
package. It consists of the directive contains, followed by a comma-delimited list of
unit names, followed by a semicolon. Any unit name may be followed by the
reserved word in and the name of a source file, with or without a directory path, in
single quotation marks; directory paths can be absolute or relative. For example,

contains MyUnit in 'C:\MyProject\MyUnit.pas'; // Windows

contains MyUnit in '\home\developer\MyProject\MyUnit.pas'; // Linux

Note Thread-local variables (declared with threadvar) in a packaged unit cannot be
accessed from clients that use the package.

9-10 O b j e c t P a s c a l L a n g u a g e G u i d e

P a c k a g e s

Naming packages
A compiled package involves several generated files. For example, the source file for
the package called DATAX is DATAX.dpk, from which the compiler generates an
executable and a binary image called

• On Windows: DATAX.bpl and DATAX.dcp

• On Linux: bplDATAX.so and DATAX.dcp.

DATAX is used to refer to the package in the requires clauses of other packages, or
when using the package in an application. Package names must be unique within a
project.

The requires clause
The requires clause lists other, external packages that are used by the current
package. It functions like the uses clause in a unit file. An external package listed in
the requires clause is automatically linked at compile time into any application that
uses both the current package and one of the units contained in the external package.

If the unit files contained in a package make references to other packaged units, the
other packages should be included in the first package’s requires clause. If the other
packages are omitted from the requires clause, the compiler loads the referenced
units from their .dcu (Windows) or .dpu (Linux) files.

Avoiding circular package references
Packages cannot contain circular references in their requires clauses. This means that

• A package cannot reference itself in its own requires clause.

• A chain of references must terminate without rereferencing any package in the
chain. If package A requires package B, then package B cannot require package A;
if package A requires package B and package B requires package C, then package
C cannot require package A.

Duplicate package references
The compiler ignores duplicate references in a package’s requires clause. For
programming clarity and readability, however, duplicate references should be
removed.

The contains clause
The contains clause identifies the unit files to be bound into the package. Do not
include file-name extensions in the contains clause.

Avoiding redundant source code uses
A package cannot be listed in the contains clause of another package or the uses
clause of a unit.

All units included directly in a package’s contains clause, or indirectly in the uses
clauses of those units, are bound into the package at compile time. The units

L i b r a r i e s a n d p a c k a g e s 9-11

P a c k a g e s

contained (directly or indirectly) in a package cannot be contained in any other
packages referenced in requires clause of that package.

A unit cannot be contained (directly or indirectly) in more than one package used by
the same application.

Compiling packages

Packages are ordinarily compiled from the IDE using .dpk files generated by the
Package editor. You can also compile .dpk files directly from the command line.
When you build a project that contains a package, the package is implicitly
recompiled, if necessary.

Generated files
The following table lists the files produced by the successful compilation of a
package.

Several compiler directives and command-line switches are available to support
package compilation.

Package-specific compiler directives
The following table lists package-specific compiler directives that can be inserted into
source code. See the online Help for details.

Table 9.1 Compiled package files

File extension Contents

dcp A binary image containing a package header and the concatenation of all
dcu (Windows) or dpu (Linux) files in the package. A single dcp file is
created for each package. The base name for the dcp is the base name of
the dpk source file.

dcu (Windows)
dpu (Linux)

A binary image for a unit file contained in a package. One dcu or dpu file
is created, when necessary, for each unit file.

.bpl on Windows
bpl<package>.so
on Linux

The runtime package. This file is a shared library with special Borland-
specific features. The base name for the package is the base name of the
dpk source file.

Table 9.2 Package-specific compiler directives

Directive Purpose

{$IMPLICITBUILD OFF} Prevents a package from being implicitly recompiled later.
Use in .dpk files when compiling packages that provide
low-level functionality, that change infrequently between
builds, or whose source code will not be distributed.

{$G–} or {$IMPORTEDDATA OFF} Disables creation of imported data references. This
directive increases memory-access efficiency, but prevents
the unit where it occurs from referencing variables in
other packages.

{$WEAKPACKAGEUNIT ON} Packages unit “weakly”, as explained in the online Help.

9-12 O b j e c t P a s c a l L a n g u a g e G u i d e

P a c k a g e s

Including {$DENYPACKAGEUNIT ON} in source code prevents the unit file from
being packaged. Including {$G–} or {$IMPORTEDDATA OFF} may prevent a
package from being used in the same application with other packages.

Other compiler directives may be included, if appropriate, in package source code.

Package-specific command-line compiler switches
The following package-specific switches are available for the command-line
compiler. See the online Help for details.

Using the –$G– switch may prevent a package from being used in the same
application with other packages.

Other command-line options may be used, if appropriate, when compiling packages.

{$DENYPACKAGEUNIT ON} Prevents unit from being placed in a package.

{$DESIGNONLY ON} Compiles the package for installation in the IDE. (Put in
.dpk file.)

{$RUNONLY ON} Compiles the package as runtime only. (Put in .dpk file.)

Table 9.3 Package-specific command-line compiler switches

Switch Purpose

–$G– Disables creation of imported data references. Using this switch increases
memory-access efficiency, but prevents packages compiled with it from
referencing variables in other packages.

–LE path Specifies the directory where the compiled package file will be placed.

–LN path Specifies the directory where the package dcp file will be placed.

–LUpackageName
[;packageName2;...]

Specifies additional runtime packages to use in an application. Used when
compiling a project.

–Z Prevents a package from being implicitly recompiled later. Use when
compiling packages that provide low-level functionality, that change
infrequently between builds, or whose source code will not be distributed.

Table 9.2 Package-specific compiler directives (continued)

Directive Purpose

O b j e c t i n t e r f a c e s 10-1

C h a p t e r

10
Chapter10Object interfaces

An object interface—or simply interface—defines methods that can be implemented by
a class. Interfaces are declared like classes, but cannot be directly instantiated and do
not have their own method definitions. Rather, it is the responsibility of any class that
supports an interface to provide implementations for the interface’s methods. A
variable of an interface type can reference an object whose class implements that
interface; however, only methods declared in the interface can be called using such a
variable.

Interfaces offer some of the advantages of multiple inheritance without the semantic
difficulties. They are also essential for using distributed object models. Custom
objects built that support interfaces can interact with objects written in C++, Java, and
other languages.

Interface types
Interfaces, like classes, can be declared only in the outermost scope of a program or
unit, not in a procedure or function declaration. An interface type declaration has the
form

type interfaceName = interface (ancestorInterface)
['{GUID}']
memberList

end;

where (ancestorInterface) and ['{GUID}'] are optional. In most respects, interface
declarations resemble class declarations, but the following restrictions apply.

• The memberList can include only methods and properties. Fields are not allowed in
interfaces.

• Since an interface has no fields, property read and write specifiers must be
methods.

10-2 O b j e c t P a s c a l L a n g u a g e G u i d e

I n t e r f a c e t y p e s

• All members of an interface are public. Visibility specifiers and storage specifiers
are not allowed. (But an array property can be declared as default.)

• Interfaces have no constructors or destructors. They cannot be instantiated, except
through classes that implement their methods.

• Methods cannot be declared as virtual, dynamic, abstract, or override. Since
interfaces do not implement their own methods, these designations have no
meaning.

Here is an example of an interface declaration:

type
IMalloc = interface(IInterface)

['{00000002-0000-0000-C000-000000000046}']
function Alloc(Size: Integer): Pointer; stdcall;
function Realloc(P: Pointer; Size: Integer): Pointer; stdcall;
procedure Free(P: Pointer); stdcall;
function GetSize(P: Pointer): Integer; stdcall;
function DidAlloc(P: Pointer): Integer; stdcall;
procedure HeapMinimize; stdcall;

end;

In some interface declarations, the interface reserved word is replaced by
dispinterface. This construction (along with the dispid, readonly, and writeonly
directives) is platform-specific and is not used in Linux programming.

IInterface and inheritance

An interface, like a class, inherits all of its ancestors’ methods. But interfaces, unlike
classes, do not implement methods. What an interface inherits is the obligation to
implement methods—an obligation that devolves onto any class supporting the
interface.

The declaration of an interface can specify an ancestor interface. If no ancestor is
specified, the interface is a direct descendant of IInterface, which is defined in the
System unit and is the ultimate ancestor of all other interfaces. IInterface declares three
methods: QueryInterface, _AddRef, and _Release.

Note IInterface is equivalent to IUnknown. You should generally use IInterface for platform
independent applications and reserve the use of IUnknown for specific programs that
include Windows dependencies.

QueryInterface provides the means to move freely among the different interfaces that
an object supports. _AddRef and _Release provide lifetime memory management for
interface references. The easiest way to implement these methods is to derive the
implementing class from the System unit’s TInterfacedObject. It is also possible to
dispense with any of these methods by implementing it as an empty function; COM
objects (Windows only), however, must be managed through _AddRef and _Release.

O b j e c t i n t e r f a c e s 10-3

I n t e r f a c e t y p e s

Interface identification

An interface declaration can specify a globally unique identifier (GUID), represented
by a string literal enclosed in brackets immediately preceding the member list. The
GUID part of the declaration must have the form

['{xxxxxxxx–xxxx–xxxx–xxxx–xxxxxxxxxxxx}']

where each x is a hexadecimal digit (0 through 9 or A through F). On Windows, the
Type Library editor automatically generates GUIDs for new interfaces; you can also
generate GUIDs by pressing Ctrl+Shift+G in the Code editor (on Linux, you must use
Ctrl+Shift+G).

A GUID is a 16-byte binary value that uniquely identifies an interface. If an interface
has a GUID, you can use interface querying to get references to its implementations.
(See “Interface querying” on page 10-10.)

The TGUID and PGUID types, declared in the System unit, are used to manipulate
GUIDs.

type
PGUID = ^TGUID;
TGUID = packed record

D1: Longword;
D2: Word;
D3: Word;
D4: array[0..7] of Byte;

end;

When you declare a typed constant of type TGUID, you can use a string literal to
specify its value. For example,

const IID_IMalloc: TGUID = '{00000002-0000-0000-C000-000000000046}';

In procedure and function calls, either a GUID or an interface identifier can serve as a
value or constant parameter of type TGUID. For example, given the declaration

function Supports(Unknown: IInterface; const IID: TGUID): Boolean;

Supports can be called in either of two ways:

if Supports(Allocator, IMalloc) then ...
if Supports(Allocator, IID_IMalloc) then ...

Calling conventions for interfaces

The default calling convention is register, but interfaces shared among modules
(especially if they are written in different languages) should declare all methods with
stdcall. Use safecall to implement CORBA interfaces. On Windows, you can use
safecall to implement methods of dual interfaces (as described in “Dual interfaces
(Windows only)” on page 10-13).

For more information about calling conventions, see “Calling conventions” on
page 6-4.

10-4 O b j e c t P a s c a l L a n g u a g e G u i d e

I m p l e m e n t i n g i n t e r f a c e s

Interface properties

Properties declared in an interface are accessible only through expressions of the
interface type; they cannot be accessed through class-type variables. Moreover,
interface properties are visible only within programs where the interface is compiled.
For example, on Windows, COM objects do not have properties.

In an interface, property read and write specifiers must be methods, since fields are
not available.

Forward declarations

An interface declaration that ends with the reserved word interface and a semicolon,
without specifying an ancestor, GUID, or member list, is a forward declaration. A
forward declaration must be resolved by a defining declaration of the same interface
within the same type declaration section. In other words, between a forward
declaration and its defining declaration, nothing can occur except other type
declarations.

Forward declarations allow mutually dependent interfaces. For example,

type
IControl = interface;
IWindow = interface

['{00000115-0000-0000-C000-000000000044}']
function GetControl(Index: Integer): IControl;
ƒ

end;
IControl = interface

['{00000115-0000-0000-C000-000000000049}']
function GetWindow: IWindow;
ƒ

end;

Mutually derived interfaces are not allowed. For example, it is not legal to derive
IWindow from IControl and also derive IControl from IWindow.

Implementing interfaces
Once an interface has been declared, it must be implemented in a class before it can
be used. The interfaces implemented by a class are specified in the class’s declaration,
after the name of the class’s ancestor. Such declarations have the form

type className = class (ancestorClass, interface1, ..., interfacen)
memberList

end;

For example,

type
TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)

ƒ
end;

O b j e c t i n t e r f a c e s 10-5

I m p l e m e n t i n g i n t e r f a c e s

declares a class called TMemoryManager that implements the IMalloc and IErrorInfo
interfaces. When a class implements an interface, it must implement (or inherit an
implementation of) each method declared in the interface.

Here is the declaration of TInterfacedObject in the System unit.

type
TInterfacedObject = class(TObject, IInterface)
protected
 FRefCount: Integer;
 function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
 function _AddRef: Integer; stdcall;
 function _Release: Integer; stdcall;
 public
 procedure AfterConstruction; override;
 procedure BeforeDestruction; override;
 class function NewInstance: TObject; override;
 property RefCount: Integer read FRefCount;
 end;

TInterfacedObject implements the IInterface interface. Hence TInterfacedObject declares
and implements each of IInterface’s three methods.

Classes that implement interfaces can also be used as base classes. (The first example
above declares TMemoryManager as a direct descendent of TInterfacedObject.) Since
every interface inherits from IInterface, a class that implements interfaces must
implement the QueryInterface, _AddRef, and _Release methods. The System unit’s
TInterfacedObject implements these methods and is thus a convenient base from
which to derive other classes that implement interfaces.

When an interface is implemented, each of its methods is mapped onto a method in
the implementing class that has the same result type, the same calling convention, the
same number of parameters, and identically typed parameters in each position. By
default, each interface method is mapped to a method of the same name in the
implementing class.

Method resolution clauses

You can override the default name-based mappings by including method resolution
clauses in a class declaration. When a class implements two or more interfaces that
have identically named methods, use method resolution clauses to resolve the
naming conflicts.

A method resolution clause has the form

procedure interface.interfaceMethod = implementingMethod;

or

function interface.interfaceMethod = implementingMethod;

where implementingMethod is a method declared in the class or one of its ancestors.
The implementingMethod can be a method declared later in the class declaration, but
cannot be a private method of an ancestor class declared in another module.

10-6 O b j e c t P a s c a l L a n g u a g e G u i d e

I m p l e m e n t i n g i n t e r f a c e s

For example, the class declaration

type
TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)

function IMalloc.Alloc = Allocate;
procedure IMalloc.Free = Deallocate;
ƒ

end;

maps IMalloc’s Alloc and Free methods onto TMemoryManager’s Allocate and Deallocate
methods.

A method resolution clause cannot alter a mapping introduced by an ancestor class.

Changing inherited implementations

Descendant classes can change the way a specific interface method is implemented
by overriding the implementing method. This requires that the implementing
method be virtual or dynamic.

A class can also reimplement an entire interface that it inherits from an ancestor class.
This involves relisting the interface in the descendant class’s declaration. For
example,

type
IWindow = interface

['{00000115-0000-0000-C000-000000000146}']
procedure Draw;
ƒ

end;

TWindow = class(TInterfacedObject, IWindow) // TWindow implements IWindow
procedure Draw;
ƒ

end;

TFrameWindow = class(TWindow, IWindow) // TFrameWindow reimplements IWindow
procedure Draw;
ƒ

end;

Reimplementing an interface hides the inherited implementation of the same
interface. Hence method resolution clauses in an ancestor class have no effect on the
reimplemented interface.

Implementing interfaces by delegation

The implements directive allows you to delegate implementation of an interface to a
property in the implementing class. For example,

property MyInterface: IMyInterface read FMyInterface implements IMyInterface;

declares a property called MyInterface that implements the interface IMyInterface.

O b j e c t i n t e r f a c e s 10-7

I m p l e m e n t i n g i n t e r f a c e s

The implements directive must be the last specifier in the property declaration and
can list more than one interface, separated by commas. The delegate property

• must be of a class or interface type.
• cannot be an array property or have an index specifier.
• must have a read specifier. If the property uses a read method, that method must

use the default register calling convention and cannot be dynamic (though it can
be virtual) or specify the message directive.

Note The class you use to implement the delegated interface should derive from
TAggregatedObject.

Delegating to an interface-type property
If the delegate property is of an interface type, that interface, or an interface from
which it derives, must occur in the ancestor list of the class where the property is
declared. The delegate property must return an object whose class completely
implements the interface specified by the implements directive, and which does so
without method resolution clauses. For example,

type
IMyInterface = interface

procedure P1;
procedure P2;

end;

TMyClass = class(TObject, IMyInterface)
FMyInterface: IMyInterface;
property MyInterface: IMyInterface read FMyInterface implements IMyInterface;

end;

var
MyClass: TMyClass;
MyInterface: IMyInterface;

begin
MyClass := TMyClass.Create;
MyClass.FMyInterface := ... // some object whose class implements IMyInterface
MyInterface := MyClass;
MyInterface.P1;

end;

Delegating to a class-type property
If the delegate property is of a class type, that class and its ancestors are searched for
methods implementing the specified interface before the enclosing class and its
ancestors are searched. Thus it is possible to implement some methods in the class
specified by the property, and others in the class where the property is declared.
Method resolution clauses can be used in the usual way to resolve ambiguities or
specify a particular method. An interface cannot be implemented by more than one
class-type property. For example,

type
IMyInterface = interface

procedure P1;
procedure P2;

10-8 O b j e c t P a s c a l L a n g u a g e G u i d e

I n t e r f a c e r e f e r e n c e s

end;
TMyImplClass = class

procedure P1;
procedure P2;

end;
TMyClass = class(TInterfacedObject, IMyInterface)

FMyImplClass: TMyImplClass;
property MyImplClass: TMyImplClass read FMyImplClass implements IMyInterface;
procedure IMyInterface.P1 = MyP1;
procedure MyP1;

end;
procedure TMyImplClass.P1;

ƒ
procedure TMyImplClass.P2;

ƒ
procedure TMyClass.MyP1;

ƒ
var

MyClass: TMyClass;
MyInterface: IMyInterface;

begin
MyClass := TMyClass.Create;
MyClass.FMyImplClass := TMyImplClass.Create;
MyInterface := MyClass;
MyInterface.P1; // calls TMyClass.MyP1;
MyInterface.P2; // calls TImplClass.P2;

end;

Interface references
If you declare a variable of an interface type, the variable can reference instances of
any class that implements the interface. Such variables allow you to call interface
methods without knowing at compile time where the interface is implemented. But
they are subject to the following limitations.

• An interface-type expression gives you access only to methods and properties
declared in the interface, not to other members of the implementing class.

• An interface-type expression cannot reference an object whose class implements a
descendant interface, unless the class (or one that it inherits from) explicitly
implements the ancestor interface as well.

For example,

type
IAncestor = interface
end;

IDescendant = interface(IAncestor)
procedure P1;

end;

TSomething = class(TInterfacedObject, IDescendant)
procedure P1;

O b j e c t i n t e r f a c e s 10-9

I n t e r f a c e r e f e r e n c e s

procedure P2;
end;
ƒ

var
D: IDescendant;
A: IAncestor;

begin
D := TSomething.Create; // works!
A := TSomething.Create; // error
D.P1; // works!
D.P2; // error

end;

In this example,

• A is declared as a variable of type IAncestor. Because TSomething does not list
IAncestor among the interfaces it implements, a TSomething instance cannot be
assigned to A. But if we changed TSomething’s declaration to

TSomething = class(TInterfacedObject, IAncestor, IDescendant)
ƒ

the first error would become a valid assignment.

• D is declared as a variable of type IDescendant. While D references an instance of
TSomething, we cannot use it to access TSomething’s P2 method, since P2 is not a
method of IDescendant. But if we changed D’s declaration to

D: TSomething;

the second error would become a valid method call.

Interface references are managed through reference-counting, which depends on the
_AddRef and _Release methods inherited from IInterface. When an object is referenced
only through interfaces, there is no need to destroy it manually; the object is
automatically destroyed when the last reference to it goes out of scope.

Global interface-type variables can be initialized only to nil.

To determine whether an interface-type expression references an object, pass it to the
standard function Assigned.

Interface assignment-compatibility

A class type is assignment-compatible with any interface type implemented by the
class. An interface type is assignment-compatible with any ancestor interface type.
The value nil can be assigned to any interface-type variable.

An interface-type expression can be assigned to a variant. If the interface is of type
IDispatch or a descendant, the variant receives the type code varDispatch. Otherwise,
the variant receives the type code varUnknown.

A variant whose type code is varEmpty, varUnknown, or varDispatch can be assigned
to an IInterface variable. A variant whose type code is varEmpty or varDispatch can be
assigned to an IDispatch variable.

10-10 O b j e c t P a s c a l L a n g u a g e G u i d e

A u t o m a t i o n o b j e c t s (W i n d o w s o n l y)

Interface typecasts

Interface types follow the same rules as class types in variable and value typecasts.
Class-type expressions can be cast to interface types—for example,
IMyInterface(SomeObject)—provided the class implements the interface.

An interface-type expression can be cast to Variant. If the interface is of type IDispatch
or a descendant, the resulting variant has the type code varDispatch. Otherwise, the
resulting variant has the type code varUnknown.

A variant whose type code is varEmpty, varUnknown, or varDispatch can be cast to
IInterface. A variant whose type code is varEmpty or varDispatch can be cast to
IDispatch.

Interface querying
You can use the as operator to perform checked interface typecasts. This is known as
interface querying, and it yields an interface-type expression from an object reference
or from another interface reference, based on the actual (runtime) type of the object.
An interface query has the form

object as interface

where object is an expression of an interface or variant type or denotes an instance of
a class that implements an interface, and interface is any interface declared with a
GUID.

An interface query returns nil if object is nil. Otherwise, it passes the GUID of interface
to the QueryInterface method in object, raising an exception unless QueryInterface
returns zero. If QueryInterface returns zero (indicating that object’s class implements
interface), the interface query returns an interface reference to object.

Automation objects (Windows only)
An object whose class implements the IDispatch interface (declared in the System unit)
is an Automation object. Automation is available on Windows only.

Dispatch interface types (Windows only)

Dispatch interface types define the methods and properties that an Automation
object implements through IDispatch. Calls to methods of a dispatch interface are
routed through IDispatch’s Invoke method at runtime; a class cannot implement a
dispatch interface.

A dispatch interface type declaration has the form

type interfaceName = dispinterface
['{GUID}']
memberList

end;

O b j e c t i n t e r f a c e s 10-11

A u t o m a t i o n o b j e c t s (W i n d o w s o n l y)

where ['{GUID}'] is optional and memberList consists of property and method
declarations. Dispatch interface declarations are similar to regular interface
declarations, but they cannot specify an ancestor. For example,

type
IStringsDisp = dispinterface

['{EE05DFE2-5549-11D0-9EA9-0020AF3D82DA}']
property ControlDefault[Index: Integer]: OleVariant dispid 0; default;
function Count: Integer; dispid 1;
property Item[Index: Integer]: OleVariant dispid 2;
procedure Remove(Index: Integer); dispid 3;
procedure Clear; dispid 4;
function Add(Item: OleVariant): Integer; dispid 5;
function _NewEnum: IUnknown; dispid -4;

end;

Dispatch interface methods (Windows only)
Methods of a dispatch interface are prototypes for calls to the Invoke method of the
underlying IDispatch implementation. To specify an Automation dispatch ID for a
method, include the dispid directive in its declaration, followed by an integer
constant; specifying an already used ID causes an error.

A method declared in a dispatch interface cannot contain directives other than
dispid. Parameter and result types must be automatable—that is, they must be Byte,
Currency, Real, Double, Longint, Integer, Single, Smallint, AnsiString, WideString,
TDateTime, Variant, OleVariant, WordBool, or any interface type.

Dispatch interface properties
Properties of a dispatch interface do not include access specifiers. They can be
declared as readonly or writeonly. To specify a dispatch ID for a property, include
the dispid directive in its declaration, followed by an integer constant; specifying an
already used ID causes an error. Array properties can be declared as default. No
other directives are allowed in dispatch-interface property declarations.

Accessing Automation objects (Windows only)

Use variants to access Automation objects. When a variant references an Automation
object, you can call the object’s methods and read or write to its properties through
the variant. To do this, you must include ComObj in the uses clause of one of your
units or your program or library.

Automation object method calls are bound at runtime and require no previous
method declarations. The validity of these calls is not checked at compile time.

The following example illustrates Automation method calls. The CreateOleObject
function (defined in ComObj) returns an IDispatch reference to an Automation object
and is assignment-compatible with the variant Word.

10-12 O b j e c t P a s c a l L a n g u a g e G u i d e

A u t o m a t i o n o b j e c t s (W i n d o w s o n l y)

var
Word: Variant;

begin
Word := CreateOleObject('Word.Basic');
Word.FileNew('Normal');
Word.Insert('This is the first line'#13);
Word.Insert('This is the second line'#13);
Word.FileSaveAs('c:\temp\test.txt', 3);

end;

You can pass interface-type parameters to Automation methods.

Variant arrays with an element type of varByte are the preferred method of passing
binary data between Automation controllers and servers. Such arrays are subject to
no translation of their data, and can be efficiently accessed using the VarArrayLock
and VarArrayUnlock routines.

Automation object method-call syntax
The syntax of an Automation object method call or property access is similar to that
of a normal method call or property access. Automation method calls, however, can
use both positional and named parameters. (But some Automation servers do not
support named parameters.)

A positional parameter is simply an expression. A named parameter consists of a
parameter identifier, followed by the := symbol, followed by an expression.
Positional parameters must precede any named parameters in a method call. Named
parameters can be specified in any order.

Some Automation servers allow you to omit parameters from a method call,
accepting their default values. For example,

Word.FileSaveAs('test.doc');
Word.FileSaveAs('test.doc', 6);
Word.FileSaveAs('test.doc',,,'secret');
Word.FileSaveAs('test.doc', Password := 'secret');
Word.FileSaveAs(Password := 'secret', Name := 'test.doc');

Automation method call parameters can be of integer, real, string, Boolean, and
variant types. A parameter is passed by reference if the parameter expression
consists only of a variable reference, and if the variable reference is of type Byte,
Smallint, Integer, Single, Double, Currency, TDateTime, AnsiString, WordBool, or Variant.
If the expression is not of one of these types, or if it is not just a variable, the
parameter is passed by value. Passing a parameter by reference to a method that
expects a value parameter causes COM to fetch the value from the reference
parameter. Passing a parameter by value to a method that expects a reference
parameter causes an error.

O b j e c t i n t e r f a c e s 10-13

A u t o m a t i o n o b j e c t s (W i n d o w s o n l y)

Dual interfaces (Windows only)

A dual interface is an interface that supports both compile-time binding and runtime
binding through Automation. Dual interfaces must descend from IDispatch.

All methods of a dual interface (except from those inherited from IInterface and
IDispatch) must use the safecall convention, and all method parameter and result
types must be automatable. (The automatable types are Byte, Currency, Real, Double,
Real48, Integer, Single, Smallint, AnsiString, ShortString, TDateTime, Variant,
OleVariant, and WordBool.)

10-14 O b j e c t P a s c a l L a n g u a g e G u i d e

M e m o r y m a n a g e m e n t 11-1

C h a p t e r

11
Chapter11Memory management

This chapter explains how programs use memory and describes the internal formats
of Object Pascal data types.

The memory manager (Windows only)
Note Linux uses glibc functions such as malloc for memory management. For information,

refer to the malloc man page on your Linux system.

On Windows systems, the memory manager manages all dynamic memory
allocations and deallocations in an application. The New, Dispose, GetMem,
ReallocMem, and FreeMem standard procedures use the memory manager, and all
objects and long strings are allocated through the memory manager.

On Windows, the memory manager is optimized for applications that allocate large
numbers of small- to medium-sized blocks, as is typical for object-oriented
applications and applications that process string data. Other memory managers, such
as the implementations of GlobalAlloc, LocalAlloc, and private heap support in
Windows, typically do not perform well in such situations, and would slow down an
application if they were used directly.

To ensure the best performance, the memory manager interfaces directly with the
Win32 virtual memory API (the VirtualAlloc and VirtualFree functions). The memory
manager reserves memory from the operating system in 1-MB sections of address
space, and commits memory as required in 16-KB increments. It decommits and
releases unused memory in 16-KB and 1-MB sections. For smaller blocks, committed
memory is further suballocated.

Memory manager blocks are always rounded upward to a 4-byte boundary, and
always include a 4-byte header in which the size of the block and other status bits are
stored. This means that memory manager blocks are always double-word-aligned,
which guarantees optimal CPU performance when addressing the block.

11-2 O b j e c t P a s c a l L a n g u a g e G u i d e

I n t e r n a l d a t a f o r m a t s

The memory manager maintains two status variables, AllocMemCount and
AllocMemSize, which contain the number of currently allocated memory blocks and
the combined size of all currently allocated memory blocks. Applications can use
these variables to display status information for debugging.

The System unit provides two procedures, GetMemoryManager and
SetMemoryManager, that allow applications to intercept low-level memory manager
calls. The System unit also provides a function called GetHeapStatus that returns a
record containing detailed memory-manager status information. For further
information about these routines, see the online Help.

Variables

Global variables are allocated on the application data segment and persist for the
duration of the program. Local variables (declared within procedures and functions)
reside in an application’s stack. Each time a procedure or function is called, it
allocates a set of local variables; on exit, the local variables are disposed of. Compiler
optimization may eliminate variables earlier.

Note On Linux, stack size is set by the environment only.

On Windows, an application’s stack is defined by two values: the minimum stack size
and the maximum stack size. The values are controlled through the $MINSTACKSIZE
and $MAXSTACKSIZE compiler directives, and default to 16,384 (16K) and
1,048,576 (1M) respectively. An application is guaranteed to have the minimum stack
size available, and an application’s stack is never allowed to grow larger than the
maximum stack size. If there is not enough memory available to satisfy an
application’s minimum stack requirement, Windows will report an error upon
attempting to start the application.

If a Windows application requires more stack space than specified by the minimum
stack size, additional memory is automatically allocated in 4K increments. If
allocation of additional stack space fails, either because more memory is not available
or because the total size of the stack would exceed the maximum stack size, an
EStackOverflow exception is raised. (Stack overflow checking is completely automatic.
The $S compiler directive, which originally controlled overflow checking, is
maintained for backward compatibility.)

On Windows or Linux, dynamic variables created with the GetMem or New
procedure are heap-allocated and persist until they are deallocated with FreeMem or
Dispose.

Long strings, wide strings, dynamic arrays, variants, and interfaces are heap-
allocated, but their memory is managed automatically.

Internal data formats
The following sections describe the internal formats of Object Pascal data types.

M e m o r y m a n a g e m e n t 11-3

I n t e r n a l d a t a f o r m a t s

Integer types

The format of an integer-type variable depends on its minimum and maximum
bounds.

• If both bounds are within the range –128..127 (Shortint), the variable is stored as a
signed byte.

• If both bounds are within the range 0..255 (Byte), the variable is stored as an
unsigned byte.

• If both bounds are within the range –32768..32767 (Smallint), the variable is stored
as a signed word.

• If both bounds are within the range 0..65535 (Word), the variable is stored as an
unsigned word.

• If both bounds are within the range –2147483648..2147483647 (Longint), the
variable is stored as a signed double word.

• If both bounds are within the range 0..4294967295 (Longword), the variable is
stored as an unsigned double word.

• Otherwise, the variable is stored as a signed quadruple word (Int64).

Character types

A Char, an AnsiChar, or a subrange of a Char type is stored as an unsigned byte. A
WideChar is stored as an unsigned word.

Boolean types

A Boolean type is stored as a Byte, a ByteBool is stored as a Byte, a WordBool type is
stored as a Word, and a LongBool is stored as a Longint.

A Boolean can assume the values 0 (False) and 1 (True). ByteBool, WordBool, and
LongBool types can assume the values 0 (False) or nonzero (True).

Enumerated types

An enumerated type is stored as an unsigned byte if the enumeration has no more
than 256 values and the type was declared in the {$Z1} state (the default). If an
enumerated type has more than 256 values, or if the type was declared in the {$Z2}
state, it is stored as an unsigned word. If an enumerated type is declared in the {$Z4}
state, it is stored as an unsigned double-word.

11-4 O b j e c t P a s c a l L a n g u a g e G u i d e

I n t e r n a l d a t a f o r m a t s

Real types

The real types store the binary representation of a sign (+ or –), an exponent, and a
significand. A real value has the form

+/– significand * 2exponent

where the significand has a single bit to the left of the binary decimal point. (That is, 0
<= significand < 2.)

In the figures that follow, the most significant bit is always on the left and the least
significant bit on the right. The numbers at the top indicate the width (in bits) of each
field, with the leftmost items stored at the highest addresses. For example, for a
Real48 value, e is stored in the first byte, f in the following five bytes, and s in the most
significant bit of the last byte.

The Real48 type
A 6-byte (48-bit) Real48 number is divided into three fields:

If 0 < e <= 255, the value v of the number is given by

v = (–1)s * 2(e–129) * (1.f)

If e = 0, then v = 0.

The Real48 type can’t store denormals, NaNs, and infinities. Denormals become zero
when stored in a Real48, while NaNs and infinities produce an overflow error if an
attempt is made to store them in a Real48.

The Single type
A 4-byte (32-bit) Single number is divided into three fields:

The value v of the number is given by

if 0 < e < 255, then v = (–1)s * 2(e–127) * (1.f)

if e = 0 and f <> 0, then v = (–1)s * 2(–126) * (0.f)
if e = 0 and f = 0, then v = (–1)s * 0
if e = 255 and f = 0, then v = (–1)s * Inf
if e = 255 and f <> 0, then v is a NaN

1 39 8

s f e

1 8 23

s e f

M e m o r y m a n a g e m e n t 11-5

I n t e r n a l d a t a f o r m a t s

The Double type
An 8-byte (64-bit) Double number is divided into three fields:

The value v of the number is given by

if 0 < e < 2047, then v = (–1)s * 2(e–1023) * (1.f)

if e = 0 and f <> 0, then v = (–1)s * 2(–1022) * (0.f)
if e = 0 and f = 0, then v = (–1)s * 0
if e = 2047 and f = 0, then v = (–1)s * Inf
if e = 2047 and f <> 0, then v is a NaN

The Extended type
A 10-byte (80-bit) Extended number is divided into four fields:

The value v of the number is given by

if 0 <= e < 32767, then v = (–1)s * 2(e–16383) * (i.f)

if e = 32767 and f = 0, then v = (–1)s * Inf
if e = 32767 and f <> 0, then v is a NaN

The Comp type
An 8-byte (64-bit) Comp number is stored as a signed 64-bit integer.

The Currency type
An 8-byte (64-bit) Currency number is stored as a scaled and signed 64-bit integer
with the four least-significant digits implicitly representing four decimal places.

Pointer types

A Pointer type is stored in 4 bytes as a 32-bit address. The pointer value nil is stored
as zero.

Short string types

A string occupies as many bytes as its maximum length plus one. The first byte
contains the current dynamic length of the string, and the following bytes contain the
characters of the string.

The length byte and the characters are considered unsigned values. Maximum string
length is 255 characters plus a length byte (string[255]).

1 11 52

s e f

1 15 1 63

s e i f

11-6 O b j e c t P a s c a l L a n g u a g e G u i d e

I n t e r n a l d a t a f o r m a t s

Long string types

A long string variable occupies four bytes of memory which contain a pointer to a
dynamically allocated string. When a long string variable is empty (contains a zero-
length string), the string pointer is nil and no dynamic memory is associated with the
string variable. For a nonempty string value, the string pointer points to a
dynamically allocated block of memory that contains the string value in addition to a
32-bit length indicator and a 32-bit reference count. The table below shows the layout
of a long-string memory block.

The NULL character at the end of a long string memory block is automatically
maintained by the compiler and the built-in string handling routines. This makes it
possible to typecast a long string directly to a null-terminated string.

For string constants and literals, the compiler generates a memory block with the
same layout as a dynamically allocated string, but with a reference count of –1. When
a long string variable is assigned a string constant, the string pointer is assigned the
address of the memory block generated for the string constant. The built-in string
handling routines know not to attempt to modify blocks that have a reference count
of –1.

Wide string types

Note On Linux, wide strings are implemented exactly as long strings.

On Windows, a wide string variable occupies four bytes of memory which contain a
pointer to a dynamically allocated string. When a wide string variable is empty
(contains a zero-length string), the string pointer is nil and no dynamic memory is
associated with the string variable. For a nonempty string value, the string pointer
points to a dynamically allocated block of memory that contains the string value in
addition to a 32-bit length indicator. The table below shows the layout of a wide-
string memory block on Windows.

Table 11.1 Long string dynamic memory layout

Offset Contents

–8 32-bit reference-count

–4 length in bytes

0..Length – 1 character string

Length NULL character

Table 11.2 Wide string dynamic memory layout (Windows only)

Offset Contents

–4 32-bit length indicator (in bytes)

0..Length – 1 character string

Length NULL character

M e m o r y m a n a g e m e n t 11-7

I n t e r n a l d a t a f o r m a t s

The string length is the number of bytes, so it is twice the number of wide characters
contained in the string.

The NULL character at the end of a wide string memory block is automatically
maintained by the compiler and the built-in string handling routines. This makes it
possible to typecast a wide string directly to a null-terminated string.

Set types

A set is a bit array where each bit indicates whether an element is in the set or not.
The maximum number of elements in a set is 256, so a set never occupies more than
32 bytes. The number of bytes occupied by a particular set is equal to

(Max div 8) – (Min div 8) + 1

where Max and Min are the upper and lower bounds of the base type of the set. The
byte number of a specific element E is

(E div 8) – (Min div 8)

and the bit number within that byte is

E mod 8

where E denotes the ordinal value of the element. When possible, the compiler stores
sets in CPU registers, but a set always resides in memory if it is larger than the
generic Integer type or if the program contains code that takes the address of the set.

Static array types

A static array is stored as a contiguous sequence of variables of the component type
of the array. The components with the lowest indexes are stored at the lowest
memory addresses. A multidimensional array is stored with the rightmost
dimension increasing first.

Dynamic array types

A dynamic-array variable occupies four bytes of memory which contain a pointer to
the dynamically allocated array. When the variable is empty (uninitialized) or holds
a zero-length array, the pointer is nil and no dynamic memory is associated with the
variable. For a nonempty array, the variable points to a dynamically allocated block
of memory that contains the array in addition to a 32-bit length indicator and a 32-bit
reference count. The table below shows the layout of a dynamic-array memory block.

Table 11.3 Dynamic array memory layout

Offset Contents

–8 32-bit reference-count

–4 32-bit length indicator (number of elements)

0..Length * (size of element) – 1 array elements

11-8 O b j e c t P a s c a l L a n g u a g e G u i d e

I n t e r n a l d a t a f o r m a t s

Record types

When a record type is declared in the {$A+} state (the default), and when the
declaration does not include a packed modifier, the type is an unpacked record type,
and the fields of the record are aligned for efficient access by the CPU. The alignment
is controlled by the type of each field. Every data type has an inherent alignment,
which is automatically computed by the compiler. The alignment can be 1, 2, 4, or 8,
and represents the byte boundary that a value of the type must be stored on to
provide the most efficient access. The table below lists the alignments for all data
types.

To ensure proper alignment of the fields in an unpacked record type, the compiler
inserts an unused byte before fields with an alignment of 2, and up to three unused
bytes before fields with an alignment of 4, if required. Finally, the compiler rounds
the total size of the record upward to the byte boundary specified by the largest
alignment of any of the fields.

When a record type is declared in the {$A–} state, or when the declaration includes
the packed modifier, the fields of the record are not aligned, but are instead assigned
consecutive offsets. The total size of such a packed record is simply the size of all the
fields. Because data alignment can change, it's a good idea to pack any record
structure that you intend to write to disk or pass in memory to another module
compiled using a different version of the compiler.

File types

File types are represented as records. Typed files and untyped files occupy 332 bytes,
which are laid out as follows:

type
TFileRec = packed record

Handle: Integer;
Mode: word;
Flags: word;
case Byte of

0: (RecSize: Cardinal);
1: (BufSize: Cardinal;

BufPos: Cardinal;

Table 11.4 Type alignment masks

Type Alignment

Ordinal types size of the type (1, 2, 4, or 8)

Real types 2 for Real48, 4 for Single, 8 for Double and Extended

Short string types 1

Array types same as the element type of the array.

Record types the largest alignment of the fields in the record

Set types size of the type if 1, 2, or 4, otherwise 1

All other types 4

M e m o r y m a n a g e m e n t 11-9

I n t e r n a l d a t a f o r m a t s

BufEnd: Cardinal;
BufPtr: PChar;
OpenFunc: Pointer;
InOutFunc: Pointer;
FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[1..32] of Byte;
Name: array[0..259] of Char;);

end;

Text files occupy 460 bytes, which are laid out as follows:

type
TTextBuf = array[0..127] of Char;
TTextRec = packed record

Handle: Integer;
Mode: word;
Flags: word;
BufSize: Cardinal;
BufPos: Cardinal;
BufEnd: Cardinal;

 BufPtr: PChar;
OpenFunc: Pointer;
InOutFunc: Pointer;
FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[1..32] of Byte;
Name: array[0..259] of Char;
Buffer: TTextBuf;

end;

Handle contains the file’s handle (when the file is open).

The Mode field can assume one of the values

const
fmClosed = $D7B0;
fmInput = $D7B1;
fmOutput = $D7B2;
fmInOut = $D7B3;

where fmClosed indicates that the file is closed, fmInput and fmOutput indicate a text
file that has been reset (fmInput) or rewritten (fmOutput), fmInOut indicates a typed or
untyped file that has been reset or rewritten. Any other value indicates that the file
variable is not assigned (and hence not initialized).

The UserData field is available for user-written routines to store data in.

Name contains the file name, which is a sequence of characters terminated by a null
character (#0).

For typed files and untyped files, RecSize contains the record length in bytes, and the
Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of BufSize bytes, BufPos is the index of the
next character in the buffer to read or write, and BufEnd is a count of valid characters
in the buffer. OpenFunc, InOutFunc, FlushFunc, and CloseFunc are pointers to the I/O

11-10 O b j e c t P a s c a l L a n g u a g e G u i d e

I n t e r n a l d a t a f o r m a t s

routines that control the file; see “Device functions” on page 8-5. Flags determines
the line break style as follows:

All other Flags bits are reserved for future use. See also DefaultTextLineBreakStyle and
SetLineBreakStyle.

Procedural types

A procedure pointer is stored as a 32-bit pointer to the entry point of a procedure or
function. A method pointer is stored as a 32-bit pointer to the entry point of a
method, followed by a 32-bit pointer to an object.

Class types

A class-type value is stored as a 32-bit pointer to an instance of the class, which is
called an object. The internal data format of an object resembles that of a record. The
object’s fields are stored in order of declaration as a sequence of contiguous variables.
Fields are always aligned, corresponding to an unpacked record type. Any fields
inherited from an ancestor class are stored before the new fields defined in the
descendant class.

The first 4-byte field of every object is a pointer to the virtual method table (VMT) of the
class. There is exactly one VMT per class (not one per object); distinct class types, no
matter how similar, never share a VMT. VMTs are built automatically by the
compiler, and are never directly manipulated by a program. Pointers to VMTs, which
are automatically stored by constructor methods in the objects they create, are also
never directly manipulated by a program.

The layout of a VMT is shown in the following table. At positive offsets, a VMT
consists of a list of 32-bit method pointers—one per user-defined virtual method in
the class type—in order of declaration. Each slot contains the address of the
corresponding virtual method’s entry point. This layout is compatible with a C++ v-
table and with COM. At negative offsets, a VMT contains a number of fields that are
internal to Object Pascal’s implementation. Applications should use the methods
defined in TObject to query this information, since the layout is likely to change in
future implementations of Object Pascal.

bit 0 clear LF line breaks

bit 0 set CRLF line breaks

Table 11.5 Virtual method table layout

Offset Type Description

–76 Pointer pointer to virtual method table (or nil)

–72 Pointer pointer to interface table (or nil)

–68 Pointer pointer to Automation information table (or nil)

–64 Pointer pointer to instance initialization table (or nil)

–60 Pointer pointer to type information table (or nil)

M e m o r y m a n a g e m e n t 11-11

I n t e r n a l d a t a f o r m a t s

Class reference types

A class-reference value is stored as a 32-bit pointer to the virtual method table (VMT)
of a class.

Variant types

A variant is stored as a 16-byte record that contains a type code and a value (or a
reference to a value) of the type given by the code. The System and Variants units
define constants and types for variants.

The TVarData type represents the internal structure of a Variant variable (on
Windows, this is identical to the Variant type used by COM and the Win32 API). The
TVarData type can be used in typecasts of Variant variables to access the internal
structure of a variable.

The VType field of a TVarData record contains the type code of the variant in the
lower twelve bits (the bits defined by the varTypeMask constant). In addition, the
varArray bit may be set to indicate that the variant is an array, and the varByRef bit
may be set to indicate that the variant contains a reference as opposed to a value.

The Reserved1, Reserved2, and Reserved3 fields of a TVarData record are unused.

The contents of the remaining eight bytes of a TVarData record depend on the VType
field. If neither the varArray nor the varByRef bits are set, the variant contains a value
of the given type.

–56 Pointer pointer to field definition table (or nil)

–52 Pointer pointer to method definition table (or nil)

–48 Pointer pointer to dynamic method table (or nil)

–44 Pointer pointer to short string containing class name

–40 Cardinal instance size in bytes

–36 Pointer pointer to a pointer to ancestor class (or nil)

–32 Pointer pointer to entry point of SafecallException method (or nil)

–28 Pointer entry point of AfterConstruction method

–24 Pointer entry point of BeforeDestruction method

–20 Pointer entry point of Dispatch method

–16 Pointer entry point of DefaultHandler method

–12 Pointer entry point of NewInstance method

–8 Pointer entry point of FreeInstance method

–4 Pointer entry point of Destroy destructor

0 Pointer entry point of first user-defined virtual method

4 Pointer entry point of second user-defined virtual method

ƒ ƒ ƒ

Table 11.5 Virtual method table layout (continued)

Offset Type Description

11-12 O b j e c t P a s c a l L a n g u a g e G u i d e

I n t e r n a l d a t a f o r m a t s

If the varArray bit is set, the variant contains a pointer to a TVarArray structure that
defines an array. The type of each array element is given by the varTypeMask bits in
the VType field.

If the varByRef bit is set, the variant contains a reference to a value of the type given
by the varTypeMask and varArray bits in the VType field.

The varString type code is private. Variants containing a varString value should never
be passed to a non-Delphi function. On Windows, Delphi's Automation support
automatically converts varString variants to varOleStr variants before passing them as
parameters to external functions.

On Linux, VT_decimal is not supported.

P r o g r a m c o n t r o l 12-1

C h a p t e r

12
Chapter12Program control

This chapter explains how parameters and function results are stored and
transferred. The final section discusses exit procedures.

Parameters and function results
Treatment of parameters and function results is determined by several factors,
including calling conventions, parameter semantics, and the type and size of the
value being passed.

Parameter passing

Parameters are transferred to procedures and functions via CPU registers or the
stack, depending on the routine’s calling convention. For information about calling
conventions, see “Calling conventions” on page 6-4.

Variable (var) parameters are always passed by reference, as 32-bit pointers that
point to the actual storage location.

Value and constant (const) parameters are passed by value or by reference,
depending on the type and size of the parameter:

• An ordinal parameter is passed as an 8-bit, 16-bit, 32-bit, or 64-bit value, using the
same format as a variable of the corresponding type.

• A real parameter is always passed on the stack. A Single parameter occupies 4
bytes, and a Double, Comp, or Currency parameter occupies 8 bytes. A Real48
occupies 8 bytes, with the Real48 value stored in the lower 6 bytes. An Extended
occupies 12 bytes, with the Extended value stored in the lower 10 bytes.

• A short-string parameter is passed as a 32-bit pointer to a short string.

12-2 O b j e c t P a s c a l L a n g u a g e G u i d e

P a r a m e t e r s a n d f u n c t i o n r e s u l t s

• A long-string or dynamic-array parameter is passed as a 32-bit pointer to the
dynamic memory block allocated for the long string. The value nil is passed for an
empty long string.

• A pointer, class, class-reference, or procedure-pointer parameter is passed as a 32-
bit pointer.

• A method pointer is passed on the stack as two 32-bit pointers. The instance
pointer is pushed before the method pointer so that the method pointer occupies
the lowest address.

• Under the register and pascal conventions, a variant parameter is passed as a 32-
bit pointer to a Variant value.

• Sets, records, and static arrays of 1, 2, or 4 bytes are passed as 8-bit, 16-bit, and 32-
bit values. Larger sets, records, and static arrays are passed as 32-bit pointers to
the value. An exception to this rule is that records are always passed directly on
the stack under the cdecl, stdcall, and safecall conventions; the size of a record
passed this way is rounded upward to the nearest double-word boundary.

• An open-array parameter is passed as two 32-bit values. The first value is a pointer
to the array data, and the second value is one less than the number of elements in
the array.

When two parameters are passed on the stack, each parameter occupies a multiple of
4 bytes (a whole number of double words). For an 8-bit or 16-bit parameter, even
though the parameter occupies only a byte or a word, it is passed as a double word.
The contents of the unused parts of the double word are undefined.

Under the pascal, cdecl, stdcall and safecall conventions, all parameters are passed
on the stack. Under the pascal convention, parameters are pushed in the order of
their declaration (left-to-right), so that the first parameter ends up at the highest
address and the last parameter ends up at the lowest address. Under the cdecl,
stdcall, and safecall conventions, parameters are pushed in reverse order of
declaration (right-to-left), so that the first parameter ends up at the lowest address
and the last parameter ends up at the highest address.

Under the register convention, up to three parameters are passed in CPU registers,
and the rest (if any) are passed on the stack. The parameters are passed in order of
declaration (as with the pascal convention), and the first three parameters that
qualify are passed in the EAX, EDX, and ECX registers, in that order. Real, method-
pointer, variant, Int64, and structured types do not qualify as register parameters, but
all other parameters do. If more than three parameters qualify as register parameters,
the first three are passed in EAX, EDX, and ECX, and the remaining parameters are
pushed onto the stack in order of declaration. For example, given the declaration

procedure Test(A: Integer; var B: Char; C: Double; const D: string; E: Pointer);

a call to Test passes A in EAX as a 32-bit integer, B in EDX as a pointer to a Char, and
D in ECX as a pointer to a long-string memory block; C and E are pushed onto the
stack as two double-words and a 32-bit pointer, in that order.

P r o g r a m c o n t r o l 12-3

P a r a m e t e r s a n d f u n c t i o n r e s u l t s

Register saving conventions
Procedures and functions must preserve the EBX, ESI, EDI, and EBP registers, but
can modify the EAX, EDX, and ECX registers. When implementing a constructor or
destructor in assembler, be sure to preserve the DL register. Procedures and
functions are invoked with the assumption that the CPU’s direction flag is cleared
(corresponding to a CLD instruction) and must return with the direction flag cleared.

Function results

The following conventions are used for returning function result values.

• Ordinal results are returned, when possible, in a CPU register. Bytes are returned
in AL, words are returned in AX, and double-words are returned in EAX.

• Real results are returned in the floating-point coprocessor’s top-of-stack register
(ST(0)). For function results of type Currency, the value in ST(0) is scaled by 10000.
For example, the Currency value 1.234 is returned in ST(0) as 12340.

• For a string, dynamic array, method pointer, variant, or Int64 result, the effects are
the same as if the function result were declared as an additional var parameter
following the declared parameters. In other words, the caller passes an additional
32-bit pointer that points to a variable in which to return the function result.

• Pointer, class, class-reference, and procedure-pointer results are returned in EAX.

• For static-array, record, and set results, if the value occupies one byte it is returned
in AL; if the value occupies two bytes it is returned in AX; and if the value
occupies four bytes it is returned in EAX. Otherwise, the result is returned in an
additional var parameter that is passed to the function after the declared
parameters.

Method calls

Methods use the same calling conventions as ordinary procedures and functions,
except that every method has an additional implicit parameter Self, which is a
reference to the instance or class in which the method is called. The Self parameter is
passed as a 32-bit pointer.

• Under the register convention, Self behaves as if it were declared before all other
parameters. It is therefore always passed in the EAX register.

• Under the pascal convention, Self behaves as if it were declared after all other
parameters (including the additional var parameter sometimes passed for a
function result). It is therefore pushed last, ending up at a lower address than all
other parameters.

• Under the cdecl, stdcall, and safecall conventions, Self behaves as if it were
declared before all other parameters, but after the additional var parameter (if any)
passed for a function result. It is therefore the last to be pushed, except for the
additional var parameter.

12-4 O b j e c t P a s c a l L a n g u a g e G u i d e

E x i t p r o c e d u r e s

Constructors and destructors
Constructors and destructors use the same calling conventions as other methods,
except that an additional Boolean flag parameter is passed to indicate the context of
the constructor or destructor call.

A value of False in the flag parameter of a constructor call indicates that the
constructor was invoked through an instance object or using the inherited keyword.
In this case, the constructor behaves like an ordinary method. A value of True in the
flag parameter of a constructor call indicates that the constructor was invoked
through a class reference. In this case, the constructor creates an instance of the class
given by Self, and returns a reference to the newly created object in EAX.

A value of False in the flag parameter of a destructor call indicates that the destructor
was invoked using the inherited keyword. In this case, the destructor behaves like an
ordinary method. A value of True in the flag parameter of a destructor call indicates
that the destructor was invoked through an instance object. In this case, the
destructor deallocates the instance given by Self just before returning.

The flag parameter behaves as if it were declared before all other parameters. Under
the register convention, it is passed in the DL register. Under the pascal convention,
it is pushed before all other parameters. Under the cdecl, stdcall, and safecall
conventions, it is pushed just before the Self parameter.

Since the DL register indicates whether the constructor or destructor is the outermost
in the call stack, you must restore the value of DL before exiting so that
BeforeDestruction or AfterConstruction can be called properly.

Exit procedures
Exit procedures ensure that specific actions—such as updating and closing files—are
carried out before a program terminates. The ExitProc pointer variable allows you to
“install” an exit procedure, so that it is always called as part of the program’s
termination—whether the termination is normal, forced by a call to Halt, or the result
of a runtime error. An exit procedure takes no parameters.

Note It is recommended that finalization sections, rather than exit procedures, be used for
all exit behavior. (See “The finalization section” on page 3-5.) Exit procedures are
available only for executables, shared objects (Linux) or .DLL (Windows) targets; for
packages, exit behavior must be implemented in a finalization section. All exit
procedures are called before execution of finalization sections.

Units as well as programs can install exit procedures. A unit can install an exit
procedure as part of its initialization code, relying on the procedure to close files or
perform other clean-up tasks.

When implemented properly, an exit procedure is part of a chain of exit procedures.
The procedures are executed in reverse order of installation, ensuring that the exit
code of one unit isn’t executed before the exit code of any units that depend on it. To
keep the chain intact, you must save the current contents of ExitProc before pointing
it to the address of your own exit procedure. Also, the first statement in your exit
procedure must reinstall the saved value of ExitProc.

P r o g r a m c o n t r o l 12-5

E x i t p r o c e d u r e s

The following code shows a skeleton implementation of an exit procedure.

var
ExitSave: Pointer;

procedure MyExit;
begin

ExitProc := ExitSave; // always restore old vector first
ƒ

end;

begin
ExitSave := ExitProc;
ExitProc := @MyExit;
ƒ

end.

On entry, the code saves the contents of ExitProc in ExitSave, then installs the MyExit
procedure. When called as part of the termination process, the first thing MyExit does
is reinstall the previous exit procedure.

The termination routine in the runtime library keeps calling exit procedures until
ExitProc becomes nil. To avoid infinite loops, ExitProc is set to nil before every call, so
the next exit procedure is called only if the current exit procedure assigns an address
to ExitProc. If an error occurs in an exit procedure, it is not called again.

An exit procedure can learn the cause of termination by examining the ExitCode
integer variable and the ErrorAddr pointer variable. In case of normal termination,
ExitCode is zero and ErrorAddr is nil. In case of termination through a call to Halt,
ExitCode contains the value passed to Halt and ErrorAddr is nil. In case of termination
due to a runtime error, ExitCode contains the error code and ErrorAddr contains the
address of the invalid statement.

The last exit procedure (the one installed by the runtime library) closes the Input and
Output files. If ErrorAddr is not nil, it outputs a runtime error message. To output
your own runtime error message, install an exit procedure that examines ErrorAddr
and outputs a message if it’s not nil; before returning, set ErrorAddr to nil so that the
error is not reported again by other exit procedures.

Once the runtime library has called all exit procedures, it returns to the operating
system, passing the value stored in ExitCode as a return code.

12-6 O b j e c t P a s c a l L a n g u a g e G u i d e

I n l i n e a s s e m b l e r c o d e 13-1

C h a p t e r

13
Chapter13Inline assembler code

The built-in assembler allows you to write assembler code within Object Pascal
programs. It has the following features:

• Allows for inline assembly

• Supports all instructions found in the Intel Pentium III, SIMD, and the AMD
Athlon (including 3D Now!)

• Provides no macro support, but allows for pure assembler function procedures

• Permits the use of Object Pascal identifiers, such as constants, types, and variables
in assembler statements

As an alternative to the built-in assembler, you can link to object files that contain
external procedures and functions. See “Linking to object files” on page 6-6 for more
information.

Note If you have external assembler code that you want to use in your applications, you
should consider rewriting it in Object Pascal or minimally reimplement it using the
inline assembler.

The asm statement
The built-in assembler is accessed through asm statements, which have the form

asm statementList end

where statementList is a sequence of assembler statements separated by semicolons,
end-of-line characters, or Object Pascal comments.

Comments in an asm statement must be in Object Pascal style. A semicolon does not
indicate that the rest of the line is a comment.

The reserved word inline and the directive assembler are maintained for backward
compatibility only. They have no effect on the compiler.

13-2 O b j e c t P a s c a l L a n g u a g e G u i d e

A s s e m b l e r s t a t e m e n t s y n t a x

Register use

In general, the rules of register use in an asm statement are the same as those of an
external procedure or function. An asm statement must preserve the EDI, ESI, ESP,
EBP, and EBX registers, but can freely modify the EAX, ECX, and EDX registers. On
entry to an asm statement, BP points to the current stack frame, SP points to the top
of the stack, SS contains the segment address of the stack segment, and DS contains
the segment address of the data segment. Except for ESP and EBP, an asm statement
can assume nothing about register contents on entry to the statement.

Assembler statement syntax
This syntax of an assembler statement is

Label: Prefix Opcode Operand1, Operand2

where Label is a label, Prefix is an assembler prefix opcode (operation code), Opcode is
an assembler instruction opcode or directive, and Operand is an assembler
expression. Label and Prefix are optional. Some opcodes take only one operand, and
some take none.

Comments are allowed between assembler statements, but not within them. For
example,

MOV AX,1 {Initial value} { OK }
MOV CX,100 {Count} { OK }

MOV {Initial value} AX,1; { Error! }
MOV CX, {Count} 100 { Error! }

Labels

Labels are used in built-in assembler statements as they are in Object Pascal—by
writing the label and a colon before a statement. There is no limit to a label’s length.
As in Object Pascal, labels must be declared in a label declaration part in the block
containing the asm statement. There is one exception to this rule: local labels.

Local labels are labels that start with an at-sign (@). They consist of an at-sign
followed by one or more letters, digits, underscores, or at-signs. Use of local labels is
restricted to asm statements, and the scope of a local label extends from the asm
reserved word to the end of the asm statement that contains it. A local label doesn’t
have to be declared.

Instruction opcodes

The built-in assembler supports all of the Intel-documented opcodes for general
application use. Note that operating system privileged instructions may not be
supported. Specifically, the following families of instructions are supported:

• Pentium family

I n l i n e a s s e m b l e r c o d e 13-3

A s s e m b l e r s t a t e m e n t s y n t a x

• Pentium Pro and Pentium II
• Pentium III
• Pentium IV

In addition, the built-in assembler supports the following instruction sets

• AMD 3DNow! (from the AMD K6 onwards)
• AMD Enhanced 3DNow (from the AMD Athlon onwards)

For a complete description of each instruction, refer to your microprocessor
documentation.

RET instruction sizing
The RET instruction opcode always generates a near return.

Automatic jump sizing
Unless otherwise directed, the built-in assembler optimizes jump instructions by
automatically selecting the shortest, and therefore most efficient, form of a jump
instruction. This automatic jump sizing applies to the unconditional jump instruction
(JMP), and to all conditional jump instructions when the target is a label (not a
procedure or function).

For an unconditional jump instruction (JMP), the built-in assembler generates a short
jump (one-byte opcode followed by a one-byte displacement) if the distance to the
target label is –128 to 127 bytes. Otherwise it generates a near jump (one-byte opcode
followed by a two-byte displacement).

For a conditional jump instruction, a short jump (one-byte opcode followed by a one-
byte displacement) is generated if the distance to the target label is –128 to 127 bytes.
Otherwise, the built-in assembler generates a short jump with the inverse condition,
which jumps over a near jump to the target label (five bytes in total). For example, the
assembler statement

JC Stop

where Stop isn’t within reach of a short jump, is converted to a machine code
sequence that corresponds to this:

JNC Skip
JMP Stop
Skip:

Jumps to the entry points of procedures and functions are always near.

Assembler directives

The built-in assembler supports three assembler define directives: DB (define byte),
DW (define word), and DD (define double word). Each generates data corresponding
to the comma-separated operands that follow the directive.

The DB directive generates a sequence of bytes. Each operand can be a constant
expression with a value between –128 and 255, or a character string of any length.

13-4 O b j e c t P a s c a l L a n g u a g e G u i d e

A s s e m b l e r s t a t e m e n t s y n t a x

Constant expressions generate one byte of code, and strings generate a sequence of
bytes with values corresponding to the ASCII code of each character.

The DW directive generates a sequence of words. Each operand can be a constant
expression with a value between –32,768 and 65,535, or an address expression. For an
address expression, the built-in assembler generates a near pointer—that is, a word
that contains the offset part of the address.

The DD directive generates a sequence of double words. Each operand can be a
constant expression with a value between –2,147,483,648 and 4,294,967,295, or an
address expression. For an address expression, the built-in assembler generates a far
pointer—that is, a word that contains the offset part of the address, followed by a
word that contains the segment part of the address.

The DQ directive defines a quadword for Int64 values.

The data generated by the DB, DW, and DD directives is always stored in the code
segment, just like the code generated by other built-in assembler statements. To
generate uninitialized or initialized data in the data segment, you should use Object
Pascal var or const declarations.

Some examples of DB, DW, and DD directives follow.

asm
DB 0FFH { One byte }
DB 0,99 { Two bytes }
DB 'A' { Ord('A') }
DB 'Hello world...',0DH,0AH { String followed by CR/LF }
DB 12,"string" { Object Pascal style string }
DW 0FFFFH { One word }
DW 0,9999 { Two words }
DW 'A' { Same as DB 'A',0 }
DW 'BA' { Same as DB 'A','B' }
DW MyVar { Offset of MyVar }
DW MyProc { Offset of MyProc }
DD 0FFFFFFFFH { One double-word }
DD 0,999999999 { Two double-words }
DD 'A' { Same as DB 'A',0,0,0 }
DD 'DCBA' { Same as DB 'A','B','C','D' }
DD MyVar { Pointer to MyVar }
DD MyProc { Pointer to MyProc }

end;

I n l i n e a s s e m b l e r c o d e 13-5

A s s e m b l e r s t a t e m e n t s y n t a x

In Turbo Assembler, when an identifier precedes a DB, DW, or DD directive, it
causes the declaration of a byte-, word-, or double-word-sized variable at the location
of the directive. For example, Turbo Assembler allows the following:

ByteVar DB ?
WordVar DW ?
IntVar DD ?

ƒ
MOV AL,ByteVar
MOV BX,WordVar
MOV ECX,IntVar

The built-in assembler doesn’t support such variable declarations. The only kind of
symbol that can be defined in an inline assembler statement is a label. All variables
must be declared using Object Pascal syntax; the preceding construction can be
replaced by

var
ByteVar: Byte;
WordVar: Word;
IntVar: Integer;
ƒ

asm
MOV AL,ByteVar
MOV BX,WordVar
MOV ECX,IntVar

end;

SMALL and LARGE can be used determine the width of a displacement:

MOV eax, [large $1234]

This instruction generates a "normal" move with a 32-bit displacement ($00001234).

MOV eax, [small $1234]

The second instruction will generate a move with an address size override prefix and
a 16-bit displacement ($1234).

SMALL can be used to save space. The following example generates an address size
override and a 2-byte address (in total three bytes)

MOV eax, [SMALL 123]

as opposed to

mov eax, [123]

which will generate no address size override and a 4-byte address (in total four
bytes).

Two additional directives allow assembly code to access dynamic and virtual
method: VMTOFFSET and DMTINDEX.

VMTOFFSET retrives the offset in bytes of the virtual method pointer table entry of
the virtual method argument from the beginning of the virtual method table (VMT).
This directive needs a fully specified class name with a method name as a parameter,
for example,TExample.VirtualMethod.

13-6 O b j e c t P a s c a l L a n g u a g e G u i d e

A s s e m b l e r s t a t e m e n t s y n t a x

DMTINDEX retrieves the dynamic method table index of the passed dynamic
method. This directive also needs a fully specified class name with a method name as
a parameter, for example,TExample.DynamicMethod. To invoke the dynamic
method, call System.@CallDynaInst with the (E)SI register containing the value
obtained from DMTINDEX.

Note Methods with the "message" directive, are implemented as dynamic methods and
can also be called using the DMTINDEX technique. For example:

 TMyClass = class
 procedure x; message MYMESSAGE;
 end;

The following example uses both DMTINDEX and VMTOFFSET to access dynamic
and virtual methods:

program Project2;

type
 TExample = class
 procedure DynamicMethod; dynamic;
 procedure VirtualMethod; virtual;
 end;

procedure TExample.DynamicMethod;
begin

end;

procedure TExample.VirtualMethod;
begin

end;

procedure CallDynamicMethod(e: TExample);
asm
 // Save ESI register
 PUSH ESI

 // Instance pointer needs to be in EAX
 MOV EAX, e
 // DMT entry index needs to be in (E)SI
 MOV ESI, DMTINDEX TExample.DynamicMethod
 // Now call the method
 CALL System.@CallDynaInst

 // Restore ESI register
 POP ESI
end;

procedure CallVirtualMethod(e: TExample);
asm
 // Instance pointer needs to be in EAX
 MOV EAX, e

I n l i n e a s s e m b l e r c o d e 13-7

A s s e m b l e r s t a t e m e n t s y n t a x

 // Retrieve VMT table entry
 MOV EDX, [EAX]

 // Now call the method at offset VMTOFFSET
 CALL DWORD PTR [EDX + VMTOFFSET TExample.VirtualMethod]
end;

var
 e: TExample;

begin
 e := TExample.Create;
 try
 CallDynamicMethod(e);
 CallVirtualMethod(e);
 finally
 e.Free;
 end;
end.

Operands

Built-in assembler operands are expressions that consist of constants, registers,
symbols, and operators.

Within operands, the following reserved words have predefined meanings

Reserved words always take precedence over user-defined identifiers. For example,

var
Ch: Char;
ƒ

asm
MOV CH, 1

end;

loads 1 into the CH register, not into the Ch variable. To access a user-defined symbol
with the same name as a reserved word, you must use the ampersand (&) override
operator:

MOV &Ch, 1

Table 13.1 Built-in assembler reserved words

AH BYTE DMTINDEX EDI HIGH QWORD TBYTE

AL CH DS EDX LARGE SHL TYPE

AND CL DWORD EIP LOW SHR VMTOFFSET

AX CS DX ES MOD SI WORD

BH CX EAX ESI NOT SMALL XOR

BL DH EBP ESP OFFSET SP

BP DI EBX FS OR SS

BX DL ECX GS PTR ST

13-8 O b j e c t P a s c a l L a n g u a g e G u i d e

E x p r e s s i o n s

It is best to avoid user-defined identifiers with the same names as built-in assembler
reserved words.

Expressions
The built-in assembler evaluates all expressions as 32-bit integer values. It doesn’t
support floating-point and string values, except string constants.

Expressions are built from expression elements and operators, and each expression has
an associated expression class and expression type.

Differences between Object Pascal and assembler expressions

The most important difference between Object Pascal expressions and built-in
assembler expressions is that assembler expressions must resolve to a constant
value—a value that can be computed at compile time. For example, given the
declarations

const
X = 10;
Y = 20;

var
Z: Integer;

the following is a valid statement.

asm
MOV Z,X+Y

end;

Because both X and Y are constants, the expression X + Y is a convenient way of
writing the constant 30, and the resulting instruction simply moves of the value 30
into the variable Z. But if X and Y are variables—

var
 X, Y: Integer;

—the built-in assembler cannot compute the value of X + Y at compile time. In this
case, to move the sum of X and Y into Z you would use

asm
MOV EAX,X
ADD EAX,Y
MOV Z,EAX

end;

In an Object Pascal expression, a variable reference denotes the contents of the
variable. But in an assembler expression, a variable reference denotes the address of
the variable. In Object Pascal the expression X + 4 (where X is a variable) means the
contents of X plus 4, while to the built-in assembler it means the contents of the word
at the address four bytes higher than the address of X. So, even though you’re
allowed to write

asm

I n l i n e a s s e m b l e r c o d e 13-9

E x p r e s s i o n s

MOV EAX,X+4
end;

this code doesn’t load the value of X plus 4 into AX; instead, it loads the value of a
word stored four bytes beyond X. The correct way to add 4 to the contents of X is

asm
MOV EAX,X
ADD EAX,4

end;

Expression elements

The elements of an expression are constants, registers, and symbols.

Constants
The built-in assembler supports two types of constant: numeric constants and string
constants.

Numeric constants
Numeric constants must be integers, and their values must be between –2,147,483,648
and 4,294,967,295.

By default, numeric constants use decimal notation, but the built-in assembler also
supports binary, octal, and hexadecimal. Binary notation is selected by writing a B
after the number, octal notation by writing an O after the number, and hexadecimal
notation by writing an H after the number or a $ before the number.

Numeric constants must start with one of the digits 0 through 9 or the $ character.
When you write a hexadecimal constant using the H suffix, an extra zero is required
in front of the number if the first significant digit is one of the digits A through F. For
example, 0BAD4H and $BAD4 are hexadecimal constants, but BAD4H is an identifier
because it starts with a letter.

String constants
String constants must be enclosed in single or double quotation marks. Two
consecutive quotation marks of the same type as the enclosing quotation marks count
as only one character. Here are some examples of string constants:

'Z'
'Delphi'
‘Linux’
"That's all folks"
'"That''s all folks," he said.'
'100'
'"'
"'"

String constants of any length are allowed in DB directives, and cause allocation of a
sequence of bytes containing the ASCII values of the characters in the string. In all
other cases, a string constant can be no longer than four characters and denotes a

13-10 O b j e c t P a s c a l L a n g u a g e G u i d e

E x p r e s s i o n s

numeric value which can participate in an expression. The numeric value of a string
constant is calculated as

Ord(Ch1) + Ord(Ch2) shl 8 + Ord(Ch3) shl 16 + Ord(Ch4) shl 24

where Ch1 is the rightmost (last) character and Ch4 is the leftmost (first) character. If
the string is shorter than four characters, the leftmost characters are assumed to be
zero. The following table shows string constants and their numeric values.

Registers
The following reserved symbols denote CPU registers:.

When an operand consists solely of a register name, it is called a register operand. All
registers can be used as register operands, and some registers can be used in other
contexts.

The base registers (BX and BP) and the index registers (SI and DI) can be written
within square brackets to indicate indexing. Valid base/index register combinations
are [BX], [BP], [SI], [DI], [BX+SI], [BX+DI], [BP+SI], and [BP+DI]. You can also index
with all the 32-bit registers—for example, [EAX+ECX], [ESP], and [ESP+EAX+5].

The segment registers (ES, CS, SS, DS, FS, and GS) are supported, but segments are
normally not useful in 32-bit applications.

The symbol ST denotes the topmost register on the 8087 floating-point register stack.
Each of the eight floating-point registers can be referred to using ST(X), where X is a
constant between 0 and 7 indicating the distance from the top of the register stack.

Table 13.2 String examples and their values

String Value

'a' 00000061H

'ba' 00006261H

'cba' 00636261H

'dcba' 64636261H

'a ' 00006120H

' a' 20202061H

'a' * 2 000000E2H

'a'-'A' 00000020H

not 'a' FFFFFF9EH

Table 13.3 CPU registers

32-bit general purpose EAX EBX ECX EDX 32-bit pointer or index ESP EBP ESI EDI

16-bit general purpose AX BX CX DX 16-bit pointer or index SP BP SI DI

8-bit low registers AL BL CL DL 16-bit segment registers CS DS SS ES

32-bit segment registers FS GS

8-bit high registers AH BH CH DH Coprocessor register stack ST

I n l i n e a s s e m b l e r c o d e 13-11

E x p r e s s i o n s

Symbols
The built-in assembler allows you to access almost all Object Pascal identifiers in
assembler expressions, including constants, types, variables, procedures, and
functions. In addition, the built-in assembler implements the special symbol @Result,
which corresponds to the Result variable within the body of a function. For example,
the function

function Sum(X, Y: Integer): Integer;
begin

Result := X + Y;
end;

could be written in assembler as

function Sum(X, Y: Integer): Integer; stdcall;
begin

asm
MOV EAX,X
ADD EAX,Y
MOV @Result,EAX

end;
end;

The following symbols cannot be used in asm statements:

• Standard procedures and functions (for example, WriteLn and Chr).
• String, floating-point, and set constants (except when loading registers).
• Labels that aren’t declared in the current block.
• The @Result symbol outside of functions.

The following table summarizes the kinds of symbol that can be used in asm
statements.

With optimizations disabled, local variables (variables declared in procedures and
functions) are always allocated on the stack and accessed relative to EBP, and the
value of a local variable symbol is its signed offset from EBP. The assembler
automatically adds [EBP] in references to local variables. For example, given the
declaration

var Count: Integer;

Table 13.4 Symbols recognized by the built-in assembler

Symbol Value Class Type

Label Address of label Memory reference Size of type

Constant Value of constant Immediate value 0

Type 0 Memory reference Size of type

Field Offset of field Memory Size of type

Variable Address of variable Memory reference Size of type

Procedure Address of procedure Memory reference Size of type

Function Address of function Memory reference Size of type

Unit 0 Immediate value 0

@Result Result variable offset Memory reference Size of type

13-12 O b j e c t P a s c a l L a n g u a g e G u i d e

E x p r e s s i o n s

within a function or procedure, the instruction

MOV EAX,Count

assembles into MOV EAX,[EBP–4].

The built-in assembler treats var parameters as a 32-bit pointers, and the size of a var
parameter is always 4. The syntax for accessing a var parameter is different from that
for accessing a value parameter. To access the contents of a var parameter, you must
first load the 32-bit pointer and then access the location it points to. For example,

function Sum(var X, Y: Integer): Integer; stdcall;
begin

asm
MOV EAX,X
MOV EAX,[EAX]
MOV EDX,Y
ADD EAX,[EDX]
MOV @Result,EAX

end;
end;

Identifiers can be qualified within asm statements. For example, given the
declarations

type
TPoint = record

X, Y: Integer;
end;
TRect = record

A, B: TPoint;
end;

var
P: TPoint;
R: TRect;

the following constructions can be used in an asm statement to access fields.

MOV EAX,P.X
MOV EDX,P.Y
MOV ECX,R.A.X
MOV EBX,R.B.Y

A type identifier can be used to construct variables on the fly. Each of the following
instructions generates the same machine code, which loads the contents of [EDX] into
EAX.

MOV EAX,(TRect PTR [EDX]).B.X
MOV EAX,TRect([EDX]).B.X
MOV EAX,TRect[EDX].B.X
MOV EAX,[EDX].TRect.B.X

Expression classes

The built-in assembler divides expressions into three classes: registers, memory
references, and immediate values.

I n l i n e a s s e m b l e r c o d e 13-13

E x p r e s s i o n s

An expression that consists solely of a register name is a register expression.
Examples of register expressions are AX, CL, DI, and ES. Used as operands, register
expressions direct the assembler to generate instructions that operate on the CPU
registers.

Expressions that denote memory locations are memory references. Object Pascal’s
labels, variables, typed constants, procedures, and functions belong to this category.

Expressions that aren’t registers and aren’t associated with memory locations are
immediate values. This group includes Object Pascal’s untyped constants and type
identifiers.

Immediate values and memory references cause different code to be generated when
used as operands. For example,

const
Start = 10;

var
Count: Integer;
ƒ

asm
MOV EAX,Start { MOV EAX,xxxx }
MOV EBX,Count { MOV EBX,[xxxx] }
MOV ECX,[Start] { MOV ECX,[xxxx] }
MOV EDX,OFFSET Count { MOV EDX,xxxx }

end;

Because Start is an immediate value, the first MOV is assembled into a move
immediate instruction. The second MOV, however, is translated into a move memory
instruction, as Count is a memory reference. In the third MOV, the brackets convert
Start into a memory reference (in this case, the word at offset 10 in the data segment).
In the fourth MOV, the OFFSET operator converts Count into an immediate value
(the offset of Count in the data segment).

The brackets and OFFSET operator complement each other. The following asm
statement produces identical machine code to the first two lines of the previous asm
statement.

asm
MOV EAX,OFFSET [Start]
MOV EBX,[OFFSET Count]

end;

Memory references and immediate values are further classified as either relocatable or
absolute. Relocation is the process by which the linker assigns absolute addresses to
symbols. A relocatable expression denotes a value that requires relocation at link
time, while an absolute expression denotes a value that requires no such relocation.
Typically, expressions that refer to labels, variables, procedures, or functions are
relocatable, since the final address of these symbols is unknown at compile time.
Expressions that operate solely on constants are absolute.

The built-in assembler allows you to carry out any operation on an absolute value,
but it restricts operations on relocatable values to addition and subtraction of
constants.

13-14 O b j e c t P a s c a l L a n g u a g e G u i d e

E x p r e s s i o n s

Expression types

Every built-in assembler expression has a type—or, more correctly, a size, because
the assembler regards the type of an expression simply as the size of its memory
location. For example, the type of an Integer variable is four, because it occupies 4
bytes. The built-in assembler performs type checking whenever possible, so in the
instructions

var
QuitFlag: Boolean;
OutBufPtr: Word;
ƒ

asm
MOV AL,QuitFlag
MOV BX,OutBufPtr

end;

the assembler checks that the size of QuitFlag is one (a byte), and that the size of
OutBufPtr is two (a word). The instruction

MOV DL,OutBufPtr

produces an error because DL is a byte-sized register and OutBufPtr is a word. The
type of a memory reference can be changed through a typecast; these are correct
ways of writing the previous instruction:

MOV DL,BYTE PTR OutBufPtr
MOV DL,Byte(OutBufPtr)
MOV DL,OutBufPtr.Byte

These MOV instructions all refer to the first (least significant) byte of the OutBufPtr
variable.

In some cases, a memory reference is untyped. One example is an immediate value
enclosed in square brackets:

MOV al, [Buffer]
MOV cx, [Buffer]
MOV edx, [Buffer]

The built-in assembler permits both of these instructions, because the expression
[100H] has no type—it just means “the contents of address 100H in the data
segment,” and the type can be determined from the first operand (byte for AL, word
for BX). In cases where the type can’t be determined from another operand, the built-
in assembler requires an explicit typecast:

INC BYTE PTR [ECX]
IMUL WORD PTR [EDX]

The following table summarizes the predefined type symbols that the built-in
assembler provides in addition to any currently declared Object Pascal types.

Table 13.5 Predefined type symbols

Symbol Type

BYTE 1

WORD 2

I n l i n e a s s e m b l e r c o d e 13-15

E x p r e s s i o n s

Expression operators

The built-in assembler provides a variety of operators. Precedence rules are different
from Object Pascal; for example, in an asm statement, AND has lower precedence
than the addition and subtraction operators. The following table lists the built-in
assembler’s expression operators in decreasing order of precedence.

The following table defines the built-in assembler’s expression operators.

DWORD 4

QWORD 8

TBYTE 10

Table 13.6 Precedence of built-in assembler expression operators

Operators Remarks Precedence

& highest

(), [], ., HIGH, LOW

+, – unary + and –

:

OFFSET, TYPE, PTR, *, /, MOD, SHL,
SHR, +, – binary + and –

NOT, AND, OR, XOR lowest

Table 13.7 Definitions of built-in assembler expression operators

Operator Description

& Identifier override. The identifier immediately following the ampersand is treated as
a user-defined symbol, even if the spelling is the same as a built-in assembler
reserved symbol.

 (...) Subexpression. Expressions within parentheses are evaluated completely prior to
being treated as a single expression element. Another expression can precede the
expression within the parentheses; the result in this case is the sum of the values of
the two expressions, with the type of the first expression.

 [...] Memory reference. The expression within brackets is evaluated completely prior to
being treated as a single expression element. Another expression can precede the
expression within the brackets; the result in this case is the sum of the values of the
two expressions, with the type of the first expression. The result is always a memory
reference.

. Structure member selector. The result is the sum of the expression before the period
and the expression after the period, with the type of the expression after the period.
Symbols belonging to the scope identified by the expression before the period can be
accessed in the expression after the period.

HIGH Returns the high-order 8 bits of the word-sized expression following the operator.
The expression must be an absolute immediate value.

Table 13.5 Predefined type symbols (continued)

Symbol Type

13-16 O b j e c t P a s c a l L a n g u a g e G u i d e

LOW Returns the low-order 8 bits of the word-sized expression following the operator. The
expression must be an absolute immediate value.

+ Unary plus. Returns the expression following the plus with no changes. The
expression must be an absolute immediate value.

– Unary minus. Returns the negated value of the expression following the minus. The
expression must be an absolute immediate value.

+ Addition. The expressions can be immediate values or memory references, but only
one of the expressions can be a relocatable value. If one of the expressions is a
relocatable value, the result is also a relocatable value. If either of the expressions is a
memory reference, the result is also a memory reference.

– Subtraction. The first expression can have any class, but the second expression must
be an absolute immediate value. The result has the same class as the first expression.

: Segment override. Instructs the assembler that the expression after the colon belongs
to the segment given by the segment register name (CS, DS, SS, FS, GS, or ES) before
the colon. The result is a memory reference with the value of the expression after the
colon. When a segment override is used in an instruction operand, the instruction is
prefixed with an appropriate segment-override prefix instruction to ensure that the
indicated segment is selected.

OFFSET Returns the offset part (double word) of the expression following the operator. The
result is an immediate value.

TYPE Returns the type (size in bytes) of the expression following the operator. The type of
an immediate value is 0.

PTR Typecast operator. The result is a memory reference with the value of the expression
following the operator and the type of the expression in front of the operator.

* Multiplication. Both expressions must be absolute immediate values, and the result
is an absolute immediate value.

/ Integer division. Both expressions must be absolute immediate values, and the result
is an absolute immediate value.

MOD Remainder after integer division. Both expressions must be absolute immediate
values, and the result is an absolute immediate value.

SHL Logical shift left. Both expressions must be absolute immediate values, and the result
is an absolute immediate value.

SHR Logical shift right. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

NOT Bitwise negation. The expression must be an absolute immediate value, and the
result is an absolute immediate value.

AND Bitwise AND. Both expressions must be absolute immediate values, and the result is
an absolute immediate value.

OR Bitwise OR. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

XOR Bitwise exclusive OR. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

Table 13.7 Definitions of built-in assembler expression operators (continued)

Operator Description

I n l i n e a s s e m b l e r c o d e 13-17

Assembler procedures and functions
You can write complete procedures and functions using inline assembler code,
without including a begin...end statement. For example,

function LongMul(X, Y: Integer): Longint;
asm

MOV EAX,X
IMUL Y

end;

The compiler performs several optimizations on these routines:

• No code is generated to copy value parameters into local variables. This affects all
string-type value parameters and other value parameters whose size isn’t 1, 2, or 4
bytes. Within the routine, such parameters must be treated as if they were var
parameters.

• Unless a function returns a string, variant, or interface reference, the compiler
doesn’t allocate a function result variable; a reference to the @Result symbol is an
error. For strings, variants, and interfaces, the caller always allocates an @Result
pointer.

• The compiler only generates stack frames for nested routines, for routines that
have local parameters, or for routines that have parameters on the stack.

• The automatically generated entry and exit code for the routine looks like this:

PUSH EBP ;Present if Locals <> 0 or Params <> 0
MOV EBP,ESP ;Present if Locals <> 0 or Params <> 0
SUB ESP,Locals ;Present if Locals <> 0
ƒ

MOV ESP,EBP ;Present if Locals <> 0
POP EBP ;Present if Locals <> 0 or Params <> 0
RET Params ;Always present

If locals include variants, long strings, or interfaces, they are initialized to zero but
not finalized.

• Locals is the size of the local variables and Params is the size of the parameters. If
both Locals and Params are zero, there is no entry code, and the exit code consists
simply of a RET instruction.

Assembler functions return their results as follows.

• Ordinal values are returned in AL (8-bit values), AX (16-bit values), or EAX (32-bit
values).

• Real values are returned in ST(0) on the coprocessor’s register stack. (Currency
values are scaled by 10000.)

• Pointers, including long strings, are returned in EAX.

• Short strings and variants are returned in the temporary location pointed to by
@Result.

13-18 O b j e c t P a s c a l L a n g u a g e G u i d e

O b j e c t P a s c a l g r a m m a r A-1

A p p e n d i x

A
Appendix AObject Pascal grammar

Goal -> (Program | Package | Library | Unit)

Program -> [PROGRAM Ident ['(' IdentList ')'] ';']
ProgramBlock '.'

Unit -> UNIT Ident ';'
InterfaceSection
ImplementationSection
InitSection '.'

Package -> PACKAGE Ident ';'
[RequiresClause]
[ContainsClause]
END '.'

Library -> LIBRARY Ident ';'
ProgramBlock '.'

ProgramBlock -> [UsesClause]
Block

UsesClause -> USES IdentList ';'

InterfaceSection -> INTERFACE
[UsesClause]
[InterfaceDecl]...

InterfaceDecl -> ConstSection
-> TypeSection
-> VarSection
-> ExportedHeading

ExportedHeading -> ProcedureHeading ';' [Directive]
-> FunctionHeading ';' [Directive]

ImplementationSection -> IMPLEMENTATION
[UsesClause]
[DeclSection]...

Block -> [DeclSection]

A-2 O b j e c t P a s c a l L a n g u a g e G u i d e

CompoundStmt

DeclSection -> LabelDeclSection
-> ConstSection
-> TypeSection
-> VarSection
-> ProcedureDeclSection

LabelDeclSection -> LABEL LabelId

ConstSection -> CONST (ConstantDecl ';')...

ConstantDecl -> Ident '=' ConstExpr
-> Ident ':' TypeId '=' TypedConstant

TypeSection -> TYPE (TypeDecl ';')...

TypeDecl -> Ident '=' Type
-> Ident '=' RestrictedType

TypedConstant -> (ConstExpr | ArrayConstant | RecordConstant)

ArrayConstant -> '(' TypedConstant/','... ')'

RecordConstant -> '(' RecordFieldConstant/';'... ')'

RecordFieldConstant -> Ident ':' TypedConstant

Type -> TypeId
-> SimpleType
-> StrucType
-> PointerType
-> StringType
-> ProcedureType
-> VariantType
-> ClassRefType

RestrictedType -> ObjectType
-> ClassType
-> InterfaceType

ClassRefType -> CLASS OF TypeId

SimpleType -> (OrdinalType | RealType)

RealType -> REAL48
-> REAL
-> SINGLE
-> DOUBLE
-> EXTENDED
-> CURRENCY
-> COMP

OrdinalType -> (SubrangeType | EnumeratedType | OrdIdent)

OrdIdent -> SHORTINT
-> SMALLINT
-> INTEGER
-> BYTE
-> LONGINT
-> INT64
-> WORD
-> BOOLEAN

O b j e c t P a s c a l g r a m m a r A-3

-> CHAR
-> WIDECHAR
-> LONGWORD
-> PCHAR

VariantType -> VARIANT
-> OLEVARIANT

SubrangeType -> ConstExpr '..' ConstExpr

EnumeratedType -> '(' EnumeratedTypeElement/','... ')'

EnumeratedTypeElement -> Ident ['=' ConstExpr]

StringType -> STRING
-> ANSISTRING
-> WIDESTRING
-> STRING '[' ConstExpr ']'

StrucType -> [PACKED] (ArrayType | SetType | FileType | RecType)

ArrayType -> ARRAY ['[' OrdinalType/','... ']'] OF Type

RecType -> RECORD [FieldList] END

FieldList -> FieldDecl/';'... [VariantSection] [';']

FieldDecl -> IdentList ':' Type

VariantSection -> CASE [Ident ':'] TypeId OF RecVariant/';'...

RecVariant -> ConstExpr/','... ':' '(' [FieldList] ')'

SetType -> SET OF OrdinalType

FileType -> FILE OF TypeId

PointerType -> '^' TypeId

ProcedureType -> (ProcedureHeading | FunctionHeading) [OF OBJECT]

VarSection -> VAR (VarDecl ';')...

VarDecl -> IdentList ':' Type [(ABSOLUTE (Ident | ConstExpr)) | '=' ConstExpr]

Expression -> SimpleExpression [RelOp SimpleExpression]...

SimpleExpression -> ['+' | '-'] Term [AddOp Term]...

Term -> Factor [MulOp Factor]...

Factor -> Designator ['(' ExprList ')']
-> '@' Designator
-> Number
-> String
-> NIL
-> '(' Expression ')'
-> NOT Factor
-> SetConstructor
-> TypeId '(' Expression ')'

RelOp -> '>'
-> '<'
-> '<='
-> '>='
-> '<>'

A-4 O b j e c t P a s c a l L a n g u a g e G u i d e

-> IN
-> IS
-> AS

AddOp -> '+'
-> '-'
-> OR
-> XOR

MulOp -> '*'
-> '/'
-> DIV
-> MOD
-> AND
-> SHL
-> SHR

Designator -> QualId ['.' Ident | '[' ExprList ']' | '^']...

SetConstructor -> '[' [SetElement/','...] ']'

SetElement -> Expression ['..' Expression]

ExprList -> Expression/','...

Statement -> [LabelId ':'] [SimpleStatement | StructStmt]

StmtList -> Statement/';'...

SimpleStatement -> Designator ['(' ExprList ')']
-> Designator ':=' Expression
-> INHERITED
-> GOTO LabelId

StructStmt -> CompoundStmt
-> ConditionalStmt
-> LoopStmt
-> WithStmt

CompoundStmt -> BEGIN StmtList END

ConditionalStmt -> IfStmt
-> CaseStmt

IfStmt -> IF Expression THEN Statement [ELSE Statement]

CaseStmt -> CASE Expression OF CaseSelector/';'... [ELSE StmtList] [';'] END

CaseSelector -> CaseLabel/','... ':' Statement

CaseLabel -> ConstExpr ['..' ConstExpr]

LoopStmt -> RepeatStmt
-> WhileStmt
-> ForStmt

RepeatStmt -> REPEAT Statement UNTIL Expression

WhileStmt -> WHILE Expression DO Statement

ForStmt -> FOR QualId ':=' Expression (TO | DOWNTO) Expression DO Statement

WithStmt -> WITH IdentList DO Statement

ProcedureDeclSection -> ProcedureDecl

O b j e c t P a s c a l g r a m m a r A-5

-> FunctionDecl

ProcedureDecl -> ProcedureHeading ';' [Directive]
Block ';'

FunctionDecl -> FunctionHeading ';' [Directive]
Block ';'

FunctionHeading -> FUNCTION Ident [FormalParameters] ':' (SimpleType | STRING)

ProcedureHeading -> PROCEDURE Ident [FormalParameters]

FormalParameters -> '(' FormalParm/';'... ')'

FormalParm -> [VAR | CONST | OUT] Parameter

Parameter -> IdentList [':' ([ARRAY OF] SimpleType | STRING | FILE)]
-> Ident ':' SimpleType '=' ConstExpr

Directive -> CDECL
-> REGISTER
-> DYNAMIC
-> VIRTUAL
-> EXPORT
-> EXTERNAL
-> FAR
-> FORWARD
-> MESSAGE
-> OVERRIDE
-> OVERLOAD
-> PASCAL
-> REINTRODUCE
-> SAFECALL
-> STDCALL

ObjectType -> OBJECT [ObjHeritage] [ObjFieldList] [MethodList] END

ObjHeritage -> '(' QualId ')'

MethodList -> (MethodHeading [';' VIRTUAL])/';'...

MethodHeading -> ProcedureHeading
-> FunctionHeading
-> ConstructorHeading
-> DestructorHeading

ConstructorHeading -> CONSTRUCTOR Ident [FormalParameters]

DestructorHeading -> DESTRUCTOR Ident [FormalParameters]

ObjFieldList -> (IdentList ':' Type)/';'...

InitSection -> INITIALIZATION StmtList [FINALIZATION StmtList] END
-> BEGIN StmtList END
-> END

ClassType -> CLASS [ClassHeritage]
[ClassFieldList]
[ClassMethodList]
[ClassPropertyList]
END

ClassHeritage -> '(' IdentList ')'

A-6 O b j e c t P a s c a l L a n g u a g e G u i d e

ClassVisibility -> [PUBLIC | PROTECTED | PRIVATE | PUBLISHED]

ClassFieldList -> (ClassVisibility ObjFieldList)/';'...

ClassMethodList -> (ClassVisibility MethodList)/';'...

ClassPropertyList -> (ClassVisibility PropertyList ';')...

PropertyList -> PROPERTY Ident [PropertyInterface] PropertySpecifiers

PropertyInterface -> [PropertyParameterList] ':' Ident

PropertyParameterList -> '[' (IdentList ':' TypeId)/';'... ']'

PropertySpecifiers -> [INDEX ConstExpr]
[READ Ident]
[WRITE Ident]
[STORED (Ident | Constant)]
[(DEFAULT ConstExpr) | NODEFAULT]
[IMPLEMENTS TypeId]

InterfaceType -> INTERFACE [InterfaceHeritage]
[ClassMethodList]
[ClassPropertyList]
END

InterfaceHeritage -> '(' IdentList ')'

RequiresClause -> REQUIRES IdentList... ';'

ContainsClause -> CONTAINS IdentList... ';'

IdentList -> Ident/','...

QualId -> [UnitId '.'] Ident

TypeId -> [UnitId '.'] <type-identifier>

Ident -> <identifier>

ConstExpr -> <constant-expression>

UnitId -> <unit-identifier>

LabelId -> <label-identifier>

Number -> <number>

String -> <string>

I n d e x I-1

Symbols

- 4-4, 4-6, 4-9, 4-10
" 13-9
4-4
$ 4-4, 4-5
(*, *) 4-5
(,) 4-2, 4-12, 4-14, 5-6, 5-43, 6-2,

6-3, 6-11, 7-2, 10-1
* 4-2, 4-6, 4-10
+ 4-4, 4-6, 4-9, 4-10
, 3-6, 4-24, 5-6, 5-21, 5-23, 6-11,

7-17, 9-5, 9-9, 10-7, 13-2
. 3-2, 4-2, 4-13, 5-27, 9-9, 10-5
/ 4-2, 4-6
// 4-5
: 4-2, 4-17, 4-23, 5-21, 5-22, 5-37,

5-43, 6-3, 6-11, 7-17, 7-19, 7-29,
13-2

:= 4-17, 4-26
named parameters 10-12

; 3-2, 3-6, 4-16, 4-17, 4-20, 4-25,
5-21, 5-22, 5-37, 6-2, 6-3, 6-11,
7-2, 7-6, 9-5, 9-9, 10-1, 10-4,
10-10

before ’else’ 4-22
< 4-2, 4-9, 4-10
<= 4-9, 4-10
<> 4-9, 4-10
= 4-2, 4-9, 4-10, 4-17, 5-36, 5-37,

5-39, 5-43, 6-11, 6-17, 10-5
> 4-2, 4-9, 4-10
>= 4-9, 4-10
@ 4-6, 4-12, 5-26, 5-30, 5-44, 7-17
@@ 5-30
@Result 13-11, 13-17
[,] 4-13, 4-14, 5-11, 5-12, 5-17,

5-31, 6-15, 6-19, 7-17, 7-19, 7-20,
10-1, 10-10

^ 4-6, 4-9, 5-19, 5-27
and variants 5-33
pointer overview 5-26

_ 4-2
{, } 4-5, 10-1, 10-10
’ 4-4, 9-9, 10-1, 10-10

A
$A directive 11-8
absolute (directive) 5-38
absolute addresses 5-38

absolute expressions
(assembler) 13-13

abstract methods 7-12
access specifiers 7-1, 7-17

array properties 7-19
Automation 7-6
calling convention 6-5, 7-18
index specifiers and 7-21
overloading 7-13, 7-18
overriding 7-22

actual parameters 6-19
Add method (TCollection) 7-9
addition 4-6

pointers 4-9
Addr function 5-26
_AddRef method 10-2, 10-5,

10-9
address operator 4-12, 5-26,

5-30, 5-44
properties and 7-17

alignment (data) 5-17, 11-8
See also internal data formats

AllocMemCount variable 11-2
AllocMemSize variable 11-2
alphanumeric characters 4-1,

4-2
ampersand See Symbols
ancestors 7-3
and 4-7, 4-8
anonymous values (enumerated

types) 5-8, 7-5
ANSI characters 5-5, 5-12, 5-13
AnsiChar type 5-5, 5-11, 5-13,

5-27, 11-3
AnsiString type 5-10, 5-12, 5-13,

5-15, 5-27
See also long strings
memory management 11-6
variant arrays and 5-33

Append procedure 8-2, 8-4, 8-5,
8-6

application partitioning 9-8
Application variable 2-5, 3-3
arithmetic operators 4-6, 5-4
array properties 7-5, 7-19

default 7-20
in dispatch interfaces 10-11
storage specifiers and 7-21

arrays 5-3, 5-18 to 5-21
’array of const’ 6-16
accessing with

PByteArray 5-27

accessing with
PWordArray 5-28

assignments and 5-21
character 4-5, 5-13, 5-14,

5-17, 5-18
character arrays and string

constants 4-5, 5-14, 5-43
constant 5-43
dynamic 5-19, 5-39, 6-15,

11-7
indexes 4-14
multidimensional 5-18, 5-20
open array

constructors 6-17, 6-19
parameters 6-12, 6-15
static 5-18, 11-7
variants and 5-31, 5-33

as 4-11, 7-24, 7-25, 10-10
ASCII 4-1, 4-4, 5-13
asm statements 13-1, 13-17
assembler (directive) 6-6, 13-1
assembly language

assembler routines 13-17
built-in assembler 13-1 to

13-17
external routines 6-7
Object Pascal and 13-5, 13-7,

13-8, 13-11, 13-13, 13-15
Assert procedure 7-27
assertions 7-27
Assign procedure

custom 8-4
Assigned function 5-30, 10-9
AssignFile procedure 8-2, 8-4,

8-6
assignment statements 4-17

typecasts 4-15
assignment-compatibility 5-35,

7-3, 10-9
asterisk See Symbols
at (reserved word) 7-27
at-sign See @, address operator
automatable types 7-6, 10-11
automated class members 7-4,

7-6
Automation 7-6, 10-10 to 10-13

See also COM
dual interfaces 10-13
method calls 10-12
variants and 11-12

Index

I-2 O b j e c t P a s c a l L a n g u a g e G u i d e

B
$B directive 4-8
base types 5-8, 5-17, 5-18, 5-19
begin (reserved word) 3-2, 4-20,

6-2, 6-3
binary operators 4-6
binding

fields 7-7
methods 7-10

bitwise operators,not 4-8
blanks 4-1
BlockRead procedure 8-4
blocks 4-27 to 4-28

function 3-4, 6-1, 6-3
library 9-5
outer and inner 4-29
procedure 3-4, 6-1, 6-2
program 3-1, 3-2
scope 4-27 to 4-29
try...except 7-28, 7-30
try...finally 7-31

BlockWrite procedure 8-4
body (routine) 6-1
boldface 1-2
Boolean operators 4-7

complete vs. partial
evaluation 4-7

Boolean type 5-6, 11-3
Boolean types 5-5, 11-3
BORLANDMM.DLL 9-8
braces See Symbols
brackets See Symbols
Break procedure 4-25

exception handlers 7-29
in try...finally block 7-32

BSTR type (COM) 5-13
built-in assembler 13-1 to 13-17
built-in types 5-1
by reference (parameters) 6-12,

6-13, 10-12, 12-1
by value (parameters) 6-12,

10-12, 12-1
Byte type 5-4, 11-3

assembler 13-14
ByteBool type 5-6, 11-3

C
C++ 6-6, 10-1, 11-10
calling conventions 5-29, 6-4,

12-1
access specifiers 6-5, 7-18
interfaces 10-3, 10-7
methods 12-3
shared libraries 9-4

varargs directive 6-6
calling routines 9-1
Cardinal type 5-3
caret See Symbols
carriage-return 4-1, 4-5
case (reserved word) 4-23, 5-22
case statements 4-23
case-sensitivity 4-1, 4-2, 6-8

unit names and files 4-2
-cc compiler switch 8-3
cdecl (calling convention) 6-4,

12-2
constructors and

destructors 12-4
Self 12-3
varargs 6-6

Char type 5-5, 5-13, 5-27, 11-3
character operators 4-9
character sets

ANSI 5-5, 5-12, 5-13
extended 5-13
multibyte (MBCS) 5-13
Pascal 4-1, 4-2, 4-4
single-byte (SBCS) 5-13

character strings 4-1, 4-4, 5-45
characters

pointers 5-27
string literals as 4-5, 5-5
types 5-5, 11-3
wide 5-13, 11-3

checked typecasts
interfaces 10-10
objects 7-25

Chr function 5-5
circular references

packages 9-10
units 3-7 to 3-8

circumflex See Symbols
classes 7-1 to 7-32

class methods 7-1, 7-25
class references 7-23
class types 7-1, 7-2
comparison 4-11
compatibility 7-3, 10-9
declaring class types 7-2, 7-4,

7-6, 7-7, 7-8, 7-17, 10-5
files and 5-24
memory 11-10
metaclasses 7-23
operators 4-11, 7-24
scope 4-28
variants and 5-31

Classes unit 7-9, 7-23
ClassParent method 7-24
class-reference types 7-23

comparison 4-11
constructors and 7-24
memory 11-11
variants and 5-31

ClassType method 7-24
clients 3-4
Close function 8-4, 8-6
CloseFile function 8-5
CloseFile procedure 8-6
CLX 1-2
CmdLine variable 9-6
colon See Symbols
COM 10-4

See also Automation
interfaces 10-2, 10-10 to

10-13
out parameters 6-14
variants and 5-31, 5-33, 11-11

COM error handling 6-5
comma See Symbols
comments 4-1, 4-5
ComObj unit 7-6, 10-11
Comp type 5-9, 5-10, 11-5
comparison

classes 4-11
class-reference types 4-11
dynamic arrays 5-19
integer types 4-11
objects 4-11
packed strings 4-11
PChar type 4-11
real types 4-11
relational operators 4-10
strings 4-11, 5-11

compiler 2-2, 2-3, 2-5, 3-1
command-line 2-3 to 2-5
directives 3-2, 4-5
packages 9-11

compile-time binding See static
methods

complete evaluation 4-7
components, of classes See

members
compound statements 4-19,

4-20
concatenation (strings) 4-9
conditional statements 4-19
conjunction 4-7
console applications 2-3, 8-3
const (reserved word) 5-39,

5-43, 6-11, 6-12, 6-13, 6-16, 12-1
constant expression

array constants 5-43
case statements 4-24

I n d e x I-3

constant declarations 5-40,
5-43

default paramters 6-18
defined 5-41
enumerated types 5-7
initializing variables 5-37
subrange types 5-8, 5-9
type 5-40, 6-8

constant parameters 6-12, 6-13,
6-19, 12-1

open array constructors 6-20
constants 4-6, 5-39

array 5-43
assembler 13-9
declared 5-39 to 5-45
numeric See numerals
pointer 5-44
procedural 5-44
record 5-43
true 5-39
type compatibility 5-40
typed 5-42

constructors 7-1, 7-9, 7-13
calling conventions 12-4
class references and 7-24
exceptions 7-28, 7-32

contains clause 9-9, 9-10
context-sensitive Help (error-

handling) 7-32
Continue procedure 4-25

exception handlers 7-29
in try...finally block 7-32

control (program) 6-19, 12-1 to
12-5

control characters 4-1, 4-4
control loops 4-20, 4-25
control strings 4-4
conversion

See also typecasts
variants 5-31, 5-31 to 5-33

Copy function 5-20
copy-on-write semantics 5-12
CORBA

interfaces 10-3
out parameters 6-14

CPU See registers
Create method 7-13
Currency type 5-9, 5-10, 5-27,

11-5

D
data alignment 5-17, 11-8
data formats, internal 11-2 to

11-12
data types See types

.dcp files 9-11, 2-3

.dcu files 2-3, 3-7, 9-10, 9-11
Dec procedure 5-3, 5-4
declarations 4-1, 4-16, 4-27

class 7-2, 7-7, 7-8, 7-17, 10-5
constant 5-39, 5-43
defining 6-6, 7-6, 7-8, 10-4
field 7-7
forward 3-4, 6-5, 7-6, 10-4
function 6-1, 6-3
implementation 7-8
interface 3-4
local 6-10
method 7-8
package 9-9
procedure 6-1, 6-2
property 7-17, 7-19
type 5-36
variable 5-37

declared types 5-1
decrementing ordinals 5-3, 5-4,

5-5
default (directive) 7-20, 10-11
default parameters 6-11, 6-17 to

6-19
Automation objects 10-12
forward and interface

declarations 6-19
overloading and 6-10, 6-18
procedural types 6-18

default properties 7-20
interfaces 10-2

default property (COM
object) 5-33

default specifier 7-6, 7-17, 7-21
DefaultHandler method 7-16,

7-17
defining declarations 6-6, 7-6,

7-8, 10-4
DefWindowProc function 7-16
delegated interface 10-7
delegation (interface

implementation) 10-6
$DENYPACKAGEUNIT

directive 9-12
dependency

units 3-7 to 3-8
deprecated (directive) 4-17
dereference operator 4-9, 5-19

pointer overview 5-26
variants and 5-33

descendants 7-3, 7-5
$DESIGNONLY directive 9-12
design-time packages 9-8
.desk files 2-2

desktop settings files 2-2
Destroy method 7-13, 7-15, 7-29
destructors 7-1, 7-13, 7-14

calling conventions 12-4
device drivers, text-file 8-4
device functions 8-4, 8-5
.dfm files 2-2, 2-7, 7-5
difference (sets) 4-10
directives 4-1, 4-3

See also reserved words
assembler 13-3
compiler 3-2, 4-5
list 4-3
order 7-8

directory paths
in uses clause 3-6

disjunction 4-7
bitwise 4-8

dispatch interface types 10-10
Dispatch method 7-16
dispatching messages 7-16
dispatching method calls 7-11
dispid (directive) 7-6, 10-2,

10-11
dispinterface 10-10
dispinterface (reserved

word) 10-2
Dispose procedure 5-19, 5-38,

7-4, 9-8, 11-1, 11-2
div 4-6
division 4-6
dlclose 9-2
.DLL files 6-7, 9-1
DLL_PROCESS_DETACH 9-7
DLL_THREAD_ATTACH 9-7
DLL_THREAD_DETACH 9-7
DLLProc variable 9-7
DLLs 9-1 to 9-8

calling routines in 6-7
dynamic arrays in 9-8
dynamic variables in 9-8
exceptions 9-7
global variables 9-6
loading dynamically 9-2
loading statically 9-1
long strings in 9-8
multithreading 9-7
variables 9-1
writing 9-3

dlopen 9-2
dlsym 9-2
DMTINDEX 13-6
do (reserved word) 4-20, 4-25,

4-26, 7-29
.dof files 2-2

I-4 O b j e c t P a s c a l L a n g u a g e G u i d e

dollar See Symbols
Double type 5-9, 11-5
downto (reserved word) 4-26
.dpk files 2-2, 9-11
.dpr files 2-2, 3-1, 3-6
.dpu files 2-3, 3-7, 9-10, 9-11
.drc files 2-3
.dsk files 2-2
dual interfaces 10-3, 10-13

methods 6-5
DWORD type (assembler) 13-15
dynamic arrays 5-19, 11-7

assigning to 5-19
comparison 5-19
files and 5-24
freeing 5-39
in dynamically loadable

libraries 9-8
memory management 11-2
multidimensional 5-20
open array parameters

and 6-15
records and 5-23
truncating 5-20
variants and 5-31

dynamic methods 7-10
dynamic variables 5-38

and pointer constants 5-45
in dynamically loadable

libraries 9-8
dynamically loadable

libraries 6-7, 9-1 to 9-12
dynamic arrays 9-8
dynamic variables 9-8
exceptions 9-7
global variables 9-6
loading statically 9-1
long strings 9-8
variables 9-1
writing 9-3

dynamic-link libraries See DLLs

E
E (in numerals) 4-4
EAssertionFailed 7-27
else (reserved word) 4-22, 4-24,

7-28
empty set 5-17
end (reserved word) 3-2, 4-20,

4-23, 5-21, 5-22, 6-2, 6-3, 7-2,
7-28, 7-32, 9-9, 10-1, 10-10, 13-1

end-of-line character 4-1, 8-3
enumerated types 5-6 to 5-8,

11-3
anonymous values 5-8, 7-5

publishing 7-5
Eof function 8-5
Eoln function 8-5
equality operator 4-10
error handling See exceptions
ErrorAddr variable 12-5
EStackOverflow exception 11-2
EVariantError exception 5-32
event handlers 2-7, 7-5
events 2-7, 7-5
example programs 2-3 to 2-5
except (reserved word) 7-28
ExceptAddr function 7-32
Exception class 7-27, 7-32
exception firewalls 6-5
exception handlers 7-26, 7-29

identifiers in 7-30
ExceptionInformation

variable 9-7
exceptions 4-20, 7-13, 7-15, 7-26

to 7-32
constructors 7-28, 7-32
declaring 7-27
destroying 7-28, 7-29
dynamically loadable

libraries 9-6, 9-7
file I/O 8-3
handling 7-28, 7-30, 7-32
in initialization section 7-28
nested 7-31
propagation 7-29, 7-31, 7-32
raising 7-27
re-raising 7-30
standard exceptions 7-32
standard routines 7-32

ExceptObject function 7-32
executable files 2-3
Exit procedure 6-1

exception handlers 7-29
in try...finally block 7-32

exit procedures 9-6, 12-4 to 12-5
packages and 12-4

ExitCode variable 9-6, 12-5
ExitProc variable 9-6, 12-4
export (directive) 6-5
exports clause 4-28, 9-5

overloaded routines 9-5
expressions 4-1, 4-5

assembler 13-8 to 13-16
extended syntax 4-5, 4-18, 5-14,

6-1, 6-4
Extended type 4-7, 5-9, 5-10,

5-27, 11-5
external (directive) 6-6, 9-1, 9-2

F
False 5-6, 11-3
far (directive) 6-5
fields 5-21 to 5-24, 7-1, 7-7

See also records, classes
publishing 7-5

file (reserved word) 5-24
file I/O 8-1 to 8-6

exceptions 8-3
file variables 8-2
FilePos function 8-2
files

as parameters 6-12
file types 5-24, 8-2
generated 2-2, 2-3, 9-10, 9-11
initializing 5-38
memory 11-8
source code 2-1
text 8-2, 8-3
typed 5-24, 8-2
untyped 5-25, 8-2, 8-4
variants and 5-31

FileSize function 8-2
finalization section 3-3, 3-5, 12-4
Finalize procedure 5-19
finally (reserved word) 7-32
floating-point types See real

types
Flush function 8-4, 8-6
for statements 4-20, 4-25, 4-26
form files 2-2, 2-5, 3-1, 7-5, 7-21
formal parameters 6-19
forms 2-2
forward declarations

classes 7-6
default parameters 6-19
interfaces 10-4
overloading and 6-9
routines 3-4, 6-5

Free method 7-15
FreeLibrary function 9-2
FreeMem procedure 5-38, 9-8,

11-1, 11-2
functions 3-4, 6-1 to 6-20

assembler 13-17
calling externally 6-6
declaring 6-3, 6-5
function calls 4-13, 4-18, 6-1,

6-19 to 6-20
nested 5-29, 6-10
overloading 6-6, 6-8
pointers 4-12, 5-28
return type 6-3, 6-4
return value 6-3, 6-4

I n d e x I-5

return values in
registers 12-3, 13-17

fundamental types 5-1

G
-$G- compiler switch 9-12
$G directive 9-11
generic types 5-1
GetHeapStatus function 11-2
GetMem procedure 5-26, 5-38,

9-8, 11-1, 11-2
GetMemoryManager

procedure 11-2
GetProcAddress function 9-2
getter See read specifier
global identifiers 4-28
global variables 5-37

dynamically loadable
libraries 9-6

interfaces 10-9
memory management 11-2

GlobalAlloc 11-1
globally unique identifiers See

GUIDs
goto statements 4-18
grammar (formal) A-1 to A-6
greater-than See Symbols
GUIDs 10-1, 10-3, 10-10

generating 10-3

H
$H directive 5-11, 6-15
Halt procedure 12-4, 12-5
heading

program 2-1, 3-1, 3-2
routine 6-1
unit 3-3

heap memory 5-38, 11-2
Hello world! 2-3
HelpContext property 7-32
hexadecimal numerals 4-4
hiding class members 7-8, 7-11,

7-22
See also overloaded methods
reintroduce 7-12

hiding interface
implementations 10-6

High function 5-3, 5-4, 5-12,
5-18, 5-20, 6-16

HInstance variable 9-6
hint directives 4-17
$HINTS directive 4-17

I
$I directive 8-3
IDE

See also Delphi
identifiers 4-1, 4-2, 4-3

global and local 4-28
in exception handlers 7-30
qualified 3-6
scope 4-27 to 4-29

IDispatch 10-9, 10-10
dual interfaces 10-13

if...then statements 4-22
nested 4-22

IInterface 10-2
immediate values

(assembler) 13-12
implementation section 3-3, 3-4,

3-7
and forward declarations 6-6
methods 7-8
scope 4-28
uses clause 3-7

implements (directive) 7-22,
10-6

$IMPLICITBUILD
directive 9-11

$IMPORTEDDATA
directive 9-11

importing routines from
libraries 9-1

in (reserved word) 3-6, 4-10,
5-17, 5-33, 9-9

Inc procedure 5-3, 5-4
incrementing ordinals 5-3, 5-4,

5-5
index (directive) 6-7
index specifier 7-6, 7-17, 7-20
index specifier (Windows

only) 9-5
indexes 4-14

array 5-18, 5-19, 5-20
array properties 7-19
in var parameters 5-33, 6-13
string 5-11
string variants 5-31
variant arrays 5-33

indirect unit references 3-6 to
3-7

inequality operator 4-10
inheritance 7-2, 7-3, 7-5

interfaces 10-2
inherited (reserved word) 7-9,

7-13
calling conventions 12-4

message handlers 7-16
InheritsFrom method 7-24
initialization

dynamically loadable
libraries 9-5

files 5-38
objects 7-13
units 3-4
variables 5-37, 5-38
variants 5-31, 5-38

initialization section 3-3, 3-4
exceptions 7-28

Initialize procedure 5-38
inline (reserved word) 13-1
inline assembler code 13-1 to

13-17
inner block 4-29
InOut function 8-4, 8-5
input (program parameter) 3-2
input See file I/O
Input variable 8-3
Int64 type 4-7, 5-3, 5-4, 5-10,

11-3
standard functions and

procedures 5-4
variants and 5-31

integer operators 4-6
Integer type 4-7, 5-3, 5-4
integer types 5-3

comparison 4-11
constants 5-40
conversion 4-15
data formats 11-3

integrated development
environment See IDE

interface declarations 3-4
default paramters 6-19

interface section 3-3, 3-4, 3-7
forward declarations and 6-6
methods 7-8
scope 4-28
uses clause 3-7

interfaces 7-2, 10-1 to 10-13
accessing 10-8 to 10-10
Automation 10-10
calling conventions 10-3
compatibility 10-9
delegation 10-6
dispatch interface

types 10-10
dual interfaces 10-13
freeing 5-39
GUIDs 10-1, 10-3, 10-10
implementing 10-4 to 10-7

I-6 O b j e c t P a s c a l L a n g u a g e G u i d e

interface references 10-8 to
10-10

interface types 10-1 to 10-4
memory management 11-2
method resolution

clauses 10-5, 10-6
properties 10-1, 10-4, 10-7
querying 10-10
records and 5-23
typecasts 10-10

internal data formats 11-2 to
11-12

intersection (sets) 4-10
IntToHex function 5-4
IntToStr function 5-4
Invoke method 10-10
IOResult function 8-3, 8-4
is 4-11, 5-33, 7-24
IsLibrary variable 9-6
italics 1-2
IUnknown 10-2, 10-5, 10-9,

10-13

J
$J directive 5-43
Java 10-1
jump instructions

(assembler) 13-3

K
.kof files 2-2

L
labels 4-1, 4-4, 4-18

assembler 13-2
-$LE- compiler switch 9-12
Length function 5-11, 5-18, 5-20
less-than See Symbols
libraries See DLLs or

dynamically loadable libraries
library (directive) 4-17
library (reserved word) 9-3
Library search path 3-6
line-feed 4-5
-$LN- compiler switch 9-12
LoadLibrary function 9-2
local (directive) 9-4
local directive (Linux only) 9-4
local identifiers 4-28
local variables 5-37, 6-10

memory management 11-2
LocalAlloc 11-1
locales 5-13

logical operators 4-8
long strings 4-9, 5-10, 5-12

files and 5-24
in dynamically loadable

libraries 9-8
memory management 11-2,

11-6
records and 5-23

LongBool type 5-6, 11-3
Longint type 5-4, 11-3
Longword type 5-4, 11-3
loop statements 4-20, 4-25
Low function 5-3, 5-4, 5-12,

5-18, 5-20, 6-16
-$LU- compiler switch 9-12

M
$M directive 7-4, 7-6
main form 2-5
$MAXSTACKSIZE

directive 11-2
members See sets
members, of classes 7-1

interfaces 10-2
visibility 7-4

memory 4-1, 5-2, 5-25, 5-26,
5-31, 5-38, 7-14

dynamically loadable
libraries 9-6

heap 5-38
management 11-1 to 11-12
overlays (in records) 5-23
shared memory manager 9-8

memory references
(assembler) 13-12

message (directive) 7-15
interfaces 10-7

message dispatching 7-16
message handlers 7-15

inherited 7-16
overriding 7-16

Message property 7-32
Messages unit 7-15
metaclasses 7-23
method directives

order 7-8
method pointers 4-12, 5-28
method resolution clauses 10-5,

10-6
methods 7-1, 7-2, 7-8 to 7-17

abstract 7-12
Automation 7-6, 10-12
binding 7-10
calling conventions 12-3
class methods 7-1, 7-25

constructors 7-13, 12-4
destructors 7-14, 12-4
dispatch interface 10-11
dispatching calls 7-11
dual-interface 6-5
dynamic 7-10
implementation 7-8
overloading 7-12
overriding 7-10, 7-11, 10-6
pointers 4-12, 5-28
publishing 7-5
static 7-10
virtual 7-6, 7-10

$MINSTACKSIZE
directive 11-2

minus See Symbols
mod 4-6
modules See units
multibyte character sets 5-13

string-handling routines 8-7
multidimensional arrays 5-18,

5-20, 5-43
multiple unit references 3-6 to

3-7
multiplication 4-6
multithreaded applications 5-38

dynamically loadable
libraries 9-7

mutually dependent classes 7-7
mutually dependent units 3-7

N
name (directive) 6-7, 9-5
named parameters 10-12
names

See also identifiers
exported routines 9-5
functions 6-3, 6-4
identifiers 4-16
packages 9-10
programs 3-1, 3-2
units 3-3, 3-6

naming conflicts 3-6, 4-29
near (directive) 6-5
negation 4-7

bitwse 4-8
nested conditionals 4-22
nested exceptions 7-31
nested routines 5-29, 6-10
New procedure 5-19, 5-26, 5-38,

7-4, 9-8, 11-1, 11-2
nil 5-27, 5-30, 5-39, 11-5
nodefault specifier 7-6, 7-17,

7-21
not 4-6, 4-7

I n d e x I-7

Null (variants) 5-31, 5-33
null character 5-13, 11-6, 11-7,

11-9
null string 4-4
null-terminated strings 5-13 to

5-16, 5-27, 11-6, 11-7
mixing with Pascal

strings 5-15
standard routines 8-6, 8-7

numerals 4-1, 4-4
as labels 4-4, 4-19
assembler 13-9
type 5-40, 6-8

O
object files

calling routines in 6-6
Object Inspector 7-5
Object Inspector (Delphi) 7-5
object interfaces See interfaces,

COM, CORBA
object types 7-4
objects 4-20, 7-1

See also classes
’of object’ 5-28
comparison 4-11
files and 5-24
memory 11-10

of (reserved word) 4-23, 5-17,
5-19, 5-24, 5-28, 6-15, 6-16, 7-23

of object (method pointers) 5-28
Ole Automation 5-34
OleVariant 5-34
OleVariant type 5-27, 5-34
on (reserved word) 7-29
opcodes (assembler) 13-2
open array constructors 6-17,

6-19
open array parameters 6-15,

6-19
and dynamic arrays 6-15

Open function 8-4, 8-5
OpenString 6-15
operands 4-6
operators 4-6 to 4-13

assembler 13-15
class 7-24
precedence 4-12, 7-25

or 4-7, 4-8
Ord function 5-3, 5-4
order of method directives 7-8
ordinal types 5-2 to 5-9
ordinality 5-2

enumerated types 5-6, 5-7

out (output) parameters 6-12,
6-13, 6-19

out (reserved word) 6-11, 6-12,
6-13

outer block 4-29
OutlineError 7-32
output (program

parameter) 3-2
output See file I/O
Output variable 8-3
overloaded methods 7-12

access specifiers 7-13, 7-18
publishing 7-5

overloaded procedures and
functions 6-6, 6-8

default parameters 6-10, 6-18
dynamically loadable

libraries 9-5
forward declarations 6-9

overriding interface
implementations 10-6

overriding methods 7-10, 10-6
hiding and 7-11

overriding properties 7-22
access specifiers and 7-22
Automation 7-6
hiding and 7-22

P
$P directive 6-15
package files 2-2, 2-3, 9-8, 9-9,

9-11
packages 9-8 to 9-12

compiler directives 9-11
compiler switches 9-12
compiling 9-11
declaring 9-9
loading dynamically 9-8
loading statically 9-8
thread variables 9-9
uses clause and 9-8

packed (reserved word) 5-17,
11-8

packed arrays 4-5, 4-9, 5-18
packed records 11-8
packed strings 5-18

comparison 4-11
pairs of symbols 4-2
PAnsiChar type 5-13, 5-27
PAnsiString type 5-27
parameters 5-29, 6-2, 6-3, 6-11 to

6-19
See also overloaded

procedures and functions
actual 6-19

array 6-12, 6-15
array property indexes 7-19
Automation method

calls 10-12
calling conventions 6-5
constant 6-13, 12-1
default 6-17 to 6-19, 10-12
file 6-12
formal 6-19
names 10-12
open array 6-15
output (out) 6-13
overloading and 6-6, 6-8, 6-9
parameter list 6-11
passing 12-1
positional 10-12
program control 12-1
properties as 7-17
registers 6-5, 12-2
short strings 6-15
typed 6-12
untyped 6-14, 6-19
value 6-12, 12-1
variable (var) 6-12, 12-1
variable number 6-6
variant open arrray 6-16

parentheses See Symbols
partial evaluation 4-7
partitioning

application 9-8
.pas files 2-3, 3-1, 3-3, 3-7
pascal (calling convention) 6-4,

12-2
constructors and

destructors 12-4
Self 12-3

PByteArray type 5-27
PChar type 4-5, 4-9, 5-13, 5-14,

5-15, 5-27, 5-45
comparison 4-11

PCurrency type 5-27
PDouble type 5-27
period See Symbols
PExtended type 5-27
PGUID 10-3
PInteger type 5-27
platform (directive) 4-17
plus See Symbols
Pointer type 5-25, 5-26, 5-27,

11-5
pointers 5-25 to 5-28

arithmetic 4-9
character 5-27
constants 5-44
files and 5-24

I-8 O b j e c t P a s c a l L a n g u a g e G u i d e

functions 4-12, 5-28
in var parameters 6-13
in variant open array

parameters 6-17
long strings 5-16
memory 11-5
method pointers 5-28
nil 5-27, 11-5
null-terminated strings 5-14,

5-16
operators 4-9
overview 5-25
Pointer type 4-12, 11-5
pointer types 4-12, 5-26, 5-27

to 5-28, 11-5
procedural types 4-12, 5-28

to 5-30
records and 5-23
standard types 5-27
variants and 5-31

POleVariant type 5-27
polymorphism 7-9, 7-11, 7-14
positional parameters 10-12
pound See Symbols
precedence of operators 4-12,

7-25
Pred function 5-3, 5-4
predecessor 5-2
predefined types 5-1
private class members 7-4, 7-5
procedural constants 5-44
procedural types 4-15, 5-28 to

5-30
calling dynamically loadable

libraries 9-2
calling routines with 5-29,

5-30
compatibility 5-29
default parameters 6-18
in assignments 5-29, 5-30
memory 11-10

procedure pointers 4-12, 5-28
procedures 3-4, 6-1 to 6-20

assembler 13-17
calling externally 6-6
declaring 6-2, 6-5
nested 5-29, 6-10
overloading 6-6, 6-8
pointers 4-12, 5-28
procedure calls 4-18, 6-1, 6-2,

6-19 to 6-20
program (reserved word) 3-2
program control 6-19, 12-1 to

12-5

programs 2-1 to 2-5, 3-1 to 3-8
examples 2-3 to 2-5
syntax 3-1 to 3-3

project files 2-2, 3-1, 3-2, 3-6
Project Manager 2-1
project options files 2-2
projects 2-5, 3-6
properties 7-1, 7-17 to 7-23

access specifiers 7-17
array 7-5, 7-19
as parameters 7-17
declaring 7-17, 7-19
default 7-20, 10-2
interfaces 10-4
overriding 7-6, 7-22
read-only 7-19
record 7-5
write-only 7-19

protected class members 7-4,
7-5

prototypes 6-1
PShortString type 5-27
PSingle type 5-27
PString type 5-27
PTextBuf type 5-27
Ptr function 5-26
public class members 7-4, 7-5
public identifiers (interface

section) 3-4
published class members 7-4,

7-5
$M directive 7-6
restrictions 7-5

PVariant type 5-28
PVarRec type 5-27
PWideChar type 5-13, 5-14, 5-27
PWideString type 5-28
PWordArray type 5-28

Q
qualified identifiers 3-6, 4-2,

4-29, 5-22
in typecasts 4-15
pointers 5-27
with Self 7-9

querying (interfaces) 10-10
QueryInterface method 10-2,

10-5, 10-10
quotation marks See Symbols
quoted strings 4-4, 5-45

assembler 13-9
QWORD type (assembler) 13-15

R
raise (reserved word) 4-20, 7-27,

7-29, 7-30
range-checking 5-4, 5-5, 5-9
Read procedure 8-2, 8-3, 8-4,

8-5, 8-6
read specifier 7-6, 7-17

array properties 7-19
index specifier and 7-20
object interfaces 10-1, 10-4,

10-7
overloading 7-13, 7-18

Readln procedure 8-5, 8-6
readonly (directive) 10-2, 10-11
read-only properties 7-19
real (floating-point)

operators 4-6
Real type 5-10
real types 5-9, 11-4

comparison 4-11
conversion 4-15
publishing 7-5

Real48 type 5-9, 5-10, 7-5, 11-4
$REALCOMPATIBILITY

directive 5-10
ReallocMem procedure 5-38,

11-1
records 4-20, 5-21 to 5-24

constants 5-43
in properties 7-5
memory 11-8
record types 5-21
scope 4-28, 5-22
variant parts 5-22 to 5-24
variants and 5-31

recursive procedure and
function calls 6-1, 6-4

reference-counting 5-12, 10-9,
11-6, 11-7

register (calling
convention) 6-4, 7-6, 7-13,
7-14, 12-2

constructors and
destructors 12-4

dynamically loadable
libraries 9-4

interfaces 10-3, 10-7
Self 12-3

registers 6-5, 12-2, 12-3
assembler 13-2, 13-10, 13-12,

13-17
storing sets 11-7

reintroduce (directive) 7-12
relational operators 4-10

I n d e x I-9

_Release method 10-2, 10-5,
10-9

relocatable expressions
(assembler) 13-13

Rename procedure 8-6
repeat statements 4-20, 4-25
requires clause 9-8, 9-9, 9-10
.RES files 2-2, 3-2
reserved words 4-1, 4-2, 4-3

See also directives
assembler 13-7
list 4-3

Reset procedure 8-2, 8-4, 8-5,
8-6

resident (directive) 9-5
resource files 2-2, 2-3, 3-2
resource strings 5-41
resourcestring (reserved

word) 5-41
Result variable 6-3, 6-4
RET instruction 13-3
return type (functions) 6-3, 6-4
return value (functions) 6-3, 6-4

constructors 7-13
Rewrite procedure 8-2, 8-4, 8-5,

8-6
Round function 5-4
routines 6-1 to 6-20

See also functions, procedures
exporting 9-5
standard 8-1 to 8-10

RTTI 7-5, 7-12, 7-21
$RUNONLY directive 9-12
runtime binding See dynamic

methods, virtual methods
runtime packages 9-8
runtime type information See

RTTI

S
$S directive 11-2
safecall (calling convention) 6-4,

12-2
constructors and

destructors 12-4
dual interfaces 10-13
interfaces 10-3
Self 12-3

scope 4-27 to 4-29
classes 7-3
records 5-22
type identifiers 5-36

Seek procedure 8-2
SeekEof function 8-5
SeekEoln function 8-5

Self 7-9
calling conventions 12-3
class methods 7-25

semicolon See Symbols
separators 4-1, 4-5
SetLength procedure 5-11, 5-16,

5-19, 5-20, 6-16
SetMemoryManager

procedure 11-2
sets

empty 5-17
memory 11-7
operators 4-10
publishing 7-5
set constructors 4-13
set types 5-17
variants and 5-31

SetString procedure 5-16
setter See write specifier
shared object files 2-3, 9-1

dynamically loadable 9-2
exceptions 9-7
importing functions 6-7

ShareMem unit 9-8
shift-left (bitwise operator) 4-8
shift-right (bitwise operator) 4-8
shl 4-8
short strings 5-3, 5-10, 5-12
short-circuit evaluation 4-7
Shortint type 5-4, 11-3
ShortString type 5-10, 5-12,

5-27, 11-5
parameters 6-15
variant arrays and 5-33

ShowException procedure 7-32
shr 4-8
sign

in typecasts 4-14
numerals 4-4

simple statements 4-17
simple types 5-2
Single type 5-9, 11-4
16-bit applications (backward

compatibility) 6-5
SizeOf function 5-2, 5-5, 6-16
slash See Symbols
Smallint type 5-4, 11-3
.so files 9-1
source-code files 2-1
spaces 4-1
special symbols 4-1, 4-2
stack size 11-2
standard routines 8-1 to 8-10

null-terminated strings 8-6,
8-7

wide-character strings 8-7
statements 4-1, 4-17 to 4-27, 6-1
static arrays 5-18, 11-7

variants and 5-31
static methods 7-10
statically loaded libraries 9-1
stdcall (calling convention) 6-4,

12-2
constructors and

destructors 12-4
interfaces 10-3
Self 12-3
shared libraries 9-4

storage specifiers 7-21
array properties and 7-21

stored specifier 7-6, 7-17, 7-21
Str procedure 8-6
StrAlloc function 5-38
StrDispose procedure 5-38
streaming (data) 5-2, 7-5
string

See also character sets
comparison 4-11, 5-11
constants 4-4, 5-45, 13-9
handling See also standard

routines, null-terminated
strings

in variant open array
parameters 6-17

indexes 4-14
literals 4-4, 5-45
memory management 11-5,

11-6
null-terminated 5-13 to 5-16,

5-27
operators 4-9, 5-15
parameters 6-15
types 5-10 to 5-16
variant arrays 5-33
variants 5-31
wide 5-13, 8-7, 11-2

string (reserved word) 5-11
StringToWideChar function 8-7
strong typing 5-1
StrToInt64 function 5-4
StrToInt64Def function 5-4
structured statements 4-19
structured types 5-16

files and 5-24
records and 5-23
variants and 5-31

structures 5-21
StrUpper function 5-15
subrange types 4-7, 4-24, 5-8
subset operator 4-10

I-10 O b j e c t P a s c a l L a n g u a g e G u i d e

subtraction 4-6
pointers 4-9

Succ function 5-3, 5-4
successor 5-2
superset operator 4-10
symbol pairs 4-2
symbols 4-1, 4-2

See also special symbols and
Symbols on page I-1

assembler 13-11
syntax

descriptions 1-2
formal A-1 to A-6

System unit 3-1, 3-5, 5-27, 5-31,
5-33, 6-17, 7-3, 7-28, 8-1, 8-7,
10-2, 10-3, 10-5, 10-10, 11-11

dynamically loadable
libraries 9-6

memory management 11-2
modifying 8-1
scope 4-29
uses clause and 8-1

SysUtils unit 3-5, 5-27, 6-11,
6-17, 7-26, 7-27, 7-28, 7-32

dynamically loadable
libraries 9-7

uses clause and 8-1

T
$T directive 4-12
tag (records) 5-23
TAggregatedObject 10-7
TBYTE type (assembler) 13-15
TByteArray type 5-27
TClass 7-3, 7-23, 7-24
TCollection 7-23

Add method 7-9
TCollectionItem 7-23
TDateTime 5-33
text files 8-2, 8-3
Text type 5-24, 8-3
text-file device drivers 8-4
TextFile type 5-24
TGUID 10-3
then (reserved word) 4-22
thread variables 5-38, 5-39

in packages 9-9
threadvar 5-38
TInterfacedObject 10-2, 10-5
to (reserved word) 4-26
TObject 7-3, 7-16, 7-24
tokens 4-1
TPersistent 7-6
True 5-6, 11-3
true constants 5-39

Trunc function 5-4
try...except statements 4-20,

7-28
try...finally statements 4-20,

7-31
TTextBuf type 5-27
TTextRec type 5-27
Turbo Assembler 13-5
TVarData 5-31, 11-11
TVarRec 5-27
TVarRec type 6-17
TWordArray 5-28
type identifiers 5-2
Type Library editor 10-3
typecasts 4-14 to 4-16, 7-8

checked 7-25, 10-10
enumerated types 5-8
in constant declarations 5-40
interface 10-10
untyped parameters 6-14
variants 5-31

type-checking (objects) 7-24
types 5-1 to 5-37

array 5-18 to 5-21, 11-7
assembler 13-14
assignment-

compatibility 5-35
automatable 7-6, 10-11
Boolean 5-5, 11-3
built-in 5-1
character 5-5, 11-3
class 7-1, 7-2, 7-4, 7-6, 7-7,

7-8, 7-17, 11-10
classification 5-1
class-reference 7-23, 11-11
compatibility 5-17, 5-29, 5-35
constants 5-40
declared 5-1
declaring 5-36
dispatch interface 10-10
enumerated 5-6 to 5-8, 11-3
exception 7-27
file 5-24, 11-8
fundamental 5-1
generic 5-1
integer 5-3, 11-3
interface 10-1 to 10-4
internal data formats 11-2 to

11-12
object 7-4
ordinal 5-2 to 5-9
pointer 5-27 to 5-28
predefined 5-1
procedural 5-28 to 5-30,

11-10

real 5-9, 11-4
record 5-21 to 5-24, 11-8
scope 5-36
set 5-17, 11-7
simple 5-2
string 5-10 to 5-16, 11-5, 11-6
structured 5-16
subrange 5-8
type identity 5-34
user-defined 5-1
variant 5-30 to 5-34

typographical conventions 1-2

U
UCS-2 5-13
UCS-4 5-13
unary operators 4-6
Unassigned (variants) 5-31, 5-33
underscores 4-2
Unicode 5-5, 5-13
union (sets) 4-10
UniqueString procedure 5-16
unit files 3-1, 3-3

case-sensitivity 4-2
units 2-1, 3-1 to 3-8

scope 4-29
syntax 3-3 to 3-8, 4-17

until (reserved word) 4-25
untyped files 5-25, 8-2, 8-4
untyped parameters 6-14
UpCase function 5-11
uses clause 2-1, 3-1, 3-2, 3-4, 3-5

to 3-8
interface section 3-7
ShareMem 9-8
syntax 3-6
System unit and 8-1
SysUtils unit and 8-1

V
Val procedure 8-6
value parameters 6-12, 6-19,

12-1
open array constructors 6-20

value typecasts 4-14
var (reserved word) 5-37, 6-11,

6-12, 12-1
varargs (directive) 6-6
VarArrayCreate function 5-33
VarArrayDimCount

function 5-34
VarArrayHighBound

function 5-34

I n d e x I-11

VarArrayLock function 5-34,
10-12

VarArrayLowBound
function 5-34

VarArrayOf function 5-33
VarArrayRedim function 5-34
VarArrayRef function 5-34
VarArrayUnlock

procedure 5-34, 10-12
VarAsType function 5-31
VarCast procedure 5-31
variable (var) parameters 6-12,

6-19, 12-1
variable parameters 6-19
variable typecasts 4-14, 4-15
variables 4-6, 5-37 to 5-39

absolute addresses 5-38
declaring 5-37
dynamic 5-38
file 8-2
from dynamically loadable

libraries 9-1
global 5-37, 10-9
heap-allocated 5-38
initializing 5-37, 5-38
local 5-37, 6-10
memory management 11-2
thread 5-38

variant arrays 5-31, 5-33
variant open array

parameters 6-16, 6-19
variant parts (records) 5-22 to

5-24
variants 5-30 to 5-34, 11-12

and Automation 11-12
complete evaluation 4-8
conversions 5-31, 5-31 to

5-33
files and 5-24
freeing 5-39
initializing 5-31, 5-38
interfaces and 10-9, 10-10

memory management 11-2,
11-11

OleVariant 5-34
operators 4-6, 5-33
records and 5-23
short-circuit evaluation 4-8
typecasts 5-31
variant arrays 5-33
variant arrays and

strings 5-33
Variant type 5-28, 5-30
variant types 5-30 to 5-34

varOleString constant 5-33
varString constant 5-33
VarType function 5-31
varTypeMask constant 5-31
VCL 1-2
virgule See Symbols
virtual method table 11-10
virtual methods 7-10

Automation 7-6
constructors 7-14
overloading 7-12

VirtualAlloc function 11-1
VirtualFree function 11-1
visibility (class members) 7-4

interfaces 10-2
Visual Component Library See

VCL
VMT 11-10
VMTOFFSET 13-6

W
$WARNINGS directive 4-17
$WEAKPACKAGEUNIT

directive 9-11
while statements 4-20, 4-25
wide characters and

strings 5-13
memory management 11-2
standard routines 8-7

WideChar type 4-9, 5-5, 5-11,
5-13, 5-27, 11-3

WideCharLenToString
function 8-7

WideCharToString function 8-7
WideString type 5-10, 5-13, 5-28

memory management 11-6
Windows 7-16

memory management 11-1,
11-2

messages 7-15
variants and 11-11

Windows unit 9-2
with statements 4-19, 4-20, 5-22
Word type 5-4, 11-3

assembler 13-14
WordBool type 5-6, 11-3
wrap-around (ordinal

types) 5-4, 5-5
Write procedure 8-2, 8-3, 8-4,

8-5, 8-6
write procedures 5-3
write specifier 7-6, 7-17

array properties 7-19
index specifier and 7-20
object interfaces 10-1, 10-4
overloading 7-13, 7-18

Writeln procedure 2-4, 8-5, 8-6
writeonly (directive) 10-2, 10-11
write-only properties 7-19

X
$X directive 4-5, 4-18, 5-14, 6-1,

6-4
.xfm files 2-2, 2-7, 7-5
xor 4-7, 4-8

Z
-$Z- compiler switch 9-12
$Z directive 11-3

I-12 O b j e c t P a s c a l L a n g u a g e G u i d e

Rave Reports

Borland Edition 5.0

Developers Guide

Tutorial and Reference

This manual and all material accompanying it is
Copyright (C) 1995-2002, Nevrona Designs, All Rights Reserved (rev BE50a)

RAVE Reference Manual

Page 1

Table of Contents
Getting Started ...7

Single User License Agreement ..7
Limited Warranty ...7
Technical Support ..8

Chapter 1 - Introduction...9
What's All the RAVE About?...9
Report Authoring Visual Environment ..9
First Glance...10
Navigation Area...10
The Page (Foundation of Rave)..11
Project Tree Panel ...11
Property Panel...12

Chapter 2 - Toolbars and Tool Windows.............15
Toolbars ..15
Toolbar Placement ...15
Toolbar Palette..15
Hiding Toolbars ...16
Component vs. Utility Toolbars ...16
Tool Windows ..16
Property Panel...16
Project Tree ..17

Chapter 3 - Components Overview......................19
What is a Component...19
The Component Toolbars ...20
Standard Components ...20
Bar Code Components...20
Drawing Components...21
Report Components...21

Chapter 4 - Page Designer23
Overview...23
The Basic Component: The Page & it's Panels ..23
Selecting Components ...24
Sizing and Moving Components..25
Cutting and Pasting..25
Exercise: Selecting, Sizing, and Moving Components ..25
Exercise: Cutting and Pasting ...26

Chapter 5 - Project Tree Panel27
Overview...27
Expanding and Right-Clicking ...27
Parent-Child Relationship ...28
Report Library ...28
Global Page Catalog ..28

RAVE Reference Manual

Page 2

Loading and Unloading Global Pages ...28
Data View Dictionary ..29
Ctrl- (Control) Drag and Drop..29
Alt-Drag ..29
Exercise: Navigating the Project Tree..29
Exercise: Naming Components...30
Exercise: Loading and Unloading Global Pages ...30
Exercise: Dragging a Component (Ctrl-Drag) ...31
Exercise: Changing the Parent of a Component (Alt-Drag) ...32

Chapter 6 - Property Panel35
What is the Property Panel ...35
Types of Properties ..37
Property Editors ...37
Right -Click Menu ...37
Exercise: Navigating the Property Panel..37

Chapter 7 - Generating Output.............................39
Overview...39
Executing Reports ...39
Preferences Dialog ..39
Report Preview ..40
Executing to the Printer..42
NDR & PRN Files ..42
HTML..43
PDF ..43
RTF ..43
Exercise: Changing Printing Preferences...44
Exercise: Preview and Creating Portable Files ...45
Exercise: Printing a Report through the Preview ..47
Exercise: Printing to a File (NDR & PRN) ..47

Chapter 8 - Utility Toolbars49
Tools are Tools..49
Using Tools ...49
Alignment Toolbar..49
Designer Toolbar ...50
Color Palette ...51
Font Editor ..52
Line Editor...52
Project Toolbar ..53
Zoom Toolbar ..54
Exercise: Aligning Components ..55
Exercise: Ordering Components ...57
Exercise: Snapping to the grid ..59
Exercise: Changing Line Size and Color of a Rectangle ...60
Exercise: Changing Fonts ..60

RAVE Reference Manual

Page 3

Chapter 9 - Standard Components61
Overview...61
Text ..61
Memo ...61
Section..62
Bitmap and Meta File ...62
Exercise: Text vs Memo ...62
Exercise: Section...63
Exercise: Placing and Resizing Bitmaps ..64

Chapter 10 - Drawing Components......................65
Drawing Component Basics ...65
Pixels vs Points ...66
Exercise: Creating Drawing Components ..66
Exercise: Alignment ...68

Chapter 11 - Database 10171
Overview...71
What is a database? ..71
Terms ...72
Relational Table...73
Reporting ..74

Chapter 12 - Connecting to Data..........................75
Database Connections ...75
Creating a Database Connection ..75
Direct DataViews (BE only) ..76
Driver DataViews ...76
Status Bar ...77

Chapter 13 - Wizards..79
Wizards...79
Exercise: Simple Wizard ..79
Exercise: Master Detail Wizard ...80

Chapter 14 - Report Components81
Overview...81
Region ..82
DataBand ..82
Band ...82
DataText ...83
DataMemo ..84
CalcText ...85

Chapter 15 - Project Components........................87
Overview...87
Project Manager ..87
Report ...88
Page ...88

RAVE Reference Manual

Page 4

Global Page ..88
Data Objects ...88
Database Connection...88
Security Components...89
SQL Data View ..89

Chapter 16 - Bar Code Components91
Bar Code Component Basics..91
Brief Bar Code Descriptions ...91

Chapter 17 - Advanced Components...................93
FontMaster ..93
PageNumInit ...94
DataCycle ...94
DataMirror Section ...95
CalcOp..95
CalcController ...97
CalcTotal...97
Exercise: Using Font Master...97
Exercise: Setting up PageNumInit for Page Numbering..99

Chapter 18 - Adaptable Reports.........................101
Overview...101
Anchors ..101
Waste Fit...102
Editor Anchor ..102

Chapter 19 - Batch and Chain Reporting...........105
Batch Pages ..105
Calling Pages ..105
Chain Pages..105
Different First Page Format ..106
Different Odd/Even Page format ...106
Batch / Chain Reports ..106
Exercise: Calling Pages ...106
Exercise: Chain Pages ..107\
Exercise: Different First Page ...108
Exercise: Different Odd/Even Page...108

Chapter 20 - Preferences111
Getting to the Preferences Dialog ...111
Defaults Tab..111
Designer Tab...111
Environment Tab ...112
Shortcuts Tab ..112

Appendix A - Formatting....................................113
AlphaNumeric Items...113
Date / Time items ..114

RAVE Reference Manual

Page 5

Appendix B - Keyboard / Mouse Shortcuts117
Page Designer or Project Tree..117
Page Designer Only...117
Project Tree Only...117

Appendix C - Property Descriptions..................119

RAVE Reference Manual

Page 6

RAVE Reference Manual

Page 7

Getting Started

Technical Information

Single User License Agreement
This is a legal Agreement between you, as the end user, and Nevrona Designs. By opening the
enclosed sealed disk package, or by using the disk, you are agreeing to be bound by the terms of
this Agreement. If you do not agree with the terms of this Agreement, promptly return the
unopened disk package and accompanying items, (including written materials), to the place you
obtained them for a full refund.

1. Grant of License - Nevrona Designs grants to you the right to use one copy of the enclosed
Nevrona Designs program, (the Software), on a single terminal connected to a single computer
(i.e. CPU). You may make one copy of the Software for back-up purposes for use on your own
computer. You must reproduce and include the copyright notice on the back-up copy. You may
not network the Software or use it on more than a single computer or computer terminal at any
time, unless a copy is purchased for each computer or terminal on the network that will use the
Software. You may transfer this Software from one computer to another, provided that the
Software is used on only one computer at a time. You may not rent or lease the Software, but you
may transfer the Software and accompanying written material and this license to another person
on a permanent basis provided you retain no copies and the other person agrees to accept the
terms and conditions of this Agreement. THIS SOFTWARE MAY NOT BE DISTRIBUTED, IN
MODIFIED OR UNMODIFIED FORM, AS PART OF ANY APPLICATION PROGRAM OR
OTHER SOFTWARE THAT IS A LIBRARY-TYPE PRODUCT, DEVELOPMENT TOOL OR
OPERATING SYSTEM, OR THAT MAY BE COMPETITIVE WITH, OR USED IN LIEU OF, THE
PROGRAM PRODUCT, WITHOUT THE EXPRESS WRITTEN PERMISSION OF NEVRONA
DESIGNS. This license does include the right to distribute applications using the enclosed
software provided the above requirements are met.

2. Term - This Agreement is effective until you terminate it by destroying the Software, together
with all copies. It will also terminate if you fail to follow this agreement. You agree upon
termination to destroy the Software, together with all copies thereof.

3. Copyright - The software is owned by Nevrona Designs and is protected by United States
laws and international treaty provisions. Therefore, you must treat the Software like any other
copyrighted material (e.g. a book or musical recording) EXCEPT that you may either (a) make
one copy of the Software solely for back-up or archival purposes, or (b) transfer the Software to a
single hard disk provided you keep the original solely for back-up or archival purposes. You may
not copy the written materials accompanying the Software.

Limited Warranty
1. Limited Warranty - Nevrona Designs warrants that the disks on which the Software is
furnished to be free from defects in material and workmanship, under normal use, for a period of
90 days after the date of the original purchase. If, during this 90-day period, a defect in the disk
should occur, the disk may be returned with proof of purchase to Nevrona Designs, which will
replace the disk without charge. Nevrona Designs warrants that the Software will perform
substantially in accordance with the accompanying written materials. Nevrona Designs does not
warrant that the functions contained in the Software will meet your requirements, or any operation
of the Software will be uninterrupted or error-free. However, Nevrona Designs will, after being
notified of significant errors during the 90-day period, correct demonstrable and significant
Software or documentation errors within a reasonable period of time, or refund all or a fair portion
of the price you have paid for the Software at Nevrona Designs' option.

2. Disclaimer of Warranties - Nevrona Designs disclaims all other warranties, either

RAVE Reference Manual

Page 8

expressed or implied, including but not limited to implied warranties of merchantability of
fitness from particular purpose, with respect to the Software and accompanying written
materials. This limited warranty gives you specific legal rights, you may have others,
varying from state to state. Nevrona Designs will have no consequential damages. In no
event, shall Nevrona Designs or its suppliers be liable for damages whatsoever, (including
without limitation, damages for loss of business profits, business interruption, loss of
business information, or any pecuniary loss), arising out of the use or the inability to this
Nevrona Designs product, even if Nevrona Designs has been advised of the possibility of
such damages. Some states do not allow the exclusion of limitation of liability for
consequential or incidental damages, and this limitation may not apply to you.

3. Sole Remedy - Nevrona Designs' entire liability in your inclusive remedy shall be, at Nevrona
Designs' option, either: (1) The return of the purchase price paid; or (2) Repair or replacement of
the Software that does not meet Nevrona Designs' limited warranty, which is returned to Nevrona
Designs with a copy of your receipt.

4. Governing Law - This Agreement will be construed and governed in accordance with laws of
the State of Arizona.

5. U.S. Government Restricted Rights - This Software and documentation are provided with
restrictive rights. Use, duplication or disclosure by the Government is subject to restrictions set
forth in Section c(1)(ii) of the Rights and Technical Data in Computer Software clause at 52.227-
7013.

Technical Support
Technical support, product updates, addons and other information relating to Rave Reports can
be found at the Nevrona Designs web site. Please visit one of the following web pages for more
information:

Technical Support - http:/www.nevrona.com/support

Addons, Tips and Tricks and other information - http:/www.nevrona.com/rave

Updates - http:/www.nevrona.com/rave/download.html

RAVE Reference Manual

Page 9

Chapter 1

Introduction

 In this Section:

• Rave is introduced and related to reporting needs.
• Navigation of toolbars is introduced.
• Introduction of the main component, the Page.
• Brief overviews of the Toolbars, Project Tree Panel, and Property Panel are
given.

What's All the RAVE About?
Reporting can be one of the most complex, yet most important tasks for anyone dealing with a
database. Reports are the primary visual means to express information retrieved from a body of
data. To solve the problems associated with presenting a visual report of data in a meaningful
and informative manner, traditional visual reporting tools have offered banded layout tools geared
towards table-style listings of data. Today, however, much more complex reporting requirements
exist and are not easily handled by banded layout tools.

Welcome to the next level in visual reporting! The Rave visual designer offers many unique
features that help to make the reporting process simpler, quicker and more efficient. Rave is an
intuitive page based visual design environment that can easily handle a wide variety of report
formats, much more than a purely banded style tool. Rave also includes mirroring and other
technologies to encourage you to reuse the contents of your reports for quicker changes and
easier maintenance. In general though, Rave has been designed to offer the most flexibility and
functionality in an easy to learn format.

Where do you begin? Since Rave is page-based designer, many of its features should make
sense and be easy to use with only a little practice. There are a lot of options and some might not
be obvious when just starting. However, remember that many of these options can be ignored in
the beginning, but as your needs and knowledge increases these options are readily available. In
fact, Wizards generate "standard" reports without having to know behind-the-scene details.
However, we do recommend that you take some time and do a quick read of this manual.

Included with the Rave installs is a project called "RaveDemo" that contains several report
samples. To see several common designs, start the RaveDemo.exe and open the RaveDemo
project to access the different report types. Exploring the RaveDemo project and other samples
are excellent ways to learn Rave.

Report Authoring Visual Environment
A report might be described as data presented in a visual manner, whether it is printed on paper
or displayed electronically. Typically, there are sets of database tables that provide data to create
a report. For example, suppose there are: a Customer table, a Products table, and an Items Sold
table. These tables could be combined to produce form letters, invoices or customer lists.

Let's begin with a quick overview of Rave. The first step to using Rave is to start the program.
The first thing seen will be a sheet representing a page on the screen as well as two windows on
the side of the page and toolbars across the top of the page. On a first impression, there appears
to be many items in the Rave designer, so where do you start?

Let's start with what is shown when Rave is running. First, understand that there are two groups

RAVE Reference Manual

Page 10

of toolbars displayed in the Rave designer; they are the components and tools.

Components are those items that are "dropped" or visible on the page editor. These might be
bands, bar codes, lines, shapes, etc. Don't worry about what these things are yet. If the object
can be seen on the page layout, it is a component.

Toolbars have the ability to change or modify components, thus distinguishing them as tools.
There are several toolbars: alignment, color palette, font editor, etc. If there is a box on the page
and it needs to be filled with a background color, first select that item (the box) by clicking on it.
Then, use the color tool to change the fill color to any desired color. Toolbars can be hidden and
seen by selecting them from the Tools menu. If there is a preference for a more simplified
designer look, the toolbars can be hidden until they are needed.

Now that was the very fast overview. There are lots of settings or properties that control the
behavior of almost every part of the visual designer. This manual has two main parts, a
description of the Rave system including the components and tools, then a reference section that
lists the details about each property. Go through the description section first, and then browse the
reference section to get a better understanding on just how much control can be had over various
design features.

First Glance
When Rave first starts, it will open a screen that looks like the image below. Since Rave
remembers what file was last opened, your screen may look a little different. But, the areas
shown are the fundamental pieces. We are going to first explore each part of this screen to give a
general tour of the Rave Designer.

Navigation Area

RAVE Reference Manual

Page 11

The top of the visual designer is the Rave Navigation area. This is where toolbars can be docked
individually, and can also be tab docked. Individually docking the toolbars will allow the user to
see all the buttons on the toolbar and to see more than one toolbar at a time. Tab docking will
allow easy access to each toolbar, but only one toolbar can be seen at a time.

The toolbars contain both tools and components. A tool is a feature that will be used to modify an
object already on the page, like the Font Editor or the Color Palette. A component is an object
that will be placed on the page like a band, line, text, region, or section.

To find out the name of the button control on a toolbar, simply move the mouse pointer over a
button, and a popup window will appear with the name of the tool or component. Also, notice the
raising of the button when it is about to be selected. It will become 'depressed' when the button is
clicked on.

Each toolbar can also be hidden. To hide or view a toolbar, go to the tool menu and select the
desired toolbar from Toolbars menu.

The Page (Foundation of Rave)
The starting point with the Rave Visual Designer is the Page. The page is the foundation and is
where all the designing action is done. The Page is represented with the grid pattern, which will
look something like the image shown to the right. The look and feel of the Page can be changed
with the preference settings, which will be covered in Preferences chapter.

One important thing to know and remember is that the Page has properties, such as height and
width. To see or change the Page properties, go to the "Project Tree" Panel and expand the
Report node by clicking on the "+" sign, then click on the report name (default is "Report1") and
this will show a line that will be defaulted to "Page1". Click once on the Page reference and the
Page name will be highlighted in the "Project Tree". The highlight means that the Page has been
selected and now the Page properties can be seen in the Property Panel.

Project Tree Panel

RAVE Reference Manual

Page 12

The Project Tree panel is a very informative part of the Rave designer and it also provides an
easy way to navigate the reporting project structure.

For now just the parts of the Project Tree will be examined. More details are covered in the
Project Tree Chapter.

There are three main nodes in the Project Tree: Report Library, Global Page Catalog, and Data
View Dictionary. Each of these nodes (and any sub nodes) can be expanded or collapsed by
clicking on the plus/minus symbol. Sub-nodes can be created and added, by selecting a desired
option (New Report, New Global Page, and New Data Object) from the Project Menu.

The Report Library node is where all of the reports within the project are contained. Each report
will have one or more pages. Each of those pages will normally have one or more components
within them.

The Global Page Catalog node is where reporting templates are managed. The reporting
templates can contain one or more components. These reporting templates can then be reused
via Rave's unique mirroring technology. This could include items such as letter headings and
footers, pre-printed forms, watermark designs or complete page definitions that could be the
foundation for other reports.

The Data View Dictionary node is where all the data connections for reports are defined. A data
view retrieves data from the application through data connections installed within that application.

Property Panel
The Property Panel helps to customize the way components appear or behave. When a
component is selected on the page, the Property Panel will reflect the selection by displaying the
different properties associated with the selected component.

Changing the properties values is easily done by using various associated drop-down menus and
edit boxes. If no component is selected, then the property panel will appear blank with no options
to choose from.

Another way to change a property is select a value from a list of possible choices. For example,
the Color property has a down arrow button. Clicking on the down arrow button will display a list

RAVE Reference Manual

Page 13

of colors that can be selected. Any property that has a list of choices can also be double-clicked
(instead of clicking on the down arrow button and selecting the option) to advance to the next
item in the list.

RAVE Reference Manual

Page 14

RAVE Reference Manual

Page 15

Chapter 2

Toolbars and Tool Windows

 In this Section:

• General information about the toolbars
• Toolbar placement in the Visual Designer environment
• How to manipulate Toolbars within the environment
• Introduction to Tool Windows and their movement

Toolbars
A toolbar is a collection of icons that relate in their function. Rave has several toolbars that can be
docked to any side of the designer window, tab docked, or hidden to stay out of the way until they
are needed.

To access the toolbars, go to the Tools menu, and then from Toolbars select the toolbar that is
desired. Selecting a toolbar will place a check mark next to the toolbar.

The toolbars are designed to remember their last placement position. When a toolbar is closed
and then opened again, the toolbar will be in the same position on the screen that it was in before
it was closed.

Toolbar Placement
When a toolbar is visible it can be in one of two states: tab-docked or single docked. A tab-
docked toolbar is docked with tabs displayed. A single docked toolbar has a ribbed section on the
left of the toolbar. To change the toolbar state, right-click on one of its icons. This will reveal a
small button with either a "dock" or "undock" label. Click on that button to change that toolbar's
state.

When a toolbar is undocked, the "toolbar handle" is the ribbed section in docked style. To move a
toolbar, place the mouse cursor somewhere on the "toolbar handle", press and hold the left
mouse button while dragging the toolbar to a new location in the top portion of the designer
window. The best way to get familiar with this is to try docking and undocking toolbars.

Below is an example of docked and tab docked. As previously mentioned, the single docked
toolbars can only be placed at the top of the designer window. The user can practice docking and
undocking the toolbars to get familiar with this process.

Toolbar Palette
The toolbar palette has a number of special features, which are worth mentioning in more detail.
The region on the upper right hand corner of the visual designer and allows one or more toolbars
to be docked. When the toolbars are docked, tabs are formed with the name of the toolbar as the
name of the tab. As toolbars are placed in the tab docking area, a new tab will be created to
reflect the current toolbar.

There is a tab grabber that allows the tabs to be moved to the left or to the right. When the tabs
are moved to the far right, double arrows appear to allow movement through the tabs. The entire
tabs area can be emptied by moving all the toolbars away from the tab area, or by closing the
toolbars from the tool menu. The tab area can also be moved off to the every edge of the screen
(moved to the far right) to allow room in the upper area of the visual designer. Use the Tab
Grabber to move the Tab area (it can be filled or emptied) off to the far right.

RAVE Reference Manual

Page 16

Hiding Toolbars
There are a couple ways to hide toolbars. Hiding Toolbars allow the user to 'clean' up the Rave
Designer. This is also helpful to get unused toolbars, or less frequently used toolbars, out of the
way or out of the designer environment.

The method to do this is to use the Tools menu to uncheck, and thus hide, the toolbar.

Component vs. Utility Toolbars
There are two types of toolbars: Component toolbars and Utility toolbars.

The component toolbars are used for placing components that work and have function within a
report; see the Components Overview Chapter for more details about components. Most of the
components appear visually when placed on the page, however there are a few components that
are non-visual. Non-visual means that the components only appear in the Project Tree, there will
be no visual record of the component on the Page.

Utility toolbars are used to set properties that affect the look of components in a report. For
example, the Utility Toolbar Color can change the color of text in a DataText component.

Below is a list of the toolbars classified by type:
Component Toolbars Utility Toolbars
Standard Alignment
Report Colors
Bar Code Fills
Drawing Fonts
 Lines
 Zoom
 Project
 Designer

Tool Windows
Rave has two very helpful windows, which are generally called the Tool Windows. They are
called this because the user will use them as tools to complete and navigate a report. The two
Tool Windows are the Project Tree and the Property Panel.

These windows will most likely be displayed when Rave is started. But, if it is not displayed, then
go to the Tools menu and select these windows to be opened by placing a check mark in front of
them.

 Property Panel
The Property Panel gives information about the characteristics of a project and the components
within the project. It will be most helpful when designing reports because it gives easy access to
component properties, and thus easy visual access to modifying the properties. More detailed
information is given in the Property Panel Chapter.

The Property Panel displays and allows modification of values of any component that is placed on
the Page, which includes non-visual components. To get property information about a certain
component, remember to select that component before looking at the Property Panel (see
Selecting a Component in the Page Designer Chapter for more information on how to select an
object).

RAVE Reference Manual

Page 17

Project Tree
The Project Tree is a very informative part of the Rave designer. It provides an easy way to
navigate the reporting project structure.

The Project Tree is composed of three main branches: Report Library, Global Page Catalog and
Data View Dictionary. For more information about the functionality of each of these components,
please see the Project Tree Panel chapter and the Project Components chapter.

Items within the Project Tree can be selected by clicking on the item. Also, remember that the
components seen in the tree are also the components that are on the Page.

Note: the non-visual components are in the Project Tree and are usually a green color.

The details of navigating through the Project Tree are saved for a chapter in itself. For now just a
general overview of the Project Tree is given.

RAVE Reference Manual

Page 18

RAVE Reference Manual

Page 19

Chapter 3

Components Overview

 In this Section:

• Introduction to Components in general
• Lists Component Toolbars
• Overview of each Component toolbar is given

What is a Component
A component is defined as something placed on the page, such as a barcode, line, region, shape,
etc. The components available in Rave can be found on any of the component toolbars (e.g.
Standard, Drawing, Report and Barcode).

The toolbars are made available by clicking on the Tools menu followed by the Toolbars menu.
The available toolbars will then be shown in another submenu and will have checkmarks showing
the toolbars that are currently visible. Once a component toolbar is active and selected, a
component can be selected and placed on the page. The Page is a special base component, and
more details are given in the Page Designer chapter.

Special properties are associated with each component. These component properties
can be seen using the Property Panel. Set the properties of each component to the
desired setting by either typing the setting in a text dialog, using a drop down menu, or

by using the special ellipse (…) button to get to the property dialog box.

There are many properties associated with each component, but don't be intimidated by the
number of properties. The properties are there to allow adjustment for a component's behavior
and in many cases the default settings are adequate. Also, please note that the number of
properties listed with each component may vary depending on the user level that has been set
under preferences. To adjust the user's level, please visit the environment tab in the preferences
dialog. See the Preferences chapter for more details.

Since there are many properties associated with each component, this chapter will focus mainly
on the component toolbars rather than their associated properties. The current chapter provides a
good overview of what each component toolbar does without too much detail about the property
specifics. Do note that many components share common properties, so once the common
properties are learned for one component, they can be applied to other properties.

Components are also defined by their relationship relative to other components. This relationship
is defined by a parent-child relationship. When a text component is placed on the page, the
parent is the page component and the child is the text component. Another way to look at it is that
the page contains the text component, thus the parent component contains the child component.

The parent-child relationship also extends into the positioning of the components. All positions
are relative to the upper left corner of the parent, thus the Left property and Top property are
used to define the relative position of a component. If the parent is like a Section component,
which can contain any number of other components; then as the parent component is moved
around, it's children components will move accordingly. If the parent component is deleted, all of
its children will also be deleted.

A parent-child relationship is defined when the child component is initially created. If the child
component is dropped within the parent component, then it will become the child of that parent. If
the component is dropped on the page, then dragged on top of another component (such as a

RAVE Reference Manual

Page 20

Band or Section), it will still be considered a child of the page.

The Project Tree, which will be explained in more detail in a later chapter, visually shows the
parent-child relationships of the components. In general, the Project component is the master
parent of all reports, global pages and data objects. Reports are parents to the report pages.
Pages are parents to the components that are placed on them. There are still other components
that can be parents to components, such as Regions, Bands and Sections.

The Component Toolbars
There are four standard component toolbars. Other component toolbars may be present if add-on
packages have been included. The normal set of component toolbars is: "Standard", "Drawing",
"Report", and "Bar Code". There is one particular property that applies to all components, so it will
be mentioned here.

The "Name" property is used to assign a new name to that control or to designate the name of
the control to give it a unique meaning. By default, Rave assigns sequential names based on the
type of the component, such as 'Section1', 'Section2', and so on. Change these to more
meaningful names to make the Project Tree more readable and the reporting project easier to
maintain. The "Name" property must not contain any spaces or special characters. This is the
name that will be used in the Project Tree Panel.

The next several sections will give an overview of the four component toolbars. This will serve as
an introduction, and more detail will be covered in later chapters.

Standard Components

The Standard Components toolbar controls the visibility of most frequently used components.
Once the Standard components toolbar is active (either docked or undocked in the Rave
environment), select and place components such as a bitmap, section, text control, etc. on the
page.

The Text component creates a single line of text, which can be changed using the Property
Panel.

The Memo component allows several lines of text to be displayed, including multi-line text.

The Section component is a very special component that allows several components to be
grouped together.

Bitmap and Metafile components allow images to be placed onto the report. The FontMaster
component allows the user to define standard fonts for different parts of the report, like the
headers, body, and footers.

The final component is called PageNumInit, this component allows the restart of page numbering
within the report.

Use these components to create the base of a report, by inserting text and images.

Bar Code Components

RAVE Reference Manual

Page 21

The BarCode Components toolbar contains six bar code components: PostNetBarCode,
2of5BarCode, Code39BarCode, 128BarCode, UPCBarCode, and EANBarCode.

These are used for making all sorts of bar codes for report usage.

Drawing Components

The Drawing toolbar controls all graphical drawing components. This includes drawing lines,
boxes, rectangles, circles and elliptical circles.

The components from left to right are: Line, HLine, VLine, Rectangle, Square, Ellipse, and Circle.

These are used for creating graphical images and general report formatting. Use these to
separate areas of a report, or to create an informative image.

Report Components

There are several report components: (left to right) DataText, DataMemo, CalcText,
DataMirrorSection, Region, Band, DataBand, DataCycle, CalcOp, CalcTotal, CalcController. Use
these components to interact with a database and make a functional report.

The components with a red dot in right corner are Data Aware and are capable of displaying
information from a database. Each component has a DataView property, which allows the
component to interact with a database.

The components with a green color are "non-visual". These can be seen in the Project Tree, but
not on the Page layout.

Bands and DataBands must be placed within a Region. Therefore before placing a band on the
Page, first place a Region in the area in which a Band or a DataBand will be established. There is
no limit on the number of Bands within a region, nor is there a limit to a single region. There can
be as many regions as needed. Each Band has its own set of properties to control its behavior.
See the Report Components Chapter for more detailed information.

RAVE Reference Manual

Page 22

RAVE Reference Manual

Page 23

Chapter 4

Page Designer

 In this Section:

• Introduce the Page as a basic component
• Discuss how the Project Tree and Property Panel relates to the Page
• Show how to select component(s)
• Learn how to re-size and move components
• Overview of cutting and pasting in Rave

Overview
Just knowing the components and tools is not enough to work effectively in Rave. One must also
learn about the most fundamental component of Rave, which is the Page. In this chapter the
Page and its relation to the Project Tree and Property Panel are explained in detail. Although the
Project Tree and the Property Panel have their own chapter, as each are important individually,
this chapter explains how each is related to the Page. Also in this chapter, some basics on
moving objects on the Page are given.

The Basic Component: The Page & it's Panels
The base component of the Rave Visual Designer is the Page. The Page is not a normal
component in that it is not on a Component Toolbar, but it does have properties and it will help to
think of it as the base component that provides the container for the report design. All Rave
components must be placed on the Page. The Page is represented by the grid pattern on the
page panel. The look and feel of the Page is controlled by preference settings that are covered in
the Preferences Chapter. Changing the visual look of the Page is discussed in the Utility Toolbars
Chapter in the Designer Toolbar section.

Like all components, the Page also has properties such as height, width, description and name.
To see or change the Page properties, go to the "Project Tree" panel and expand the Report
node by clicking on the "+" sign, then click on the report name ("Report1" is the default report).
Clicking on the report name will show "Page1", which is the default name for a Page. Click once
on this and notice that "Page1" will be highlighted. This means that the Page has been selected

RAVE Reference Manual

Page 24

and now the Page properties for that Page will be seen in the Property Panel.

Page properties allow a report to be more informative. For example, rather than have a report
with Page1, Page2, Page3, it might be desirable to have the pages named Invoice, PO,
PackingSlip. To do this, use the "Name" property in the Property Panel. The name can be
anything the user desires, but note that the name cannot have any spaces or special characters.
Remember the Name is for the Rave designer only and is visible only in the Project Tree and on
the tab(s) of the Page panel.

In the image of the Project Tree and Property Panel, the page names have been changed to
show how useful it is to rename the Page. Now the project tree looks more informative. It is useful
and helpful to adjust any properties associated with the Page to make the report more informative
and useful for future use and revisions.

Selecting Components
Selecting components is as easy as clicking on them. Moving the mouse pointer to the region
where the component is and clicking the left mouse button once will select any component that is
placed on the Page. A selected component will appear surrounded with a line that has colored
dots, called pips.

The "pips" can be of four different colors: green, gray, red, and yellow. Green pips indicate that
the current component is the only one selected. Gray pips show that there is more than one
component selected, and red pips indicate that the current component is locked. The yellow pips
indicate objects that are that have been mirrored and cannot be modified.

Selecting more than one component at a time is done in a similar way to selecting one
component. The difference is that when selecting multiple components; hold down the Shift key
while clicking on the objects.

Another way to select either one or more components is to draw a "virtual" box around them. To
do this, select an area that is adjacent to the component and drag the mouse to surround the
component(s) keeping the left mouse button clicked.

To unselect a component, simply click on the Page Designer tab or move the cursor selection to
a different component by clicking on it.

When multiple components are selected, only the common properties will be displayed in the
Property Panel. When a property changes, the change will affect all the selected components at
that time.

There is a special property for all components called Locked. If the Locked property is True, the
component can be selected, but it's properties cannot be changed (except for the Locked
property, of course). If selected components are locked, then the pips and the property name for
those items will be red (as mentioned previously). If the component is a child component to a
parent component, the parent will control the locked access. The Locked property state drop-
down menu will show either a True/False indicating the lock status or it will show the parent
component name that is controlling its lock state. The remaining discussion is about components

RAVE Reference Manual

Page 25

that are NOT locked.

Sizing and Moving Components
To move a component, simply click on it with the left mouse button and drag it to the desired
area. When more than one component has been selected, they can all be moved by just moving
one of the components. Note that this will NOT affect components that have the Locked property
set to True.

The main purpose of the "pips" that appear when selecting a component are for resizing.
Resizing only works on ONE component at a time, i.e., a group of selected components cannot
be resized at one time. A component can either be resized vertically, horizontally or diagonally. If
the resizing is done diagonally, the component will resize both vertically and horizontally. Simply
click on one of the pips with the left mouse button and drag the pip until the desired position.
Locked components cannot be resized.

Cutting and Pasting
Cutting and pasting is achieved in the same way as in any other standard Windows applications.
After selecting a component (or group of components), choose Cut or Copy from the Edit menu;
or use the Ctrl-X or Ctrl-C key combinations; or right click on the component and selecting Cut or
Copy from the popup menu.

To paste the components, choose from any of the three previous methods (Edit menu, Ctrl-V or
popup menu).

Again it is important to point out that Locked components cannot be cut since this would involve
removing the object from its position.

Exercise: Selecting, Sizing, and Moving Components
To select a component:
1. Click on the component. The pips and border will appear around it
2. Or, click on the component in the Project Tree, and notice that the selected component

will be highlighted.

To resize a component:
1. Select the component
2. On a pip, place cursor over it until it changes to a double arrow
3. Click and hold the pip, then drag to the desired size

RAVE Reference Manual

Page 26

To move a component:
1. Select component
2. Move cursor over component (not near a pip, as that would be resizing the component).

Click on component and hold
3. Move component by dragging cursor, and thus the component
4. Place in desired location.
5. Release cursor

Exercise: Cutting and Pasting
Using Edit menu:
1. Select the component.
2. Select Cut from the Edit menu. This will place the component into the clipboard, and the

component will disappear visually from the page.
3. Paste by selecting Paste from the Edit menu.

Using the short-cut keys:
1. Select the component.
2. Press Ctrl-key and X-key. This will place the component into the clipboard, and the

component will disappear visually from the page.
3. Paste by pressing Ctrl-key and V-key.

Using the pop-up menu:
1. Select the component.
2. Right-click on the component, in the pop-menu select Cut. This will place the component

into the clipboard, and the component will disappear visually from the page.
3. Paste using one of the two previously mentioned ways.

RAVE Reference Manual

Page 27

Chapter 5

Project Tree Panel

 In this Section:

• Project Tree structure introduced
• General discussion of Parent-Child relationships
• Introduce the main project categories
• Show How to Load/Unload Global Pages
• Discuss and explain the Drag and Drop features

Overview
The Project Tree Panel provides an easy way to navigate through the report design structure.
This tree style view gives an outline overview of the report pages and the report structure. Thus,
this makes the Project Tree a very informative part of the Rave designer. Once you have
designed some simple or complex reports, remember to visit this panel and see just how
informative it can be.

A project can contain multiple definitions within each main category: Report Library, Global Page
Catalog and Data View Dictionary. Each node (and any sub nodes) can be expanded or
collapsed by clicking on the plus/minus symbol. Any of these main nodes can be added from the
"Project" menu option. There you will see an option for each of the nodes "New Report", "New
Global Page" and "New Data View". In order to add a "New Page" to a Report in the Report
Library, activate the Report that and use "New Page" from the Project menu.

Expanding and Right-Clicking
An easy way to complete tasks on items in the project tree is to right-click on the item. There are
many different pop-up menus available. Clicking on a Main Node like the Report Library brings up
a popup menu with two choices: Expand All and Collapse All. These two choices refer to
expanding and collapsing all the nodes, which would provide easy fast access to all items in that
tree.

A right-click on a sub-node, like on a Page, would reveal the option of deleting a page. Some of
the available functions may be few or many, as in the next image.

Right-clicking on a component can display a pop up menu with many options. These options are
the same options available as if a right-click was completed on the component on the designer
page. Also, these items reflect the options available to the component through the Utility toolbars.

RAVE Reference Manual

Page 28

There are many options that may be available with a right-click of the mouse. To speed up the
report making process or to make navigating a report fast and easy try to become familiar with
the options that are available through these popup menus.

Parent-Child Relationship
Now, that you have seen how to click through the Project Tree, we'll review some lingo that is
associated with a "tree".

The Project Tree is listed in a way that looks like an upside down tree. The base or the root of the
tree is at the top of the list. Each subsequent branch is a child of the root. This makes the root
also the parent of the child or branch. Each branch can also be its own parent and have its own
child or children.

The techniques used in the previous section demonstrated how to move through the tree by
expanding and collapsing the nodes associated with each parent. When a branch has children, a
node will appear to the left of the branch name.

The Report Library is the root of the Tree, and has one child called Report1, shown with the text
highlighted.

Report1 has several children: Page1, Page2, Page3, Page4, Page5, and Page6.

Page1 has the following children: Text1, Text2, and Memo1.

Also there are two sibling groups. Just like in a real family with parents and children, the children
can have siblings. The first group of siblings: Page1, Page2, Page3, Page4, Page5, and Page6.
The second group of siblings: Text1, Text2, and Memo1. There are other family associations, but
the main two that we are concerned with is the Parent-Child relationship.

Report Library
The Report Library node is where the design structure, including all the components used, in
each of the report(s) will be displayed. Normally, a component is selected via the Page in the
Visual Designer layout panel by simply clicking on the component. However, the Report Library
tree can also be used to select components by simply clicking on the component name. When a
component name is clicked, that name will be highlighted. To select multiple components, hold
the Shift- key down while selecting as many components as you like in the Project Tree.

A project can be simple with one or two report definitions, or it can be complex with many report
definitions. Each report that is created would have it's own design structure. To select and switch
to a different report, simply double-click on that report name in the Report Library tree structure.

TIP: To make navigation and understanding of a report easier, make use of the Name property.
See the Name Exercise at the end of this chapter for help in using this property effectively.

Global Page Catalog
 The Global Page Catalog node is where Page definitions, which contain templates to
be mirrored, are kept. This includes things like Letterheads, Forms, Watermark
designs, and other Page definitions that could be the foundation for several reports.

This can even be a complete report design. An example would be mirroring a section component
on a Global Page where the same contents (like an "Invoice") could be printed, but also with a
different caption at the bottom of the pages like "Original", "File Copy", and "Shipping".

Loading and Unloading Global Pages
Global Pages are very useful and helpful to the designer, especially when they can be accessed
quickly. These pages can hold all sorts of objects and components that can be repeated and
mirrored throughout many pages in many different reports. Many of the reports in a Report
Library could make use of any of the Global Pages in the Global Page Catalog.

RAVE Reference Manual

Page 29

When creating reports, a useful feature of the Rave Designer is the Page Designer Tabs. These
are located at the top of the Page Designer window. They are the tabs of pages in use.

Global Pages can be added to this tab for quick referencing, meaning that the designer does not
need to scroll through the whole Project Tree to find the right Global Pages frequently needed.
Instead the designer just needs to load the page to the Page Designer Tab area and click on the
tab when it is needed. Global Pages can be loaded and unloaded to/from the Page Designer Tab
area by performing a right-click on the Global Page and using the speed menu to make their
choice. A fast way to unload a Global Page is to select it from the tab area, then click on the Page
and use the Ctrl-F4 keystroke.

Data View Dictionary
The Data View Dictionary node in the Rave Designer is where all the data connections
for the reports would be listed. To add a Data View to this list, select a "New Data View"
(from the "Project" menu). This will bring up a "Data Connections" dialog window. This

window will show all the Rave data connections that are "active". Then select any of these and
this will create a new Data View attached to that data connection.

Ctrl- (Control) Drag and Drop
Ctrl-Drag and Drop is used to create or mirror an item from the Project Tree structure either to
another age node in that report structure or to the current page on the designer layout. When
dragging from the Project Tree Panel to the page designer, the drop location will be the location
where the mouse button is released. However, when dragging from one page node to another (in
the Project Tree Panel), the location of the drop will default to the same place as the source.

NOTE:
When Ctrl-dragging a non-visual component, it must be one that can be mirrored. Copying a
component that cannot be mirrored will NOT work. Regions and Bands are components that do
not enable mirroring. To mirror a region, make the region part of a section, and then mirror that
section. The section could include other components as well.

CAUTION:
Drag and drop will work from Report Page to Report Page, Global Page to Global Page, Global to
Report Page, however, it will NOT work from the Report Page to Global Page, since components
on Reports are not visible to other Reports and therefore cannot be used as mirrors on a Global
Page.

Alt-Drag
The Alt-Drag is used to change the parent of a component to a new "container" component like a
Section. All moves of that component need to be within that same Page design. When a new
Section is created, the user may choose to have items from another Section placed in the new
Section. In this case the parent must be changed from the old Section to the new Section and
then the new Section can be mirrored.

NOTE:
The target component must be a container type. The Page, Region and Section are all holders or
containers. So, if there are two or more sections on a Page, items can be dragged from one
Section to the other Section. Also components can be dragged from the Page to one of the
Sections.

Exercise: Navigating the Project Tree
Because many report projects are complex, the Project Tree's hierarchy helps to navigate
through the reports.

To navigate through the hierarchy (expand, collapse, and selection):
1. Expand an item by clicking the square icon with a "Plus" symbol. This will change the

item to a "Minus" symbol and expand the items into the sub-items such as Report1,

RAVE Reference Manual

Page 30

item to a "Minus" symbol and expand the items into the sub-items such as Report1,
Page1, etc., depending on which level of expansion is being expanded.

2. Collapse an item by clicking on the "Minus" Symbol. This will change the icon to a "Plus"
symbol and collapse the items, so that they will no longer be visible.

3. Select an item in the Project Tree by clicking on the item. Selection will be indicated by
that item being highlighted.

Exercise: Naming Components
Since projects can become very complex, it is highly suggested that the "Name" property be used
to make items in the Project Tree easier to understand.

By default, the "Name" property will automatically default to something like "Report1", "Report2",
and so on. However, it would be easier to maintain a project if the reports had useful names. This
can be done through the "Name" property.

When developing a naming convention, be creative, but remember no spaces or special
characters are allowed in the "Name" property.

In the example Project Tree Panel, the default report names have been changed. Instead of
dealing with reports listed as "Report1" through "Report7", the reports were labeled accordingly:
"CustomerList", "CustomerLabels", "CustomerDue", "Invoice", "PO", "ProductsOnHand", and
"ProductsOnOrder". It is important to understand that the Project Tree Panel is there to make
overseeing a project easier. But, without an informative naming system, the Project Tree Panel
will not live up to it's full potential.

To rename a report (or any other component):
1. Select the report (component)
2. Ensure that the report to be renamed has been selected. A selected item is highlighted.
3. Go to the Property Panel and look at the Name Property.
4. In the "Name" Property edit box, type in the desired name.
5. Hit Enter or click somewhere out of the edit box, after a new name has been entered.
6. Look at the Project Tree and notice that the name of the report (component) has been

changed from the default name.

Exercise: Loading and Unloading Global Pages
Loading and Unloading Global Pages to the Page Designer Tab area makes referencing these
pages fast and helpful. This is especially true when dealing with mirroring sections and objects
from Global Pages to the pages in different Reports.

To load a Global Page:

RAVE Reference Manual

Page 31

1. Start with a new report
2. Insert about 4 blank reports, by selecting New Report from the Project menu or by

clicking on New Report from the Project toolbar
3. Next, select "Page1" in the first report. Do this by using the Project Tree. Click on

"Page1" in the tree or click on the "Page 1" tab in the Page Designer Tab area. Once that
Page has been selected, it's name will be highlighted.

4. Add about three Global Pages to the report. Do this by selecting New Global Page from

the Project menu or by clicking on New Global Page from the Project toolbar
5. Notice that since the first page in the first report was selected when the Global Pages

were added, the new Global Pages were added to the Page Designer Tab area. The
pages are also added to the Project Tree under the Global Page Catalog

6. Click on a different Report page. Notice that once a different page is selected, the Page
Designer Tab area only has that page in the Page Designer Tab area

7. To add Global Pages to the Page Designer Tab area right-click on a Global Page in the
Project Tree and in the menu that pops up select Load Page. Try loading all three
Global Pages

8. As the Global Pages are loaded they will be seen in the Page Designer Tab area
9. Try loading Global Pages to other pages in the last two reports

To unload a Global Page:
1. Complete the steps from the previous exercise
2. Select a page from Report 3 that contains all the loaded Global Pages
3. There are two ways to unload a page. One way is to use the speed menu; the other is to

use quick keys
4. The first way, using the speed menu, requires that you first select the page that needs

Global Pages unloaded
5. Next, right-click on the Global Page and select Unload Page from the speed menu. Do

this for all three Global Pages in Report 3
6. We will use the second way to unload Global Pages next
7. Select the next page in "Report 4". Make sure it contains all the Global Pages in the

Page Designer Tab area
8. Once the page in "Report 4" is selected and you can see the three Global Pages in the

Page Designer Tab area, select one of the Global Pages from the Page Designer Tab
area

9. Now use the Ctrl-F4 keystroke to unload the Global Page
10. Try this with the rest of the Global Pages in the Global Page Catalog.

Exercise: Dragging a Component (Ctrl-Drag)
One of the more common items to drag would be to copy a Data Field over to the Page in the
Visual Designer. The target could be an existing DataBand or just an open area on the Page. The
Data Field will be converted to a DataText or DataMemo on the target area depending on the
source's field type. Accomplish this by doing the following steps.

To drag a component:
1. Go to the "Data View Dictionary" node, expand it if it is collapsed
2. Select one of the Data Views and expand it if it is collapsed
3. Select (highlight) a field component to copy
4. Press and hold the Ctrl-key, now drag that field over to the Page

RAVE Reference Manual

Page 32

5. Release the mouse and Ctrl-key when it is at the desired location
6. Select the newly copied data field and set its properties as required

This exercise may have been a little advanced for this point in the manual, but it is put here to
give the user the steps necessary to complete a dragging component. So, since a full report has
not yet been created, don't worry about getting the report working yet.

Exercise: Changing the Parent of a Component (Alt-Drag)
Changing the parent of a component can be very helpful, like when trying to group or ungroup
components. For example, say there was a Page that contained components that would be better
grouped together into a Section. The current status is that the Page is the parent component of
the components that need to be grouped. To group the items together, the parent component
would have to be changed to the section component. After this is done, the items will be in a
section, which can then be moved around as such. In the reverse sense, maybe a component
needs to be taken out of a section and needs to just lay on the Page and not the section, just use
the Alt-Drag to complete this task.

Changing the parent of a component:
1. Go to the "Report Library" node; expand it if it is collapsed

2. Expand the Report node that contains the Page definition
needed

3. Expand the Report node so that both the source and target
component can be seen. In Customer Statement, there is a
Section component already on the Page. We will change the
parent of PageNumInit and Memo1 from the Page to the Section

4. Select the components that will have their parent's changed. To
select multiple components, hold the Shift key while clicking on
each component. When done selecting release the Shift key.
The desired components should be highlighted

5. Press and hold the Alt key, now drag the source components to
the new parent component. In this example, the Alt key is held
while selecting and dragging either of the two components.
While dragging the components to the new parent, notice that
cursor changes as it is placed over the target. When the cursor

RAVE Reference Manual

Page 33

indicates it is over the target, release the mouse button, then
release the Alt key

6. Notice that the components are now under the new parent and
that the parent has a "minus" sign next to it to indicate that it is
the parent of some components

7. When done, the newly moved components can be set as
required

.

RAVE Reference Manual

Page 34

RAVE Reference Manual

Page 35

Chapter 6

Property Panel

 In this Section:

• Defines and describes the Property Panel
• Explains the different types of properties
• Describes the property editor
• Covers the purpose and items in the speed menu

What is the Property Panel
The Property Panel gives information about the project components. It will be most helpful when
designing reports because it gives an easy access to all properties associated with each
component in a report.

The Property Panel displays and allows modification of values of any component that is placed on
the Page. To get property information about a certain component, remember to select that
component before looking at the Property Panel (see Selecting a Component in the Page
Designer Chapter for more information on how to select an object).

The Property Panel displays the current properties of a component. For example, by clicking on a
DataText component, the component will be selected and the Property Panel will display all the
properties that are available for the component.

There are three areas to the Property Panel. The first is the very top, which gives the name and
type of the component. The second area is the middle, where all the component properties are
listed into two columns. The left column displays the property names and the right column
displays the current value of those properties. At the bottom of the Property Panel is the third
area. A Property Hints box, which gives a brief explanation of the currently selected property, is
located in this third area.

RAVE Reference Manual

Page 36

In the property listing section (middle), the line that separates the two columns can be moved to
resize the columns to allow for better viewing of the names/values. To do this, move the cursor
over the line until it changes into the double arrows. Press the left mouse and hold, then drag
either left or right to resize the columns.

Remember a component must be selected before the Property Panel will reflect that component's
properties. It is also possible to select multiple components at the same time. Once a component
is selected, any of the properties in the Panel can be selected by clicking on the desired property
name or it's adjacent box selection. With the property selected, it is then possible to change the
property value. When any of the fields in the Property Panel are selected, the up/down arrow
keys can be used to move up and down between properties.

Some of the property names appear in bold. This indicates that the current value differs from the
default value. For example, when a DataText component is dropped onto the Page, the default
color is Black. By changing the color to something other than Black, like Red, the property name
"Color" changes to bold. When the setting is set back to the default value, the bolding will be
removed.

Of what use is the bolding? Let's say for a moment that a report that has been designed by a
colleague has a problem and it doesn't work. By quickly glancing at the changed properties, this
will show what properties have been changed, which might in turn reveal the report functionality
problem.

While most components can be selected by clicking directly on them, the Page is a special case.
Clicking on the Page itself in the Visual Designer window will clear the Property Panel of all
properties, thus not selecting the Page.

To select the properties of the Page, click on the tab at the top (in the area called the Page
Designer Tab area) where it shows the page number. Another alternative is to select the Page by
clicking on it from the Project Tree.

RAVE Reference Manual

Page 37

Types of Properties
Every property has an associated type. These types can be numerous, different, and can be
edited in the Property Panel. The property types can be string, or integer values.

When editing a string property, it is valid to enter any character that can be displayed on the
screen. When editing integer values, it is valid to type any numeric value. Decimal numbers are
another common property that may be edited.

Often times there are properties that have predefined values that may be selected. These values
are displayed in the form of lists containing the valid items that can be selected. There are also
properties that have themselves a number of different properties associated with them.

Property Editors
Depending on the type of property selected, there are three types of input boxes available. The
first one is a simple input box where a value is typed. The value in the input box can be either
numeric, alpha, alphanumeric or one of a set of possible values. A drop down list is the second
type of input box a user can encounter. If the values of a property are from a set of previously
defined values, a dropdown list will appear by clicking the small down arrow that appears on the
right-hand side of the box. Select the desired value by clicking on it. The third option is a dialog
box. Some properties require more than one value to set the property (such as fonts). With these
properties, a button with three small dots (called an ellipse) appears on the right-hand corner of
the property edit box. By clicking on the dots, a dialog box (or wizard) will appear and from this
dialog box the multiple properties can be set.

Right-Click Menu
A popup menu will appear when the Property Panel is right-clicked on. This speed menu can be
used to set various options of the Property Panel.

Property Hints, the first menu item, hides or shows the Property Hints box which is located at the
very bottom of the Property Panel. Highlight Changes, the second menu item, enables or disables
the showing of the properties in bold for items that have been changed. Exclude Name, Size and
Pos Changes, the third menu item, determines whether Name, Size and position changes (like
width and height) are included in the properties that will be bolded when the default value has
been changed. The third menu item becomes helpful when many properties have been changed,
and there is a need to see changed properties that are not commonly changed.

Exercise: Navigating the Property Panel
Opening the Property Panel
1. If the Property Panel is not visible, then go to the Tools Menu. From the Tools sub-

menu, choose Property Panel. Make sure that there is a check mark next to the
selection.

Identifying Property Panel Areas

RAVE Reference Manual

Page 38

2. For this example, the base component, the Page, will be used. So, to select the Page
component, click on the page tab in the Page Designer Tab area. Notice that after
selecting the Page, its properties are displayed in the Property Panel.

3. Next make sure that the Property Hints box is visible at the bottom of the Property Panel,
if it isn't already. Right-click anywhere in the Property Panel. A pop-up menu will appear.
In this menu, check all the options available.

4. Expand the Property Panel out so that you can see all the properties as well as the
Property Hints box. On steps 5 to 8, read the Property Hints box to find more information
about each property.

Note: The image to the right has been modified for the next few examples.
5. Click on the Name property. Notice that it corresponds to the name at the top of the

Property Panel "Page1: Page component". The other half of this line is the kind of
component that the line is referring to. The component is a Page component and thus it
is recognized as that here. Type in any name in the Name property and see the change
reflected in the top line. The Name property is an example of an edit box of type String.

6. Click on the Bin property down arrow. Notice that this displays a drop-down menu. Drop-
down menus give many predetermined options from which to choose.

7. Click on the Grid Spacing input box. This is an example of a Numeric type property. To
see what this does, change the Grid Spacing property value and look at the Page when
done.

8. Click on the ellipse (…) on the Parameters property to see a dialog box appear. The
dialog box is a way that a property with multiple values and options displays its choices.

9. In step 3, the option Highlight Changes was checked in the speed menu (right-click on
the Property Panel). Go to the PaperSize property and choose a different paper size.
Notice that not only does the paper size change, but that the property is bolded. This
bolding becomes helpful in determining when properties have been changed from their
default or initial values. Try changing other values such as the page width and height.

10. Also, checked in step 3, is the Exclude Name, Size, and Pos Changes option. This is a
very helpful option. In most cases the name, size, and component position on a Page
changes often. So, to avoid highlighting these commonly changed properties, this option
excludes them from being bolded. Try unselecting this option and changing these
properties.

RAVE Reference Manual

Page 39

Chapter 7

Generating Output

 In this Section:

• Learn how to execute and preview Reports
• Explains the options in the Printing Preferences
• Learn about the toolbars and options in the Report Preview
• Explains the differences in the Report Designer and the Print Preview Output
Options dialog
• Learn how to export reports to various formats: NDR, PRN, HTML, and PDF

Overview
After a report is created, displaying and making the report electronically mobile will become the
next necessary step. There are several ways to get reports onto paper or into electronic formats.
This chapter will cover the different ways to display report output and will also go through simple
printing.

Executing Reports
One of the most common features used in Rave is the actual report execution. Executing a report
allows the user to see the output of the report design. Execution is very similar to what many
developers know as compiling and actually does involve a certain amount of internal "compiling".

There are various ways that a report can be executed. It is done either via the Project menu,
using the F9 function key, or clicking on the Execute Report icon on the Project toolbar.

Using the F9 function key becomes very handy since execution becomes a very repetitive and
common task performed during all phases of design.

When using any of the ways to execute a report, the user is presented with various options. The
Output Options dialog shows the different options available at the time of execution.

In later sections of this chapter, each option will be explained in further detail.

Preferences Dialog
Before going through each execution option, there are some preferences that need to be covered
and kept in mind before executing a report. Going to the Edit menu and selecting Preferences will
display the Preferences dialog box.

The Printing tab in the Preferences dialog box allows various settings to be changed that effect
report execution. Some of the options that can be set here are also reflected in the Output
Options dialog box that appears when executing. In this section, each of the parameters in the
Printing preferences will be explained.

 In Output Options area of Printing Preferences, the Show Setup Dialog indicates whether the
Output Options dialog (as shown here) is displayed when executing a report. It is sometimes
convenient to disable the Output Options dialog, especially if it is during design and testing time.
The drawback to this is that some of the parameters that are contained in the dialog box would
have to be set before hiding this dialog. Also, any changes desired would have to be done either
by re-activating the dialog box or specifying the changes in the Preferences dialog.

RAVE Reference Manual

Page 40

The default report print destination is determined by the settings under Print Destination in the
Printing Preferences, and is reflected in the Output Options dialog box. Changing the value in the
Print Destination area of the Printing Preferences will directly effect the default selection in the
Output Options dialog box. There are two options that can be chosen: Preview and Printer.
Selecting either one, by choosing the appropriate radio button, will make that option the default
value and when the Output Options dialog appears the default value will be selected.

The Preview Grid Options act in much the same way as the Grid (which are the lines seen on the
Page in the Visual Designer) does during design time. These Options allow a Grid to be displayed
on the Print Preview screen underlying the Report. The Grid settings allow changes for the Print
Preview Page, including Grid changes for color, style, and spacing adjustment. If the spacing is
both 0 horizontally and vertically, no grid will be displayed in the preview. But, placing numbers in
the horizontal and vertical spacing settings, will space the grid appropriately on the Print Preview
Page. The Line Color will change the color of the Grid. The Line Style drop-down menu will give
different options of line styles.

The Preview Options, as the name indicates, only affect previewing. There are six parameters
that can be set. When using the Preview, the window displayed by default is in normal state. Like
any other Window, the Preview can be Minimized or Maximized. To set the window display, use
the drop down menu in the Initial Window State setting.

The Zoom Factor indicates the default zoom percentage when the preview is first displayed. The
Zoom Increment specifies the Zoom percentage that will occur by each click on the Zoom
In/Zoom Out icons. As with the Page Designer, the preview screen can have a horizontal ruler,
vertical ruler, or both by specifying this in the Ruler Type (use the drop-down menu to make the
selection). The measurements can be indicated in either centimeters or inches.

The ShadowDepth is the level of shadow that is displayed on the preview screen and it is only for
on screen appearance and aesthetics.

The Monochrome Preview Display check box is there for backward-compatibility with some video
cards that would give problems when displaying reports in color. This is not recommended for
use, but is there if needed.

Report Preview
Although the Preview is primarily used for previewing a report, the Preview option has many more
capabilities than what is intuitively understood from its name.

Begin by executing a report. When the Output Options dialog appears, the Preview radio button
can be selected. Clicking OK will continue with the Preview process.

RAVE Reference Manual

Page 41

The Preview screen is used to see the output of the designed report. The actual appearance on
the screen resembles that of the printed report. The screen is based on a page-by-page output.
There is a toolbar at the top of the Preview screen that allows navigation as well as other
functions, which are explained in the following paragraphs.

Most of the functions permitted in the Preview screen can either be performed using the toolbar
or through the Preview menu options. We will go through and explain the menu options in the rest
of this section.

The first group of icons (separated by a vertical line on the toolbar), can be found in the File
menu. They are used for opening, saving, printing, and exiting the Preview of a report.

Although the Preview screen displays the current report in the designer, it can also be used to
load a previously saved report (with an NDR extension). This can be done by clicking on Open in
the File menu. A dialog box appears prompting for the desired report file. When the NDR file is
opened, the report that was previously in the Preview is discarded. This does not mean that the
report can not be regenerated. To get the previous report, simply re-execute the report and
choose Preview. Only the report that was Previewed upon execution can be regenerated. Other
reports can only be revisited if they were previously saved or if their projects are re-opened and
re-executed.

The Save As is used to save the report in the Preview. Click on Save As and the Save File dialog
appears. Use this dialog to save the current report to various formats, including PDF and HTML
(these two formats are covered later on this chapter). Another format that a report can be saved
to is the NDR report type, again this is a Rave snapshot of the report.

Although reports can be printed directly by choosing Execute and then Printer, the Preview
screen also provides this option, since many times it is necessary to check the preview of the
report before actually printing it.

The remaining functions directly affect the viewing of the report on the Preview screen. The
second section on the toolbar and the items in the Page menu are used for navigation between
pages. The buttons used to designate the options will look familiar to database users, since they
follow the same convention. The first button is used to move to the first page of the report. The
second button moves to the previous page. The third button is used to move to the next page,

RAVE Reference Manual

Page 42

and the last button can be used to move to the end of the report. On the toolbar, there is a page
indicator, which at all times reflects the current page and the number of total pages. This page
indicator can also be used to go to a page directly by typing the page in the edit box. Or use the
Go to Page in the Page menu. For example, entering 10 in the edit box will display the 10th page
of the report (providing there are 10 or more pages available).

Zooming is also available in Preview. The magnifying glass containing a plus sign will zoom in on
the page, while the magnifying glass with a minus sign will zoom out. Similar to the page edit box,
there is a zoom box that is used both for displaying the actual zoom and allowing the user to
enter a specific percentage value. Just type in a number and the Preview will be zoomed in or out
to that zoom percentage.

There are also two preset zoom values for fast navigation. The first one is the Fit to Page Width
option. By clicking on this, the report can be adjusted so that the width of the page takes up the
entire region of the preview screen. The second preset is Fit to Page. It can be used to view the
entire page on the screen. The side effect of this is that although the report can be viewed as a
whole, the actual contents might be difficult to read. Normally this can be used to get a general
overview of the report layout.

The preview window can be exited by either clicking on the Door icon located on the far right of
the toolbar or by clicking on the "X" button on the window (like any other window).

Executing to the Printer
Printing can be done, as mentioned before, via the Preview screen or directly when executing the
Report and choosing Printer as the Report Destination. One thing to notice is that the Output
Options dialogs are a little different when selected from the Rave Designer and from the Print
Preview.

The Output Options dialog that appears from the Rave Designer has more options than just
printing, as shown in the image.

In the Output Options Dialog there is a Setup option for Printing. The Setup button is underneath
the Cancel button and can be used to adjust the printer settings prior to the actual printing. This
includes options such as whether the report should be printed in landscape or portrait, the
resolution of the printer, the color depth, paper size, etc.

The dialog box also includes several Options such as the number of copies to be printed, whether
the copies should be collated, or duplex printed.

In the Output Options Dialog from the Report Preview (see image), there are some different
options available. The Print Range has three different options. The All option means to print all
pages in the report. The Selection option means to print a selection of pages not adjacent to each
other, i.e. "1,3,5,7" or "1,9-5,20". The Pages option prints a range of consecutive pages, i.e. "1-
10" or "15-19".

NDR & PRN Files
Printing to a file can be done several ways. We will discuss two that can be done directly from the
Output Options dialog. The Output Options dialog is obtained by executing the report (use the F9
key or execute through the Project menu).

The NDR, or the Rave Format, is a Rave snapshot of the report. An NDR file can be seen and
opened from the Preview window, but it cannot be changed or edited in the Rave Designer.

The PRN file is the Native Printer Output type file. When this option is selected, the information
that is usually sent to the printer to print a report is instead sent to a file. This file is saved based
on the file name the user gives.

To create either type of file, simply select desired format and then fill the empty File edit box with
a name for the file.

RAVE Reference Manual

Page 43

The NDR can also be made using the Save As option in the File menu in the Report Preview
window. Using the Save as type drop-down menu and entering a File name will create the NDR
file.

There are other ways to print to a file. These are only two formats. We will cover PDF and HTML
file in the next sections.

HTML
Rave has the capability to save reports as HTML files. This makes it easy to have reports readily
available over the Internet or through a company intranet. HTML files can be created in the Visual
Designer and in the Report Preview window.

To save a report as HTML from the Visual Designer, first get to the Output Options Dialog. Do
this by using the Execute Report from the Project menu, or by using the F9 key.

In the Output Options dialog box, choose the File option from the Report Destination area. Using
the Format drop down box to get to the HTML option will set the format to HTML. Clicking on the
disk, will allow the user to set the path of where to save the file to and to name the HTML file.

Once a report is saved and properly formatted it may be helpful to first Preview the report.
Preview the report by executing the report and choosing Preview from the Output Options dialog.
After looking the report over in the Report Preview, choose the Save As option in the File menu.
This will bring up the Save File dialog, where a report can be saved into HTML.

To save the HTML format, in the Save as type drop-down menu, select HTML files. Then type in
the name of the new HTML file in the File name edit box. When done, click Save.

Each page of the report will be saved as an individual HTML file. For example, a three-page
report would produce three pages of HTML. On each page, navigations links to the previous and
next pages are provided. Once saved, the HTML files can be viewed with any Internet browser.

PDF
A truly useful report is one that is portable over many different platforms. The PDF feature of
Rave makes this possible with the help of a free viewer. A report can be saved into PDF format,
and through the use of the Free Adobe Acrobat Reader, any person can open, view, and print the
report.

This option is available through the Execute Report (also F9) option in the Visual Designer File
menu or through Save As in the Report Preview File menu. Using the Report Preview allows the
user to see the layout of the report before saving it into PDF format.

After selecting Execute the Output Options dialog will appear from which the format can be
chosen. Also, the file name of the PDF can be set.

In the Print Preview, using Save As will bring up the Save File dialog and from there you can save
the report as a PDF type, as well as choose the file name.

To save a PDF, in the Save as type drop-down menu, select Adobe PDF. Then, type in the name
of the new PDF in the File name edit box. When done, click Save.

RTF
Rave also has the capability to save reports as a RTF (Rich Text Format) file. This file format can
be loaded into many word processors for a wide variety of reasons. For example, your report(s)
could be included in a company document as an attachment. Or a report could be loaded into a
word processor and then selected lines could be edited (highlighted, bold) to emphasis a point to
a particular audience.

This option is available through the Execute Report (also F9) option in the Visual Designer File
menu or through Save As in the Report Preview File menu. Using the Report Preview allows the

RAVE Reference Manual

Page 44

user to see the layout of the report before saving it into RTF format.

After selecting Execute the Output Options dialog will appear from which the output format can be
chosen. Also, the file name of the output file can be set.

In the Print Preview, using "Save As" will bring up the "Save File" dialog and from there you can
save the report as a RTF type, as well as choose the file name.

To save a RTF, in the "Save As" type drop-down menu, select RTF. Then, type in the name of
the new RTF in the File name edit box. When done, click Save.

Exercise: Changing Printing Preferences
Change Print Destination
1. Before beginning this exercise, create a new Project and place a few visual and text

components on the Page.
2. First, go to the Printing Preferences tab by either using the Edit Preferences icon on the

Designer Toolbar, or by selecting Preferences in the Edit menu.
3. Click on Printing in the Preferences option area (left of the screen).
4. Look at the Print Destination area and select Preview.
5. Now close the Preferences window by selecting the OK button.
6. Execute the report by pressing the F9 key, or by selecting Execute from the File menu.
7. When the Output Options dialog appears, notice that the Preview option is the default

value selected. Click Cancel when done.
8. Now, open the Printing Preferences again, and select Printer as the Print Destination.

Click OK when done.
9. Execute the report again, and in the Output Options dialog, notice that the Printer is now

the default value selected.

1. Before beginning this exercise, create a new Project and place a few visual and text
components on the Page.

2. First, go to the Printing Preferences by either using the Edit Preferences icon on the
Designer Toolbar, or by selecting Preferences in the Edit menu.

3. Next, make sure that Preview is selected in Print Destination.
4. Uncheck the Show Output Options Dialog in the Output Options area.
5. Select OK to close the Preferences dialog.
6. Execute the report by pressing the F9 key, or by selecting Execute from the File menu.

Notice that the Output Options Dialog did not appear; instead the execution went directly
to the Preview. If Printer had been selected in the Print Destination, the report would
have been sent to the printer.

7. To get the Output Options dialog back, go to the Printing Preferences and re-check the
Show Output Options Dialog in the Output Options area.

Grid Lines and Options in Preview
1. Before beginning this exercise, create a new Project and place a few visual and text

components on the Page.
2. First, go to Printing Preferences by either using the Edit Preferences icon on the

Designer Toolbar, or by selecting Preferences in the Edit menu.
3. Next, make sure that Preview is selected in Print Destination and uncheck the Show

Output Options Dialog in the Output Options area. We will be exploring the Preview for
this exercise, so using the Print Destination and Show Output Options Dialog to
execute quickly to Preview will be very helpful.

RAVE Reference Manual

Page 45

execute quickly to Preview will be very helpful.
4. When in the Printing Preferences dialog, make sure the initial values of the Preview Grid

Options and the Preview Options are exactly as seen in the image.
5. Click OK, when done.
6. Execute the report and just view the Preview of the window.
7. Now close the Preview window, and Open up the Printing Preferences.
8. In the Preview Grid Options, change the Horizontal Spacing and Vertical Spacing to 1.

Then change the line color by clicking on the color wheel.
9. Click OK when done.
10. Execute the report and notice the lines on the report in the Preview. These lines will not

appear on a print out, but are there if needed to help check layout and formatting.
11. Now, close the Preview and go to the Printing Preferences again. Change the Line Style

in the Preview Grid Options area to Dash. Also, change the Initial Window State to
Minimized.

12. Then, in the Preview Options, change the Ruler Type to BothIn. This will display both
the horizontal and vertical ruler in inches in the Preview. Also, change the Shadow
Depth to 10.

13. Click OK when done.
14. Execute the report.
15. First of all noticed that the Preview is minimized. This was set by the Initial Window

State. To expand the window to see the Preview, click on the first or second button.
16. Once the window is restored or maximized. There are several things to notice. First see

the dashed gridlines on the Page. These can be useful to check object alignment on the
Page. Also, notice the vertical and horizontal ruler. At the very far right edge of the Page,
notice the deep shadow behind the Page.

17. When done, go back into the Printing Preferences dialog. Put all settings back to their
original values. The image shown displays our values. These values will be used for the
remaining exercises in this chapter.

Exercise: Preview and Creating Portable Files
1. Before beginning, create a New Project. And on four pages, place text and objects.
2. Link the four pages together. Selecting the Page and the Property Panel was covered in

the previous chapter. Select the first page and in the Property Panel use the drop-down
menu in GotoPage to select Page2. Do this for every page. Select page 2, and make
GotoPage equal to Page3. Select page 3, and make GotoPage equal to Page4.

3. Next, go to the Preview window by executing the report. Select Preview from the Output
Options dialog.

4. At the top of the Preview window on the toolbar, there should be an edit box that has the
number 1. That area should read Page 1 of 4.

Navigating through Preview
5. Since there is more than one page, use the navigation buttons on the toolbar or in the

Page menu. Use the Go to Page # to jump to any page in the report.
6. Next, use the zoom tools to get a closer and an overall look of the report pages. This

also will allow you to become more familiar with moving around in the Preview.

Creating an NDR File through the Preview
7. To create an NDR (a Rave Snapshot File) from the Preview Window, go to the Save As

option in the File menu.

RAVE Reference Manual

Page 46

8. When the Save File dialog appears, use the Save as type drop-down menu to select
NDR files. And put in the name of the NDR file in the File name edit box, in this example
we used Text.ndr. Click Save when done.

9. Even though the file is already in the Preview, let's try opening the Test.ndr file.
10. Choose Open in the File menu.
11. The Open File dialog will appear. Look for the Test.ndr file in the directory you placed it.

Click Open when done.
12. The Preview will most likely look the same, as we did not change the report. But, look at

the top of the Preview window to where the name of the file is listed. So, as you peruse
through different NDR files, the name will always be listed at the top of the Preview.
Nothing in an NDR file can be changed; it is simply a way to view the report.

Creating a PDF file through the Preview
13. Since we are no longer using the executed file, close the Preview window. Execute the

file and select Preview again.
14. Now, select Open from the File menu.
15. In the Save File dialog, select Adobe PDF from the Save as type drop-down menu.

Then, type in a name in the File name edit box, this example uses test.pdf.
16. Click Save when done.
17. At this point you can go out to where your file was saved and open the PDF file. If you do

not have the PDF reader, go to www.adobe.com and download the free reader.

Creating HTML Files
18. In the Preview window, select Open from the File menu.
19. In the Save File dialog, choose HTML File in the drop-down menu for Save as type.

Then type in a name in the File name edit box.
20. Click Save when done.
21. When done you can go to the HTML file that was saved. We saved our html files in My

Documents. You will notice that there are four pages of the test.html, with consecutive
numbers after the test title. Each page in the report will have an associated HTML page.

22. Below is the first page of our test.html. This is test1.html, as it is the first page. Note that
at the bottom there are navigation links to the get to the next pages.

RAVE Reference Manual

Page 47

Exercise: Printing a Report through the Preview
1. In the Preview window, select Print from the File menu.
2. This will bring up the Output Options dialog. Use any of the print ranges to get any of the

pages of the report that you want.
3. When done, close the preview window.
4. Then execute the report, and select Printer. This too will send your report to the printer.

Exercise: Printing to a File (NDR & PRN)
1. Execute a report and select File.
2. In the Format drop-down box, there will be two options. Rave Format (.NDR) and

Native Printer Output (.PRN).
3. Make the desired choice.
4. In the edit box next to File, type in the name of the file.
5. Click OK when done

RAVE Reference Manual

Page 48

RAVE Reference Manual

Page 49

Chapter 8

Utility Toolbars

 In this Section:

• Alignment Toolbar introduced with Order, Spacing, and Alignment of
components
• Designer Toolbar introduced and its relation with Preferences explained
• How to read the Color Palette Toolbar and its designations
• Font Editor briefly introduced and explained
• Use of the Line Editor Toolbar is explained
• Functions of the Project Toolbar are introduced
• Zoom Toolbar functions covered

Tools are Tools
Even though the toolbars are called toolbars, there are two distinct types, relating to the function
performed. There are Utility Toolbars and Component Toolbars.

A tool is typically used to modify an item already on the Page, usually a component. A component
is an object placed on the Page, like a Region, Shape, Line, or Barcode (for more information
regarding components, see the Components Overview chapter).

This chapter will cover the Utility Toolbars, which contains tools (Color, Alignment, etc.) used to
modify components. Utility Toolbars include the Alignment Toolbar, the Color Palette Toolbar, the
Fill Toolbar, the Font Editor Toolbar, the Line Editor Toolbar, the Project Toolbar, and the Zoom
Toolbar.

Using Tools
The Utility Toolbars act on components and the Page Designer. Either a component or the Page
has to be selected prior to using the toolbar. For example, to change the fill color of a Square,
select the Square and then click on the required color.

By right clicking on a component, a popup menu will appear giving access to other options that
can change the component. These options are also available from the toolbars; the popup menu
just gives faster, easier access.

Alignment Toolbar

The Alignment Toolbar is used to align, order, and move a group of components on the Page. It is
important to note that some of the Alignment options only make sense when more than one
component is selected.

The first step is to select the components that need to be aligned. To select multiple items, hold
the shift key down and click the mouse on each object that needs to be aligned.

RAVE Reference Manual

Page 50

For most alignment options, the first component selected is what determines the alignment
position. For example, when choosing Align Left, all selected components will be left aligned to
the position of the first selected component. A red line on the icon designates the actual
alignment.

The Alignment Toolbar is divi ded into four sections by separators. The first two sections control
horizontal and vertical alignment options. Both allow components to align on the edges, centers,
or to be spaced equally.

The Order Alignment determines the Z order (depth along the Z axis)
between components. Order Alignment does not require more than one

component to be selected. To establish the Z order of a component, select the component and
right-click the mouse button to display the popup menu. From the Order submenu choose one of
the four options: Move Forward, Move Behind, Bring to Front or Send to Back. The figure to the
right shows a Rectangle with an Ellipse imposed in front of it. To move the Ellipse to the back of
the Rectangle, right-click the Ellipse (by right-clicking on a component previously unselected, it
will select it and bring up the popup menu) and choose Send to Back from the Order submenu.

There are an additional four buttons on the Alignment Toolbar, Tap Tools, which allows small
incremented movements of a component (or group of components). To move selected
component(s), click on the corresponding arrow to move the component(s) towards the desired
direction.

Designer Toolbar
The Designer Toolbar is used to control the
Preferences for the Page. All of the Designer
Toolbar items toggle. By clicking on a button,
the property of the component associated with
the button will change status. To change it back to the previous state, click on the button once
more. The top toolbar shows what the buttons look like when they are not pressed (toggle status
off) and the bottom toolbar is the resulting toolbar when the buttons have been depressed (toggle
status on).

RAVE Reference Manual

Page 51

Color Palette

The Color Palette is the tool used to change a color of a selected object such as a Line, Text
component, or the fill area in one of the shapes (Circle, Ellipse, Rectangle, or Square). Color
palettes are composed of several sections that show custom, standard and current colors. The
left button on the right side displays the currently selected Primary, while the right button shows
current Secondary color. All other color squares serve as the Color Palette from which you can
select.

To change the color of an object, select the object and either left or right-click on the Color
Palette. A left-click selects the Foreground Color (Primary) while the right-click selects the
Background Color (Secondary).

When a Primary Color is selected, a "1" will be placed on the corresponding color indicator on the
palette. Similarly, a "2" will be placed indicating the Secondary Color.

To change the color of an object (like a Rectangle), first select it and then click on the desired
color with the left mouse button. To change the Fill Color, click on the desired color with the right
mouse button.

Double-clicking on the user defined Custom Colors (right side) or on the Foreground and
Background Color boxes will open a more detailed color control window called the Color Editor.
From the Color Editor, custom colors can be created by adjusting the red, green and blue values,

"Activate Grid" controls whether the grid lines are visible or not on the Page Layout

"Snap To Grid" controls whether the objects on the Page 'snap'. Snap means that the
component will only move and resize according to where the Grid
Lines are present

"Grid On Top" determines whether the Grid Lines are always on top of the
components or not (i.e. are not hidden when components are placed
on the Page Designer)

"Always Show
Band Headers"

controls the displaying of band headers

"Show Rulers" toggles the appearance of guide rulers in the environment

"Show Waste
Area"

displays the space between the Page boundary and the end of the
Page Setup Boundary

"Edit
Preferences"

will bring up the Preferences dialog

RAVE Reference Manual

Page 52

as well as the saturation of the color by increasing or decreasing the color percentage.

To create and save a new color, use one of the Custom Colors to enter into the Color Editor, then
click on the New Color button and choose the desired color from the Color dialog box. By entering
the Color Editor from one of the Custom Color boxes, the new color will be saved. If the Color
Editor is entered from either the Primary or Secondary Color boxes, the color will only be saved in
those boxes until a new color is chosen (either by clicking on the right or left mouse button or by
the creation of another color).

It is important to note that the actual exhibited colors are dependent on the display settings of the
computer. If there are issues with colored objects when transferring reports from one system to
another, check the display color settings. A 256-color setting only uses 256 colors for display,
where as a True Color setting uses millions of colors. Thus, for example, if a Report is created on
a system set at True Color, and then viewed on another system set at 256 Colors, some objects
may appear grainy or to have the wrong color shadings.

Font Editor

The Font Editor can be used to change the type, size, attributes and alignment of any text
component in the report. Its aspect and functioning is very similar to Font Toolbars found in the
most commonly used Word Processors.

To change the Font settings of a Text component, first select the component. The font type can
be adjusted by choosing a font from the drop-down list. Similarly the size can be changed by
clicking on one of the available sizes for the font in question. The Bold, Italic and Underline
buttons are toggled depending on the state of the text. To set the font to Bold, just click on the
Text component and then press the Bold button. The button will then remain depressed until it is
clicked on again or until focus is moved to a different text object that does not have the Bold set.
The Italics and Underline button work in much the same way. There are three alignment buttons
that indicate the alignment of the text within the area it is contained, and the options are left,
centered, and right-justified. All text-based components have a property called Font that appears
in the Property Panel when the component is selected. Any changes made to the Font, are
reflected both in the font toolbar and in the Font property.

NOTE: It is important to note that if a font is chosen on the development machine and this font is
not available on the deployment or any other machine, Rave will assign the next most similar font
to the one chosen.

Line Editor
Use the Line Editor to modify the style and thickness of a line or the border of a shape. The Line

RAVE Reference Manual

Page 53

Editor Toolbar has several selections to choose from including line styles (solid or combinations
of dots and dashes).

To change the style of a line, first select the line or shape, and then choose the point size of the
line as Hairline. Finally, choose the style of the line.

To change the thickness of a solid line, first select the line or shape. Then choose the point size
desired.

Line style only (dashes, dots, etc) applies if the line thickness is hairline. If a line is set to a certain
style (like dashes) and then given a thickness other than hairline, the line style will be changed to
a solid line.

Project Toolbar

The Project Toolbar provides the basic functionalities for a Project. It gives a quick easy way to
complete the common tasks associated with managing a Project. All options available on the
Project Toolbar are accessible through the main Project menu in Rave.

The first three icons deal with managing projects:

"New Project" creates a new Project

"Open Project" opens a previously saved Project

"Save Project" saves the current Project

RAVE Reference Manual

Page 54

The next three icons deal with creating specific aspects of the current project:

"New Report" will create a new Report that will be contained in
the same Project file (.rav file). Rave can have
more than one Report per Project file

"New Global Page" creates a new Global Page

"New Data View" allows the creation of DataViews that are
associated to the current Project. Please see
Connecting to Data chapter more information
about DataViews.

The last two icons deal with the currently selected Report.

"New Page" creates a new Page in current Report

"Execute Report" execute (or print) the current Report

Zoom Toolbar
The Zoom Toolbar allows the user to Zoom In to view the details of a document better or Zoom
Out to view the overall Page uniformity. Within the Zoom Toolbar, there are several ways to zoom
into and out from the details of the document.

To Zoom by Percentage, the Zoom Factor drop menu has many preset
percentage factors to Zoom in and Zoom out. Simply choose the desired Zoom
Percentage. If one of the presets is not adequate the you can specify a

percentage by typing the desired percentage into the edit box next to the zoom factor drop menu.

Another method to get a customized size is to click on the Zoom Tool (magnifying glass).
Drag the tool over the specified area that needs to be magnified.

For a simple manual Zoom In and Zoom Out, click on the magnifying glasses with the "+"
and "-" sign. Nothing will need to be selected to use this tool. Each click is set to a
specified incremental amount that is set in the Preference settings. To get to the settings

area, go to Preferences in the Edit Menu. In the Edit Menu, select the Designer Tab. In the area
called "Zoom Increment", increase or decrease the percentage by using the up/down arrows to
increase the percentage or simply type in the percentage.

To zoom in on selected items, use the magnifying glass with the dashed box. First select
the desired item(s), and then click on this tool. The viewable area will frame all item(s)
selected.

RAVE Reference Manual

Page 55

.

Use the "Page Width" button to zoom to the full width of the currently selected Page.

Use the "Whole Page" button to Zoom to the full page size of the current page.

Exercise: Aligning Components
This exercise will demonstrate how to align components. The example images have six
numbered lines of text.
1. To begin, drop several Text components onto a Page. In this example, the components

have been number labeled

2. Lines two, four, and five will be aligned. Lines three and six will also be aligned

3. Select Line Two. This will be the primary component that the rest of the components
alignments will be based on

4. While holding the shift key, select lines Four and Five to be aligned with Line Two. Notice
the light gray border that appears with pips

RAVE Reference Manual

Page 56

5. Once all components have been selected, choose Align Left Edges on the Alignment
Toolbar. Notice that all three components left edges have been aligned

6. To further show how the alignment works, click on the Align Right Edges button on the
Alignment Toolbar

7. Go through the rest of the Alignment tools to see how they function
8. Let's align the second set of text. First, select the primary component to base the

alignment on, in this case Line Three

9. Then select the other component(s) that will be aligned, by holding the shift key and
clicking on Line Six

RAVE Reference Manual

Page 57

10. Then click on the Align Left Edges to align the components.

Exercise: Ordering Components
Ordering refers to the ordering of components along the Z-axis. This is the axis that comes out of
the Page.

To order components along the Z-Axis, the order buttons on the Alignment Toolbar must be used.
1. To begin, there must first be components on page. These can be any components. For

this example we will use a Rectangle, Oval, and Circle

2. First select a component to move. In this example, the rectangle will be moved behind
the Oval. Notice in the Project Tree the placement of the Rectangle component

RAVE Reference Manual

Page 58

3. Once the rectangle is selected click on the Move Behind button on the Alignment
Toolbar. Notice that after clicking the button once the rectangle has not moved behind
anything yet, but on the Project Tree the rectangle has moved up the tree

4. Try clicking on the Move Behind button one more time. The rectangle will move up the
Project Tree and the Rectangle on the page will move behind the Ellipse

5. For the second component, select the circle and click the Move Behind button. The
Circle component will move up the tree and move behind the Ellipse

RAVE Reference Manual

Page 59

6. Click on the Move Behind button once more and the Circle will move up the tree one
more time and remain behind the Ellipse

Exercise: Snapping to the grid
Snapping to Grid refers to the moving and resizing of components according to where the grid
lines on the page are present.
1. To begin, bring up the Preferences Dialog box by selecting Preferences from the Edit

menu
2. Select the Defaults tab and look for the area labeled Grid Spacing
3. In Grid Spacing, change to .02 units. Then look for the area called Draw Grid Every
4. In Draw Grid Every, enter 1 line (type or use the up and down arrow). Draw Grid Every 1

(that's what we chose) line, will show every Grid line made. If this were changed to Draw
Grid Every 3 lines, then for every third line the Grid would be marked in the Visual
Designer

5. Next go to the Project menu and choose New. This will create a new Project, as well as
a new Report Page, that is based on the preferences that were just changed in the
previous steps. Remember the Grid lines serve only as page guides for designing
reports; they do not show up in any report executions

6. Go to the Designer Toolbar and click on the Snap To Grid
7. Now that the Report Page is created, drop a rectangle on the page
8. Now move the rectangle around and notice that the rectangle only moves according to

where the lines are located. Try using the tap buttons. Notice that the component doesn't
seem to move until the tap button moves are on one of the grid lines

9. Now to go the Designer Toolbar and click on the Snap To Grid button to turn the feature
off

10. Move the rectangle and notice that the rectangle will move to positions between the grid
lines

RAVE Reference Manual

Page 60

Exercise: Changing Line Size and Color of a Rectangle
1. Create a new Report Page
2. Drop a rectangle component on the Page
3. Look at the Color Toolbar. Notice the color blocks marked 1 and 2, you can review

Primary and Secondary Designations in this chapter
4. To make the color change more notable in this example we will increase the boundary

lines of the Rectangle. Bring up the Lines Toolbar. Select the Rectangle. Then in the first
Lines Toolbar drop-down box, choose a larger border size. In this example, the
borderline has been increased from hairline to 2.25 points.

5. Left-click on any color in the Color Toolbar. In this example the color Olive was selected.
Notice that the border has changed to Olive. Also notice that the Primary Color has
changed. The Primary Color is the color of the border.

6. Right-click on any color. In this example the color Blue was selected. Notice that the fill
inside the Rectangle has changed to Blue. Also notice that the Secondary Color has
changed. The Secondary Color is the color of the inside of the Rectangle

Exercise: Changing Fonts
1.

Create a new Report Page.

2.

Drop four Text components on the Page.

3. Select a component, and then view the Font Toolbar.

4. On drop-down menu displaying the Font Name, click on the down arrow and choose a
desired font.

5. Go to the next component and repeat Steps 3 and 4. Do this for all remaining Text
components.

6. Also, try using the font-sizing drop-down menu. As well as the Bold, Italic, and Underline
options

7. The last three buttons to the far right deal with placing the font as left-justified, centered,
and right-justified. Practice using these options to get the desired formatting effect.

RAVE Reference Manual

Page 61

Chapter 9

Standard Components

 In this Section:

• Explains the difference between a Text component and a Memo component
• How to use a Section and its relationship to the Project Tree
• How to insert BMP and META files

Overview

The Standard Toolbar contains seven components: Text, Memo, Section, Bitmap, Metafile,
FontMaster, and PageNumInit. Several of the Standard Components are used most frequently
when designing reports. This chapter will provide a detailed explanation of the first five. The
remaining two (FontMaster and PageNumInit) are covered in the Advanced Components chapter.

Access to the Standard Toolbar is achieved in the same way as with other toolbars. If it is not
present on the screen, it can be displayed by selecting it from the Toolbar submenu in the Tools
menu.

Text
The Text component is useful for displaying a single line of text on the report. It acts
basically like a label that can contain simple text (not data). When placed on the report,
the Text box is surrounded with a box that indicates its boundaries. This can only be

seen while the text component is selected (represented by the pips).

The component can be used for labels, such as for figure or graphical titles, floating text, form
titles, and in general just about anything that is denoted by a single line of text.

When the component is selected, the length of the text can be adjusted by resizing it using the
pips. Note however that the height of the text is self-adjusting and does not require further
intervention by the user.

Like any other text-based component, there is a Font property that can be used to change the
font type, size and style. The color can be set using the Color property. The actual text of the
component, which is seen on the screen, is denoted by the Text property.

There is an additional property called Rotation, which can be used to rotate the text by a specified
number of degrees. The effect can only be seen at runtime.

Memo
Memo components are similar to Text components. However the most noticeable
difference is that Memos can contain multiple lines of text. Memos can be used on forms
for areas of explanation, and for titles or comments that are longer than one line.

Similar to the Text component, the border around the Memo can only be seen when the
component is selected. When setting the Font of the Memo, all the lines of text in the Memo will
have the same font. It is not possible to set different fonts for certain parts of the text.

RAVE Reference Manual

Page 62

To change the text in the Memo, go to the Property Panel and use the Text property. The Text
property will show "(Memo)" and an ellipse button, which are three dots. Click on the ellipse
button. This will open up the Memo Editor. Text can be entered into the Memo Editor.

One of the main problems with using multi-line text components is that the text might overlap in
height on to other components on the Report. To prevent this, set the ExpandParent property to
True. This will expand the Parent of the Memo component to properly accommodate the Memo
component.

Once the text is entered, the Memo box can be resized. The text within the Memo box will be
repositioned accordingly. If there appears to be text missing from the Memo box, after it has been
entered into the Memo Editor, resize the box to allow all text to be visible.

Section
The Section component is used to group components. This provides advantages, such
as allowing all the components that form part of the Section to be moved together with
one mouse-click, as opposed to moving each component individually or trying to select

all components before moving.

To use the Section Component, first press the Section Component button and then use the
cursor/arrow to make a selection on the Page. When the selection is completed, there will be a
box marked by dashes with green pips. Within this area, place any components that need to be
grouped together.

The Project Tree becomes very helpful when dealing with the Section component. From an
expanded Tee, it is easy to see what components are in each Section. Each Section and
component can also be easily selected simply by clicking on the appropriate object in the Tree.

If an object is ever placed beyond the viewable section area, the Project Tree can be used to
select the object. Once the object is selected, the object's border pips can be seen and thus its
location. The object can then be deleted or moved (hint: to move use the tap buttons in the
Alignment toolbar).

As seen from the relationship with the Project Tree and the Section component, there is a need to
understand Parent-Child relationships between components. To read more on these types of
relation ships see the Project Tree Panel chapter, it contains a section on Parent-Child
Relationships. The Section component also becomes very important when mirroring. Mirroring
will be covered in the Managing Report Projects chapter. For now, just know that once the
Section component is mastered, using this with mirroring will become extremely helpful.

Bitmap and Meta File
The Bitmap and Metafile components enable images to be placed in a report. Bitmap
supports image files with the extension ".bmp", and MetaFile supports image files with
the extensions ".wmf" and ".emf".

To insert an image, first click on either the BMP or the META buttons on the Standard
components toolbar, then click any location on the Page. A placeholder box with an X will

appear on the Page, and the box may be bigger than what the image will be. This can be fixed
after the image is loaded.

Once the BMP or META placeholder is on the Page, go to the Property Panel and to the FileLink
property. Click on the ellipse, the button with three dots.

This will bring up the Open Dialog. Find the image file, select the file, and click Open.

Once the image is loaded, resize the placeholder pips on the image border.

Exercise: Text vs Memo
The decision to use either a Text or a Memo component is quite easy. If there is only a single line

RAVE Reference Manual

Page 63

of text to be placed on a Page, use the Text component. Use the Memo component when there is
more than one line of text to be used.

To place and change a text component:
1.

Click on the Text component located on the Standard Toolbar. The component
button will change colors to designate activation.

2. Click once on the Page. The Text component will appear on the Page. Also notice that a

new component will be added to the Project Tree under the Page that it was placed.
3. Go to the Property Panel and in the Name property change the name of the Text

component.
4. In the Text property, change the default text to the desired text to be displayed on the

Page.
5. View the Property Panel and the Page. Notice that the Project Tree has the Text

component changed to the name entered in the Name property. Also, on the Page the
component has the desired text typed into the Text property.

To place and change a memo component:
1.

Click on the Memo Component located on the Standard Toolbar. The component
button will change colors to designate activation.

2. Click once on the Page. The Memo component will appear on the Page. Also notice a

new Memo component will be added to the Project Tree under the Page that it was
placed.

3. Go to the Property Panel and in the Name property change the name of the Memo
component. This will change the name of the Memo component in the Project Tree
under the Page that the component was placed on.

4. In the Property Panel, go to the Text property. Click on the ellipse, the button with three
dots (…).

5. The Memo Editor will appear. In the Memo Editor, type in the text that needs to be
placed on the Page. The Memo will recognize returns made with the Enter key.
Remember though, that the Memo will be subject to the size of the Memo box on the
Page.

6. When the text has been entered, click OK.
7. When done, the Memo component can be moved or resized by using the green pips.

Exercise: Section
To create and use a Section Component:
1.

Click on the Section component. The component button will change colors to
designate activation.

2. Click on the Page, and a dotted box will appear with pips at its boundaries. This is the

Section component.
3. In the Project Tree, notice that the Section component was added under the Page it was

placed.

RAVE Reference Manual

Page 64

placed.
4. While the Section component is selected, place any other component into the Section.

When done, notice that the placed components will now be under the section in the
Project Tree.

5. Once components are placed into a Section, all the components can be moved together.
To try this out, place the cursor on the border of the Section, click and hold, then drag
the Section around the Page.

6. The Section can also be resized. Click and hold any of the pips and then move the
cursor in the desired direction, the Section box will resize.

7. When done, click anywhere on the Page to deselect the Section component. The
Section is an invisible border displayed by a dashed rectangle, but it will not be printed.

Exercise: Placing and Resizing Bitmaps
1. To complete this exercise, find a Bitmap (BMP) image on your computer. The image will

have a ".bmp" extension at the end of the file name. Remember the location of this
image.

2.

Create a New Report Page. Do this by selecting New Report Page from the
Project menu.

3.

On the Standard Toolbar, click on the BMP button.

4. Then click once on the Page to drop the Bitmap component. The green pips will appear

around the edges to indicate that it is selected.
5. While the Bitmap component is still selected, go to the Property Panel. Look for a

property called FileLink Property. There will be three dots, called an ellipse button, to the
right of it. Click on the ellipse button.

6. Using the Look in drop-down menu and selecting the image in the box below. Once The
Open Bitmap dialog will appear. Find your Bitmap image on your computer by the file is
selected, click Open.

7. The image will appear on the Page with green pips around the image.
8. Now look at the Property Panel and look at the property MatchSide. This property deals

with the proportions of the image when it is resized using the pips.
9. Click on each of the MatchSide choices and move the image around a bit to see the

effects of the choices.
10. This is msBoth. The pips on all sides allow the resizing of all pictures in all directions.
11. This is msHeight. This helps in resizing the pips according to height, while still keeping

the image proportional. Using the top and bottom pips will resize the image.
12. This is msInside. This allows proportional resizing, but all resizing is done with in the

limits of the pip. The image doesn't leave the borders of the pips.
13. This is msWidth. This does proportional resizing according to the left and right pips of the

image.

RAVE Reference Manual

Page 65

Chapter 10

Drawing Components

 In this Section:

• Explains how to place a Drawing Component.
• Describes all the Drawing Components.
• Discusses Pixels vs. Points.

Drawing Component Basics
All the Rave graphical components are created using the Drawing Components.

To use any of the Drawing Components, click on the desired component in the Drawing Toolbar
then click once on the Page or other container component. This will create the object on the Page
or other container component. Once the component object is created it can be resized to the
desired dimensions by dragging the pips around the selected object border. Also, to color and
stylize the components, use the Fills (where applicable), Lines, and Colors Toolbars. For more
information on these toolbars, see the Utility Toolbars chapter.

The Property Panels of each drawing components are almost identical. The Name property may
be the only thing that distinguishes one Property Panel from another.

The Line component can be used to draw a line in any direction. Angled lines may be
used to draw lines between rotated lines of text. They may also be used as diagonal
lines inside a square giving the effect of a box with an "X" in it.

Line styles may be set for the line; however, you should be aware that when setting line styles it
is best to stick with a line width of one. Line styles are often ignored when the line width is any
greater than this.

The HLine component may be used to draw horizontal lines. One of the common uses
for the horizontal line is to drop one into a DataBand and set it so that it is positioned at
the very bottom of the Band. It is also set to stretch the whole length of the Band. When

the Band is printed, the line creates the effect of having the Band information printed on lined
paper.

The VLine component may be used to draw vertical lines. One of the more common uses
for the vertical line is to drop one into a DataBand and set it so that it is positioned in
between various data fields that are being printed. The height of the line is set to the

same height of the Band. When the Band is printed, the vertical line gives the effect of having the
information printed in nice neat columns.

The Rectangle component may be used to draw rectangles. One of the more common
uses for the Rectangle is to drop one into a DataBand and set it so that it is sized to
completely fill the band. It is then moved to the back so that other components dropped

on the Band will print over the top of the rectangle. When the Report is printed, this gives the
effect of having a nice block around the rows of printed data.

RAVE Reference Manual

Page 66

The Square component may be used to draw squares. A common usage of this
component is showing checked or unchecked boxes. The checked boxes are created
with the use of the Square component and the Line component, or perhaps by simply by
placing an "X" in the Square. This is useful when trying to illustrate items that have been

selected.

The Ellipse component can be used to draw an ellipse or oval shape, more simply
defined as a flattened circle. If you want to change the shape of the Ellipse, you can do
this by clicking on the Ellipse with the left mouse button. Then move the mouse over one

of the pips that will appear. Press the left mouse button again, and while continuing to hold the
mouse button down, move the mouse until the Ellipse is the desired size and shape. You can
also resize the Ellipse by setting the properties directly using the Property Panel. Simply enter
new values for the Width or Height properties.

The Circle component can be used to draw a circle with a constant radius. If you want to
change the size of the Circle, you can do this by clicking on the Circle with the left mouse
button. Then move the mouse over one of the pips that will appear. Press the left mouse

button again, and while continuing to hold the mouse button down, move the mouse until the
Circle is the desired size. You can also resize the Circle by setting the properties directly using
the property panel. Simply enter new values for the Width or Height properties.

Pixels vs Points
For every Drawing Component, the Property Panel has two properties that deal with Line Width.
The LineWidth property is a numeric value for the width of the line, which depends on the
LineWidthType. The LineWidthType property actually lets the user determine which type of value
the line will be set. The Types available are Points and Pixels.

When creating drawing objects, it is important to determine in what format the audience will be
seeing the Report. This is important when determining if Points or Pixels will be used for the line
width type.

Points are a unit of print, not a unit of screen space. Points are the unit of measurement used
most commonly with paper design. It has meaning in the paper medium. Unfortunately, points are
meaningless on the screen and the web. Due to platform and resolution differences, something
like 14pt can mean many things. What it does not mean is a specific unit of screen size. Pixels,
on the other hand, are defined unit. A pixel is always equal to a pixel.

Points and Pixels Preferences are dependent upon what the designer wishes the user to
experience. To let the user adjust the text size at will or let the user's internet browser preference
determine the size, specify points. If the design depends on a rigid text size or if the text size
must be consistent across platforms, specify Pixels.

To print the thinnest possible line, use a Line Width of 1 pixel. For thicker lines, values in points
should be used for consistency across printers with different resolutions.

Exercise: Creating Drawing Components
1. First create a new Page. Use New Report Page from the File menu, or use the icon on

the Project Toolbar.
2. Now, go to the Drawing Toolbar. Pull it down from the Tab area, so that we can

concentrate on it here.

3. Click on the Square, notice

that it's button changes to a
depressed button and
changes color. Click your
cursor on the Page and
hold down the left mouse
button while dragging out

RAVE Reference Manual

Page 67

button while dragging out
the shape of the square.

4. Next, click on the Ellipse.
Click on the Page and hold
down the left mouse button
while dragging out the
shape of the Ellipse. The
Ellipse outline will look like
a Rectangle, but once the
mouse button is let go the
ellipse shape will appear.

5. Then, click on the

Horizontal Line and draw
them on the Page. Do this
for several lines. Make
them different lengths.

6. One thing to notice for

every shape, when the
mouse button is released
pips outline the shapes.

RAVE Reference Manual

Page 68

pips outline the shapes.
When all shapes are
selected the pips appear.

Exercise: Alignment
1. First create a new Page. Use New Report Page from the File menu, or use the icon on

the Project Toolbar.
2. From the Drawing Toolbar, click on the horizontal line button then click on the Page. The

line will appear as the default line size on the Page. The clicking on the button and
clicking on the Page is what we call dropping an object on the Page.

3. Select the horizontal line by clicking on it.

4. Go to the Property Panel and change the default value
of the line by typing 2.5 into the Width property edit box.

5. Drop down at least 10 additional horizontal lines about
an inch below the first one.

6. Drop down one more horizontal line about 3 inches
below the first group of lines.

7. Select the top horizontal line by clicking on it. The green
pips will appear at the ends of the line when selected.

8. While the first line is still selected, hold down the Shift
key and start clicking on the other lines. This will add all

RAVE Reference Manual

Page 69

key and start clicking on the other lines. This will add all
the other horizontal lines to the selection. To select the
remaining lines faster, while the first line is selected and
any other additional lines are also selected, keep
holding the Shift key and click on the Page and drag the
resulting box over the rest of the lines.

9. In the Alignment toolbar, click on Equate Widths
alignment button. This will make all the lines the same
width as the first selected line.

10. On the Alignment Toolbar, click on Align Left Edges
button. This will align all the lines to the left edge of the
first selected line.

11. Next, on the Alignment toolbar, click on Space Equally
Vertically. This will space the lines equally away from
each other on the vertical axis. For more exercises on
Alignment, see the Utility Toolbars. Chapter.

RAVE Reference Manual

Page 70

RAVE Reference Manual

Page 71

Chapter 11

Database 101

 In this Section:

• Gives an overview of databases.
• Explains the needs to make up a database.
• Describes the data table structure and how it relates to reporting.
• Explains database relationships.

Overview
Information to the left, information to the right, information above and below, we are swimming in
a sea of information. The advent of the computer age has not helped. In fact, we now have the
ability to store absolutely huge amounts of data. This can easily result in information overload for
both individuals and managers. Something is needed to manage this overload potential. The first
thing is that the information must be organized and stored in an efficient manner that aids in the
quest to extract answer(s) from that wealth of data. One of the methods to retrieve answers is to
use a reporting tool (like RAVE) to organize and display the answers in a manner that is easily
understood by the reader of the report. But before a reporting tool can extract the information, it
must be aware of the structure of the source of information. That container of the information in
simple terms is a data table.

This section is intended to assist those that are not familiar with database design goals or might
need a quick refresher. This section is not designed to cover this subject in depth, as this is best
left to the many thick books already published on this subject and to more formal educational
courses.

What is a database?
Let's begin with some real world examples to describe the concepts of a
data table. For example, a library contains lots of information stored in rows
and rows of shelves containing books, pamphlets, etc., which is usually
arranged according to the Dewey decimal system. To find a book, a card
catalog is used to look up the subject or author, noting the Dewey decimal
code. Then, the desired book is found and retrieved by going through the
stack that contains the book code (if it isn't checked out).

Look up options are far more flexible if the
library has a computerized card catalog. Now picture a library with
no Dewey decimal system, no order but still the same amount of
books. Try and find something in that library. It would be very tough
and take a long period of time.

Now, change the words. Change book to information and library to
database and we are on the way to explaining what and why of
database management system. A library is a collection of
knowledge (books) arranged by the Dewey decimal system.

A data table is a collection of information arranged according to
some predefined table structure. We will now examine what is needed to design or use a data
table.

RAVE Reference Manual

Page 72

Terms
To better understand what it takes to create a database, it is necessary to understand the
database lingo.

Database Management System

A Database Management System (DBMS) is the complete system for managing data
(information). There are many commercial examples of companies that are known for their DBMS
programs. Some of the more well known include Informix, Interbase, Microsoft Access, Microsoft
SQL, Oracle, Sybase, and many others. A DBMS can be confused with the physical data file(s). It
must be noted that the data table is only one part of a DBMS. However, the real world does
require that when extracting information from a DBMS that the structural concepts of a data table
be understood. Fortunately, most of the terms are common between the various DBMS. This
does not mean a person needs to be an expert in the database field, just knowledgeable.

Table

A data "Table" is a collection of things like phone numbers, names and addresses. The "report" of
this example table would be a telephone book. Of course, a telephone book has some
restrictions, like do not include unlisted phone numbers in any print outputs. In some cases, the
phone company will have a billing address that is different from the address location for the
phone itself.

Now look at a phone book and notice that it is arranged in rows and columns. A
row (sometimes called a record) shows the items related to a single member
(person) of that table. Each column (sometimes called a field) is giving a specific
piece of information about that member, like their name or phone number. While
we are here, the order of the phone book (table) is done with an index (sometimes

called a key). So, a phone book could be arranged by last name or by phone number.

Structure

Each specific piece of information about a member of a table has attributes that define it for its
DBMS.

Typical attributes for each table (file) include:

• date the table was created

• date the table was last modified

• number of columns defined for table

Typical attributes for each row (record) include:

• Length

• Record number

• Status (locked - deleted)

Typical attributes for each column (field) include:

• Name - a column name that usually "describes" its contents

RAVE Reference Manual

Page 73

• Type - character, numeric, date, time, blob etc.

• Length - maximum size of this item (might include number of decimals for numeric types)

A data table is comprised of information arranged according to a pre-defined structure. The
structure of each table is important, because the row and column definitions are used by a
reporting tool to extract, arrange and show information.

In the phone table example, there are the following fields: name, address, and phone number
information. How are those columns (fields) defined? They are defined by the name of the
column; meaning name might be called "name", address called "address", and phone number
called "phone". But defining the main fields may not end at these simple definitions. For example
the "name" field might be broken into three or more sub-fields, like "first", "middle" and "last".
These three pieces as well as the first three main fields could then be manipulated as needed by
any reporting tools. The three name sub-fields could be combined for a "full name" output or the
first letter of the "first" name could be combined with "last" to make a short version of the name.
Also, "phone" could be called "number" or "telephone" and the phone number could probably
contain only the numbers with no formatting characters. Rave makes the task of understanding
the table structure relatively easy as it does most of the work. Once the data connection is made,
Rave will extract the table structure and from there the columns (fields) can be chosen as
desired.

Query

Rarely is there a need to print all the information in a database. Frequently, there is a need to
reduce data by selecting a range of rows (records) in a data table. Data reduction is an important
part of information management. One method of accomplishing a reduction is to do a query of the
table to only show those rows that meet the range limits that need to be retrieved.

One of the more common query methods is called SQL, which stands for Structured Query
Language. Some data tables are SQL compliant. A SQL query allows inquires of a DBMS for
information, and the DBMS searches its tables according to the given SQL statement and return
a "set" of rows (records) that meet that query.

Client-Server

A method of setting up computer programs used by many people, where the database resides on
a central computer accessible to all (the back end), and the user interface resides on the user's
computer (the front end). All selection of specific data rows and processing is done back on the
host computer minimizing the transmission of data through the network cabling. Significant
improvements are achieved to the overall system performance by only transmitting relevant data
through the cables. Thus, a well-configured Client-Server system can yield excellent performance
gains in applications used by several people.

Relational Table
Now the phone book example is good for simple data tables (flat files). However, it is not an
efficient design for many real-world needs. We can stay with the phone company, just not the
phone book for a more typical need. Every month the phone company needs to send a bill out to
each customer. This bill is a good example of a "master-detail" type report. One part of the bill
comprises the master (static) information about the customer like: their name, billing address and
phone number. Another part of the bill contains the detail (variable) information, like an output line
for each phone call made including its length and cost. The variable information could be only one
page or for some customers many pages.

There is one important detail in any master-detail work, understanding the concept of a primary
key (link key). When a customer gets a phone bill, that customer expects only to receive a listing
of their calls; they don't expect calls made by other people to be listed. In order for this customer
bill to be created, this means that there needs to be only one master row, called a primary key, for

RAVE Reference Manual

Page 74

all the detail rows. In the customer bill, the primary (link) key would be the phone number. The
primary key must be unique, which in general usually makes it more difficult to change a primary
key once it has been assigned. But, there are some DBMS that allow the primary key to be a
combination of columns (fields).

That is the quick review of Database operations. To ensure efficient design, with table structure
control, there are a few more subjects to be aware of like: "Client-Server", "Normalization",
"Relational DBMS", "One to One" "One to Many" and "Many to Many" relations.

One-to-One

One-to-one is two separate tables with the same primary key. Therefore,
knowing the primary key allows look up of data for a first row in one table, and
for a second row in another table. One to one relationships are rare because it's
usually easier to put both tables' columns into a single table. One-to-one
relationships probably don't meet the first level of "Normalization" rules.

One-to-Many

This is accomplished by placing the primary key value of the ONE side of the
relationship into an ordinary column of the MANY side of the relationship. For
instance, if each employee can belong to only one department, then you could
have a "department" column in the employee table, which, for each employee,
would be filled with the primary key value for the row of his department in the
department table.

Many-to-Many

This is difficult to explain, as the real-world examples are complex. If there were
several employees that were part of several departments, then this would be a
many to many situation

View

Some DBMS have an ability for a user to define a form to show contents of
information taken from one or more other tables. A view is a definition of a form and has no data
of its own. It often includes a query that is executed whenever the view is the subject of a
command. Use views to control access to individual columns in a table, or to make two or more
tables appear as one.

Reporting
How does all this relate to designing reports? With the definitions defined, understanding the
report design structure and options will be easier. Now you are ready to read the sections on
DataView Connection, DataField which will tell how to use Rave to connect to your data table(s)
and how to identify the specific column (field) contents to the Rave designer.

RAVE Reference Manual

Page 75

Chapter 12

Connecting to Data

 In this Section:

• Explains what a database connection is.
• Show the different methods of retrieving data from a database.
• Explains the SQL Editor and how it is used.

Database Connections
A reporting tool would be quite pointless if it did not allow methods of displaying information
contained in databases. One could only go so far with designing non-data reports. Connecting to
data in Rave is one of the more powerful features, not only because of the wide variety of
databases and methods supported, but also due to the simplicity of the steps required to make a
report data-enabled.

A database connection in Rave is the primary pillar for connecting to a database with SQL
DataViews.

Creating a Database Connection
To create a new Database Connection, click on the DataView icon on the Report toolbar,
bringing up the Data Connection Wizard. The first step is to select Database Connection
from the list of options available. When done, click Next.

After clicking on the Next button, the second step of the wizard displays the different type of
connection options available. The selection depends on the different Rave DIBL Links that are
installed on the system. DIBL stands for Database Independent Layer. It is a proprietary system
that allows interactions with databases independently of what these database system are
(whether it be SQL Server, Interbase, Oracle, etc).

In a folder under the Rave root directory, there should be a folder called DIBLLinks. Inside the
folder there are a certain amount of files with extension rvd. The files are loaded when the
application first starts. Depending on the number of files, the number of available connection
options varies.

It is possible to have many types of connections displayed in the Database Connection Type
Dialog screen. It is left up to the user to decide which connection type is the most appropriate.
Fewer connection types may be displayed depending on which drivers were installed.

Once one has been selected, the corresponding dialog box will appear in the next step asking for
the connection details. This varies from one to another, but generally consists of a path to the
database, a server name if the database is not local and optionally a username and password to
access the server.

After creating a database connection, it will appear in the Project Tree from where it can
be accessed. The properties for a Database Connection can be shown just like any other
component by clicking on the connection component in the Project Tree panel.

There are several properties that are specific to the Database component. The most important
ones are the AuthDesign and AuthRun properties. Many times, the platform (and server) that one
develops the report on does not coincide with that of deployment. Specifically, one characteristic
that is most likely to change is the access codes to the server (username and password). Rave
has been designed keeping this in mind, and once again making the deployment task easier. For

RAVE Reference Manual

Page 76

this, the AuthDesign and AuthRun properties can be used to provide design-time and runtime
(deployment) information regarding the database and server.

AuthDesign contains the parameters that were specified when the Database component was
made using the wizard and it can be changed by clicking on the ellipse button in the property
field. AuthRun is the information for deployment.

LinkType represents the type that was selected when creating the Database connection. Again,
similar to other components, there are common properties such as Name, FullName and
Description, etc, which are not be explained again to prevent redundancy.

Direct DataViews (BE only)
DirectDataViews provide a link to data connection components located within an application.
When a DirectDataView is created, a list of all available data connection components is
displayed. The Name property value of the data connection components provides the link
between it and the DirectDataView (through the ConnectionName property in Rave). If connecting
to data connections that have event code attached to them, you must have the application
actually running and the form containing the data connection components created.

Driver DataViews
DriverDataViews perform the same function as a DirectDataViews except they are self contained
and typically obtain their data set from a SQL statement. DriverDataViews also require the use of
a valid database connection.

Once the database connection has been established, click on New Data Object to create a
new DriverDataView.

The Wizard will take the user through the necessary steps to complete the configuration. After
selecting DriverDataView from the dialog box, choose the database connection that it is going to
be connected to. If the connection to the database is successful, the wizard will then display the
Query Editor dialog box. Before continuing with an explanation of the DriverDataView, let's
examine the Query Editor.

Query Property Editor

The Query Property Editor is used for generating a SQL statement that returns a result set from
the database.

There are two ways to use the editor. The first is to take advantage of the graphical interface for
constructing the SQL sentence. On the left side of the dialog box, a list of tables available in the
current database is displayed. By simply dragging and dropping from the list to the gray area, the
corresponding SQL statement will be generated.

Once the table object appears, by clicking on the tick boxes, the list of fields that should appear in
the result set can be defined. By default "*" is marked, which means that all fields will be returned.
To select individual fields use the tick fields to make the appropriate selections.

Tables can also be linked (joined). To do this, simply drag another table over and trace a line
from one field in the first table to another field in the second time (the figure above shows a join
between PRODUCTID of table BUGS and PRODUCTID of table PRODUCTCODES. To view the
results from here, click on the Results tab and the data will be displayed in a grid.

Alternatively, the editor can be used to write an SQL sentence directly. To do this, click on the
Editor button that appears at the bottom. To enter a user-defined SQL statement, click on the
"User Defined SQL" checkbox and type in the desired SQL.

Once the query has been constructed, clicking on the Ok button will return control to the Rave
designer.

The SQL Data View component should now appear in the Project Tree. By expanding the + sign

RAVE Reference Manual

Page 77

next to it, a list of all the fields that have been selected in the SQL statement will drop down.
Properties for each field can then be accessed from the Property Panel prior to selecting the field
in the Project Tree.

Although fields can be placed in a report by using the corresponding component from the Report
tab, it is much easier to work directly with the Project Tree to accomplish the same text. Pressing
down the CTRL button, fields can be dragged and dropped directly from the Project Tree on to
the form designer.

Once the DirectDataView has been setup using the Query Editor, none of the other properties are
required for accessing the data.

Status Bar

At the bottom of the RAVE screen is the status bar. The status bar will provide some information
about the item currently selected. So, watch the bar when designing a report.

The data connection LED will provi de status of the Rave data system by the color of the LED.
LED Color LED Status
Gray

Connection(s) are inactive

Yellow

Connection active but waiting for response

Green

Connection active and busy

Red

Connection active but has exceeded time-out delay

The X and Y figures are the coordinates of the mouse pointer. Move the mouse around and
watch the X, Y amounts change. When a shape is dropped on the page, the size of a shape will
appear while it is being created as seen by the dX and dY position. The "d" stands for delta.

RAVE Reference Manual

Page 78

RAVE Reference Manual

Page 79

Chapter 13

Wizards

 In this Section:

• List guides to help in simple report structure.
• Guides will provide detailed steps to complete a reporting task.

Wizards
Wizards are a new feature to Rave that allow certain types of reports to be created by answering
a series of questions. They can be found under the "Tool" menu option. The Wizards can be
added and tailored to each user's needs. It is a perfect way to minimize the end-users interface
with reporting tasks.

There are two Wizards, a "Simple Table" and a "Master-Detail". Wizards can be designed to ask
for the data connection and allow the user to choose the fields that are needed on a report. It is
important to note that an active DataView should be available prior to running the wizards,
whether it is a Direct Data View or an SQL Data View. Simple Reports are generally used for
listings. Common uses include Client reports, Telephone lists, etc. The Master-Detail Wizard is
used when more complex reporting is required, such as invoices, product order lists, etc.

Independent of the one that is executed, there are several steps that are common to both. These
include the DataView selection, field selection, etc and are covered in greater detail in the
exercises included at the end of this chapter.

It is very important that the user understands that these are general purpose reporting wizards
and as such, some aspects are not treated with great detail (amount of text that would fit on a
page, layout, etc). They can be used as the building blocks for a more complex report or can be
adjusted to suite a particular layout required. If the intention is to build very complex reports, the
wizards are not recommended for this purpose.

Exercises

Below are example exercises of both Simple and Master-Detail wizards. Since most of the steps
are similar for both wizards, they will only be explained in detail in the first exercise. It is highly
recommended to start with the Simple Wizard first to get a good grasp on the concepts
presented.

Exercise: Simple Wizard
1. The first step is to select the desired DataView that will provide the data to the report.
2. Once the DataView has been selected, a list of fields that should appear on the report

can be chosen. Fields are selected by clicking on the box on the left. All fields can be
selected by clicking on the All button at the top. Note however that because this is a
simple wizard, choosing more fields that would fit on the page will make them overlap.
Manual intervention is required after the Wizard is complete to correct this problem.

3. If more than one field was selected in the previous step, the Wizard will ask for the
ordering of the fields. Moving a field up will place it on the left side of the page. Move it to
the lowest position will move the field to the right margin.

4. After the fields are placed in your desired order, the Report layout can be set. Values
include the title and the page margins.

5. The last step of the Simple Report Wizard is to choose the fonts that are going to be
used in the report. It gives the possibility of changing three fonts: title (of the report),
caption (headers of the field names) and the body (actual field values).

RAVE Reference Manual

Page 80

caption (headers of the field names) and the body (actual field values).

Exercise: Master Detail Wizard
The Master-Detail Report Wizard has a few additional steps more than the Simple Wizard Report.
This is due to the fact that more than one table is going to be taking part in the report. In
particular, there will be a master (for example customer information) and a detail (items ordered).
1. Similar to the Simple Report Wizard, the first step is to choose the DataView. However,

in this case the DataView chosen corresponds to the Master table.
2. In step two, the Detail table can be selected. Note how the DataView selected in step 1

is no longer available to avoid errors.

Similar to the Simple Wizard, the next steps are for selecting the fields and ordering of both the
master and the detail table.

A new step is determining the key fields. These are field that relate one table to the other.

After this, the remaining steps are identical to that of the Simple Report Wizard.

Once everything is complete, clicking on Generate will produce a simple master-detail report that,
again, can later be adjusted and "touched up" to ones particular needs. The figure below shows a
sample output of the Wizard.

RAVE Reference Manual

Page 81

Chapter 14

Report Components

 In this Section:

• Gives more detail on using report components.
• Examples are given to aid in comprehension.

Overview
The Report Toolbar is one of the most used when working with data-aware reports. It is very vital
to understand the function of each component, especially since the basics of all database reports
are based on the Report Toolbar.

The following components are from the Report Toolbar that are frequently used in designing your
reports:

 Band, CalcText, DataBand, DataMemo, DataText, Region

The following components from the Report Toolbar will be covered in the Advanced Components
section of the manual.

 CalcController, CalcOp, CalcTotal, DataCycle, DataMirrorSection

The following Report components are non-visual components

 CalcController, CalcOp, CalcTotal, DataCycle

There are some general characteristics of the components that need to be discussed before
describing each component individually. First, let's talk about the visual color of the components.
For the most part the components look similar in color to all other components, they are gray. But,
at the end of the toolbar there are four green colored components. The green indicates that these
are non-visual components. When placed on the Page, they cannot be seen on the screen, in
preview, or in print. Instead, to 'see' the components the user must use the Project Tree to select,
move, and delete the component from the Page.

Most of the Report Components can simply be placed on the Page. The only two exceptions are
the Band and the DataBand. These must be placed in a Region component. The behavior of the
component is also controlled by the settings made with the "Band Style Editor", which is found
through the BandStyle property for both components.

A Report can be designed into a typical report, like one that uses strictly Bands. But, the unique
feature of Rave is that the report can also be designed to other specifications. The Bands of the
report can be moved and resized to any desired shape.

When designing a Report, the designer window can be changed to the preferences of the Report
Designer.

There are several ways to control the "look" of the Bands while in the design mode. The first is
whether ALL Band Headers need to be seen or not. This setting can be changed with the
Designer Toolbar. Another method is to toggle the visibility of the Band contents. If some of the
Band designs are stable and they need to be temporarily hidden, then try setting the

RAVE Reference Manual

Page 82

DesignerHide property to True. Only the Band(s) with DesignerHide set to False will show. This
might be needed if there are a large number of Bands or a Band that occupies a large space. The
setting of the DesignerHide property has NO effect on what will be printed, only what is shown on
the designer Page.

Region
Before one can use a Region component properly, it is important to understand what it is.
A Region is a container for Bands. In its simplest form the Region could be the whole
Page. This would probably be True for reports that are a list type.

Many master-detail reports could be made to fit a single Region design. However, do not be
limited by thinking of Regions as the whole Page. The properties for a Region basically deal with
its size and location on the Page. Creative use of Regions will give more flexibility when trying to
design complex reports. Multiple Regions can be placed on a single Page. They could be side-by-
side, one above the other or stagger about the Page. Do NOT confuse a Region with a section.
Region components contain Bands and only Bands. A Section component can contain any group
of components, including other Region components.

When working with Bands, there is a simple rule that must be followed: Bands must be in a
Region. Notice that the number of Regions on a Page is not limited nor is the number of Bands
within a Region. As long as the report can be "visualized" mentally, a combination of Regions and
Bands can be used to solve any difficulties faced when actually putting the visual thoughts into
design. There are two band types: Band and DataBand. The latter is used when iteration is
required, for example, in a master-detail report. The first is used for non-iterating needs.

DataBand
The DataBand component is a data-aware Band is used to display iterating information
from a data view. In general, a DataBand will contain several DataText components.

A typical use for the DataBand would be on an invoice. An invoice normally consists of a
header including information such as the date, invoice number, clients name and address, and
one or more lines containing the items that are being invoiced. In this scenario, the customer
table would be the master table and the items would be the detail table. Information about the
items would be placed in the DataBand and the controller would be the master table.

Band
The Band component is for items that are "fixed" and do not change on the Page. In
general, the Band component will contain Text and CalcText components. The primary
examples of this would be headers and footers. The Band component can contain data-

aware components, so a table field can be in the Band. A group footer might have a
'{CustomerDV.CustomerName} Totals' on this Band.

An important property for the Band component is the "ControllerBand". This property determines
which DataBand this Band belongs to (or is controlled by). When the controlling Band has been
set notice that the graphic symbol on the Band will point in the direction of that controlling Band
and that the color of the symbols will match.

There is a preference setting called "Always Show Band Headers". This setting will change the
appearance of the Bands while in the design mode. Having this setting "off" will give an
appearance closer to the actual output, but will not show the Band Headers with their symbols
and codes. When first starting to use Rave it might be beneficial to try it with this setting "on" and
take advantage of the visual clues provided by the Band Headers. Once comfortable with the use
of Bands, change this setting to fit any necessary needs or preferences. The letter codes shown
on the right of the Band are explained later in this chapter under the section called "Editor - Band
Style". Basically, they give information about Band behavior. The bold letters are ON or active
while the subdued letters are off or inactive.

RAVE Reference Manual

Page 83

Editor - Band Style

Go to a Band Style property on a Band or DataBand component and click on the ellipse button to
open the editor for Band Styles.

This provides a simple method to select the features wanted for that Band by using the check
boxes to activate or deactivate them. Note that a Band can have several different features active
at a time. This means that it is even possible for a Band to be both a Body Header and Body
Footer at the same time.

The display area in the Band Style Editor has been designed to represent the flow of a Report in
pseudo layout style. DataBand(s) are duplicated 3 times on purpose to show that this is a
repeating data area. The current Band that is being edited will be displayed with both Bold and
Underline formatting.

Both symbols and letters are used on the Band Style Editor display area and one the Bands in
the Page Layout Area and are designed be informative about each Band's behavior. The major
difference between these two representations is that the Band style editor display will arrange the
Bands in a pseudo flow according to the definitions of each Band. The Region display of the
Bands will be arranged in the order that they are placed during design. The order of operation is
controlled in some cases by this order. Headers (capital letters, BGR) will print first, then the
DataBand, then the Footers (lower case letters, bgr) for each level. However, if there is more than
one header defined for a particular level, then each header Band will be processed in the order
that they are arranged in the Region. So, it is technically possible to put all the Headers at the
top, all the DataBands in middle and all the Footers at the bottom of a Region for all levels of a
master-detail. Or each level could be "grouped", with the appropriate Headers, Footers and
DataBands all together for each level. Rave allows the Region layout maybe be used in a way
that makes the most sense to the design flow. Just remember the order of precedence of like
Bands at the same level is controlled by their order within the Region.

There are several symbols that are designed to show the Parent - Child/Master - Detail relations
of the various Bands. The triangle symbol (up/down arrows) indicates that the Band is controlled
by a Master Band with the same color (level) and can be found in the direction of the arrow. The
Diamond symbol represents a Master or Controlling Band. These symbols are both color coded
and indented to represent the level of Master - Detail flow. Remember that we could have Master
- Detail - Detail where both details are both controlled by the same Master or one of the Details
could be controlled by the other Detail.

The title bar of each Band contains information about that Band. On the left side of the Band is a
name that indicates the Region it is in - "RegionName:BandName". The right side of Band uses
several letters to remind you of the Band style settings for that Band. The order of these letters on
a master Band is "MASTER 1PC". The order of these letters on a controlled Band is
"BGRDrgb1PC". If the letter is subdued (gray) then that setting is inactive (off). If the letter is bold
then the setting is active (ON). The following table shows the various letters and what they mean.

DataText
The DataText component is data-aware. This means it can be used to display a field
from a dataset anywhere on the Page layout. For example, this could be used to print the
customer information inside of a DataBand. The DataText component however is not

limited to printing only database data. Through the Data Text Editor (accessible through the
DataField property), Project Parameters can be printed, as can Report Variables as well as the
DataFields. See the topic Editor-DataText, for more information. The LookupDataView,
LookupDisplay and LookupField properties define a lookup definition to be displayed instead of
the DataView:DataField properties.

Editor - DataText

There are two options available for entering data in a DataField property. The first is to select a
single field using the drop option. This is fine for normal database reporting needs where only a

RAVE Reference Manual

Page 84

single data field for each DataText item may be needed. However, there are many reporting
requirements where various fields will need to be combined together. Two common examples are
City State and Zip Code or Firstname Lastname combinations. In code this would be
accomplished using a statement like the following:

 City + '_' + State + '__' + Zip or FirstName + "_" + LastName

NOTE:The underscore character above represents a space for example purposes only.

The DataFhield property has a DataText Editor which assists in building complex composite fields.
To do this click on the ellipsis and open the DataText Editor. This editor will give the power to
concatenate fields, parameters, or variables together to build a very complex data aware text field
simply by dropping the different list boxes and selecting the item desired.

There are a lot of combinations in this editor, they will be covered quickly here, but try the
different combinations in practice and it should help the learning curve.

Note that the dialog box is divided into 4 groups: Data Fields, Report Variables, Project
Parameters, Post Initialize Variables and Data Text. Data Text is the result window. Watch this
window when inserting different items. The two buttons on the right side of this window are +,
"plus", or &, "ampersand". The "plus" sign will add the two items together with no spaces while
the "ampersand" will concatenate them with a single space. So, the first step is to decide on
doing a + or &, then selecting the text from one of the three groups above the Data Text window.

So as an example, to add the field "OrderNo" to the "CustNo", click once on the "+" sign, go up to
the DataField group, drop the DataField list box, and select "OrderNo". Then, click once on the
"Insert Field" button and that will be added for the DataText window. The result in the DataText
window would be "CustNo + OrderNumber". Even more DataFields can still be added. Notice the
"Selected" item in the DataView group. If there is more than one data view active, then select
another Data View, and then pick a field from that Data View.

However, do not be restricted to thinking of combining only DataFields. "Report Variables" and
"Project Parameters" can be combined as well. Go to the "Report Variables" group and drop the
list box for variables and take note of the ones that are available.

Another item available is Project Parameters. This could be a "UserName", "ReportTitle" or
"UserOption" parameter initialized by the application. To create the list of "Project Parameters",
select the Project node in the Project Tree (very top item). Then in the "Properties" panel there
will be a "Parameters" property. Click on the ellipsis button to get a typical strings editor where
you can enter the different parameters that will pass to Rave from the application, like
"UserName" etc.

Caution:
Remember to use a "+" or "&" between each item that you are combining in the Data Text
window. You can type in the Data Text window, so you can correct errors by highlighting, deleting
or replacing erroneous entries made in the Data Text stream.

DataMemo
The DataMemo component is data-aware. This means it can display a memo field from a
DataView just about anywhere on the Page layout. The main difference between the
DataMemo component and the DataText component is that the DataMemo component is

for printing text that may take more than one line and will thus need to be wrapped. For example,
this could be used to print the remarks about a customer invoice at the bottom of each Page of an
invoice.

One use of the DataMemo component is to do mail merge functions. The easiest way to
accomplish this is to set the DataView and DataField property control to the source of the Memo
field. Then launch the mail merge editor by clicking on the ellipsis button of the MailMergeItems
property. This will allow the items to be set within that Memo that will be changed.

Note: The "Case sensitive" check box is empty (off). If case is important, then be sure to check

RAVE Reference Manual

Page 85

this box.

To use the Mail Merge Editor, click on the "Add" button. Now type in the "Search Token" window
the item that is in the Memo and will be replaced. After the token is entered, either type the
replacement string in the "Replacement" window or click on the "Edit" button and it will start the
DataText Editor that will help in selecting different DataViews and Fields.

CalcText
The CalcText component is data-aware. The main difference between the DataText
component and the CalcText component is that the CalcText component is specially
designed to do some form of calculation and display the results of that calculation. The

CalcType property determines the type of calculation being performed and includes Average,
Count, Maximum, Minimum, and Sum. For example, this can be used to print the Totals of an
invoice at the top of each page of an invoice.

The CountBlanks property determines whether blank field values are included in the Average and
Count calculation methods. If RunningTotal is True then the calculation will not be reset to 0 each
time it is printed.

RAVE Reference Manual

Page 86

RAVE Reference Manual

Page 87

Chapter 15

Project Components

 In this Section:

• Main function of the Project Toolbar discussed.
• Project Manager and special properties covered.
• Report, Page and Global Page components and their special properties
covered.
• Data Connections and Objects used to connect to Reporting Server discussed.
• Differences of Security components explained.
• Explanation of SQL and Direct DataView are given.

Overview
The Project Toolbar provides the basic functionalities for a project. These functions are essential
building blocks for all reports. What makes these functions so important is the fact that these
functions also provide basic building block components.

The main functions we will be concerned with the first button (Project Manager) and the second
section in the toolbar (New Report, New Global Page, New DataView and New Page). These
functions are used to add the supporting structure to your report design.

Each will be discussed in the following sections.

Project Manager
The Project Manager is the component from which all other components are created.
Everything is placed under the Project Manager (a.k.a. RaveProject) in the Project Tree.
This component is created when any new Rave file is created. There can only be one

Project Manager per Rave file, this is unlike most of the other components.

For clarification, Project Manager, RaveProject, and New Project all refer to the same thing. They
refer to the main Project file that contains everything.

Like every component in Rave, the Project Manager has properties. To see them, select
RaveProject in the Project Tree, and then look in the Property Panel.

To quickly create a new project, simply click on the New Project button in the Project Toolbar.
This will create a new file, as well as the new Project Manager.

Noted Project Manager Properties

The AdminPassword property allows the Rave Server administrator to limit who has access to the
data from which the reports are created. This is important to help limit capabilities in Rave.

Parameters property allows items calculated by applications (such as Delphi) to be passed into
the report to be used by other components with in the report. When clicking on the Parameters
property ellipse button, the DataText Editor will allow a parameter name for each line.

RAVE Reference Manual

Page 88

PIVars Parameter is for content that is not typical, and needs to be dynamically modified within
the report. This allows for content that needs to be modified in a way that is not typical of table
calculation or manipulation.

SecurityControl

Report
The Report component contains the Pages of a Report. There can be multiple Reports in
one Project, and each Report can have multiple Pages in that Report.

Each Report has properties. To see the properties, select the Report and view the
Property Panel.

The Page component is the base visual component upon which Drawing, Reporting,
Standard, and Barcode components are placed. This is where all the designing and
layout of a Report are completed.

The Page also has properties which can be viewed by clicking in a blank area somewhere on the
page.

Global Page
The Global Pages are located under the Global Page Catalog node in the Project Tree.
These Global Page Definitions are used as Master Page definitions. These Pages can
also be Mirrored. Global Pages can contain Page layouts for things like letterheads,

forms, watermark designs, and other Page layouts that can serve as a foundation for several
Reports in the Project. An example would be mirroring a Global Page where you wanted to print
the same contents (link an "Invoice"), but you wanted to put a different caption at the bottom of
the Pages like "Original", "File Copy", and "Shipping".

Global Pages also have properties. Select the Global Pages from the Project Tree and look at the
Property Panel to see all the properties.

Data Objects
Data Objects are the Data Connection components used to connect to data, or
components used to control who is allowed to see which Reports from the Reporting
Server.

Clicking on the New Data Object button on the Project Toolbar creates each Data Connection.
After clicking on the button, the Data Connection dialog will appear. From this point, one of five
selections can be made. The Data Object component choices available are DataLookupSecurity
Controller, Database Connection, Direct Data View, Simple Security Controller, and SQL Data
View.

The details of each Data Connection component will be covered in the next few sections. Once a
Data Object is selected, the Data Object component will be placed in the Data View Dictionary in
the Project Tree. Selecting the component and looking in the Property Panel will reveal it's
associated properties.

Database Connection
The Database Connection component is the Data Object used to connect to data. This
component can be added to a Project by clicking on the New Data Object button on the
Project Toolbar, then selecting Database Connection from the Data Connections dialog.

Once the Database Connection is chosen from the Data Connection dialog, the Database
Connection Type dialog will appear. This is where the type of connection that will be used to

RAVE Reference Manual

Page 89

connect to that data will be chosen. In this image there is only one selection, but depending on
what types of connections you have, there could be many more selections. After choosing the
right data connection type, click Finish.

The Database Connection component, like all other components, does have properties. Select
the component from the Project Tree and see the properties in the Property Panel.

Security Components
Using a Security component can control security to individual Reports. TRaveBaseSecurity
cannot be used itself, as it is an abstract. However, you can create a descendant or
TRaveBaseSecurity to implement your own security scheme or use one of the pre-built
TRaveBaseSecurity descendants included with Rave. Rave currently includes two
TRaveBaseSecurity descendants: SimpleSecurity and LookupSecurity.

To use a Security component, create one and then set the Report's SecurityControl property to
the Security component instance that you want to control access to the Report.

Security components currently only affect Reports when served via the Reporting Server. When
an unauthenticated user attempts to access a Secured Report, HTTP authentication will be used
to authenticate the user.

Simple Security Controller

TRaveSimpleSecurity implements the most basic form of security by using a simple list
of username and password pairs in the UserList property. UserList contains one
username and password pair per line in the format:

Username=password

CaseMatters is a Boolean property that controls whether or not the password is case sensitive.
Username is always case insensitive.

Data Lookup Security Controller

TRaveLookupSecurity allows username and password pairs to be checked against
entries in a database table.

DataView specifies the DataView to use to lookup the username and password.

UserField is the field that is used to look up the username. PasswordField is the field that
contains the password to verify against.

SQL Data View
SQL Data Views are used for creating self-contained DataViews to SQL databases. A
database is specified using the Database property.

Parameters can be specified using the Params property.

The SQL to use is entered into the SQL property. At design time, a property editor for the SQL
property invokes a visual query builder.

RAVE Reference Manual

Page 90

RAVE Reference Manual

Page 91

Chapter 16

Bar Code Components

 In this Section:

• Describes how to place Bar Codes
• Describes how to encode Bar Codes.
• Gives brief descriptions of the Bar Code types.

Bar Code Component Basics
Bar Code components are used to create many different
kinds of Bar Codes in a Report. Bar Codes are for users who
know exactly what they need, as it requires background
knowledge about Bar Codes and how they are used. It is not expected that the beginning user
would have the background to use these components.

To place a Bar Code, click on the needed Bar Code component button and click on the Page.

To define the Bar Code value, go to the Property Panel and type the value into the Text property
box. For Bar Codes containing check characters, please do not enter the check character, as it
will be calculated automatically.

Brief Bar Code Descriptions
PostNetBarCode

PostNetBarCode uses the POSTNET (POSTal Numeric Encoding Technique) bar code
and is specifically used by the Postal Service. It encodes ZIP Code information on letter
mail for rapid and reliable sorting by bar code sorters. The PostNetBarCode can

represent a five-digit ZIP code (32 bars), a nine-digit ZIP+4 code (52 bars), or an eleven-digit
delivery print code (62 bars). Be aware that for the Post Office to recognize the bar code as being
valid strict adherence to the guidelines must be met. Current standards require that the five digit
zip plus four be used plus the two digit carrier route, which is most often obtained from the first
two digits of the street address. It is recommended that the user check with the Post Office to
obtain a copy of their current guidelines.

Example PostNetBarCode: 85210304119

2of5Bar Code

2of5Bar Code (interleaved 2 of 5) is a numbers-only bar code; in the Property Panel it is
labeled 2of5BarCode. The symbol can be as long as necessary to store the encoded
data. The code is a high-density code that can hold up to 18 digits per inch when printed

using a 7.5 mil X dimension. "Interleaved" comes from the fact that the digit is encoded in the
bars and the next digit is encoded in the spaces. There are five bars, two of which are wide and
five spaces, two of which are wide.

Example 2of5BarCode: 2632534

Code39BarCode

Code39BarCode is an alphanumeric bar code that can encode decimal numbers, the
uppercase alphabet, and the following special symbols " _ ", " . ", " * ", " $ ", " / ", " ", and
" + ". The characters are constructed using nine elements, five bars and four spaces. Of

these nine elements, two of the bars and one of the spaces are wider than the rest. Wide

RAVE Reference Manual

Page 92

elements represent binary ones (1), and narrow elements represent binary zeros (0).

Example Code39: CODE 39

Code128Bar Code

Code128Bar Code is a very high-density alphanumeric Bar Code. The symbol will be as
long as necessary to store the encoded data. It is designed to encode all 128 ASCII
characters and will use the least amount of space for data of 6 characters or more of any

1-D symbology. Each data character is made up of 11 black or white modules. The stop character
is made up of 13 modules. Three bars and three spaces are formed out of these 11 modules. Bar
and spaces vary between 1 and 4 modules.

Example Code 128: Code 128

UPCBarCode

UPCBarCode (Universal Product Code) has a fixed length of 12-digits and can only
encode numbers. UPC was designed for coding products. The format allows the symbol
to be scanned with any package orientation. The check digit is calculated so there is no

need to enter it when typing the value into the Text property.

Example UPCBarCode: 712345678935

EANBarCode

EANBarCode (European Article Numbering System) is identical to the UPC, except for
the number of digits. EAN has a length of 13 digits - 10 numeric characters, and 2 "flag"
characters that are usually country codes, and a check digit. This Bar Code is typically

used for Non-U.S coding. The check digit is calculated for you so you do not need to enter it
when typing the value into the Text property.

Example EANBarCode: 3847348484584

RAVE Reference Manual

Page 93

Chapter 17

Advanced Components

 In this Section:

• Use of the FontMaster and PageNumInit are explained.
• Details of some advanced components are given.
• Calc Component details are given.

FontMaster
Each Text component in a Report has a Font property. By setting this property, a specific
font can be assigned to the component. In many cases it may be somewhat useful and
necessary to set the same font properties of more than one object. Although this could

be accomplished by selecting more than one component at a time, this method has a drawback.
One has to keep track of which fonts have to be of the same typeface, size and style, which is not
an easy task when there is more than one report. This is where the FontMaster comes into play.
Apart from allowing the user to define a global font for various components, the FontMaster also
allows the user to define standard fonts for different parts of the Report, like for instance the
headers, body, and footers.

The FontMaster is a non-visual component (designated by the green color of the button). To use
one, simply click on the button and then click anywhere on the Page Designer. Note that being a
non-visual component, there will be no visual reference of it on the actual Page, and like other
non-visual components, it can be accessed using the Project Tree.

As mentioned previously, the main purpose of the FontMaster is to set fonts. It has very few
properties. As most other components, it has the DevLocked, Locked, Name and Tag properties.
They also contain the most important one of all, which is the Font property.

To set the FontMaster property, use the Font property on the Property panel, click on the ellipse
button to get to the Font Dialog box and select the font and size settings. Click OK when done.

Once the FontMaster component is set, linking it to a body of text is simple. On the Report select
a Text/Memo component, then use the down arrow button on the FontMirror property in the
Property Panel to choose a FontMaster link. Any component that has the FontMirror property set
to the FontMaster will be affected by and change to the FontMaster's font property. This allows
the user to change fonts on various Text components at once and at the same time keep things
consistent across the Report (when required).

It is important to note that by setting the FontMirror property on a component, the Font property
will be overridden by the Font property of the FontMaster. This means that if a text object has a
Font setting of Font A, by assigning a FontMaster to it with Font B, the Text component will
automatically be assigned Font B and it's Font property will be ignored. Another side effect of
using the FontMaster is that the Font Toolbar is disabled when the FontMirror property is set for
that component.

There can be more than one FontMaster per Page; however, it is good practice to usefully
rename a FontMaster. The Project Tree image shown previously has three FontMaster
components on the Page. Two of them begin with FM, for FontMaster, and they follow with the
name and size of the font that they represent. This is one naming convention that can be used to
make the name descriptive and useful to the user.

RAVE Reference Manual

Page 94

PageNumInit
PageNumInit is a non-visual component that allows the restart of page numbering within
a Report. Using a PageNumInit is similar to other non-visual components. It is used
when more advanced formatting is required.

An example of using PageNumInit is in a CustomerStatement Report of a checking account.
Account statements that customers receive every month may vary in the number of pages. In the
monthly statements, the first page can define the account summary page layout, the second can
define the customer's credits/deposits, and the third the withdrawals and debits. The first two
pages may only be one page, but if the account activity is high for the customer then a section
like withdrawals could be several pages. If the user producing the report wants each section
numbered individually, the summary and deposits would have the pages marked "1 of 1" for both.
For Withdrawals, an active customer account could have three pages of withdrawals and debits.
Since this is a different section in the statement, it needs to be marked "1 of 3", "2 of 3", and "3 of
3". Using this kind of multiple page numbering is where PageNumInit comes in handy.

There are a couple of steps that must be completed to use the component efficiently. First define
the Report Pages as usual. Add a DataText component from the Report Toolbar to the Page,
placing it where the Page requires a Page number to appear.

Once it is in place correctly, in the Property Panel of the DataText component, click on the ellipse
button in the DataField property.

This will open up the DataText Editor. Click on the Report Variables down arrow button and select
Relative Page and click on Insert Report Var button to use the variable on the Report.

In the DataText area, "Report.RelativePage" should appear. After the text type in the following: + '
of ' +

From the ReportVariables drop-down list select TotalPages (choose it and press the Insert Report
Var button). This will add the remaining text "Report.TotalPages" to the Data Text edit box area.
When finished click OK.

The Property Panel now displays the sentence that was entered using the Data Text Editor.

Expanding the DataText component, the text from the editor will also appear.

To initialize the Page to a desired Page number, select PageNumInit from the Project Tree. On
the Property Panel, type the desired Page number into the InitValue property box.

For every Report definition created in a Project, the PageNumInit will allow each report definition
to be numbered independently of another.

DataCycle
The DataCycle component is an invisible data-aware band that would be used to control
iterating information from a DataView. In general, a DataCycle component would be used
to "Loop" or "Cycle" through the detail records until a change occurs at the master record

level.

For example, imagine a bill being generated for multiple customers and each customer has many
different purchases associated with them. For this bill you need to have each person's purchases
on their own billing page, which has all and only their own listing of purchases. The table design
for this might look like the following tables, where there is a master table listing of all the unique
customers, and each customer has their own purchasing table, with all their own purchases
listed.

The bill being created will need to have each unique customer ID number printed on one page as
well as the items purchased on that page. Thus, the report will have to cycle through the table
containing all the purchases made before proceeding to printing the next customer and the
associated purchased items.

RAVE Reference Manual

Page 95

The main table containing the list of customer ID's would be found in what is called the
MasterDataView. In the Property Panel, this master table name would be chosen from the
property called MasterDataView. Once that is chosen, we will need to tell Rave what key will link
the two tables together. This key is called the DetailKey. The DetailKey, in our example, would be
the Customer ID's. Next, the table that will be cycled through, which is the table containing
purchases to be printed, will be the DataView table. So, in essence the MasterDataView (driving
table) and the DataView (details table) are connected by the Detail Key (the common unique key
in each table).

The DataCycle can also be limited, or sorted while the Report is being generated. For example,
supposed you just wanted to create reports for the Customers in Arizona. To limit Report creation
to just the Arizona customers, the MasterKey will have to be set.

Setting the MasterKey is done by clicking on the ellipse (…) button next to the Property in the
Property Panel. The Data Text Editor will appear. In the Data View area, choose the "Selected"
radio button and then select the appropriate MasterDataView table, which is the Master Table in
our example, by using the drop-down menu. Once you have done that, next select the field that
will be used as the filter of the Master Table, or MasterDataView table. Once selected, click on
Insert Field that is just underneath the Data Field drop down menu. This will place the appropriate
text in the Data Text area at the bottom of the Editor. Now in the Data Text box, type in "='AZ'" to
limit that field to just process the AZ customers. Click OK when done, and that will filter out non-
Arizona customers.

DataMirror Section
The DataMirrorSection component is a section that will "Mirror" other "Sections" based
on the contents of a "DataField". Mirroring Sections allow this component to be very
flexible. Remember that Sections can contain any other component including graphics,

regions, text, etc.

An example using this "DataMirrorSection" component is included in the RaveDemo project file.
This example shows how to have a single report produce different envelope formats when
sending to International or US addresses. The template for the International customers includes
the country line and is be centered on the envelope, while the US format does not have the
country line and is offset to the right of center and lower on the envelope.

This example shows several techniques on how to use Sections and Mirrors. On page 2 there are
three Sections. Section 3 has the common address lines used by both templates. Section 1 and 2
contain Mirrors to Section 3. The International Section has the additional country line added in its
template. Note, that "remarks" have been added to the page 2 design and they are not part of any
of the sections. The "US Template" and "International Template" are just plain Text remarks that
assist in the purpose of each Section shown.

Once understanding how the Master Templates were done, go to Page 1, and select the
"DataMirrorSection". Notice the "DataView" and "DataField" properties have been set to the field
that will be used to select which Format Template to Mirror. To examine that logic, go to the
"DataMirrors" property and click on the ellipsis to open the Data Mirror Editor. Select each
"DataMirror" item and note the settings in the bottom portion of the dialog box. This example has
two "templates", but feel free to add more to fit more complex reporting needs.

NOTE:

Normally one of the settings will be defined as the default. If a default is NOT defined and the field
value does not match any of the other settings, then the format used will be the normal contents
of the DataMirror Section component.

CalcOp
The CalcOp component is a non-visual component that allows an operation (defined by
the Operator property) to be performed on two values from different sources

RAVE Reference Manual

Page 96

(Src#CalcVar, Src#DataField or Src#Value). The result can then be saved in a project parameter
like CalcTotal (through the DestParam and DisplayFormat properties).

For example, there could be two DataText components that need to be calculated together. Like
A+B=C, where A and B represent the two DataText component values and C represents the
result. This is where the CalcOp component would be used.

To choose the DataText components in the above example, use the Src1X and Src2X properties,
where X is either CalcVar (a calculation variable), DataField, or DataValue. These are the three
types of value sources that can be used for calculation in a CalcOp component. Note that the Src
(source) can only use ONE of the three available source types, and there can only be two
sources, Src1 or Src2.

The three source types have many different values associated with them. For a CalcVar source,
the drop down menu will list all the calculation variables available in that Page available for use.
This calculation variable is just that, a variable for holding a value. This value can be from another
CalcOp component or from some other calculation component. For the DataField source to get
available values first designate what DataView the DataField will come from. In other words the
DataField is a field in a table, which is the DataView. So, in order to choose a field, the DataView
must first be chosen. For a Value source, typing in a numeric value is all that is needed to fill this
property. Again, remember only one of these three sources can be assigned to a source.

Once the sources are chosen the operation to be used between them has to be chosen. To
choose the desired operation, use the Operator property by using the drop down menu and
making the appropriate choice. In the example, A+B=C, the operator would be "coAdd".

There may be times when a function needs to be performed on a value before it is processed with
the second value. This is where the property SrcYFunction, where Y is 1 or 2 for Src1 or Src2, will
become handy. With SrcYFunction, the value can be converted (like from hours to minutes), or
have a trigonometric function performed on it (like take the sin of the value), or have other
functions performed on the value (like take the square root of the value, or take the absolute
value).

Once the two values are chosen, it is now time to deal with the result. In the example, A+B=C, C
is the value of the result. The result can either be written out to a project parameter (most likely a
DataText component) or just held as an intermediate value. To write out the value to a parameter,
use the DestParam property to choose the desired parameter to write the result write to. If the
result is going to be in intermediate result, there is nothing else to do to the component. Although,
it is highly suggested to rename the component, by using the Name property, to easily recognize
the component for future use. This is because, as in intermediate values, you will most likely use
the components in another CalcOp component, and a good reference will help to easily create
the next step in the calculation process.

After setting the values and setting the result destination, it may be necessary to format the result
or to even perform one last function on the result. Using the DisplayType and DisplayFormat
properties to format the result into any necessary format. The DisplayType has two options,
DateTimeFormat and NumericFormat. DisplayFormat has many options that must be typed into
the edit box. To find these options look at the Formatting Appendix in the back of this manual.
Like the two values, A and B, in the example, A+B=C, the result C can also have a function
performed on it before being written out to a parameter, or as a holding value. To select a
function, use the ResultFunction property drop down menu.

RAVE Reference Manual

Page 97

The CalcOp components can also be chained together for more
complex expressions using the Src#CalcVar properties, which can be
set to other CalcOp or CalcTotal components. For example, to create
the complex expression shown to the right, it will be necessary to
break up the expression into simple 2 value steps.

To break up the complex expression, four new expressions will need to
be created and saved as CalcOp components. So the resulting
components, Z, Y, X, and W will be four separate intermediate
CalcOp's. But, as you can see from the flow of the expression, Z and Y
will have to be completed before X can be created, as it is dependent
upon the two previous operations. And finally, W will be completed last,
after X, to get the final correct value.

Just as it is important to do the calculations in order, it is important to make sure the components
are in order in the Project Tree. When a report is executed, the report executes components
down the Project Tree. For CalcOp components or any calculation component, this means that
they need to be in the correct order. In the example above, if Z, Y, X, and W were in the Project
Tree, Z would have to be first in the tree and W would have to be last in the tree. This would
mean that at execution, Z would be processed first, then Y, and so on. It is also important to note
that if Z is dependent upon any other components (like other CalcOp components or DataText
components), those components must come first in the Tree before the Z component is
processed. Making sure the components are in correct order is known as setting the print order.
To move the components up and down within the Project Tree, use the Alignment Palette to
change the print order of the components.

CalcController
CalcController is a non-visual component that acts as a controller, along with DataBands,
for CalcText and CalcTotal components through their Controller properties. When the
controller component is printed, it signals all calculation components that it controls to

perform their summation operation. This allows totals to be performed on group bands, detail
bands or whole pages depending upon the location of the CalcController component. Another
feature of the CalcController component is its ability to initialize a CalcText or CalcTotal
component to a specific value (through the InitCalcVar, InitDataField and InitValue properties). A
CalcController component will only initialize values if it is used in the Initializer property of
CalcText or CalcTotal property.

CalcTotal
The "CalcTotal" is a non-visual version of the CalcText component. When this
component is "printed", its value is typically stored in a project parameter (defined by the
DestParam property) and formatted according to the DisplayFormat property. This can

be useful when performing totaling calculations that will be used with other calculations before
being printed. Leave DestParam blank if the value of CalcTotal will only be used by other
calculation components such as CalcOp.

Exercise: Using Font Master
1. Create a new page in the report. Select New Report Page from the Project window.
2. Go to the Project Tree and select the Page.
3. In the Property Panel, type in "FontMaster" in the Name property, while the Page is still

selected.
4. Go to the Standard Toolbar. Find the FontMaster component and click on the button.

Then click on the Page.
5. Look at the Project Tree Panel and notice that there is a new component underneath the

Page called FontMaster1. But, when looking at the Page, there is no visual component.
FontMaster is a non-visual component.

RAVE Reference Manual

Page 98

6. Make sure the FontMaster component is selected by clicking on it in the Project Tree.
The component will be highlighted in the Project Tree to indicate that it is selected.

7. While the FontMaster component is selected, look at the Property Panel. In the Font
Property, click on the ellipse button (the button with three dots).

8. The Font Dialog will appear after clicking the ellipse button. Use the scroll buttons and
check mark boxes to make your desired selections. For this first FontMaster component,
select Arial Font, Bold Font style, 14 size, and Underline in Effects.

9. Look at the Property Panel, with the component still selected. The Font Property will
reflect the selection made in the Font Dialog.

10. Now with the Font Property still selected, scroll to the Name Property and put
"FMArial14BldUndrln" in the Name property edit box.

11. Next look at the Project Tree and notice the name change. It becomes very useful and
helpful to rename the components in the Project Tree in order to distinguish each
component from each other. This is why we demonstrate renaming of the FontMaster
component and the Page component.

12. Now, complete steps 4 to 11 three times using the following names and settings.
FMArial16ItlcUndrln: Arial Font, size 16, Italic, an Underlined. FMTimesNwRmn12:
Times New Roman Font, and size 12. FMCourier12: Courier Font, and size 12. To make
understanding the renaming of many components, sometimes it is helpful to use a
specific naming convention. In these examples we use the following naming convention
for the FontMaster component names:

13. Next, drop down five Text components on the page, as well as one Memo component.
14. We will pretend to write a "letter" using components dropped on the Page.
15. Use one Text component to use for a date holder, and use the other four Text

components to make an address label. The Memo component can be used for the body
of the message. So, fill your components appropriately. For more information on how to
fill the components with your own text, see the Property Descriptions Listing in the
appendix, or see the chapter on Standard Components. Feel free to use the alignment
tools to get the "letter" components to align correctly. Also, after some of the following
steps it may be necessary to resize the text components to display all the text correctly.

16. Next select the Text component that has the date. While selected, change the FontMirror
Property to FMCourier12 by using the drop down menu. Notice that the font of the Text
component changed to the pre-set font settings of the FMCourier12.

17. Next select the four address Text components. The Property Panel will show the
designation that this is a multiple selection of Text components. In the FontMirror
property, choose FMTimesNwRmn12.

18. Select the Memo component, which contains the body of the "letter". While it is selected,
choose FMArial16ItlcUndrln in the FontMirror drop down menu.

19. This ends mirroring of fonts to components on the Page. One last thing to cover is what
to do when you change your mind about the fonts?

20. Select all the address Text components. Change the FontMirror property to
FMArial14BldUndrln. Now, this would be a way to change many Text/Memo components
from one font setting to another, without changing each Font property in each
component.

21. Sometimes there may be many components linked to one FontMirror component,
because they all relate to one specific area of the report. In this example, we can
assume that all address headers would be linked to the FMArial14Bldunderln Font Mirror
property. So, to change this we would have to redo the one FontMirror property.

22. Select the FMArial14BldUnderln FontMirror component in the Project Tree.
23. In the Property Panel, while the component is still selected, click on the Font property

ellipse button.
24. Change the Font Dialog properties to the following: Times New Roman, size 10 font, with

no other Font Effects.

RAVE Reference Manual

Page 99

25. In the Name property of the FontMirror property, put the following name:
FMTimesNwRmn10.

Exercise: Setting up PageNumInit for Page Numbering
1. First create a new Page, or use what is left from the previous example, as we will do

here. If this is a new Page, drop some Text components on the Page. These are just
filler components in this example.

2. Go to the Report Toolbar, and find the Data Text component. Click on the Data Text
component and then click on the Page.

3. Place the DataText component in an area where a Page number might appear. For
example, place the DataText component at the bottom of the Page.

4. Make sure the DataText component is placed correctly, and make sure it is still selected.
Check for selection by the visual appearance of the green pip surrounding the
component, or by the component being highlighted in the Project Tree.

5. While the DataText component is selected, go to the Property Panel and look for the
DataField property. Click on the ellipse button.

6. The Data Text Editor will next appear. Look for the "Report Variables" section in the
Editor.

7. There will be an arrow at the end of the Report Variables selection window. Click on it to
see all the selections available. Use the scroll bar to move up and down through the
menu.

8. In the Report Variables section, look for "Relative Page". Click on it to select.
9. Next click on the Insert Report Var button to the right of the Report Variables section.

This will place the appropriate text into the Data Text area at the bottom of the Data Text
Editor.

10. Go to the Data Text area and type in the following: + 'of' + . This will include spaces
before and after each symbol.

11. Now return to the Report Variables drop-down list. Scroll to look for TotalPages. Select it
when you find it.

12. Click the Insert Report Var button, to get the remaining text into the Data Text area.
"Report.TotalPages" will be added to the Data Text area.

13. Click OK when done. Your DataText area will look like the following.
14. After clicking OK, you will be returned to the Designer and to the Property Panel. If you

expand out the Property Panel and look at the DataField property, you will see the
results of the DataText are from the Data Text Editor.

15. On the Page, the DataText component will probably look like the DataText component
labeled A below. If you expand the borders of the DataText component (as seen in B),
you can see that the results of the Data Text Editor appear. There is really no need to
expand the component; it is just for you to see in this exercise.

16. There is one more thing left to do to complete the page numbering, we need to initialize
the Page to the desired page number. So, go to the Project Tree and find the
PageNumInit component. Select the component when you find it.

17. While PageNumInit component is still selected, go to the Property Panel and find the
InitValue property.

18. In the InitValue property, type in 1. This will mean that our pages will begin with page 1.
19. That is it. That is all that is needed to setup the PageNumInit. Note that in one project,

with this feature, each Report can be number independently of each other.

RAVE Reference Manual

Page 100

RAVE Reference Manual

Page 101

Chapter 18

Adaptable Reports

 In this Section:

• Explains the problems related to adaptability.
• Explains how to use Anchors to "fix" your components.
• Shows how to work with waste areas on different printers.

Overview
One of the biggest problems that designers face when creating reports is adaptability. What is
adaptability exactly? First, when a report is created, the process normally takes place on a
specific computer, which has one or more printers connected to it. When that report is executed
in the field, however, factors such as paper size, orientation and waste areas all come into play.
Secondly, reports should allow for a certain amount of flexibility in the overall design and
appearance of the layout of the report.

Rave helps overcome these problems by giving the designer access to particular properties of the
report. In this chapter, these properties will be explained in detail and will allow the resulting
reports to have a standard look over various platforms. This way, the designer can focus more on
creating reports than worrying about deployment difficulties. The reports will also be able to adjust
layouts based on external parameters passed in during execution.

Anchors
Most visual components have a common property called Anchors. This powerful feature defines
how the object will move when its Parent is resized. There are two Anchor values that are set,
one for the horizontal and one for the vertical. The default Anchor is set to the top left corner of
the Parent control. What this means is that when the Parent (e.g. a Section component) is
resized, the component will stay the same distance from the left and top corner of the Parent.
Two other Anchor values, Bottom and Right, are very similar in function (they will Anchor to the
bottom right corner of the Parent).

The Anchor setting of Center will Anchor the Child component to the Parent's center. Stretch will
actually resize the Child component so that it's sides stay the same distance from the Parent.
Stretch is most often used when you want a Child component to always match the width or height
of the Parent. Two other special Anchor settings, Resize and Spread are useful for groups of
components. Resize will proportionally resize the components and the spaces between them as
the Parent is changed. Spread will proportionally resize the spaces only (the components will stay
the same size) as the Parent changes. Drop down a Section component and place a few
rectangles or Text components inside and change the values of those components to see how
the Anchor property can affect things.

Anchors can be used to create adaptable Reports when combined with other Reporting features.
Imagine that a Report needs to be defined that can be printed in either landscape or portrait
orientation or that the Report may be run on different size papers. Setting the Anchors properly
will allow one Report to adjust to these changing conditions. A typical table listing Report will be
composed of a Region component; it's Band components and the Text and DataText components
inside each band. If the Region component is set to Anchor Stretch on both vertical and
horizontal and the Text and DataText components are all set to a horizontal Anchor of Resize, the
Report will adjust to any of these changes.

Other changes, such as the printer's individual waste area, can also be solved with Anchors and

RAVE Reference Manual

Page 102

will be discussed in the next section.

Waste Fit
Most printers have a Region on the paper that is called the waste area. What this represents is
the portion of the Page where no printing can be done because of restrictions of the actual
printing hardware (usually because the printer uses that region of the page to "grab" a hold of the
paper when it is feeding it through the rollers). These values may range from 0 (common for dot-
matrix printers) to 1.5 inches. Ink jet printers typically have large bottom margins (and sometimes
a 0 top margin), while most ink jet and laser printers have about a 0.25 inch left and right waste
area.

The red-dotted lines that run on the border of the Page represent the waste-area of the currently
selected printer (or specific values if the preferences are set that way). Anything in between the
red line and the border of the Page is the actual waste-area of the printer and you should avoid
placing components within that area. The problem is how to know what the actual waste area of
the destination printer will be. If the Report is designed with extremely large margins that will be
inside the waste area of all printers, then a lot of unnecessary blank space will be on each Page.
The WasteFit property is Rave's answer to this common reporting problem.

The Page has a property called WasteFit, which can have one of two values, either true or false.

By default the value is False. Setting the property to true will make the Page adjust the
components it contains so that they fit within the waste-area of the destination printer. The
components contained will be resized so that they all fit in and adjust accordingly.

However, it is not sufficient with setting the WasteFit property to True for all this to happen
automatically. Child components should have their anchor property set accordingly so that they
too can adjust accordingly to the changes of the Page.

When used properly, this property is a very powerful feature that allows the reports developed to
automatically adapt to different destination printers.

Editor Anchor
Normally, ReportBands/columns/paragraphs are justified to the Left and Top of a design area.
This will be fine for the majority of Reporting needs.

However, have you ever wanted to control the starting or ending position of your report
components dynamically? This could be a two-column Section, where the left column is a Memo
component which changes in height and the right column is a Text component, which is always a
one line item. How do you make both components "float" and align to the bottom of the design
block? In Rave this is done with the Anchor property.

To change the Anchor style go to the Anchor property of the desired component and click on the
ellipse symbol, it will open the Anchor editor like the one shown above. This provides a method to
select the Anchor style wanted for that component by using the appropriate vertical and horizontal
radio button. Note that a representation appears below each Anchor selection to give a visual
indication of what that setting is designed to accomplish. The last three settings, Stretch, Resize,
Spread are a little difficult to explain, but view the sample and there will be a picture showing the
differences between the settings.

An important point to note is that the Anchor property settings are relative to that component's
Parent. So, if the Parent is a Page, then the settings are relative to the Page sides. If the Parent
is a Section, then the settings are relative to the section borders. One way to visually see the
parentage is to examine the component(s) on the Report Node in question in the Project Tree. Go
up one level and that is the Parent.

The following combinations are not restrictive, but normally the Anchor settings will be paired as
follows:

RAVE Reference Manual

Page 103

• Left/Top justified

• Right/Bottom justified

• both Center justified

• both Stretch

• both Resize

• both Spread

RAVE Reference Manual

Page 104

RAVE Reference Manual

Page 105

Chapter 19

Batch and Chain Reporting

 In this Section:

• Discusses how to Batch Reports
• Covers calling and Page Chaining

Batch Pages
Probably the most common linking of Pages would be a batch processing sequence that defines
a list of independent Page definitions. The first Page in the list runs to completion, then it calls the
second, which runs to completion, and so on until the last Page of the defined sequence has
been completed. The main thing to remember with batch Pages is that each Page definition is
independent of the others and runs to completion before the other Page starts. Remember that
the requirement to do batch processing is to simplify the administrative tasks when running a
group of Page definitions on a recurring basis.

Define the sequence of Pages to print through the PageList property, which is available at the
Report node level. When this property is selected (click on the ellipsis button), it will open a dialog
window that will build the list from the Page definitions within the selected Report node. The
advantage of this method is that the PageList is independent of the individual Page definitions.
This means that the PageList would run the whole sequence of Pages (Reports), but individual
Reports can still be selected individually and run by itself without invoking the batch link.
Remember, Report Pages are not visible to other Reports, so if flexibility of calling separate Page
definitions is needed, define the reusable Pages as global Pages instead of Report Pages.

WARNING
Another method to do Batch Pages is to set the first Page definition GotoPage property to the
second Page definition name. Now, when the first Page is completed, it will automatically start the
second Page definition. The problem with this technique is that anytime the first Page is run it will
ALWAYS start the second Page as they are linked together at the Page definition level.

Calling Pages
(Page Node - GotoMode property - gmCallEach setting)

Another type of linking would be Reports where there must be a particular flow of Pages. The
easiest example of this would be a Report where each record ALWAYS produces three Pages of
output. This could be a "form Report" where Page 1 has a patient's demographic information,
Page 2 has medical information and Page 3 has insurance information. So, when going through
the database, each patient's record would produce 3 Pages of output. See the Exercises for more
step-by-step instructions on how Call Pages.

Chain Pages
(Page Node-GotoMode property-gmGotoDone setting)

A chain of Pages is similar to a Batch. The Batch technique discussed earlier used the PageList
property and cautioned you about using the GotoPage property. However, if you plan ahead, then
the use of the GotoPage property with the Pages from the Global Page Catalog is very powerful.
The exercise at the end of this chapter does a Multi-Page definition that includes an invoice, file
copy, shipping document and packing slip.

RAVE Reference Manual

Page 106

Different First Page Format
(Page Node-GotoMode property-gmGotoNotDone setting)

Another type of linking would be Reports where the first Page format is different than the
remaining Pages. This could be a Report that has a title layout maybe even with a company logo
on Page 1, but the remaining Pages are all the same design layout. What you need to do for this
is to create the Page 1 definition (first Page) that points to Page 2. Then create the Page 2
definition (all remaining Pages) that points to blank. The Exercise at the end of the chapter goes
through the detail steps to complete this process.

Different Odd/Even Page format
(Page Node-GotoMode property-gmGotoNotDone setting)

Another type of linking would be Reports with a format based on an odd/even Page definition.
This could be Reports that are going to be printed on both sides of the paper (duplex style) and
have holes punched in one side, so that final Report could be put in a binder. This would mean
that the inside margin (say 1 inch) would be larger than the outside margin (½ inch). To create a
loop where the Page 1 definition (odd Page) points to Page 2 and will call it if the Report is not
done when it gets to the end of the Page AND the Page 2 definition (even Page) points to Page 1
and will call it if the Report is not done at the end of that Page. This loop will need to continue
until Report is completely printed. See the Exercise at the end of this Chapter to get detailed
steps to complete this task.

Batch / Chain Reports
Once the Report Design is complete and working, the day-to-day routines get settled. At this
point, it would not be unusual to find out there often is a need to print several Reports in some
kind of sequence. This could be a group of Reports that are always generated at the end of each
month, quarter, etc. Another example might be a series of executive summaries that are needed
on a demand basis by upper level management. Of course, it is possible to run each required
Report individually for these repetitive cases. Then when they are all done, group them together
and give them to the requesting office. This often means that there is a checklist that details what
repetitive Reports are required, when and for whom.

This problem of producing a repetitive sequence of Reports is solved with Rave by linking the
Reports to each other. Rave has the ability to link the Report Page definitions in a wide variety of
ways by setting different combinations of three properties; Page.GotoMode, Page.GotoPage and
Report.PageList. It is important to note that the setting of the GotoMode property determines the
behavior of the GotoPage property. The PageList property is at Report Node level and is
designed to provide a way to initiate several different GotoPage property chains in a defined
sequence.

Although we will give examples of how we envision achieving various Batch/Chain sequences of
Pages, it will not be possible to include all of the possibilities. The secret is that one should
understand and be flexible on how to "mix and match" the various parts of Rave. In particular, pay
special attention to the Global Page catalog and the GotoMode, GotoPage, Mirror and PageList
properties. Different combinations of these provide a wide range of output options. There is a lot
of power here, so the best advice is to start with simple Reports. Then add some of these
powerful extras and as they make sense.

Exercise: Calling Pages
The way to accomplish this would be:

• Complete all normal definitions for the Page 1.

RAVE Reference Manual

Page 107

• Complete all normal definitions for the Page 2.

• Complete all normal definitions for the Page 3.

• Set the GotoPage property of the first Page to point to the second Page.

• Set the GotoMode property of the first Page to gmCallEach setting.

• Set the GotoPage property of the second Page to point to the third Page.

• Set the GotoMode property of the second Page to gmGotoDone setting.

• Insure that the GotoPage property of the last Page definition is blank.

The gmCallEach setting of the Page 1 GotoMode property will activate the GotoPage property
after the first physical Page has printed. So, at the end of physical Page 1, Page 2 definition will
be started. Because the Page 2 definition has a gmGotoDone setting, it will go to the Page 3
definition when it has finished the printing the second Page. The Page 3 definition will print that
Page's definition and then return control to the Page 1 definition because it's GotoPage property
is blank. You can join any number of Pages together in this manner. The key is that a
gmCallEach setting will save off the calling Page so that whenever a blank GotoPage property in
the Page chain is encountered, it will continue with that calling Page.

Exercise: Chain Pages
For this example, we are going to do a Multi-Page definition that includes an invoice, file copy,
shipping document and packing slip.

• Create a section on a Global Page that will be mirrored later.
Complete all of your normal definitions for the Invoice Page within this section.

• Create a section on a Global Page that will be mirrored later.
Complete all of your normal definitions for the File Copy Page within this section.

• Create a section on a Global Page that will be mirrored later.
Complete all of your normal definitions for the Shipping Page within this section.

• Create a section on a Global Page that will be mirrored later.
Complete all of your normal definitions for the Packing Slip Page within this section.

• Create a "New Report" that will hold the definitions for these Pages.

• Create a new Page definition, "Invoice"
drop a section on this Page definition and set the Left and Top properties
mirror the section to the "Global" Invoice Page section
drop a text component on the bottom of the Page "INVOICE COPY"

• Create a new Page definition, "FileCopy1"
drop a section on this Page definition and set the Left and Top properties
mirror the section to the "Global" FileCopy Page section
drop a text component on the bottom of the Page "FILE COPY 1"

• Create a new Page definition, "FileCopy2"
drop a section on this Page definition and set the Left and Top properties
mirror the section to the "Global" FileCopy Page section
drop a text component on the bottom of the Page "FILE COPY 2"

• Repeat those steps, for the "Shipping Document" and "Packing Slip"

RAVE Reference Manual

Page 108

• Now go back to the "Invoice" Page definition (NOT the global definition"
Set the PageMode setting to gmGotoDone
Set the PageGoto to point to the "File Copy 1" Page definition.

• Repeat these steps for each of the copies, remember to leave the last one blank

The mirroring of a Global Page offers a lot of "reuse" of a Master Design. This example showed
that the "FileCopy" could be mirrored twice and "label" each Page definition differently.

Exercise: Different First Page
The way to accomplish this would be:

• Complete all normal definitions for Page 1.

• Create a "New Report Page" for the second Page definition.

• Set the GotoPage property of the first Page to point to the second Page.

• Set the GotoMode property of the first Page to gmGotoNotDone setting.

• Complete all normal definitions for Page 2.

• Insure that the GotoPage property of the second Page is blank.

The gmGotoNotDone setting of the GotoMode property will activate the GotoPage property after
the first physical Page has printed but only when the current Page definition has not finished (for
example, EOF - End Of File). So, at the end of physical Page 1, Page 2 definition will be started.
Because the Page 2 definition does NOT have anything in the GotoPage property, the Page 2
definition will remain in effect for all remaining physical Pages until the Report is done.

Exercise: Different Odd/Even Page
The way to accomplish this would be:

• Make a Section on the first Page definition that is set for the "Odd" Page margins.
For example, set the properties Left = 1.0, Width = 7.0, Top = 0.5 and Height = 10.0.

• Complete all of your normal definitions for Page 1 within this section.

• Create a "New Report Page" for the second Page definition

• Drop a Section on the Page 2 and set the top and left margins for the even Page settings.
For example, set the Left property = 0.5 and Top property = 0.5.

• Set the Mirror property of Page 2 Section to point to the Section on Page 1.

• Set the GotoPage property of the second Page to point to the first Page.

• Set the GotoPage property of the first Page to point to the second Page.

• Set the GotoMode property of BOTH Pages to gmGotoNotDone setting.

The gmGotoNotDone setting of the GotoMode property will activate the GotoPage property after
each physical Page has printed but only when the current Page definition has not finished (for
example, EOF - End Of File). So, at the end of physical Page 1, Page 2 definition will be called.
At the end of physical Page 2, Page 1 definition will be called. This loop will continue until one of

RAVE Reference Manual

Page 109

the Pages is completed. If control would need to be passed to another Page at this point, use the
Report components PageList property to select the next Page.

RAVE Reference Manual

Page 110

RAVE Reference Manual

Page 111

Chapter 20

Preferences

 In this Section:

• Shows how to get to the Preferences Dialog
• Explains each tab in the preferences dialog

Getting to the Preferences Dialog
Before getting started in Rave lets take a short detour and learn about controlling the appearance
of the RAVE designer. Under the main menu, select "Edit" then "Preferences". This will open a
Preferences dialog where the look and feel of the RAVE system can be customized.

Defaults Tab
"Defaults" tab provides a place to set many of the RAVE Visual Designer Project and Page
settings.

Settings in the Default tab section will be used when a new Project or new Page is created. After
a Project has been started, the Project properties can be changed at the Project level and then
they will be saved for that Project. The same applies to the properties of Pages. For example, a
Project could have a default grid of 0.25 inches, but on a special Page the settings could set the
Grid Spacing to 0.1 inches.

Designer Tab
The "Designer" section controls changes of the Grid system, Alignment options, units of
Measurement and Zooming.

The "Zoom Increment" controls the amount of change that is made with the in/out zoom controls
on the Zoom Toolbar.

The "Alignment Options" section, controls the visibility of the Order buttons and Tap buttons. It
also controls the 'speed key' assigned to the Tap Tools. The speed key is really a predetermined
amount of distance that the component is allowed to move with one keystroke. To use this
feature, select the component and click on any of the arrow keys on the toolbar. Or, use the arrow
keys on the keyboard while pressing the Ctrl-key.

In the "Grid Settings" area, grid color and associated changes can be applied to the Page of the
Report. "Snap To Grid" will cause the mouse cursor to move and size components in increments
of the Grid Spacing. The "Draw Grid On Top" option allows the Grid to be seen visually on top of
components that have a solid background color. To hide the Grid Lines, make sure that "Show
Grid" is unchecked. Several of these preferences are controllable from the Designer Toolbar. For
more information about the Designer Toolbar and other toolbars see the Utility Toolbar Chapter.

The "Waste Area" controls the visibility of the amount of excess between the area border (the red
dashed line) and the edge of the Page. "Show Waste Area" hides/shows the red dashed border
around the Page. Then next two selections control the Waste Area width. The Waste Area can be
set to the default printer settings, or it can be set manually by using the Left, Right, Top, and
Bottom edit boxes.

In the "Background Gradient" section, the three colors that make up the area between the Page
and the borders of the program can be changed. Clicking on the color wheels and selecting the
desired colors change the gradient of the background. To make the background a solid color,

RAVE Reference Manual

Page 112

simply select the same color for all three color options.

The visibility of the Order Alignment and Tap Tools are controlled by settings in the Alignment
Options section of the Designer Tab. To get to this section click Preferences in the Edit menu and
choose the Designer Tab.

Also in the Alignment Options, the Tap Tools have a 'speed key' assigned to them. This speed
key is really a predetermined amount of distance that the component is allowed to move in one
keystroke. The "Tap Distance" is initially set at 0.01 inches. If this distance is increased it will take
less time to move the component in the desired direction. To use this feature, select the
component and hold the Ctrl key while clicking on any of the arrow keys in the toolbar. Or, use
the arrow keys on the keyboard while pressing the ctrl-key.

Environment Tab
"Environment" contains settings for user viewed information, toolbars, and page environment
options.

In "User Level", the user's level can be increased or decreased. This setting controls the amount
of information to be displayed to the user, mainly dealing with the various properties that will be
covered later in this manual. Do not be distracted with all the advanced properties at first. To
simplify the early Rave experience, start out at either the Beginner or Intermediate User Level
setting. While the Beginner and Intermediate settings are adequate for designing a Rave report,
these lower settings will be missing some controls. Thus, if there are controls that are covered
and it appears that Rave does not have these controls, check the User Level preference setting.

The "Options" in Environment section, controls the Band Headers, environment settings, and
rulers. The "Always Show Band Headers" will have the Band Headers shown at all times. "Save
Environment Only Changes When Exiting" will save all the changes made to the environment
when the program is shut down. "Display Rulers" will keep the rulers visible around the Page if
selected.

"Run in administrator mode," allows the user to be prompted for a password if there is a
password in the file. When this selection is not selected, and there is a password in the file, the
user will not be prompted for a password, the program will just run in non-administrator mode. An
administrator can place a password in different areas to restrict access. Placing a password in the
AdminPassword property restricts user access.

"Language" changes the language of the user interface. To have this option, the language file
translators needs to be installed. Once installed simply choose a language.

 Shortcuts Tab
The "Shortcuts" section allows the user to define keyboard shortcuts for a wide variety of Project
actions.

It may save you some time to check the list of "Actions" to see if a shortcut already exists for
those tasks that are repeatedly done while you are using the Rave designer. If there is no
shortcut, then you may be able to create a shortcut that will be easy for you to remember.

RAVE Reference Manual

Page 113

Appendix A

Formatting

Below is a list of different format codes and what they will accomplish for each output type.

AlphaNumeric Items
Description: DisplayFormat formats the value given using the format string. The following

format specifiers are supported in the format string:

Examples: Format String 123456.78 -123.0 0.5 0.0
 #,##0.00 123,456.78 -123.00 0.50 0.00
 #.# 123456.8 -123 .5 0
 $,0.00 $123,456.78 $-123.00 $0.50 $0.00
 0.00;(0.00);'-' 123456.78 (123.00) 0.50 -----

Specifier Represents
0 Digit place holder. If value being formatted has a digit where the '0' appears, then the

digit is copied to the output string. Otherwise, a '0' is in the output string.
Digit place holder. If value being formatted has a digit where the '#' appears, then the

digit is copied to the output string. Otherwise, nothing appears in that position.
. Decimal point. The first '.' character in the format string determines the location of the

decimal separator in the formatted value. The actual character used as a the decimal
separator in the output string is determined by the Number Format of the
International section in the Windows Control Panel.

, Thousand separator. If the format string contains a ',' characters, the output will have
thousand separators inserted between each group of three digits to the left of the
decimal point. The actual character used as a the thousand separator in the output is
determined by the Number Format of the International section in the Windows
Control Panel.

E+ Scientific notation. If any of the strings 'E+', 'E-', 'e+', or 'e-' are contained in the
format string, the number is formatted using scientific notation. A group of up to four
'0' characters can immediately follow the 'E+', 'E-', 'e+', or 'e-' to determine the
minimum number of digits in the exponent. The 'E+' and 'e+' formats cause a plus
sign to be output for positive exponents and a minus sign to be output for negative
exponents. The 'E-' and 'e-' formats output a sign character only for negative
exponents.

'xx'/"xx" Characters enclosed in single or double quotes are output as-is, and do not affect
formatting.

; Separates sections for positive, negative, and zero numbers in the format string.

The locations of the leftmost '0' before the decimal point in the format string and the rightmost '0'
after the decimal point in the format string determine the range of digits that are always present in
the output string.

The number being formatted is always rounded to as many decimal places as there are digit
placeholders ('0' or '#') to the right of the decimal point. If the format string contains no decimal
point, the value being formatted is rounded to the nearest whole number.

If the number being formatted has more digits to the left of the decimal separator than there are

RAVE Reference Manual

Page 114

digit placeholders to the left of the '.' character in the format string, the extra digits are output
before the first digit placeholder.

To allow different formats for positive, negative, and zero values, the format string can contain
between one and three sections separated by semicolons.
One section: The format string applies to all values.
Two sections: The first section applies to positive values and zeros, and the second section

applies to negative values.
Three sections: The first section applies to positive values, the second applies to negative

values, and the third applies to zeros.

If the section for negative values or the section for zero values is empty, that is if there is nothing
between the semicolons that delimit the section, the section for positive values is used instead.

If the section for positive values is empty, or if the entire format string is empty, the value is
formatted using general floating-point formatting with 15 significant digits.

Date / Time items
Items that are either a date or time field can use the following format codes. The format specifiers
are not case sensitive. If the format parameter is blank then the value is formatted as if a 'c'
specifier had been given. The following format specifiers are supported:
Examples: dddd, mmmm d, yyyy => Monday, September 21 1998
 d mmm yy => 21 Sep 98

Specifier Displays
c Displays date using format given by ShortDateFormat global variable, followed by time

using format given by LongTimeFormat global variable. The time is not displayed if
fractional part of the DateTime value is zero.

d Displays the day as a number without a leading zero (1-31).
dd Displays the day as a number with a leading zero (01-31).
ddd Displays the day as an abbreviation (Sun-Sat) using the strings given by the

ShortDayNames global variable.
dddd Displays the day as a full name (Sunday-Saturday) using the strings given by the

LongDayNames global variable.
ddddd Displays the date using the format given by the ShortDateFormat global variable.
dddddd Displays the date using the format given by the LongDateFormat global variable.
m Displays the month as a number without a leading zero (1-12). If the m specifier

immediately follows an h or hh specifier, the minute rather than the month is displayed.
mm Displays the month as a number with a leading zero (01-12). If the mm specifier

immediately follows an h or hh specifier, the minute rather than the month is displayed.
mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by the

ShortMonthNames global variable.
mmmm Displays the month as a full name (January-December) using the strings given by the

LongMonthNames global variable.
yy Displays the year as a two-digit number (00-99).
yyyy Displays the year as a four-digit number (0000-9999).
h Displays the hour without a leading zero (0-23).
hh Displays the hour with a leading zero (00-23).
n Displays the minute without a leading zero (0-59).
nn Displays the minute with a leading zero (00-59).

RAVE Reference Manual

Page 115

s Displays the second without a leading zero (0-59).
ss Displays the second with a leading zero (00-59).
t Displays the time using the format given by the ShortTimeFormat global variable.
tt Displays the time using the format given by the LongTimeFormat global variable.
am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays 'am' for any

hour before noon, and 'pm' for any hour after noon. The am/pm specifier can use
lower, upper, or mixed case, and the result is displayed accordingly.

a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays 'a' for any
hour before noon, and 'p' for any hour after noon. The a/p specifier can use lower,
upper, or mixed case, and the result is displayed accordingly.

ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the contents
of the TimeAMString global variable for any hour before noon, and the contents of the
TimePMString global variable for any hour after noon.

"/" Displays the date separator character given by the DateSeparator global variable.
: Displays the time separator character given by the TimeSeparator global variable.
'xx'/"xx" Characters enclosed in single or double quotes are displayed as-is, and do not affect

formatting.

RAVE Reference Manual

Page 116

RAVE Reference Manual

Page 117

Appendix B

Keyboard / Mouse Shortcuts

Below is a list of different Keyboard / Mouse combinations that can be used as a shortcut. See
Preferences - Shortcuts for assigning keyboard keys to your own shortcuts.

Page Designer or Project Tree
Click on a component selects that component
Right Click shows context menu for that component
Shift Alt Click adds all components of the same type as the component clicked on to

the selection list of the current page designer
Shift Ctrl Click adds all children of clicked component to selection list
Shift Click on a component toggles the selection for that component. This can be

used to select multiple components.

Page Designer Only
Click in blank area of Page Designer removes selection of all components
Ctrl + Arrow Keys taps (moves) selected components in direction of arrow key
Ctrl C / Ctrl Ins copies selection to clipboard
Ctrl Click centers the design window to location clicked
Ctrl F4 unloads current global page
Ctrl V / Shift Ins paste clipboard to page designer
Ctrl X / Shift Del cuts selection to clipboards
Delete deletes currently selected component(s)
Escape changes selection to parent of current component
F9 executes the current report
F11 toggles between page designer and property panel
Shift + Arrow Keys changes size of selected components (Up = decrement height, Down =

increment height, Left = decrement width, Right = increment width)

Project Tree Only
Alt Drag DataField component to page designer - creates text component
Alt Drag selected component to container component in Project Tree - makes the

destination component (must be a container component like sections or
regions) the parent of all selected components

Ctrl Drag DataField component to page designer - creates DataText component
Ctrl Drag component to page designer - creates a mirror of component
Double Click on Global Page node - loads selected page into page designer
Double Click on Report node - actives selected report

RAVE Reference Manual

Page 118

RAVE Reference Manual

Page 119

Appendix C

Property Descriptions

Listed below is an alphabetical listing of all properties that make up the RAVE system. Properties
are defined by their data type, category, components they are members of, a short description
and any relationships they have with other properties. The default values are added where
applicable.

AllowSplit Property

Default
False

Component/Class
Band, DataBand

Description
When set to True, the band will be allowed to split across pages.
Note:
If the band is too large to fit on a page, it will be split no matter the setting of this property.

AlwaysGenerate Property

Default
False

Component/Class
Report

Description
When set to True, generation of the complete report is forced before sending it to the output
device. This is important for insuring that the report variables like TotalPages are known
before the first page is printed.

Anchor Property

Default
Top / Left

Component/Class
All visible components

Description
Determines the method that will be used to align a component both vertically / horizontally
within its parent's area.

See also
ExpandParent

RAVE Reference Manual

Page 120

AutoSize Property

Default
True

Component/Class
All BarCode components

Description
When set to true, BarCode dimensions will automatically resize to display all encoded text.

See also
Text

BandStyle Property

Default
'None'

Component/Class
Band, DataBand

Description
One of the powerful features of RAVE is the ability to set a band's behavior with the
BandStyle property. Click on the ellipse in the BandStyle area, this will open an editor dialog
window that allows the set the behavior needed for the selected band.

See also
ControllerBand, Band Style Editor

BarCodeJustify Property

Default
pjLeft

Component/Class
All BarCode components

Description
Determines where the bar code is printed relative to its bounding box.
 pjLeft Print the bar code left justified.
 pjCenter Print the bar code centered.
 pjRight Print the bar code right justified.

See also
Center, Left, Right

RAVE Reference Manual

Page 121

BarCodeRotation Property

Default
Rot0

Component/Class
All BarCode components

Description
Allows the bar code to be rotated to 4 different orientations. The pivot point for rotation is the
top left corner of the bar code.
 Rot0 no rotation
 Rot90 rotate 90 degrees relative to page
 Rot180 rotate 180 degrees relative to page
 Rot270 rotate 270 degrees relative to page

See also
Left, Top

BarHeight Property

Default
0.5 (PostNet component 0.125)

Component/Class
All BarCode components

Description
Sets the height for the tallest bar.

See also
BarWidth

BarTop Property

Default
0

Component/Class
All BarCode components

Description
Sets the location of the top of the bar code. The location of the readable text is controlled by
PrintReadable and PrintTop properties.

See also
PrintReadable, PrintTop, Top

RAVE Reference Manual

Page 122

Bin Property

Default
Default (Windows system settings)

Component/Class
Page

Description
Specifies the paper tray used for the document.

See also
Collate, Duplex, Orientation, PaperSize, Printer, Resolution

BorderColor Property

Default
Black

Component/Class
Circle, Ellipse, Rectangle, Square

Description
Sets the color to be used for the border of the graphic.

See also
FillColor

BorderStyle Property

Default
psSolid

Component/Class
Circle, Ellipse, Rectangle, Square

Description
Sets style of border that appears as a frame around shapes.
 psClear No border is drawn
 psDash Creates a dashed border
 psDashDot Creates an alternating dash and dot border
 psDashDotDot Creates an alternating dash and double dot border pattern
 psDot Creates a dotted border
 psInsideFrame Creates a border that is inside the frame of closed shapes
 psSolid Creates a solid border

Note:
Only psSolid can have a pen width greater than 1.

See also
BorderColor, BorderWidth

RAVE Reference Manual

Page 123

Bottom Property

Default
'None'

Component/Class
All BarCode components

Description
Sets the position for the bottom of the bar code. The value includes the readable text if it is
printed.

See also
PrintReadable, PrintTop

CalcType Property

Default
ctSum

Component/Class
CalcText, CalcTotal

Description
Sets the type of calculation to be performed by the CalcText over the DataField property
contents.
 ctAverage average value for a data field
 ctCount count the number of occurrences
 ctMax maximum value for a data field
 ctMin minimum value for a data field
 ctSum sum of a field

See also
CountBlanks, RunningTotal

CalcVar Property

Default
' ' (empty)

Component/Class
CalcTotal

Description
Defines the calculation component that will be used in the CalcType operation. If this property
is defined, DataField will be ignored.

See also
CalcType

RAVE Reference Manual

Page 124

Categories Property

Default
' ' (empty)

Component/Class
ProjectManager

Description
Defines the available categories to which a report can belong.
For example, could define categories called 'Accounting', 'General', 'Status' and 'System'.

See also
Cursor, DevLocked, Parameters

Category Property

Default
' ' (empty)

Component/Class
Report

Description
Sets the category that a report will belong to. For example, you could define categories called
'Accounting', 'General', 'Status' and 'System'.

See also
Cursor, DevLocked, Parameters

Center Property

Default
'None'

Component/Class
All BarCode components

Description
Sets or returns the position for the horizontal center of the bar code. When a value is
assigned to Center the BarCodeJustify property is set to pjCenter as well.

See also
BarCodeJustify, Left, Right

RAVE Reference Manual

Page 125

CodePage Property

Default
cpCodeA

Component/Class
I128BarCode

Description
Specifies whether Code A, Code B or Code C is being used.
 cpCodeA sets 128 output to Code A
 cpCodeB sets 128 output to Code B
 cpCodeC sets 128 output to Code C

Collate Property

Default
False

Component/Class
Report

Description
Sets the collation style of the print job for the report.

See also
Bin, Duplex, Orientation, PaperSize, Printer, Resolution

Color Property

Default
Black

Component/Class
Line and text components

Description
Used to set the color of the component's output.

See also
BorderColor, FillColor

RAVE Reference Manual

Page 126

Columns Property

Default
1

Component/Class
DataBand, Region

Description
Determines the number of columns to be used, this property is component dependent.
 DataBand Defines how many columns the band will print. The width of

each column is divided evenly across the width of the band
and printing progresses from the left to right column before
progressing to the next row.

 Region Sets the number of columns to be use in the region. When

the region is printing, it will print bands contents in all
columns from left to right in a snaking fashion.

See also
Columnspacing

ColumnSpacing Property

Default
0

Component/Class
DataBand, Region

Description
Defines the width of a buffer between each column. The spacing will not be applied before
the first or after the last column.

See also
Columns

ConnectionName Property

Default
' ' (empty)

Component/Class
DataView

Description
Sets the name of the data connection from which data will be retrieved for the report.

RAVE Reference Manual

Page 127

ContainsRTF Property

Default
False

Component/Class
DataMemo

Description
Indicates whether the memo contains RTF or not.

If ContainsRTF is true, then the output will be formatted according to the RTF codes
contained in the memo.

Controller Property

Default
' ' (empty)

Component/Class
CalcText, CalcTotal

Description
Defines the controller component that will execute the calculation in the CalcType property
when the controller is printed. Normally, the controller is tied to a particular dataview and will
signal when new data is available.

See also
CalcType, ControllerBand, DataField, DataView, Initializer

ControllerBand Property

Default
' ' (empty)

Component/Class
Band, DataBand

Description
Sets the controlling band for the current Band or DataBand.

For example, a header or footer band style would assign the data of the DataBand that it is
acting as a header or footer for. Detail bands in a master-detail style report would set their
ControllerBand to the master DataBand.

See also
BandStyle, Controller

RAVE Reference Manual

Page 128

Copies Property

Default
1

Component/Class
Report

Description
Sets the number of copies that the report will generate when it is printed.

See also
Bin, Collate, Duplex, Orientation, PaperSize, Printer, Resolution

CountBlanks Property

Default
True

Component/Class
CalcText, CalcTotal

Description
This property sets whether the CalcText component will count blank field values for the
ctAverage and ctCount calculation types.

See also
CalcType

Cursor Property

Default
crDefault

Component/Class
All drawing

Description
Will determine the type of cursor used within that item's selection zone.
 crAppStart
 crArrow
 crCross
 crDefault
 crDrag
 crHandPoint
 crHelp
 crHourGlass

See also
Categories, DevLocked, Parameters

RAVE Reference Manual

Page 129

DataField Property

Default
' ' (empty)

Component/Class
Most data aware components

Description
Defines the type of data that the component will display or process. The contents can be
made up of data field names, report variables, project parameters or even string constants
surrounded by quotes. It is recommended that you use the data text editor to build a
DataField value.

See also
DataView

DataView Property

Default
' ' (empty)

Component/Class
Most data aware components

Description
Defines the data view that will be used if the DataField property is initialized to any field
names.

See also
DataField

Description Property

Default
' ' (empty)

Component/Class
 DataView, DataField, Page, Report

Description
Defines a multi-line memo that describes the component. This could be used in conjunction
with the FullName property to document how the component is to be used.

See also
FullName, Name

RAVE Reference Manual

Page 130

DesignerHide Property

Default
False

Component/Class
Band , DataBand

Description
This property controls the visibility of the band contents in the designer. Reduce the "clutter"
of other bands by setting their DesignerHide property to true. Then only the one(s) set to
false will show. This might be needed if there are a large number of bands or a band that is
occupying a large space.
Note:
This has NO effect on what will be printed, only effects what is shown on the designer page.

See also
DevLocked

DestParam Property

Default
' ' (empty)

Component/Class
CalcOp, CalcTotal

Description

value can be blank if the calculation is only going to be used as an intermediate result for
other calculation components.

See also
DataField, Operator

DestPIVar Property

Default
' ' (empty)

Component/Class
Page, ProjectManager, Report

Description
Initializes the value of a PIVar (Post Initialize Variable). Any PIVars of the same name that
were previously printed will show this value. PIVars are normally printed using the Data Text
Editor of the DataText component. The main difference between PIVars and parameters is
that PIVars will use the value that is set after (in print order) the PIVar while parameters print
the value that was set before. A common use for PIVars is to print a total in a header band
that would be initialized later in the footer band. This works even across multiple pages.
Report.AlwaysGenerate must be true if you are using PIVars in your report.

See also
AlwaysGenerate, Editor DataText, PIVars

RAVE Reference Manual

Page 131

DetailKey Property

Default
' ' (empty)

Component/Class
DataBand , DataCycle

Description
Sets the detail key fields that will be matched to the master key fields in a master-detail
report. Multiple fields should be separated with +'s.

See also
MasterKey

DevLocked Property

Default
False

Component/Class
All components

Description
Locks out the ability of anyone making changes to the property.

May be used by the developer to prevent accidental changes being made to a stable part of a
complex report structure.

See also
Categories, Cursor, DesignerHide, Parameters

DisplayFormat Property

Default
' ' (empty)

Component/Class
CalcOp, CalcText, CalcTotal, All Numeric Field Types

Description
DisplayFormat formats the value given using the given format string. The various format
specifiers are listed in appendix A.

See also
Appendix A

RAVE Reference Manual

Page 132

DisplayOn Property

Default
doParent

Component/Class
Most components

Description
Controls whether the component will be used during the print preview display, printer output
or both.
 doAll send this item to both preview & printer
 doParent use the parent setting for DisplayOn
 doPreviewOnly item will only be displayed on the preview
 doPrinterOnly component will only be displayed on the printer

DisplayType Property

Default
dtNumericFormat

Component/Class
CalcOp, CalcText, CalcTotal

Description
Defines whether the contents represent numeric or date/time information. The DisplayFormat
property will be processed as either numeric or date/time format codes depending upon this
setting.
 dtDateTimeFormat sets to Date/Time format
 dtNumericFormat sets to numeric format

RAVE Reference Manual

Page 133

Duplex Property

Default
pdDefault

Component/Class
Report

Description
Will set the duplex mode for the current printer.
 pdDefault Use current mode
 (Duplex mode NOT changed)
 pdSimplex Simplex mode
 (Duplex mode NOT initialized)
 pdHorizontal Duplex mode initialized - print Head to Toe
 pdVertical Duplex mode initialized - print Head to Head

Note:
Not all printers or drivers support duplex printing.

See also
Bin, Collate, Orientation, PaperSize, Printer, Resolution

ExpandParent Property

Default
True

Component/Class
Memo

Description
When set to true, the height of the parent of the memo will be increased the same amount the
height of the memo is increased.
Note:
In order to properly print dynamically sized memos; set ExpandParent to true and also set the
vertical anchor to stretch.

See also
Anchor Editor, Anchor Property, DataMemo component

Extended Property

Default
False

Component/Class
Code39BarCode

Description
When set to true, Extended Code 39 format will output instead of standard Code 39 format.

RAVE Reference Manual

Page 134

FieldName Property

Default
' ' (empty)

Component/Class
All data field components

Description
Defines the field name that this field component will retrieve data from.

FileLink Property

Default
' ' (empty)

Component/Class
Bitmap, Metafile

Description
Defines a filename to initialize the bitmap or metafile with a file on the hard disk.

See also
Image

FillColor Property

Default
White

Component/Class
 Circle, Ellipse, Rectangle, Square

Description
Sets the color that is used to fill the graphical shape

See also
BorderColor, Color, FillStyle

RAVE Reference Manual

Page 135

FillStyle Property

Default
fsSolid

Component/Class
Circle, Ellipse, Rectangle, Square

Description
Sets the style used to fill the graphical shape. Use the Fill Toolbar to select the fill style
desired or enter it from this properties drop list box.
 fsBDiagonal
 fsClear
 fsCross
 fsDiagCross
 fsFDiagonal
 fsHorizontal
 fsNone
 fsSolid
 fsVertical

Note:
Setting the FillStyle to fsClear will cause the FillColor to be set to White.

See also
BorderColor, Color, FillColor

FinishNewPage Property

Default
False

Component/Class
Band, DataBand

Description
Very similar to StartNewPage, but if set to True, it will cause a new page to begin after this
band has finished printing.
Note:
The StartNewPage property would normally be used on header bands while the
FinishNewPage property would normally be used on footer bands.

See also
MaxRows, StartNewPage

RAVE Reference Manual

Page 136

FirstPage Property

Default
' ' (empty)

Component/Class
Report

Description
Defines the first page that will be printed in a report if the PageList property is empty.

See also
GotoMode, GotoPage, PageList

Font Property

Default
System font

Component/Class
All text components

Description
Defines the font that will be used to draw the contents of a text component.

See also
FontJustify

FontJustify Property

Default
pjLeft

Component/Class
Most text components

Description
Sets the horizontal justification of the text data in the box.
 pjBlock block justify the text
 pjLeft left justify the text
 pjCenter center the text
 pjRight right justify the text

RAVE Reference Manual

Page 137

FontMirror Property

Default
System font

Component/Class
Most text components

Description
This property sets the FontMaster component that is used to define the font for the text.
Setting this property to a font master will override the Font property.

See also
Font

FullName Property

Default
' ' (empty)

Component/Class
DataField, DataView, Page, Report

Description
Defines the full name or long name of the project item component. The full name is for single
line display and may contain special characters and spaces.

See also
Description, Name

RAVE Reference Manual

Page 138

GotoMode Property

Default
gmGotoDone

Component/Class
Page

Description
This property determines the behavior of the GotoPage property.
 gmGotoDone Go to the GotoPage property setting when the page

definition has completely finished printing. There may
be several physical pages if there is a region defined
on the page.

 gmGotoNotDone Go to the GotoPage property after a single physical
page has printed, only if the current page definition
has not finished printing. This option is usually only
used with mirrored sections (odd/even layouts,
different first page, …).

 gmCallEach Call GotoPage property after each physical page has
printed whether the page definition is finished printing
or not. This is useful for inserting other pages after
each page of a report prints. Control is returned to the
calling page when the page chain ends (i.e., a blank
GotoPage property is encountered)

See also
GotoPage, PageList

GotoPage Property

Default
' ' (empty)

Component/Class
Page

Description
Defines the page that will be printed after the current page according to the GotoMode
property rule.

See also
GotoMode, PageList

RAVE Reference Manual

Page 139

GridLines Property

Default
5

Component/Class
Page

Description
Controls the grid lines that are visible.
The default setting of 5 means that every fifth grid line will be visible. If GridSpacing is set to
0.1, then it means that the visible grid lines will be every 1/2 inch but snap to grid will occur
every 0.1 inches.

See also
GridSpacing

GridSpacing Property

Default
0.1

Component/Class
Page

Description
Sets the spacing between grid lines.

See also
GridLines

GroupDataView Property

Default
' ' (empty)

Component/Class
Band, DataBand

Description
Defines the data view that will be used to calculate the GroupKey from.

See also
GroupKey

RAVE Reference Manual

Page 140

GroupKey Property

Default
' ' (empty)

Component/Class
Band, DataBand

Description
Defines the field(s) that will be used to calculate the group key.
When defining a report using grouping headers or footers, the GroupKey property is used to
determine when a new group is encountered. Separate fields should be separated with +'s.

See also
GroupDataView

Height Property

Default
'None'

Component/Class
All visible components

Description
Defines the overall height of the component.
For bar codes this is a read only property that contains the height of the entire bar code.
If the bar code PrintReadable property is set to true, then the Height property contains the bar
code height plus the line height of the current font.

See also
BarHeight, PrintReadable

HRadius Property

Default
0

Component/Class
Rectangle, Square

Description
Controls the horizontal radius of the rectangle corner. When used in combination with
VRadius, these properties round the corners of rectangles or squares.

See also
VRadius

RAVE Reference Manual

Page 141

Image Property

Default
' ' (empty)

Component/Class
Bitmap, Metafile

Description
Defines the image that will be printed with a bitmap or metafile component.

See also
FileLink

InitCalcVar Property

Default
 ' ' (empty)

Component/Class
CalcController

Description
When this component is acting as an initializer, it defines the calculation component that will
be used as the initializing value.
If this property is defined, InitDataField and InitValue will be ignored.

See also
InitDataField, InitDataView, InitValue

InitDataField {CalcController} Property

Default
' ' (empty)

Component/Class
CalcController

Description
If the InitCalcVar property is blank, then this property defines the data field or project
parameter that will be used as the initial value for any component(s) using this initializer.
If this property is defined, InitValue will be ignored.

See also
InitCalcVar, InitDataView, InitValue

RAVE Reference Manual

Page 142

InitDataField {PageNumInit} Property

Default
' ' (empty)

Component/Class
PageNumInit

Description
Defines the value that the relative page number will start from when this component is
printed.
If the text cannot be converted to a valid integer, a default value of 1 will be used.

See also
InitDataView, InitValue

InitDataView Property

Default
' ' (empty)

Component/Class
CalcController, PageNumInit

Description
Defines the default DataView for the InitDataField property.

See also
InitDataField

Initializer Property

Default
' ' (empty)

Component/Class
CalcText, CalcTotal

Description
Defines the initializer component. The CalcController is typically the initializer, which will
initialize the calculation when the initializer is printed.
Initializers are useful for setting a calculation to a specific value or initializing it at key points in
a report

See also
Controller, CalcController

RAVE Reference Manual

Page 143

InitToFirst Property

Default
True

Component/Class
DataBand, DataCycle

Description
Moves the DataSet to the Top of File or first record position.

See also
ConnectionName

InitValue {CalcController} Property

Default
0

Component/Class
CalcController

Description
If InitCalcVar and InitDataField properties are blank, then a constant value is defined that will
be used as the initializing value for any components for which this is an initializer.

See also
InitCalcVar, InitDataField, InitDataView

InitValue {PageNumInit} Property

Default
1

Component/Class
PageNumInit

Description
Defines the value that the relative page number will start from when this component is
printed. Only the RelativePage report variable (not CurrentPage) will reflect the new page
number.

See also
InitDataField, InitDataView

RAVE Reference Manual

Page 144

KeepBodyTogether Property

Default
False

Component/Class
DataBand

Description
This property, if true, causes the data band to attempt to keep the bands from the body
header to the body footer together on the same page.

See also
KeepRowTogether, OrphanRows, WidowRows

KeepRowTogether Property

Default
False

Component/Class
DataBand

Description
This property, if true, causes the data band to attempt to keep the bands from the row header
to the row footer together on the same page.

See also
KeepBodyTogether, OrphanRows

Left Property

Default
'None'

Component/Class
All visible components

Description
Sets the position for the left edge of the component.

See also
Top, Width

RAVE Reference Manual

Page 145

LineStyle Property

Default
psSolid

Component/Class
All line components

Description
Sets style of line.
 psClear No line is drawn
 psDash Creates a dashed line
 psDashDot Creates an alternating dash and dot line
 psDashDotDot Creates an alternating dash and double dot line pattern
 psDot Creates a dotted pen
 psInsideFrame Creates a pen that draws a line inside the frame of closed

shapes
 psSolid Creates a solid line

Note:
Only psSolid can have a pen width greater than 1 pixel.

See also
BorderStyle, BorderWidth, LineWidth

LineWidth Property

Default
1

Component/Class
Drawing

Description
Sets the width of the line. The units for this line thickness is controlled by the LineWidthType
property. Line widths greater than 1 pixel can only be used with solid lines.

See also
LineStyle, LineWidthType

RAVE Reference Manual

Page 146

LineWidthType Property

Default
wtPixels

Component/Class
Drawing

Description
Determines whether the LineWidth property of the graphic shape is measure in pixels or
points. Use pixels and a LineWidth of 1 (the defaults) if the thinnest line possible is needed.
Also use points for all other LineWidth values for consistent thickness across devices.
 WtPixels LineWidth is measured in pixels
 WtPoints LineWidth is measured in points
 (1 point = 1/72nd of an inch)

See also
LineWidth

Locked Property

Default
False

Component/Class
All components

Description
Controls the state of the selected component(s) properties and all of its children (if any).
If true, then the properties cannot be selected or changed.
The color of the property names and pips (if selected) will be red when this property is true.
Note:
This can be used to a freeze part of a page design, so that the design cannot accidentally be
moved while completing a design in another area.

LookupDataView Property

Default
' ' (empty)

Component/Class
DataText

Description
Specifies the data view that lookup will be performed on.

See also
DataField, LookupDisplay, LookupField, LookupInvalid

RAVE Reference Manual

Page 147

LookupDisplay Property

Default
' ' (empty)

Component/Class
DataText

Description
Specifies the field in LookupDataView that will actually be displayed in the report after the
lookup is performed.

See also
DataField, LookupDataField, LookupField, LookupInvalid

LookupField Property

Default
' ' (empty)

Component/Class
DataText

Description
Specifies the field(s) in LookupDataView that will be matched to the value of the field(s)
defined by DataField. Once a match is found, the value of LookupDisplay will be shown in the
report.

See also
DataField, LookupDataField, LookupDisplay, LookupInvalid

LookupInvalid Property

Default
' ' (empty)

Component/Class
DataText

Description
Defines the text that will be displayed if no matches are found for the current value of
DataField in the LookupDataView.

See also
DataField, LookupDataField, LookupField, LookupField

RAVE Reference Manual

Page 148

MailMergeItems Property

Default
' ' (empty)

Component/Class
All memo components

Description
Stores the tokens and replacement data text items that will be used in a search and replace
during a mail merge session.

See also
Mail Merge Editor (page 129)

MasterDataView Property

Default
' ' (empty)

Component/Class
DataBand, DataCycle

Description
Defines the DataView that will be used to calculate the MasterKey property from.

See also
DetailKey, MasterKey

MasterKey Property

Default
' ' (empty)

Component/Class
DataBand, DataCycle

Description
Determines the master key field(s) for a master-detail style report. The contents of the
MasterKey field(s) will be matched to the DetailKey property to set up the master-detail
relationship in the detail databand. Multiple fields should be separated by +'s.

See also
DetailKey, MasterDataBand

RAVE Reference Manual

Page 149

MatchSide Property

Default
msWidth

Component/Class
Bitmap, Metafile

Description
Determines the method that the bitmap or metafile will use to resize itself.
 msBoth The image will size to match both the designed width and

height.
 msHeight The image will match the designed height and adjust the

width to maintain the correct proportions.
 msInside The image will be drawn proportionally inside the designed

area.
 msWidth The image will match the designed width and adjust the

height to maintain the correct proportions.

See also
Height, Width

MaxRows Property

Default
0

Component/Class
DataBand, DataCycle

Description
Defines the maximum number of rows that will be printed for a data band. A value of 0 means
print all available rows in the data view.

See also
StartNewPage

MinHeightLeft Property

Default
0

Component/Class
Band

Description
Defines the minimum height that must remain in the region before this band will print. If the
MinHeightLeft value is greater than the remaining height in the region, then band will be
printed on the next page.

See also
Region

RAVE Reference Manual

Page 150

Mirror Property

Default
' ' (empty)

Component/Class
All components

Description
Will cause to currently selected component to mirror (duplicate) the properties of the
component entered from the list.

See also
Global Page

Module Property

Default
None yet

Component/Class
Page

Description
This property is not implemented yet.

See also
Description, FullName

Name Property

Default
'None'

Component/Class
All components

Description
Defines the name of the component as referenced in the application's code. Use the Name
property to assign a new name to the control or to find out what the name of the control is. By
default, Rave assigns sequential names based on the type of the control, such as
'Rectangle1', 'Rectangle2', and so on. Change these to more meaningful names that make
the code more readable. The Name must not contain any spaces or special characters. This
is the name that will be used in the Project Tree Panel.

See also
Description, FullName

RAVE Reference Manual

Page 151

NullText Property

Default
' ' (empty)

Component/Class
DataField

Description
Sets the contents that will be printed if the DataField value is blank (empty).

See also
DataField, TextFalse, TextTrue

Operator Property

Default
coAdd

Component/Class
CalcOp

Description
Defines the type of operation that will be performed on the two source values. The result of
this calculation can be placed in a project parameter using the DestParam property or used in
other calculations as a CalcVar component.
 coAdd operation set to Source1 + Source2
 coAverage operation set to (Source1 + Source2) / 2.0
 coDiv operation set to Source1 / Source2
 coExp operation set to Source1 raised to the Source2 power
 coGreater operation set to the greater of Source1 and Source2
 coLesser operation set to the lesser of Source1 and Source2
 coMod operation set to Source1 mod Source2
 coMul operation set to Source1 * Source2
 coSub operation set to Source1 - Source2

See also
DestParam, ResultFunction, Src1Xxxxx, Src2Xxxxx

Orientation Property

Default
poDefault

Component/Class
Page

Description
Sets the orientation for a page to landscape or portrait. The value of poDefault will use the
default setting for the printer to determine the orientation.

See also
Bin, Collate, Duplex, PaperSize, Printer, Resolution

RAVE Reference Manual

Page 152

OrphanRows Property

Default
0

Component/Class
DataBand

Description
Sets the minimum number of rows that can be by themselves at the bottom of a page. The
default value of 0 and allows orphans (i.e. 1 row at the bottom of a page).

See also
KeepBodyTogether, KeepRowTogether, WidowRows

PageHeight Property

Default
11

Component/Class
Page

Description
Defines the height of the page. Normally this property will be modified via the PaperSize
property.

See also
PageWidth, PaperSize

PageList Property

Default
' ' (empty)

Component/Class
Report

Description
Defines a list of pages to print when then report is executed. If no pages are defined in the
PageList then the report will start with what is defined by the FirstPage property.

See also
FirstPage , Batch Report example on page 151

RAVE Reference Manual

Page 153

PageWidth Property

Default
' ' (empty)

Component/Class
Page

Description
Defines the width of the page. Normally this property will be modified via the PaperSize
property.

See also
PageHeight, PaperSize

PaperSize Property

Default
"Letter, 8 ½ by 11 inches"

Component/Class
Page

Description
Provides a method to select the size of paper being used for a report node. Select one the
report nodes, the property panel will show the properties available at the report level. Select
the PaperSize and there will be a drop list where paper size can be selected.
Note:
All pages within a report must be of the same size. If they are not, the first printed page will
determine the size used for all pages within that report.

See also
Orientation, PageHeight, PageWidth

Parameters Property

Default
' ' (empty)

Component/Class
Page, ProjectManager, Report

Description
Allows parameters to be defined that are available at the project, report and page level.
Parameters can be used to print data that is passed from the application (e.g. ReportTitle or
UserName) or to store calculation results. Parameters can be printed using the Data Text
Editor of the DataText component.

See also
Editor DataText, DestParam, DestPIVar, PIVars

RAVE Reference Manual

Page 154

PIVars Property

Default
' ' (empty)

Component/Class
Page, ProjectManager, Report

Description
Allows PIVars (Post Initialize Variables) to be defined at the project, report and page level.
PIVars are initialized using the DestPIVar property of the calculation components. PIVars are
normally printed using the Data Text Editor of the DataText component. The main difference
between PIVars and parameters is that PIVars will use the value that is set after (in print
order) the PIVar while parameters print the value that was set before. A common use for
PIVars is to print a total in a header band that would be initialized later in the footer band.
This works even across multiple pages. Report.AlwaysGenerate must be true if you are using
PIVars in your report.

See also
AlwaysGenerate, DestPIVar, Parameters, DataText

PositionMode Property

Default
pmOffset

Component/Class
Band, DataBand

Description
Determines how the position of this band will be treated relative to the previously printed
band.
 pmAbsolute distances measured from top of region
 pmOffset distances measured from bottom of last band
 pmOverlay does not advance band position

See also
PositionValue

RAVE Reference Manual

Page 155

PositionValue Property

Default
0

Component/Class
Band, DataBand

Description
Sets the starting position of this band based upon the PositionMode property setting. If the
setting is pmAbsolute, then this bands starting position is measured from the top of the
controlling region for this band. If the setting is pmOffset, then the distance is from the bottom
of the last printed band. The pmOverlay setting acts like pmOffset, however, it does not
advance the "last" band printed setting.

See also
PositionMode

PrintChecksum Property

Default
'None'

Component/Class
All BarCode components

Description
Determines if the readable text includes the checksum character.
Note:
It is possible that the checksum character may not be a printable character with some of the
bar code types.

See also
BarTop, UseChecksum

Printer Property

Default
' ' (empty)

Component/Class
Report

Description
Determines the printer that the report will be output to. Normally leave this field blank to print
to the default printer.

See also
Bin, Collate, Duplex, Orientation, PaperSize, Resolution

RAVE Reference Manual

Page 156

PrintReadable Property

Default
True

Component/Class
All bar code components, except UPC

Description
Set this property to false, to not allow readable text to be printed along with the bar code.
Note:
For UPC bar codes, text is always printed.

See also
PrintTop, TextJustify

PrintTop Property

Default
False

Component/Class
All BarCode components

Description
Set this property to true to allow the readable text to be printed on top of the bar code. A false
value means that the readable text will be printed below the bar code. This property has no
effect when printing UPC codes, since the UPC text is always printed at the bottom of the bar
code.

See also
PrintReadable, TextJustify

ReprintLocs Property

Default
(ALL)

Component/Class
Band, DataBand

Description
Determines whether the band reprints at the start of a new page. When a band is set to
reprint on a new page, the type of band that caused the rollover to the new page will be
checked against the band types in the ReprintLocs property. If they band type is found in
ReprintLocs, then the band will be reprinted on the new page.

See also
BandStyle

RAVE Reference Manual

Page 157

Resolution Property

Default
prDefault

Component/Class
Report

Description
Determines the output resolution of the print job.
 prDefault
 prDraft
 prHigh
 prLow
 prMedium

See also
Bin, Collate, Duplex, Orientation, PaperSize, Printer

RAVE Reference Manual

Page 158

ResultFunction Property

Default
cfNone

Component/Class
CalcOp

Description
Defines the function that will be applied to the result of the calculation after the operation has
been performed.
 cfAbs result is the absolute of the value
 cfArcTan result is the ArcTan of the value in radians
 cfCos result is the cosine of the value in radians
 cfDec result is the value - 1
 cfFrac result is the decimal portion of the value
 cfHoursToTime converts the value in hours to DateTime format
 cfInc result is the value + 1
 cfMinsToTime converts the value in minutes to DateTime format
 cfNeg result is the value * -1
 cfNone result is unchanged
 cfPercent result is multiplied by 100
 cfRandom Result is a random value between 0 and the value
 cfRound Result is rounded to the nearest integer
 cfRound1 Result is rounded to the 1st decimal place
 cfRound2 Result is rounded to the 2nd decimal place
 cfRound3 Result is rounded to the 3rd decimal place
 cfRound4 Result is rounded to the 4th decimal place
 cfRound5 Result is rounded to the 5th decimal place
 cfSecsToTime Converts the value in seconds to datetime format
 cfSin Result is the Sine of the value in radians
 cfSqr Result is the square of the value
 cfSqrt Result is the square root of the value
 cfTimeToHours Converts the value in datetime format to hours
 cfTimeToMins Converts the value in datetime format to minutes
 cfTimeToSecs Converts the value in datetime format to seconds
 cfTrunc Result is the integer portion of the value

See also
DestParam

RAVE Reference Manual

Page 159

Right Property

Default
'None'

Component/Class
All BarCode components

Description
Sets or returns the position for the right edge of the bar code. When a value is assigned to
Right, the BarCodeJustify property is set to pjRight as well.

See also
BarCodeJustify, Center, Left

Rotation Property

Default
0

Component/Class
CalcText, DataText, Text

Description
Defines the rotation in degrees of the selected text component. The text is rotated counter
clockwise through the values 0 to 359.

See also
BarCodeRotation

RunningTotal Property

Default
False

Component/Class
CalcText, CalcTotal

Description
Determines if a running total is kept when a NewPage occurs.
 False means NO and the value is reset to 0 each time it is printed
 True means Yes and the value is kept and will continue to total

after it is printed

See also
CalcType, CountBlanks

RAVE Reference Manual

Page 160

Size Property

Default
'None'

Component/Class
DataField

Description
Defines the character width of the data field. This is normally used with design time activities
such as dragging and dropping DataText components to determine an approximate width that
it will take to print the component.

SortKey Property

Default
' ' (empty)

Component/Class
DataBand, DataCycle

Description
Defines the field(s) that will be passed to the data connection to set up a sort. Separate
multiple fields with +'s.
Note:
The underlying database must support the fields being passed as a sort key.

Src1CalcVar Property

Default
' ' (empty)

Component/Class
CalcOp

Description
Defines a calculation component to use as the first source value for the calculation operation.
If this property is defined, Src#DataField and Src#Value will be ignored.

See also
Src#DataField, Src#DataView, Src#Function, Src#Value

Src1DataField Property

Default
' ' (empty)

Component/Class
CalcOp

Description
If Src#CalcVar is blank, defines a data field to use as the first source value for the calculation
operation. If this property is defined, Src#Value will be ignored.

See also
Src#CalcVar, Src#DataView, Src#Function, Src#Value

RAVE Reference Manual

Page 161

Src1DataView Property

Default
' ' (empty)

Component/Class
CalcOp

Description
Defines the default dataview that will be used for the Src#DataField property.

See also
Src#DataField

Src1Function Property

Default
cfNone

Component/Class
CalcOp

Description
Defines the function that will be performed on the source value before the calculation
operation is performed.
Note:
see ResultFunction (for list of constants).

See also
Src#CalcVar , Src#DataField , Src#Value

Src1Value Property

Default
0

Component/Class
CalcOp

Description
If Src#CalcVar and Src#DataField are blank, defines a constant value that will be used as the
first source value for the calculation operation.

See also
Src#CalcVar, Src#DataField, Src#Function

RAVE Reference Manual

Page 162

Src2CalcVar Property

Default
' ' (empty)

Component/Class
CalcOp

Description
Defines a calculation component to use as the first source value for the calculation operation.
If this property is defined, Src#DataField and Src#Value will be ignored.

See also
Src#DataField, Src#DataView, Src#Function, Src#Value

Src2DataField Property

Default
' ' (empty)

Component/Class
CalcOp

Description
If Src#CalcVar is blank, defines a data field to use as the first source value for the calculation
operation. If this property is defined, Src#Value will be ignored.

See also
Src#CalcVar, Src#DataView, Src#Function, Src#Value

Src2DataView Property

Default
' ' (empty)

Component/Class
CalcOp

Description
Defines the default dataview that will be used for the Src#DataField property.

See also
Src#DataField

RAVE Reference Manual

Page 163

Src2Function Property

Default
cfNone

Component/Class
CalcOp

Description
Defines the function that will be performed on the source value before the calculation
operation is performed.
Note:
see ResultFunction (for list of constants).

See also
Src#CalcVar , Src#DataField , Src#Value

Src2Value Property

Default
0

Component/Class
CalcOp

Description
If Src#CalcVar and Src#DataField are blank, defines a constant value that will be used as the
first source value for the calculation operation.

See also
Src#CalcVar, Src#DataField, Src#Function

Tag Property

Default
nil

Component/Class
All components

Description
Tag has no predefined meaning to Rave. The Tag property is provided for the convenience of
storing additional integer value or pointer information for special needs in an application. For
example, use the Tag property when implementing case statements with a component.

RAVE Reference Manual

Page 164

Text Property

Default
'None'

Component/Class
Text components and all bar code components

Description
For bar codes, do not include the check character. The check character will be automatically
calculated and printed according to the state of the UseChecksum property.
Note:
For bar codes, any characters that are invalid for the bar code type will be deleted from the
text property upon assignment.

See also
Font , FontJustify

TextFalse Property

Default
' ' (empty)

Component/Class
BooleanField

Description
Determines what will printed is the field value is False. A blank value for this property will print
the text "False".

See also
TextTrue

TextJustify Property

Default
pjCenter

Component/Class
All BarCode components

Description
Determines how the readable text is justified in relation to the bar code.
 pjBock Block justify the text portion
 pjLeft Left justify the text portion
 pjCenter Center justify the text portion
 pjRight Right justify the text portion

See also
PrintReadable, PrintTop, Text

RAVE Reference Manual

Page 165

TextTrue Property

Default
' ' (empty)

Component/Class
BooleanField

Description
Determines what will printed is the field value is True. A blank value for this property will print
the text "True".

See also
TextFalse

Top Property

Default
'None'

Component/Class
All visible components

Description
Sets or returns the position for the top edge of the component. For bar codes, the value for
this property includes the readable text, if it is printed.

See also
BarTop, Left, PrintReadable, PrintTop

Truncate Property

Default
False for CalcText and Text, True for DataText

Component/Class
CalcText, DataText, Text

Description
When set to true, the text will be truncated to fit the Width property defined in the designer for
that component. If the property is false, then all of the text will print without regard to the width
property.

See also
Width

RAVE Reference Manual

Page 166

Units Property

Default
unInch

Component/Class
Project

Description
Sets the default units mode for this project. If the setting is unUser then units factor is
determined by the value in UnitsFactor.
 unCM Units are in centimeters
 unInch Units are in inches
 unMM Units are in millimeters
 unPoint Units are in points (1/72nd inch)
 unUser Unit are custom defined in UnitsFactor

See also
UnitsFactor

UnitsFactor Property

Default
1.0

Component/Class
Project

Description
Sets or returns the current conversion factor necessary to convert units to inches. Its value
should equal the number of units that equal an inch. (unCM = 2.54 since 2.54 centimeters
equal an inch)

See also
Units

UseCheckSum Property

Default
False (Code128 := true)

Component/Class
All BarCode components

Description
Specifies whether a checksum character should be included in the bar code.

See also
BarHeight, BarWidth, PrintReadable, Text, Width

RAVE Reference Manual

Page 167

VRadius Property

Default
0

Component/Class
Rectangle , Square

Description
Controls the vertical radius of the rectangle corner. When used in combination with HRadius,
these properties round the corners of rectangles or squares.

See also
HRadius

WasteFit Property

Default
True

Component/Class
Page, Section

Description
If true, components on the page or within the section will dynamically adjust themselves to fit
within the printer's waste margins. If a component is not located within the waste area, no
adjustment will occur unless it's parent component is located in the waste area.

It is important that components (within a page or section) use the "Anchor" property so that
they will adjust as the margins change.

See also
Anchor, Anchor Editor, PageHeight, PageWidth, PaperSize

WideFactor Property

Default
3.0

Component/Class
All BarCode components

Description
The wide factor is the ratio of the wide bar to the narrow bar width.

See also
BarHeight, BarWidth, Width

RAVE Reference Manual

Page 168

WidowRows Property

Default
0

Component/Class
DataBand

Description
Sets the minimum number of rows that can be by themselves on the top of the next page.
The default setting is 0 and allows widows.

See also
KeepBodyTogether, KeepRowTogether, OrphanRows

Width Property

Default
'None'

Component/Class
All components

Description
Sets the width of the component. For bar codes, this will return the calculated width of the
entire bar code for the current value of Text.

See also
BarWidth, Height, Left, Text, WideFactor

WidthType Property

Default
wtPixels

Component/Class
Drawing components

Description
Determines how the width of lines is calculated. Generally wtPixels and a line width of 1 pixel
should be used when the thinnest possible line is desired (typically referred to as hairline). The
width type of wtPoints should be used on all line widths greater than one pixel to maintain
consistency between devices of different DPI resolutions (i.e. Printer and Preview). When using
wtPoints, line widths are expressed in terms of points (72 points per inch).See also

BorderWidth, LineWidth

RAVE Reference Manual

Page 169

INDEX
A
Adaptable Reports101
Advanced Components93
Alignment Toolbar..................................49
AlphaNumeric Items.............................113
Alt-Drag ..29
Anchors ..101
B
Band ...82
Bar Code Component Basics..................91
Bar Code Components.................... 20, 91
Batch / Chain Reports106
Batch and Chain Reporting...................105
Batch Pages ..105
Bitmap and Meta File62
Brief Bar Code Descriptions91
C
CalcController97
CalcOp..95
CalcText ...85
CalcTotal...97
Calling Pages105
Chain Pages..105
Color Palette ...51
Component vs. Utility Toolbars16
Components Overview...........................19
Connecting to Data75
Creating a Database Connection75
Ctrl- (Control) Drag and Drop..................29
Cutting and Pasting................................25
D
Data Objects ...88
Data View Dictionary29
DataBand ..82
Database 101 ..71
Database Connection.............................88
Database Connections75
DataCycle ...94
DataMemo ..84
DataMirror Section95
DataText ...83
Date / Time items114
Defaults Tab..111
Designer Tab.......................................111
Designer Toolbar50

Different First Page Format106
Different Odd/Even Page format106
Direct DataViews (BE only)76
Drawing Component Basics65
Drawing Components...................... 21, 65
Driver DataViews76
E
Editor Anchor102
Environment Tab112
Executing Reports39
Executing to the Printer..........................42
Exercise: Aligning Components55
Exercise: Alignment68
Exercise: Calling Pages106
Exercise: Chain Pages107
Exercise: Changing Fonts60
Exercise: Changing Line Size and Color of a

Rectangle..60
Exercise: Changing Printing Preferences.44
Exercise: Changing the Parent of a

Component (Alt-Drag)32
Exercise: Creating Drawing Components 66
Exercise: Cutting and Pasting26
Exercise: Different First Page108
Exercise: Different Odd/Even Page.......108
Exercise: Dragging a Component (Ctrl-Drag)

...31
Exercise: Loading and Unloading Global

Pages ...30
Exercise: Master Detail Wizard80
Exercise: Naming Components...............30
Exercise: Navigating the Project Tree......29
Exercise: Navigating the Property Panel..37
Exercise: Ordering Components57
Exercise: Placing and Resizing Bitmaps ..64
Exercise: Preview and Creating Portable

Files..45
Exercise: Printing a Report through the

Preview ...47
Exercise: Printing to a File (NDR & PRN) 47
Exercise: Section...................................63
Exercise: Selecting, Sizing, and Moving

Components25
Exercise: Setting up PageNumInit for Page

Numbering ..99
Exercise: Simple Wizard79

RAVE Reference Manual

Page 170

Exercise: Snapping to the grid59
Exercise: Text vs Memo62
Exercise: Using Font Master...................97
Expanding and Right-Clicking27
F
First Glance...10
Font Editor ..52
FontMaster ..93
Formatting...113
G
Generating Output39
Getting Started ..7
Getting to the Preferences Dialog111
Global Page ..88
Global Page Catalog28
H
Hiding Toolbars16
HTML..43
I
Introduction ...9
K
Keyboard / Mouse Shortcuts.................117
L
Limited Warranty7
Line Editor...52
Loading and Unloading Global Pages28
M
Memo ...61
N
Navigation Area.....................................10
NDR & PRN Files42
O
Overview.......23, 27, 39, 61, 71, 81, 87,

101
P
Page ...88
Page Designer.......................................23
Page Designer Only.............................117
Page Designer or Project Tree..............117
PageNumInit ...94
Parent-Child Relationship28
PDF ..43
Pixels vs Points66
Preferences ...111
Preferences Dialog39
Project Components87

Project Manager87
Project Toolbar53
Project Tree ..17
Project Tree Only.................................117
Project Tree Panel 11, 27
Property

AllowSplit ..119
AlwaysGenerate119
Anchor ..119
AutoSize ...120
BandStyle120
BarCodeJustify120
BarCodeRotation121
BarHeight ..121
BarTop..121
Bin..122
BorderColor.....................................122
BorderStyle122
Bottom ..123
CalcType...123
CalcVar ...123
Categories124
Category ...124
Center...124
CodePage125
Collate ..125
Color...125
Columns ...126
ColumnSpacing126
ConnectionName126
ContainsRTF127
Controller ..127
ControllerBand127
Copies ..128
CountBlanks....................................128
Cursor...128
DataField ..129
DataView ..129
Description......................................129
DesignerHide130
DestParam130
DestPIVar130
DetailKey ..131
DevLocked131
DisplayFormat131
DisplayOn132
DisplayType132

RAVE Reference Manual

Page 171

Duplex ..133
ExpandParent133
Extended...133
FieldName.......................................134
FileLink ...134
FillColor ..134
FillStyle...135
FinishNewPage135
FirstPage ..136
Font ..136
FontJustify.......................................136
FontMirror137
FullName ..137
GotoMode138
GotoPage..138
GridLines ..139
GridSpacing139
GroupDataView139
GroupKey ..140
Height ...140
HRadius ..140
Image ...141
InitCalcVar141
InitDataField {CalcController}............141
InitDataField {PageNumInit}142
InitDataView....................................142
Initializer ...142
InitToFirst..143
InitValue {CalcController}143
InitValue {PageNumInit}143
KeepBodyTogether144
KeepRowTogether144
Left ...144
LineStyle ...145
LineWidth..145
LineWidthType146
Locked ..146
LookupDataView146
LookupDisplay147
LookupField147
LookupInvalid147
MailMergeItems148
MasterDataView148
MasterKey148
MatchSide149
MaxRows ..149

MinHeightLeft149
Mirror..150
Module..150
Name..150
NullText ..151
Operator ...151
Orientation151
OrphanRows152
PageHeight152
PageList..152
PageWidth153
PaperSize153
Parameters153
PIVars ...154
PositionMode154
PositionValue155
PrintChecksum155
Printer ...155
PrintReadable156
PrintTop ..156
ReprintLocs.....................................156
Resolution157
ResultFunction158
Right ...159
Rotation ..159
RunningTotal159
Size ..160
SortKey ...160
Src1CalcVar....................................160
Src1DataField160
Src1DataView161
Src1Function...................................161
Src1Value161
Src2CalcVar....................................162
Src2DataField162
Src2DataView162
Src2Function...................................163
Src2Value163
Tag ...163
Text ..164
TextFalse..164
TextJustify164
TextTrue ...165
Top ...165
Truncate ...165
Units ...166

RAVE Reference Manual

Page 172

UnitsFactor......................................166
UseCheckSum166
VRadius ..167
WasteFit ...167
WideFactor......................................167
WidowRows168
Width ..168
WidthType.......................................168

Property Descriptions119
Property Editors37
Property Panel..........................12, 16, 35
R
Region ..82
Relational Table.....................................73
Report ...88
Report Authoring Visual Environment9
Report Components........................ 21, 81
Report Library28
Report Preview40
Reporting ..74
Right -Click Menu37
RTF ..43
S
Section..62
Security Components.............................89
Selecting Components24
Shortcuts Tab112
Single User License Agreement7
Sizing and Moving Components..............25
SQL Data View89
Standard Components 20, 61
Status Bar ...77
T
Technical Support8
Terms ...72
Text ..61
The Basic Component: The Page & it's

Panels ..23
The Component Toolbars20
The Page (Foundation of Rave)..............11
Tool Windows ..16
Toolbar Palette......................................15
Toolbar Placement15
Toolbars ..15
Toolbars and Tool Windows15
Tools are Tools......................................49
Types of Properties37

U
Using Tools ...49
Utility Toolbars.......................................49
W
Waste Fit...102
What is a Component.............................19
What is a database?71
What is the Property Panel35
What's All the RAVE About?.....................9
Wizards...79
Z
Zoom Toolbar ..54

RAVE Reference Manual

Page 173

What's New in
Borland®

Delphi™ 7 Studio
Improve developer productivity
and enhance performance

by Technical Publications
Borland Software Corp.
August 2002

Introduction
Borland® Delphi™ 7 Studio includes new features and

enhancements in the following areas:

• IDE

• Web technology

• COM technology

• Database technology

• Component library

• Runtime library

• Compiler

• Support for Rave Reports

• Support for ModelMaker

• Documentation

If you are upgrading from a previous version of Delphi, see

"Upgrade and compatibility issues" on page 7.

IDE
The IDE has new features in the following areas:

Compiler messages
• The new View|Additional Message Info command displays

a Message Hints window from which you can download

and view information about compiler messages from the

Borland Web site.

• The new Project|Options|Compiler Messages page gives

you greater control over which compiler warnings are

generated.
Contents
Introduction 1

IDE 1

Web technology 3

COM technology 4

Database technology 4

Component library 5

Runtime library 5

Compiler 6

Support for Rave Reports 6

Support for ModelMaker 7

Documentation 7

Upgrade and compatibility issues 7

Delphi™ Studio

2

Component palette
• When you open a Borland CLX™ (Component Library for

Cross-platform) application in Delphi, a new CLX-only

version of the System page is displayed. It includes several

directory and file components. In previous releases, the

System page was displayed only for VCL applications and

included components for system-level access.

• The new Indy Intercepts and Indy I/O Handlers pages

provide open source Internet protocol components

(Professional and Enterprise editions).

• The new IW Standard, IW Data, IW Client Side, and IW

Control pages provide AtoZed Software IntraWeb

components for developing Web-based applications.

• The new Rave page provides components for adding report

generation to your applications.

• If a component page can be scrolled horizontally to display

additional icons, a new drop-down menu button can also be

used to list the additional icons.

CodeInsight™
• Code completion is now faster and lets you browse to the

declaration of items in the code completion list by using

Ctrl+click on any identifier in the list.

• New HTML code completion automatically displays valid

HTML elements and attributes in the Code editor

(Professional and Enterprise editions only).

• You can create customized code completion managers by

using the OpenTools API. See “Extending the IDE” in the

Delphi online help for details.

• The Tools|Editor Options|Code Insight page lets you set

colors for the symbols displayed in the CodeInsight™ tools.

Debugger
• The Watch List now has:

o Multiple tabs, allowing you to organize watches

into distinct watch groups for easier debugging. To

add a watch group, right-click the Watch List and

select Add Group.

o A Watch Name column and a Value column. To

show/hide the column headers, right-click the

Watch List and select Show Column Headers.

o A checkbox to enable or disable individual

watches.

• The Tools|Debugger Options|Event Log page has the

following new options:

o Use Event Log Colors lets you display different

types of event messages in color in the event log.

o Module messages writes a message to the event log

each time a module (exe, dll, ocx, etc.) is loaded or

unloaded by the process that you are debugging.

Previously, the Process messages option controlled

whether these events were logged.

• The Run Parameters dialog box has a new option, Working

Directory, that lets you specify the name of the directory to

use for the debugging process.

Miscellaneous IDE improvements
• From the Project Manager, you can partially compile

projects within a group by right-clicking on any project and

choosing Make All from Here or Build All from Here.

• The Message view has multiple tabs for displaying different

types of messages (Build, Search, and so on).

• The View|Component List command lets you multiselect

components by pressing the Ctrl key.

Delphi™ Studio

3

• The new Tools|Editor Options|Source Options page lets

you:

o Set different editor options for different source

types, such as Pascal, C++, C#, HTML, and

XML.

o Display tab and space characters in the Code

editor.

o Edit code templates.

o Several of the options on the new page were

formerly on the General, Display, and CodeInsight

pages of the Editor Properties dialog box.

• The Tools|Editor Options|Color page has two new

options, Foreground Color and Background Color, instead

of a color grid, for setting colors in the Code Editor.

• Pressing Alt+Page Down and Alt+Page Up cycles through

tabbed views such as the Code Editor, Watch Window, and

Message view. These keyboard shortcuts are included in the

Default, IDE Classic, and BRIEF key mappings.

• Delphi now displays a two-tone main menu.

Web technology
In Delphi 7 Studio Enterprise and Professional editions:

• Delphi now includes IntraWeb from AToZed Software.

You can use IntraWeb to develop Web server applications

using standard form tools. You can also use IntraWeb to

develop pages for Borland WebBroker™ and WebSnap™

applications. For more information, see “Creating Web

server applications using IntraWeb” in the Developer’s Guide

or online Help. Delphi 7 Studio Enterprise includes the

complete IntraWeb product. Delphi 7 Studio Professional

includes a subset of the IntraWeb product.

• Delphi now supports Apache™ 2 as a target type for

WebBroker, WebSnap, and SOAP.

• Borland has deprecated Win-CGI as a target type for Web

server applications and Web Services. Borland recommends

using regular CGI, ISAPI/NSAPI, or an Apache target type

instead. Existing Win-CGI projects can still be modified and

compiled in the IDE, however, Borland does not guarantee

Win-CGI compatibility for the indefinite future.

Web Services
Web Services includes the following enhancements.

New UDDI browser
The WSDL Import Wizard has a new Universal Description,

Discovery, and Integration (UDDI) browser that lets you search

a UDDI registry for a Web Service and import the address of its

WSDL document.

SOAP headers
New classes and interfaces let you read or insert headers into the

SOAP envelopes that transmit messages between clients and

servers. For more information, see “Defining and using SOAP

headers” and “Processing headers in client applications” in the

Developer’s Guide or online Help.

Attachments
Web Services applications (both client and server) can now

handle attachments. Attachments (TSOAPAttachment

descendants) are sent with SOAP-encoded messages as part of a

multipart form. When an application receives the attachment, it

saves it to a temporary file, which is then available to your

application.

Type support
• You can now customize the conversion between remotable

classes and their SOAP representation by overriding two

new virtual methods that were added to TRemotable:

ObjectToSOAP and SOAPToObject.

• Exception objects for exceptions that occur when

responding to a Web Service request

(ERemotableException instances) now contain more

information from the SOAP fault packet.

• Type definitions are automatically registered with the

remotable type registry when you register an invokable

interface.

Delphi™ Studio

4

• TXSDecimal has a new AsBcd property for easier

conversion between XML and native types. Similarly,

TXSHexBinary has a new AsByteArray property. Remotable

classes that represent time values now let you work with

fractional seconds rather than milliseconds.

Other enhancements
• New events on THTTPReqResp let you to intercept the

HTTP message before it is sent and to monitor progress

while sending or receiving long messages.

• THTTPSoapPascalInvoker now publishes events that let

you write code to execute before or after the invoker

executes a requested method call.

• You now have more control over the mapping between

invokable interfaces and WSDL documents.

TWSDLHTMLPublish now publishes several events to let

you control the generated WSDL. You can also identify the

mapping between function return values and parameter

names, the use of namespaces, and default SOAP actions.

On the client side, literal encodings are now supported as

well as RPC-style encoding.

• A new interface, IRIOAccess lets you access the remote

interfaced object that implements an invokable interface.

• The IOPConvert interface has a new property: Encoding.

This allows you to specify the character set to use for

encoded messages that are passed between the client and

Web Services provider.

• There are changes to Web Services that affect Borland

DataSnap™ applications. For more information, see

"Database technology " on page 4.

• The TLinkedRIO constructor now automatically generates

separate file names for each method you call, making

debugging easier.

• TOPToSoapDomConvert now has two new events that you

can use when debugging the deserialization of SOAP

packets.

• You can now use overloaded methods on invokable

interfaces that you define.

COM technology
In Delphi 7 Studio Enterprise and Professional editions:

You can now use the Import Type Library dialog box

(Project|Import Type Library) to create a CoClass wrapper for

Microsoft® .NET assemblies. You can use the resulting wrapper

as you would an ordinary COM server, using the interoperability

features of .NET.

Database technology
In Delphi 7 Studio Enterprise and Professional editions:

• The dbExpress drivers have been updated for IBM® DB2®

7.2 and Informix® SE, Oracle9i,™ Borland InterBase® 6.5,

and MySQL™ 3.23.49. A new driver is available for

Microsoft SQL 2000.

• There are several new and changed database components.

See "Component library " on page 5 for details.

• Borland has deprecated SQL Links; no further

enhancements will be made to SQL Links, and it will not be

included with Delphi after 2002. Borland recommends

using dbExpress for SQL server database access in Delphi.

DataSnap™

In Delphi 7 Studio Enterprise edition only:

• In DataSnap applications, the use of IAppServer has been

changed to IAppServerSOAP, which avoids some

ambiguities in the IAppServer interface. The

UseSOAPAdapter property of TSoapConnection can be

used to write clients for servers written with earlier versions

of Delphi. TSoapConnection also publishes several new

events for you to customize your client applications at

various points in the process of executing a Web Services

request.

• You can now identify a specific SOAP data module in an

application server that has multiple data modules. Use the

SOAPServerIID property or add the data module's interface

to the end of the URL.

Delphi™ Studio

5

• You can now use the SOAP connection component to call

extensions to the application server's interface. Use the

SOAPServerIID property and the GetSOAPServer method.

• DataSnap no longer supports CORBA® connections.

Component library

Support for Windows XP™ Themes
In Delphi Studio 7 Enterprise and Professional editions, Borland

VCL applications now include components that enable support

for Windows® common controls version 6. Your application will

automatically use the new Windows controls on Windows XP™

systems if it finds a suitable manifest file. For more information,

see “Common controls and XP themes” in the Developer’s Guide

or online Help.

New unit
The new DBClientActns unit contains three new action

components for working with client datasets:

TClientDataSetApply, TClientDataSetUndo, and

TClientDataSetRevert.

New components
• The dbExpress page of the Component palette includes

TSimpleDataSet for use with simple, two-tier database

applications (TSimpleDataSet replaces TSQLClientDataSet).

• The Dialogs page of the Component palette includes

TPageSetupDialog for providing a Windows-standard page

setup dialog box.

• The Additional page of the Component palette includes

TXPColorMap, TStandardColorMap, and

TTwilightColorMap for colorizing menus and toolbars.

• The new CLX version of the System page of the

Component palette includes new directory and file

components.

• The new Indy Intercepts and Indy I/O Handlers pages on

Component palette provide Internet protocols in

Professional and Enterprise editions.

Changed components
• The CLX versions of TOpenDialog and TSaveDialog have

been expanded to support additional features such as file

previewing.

• The VCL version of TCustomForm has two new

properties, ScreenSnap and SnapBuffer, which control

whether a form snaps to the edge of the screen when the

form is moved.

• TCustomComboBoxEx has a new AutoCompleteOptions

property that enables a combo box to respond to user

keystrokes.

• CLX dialog objects that descend from TOpenDialog and

TQtDialog can now use Windows Common Dialogs in

place of Qt Dialogs. This behavior is controlled by the

UseNativeDialog property, which defaults to true.

Deprecated components
Information about deprecated components can be found in the

readme.txt file in the Delphi 7 Studio directory.

Runtime library

Classes unit
• A new exception class, EFileStreamError, has been added.

EFileStreamError and EFOpenError descend from this

class. This new class may take a FileName parameter. As a

result, the exception message text now contains the name of

the file the error occurred on.

• The TStrings class has two new properties,

ValueFromIndex and NameValueSeparator.

• The TThread.CheckThreadError methods have been

promoted from private to protected visibility.

Math unit
The Math unit has a new default parameter, RaisePending, in the

ClearExceptions procedure.

Delphi™ Studio

6

StdConvs unit
The StdConvs unit now includes stones in the supported weight

units.

StrUtils unit
The StrUtils unit contains the following changes related to multi-

byte character set (MBCS) support:

• Previously, LeftStr, RightStr, and MidStr each had an

AnsiString parameter type and return type, and did not

support MBCS strings. Each of these functions has been

replaced by a pair of overloaded functions, one that takes

and returns AnsiString, and one that takes and returns

WideString. The new functions correctly handle MBCS

strings. This change breaks code that uses these functions to

store and retrieve byte values in AnsiStrings. Such code

should be updated to use the new byte-level functions

described below.

• New functions LeftBStr, RightBStr, and MidBStr provide

the byte-level manipulation previously provided by LeftStr,

RightStr, and MidStr.

• New functions AnsiLeftStr, AnsiRightStr, and AnsiMidStr

are the same as the new AnsiStr LeftStr, RightStr, and

MidStr functions, except that they are not overloaded with

equivalent WideString functions.

The StrUtils unit has a new string-searching function called

PosEx.

SysUtils unit
The SysUtils unit now includes thread-safe overloads of routines

that format and parse numbers, date-time values, and currency.

The new routines are thread-safe because they obtain their

localization information from a TFormatSettings data structure

instead of from global variables. This data structure must be

populated before being used; a new function,

GetLocaleFormatSettings, is provided to populate the data

structure from a specified locale.

VarCmplx unit
The VarCmplx unit has new functions: VarComplexLog2,

VarComplexLog10, VarComplexLogN,

VarComplexTimesImaginary, and VarComplexTimesReal.

Variants unit
• The VarIsError and VarAsError functions have been

added.

• The EVariantError exception is now a base class for finer

grained exception classes that are thrown from variants

code.

• Several new global Variant control variables have been

added: NullEqualityRule, NullMagnitudeRule,

NullStrictConvert, NullAsStringValue, and

PackVarCreation.

Compiler
The Delphi compiler now supports three additional compiler

warnings: Unsafe_Type, Unsafe_Code, and Unsafe_Cast. These

warnings are disabled by default, but can be enabled with the

compiler directive {$WARN UNSAFE_CODE ON}, compiler

command line switch dcc32 -W+UNSAFE_CODE, and, in the

IDE, on the Project|Options|Compiler Messages page.

This feature is intended to help you port your code to the

managed execution environment of the .NET platform. In a

managed execution environment, "unsafe" means the operation

cannot be verified during the static analysis performed by the

Just In Time (JIT) compiler. Such code might pose a security

risk, since there is not enough information for the JIT compiler

to verify its runtime behavior. Examples of unsafe code include

pointer operations and memory overwrites.

Support for Rave Reports
In Delphi 7 Studio Enterprise and Professional editions:

The Delphi environment now includes Rave Reports from

Nevrona. By adding Rave Reports components to your

application, you can enable your users to generate reports within

your application. For more information see “Creating reports

with Rave Reports” in the Developer’s Guide or online Help.

Delphi™ Studio

7

Support for ModelMaker
In Delphi 7 Studio Enterprise and Professional editions:

ModelMaker tools can help simplify the design, construction,

and maintenance of classes and interfaces. ModelMaker also

includes tools for creating UML™-style diagrams, which can be

used to create and modify your projects’ source code. For more

information, see “Designing classes and components with

ModelMaker” in the Developer’s Guide or online Help.

Delphi 7 Studio Enterprise includes ModelMaker from

ModelMaker software. Delphi 7 Studio Professional includes a

30-day trial version of ModelMaker. The ModelMaker

functionality is the same in both editions of the Delphi

environment.

Documentation
• All of the documentation files (PDF, HTML, and INT) are

now distributed in the Online+PDF Docs folder on the

Delphi Companion Tools CD instead of the installation

CD. You can access the documentation directly from the

CD or copy it to the folder of your choice.

• Due to size constraints for the printed Developer's Guide,

Part V “Creating custom components,” has been removed

from that book to create the new Component Writer's Guide.

The new book is available in the online Help and as a PDF

file on the Delphi Companion Tools CD.

• The Object Pascal language is now called the Delphi™

language. The online Help and documentation have been

updated accordingly.

• The Object Pascal Language Guide is now the Delphi Language

Guide.

• To ensure the continued accuracy of the Delphi tutorials,

they have been removed from the Quick Start and the

Developer's Guide. The tutorials are available as PDF files on

the Delphi Companion Tools CD.

• Some of the Delphi online help topics include C++ syntax

and code examples for Borland Kylix™ and C++Builder™

users. For Delphi development, please disregard these

examples.

Upgrade and compatibility issues
For late-breaking upgrade and compatibility issues, see the

readme.txt file in the Delphi 7 installation directory.

• To upgrade a Delphi (formerly Object Pascal) language

project from a previous version of Delphi, open it in the

new version. The project is automatically updated to the

new release.

• Details in Fault messages are now added to the <detail>

node rather than as children of the <detail> node. This

brings our handling of SOAP faults into accordance with

the SOAP specification, but breaks backward compatibility

with older code.

• Changes to the StrUtils unit LeftStr, RightStr, and MidStr

functions may require you to update code that uses these

functions. See "Runtime library " on page 5 for details.

• For Apache 2, the variable "ContentType" has been

changed to "handler" in the ApacheApp unit.

• DataSnap no longer supports CORBA® connections.

Made in Borland® Copyright © 2002 Borland Software Corporation. All rights reserved. All
Borland brand and product names are trademarks or registered trademarks of Borland
Software Corporation in the United States and other countries. All other marks are the
property of their respective owners. Corporate Headquarters: 100 Enterprise Way, Scotts
Valley, CA 95066-3249 • 831-431-1000 • www.borland.com • Offices in: Australia, Brazil,
Canada, China, Czech Republic, France, Germany, Hong Kong, Hungary, India, Ireland, Italy,
Japan, Korea, the Netherlands, New Zealand, Russia, Singapore, Spain, Sweden, Taiwan, the
United Kingdom, and the United States. • 13393

100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

User Manual
ModelMaker 6.20

ModelMaker Tools
Stenenkruis 27 B
6862 XG Oosterbeek
The Netherlands

http:\\www.modelmakertools.com
info@modelmakertools.com

http:\\www.modelmaker.demon.nl
info@modelmaker.demon.nl

ModelMaker version 6.20

usermanual620.doc May 7th 2002 2

Copyright © 1997-2002 by:

ModelMaker Tools
Stenenkruis 27 B
6862 XG Oosterbeek
The Netherlands

http:\\www.modelmakertools.com
info@modelmakertools.com

http:\\www.modelmaker.demon.nl
info@modelmaker.demon.nl

All rights reserved.

All brand and product names are trademarks or registered trademarks of their respective
holders.

This user manual focuses on essentials and how things are done in
ModelMaker. A GUI reference is available as context sensitive help file. This
contains the latest GUI details. The Design Patterns manual focuses on
ModelMaker’s Design patterns and contains another step by step demo.

Author: G. Beuze

ModelMaker version 6.20

usermanual620.doc May 7th 2002 3

Contents

Introduction 8

Installation 9

Contacting ModelMaker Tools 9

Getting started 10

Getting a first impression 10

Loading an example model 10
Visualizing existing code 10

Creating code with ModelMaker, overview 11

The demo component: TIntLabel 11
The ModelMaker Class Creation Wizard 12

Creating a new project 12

Creating new classes 12

Adding properties and methods to a class 13

Implementing methods 15

Creating a source file 18

Creating a Unit 18
Generating the source file 20

Adding the component to the VCL 21

Debugging your component 21
Compiling errors 21
Adding the component to the VCL 21

Improving the component in ModelMaker 22

Keep editing your code in ModelMaker 22
Overriding the constructor Create 22
Implementing Create, non-user sections in code 23

Instant code generation 24

Documenting your component 25

Adding documentation to your component 25
Creating a help file 27
Integrating your help files with Delphi’s on line help 28

Documenting the design in a diagram 28

Symbol styles in Diagrams: displaying members 30
Visualizing the unit IntLabel.pas 31
Visualizing the Documentation 33

Summary 34

Where to now? 35

ModelMaker version 6.20

usermanual620.doc May 7th 2002 4

Basic Concepts 36

Overview 36

Code Model contents 38

Diagrams 39

Working with models 41

Model files 41

Model templates 41

Editing a model 42

Ownership in ModelMaker 43

Team development, Model boundaries and Version Control 43

Generation source code 45

Overview 45

Code generation control tags 46

Class related tags 46
Event type declaration tag 47
Editing marker tags 47
Macro expansion control tags 47
Unit documentation tag (obsolete) 48
Obsolete tags 48

Code generation options 49

Maintaining Code Order / Custom member order 49

Adjusting the unit template 50

Unit Time Stamp Checking 51

Source Aliases 52

Version Control support and Aliases 53

Using ModelMaker to generate Instrumentation code 54

Importing source code 56

Background 56

Importing a source file 57

Importing (adding) versus Refreshing 59

Avoiding creep - removing code during import 59

ModelMaker version 6.20

usermanual620.doc May 7th 2002 5

STARTREMOVE and ENDREMOVE tags 59
Comments with remove signature 60

Import restrictions and limitations 60

Class and Interface interfaces 60
Method implementation 61
Comments and white space 62
Unsupported language constructs 62

Conversion errors 64

Auto Refresh Import 65

How it works 65
How it is activated and controlled 65
Warnings 65

Editing Form source files 66

In source documentation 67

Overview 67

Generating in-source documentation 67

Importing in-source documentation 68

Code templates 71

Creating a Code template 71

Applying a Code template 71

Registering a Code template 72

Parameterize a Code template using macros 72

Macros 74

Overview 74

Macros in Code generation 74

Predefined macros 75

Using Macros in code 77

Using macros in the code editors 79

Using macros in your default unit template 79

Diagrams 80
Diagrams, Diagram List view 80
Symbols and visual containment 80
Associations 81

ModelMaker version 6.20

usermanual620.doc May 7th 2002 6

Visual styles 83

Style hierarchy 84
Visual style properties 84
Controlling & assigning styles 85
Style Manager 86
Printing Style 87

Symbol (contents) style 87

Style hierarchy 87
Controlling & assigning styles 88
Class & Interface symbols 89
Package symbols (units) 89

Size and Alignment 90

The Drawing Grid 90
Align & Size Palette 90

Hyperlinks, navigation 90

External documents 91

Coupling Symbols to the Code Model 92

HotLinks 92
Specialized symbols and associations 93

Documentation & OneLiners 94

Floating Documentation view 94
Linked Annotations 94

Diagram Editor 95

Properties 95
Keyboard and Mouse control 95

Drag & Drop and conversions 97

Classes view 97

Internal (tree mode) 97
Internal (list mode) 97
Source 97
Target 97

Members view 98

Internal 98
Source 98
Target 98

Units view 99

Internal (tree mode only) 99
Source 99
Target 99

Method Implementation view 100

Method Local Code Explorer 100
Method Implementation Section list 100

Method Implementation Code Editor 101

Internal 101

ModelMaker version 6.20

usermanual620.doc May 7th 2002 7

Source 101
Target 101

Unit Code view 101

Unit Code Explorer 101
Unit Code Editor 102

Event Library view 102

Internal 102
Source 102
Target 102

Diagrams view 102

Internal (tree mode only) 102
Source 103
Target 103

Diagram Editor 103

Internal 103
Source 103
Target 103

Customizing ModelMaker 104

Integration with the Delphi IDE 105

Integration with Delphi 3 and higher 105

Delphi 4 and higher 106

Delphi 4 and higher syntax highlighting scheme 106

Uninstalling IDE integration experts 107

Integration with Delphi 1 and 2 107

Installing the integration unit in Delphi 1 /2 107
Installing UNITJMP.EXE as a DELPHI 1 /2 IDE tool 108

MMToolsApi primer 109

Interfaces basics 109

Expert DLL basics 109

MMToolsApi version control 110

Interfaces and memory management 110

Adding an expert and menu items 111

Accessing Diagrams through the API 112

Accessing Experts through scripting 113

ModelMaker version 6.20

Introduction

ModelMaker represents a brand new way to develop classes and component packages for
Borland Delphi 1-6. ModelMaker is a two-way class tree oriented productivity, refactoring
and UML-style CASE tool specifically designed for generating native Delphi code (in fact it
was made using Delphi and ModelMaker). Delphi’s Object Pascal language is fully supported
by ModelMaker. From the start ModelMaker was designed to be a smart and highly
productive tool. It has been used to create classes for both real-time / technical and database
type applications. ModelMaker has full reverse engineering capabilities.

ModelMaker supports drawing a set of UML diagrams and from that perspective it looks
much like a traditional CASE tool. The key to ModelMaker’s magic, speed and power
however is the active modeling engine which stores and maintains all relationships between
classes and their members. Renaming a class or changing its ancestor will immediately
propagate to the automatically generated source code. Tasks like overriding methods, adding
events, properties and access methods are reduced to selecting and clicking.

The main difference between ModelMaker and other CASE tools is that design is strictly
related to and native expressed in Delphi code. This way there is a seamless transition from
design to implementation currently not found in any other CASE tool. This approach makes
sure your designs remain down to earth. The main difference between ModelMaker and other
Delphi code generators are it’s high level overview and restructuring capabilities letting you
deal with complex designs.

A unique feature, currently not found in any development environment for Delphi, is the
support for design patterns. A number of patterns are implemented as ‘ready to use’ active
agents. A ModelMaker Pattern will not only insert Delphi style code fragments to implement a
specific pattern, but it also stays ‘alive’ to update this code to reflect any changes made to the
design

As a result, ModelMaker lets you:

• Speed up development

• Produce designs and code of unequaled quality.

• Think of designing code instead of typing code.

• Design without compromising.

• Refine and experiment with your designs until they are just right.

• Create and maintain magnitudes larger models in magnitudes less time.

• Document you designs in UML style diagrams.

• Document your units in help files by clicking a single button.

• In short: save time and money, making better software.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 9

Installation

For installation details, refer to the readme.txt which is part of all ModelMaker distribution
archives. We suggest you read this file before installing. The readme.txt also contains the
latest information available on precautions related to upgrading.

ModelMaker requires Windows 95/98/ME/2000 or Windows NT 4.0 Both Borland Delphi
and ModelMaker use a lot of resources. This might lead to problems under resource limited
systems as Win95/98/ME.

ModelMaker is designed to work on a high resolution monitor (800x600 or better).

Contacting ModelMaker Tools

We at find it important to support you in your use of ModelMaker all the ways we can. You
can find ModelMaker on the Internet at http:\\www.modelmakertools.com or alternatively
http:\\www.modelmaker.demon.nl At this web site:

• We’ll update you on the most recent news concerning ModelMaker and it’s development.

• We’ll have the latest demo versions available.

• You can consult the Tips, FAQ pages.

• You’ll find links to the web-based ModelMaker newsgroups.

• You can leave hints or requests for future versions of ModelMaker.

• You can report bugs.

All ‘how to do this’ are best asked in the ModelMaker newsgroups. For other questions, the
address to contact us is: info@modelmakertools.com or info@modelmaker.demon.nl.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 10

Getting started

Getting a first impression

Here are some examples to get you started without reading lots of text. The development
model will be explained in detail in the next chapters.

Loading an example model

To get a first impression of what ModelMaker is capable of, load the model
..\ModelMaker\6.0\Demos\MMToolsApi.mpb. It contains the interfaces making up
ModelMaker’s open tools API. In diagrams the relations between the interfaces defining this
API are visualized. The Classes view shows the inheritance relations of this unit.

Then, to see how ModelMaker treats classes and units, use the ’Import source file in new
Model’ command from the toolbar. This will create a new model and import a Delphi unit
(such as a form unit or a VCL unit). The model is named after the unit: Importing unit1.pas
will create model unit1.mpb. Note the use of source aliases in the popup menu associated with
the tool button. Source aliases are used to locate the source file and will be explained in
chapter Source Aliases, page 52

Visualizing existing code

Visualizing existing code is a also good way too of getting started with ModelMaker. To
visualize code:
1. Import the units containing the classes to visualize. Use the ’import source file" tool button

in the main toolbar or drag drop source files on the ’unit’s view’ (View|Units)
2. Create or select a new class diagram in the ’diagrams’ view (View|Diagrams)
3. In the Diagram editor (View|Diagram Editor) select the visualization wizard from the

Wizard popup-up sub-menu.
4. Use this wizard to select the classes and interfaces to visualize and the kind of relations to

visualize (inheritance, uses, supports etc.)
5. Completing the wizard gives you an instant diagram of the code just imported.

You might want to move around classes or interfaces (Drag move) or select different display
options for classes or interfaces (Double click on the symbol) or the diagram as a whole

Open model Diagrams Diagram editor

UnitsImport in
new model

Import
source file

Classes

ModelMaker version 6.20

usermanual620.doc May 7th 2002 11

(Double click in empty space). Try to turn on and off member display, select interface style
etc.

Creating code with ModelMaker, overview

A ModelMaker model contains a Code Model and Diagrams. The Code Model contains the
classes, class members (properties, methods), units etc. that map to the corresponding entities
in Delphi’s Object Pascal. Diagrams are used to visualize aspects of the code model or entities
that do not exists in the code model at all such as use cases. This ‘Getting started’ example
will focus on the code model and demonstrate creating a new unit containing a new
component class.

To create code for a new (component) class (or interface) in ModelMaker you will at a
minimum need to,

1. Create a new model in which you want to put related classes, if you don’t want to add the
new class to the current model.

2. Add a new class to the model defining it’s class name and ancestor.

3. Add (or override) properties, methods and events to the class’s interface.

4. Implement the new methods.

5. Add the new class to a (new) unit.

6. Generate the unit to actually create or update a source file on disk.

7. In Delphi, debug the unit, and if it contains components, add it to the VCL.

8. While debugging, keep editing your code in ModelMaker, switching between Delphi and
ModelMaker using ModelMaker’s integration experts

An alternative way is to import existing files into a new model to either maintain these units
in ModelMaker or to derive new classes from. This will be explained in detail in the Import
demo.

The more advanced features of ModelMaker demonstrated in this example include:

9. Creating documentation for your component.

10.Generating a Help file.

11.Creating a class diagram to document your design.

The demo component: TIntLabel

Let’s examine these steps a little closer by creating an new component class TIntLabel which
is a TLabel descendant. TIntLabel adds a property NumValue of type integer which simple
converts the Caption property to an Integer. We’ll store this class in a new file INTLABEL.PAS
and register it on page ‘MM Demo’ in the VCL. We’ll also create the help file INTLABEL.HLP
and integrate it with Delphi’s on line help.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 12

This demo project is also shipped with ModelMaker. You can load the GETSTART.mpb in the
[installdir]\DEMOS folder. The source file INTLABEL.PAS is also in this folder.

The ModelMaker Class Creation Wizard

If you start up ModelMaker the first time you’ll see the Class Creation Wizard. This wizard
makes it easy to create new classes and add them to a (new) unit. This wizard can be found at
the main menu ‘Tools|Create Class wizard’.

The wizard is great for adding classes, but for demonstrating the ModelMaker development
model it’s more instructive to create a new class manually. Therefore, if you started
ModelMaker and the wizard is automatically started, abort the wizard by clicking ‘Cancel’.
You might also want to uncheck the option ‘Show at start up’ which will stop the wizard from
appearing each time you run ModelMaker.

Creating a new project

There are three ways to create a new project (or model):
• Select ‘File|New’, you’ll get a clean project just containing the default ancestors TObject

and IUnknown.
• Select ‘File|New from default’, you’ll get a new project loaded from the default template.
• Select ‘File|New from template’, you’ll select a template other than the default to create a

new project.
In this case select ‘File|New from default’ to create a project which at least contains the
TComponent class, if you didn’t modify the default project shipped with ModelMaker
[installdir]\BIN\DEFAULT.mpb.

Creating new classes

We’ll use the Classes view to create a new class. In this view you add a new class as a
descendant to another class in the
model. The Classes view is
depicted here.

The ancestor class must always be
part of the model since
ModelMaker needs it to correctly
generate the class declaration. In
our case this implicates that before
adding the TIntLabel class, it’s
ancestor TLabel must exist in the
model. This raises a problem. If you

started with the same default model, or with a template model that did not contain the class

Class tree containing
place holder TLabel

and real class TIntLabel

ModelMaker version 6.20

usermanual620.doc May 7th 2002 13

TLabel, you will have to add the TLabel class first. But, in order to correctly add a class
TLabel to your model, you now need to add it’s ancestor first, and before that, etc.... help!

Since you do not intend to create code for TLabel, but only use it as an ancestor, there is no
need to have the correct ancestor for TLabel. In our example the ancestor for TLabel could be
anything, for example TObject. A better fitting ancestor is of course TComponent. Classes
like TLabel in our example are called ‘placeholder’ classes as opposed to ‘real’ classes such
as TIntLabel. Other examples of placeholders are TObject, Delphi’s default class ancestor
and TComponent.

What we have to do now, is add two classes TLabel (‘placeholder’) and then add TIntLabel
(‘real’ class).

To do so:
1. Make the Classes view visible by selecting ‘View|Classes’ (or press F3)
2. Select TComponent by clicking it.
3. Press the “Ins” key or select add ‘Add descendant’ from the popup menu.
4. Enter TLabel as class name. You might want double click the class and in the class editor

dialog check the option ‘placeholder’ to make it clear that TLabel is just a substitute for the
real TLabel (which is in unit StdCtrls).

5. Now add the class TIntLabel using the TLabel as it’s ancestor the same way. Of course
you don’t check ‘placeholder’ here.

In the Classes view you’ll see a tree or list based overview of all classes (and interfaces) in the
model. Use the popup menu to toggle between tree and list style.

Adding properties and methods to a class

In our example we now need to add a new property and a read and write access method to the
interface of the class TIntLabel, to get something like:

type
 TIntLabel = class (TLabel)
 protected
 function GetNumValue: Integer;
 procedure SetNumValue(Value: Integer);
 published
 property NumValue: Integer read GetNumValue write SetNumValue;
 end;

To do this we’ll use the Class Members view - the bottom left window in the main window.
Class Members are the fields, methods, properties (and event type properties) that make up a
class’s interface. The Class Members view is depicted here.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 14

1. In this view
all members
for the
currently
selected
class are
displayed.
Filters on
type (Field,
Method
etc.),
visibility

(private, protected etc.) and category let you filter which members are displayed. Reset the
filters by selecting ‘Reset Filter’ from the pop-up menu or by clicking the buttons ‘Show
all types’ and ‘Show all visibilities’. All filter buttons should be in a ‘down’ state now,
except of course the ‘Show all..’ buttons which do nothing but (p)reset the filters. Make
sure the category filter shows <all categories>. The member list is still empty because we
didn’t create any new Class Members yet. Note that the filter layout can be toggled using
the popup menu ‘filter layout or double clicking on the filter area.

2. Click the ‘Add property’ button.

3. The property editor dialog will appear. See picture below.

4. Enter NumValue as the property’s name.

5. Select the visibility ‘published’.

6. Make sure the property’s data type is ‘Integer’.

7. Select for Read Access ‘Method’. This defines that the property has read access and you
want to use a method to access it, rather than a field.

8. Select for Write Access ‘Method’ This defines that the property has write access and you
want to use a method to access it, rather than a field.

9. Leave the other settings in their default values and click OK. In the property editor’s
picture below the correct settings are displayed.

Show all types

Show all visibilities

Add new property

Type filter

Visibility filter

Category filter

ModelMaker version 6.20

usermanual620.doc May 7th 2002 15

Now have a look again in your Class Members view:
You’ll not only see a property NumValue, but also two property access methods GetNumValue
and SetNumValue. This is because properties create and update their access fields and
methods automatically. Now that saves time!

The TIntLabel class’s interface is now defined, but the methods GetNumValue and
SetNumValue still need to be implemented.

Implementing methods

In our example we will need to add code to the implementation of the methods GetNumValue
and SetNumValue. This code should be something like:

function TIntLabel.GetNumValue: Integer;
begin

ModelMaker version 6.20

usermanual620.doc May 7th 2002 16

 Result := StrToIntDef(Caption, 0);
end;

procedure TIntLabel.SetNumValue(Value: Integer);
begin
 Caption := IntToStr(Value);
end;

To add code to a method’s implementation you use the (Method) Implementation view.

1. Select the method you want to implement in the Class Member view, in this case the
method GetNumValue.

2. To make the Method Implementation view visible, select ‘View|Implementation’.

The picture above shows the Method Implementation view. This editor is perhaps the element
of ModelMaker that is the most different from other editors. To understand how this editor
works you need to know a little more about how ModelMaker generates code for a method’s
implementation.

Add new section

Section list

Local code explorer
Displaying local vars
and local procedures

Code editor
User owned

section,
currently active

in code editor

Method One Liner

Method declaration
(Inplace editable)

ModelMaker version 6.20

usermanual620.doc May 7th 2002 17

Let’s have a closer look at the GetNumValue method. This is just a simple method, not
containing any local variables or local procedures.

The body of a method’s implementation consists of a list of local variables, local procedures
and sections of code which implement the block between begin..end. A section can take up
any number of lines of code. All sections together make up the actual implementation. Using
sections, ModelMaker is able to identify certain lines of code within the body. This is for
example used to automatically add and update a call to the inherited method, as we’ll see later.

On the left side of the method code editor the complete method’s code is displayed, although
maybe collapsed if necessary. On the right we find the actual code editor. It is used to edit the
section of code selected in the sections list. The same editor is also used to edit the local
procedures code.

As we see in the above picture, the only thing we need to do, is add a section of code
containing the statement:

 Result := StrToIntDef(Caption, 0);

To do this, first create a new section. If you didn’t change the code options settings in
‘Options|Code options’ a new section is automatically created if the method does not contain
any sections yet.

1. If necessary, add a new section by clicking the ‘Add section’ button.

2. Enter the statement in the code editor. There’s no need to indent the code with spaces since
this will be done automatically by ModelMaker.

3. Click the ‘save code’ button. This is not really necessary, since ModelMaker will
automatically save the section as soon as you select a new section or a new method.

Notice that the section is now also displayed in the section list, and is marked with a green
line. This green line informs you that you created this section and are it’s owner. Red lines
indicate that a section is not owned by you, but, for example, is inserted by a pattern which
has the only rights to update it. If a section contains more lines than the current ‘Fold height’
(adjustable in the Environment options tab Editors), the section will be collapsed. Collapsed
sections are marked with a second purple line with a mark on the collapsing position. More
about this later.

function TIntLabel.GetNumValue: Integer;
begin
 Result := StrToIntDef(Caption, 0);
end;

ModelMaker will generate the
method’s header as defined in
the interface

ModelMaker will insert the
reserved words begin and end.

This is a section of code you
add to actually implement the
method. ModelMaker will
indent this section for you.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 18

Now you should be able to implement the SetNumValue method the same way: select the
method in the Class Members view, add a section if necessary and enter your code.

Although we have finished implementing the class TIntLabel for now, all code exists only in
the ModelMaker model, so the next thing to do is to generate a source file.

Creating a source file

Units are the gateways to source files on disk. They provide a link between all data in a
ModelMaker project such as classes, method implementations etc. and an Object Pascal style
unit file which Delphi is able to compile.

Creating a Unit

In this example we need to create a unit which, after it has been generated, should look
something like:

unit IntLabel;

interface

uses
 SysUtils, Windows, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls;

type
 TIntLabel = class (TLabel)
 protected
 function GetNumValue: Integer;
 procedure SetNumValue(Value: Integer);
 published
 property NumValue: Integer read GetNumValue write SetNumValue;
 end;

procedure Register;

implementation

procedure Register;
begin
 RegisterComponents(’MM Demo’, [TIntLabel]);
end;

function TIntLabel.GetNumValue: Integer;
begin
 Result := StrToIntDef(Caption, 0);
end;

procedure TIntLabel.SetNumValue(Value: Integer);
begin
 Caption := IntToStr(Value);
end;

end.

To create a new unit we use the Unit List view which is depicted below,

ModelMaker version 6.20

usermanual620.doc May 7th 2002 19

1. To make the Unit list view visible, select ‘View|Units’. Repeat this for the Unit Code
editor.

2. In the Unit list click the ‘Add unit’ button, a unit properties dialog will now appear.
In the Unit editor dialog you define:

1. Leave the source path alias <no alias> unchanged.

2. The source file name (the full path including drive and folders), to define the path you
could use an source alias, but for now just click the browse button and locate the
\ModelMaker\6.0\TEST folder (or ModelMaker\6.0\Test depending on the base path you
installed ModelMaker in) and enter the file name IntLabel.PAS.

3. On the tab sheet ‘Classes’ add the class TIntLabel to the list on the right either by
dragging or by selecting it and clicking the ‘Add selected’(�) button or by double-
clicking.

4. Change the ‘VCL page’ from <unregistered> to ‘MM Demo’ by entering this name in the
string grid.

5. Click OK.

We’ll see the newly created unit now listed in the unit list on the left. In this editor unit’s code
containing a text which should look something like:

unit <!UnitName!>;

Add unit

Generate unit

Enable Auto
generation

View Unit List
View Unit
Code Editor

Unlock code
generation

Unit Code EditorUnit Code Explorer

ModelMaker version 6.20

usermanual620.doc May 7th 2002 20

interface

uses
 SysUtils, Windows, Messages, Classes, Graphics,
 Controls, Forms, Dialogs;

type
MMWIN:STARTINTERFACE
MMWIN:CLASSINTERFACE TIntLabel; ID=7;

procedure Register;

implementation

procedure Register;
begin
MMWIN:CLASSREGISTRATION TIntLabel; ID=7; Page=’MM Demo’;
end;

MMWIN:STARTIMPLEMENTATION
MMWIN:CLASSIMPLEMENTATION TIntLabel; ID=7;

end.

For now, it is enough to understand that ModelMaker uses tags (like
MMWIN:CLASSINTERFACE) to insert the interface, VCL registration and implementation of a
class in otherwise ‘plain’ text that you define. There is one problem however: if you look at
the uses clause in the interface, you’ll see that the unit StdCtrls which defines the ancestor
class TLabel, is missing. That is because the default unit template we are using does not
contain this unit. For changing this template refer to ‘Customizing ModelMaker’. For now, we
will have to add StdCtrls manually.

To do this,

1. In the unit code editor add StdCtrls to the uses clause.

2. Click the ‘Save code’ button in the toolbar above the editor.

Generating the source file

To generate the source file and create or update a file on disk,

1. Make sure that code generation is not locked. Locking is explained later, for now make
sure the button ‘unlock code generation’ in the ModelMaker toolbar is pressed down.

2. Click the ‘Generate current unit’ button in the unit list view.

3. Start Delphi (if it was not running already).

4. Either manually switch to Delphi or - much more instructive - click the ‘Locate in Delphi’
button in the main tool bar - or simply press Ctrl+F11. This will open the unit and locate
the entity currently selected in ModelMaker.

The generated source file should look pretty much the same as we wanted it to be.
(Differences may occur if you modified your file DEFUNIT.PAS in ModelMaker’s \BIN
folder.)

We’re ready to debug the TIntLabel now, and install it in our VCL.
Before doing this it’s a good idea to save our model. This is very much like in other windows
applications, so it won’t be explained here. We could use the [installdir]\TEST folder to

ModelMaker version 6.20

usermanual620.doc May 7th 2002 21

save this project. Practice shows that it is convenient to name your model after the main
source file you create with it, or the main set of components. In this case INTLABEL.mpb
seems an obvious name.

Adding the component to the VCL

Debugging your component

A good practice, is to debug your new component before adding it to the VCL. Do this for
example by adding the source file to the current Delphi project (e.g. by using Delphi’s project
manager) and re-compile the project. This should at least filter out all syntax errors. Either use
‘Compile’ or ‘Syntax Check’ since Delphi does not always correctly manage the file’s
date/time and modified status if you just ‘Run’ the project.

Compiling errors

If you didn’t make any mistakes, the unit should compile all right. If it doesn’t: change the
code in the appropriate place in ModelMaker. That is:

• For missing units in the unit’s uses clause: the unit code editor.

• For any code not part of the class: the unit editor.

• For errors in the class’s name or ancestor name: the Class view.

• For errors in the class’s interface declaration: the Class Members view.

• For errors in a method’s implementation: the Method Implementation view.

Switch to ModelMaker and fix the code. Use the integration expert’s menu ‘Jump to
ModelMaker’ to jump straight from Delphi’s code editor to the corresponding position in
ModelMaker. Finally, in the Unit list view click the button ‘Generate’ again and re-compile
the Delphi project. If you are having trouble with this: look ahead where we are adding new
behavior and editing code is explained.

Adding the component to the VCL

After debugging your new file, add it to the Delphi’s VCL.
In Delphi 1.0: select menu ‘Options|Install Components’, select ‘Add’ and browse to find the
unit INTLABEL.PAS in folder ..\ModelMaker\6.0\TEST\.
In Delphi 2.0: Select menu ‘Component|Install’, select ‘Add’ and browse to find the unit
INTLABEL.PAS. Refer to your Delphi User guide for more information about installing
components.
In Delphi 3 and higher: you must install the new component in a package. Select a new
package called MMtest in the ..ModelMaker\6.0\Test folder. Please refer to your user guide
for installing packages.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 22

After recompiling the VCL the new TIntLabel component should be on the palette page
where you registered it: MM Demo. To test it, add a TIntLabel component to a (new) form.

You can use the Object Inspector now to set the ‘NumValue’ property and see the caption
change. But the component can be improved!

Improving the component in ModelMaker

If you watch carefully, you’ll see that a TIntLabel when dropped on a form, initially has the
caption ‘IntLabel1’ rather than ‘0’. The NumValue however is 0. This is conflicting and not
very nice. To improve the component we’ll have to override the constructor Create like this:
(refer to Delphi’s on-line help for the TControl.ControlStyle property)

constructor TIntLabel.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 { Don’t let the Object Inspector set a caption }
 ControlStyle := ControlStyle - [csSetCaption];
 { Instead pre-set the Caption ourselves }
 NumValue := 0;
end;

To do this we need to return to ModelMaker.

Keep editing your code in ModelMaker

We could of course change TIntLabel’s code in Delphi, but then the ModelMaker model and
the modified source file would be out of sync. The next time we would (re-)generate the file
from within ModelMaker, the changes made in the Delphi Editor will be lost. Of course, if we
do not intend to maintain our code any longer in ModelMaker that’s fine, but we won’t benefit
the advantages ModelMaker offers during maintenance and documentation. And although it
may seem a burden at first, after getting used to it, the benefits of keeping the master code in
ModelMaker are much higher than the costs. So resist the itch in your fingers and return to
ModelMaker now.

Overriding the constructor Create

To override the constructor Create, we could add a method in the Class Members view
clicking ‘Add method’, name it ‘Create’ adjust it’s other attributes such as parameters
‘AOwner: TComponent’, method kind ‘constructor’, etc. but overriding methods can be done
far more easy. The only thing is: in order to override a method (or property) the method to be
overridden must exist in the model. If you used the default project template as was shipped
with ModelMaker (which also contains the class TComponent), the virtual constructor
TComponent.Create is in your model with the correct attributes, ready to be overridden.

To do so:

1. In the Members view tool bar click the ‘Wizards’ button, and

ModelMaker version 6.20

usermanual620.doc May 7th 2002 23

2. Select ‘Method override wizard’. Alternatively use the same function from the Wizards
popup sub menu.

3. In the ‘Override Methods’ dialog select the ‘Create’ method.

4. Make sure the option ‘Call inherited method’ is checked. This will instruct ModelMaker to
add a section of code containing a call to the inherited method.

5. Click OK.

In the Class Members view we’ll see that a method called Create is added to the list. Just for
your information you may check the methods attributes by selecting it in the member list and
clicking the ‘Edit Member’ button, or double clicking it in the member list.

Notice that all relevant attributes are copied from TComponent.Create:
• The methods name is Create.
• The parameter list is AOwner: TComponent.
• The method is ‘public’.
• The data type is ‘void’.
• The method type is ‘constructor’.
• The binding kind is ‘override’ (since TComponent.Create is virtual).
• The option ‘Call inherited’ is checked because we checked the option ‘Call inherited

method’ running the override wizard.
• The option ‘Inheritance restricted’ is checked. If this option is checked, the method will

automatically be updated to reflect any changes applied to the overridden method in the
ancestor class.

Click Cancel to leave the method in it’s original state.

Implementing Create, non-user sections in code

To implement the method Create switch to the Method Implementation view again. Notice
that in the section list on the left, already one section is added containing the code:

 inherited Create(AOwner);

This section is marked with a red line, indicating that we cannot edit it’s contents. The section
was added because the method’s option ‘Call inherited’ is checked.

To add the other lines of code,

1. Add a new section by clicking the ‘Add section’ button.

2. Enter the code in the code editor on the right.

3. Click the ‘Save code’ button

ModelMaker version 6.20

usermanual620.doc May 7th 2002 24

In the section list on the left we’ll see the complete implementation of Create.

Instant code generation

If we have a look in the Delphi editor, we’ll see that the source file has not been updated yet.
To do this we need to regenerate the unit. Therefore switch to the Unit list view again.

Regenerating the unit could be done by clicking the ‘Generate’ button again, but it is more
instructive to demonstrate ModelMaker ‘s instant code generation feature. Rather than having
to manually regenerate a source file whenever something has changed, it is possible to
‘Enable Auto generation’ for a unit. The source file will then be regenerated each time
anything changes in the Model that affects the source file. It is a nice feature that ModelMaker
not only regenerates the source file, but also instructs Delphi to reload the file if it’s opened in
Delphi’s code editor. Refer to Integration with Delphi.

To watch this:

1. Make sure you have the INTLABEL.PAS file loaded and is on top in the Delphi code editor.

2. Click the ‘Enable auto generation’ unit button in the Unit view tool bar.

3. See how the Delphi editor now reflects the last changes in your file.

Now return to ModelMaker again, and let’s play around:

1. Switch to the Class Members view.

2. Edit the Create Method (Double click or click the Edit button).

3. Now uncheck the ‘Call inherited’ option and click OK.

4. Watch the code being updated in Delphi.

5. Now check the ‘Call inherited’ option again.

To have a closer look at the Method Code editor,

1. In the Create method’s section list you can drag sections up and down, do this and see how
Delphi’s code editor follows your changes.

Lets have play around with the units view:

constructor TIntLabel.Create(AOwner: TComponent);
begin

 inherited Create(AOwner);

 { Don’t let the Object Inspector set a caption }
 ControlStyle := ControlStyle - [csSetCaption];
 { Instead preset the Caption ourselves }
 NumValue := 0;
end;

Section to call
inherited method.
automatically added
and updated.

Section in which you
enter your code.
You must create
and update this
section yourself.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 25

1. Make sure the units view is in ‘display as tree mode’ (popup menu)

2. Select the class TIntLabel by clicking it.

3. Press the Del key once, this will remove the class from the unit. The class is still in the
code model. In fact, the class is listed under the ‘classes not assigned to units’ node. Check
the code in the IDE: you’ll see that the entire interface and declaration have been removed.

4. Drag the class on the IntLabel unit. This will add the class to the unit again. Note that the
VCL Component registration page is now reset to ‘none’. Edit the unit (double click unit or
use toolbar) to change this back to ‘MM Demo’.

After you have played around with the instant code generation feature, make sure the
TIntLabel class still is as you want it to be. In order to actually see the improved behavior,

1. Rebuild your VCL in Delphi.
Delphi 1: menu ‘Options|Rebuild library’.
Delphi 2: menu ‘Component|Rebuild library’.
Delphi 3 and higher: recompile the package MMtest.dpk.

2. Remove any old TIntLabel components from forms.

3. Add a new TIntLabel to a form and notice how the Caption is set to ‘0’ now.

Documenting your component

ModelMaker not only supports source code generation for your component, but it has also
advanced wizards and generators to document your component. These include

• Documentation wizard which inserts basic standard documentation for all members in a
class.

• In source documentation.

• Help file generation.

• Instant visualizing in class diagrams. Although creating diagrams is usually done in the
design process, it is also possible to create diagrams from existing code.

To demonstrate these features we will now create a help file and a class diagram for the
TIntLabel component.

Adding documentation to your component

Each unit, class, all members of a class, ebent types and symbols in diagrams can be
documented with a short description named One Liner and a longer text named
Documentation. For editing One Liner and documentation we’ll use the Documentation view.
Alternatively we could have used the floating documentation window which is available from
the main menu “Views”.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 26

To make this view visible: Select menu ‘View|Documentation Editor.

With this Documentation editor you add a One Liner and a more descriptive text to each unit,
class and member (method, property etc.). That can be quite a job, so ModelMaker includes a
documentation wizard, which does some of the nasty work for you. This wizard will insert
pieces of documentation in the currently selected class.

To demonstrate this:

1. Select the class TIntLabel in the Classes or Units view.

2. In the Documentation view click the button ‘Documentation Wizard’.

3. Click OK to confirm creation of standard documentation.

4. In the drop-down box ‘Edited type’ select ‘class members’.

5. In the Class Members view select the GetNumValue method.

What you see now in the documentation editor is that the wizard inserted text like:
GetNumValue is the read access method for the NumValue property.
Usually this is sufficient to document GetNumValue, since you will be documenting the exact
meaning of the property NumValue and this avoids redundancy.

Selecting the method SetNumValue in the Class Members view makes the documentation for
SetNumValue visible:
SetNumValue is the write access method of the NumValue property.
Again this is usually sufficient to document the SetNumValue method.

What remains to be done is documenting the constructor Create and the property NumValue.
But here too, the wizard inserted already some useful text.

Select the documentation for the constructor Create and change this to:
Constructor Create overrides the inherited Create. First inherited Create is called,
then the Caption is pre-set to 0, reflecting the initial NumValue state. ControlStyle is modified to
exclude csSetCaption.

Now select the NumValue property’s documentation and change this to:
Property NumValue is read/write at run time and design time.

Documentation
Wizard Create Help file Edited type

Save
documentation

Documentation
editor

One Liner

ModelMaker version 6.20

usermanual620.doc May 7th 2002 27

It reads and writes the Caption property as an Integer.

To edit the documentation for the class TIntLabel:

1. Make sure class TIntLabel is selected in the Classes or Units view,

2. In the Documentation view, select ‘classes’ in the drop-down box ‘Edited type’.

Enter the text:
TIntLabel is a simple TLabel descendant created with ModelMaker.
It adds the property NumValue which reads and writes the Caption property
as an Integer.

To edit the documentation for unit IntLabel which contains the TIntLabel class:

1. Make sure the unit IntLabel is selected in the Units view.

2. In the Documentation view, select ‘units’ in the drop-down box ‘Edited type’.

Enter the text.
Unit IntLabel contains a demo component TIntLabel. It was created with
ModelMaker to demonstrate the creation of a new component.

The unit IntLabel is now completely documented. Documentation is typically used to create
a helpfile or for in-source documentation. Third party plug-in experts use the ModelMaker
ToolsApi to output documentation to other formats.

You add One Liners (short, single line descriptions) the same way. In the Views menu you’ll
find a ‘Floating documentation’ view. This view can be used to insert One Liners and
documentation too. This view can be docked or stay floating. The edited entity type in this
view is automatically updated to reflect the last focused view in ModelMaker.

Creating a help file

ModelMaker can create a Borland style help file from your documentation. This includes the
generation of the Borland /B keywords which are necessary for interaction with Delphi’s on-
line context sensitive Help. Help files are generated from unit’s. In our example we’ll create a
help file for unit INTLABEL.

ModelMaker let’s you select the visibilities you want to include in your help file. These are:

• ‘User’ (public, published, automated and default)

• ‘Component writer’ (user visibilities plus protected)

• ‘Developer’ (all visibilities)

The default visibility ‘User’ is the most restricted, since this will include only help for the
public, published or automated interface of a class. Use this filter to create a help file you
distribute with your components. Selecting the ‘Component writer’ visibilities will also
include help for the protected interface. This is the type of help file you would typically
distribute with components if other developers should be able to derive a descendant class
from your component. The last selection includes also the private details (typically fields and
or property access methods etc.) which you might want to have documented internally.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 28

To create a help file for the TIntLabel component,

1. Make sure the unit IntLabel is selected in the Units view.

2. In the Documentation view, click the button ‘Create help file’.

3. In the ‘Create help file’ dialog you’ll be prompted to enter a file name for the unit’s RTF
file. A help project file with the same name and extension .HPJ will automatically be
created. In our example enter [installdir]\TEST\INTLABEL.RTF.

4. In the same dialog, select the visibilities you want to include in your help file. In this
example we’ll go for the ‘Component writers’ visibility.

5. Leave the reformat paragraphs option checked and Click OK.

6. Open the explorer (file manager) and notice that both INTLABEL.RTF and INTLABEL.HPJ
have been created.

7. Run your Delphi help compiler with the INTLABEL.HPJ project. Be aware that you need to
use the help compiler that was shipped with the Delphi version you want to create help for.
For Delphi 1.0: Use DELPHI\BIN\HC31.EXE in a DOS box and run it from the folder your
HPJ file is in. For example: DELPHI\BIN\HC31.EXE INTLABEL.HPJ
For Delphi 2, 3 and higher: Use the Delphi 2(or 3 / 4/5/6).0\HELP\TOOLS\HCW.EXE
to compile your project: double clicking the INTLABEL.HPJ file in the explorer should be
enough.

The help files have been created now. You might want to have a look at them, using windows
help. Double clicking the newly generated INTLABEL.HLP starts help.

The Help File Generator source is available as plug-in expert on request. It can be extended to
create help for multiple units at once etc.

Integrating your help files with Delphi’s on line help

To be able to invoke Delphi’s help on your TIntLabel component you must integrate your
INTLABEL.HLP help file with the Delphi 1 and 2 on line help. To do this:

1. Generate key words using KWGEN.EXE

2. Install help using HELPINST.EXE

Installing help in Delphi 3 and higher is documented in Delphi’s Component Writers Guide /
User’s Guide.

Documenting the design in a diagram

Although creating diagrams is usually done in the first stages of the design process, it is also
possible to create diagrams from existing models using ModelMaker’s instant visualization
feature. A list of diagrams in the model is edited in the Diagram List view. The actual
diagrams are edited in the Diagram Editor.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 29

Make the Diagrams List view and Diagram Editor visible:

1. Select menu ‘View|Diagrams’. This will make the diagram list visible in the top left
window.

2. Select menu ‘View|Diagram Editor’. This will make the diagram editor visible in the editor
pane on the right

3. In the Diagram list create a new class diagram by clicking the ‘Add Class diagram’ button.

4. You can inplace edit the diagram’s name. Enter ‘Demo diagram’. The name is intended
only to distinguish different diagrams.

In the newly created diagram we’ll demonstrate ModelMaker’s instant visualization feature:

1. Make sure the Classes or Units view is visible (View|Classes or Units)

2. Drag the class TLabel from the Classes or Units view and drop it on the diagram editor.

3. Do the same with TIntLabel.

4. Save the Class diagram by clicking the ‘Save diagram’ button.

Notice how the inheritance relation TIntlabel = class (TLabel) is automatically
visualized. If appropriate, ModelMaker will also visualize ‘uses’ relations if a class is dragged
onto a diagram.

View Diagram List

View Diagram Editor
Diagram List

Add Class Diagram
Diagram Editor

ModelMaker version 6.20

usermanual620.doc May 7th 2002 30

You can copy the current selected diagram to the clipboard (in WMF format) and paste it in
your word processor to document your design. To do this: press Shift+Ctrl+C or use the
local menu ‘Export as Image’|‘Clipboard’. Alternatively you could export the image to a file
(bmp, wmf and jpg). To print the diagram, press Ctrl+P or use the pop-up menu.

Symbol styles in Diagrams: displaying members

ModelMaker supports many UML styles of displaying classes and interfaces: show module
(unit) names, show members, collapse interfaces etc. To demonstrate a few and give you an
idea of what is possible we’ll change the symbol style for the TIntLabel class symbol.
Symbol styles define how a symbol is displayed in a diagram. Note: the visual appearance
(colors, fonts etc) is controlled by the visual style which is not part of the symbol style; check
this manual for details. Default all symbol styles are “as defined in current diagram”. The
diagram symbol style defaults to “as defined in the current project”. This gives you the
possibility to change style on any level you like: just a single class symbol, all class symbols
in a diagram or all diagrams in a project.

Here we’ll change the symbol for TIntLabel only. Double click on the TIntLabel class symbol.
This will show the class symbol editor.

First you define which members are displayed. In this dialog change the Member list style
from “Diagram Auto Member list” to “Auto Member list”. This style will automatically add
all members defined by the member filter in this editor. In the Member filter check

ModelMaker version 6.20

usermanual620.doc May 7th 2002 31

“Properties” and “Methods”. Change the visibility filter to public and published members
only. This will suppress display of the protected property access methods GetNumValue and
SetNumValue.

Then you define how members are displayed. Use the Member display options to modify this.
Check “Show Data type” and “Events in new Compartment”. Note that a grayed option
reverts the option to the parent (diagram) style.

To display the name of the unit that contains this class in the symbol name compartment,
check the “Show module name” option.

After clicking OK you should have a diagram that looks something like this (you can stretch a
class symbol as needed depending on the Auto Size options – check the class symbol dialog).
The property NumValue is displayed in the ‘attributes’ compartment and the method Create is
displayed in the ‘operations’ compartment. Likewise events can be displayed in a separate
compartment or combined with the attributes. If you wish you could even combine all
members into a single compartment.

Visualizing the unit IntLabel.pas

Just like classes can be visualized by class symbols, the unit IntLabel which contains
TIntLabel can be visualized. To do this, click the “Add Unit Package” tool on the diagram
editor tool bar and then click on the diagram. The following dialog will appear which lets you
select the unit to visualize in the package. In this dialog, select “IntLabel” and click OK.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 32

Now the Package Symbol editor will be visible, which is used to edit the visualization of the
linked unit.

In this dialog, Make sure the “Show contained classes” option is checked (not grayed) and
click OK. Your diagram should now look something like the picture below.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 33

The package symbol displays it’s contained classes (TIntLabel) and has a stereotype
(category) named <<unit>>. Of course, if you add more classes to the unit, the symbol will be
updated automatically.

Visualizing the Documentation

The UML uses Annotation symbols to add notes to diagrams. ModelMaker supports
hotlinking annotations to symbol documentation (or OneLiners). This is a two way hot link:
the annotation text will automatically show the symbol’s documentation and editing the
annotation text will update the symbol’s documentation. To demonstrate this, we’ll add a
linked annotation to the class symbol TIntLabel and to the unit package symbol IntLabel.pas.

On the diagram editor toolbar select the “Add Auto Documentation linked Annotation” tool.
This tool allows three link styles which can be selected with the drop down button next to it.
Links styles are: passive (not linked), documentation and one liner. Make sure the
Documentation style is selected.

Then after selecting this tool, click on the class symbol and drag the mouse below it. This will
create the link and annotation. Repeat this for the package symbol that is linked to unit
IntLabel. Your diagram will now look something like this.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 34

Now try to edit the documentation for TIntLabel in the annotation and see it change in the
class dialog and the diagram. To do this, click TIntLabel’s annotation and press F2. This
invokes the annotation’s inplace editor. Change the text to your liking and after pressing the
Enter key, check the documentation tab in the class editor dialog (classes view). Similar to
linking the documentation, a symbol’s One Liner can be linked to an annotation.

Summary

In this chapter you got a first glimpse of some basic features in ModelMaker.

• ModelMaker is all about creating classes.

• It is important to start with the right project template especially if you want to override
methods or properties.

• The interface of a class consists of Class Members (fields, methods and properties).

• Properties create and update their access fields and methods.

• Method code consists of sections, which can either be created automatically or manually.

• A Unit provides a link with a source file. Units can have ‘auto generation’ enabled to
instantly reflect any change in the model to the source file.

• ModelMaker’s IDE integration experts will take care of reloading units in Delphi’s code
editor.

• To jump from ModelMaker to the IDE and back, use the Locate in Delphi and Locate in
ModelMaker commands.

• It’s easy to document a design using the documentation wizard.

• Help files can be created for a unit, which are ready to integrate with Delphi’s on-line help.

• Instant visualization in class diagrams can be used to document your design.

• Class symbols can automatically display contained members, package symbols can
automatically display classes contained by a unit (source module).

ModelMaker version 6.20

usermanual620.doc May 7th 2002 35

• Symbols can be hotlinked to annotations, which will then display documentation or One
Liners.

• Diagrams support multiple symbol styles that can be defined at different levels.

Where to now?

Now you’ve seen ModelMaker’s basic mechanisms. You can have a look at the following
topics:

• There is another step-by-step example in the Design Patterns manual that demonstrates the
use of design patterns. You should have enough background now to work through this
demo.

• ModelMaker’s Basic Concepts page 36.

• The other chapters in this manual focus in greater detail on common aspects of
ModelMaker such as diagrams, code generation and import.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 36

Basic Concepts

Overview

This picture gives an impression of ModelMaker’s main parts and how they relate.

The two main entities are the Code Model and the Diagrams. Around them you’ll find
importing and generating source code, interaction with the Delphi IDE, saving models etc.
Going around this picture more or less anti-clockwise we’ll see:

The Code Model contains the classes, members, units etc. that map to the corresponding
concepts in Delphi’s Object Pascal. The Classes view, Members view, Method
Implementation view and Units (Code) view all deal with visualizing and manipulating the
code model directly.

Code Generation is the process of creating an Object Pascal source file containing classes,
members and unit code. Units provide the link between the Code Model and a source file. A
unit contains classes and/or event type declarations plus user defined unit code such as

M odelM aker

CodeM odel Diagram s

ToolsApiPatterns

CodeTem plates

Docum entation

He lpFileDe lphiIDE

M MExplorer

Externals

Projects

Team Developm ent

VCS

ProjectTem plates

SourceFiles

Code Generation

Source Import

XML, XMI, EMF

Generate, Import

Editing Editing

M acros

Custom izing

Difference

ModelMaker version 6.20

usermanual620.doc May 7th 2002 37

module procedures. Refer to Code Generation, page 45, for a more detailed description of
source code generation. Code generation is typically, but not only, controlled from the Units
view.

Code Import is the process of reverse engineering an Object Pascal source file into entities
that make up the Code Model. This can be initial importing - the unit and / or classes it
contains did previously not exist in the Code Model - or refresh import - re-importing an
existing unit and / or the classes it contains in order to synchronize the Code Model and
source file. Code Import is typically controlled from the Units view. It is amongst others also
available in the classes view and difference view. Code Import is described in detail in chapter
Importing Source Code, page 56

Design patterns are proven solutions for a general design problem. It consists of
communicating classes and objects that are customized to solve the problem in a particular
context. In ModelMaker patterns are active agents that will insert code into the model and stay
alive to reflect changes in the model to the pattern related code. Design patterns currently only
relate to the Code Model. Patterns are manipulated in the Patterns view. There is more on
patterns in the Design Patterns manual.

Code Templates are user definable and parameterizable snippets of related code. They are like
user definable patterns. Code templates can be created form the Members view and applied
from the Patterns view or Members view. There’s more in Code Templates page 71

ModelMaker’s Delphi IDE integration takes care of synchronizing the Delphi IDE editor
buffers whenever a file is (re-)generated by ModelMaker. Depending on the Delphi version
there are other functions available like: add IDE editor file to model, refresh IDE editor file
etc. There’s more in chapter Integration with the IDE page 105

The ModelMaker Code Explorer is a separate ModelMaker Tools product that brings basic
ModelMaker Code Model related functionality into the Delphi IDE. With this explorer you
can navigate and add, edit, copy properties, methods or even entire classes with the same ease
and concepts as in ModelMaker, usually even with the same dialogs.

A Macro is a fragment of text that is identified by a macro identifier. While generating source
code and in-source documentation, ModelMaker will expand the text, replacing macro
identifiers with the macro’s text. Macros are also used to customize certain parts of the
generation process (custom class separator, method section separator etc.). Macros are
maintained in the Macros view. Macros are described in detail in chapter Macros, page 74
Macros are also used to parameterize Code Templates as described in chapter Code templates,
page 71

All Code Model entities and Diagram symbols can be documented with Documentation and a
One Liner. In all relevant editors you’ll find a Documentation tab. The Documentation view
and Floating Documentation view are dedicated to editing One Liners and Documentation.
Emitting “in-source documentation” during code generation is controlled by macros. You can
redefine these macros to customize the documentation format.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 38

Documentation can be converted to a unit based Help File. This is done in the Documentation
view. Other documentation output formats can be created with (third party) plug-in experts
that use the MMToolsApi to access the model.

The Diagrams contains multiple types of diagrams. Some diagrams visualize aspects of the
Code Model in UML-style. Others visualize entities such as Use Cases that only exist in
Diagrams. Most symbols can be ‘HotLinked” to entities in the code model. Class symbols for
example are linked strictly to classes in the Code Model: changing the class in a diagram will
also change the class in the code model. Messages in sequence diagrams can be weak linked:
they can or cannot be linked to a class member. If they are not linked the message name is just
text. Symbols such as Use Case symbols only exist in the Diagram model and have usually no
relation with the code model. It is important to realize that symbols linked to the code model
(for example Class symbols in class diagrams) only visualize an entity (class) in the code
model. The same class can be visualized many times in multiple diagrams in different styles
depending on the context. Diagrams are created and maintained in the Diagram list view. The
actual diagrams are edited in the Diagram Editor view. There’s more in chapter Diagrams,
page 39

Diagrams can be exported as image, native XML format or in XMI format (third party plug-in
expert).

The Environment and Project options are a first means to Customizing ModelMaker to your
taste or coding style.

In Chapter “Customizing” page 80 there’s more on customizing ModelMaker.

ModelMaker Projects or Models contain both Code Model and Diagrams. In ModelMaker
you work on a single model at a time. Opening a different model will close the model you
were working on.

Working with models requires care in the areas team development and model (system)
boundaries as described in chapter Team development. Model boundaries and Version
Control, page 43

The Difference view is used to compare a model unit to the associated file on disk. Most
powerful is the structured difference that does a syntactical comparison rather than a plain file
based comparison. Also use the Difference view to compare any disk file or model unit with
any other file or model unit or to compare two classes.

Code Model contents

A Class is the most important entity in the Code model, it matches the corresponding concept
in Delphi and it is a container of Class Members. Classes always have an ancestor (super)
class and sometimes have descendent (sub) classes. The default class ancestor TObject is
always present in the model.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 39

An Interface is similar to a class, as it matches the corresponding concept in Delphi. It is also
a container of a restricted set of Class Members. Interfaces always have an ancestor (super)
interface and sometimes have descendent (sub) interfaces. From Delphi 6 onwards there are
two interface roots; IUnknown and IInterface. These default interface ancestors are always
present in the model. Because classes and interfaces are so similar, in the remainder of this
manual usually where you read class you can also read interface. Both are

Class Members are the fields, methods, properties and events making up a class’s interface.
They always belong to a class (or interface).

Fields, Methods and Properties match the corresponding concepts in Delphi. Fields are used
to store a class’s state and/or data. Methods are used to implement behavior. A method’s
implementation consists of sections of code. This allows ModelMaker to locate specific code
within the method’s body. Properties let you have controlled access to a class’s attributes as
though they were fields. Events are a special kind of properties. They are used to represent
method pointer type properties (delegates). This way ModelMaker makes the same distinction
as Delphi’s Object Inspector does. It is possible to create a property of type TNotifyEvent
and ModelMaker will generate the correct code for the property, but ModelMaker will not
recognize this property as an event. Therefore: use Events rather than properties to model
event types.

Event type definitions are used to define the signature of event type properties. ModelMaker
relies on these definitions to create and update event handler methods and event dispatch
methods. The most used event type TNotifyEvent is automatically inserted in each model.
Event types are maintained in the Events view.

Design patterns and Units as described earlier complete the code model contents.

Diagrams

ModelMaker supports a set of UML diagrams:
1. Class diagram or static structure diagram
2. Sequence diagram
3. Collaboration diagram
4. Use case diagram
5. Robustness analyses diagram (not defined in the UML)
6. Activity diagram
7. State chart diagram
8. Package diagram or Unit dependency diagram, a static structure diagram, just showing unit

package symbols.
9. Implementation diagrams: Deployment diagram and Component Diagram
10.Mind Map diagram (not defined in the UML)

The basic elements of diagrams are symbols and associations. The meaning and attributes of
the symbols and association used are according to the UML specification. This manual will
not explain the meaning and details of each symbol. In the ModelMaker on-line help you’ll

ModelMaker version 6.20

usermanual620.doc May 7th 2002 40

find a short description for each symbol and association and it’s attributes. There are a number
of good books available on the UML. Alternatively you could download the latest version of
the UML specification as available for free on the Rational web site.

The Chapter “Diagrams” contains a detailed description of organization and editing of
diagrams in ModelMaker.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 41

Working with models

In this chapter, a model is the equivalent of a ModelMaker project that contains both Code
Model and Diagrams.

Model files

Native ModelMaker will save a model into set of files:

1. <model>.mpr; contains the project settings.

2. <model>.mma; contains the project related macros.

3. <model>.mmb; contains the code model data

4. <model>.mmc; contains the documentation for the model.

5. <model>.mmd; contains the diagrams.

6. <model>.mme; contains the event type definitions.

7. <model>.mmf; contains the project messages.

If you manage your source files using a version control system, you should add these model
files to version control too.

However, ModelMaker is able to bundle the project files into a single project bundle: *.mpb.
To enable this, check the option 'Bundle project files' in “Options|Environment|General”. This
option is checked by default. If this option is checked, the file Open and Save dialogs will
have the *.mpb file type as well as the *.mpr. Using single file bundles makes it easier to
work with ModelMaker projects. To convert existing projects to single file project bundles,
use File|Save as and manually change the .mpr extension to an .mpb for the project. In very
large projects you may find that saving and loading bundles takes some more time than the
multi file projects. When using project bundles it is sufficient to add the <model>.mpb file to
version control.

ModelMaker cooperates with version control systems by not allowing you to save a project
that exists with read-only file attributes. Note that only the file <model>.mpr or .mpb is
checked for read only attributes. In an unbundled project file the *.mma.*.mme files are not
checked.

Model templates

As you probably have noticed (for example in the Getting Started demo), one of
ModelMaker’s powerful features is that it’s easy to override methods and properties and that
changes are automatically propagated down the inheritance tree. But to let this work, the

ModelMaker version 6.20

usermanual620.doc May 7th 2002 42

ancestor class and the methods and properties to override must be part of the model. So it is
important with which (new) model you start.

Now you may ask: why didn’t I get the complete VCL as default model? This would contain
all classes I ever need! The answer is that this would result in very large models, through
which it is hard to navigate. We have been working with ModelMaker for quite a few years
now, and it shows that it is most practical if models contain classes of a single domain only.
Classes contained in a single component package typically reside in single model too.
Generally this result in models typically containing 5 to 20 classes or may be up to 50 for
really large models.

And that’s where you need templates. Templates are just ordinary models containing classes
for a certain domain that you use to derive new classes with in a certain domain. Since it’s
possible to have as many templates as you like, you can create nice compact templates for
each relevant sub-domain: like a template for creating simple components, one for simple
TCustomPanel descendants etc.

You load a template by selecting ‘File|New from template’ which will load the template
model and then reset the model’s name to ‘untitled’. Any model can be used as a template, but
by design ModelMaker looks in the [installdir]\TEMPLATE folder for template models.

ModelMaker has one special template that it uses as default. This is the model
[installdir]\DEFAULT.mpb. You may open this model and change it to your needs or
overwrite it with another template model.

Editing a model

To edit a model, ModelMaker has multiple views on the model. Most of these views are
interlinked: selecting something in one view will show related information in another.
Interlinking is based on:

• The current class, selected in the Classes view or Diagrams view. For example, the Class
Members view displays the members of the current class.

• The current class member (if any), selected in the Class Members view.

• The current method (if any), equal to the current class member if that is a method. For
example, the Method Implementation view displays the implementation of the current
method.

• The current unit, selected from the Units view.

The other view like the Macros view and the Event Library view are (more or less)
independent from these selections.

In the Environment options Navigation tab you’ll find options to synchronize and activate
views on certain events.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 43

Ownership in ModelMaker

ModelMaker assigns an owner to each entity in the model. Entities can be anything from
classes to methods or a section of code in a method. The owner of an entity created the entity
and has exclusive rights to update or delete it whenever suitable. Usually you, ‘User’ will be
the owner since you create most classes, class members etc. ModelMaker does not
discriminate between users: it does not remember that John created this class and Mary that
property.

Deleting an entity will automatically delete all entities it owns too. For example: a property
owns it’s read access method. You cannot delete or edit these methods, other than by deleting
or editing the property.

Team development, Model boundaries and Version
Control

In ModelMaker team development support and model boundaries are related issues as they
both deal with the question: what should and what should not be in a model. There are a few
important reasons to use multiple relative small models according to logical boundaries rather
than one big model containing all classes and diagrams you have.

1. It enables team development: while one developer works on one model that is part of a

larger project, the other can work on another. There are limited possibilities to merge
changes made to the same model. Therefore only one developer can work on a single
model at the time.

2. It improved ease of navigation and overview
3. It improves performance.

Usually you'll find logical boundaries to split up models - and usually well-designed modules
(as in units or classes) have low coupling and dependencies. Boundaries could be: units in a
certain Delphi package, units containing classes that perform a related task etc. In
ModelMaker itself for example, we have lots of models, sometimes only containing a single
unit. Large models for example contain all classes related to diagrams, the entire code engine
or the source importer. And yet other models contain units that are used in many projects:
timers, filters etc.

Although we have some happy customers that have models containing 300+ classes in 150+
units, practice shows that a good model size is about 1 to 30 classes in 1..10 units.

The drawback on having multiple smaller models is that ModelMaker maintains active
relations only within the same model and not beyond model boundaries. As a result you
occasionally might need to re-import a unit after it has been altered in another model.

It’s a good idea to use a version control system and put the model files under version control
too. Although a model contains everything that is needed to (re-)generate the source files it

ModelMaker version 6.20

usermanual620.doc May 7th 2002 44

contains, you should always store the actual source files under version control too. It’s from
the source files that you build your product, not the model.

Merging models is only partly supported: source code can be generated and imported and
diagrams can be exported/imported. However no code model meta-information can be
exported/imported. Because ModelMaker stores its data in a native binary format, you cannot
use the merging capabilities of a Version Control System without corrupting the model.

If models do get out of sync with the source code or other models you've always got the
Difference View with it's powerful structural difference function to help getting the model
synchronized with source or other models.

Using source aliases rather than hard coded directories is a must in team development. Check
chapter Source Aliases, page 52 on source aliases.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 45

Generation source code

Overview

In ModelMaker units are the gateways to source files on disk. During code generation, unit
code, classes and class members from the code model are combined into a source file. A
unit’s unit code contains (can contain) code generation control tags. At the position of a tag
ModelMaker will insert the associated entity such as class interface or implementation. Here

is a picture that visualizes this process.

The unit code is read line-by-line and scanned for code generation control tags. If a line
contains a code generation control tag, the entity as defined by that tag is inserted instead of
the tag. Any lines not containing code tags are just copied to the source file.

During code generation macros in both unit code and method implementation code will be
expanded using the predefined macros and the project and environment macros you define
yourself. Macro expansion and line formatting are the last stages in the source code generation
process for both text generated from code tags and text just copied from a unit’s unit code.
Macros are explained in detail in chapter Macros, page 74

During generation of the implementation section, class separators, method separators and
method section separators can be emitted. This is controlled by code generation settings and
macros.

unit Samples;

interface

type
 TSample = class
 procedure Action;
 end;

implementation

procedure TSample.Action;
begin
end;

end.

class TSample (TObject)

unit Samples;

interface

type
MMWIN:CLASSINTERFACE TSampl

implementation

MMWIN:CLASSIMPLEMENTATION T

end.

procedure Action;

Code generation
control tag

Unit code

Class Class member

Source code

ModelMaker version 6.20

usermanual620.doc May 7th 2002 46

Insertion of in-source documentation can also be part of the generation. This is explained in
detail in chapter “In source Documentation” , page 67.

Code generation control tags

ModelMaker uses code generation control tags to control source file generation. Only code
generation control tags placed in the unit code are interpreted. Tags in a method’s
implementation are not interpreted. Here are the rules that apply to code generation control
tags:

1. Code generation control tags are case insensitive.

2. All code generation control tags start with MMWIN: at the first position of a line.

3. Code generation control tags must reside on a single line.

4. Any semi-colons or equal signs defined in a tag are obligatory.

5. Code generation control tags can contain any white space after the MMWIN: definition. For
example: MMWIN:STARTINTERFACE is the same as tag MMWIN: START INTERFACE

Class related tags

These code generation control tags are used to define the insertion position of class and
interface related code:

MMWIN:CLASS INTERFACE classname ;ID=###;
MMWIN:CLASS IMPLEMENTATION classname ;ID=###;
MMWIN:CLASS REGISTRATION classname ;ID=###;PAGE=vcl page name
MMWIN:CLASS INITIALIZATION classname;ID=###; // OBSOLETE

These class related tags are automatically inserted and maintained by ModelMaker whenever
you add a class to a unit or remove it again. Normally you would use the Unit editor dialog or
drag and drop in the Units view to insert or delete classes in/from a unit or change the relative
position within a unit. However, in special cases you can manually move these tags to any
other position in the unit code. This is for example useful if you want the interface of a class
to reside in the unit’s implementation.

In these tags ModelMaker ignores the ‘classname’ and just uses the ‘ID=###’ tag to identify
the class. The class name is inserted just for your convenience. Modifying it will have no
effect.

Normally, for classes both the CLASS INTERFACE and CLASS IMPLEMENTATION tags should
be put in the unit code. If either one is missing after you’ve edited the unit code manually,
you’ll get a warning. In special cases - for example in include or documentation files - you
may manually remove either the interface or implementation tag. Interfaces (as opposed to
classes) ignore the IMPLEMENTATION tag.

The CLASS REGISTRATION tag is optional and is used to insert a snippet of code to register the
class as component. You may manually remove them from the unit code. You can manually

ModelMaker version 6.20

usermanual620.doc May 7th 2002 47

edit the ‘vcl page name=...’ text in the registration tag to change the VCL registration
page. However, usually you would do this in the unit editor dialog. If you remove the
registration tag or the page name, no registration code will be generated for the class.

When importing a unit containing a procedure Register, the registration code is automatically
converted to tags.
The tag CLASS INITIALIZATION is obsolete from version MMv6.0 onwards. This tag is
maintained for backward compatibility only. The tag is used to insert initialization code for
TStreamable descendants: RegisterStreamable(..); If you remove the initialization tag,
no initialization code will be generated for the class.

Event type declaration tag

This code generation control tag is used to define the insertion position of an event type
declaration.

MMWIN: EVENT DEFINITION eventname type declaration; ID=###;

This declaration is maintained by ModelMaker and is obligatory for each event definition in a
unit. Normally you use the unit editor dialog or drag and drop from the Events and Units view
to insert or remove event type definitions in/from a unit, or change their relative positions
within a unit. However, you may manually move these tags to any other position. If you
remove them, the event type definition is also removed from the unit. The ‘eventname’ and
‘type declaration’ texts are ignored, only ‘ID=###’ is used to identify an event type
definition.

Editing marker tags

These code generation control tags are used to mark the positions at which you want
ModelMaker to insert the first class or event type declaration in a unit.

MMWIN:STARTINTERFACE
MMWIN:STARTIMPLEMENTATION

These tags are for editing purposes only and they have no role in the code generation process.
There’s one exception to this. The MMWIN:STARTINTERFACE tag is also used to determine the
insertion position of class forward declarations - if any. If this MMWIN:STARTINTERFACE tag is
absent, class forward declarations will be inserted before the first event type declaration or
class interface, which ever comes first.

Macro expansion control tags

These code generation control tags are used to switch on and off macro expansion during code
generation:

MMWIN:START EXPAND
MMWIN:END EXPAND

ModelMaker version 6.20

usermanual620.doc May 7th 2002 48

By default the expansion is switched ON. You need these tags if your unit or method code
contains the text “<!” (“” not included). The macro expander will interpret the sequences

“<!” + Identifier + “!>” on a single line
“<!” + Identifier + “(“ param list + “)” + “!>”

as a macro. “Identifier” (the macro name) can consist of characters ['0'..'9', 'a'..'z', 'A'..'Z', '_'].
Which is similar to Object Pascal identifiers, although macro names can start with a number.
White space surrounding the identifier is ignored.

Because macros can be in any text including comments and strings, this would make it
impossible to generate code for units that contain a valid macro sequence <!ident!>.

There are a few workarounds for this problem. The most sensible uses these control tags in the
unit code - remember the tags do not work in method code!
MMWIN:ENDEXPAND
const
 HTMLCommentStart = ‘<!’;
 HTMLCommentEnd = ‘!>’;
MMWIN:STARTEXPAND

In the rest of the code you can now use the constants and still leave the macro expansion on.

Note that these tags do not affect generation of in-source documentation, which is also based
on macros. Documentation related macros are always expanded regardless of the setting of
these switches.

Unit documentation tag (obsolete)

This code generation control tags defines the insertion position of a unit’s documentation.
Because inserting unit documentation is much better controlled with the ‘In-source
documentation generation’ options, we recommend avoiding the use of this tag although it’s
still supported for backward compatibility.

MMWIN:INCLUDE UNITDOC;INDENT=##;

The tag ‘INCLUDE UNIT DOC’ defines the position at which ModelMaker will insert the unit’s
documentation. The unit’s documentation can be edited in the Documentation view. The
‘INDENT=##;’ extension is optional and may be omitted. This defines an indention for the
documentation of ## spaces. A typical use would be:

{
MMWIN:INCLUDE UNIT DOC;INDENT=2;
}
unit <!UnitName!>

Obsolete tags

These code generation control tags are obsolete from MMv6.0 onwards.

MMWIN:STARTREGISTRATION
MMWIN:STARTINITIALIZATION

ModelMaker version 6.20

usermanual620.doc May 7th 2002 49

On loading a model, ModelMaker will remove these tags from the unit code. If you add them
manually they will simply be ignored.

Code generation options

In the Project options|Code Generation tab you will find options that control code generation:
1. Formatting the layout of source code
2. Sorting of class members and method implementations
3. Inserting a (custom) class header to that precedes the class’s method implementations
4. Inserting a (custom) method separator to that precedes each method’s implementation
5. Inserting a (custom) method section divider in between each section.

The on-line help file explains the meaning of these options.

The Project options|Source Doc generation tab controls the generation of in-source
documentation. This is explained in detail in the chapter on “In source Documentation”,
page 67.

Maintaining Code Order / Custom member order

ModelMaker supports a user definable custom member interface and method implementation
order.
 These custom orders can be assigned during import used during code generation. When that
is done, the effect is that ModelMaker will maintain the imported code order during
generation.

This is how it works:
In the Project options Code Generation tab you define a member sorting scheme in class
interface and implementation generation. In these sorting schemes Custom orders can be used
as a grouping or additional sorting property.

When grouped on custom order, members will be sorted according to the (original) custom
code order. Members that have been added later with an unspecified custom order, will be
placed after all members with a specified order.
When using the custom order to perform additional sorting, the default sorting scheme will
be applied and within each 'section' (visibility etc.), the custom order will be applied.
If class members have an unspecified order (which is the default for new members), the effect
of enabling Custom Order during Generation or in the Members list is null.

Custom orders can be assigned during Import. In the Project options|Code Import tab you’ll
find settings to enable / disable assigning the custom order during import. The import dialog
allows temporarily overruling these settings.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 50

If the Importer assigns custom orders and Generation uses grouping on Custom Order
ModelMaker will effectively maintain the original code order during ’refresh import’ and
append new members at the end.

Additionally Custom orders can manually be defined - per class - with the "Members custom
order" dialog or with the Members view ‘Rearrange mode’.

The Rearrange dialog is available from the Members and Classes view 'Wizards' local sub
menus and from the Units view 'classes' local sub menu. In this dialog you either you drag and
drop to rearrange a class interface and method order or use one of the predefined sorting
schemes. The dialog can be also used to clear an interface or implementation custom order.
Note that manually defining a custom order will erase an imported code order.

The Members view has a 'Rearrange mode' (members local menu). In this mode an interface
custom order can be assigned using drag and drop in the members view itself. For method
implementation order you must use the Rearrange dialog. In the in the rearrange mode the
Members view filter settings (visibility, type, category) are ignored to make sure all members
are displayed. Also Members view grouping is implicitly set to "Custom Order" and sorting is
predefined and cannot be changed. As a visual feedback, the background of the members is
changed to a silver color in this mode.

Adjusting the unit template

Whenever you add a new unit to a model, ModelMaker looks for the file DEFUNIT.PAS in the
folder ModelMaker\6.0\BIN. The default unit may also be (re-)defined when adding a new
unit. This text file is used as a template for the newly created unit code. You may edit this file
to your needs. You can use these code generation control tags to mark the insertion position
for the first class ModelMaker will insert in the unit:

MMWIN:START INTERFACE
MMWIN:START IMPLEMENTATION

You might want to adjust the default unit template in order to:

• Customize the uses clauses in the unit interface and implementation.

• Add a company-defined header.

• Control macro expansion.

As an example: here’s a unit template we use for freeware units. In the chapter Macros the
same template extensively using macros is shown.

{
 File : <!UnitName!>
 Version : <!Version!>
 Comment : <!Comment!>
 Date : <!Date!>
 Time : <!Time!>
 Author : <!Author!>
 Compiler : <!Compiler!>

ModelMaker version 6.20

usermanual620.doc May 7th 2002 51

+--+
| DISCLAIMER: |
| THIS SOURCE IS FREEWARE. YOU ARE ALLOWED TO USE IT IN YOUR OWN PROJECTS |
| WITHOUT ANY RESTRICTIONS. YOU ARE NOT ALLOWED TO SELL THE SOURCE CODE. |
| THERE IS NO WARRANTY AT ALL - YOU USE IT ON YOUR OWN RISC. AUTHOR DOES |
| NOT ASSUME ANY RESPONSIBILITY FOR ANY DAMAGE OR ANY LOSS OF TIME OR MONEY |
| DUE THE USE OF ANY PART OF THIS SOURCE CODE. |
+--+
}

unit <!UnitName!>;

interface

uses
 SysUtils, Windows, Messages, Classes, Graphics, Controls,
 Forms, Dialogs;

type
MMWIN:START INTERFACE

procedure Register;

implementation

uses StrUtils, NumUtils;

procedure Register;
begin
end;

MMWIN:START IMPLEMENTATION

initialization
end.

Notice how this template contains (from top to bottom):

• A simple standard header and a free ware disclaimer.

• Some statistics macros, like <!Date!> and <!UnitName!>

• The basic unit structure:
unit..interface..uses..implementation..uses..initialization..end.

• A macro <!UnitName!> to define the unit’s name.

• The procedure Register; definition and implementation for registering components.

• A default uses clause in the unit’s implementation to include some often-used units
StrUtils and NumUtils.

Unit Time Stamp Checking

The ModelMaker code generator by default uses Time Stamp checking to prevent overwriting
source files that may have been changed outside ModelMaker. It checks if the file on disk is
newer than the last time a unit was generated. If this is the case you'll be warned that you are
about to overwrite that modified file.

You can switch on and off time stamp checking in the Environment options|General tab.

There is a limitation on time stamp checking you must be aware of:

ModelMaker version 6.20

usermanual620.doc May 7th 2002 52

1. If you rename a unit in ModelMaker the time stamp is not reset to ’unknown’, so if you
have an existing file on disk which is NEWER than the last time the unit was generated
(with the old name) you will NOT get a warning. The Unit editor dialog warns you for this
(file xxxx already exists, overwrite?), but the in place editor in the Units view does NOT.

The Unit difference View displays the time stamp comparison on activation. The function
"Check Time stamps" refreshes this comparison.

Source Aliases

ModelMaker supports source path aliases in units to avoid hard-coded directories and make
your models machine-independent. An alias is associated with an aliased directory, similar to
database aliases. In the model a unit’s alias is saved rather than the aliased directory. On each
machine aliased paths can be defined differently. This allows you to transport models to other
machines.

Source aliases are a must in team development.

Example:

Suppose on machine A you have a source directory:
C:\DATA\PROJECTS\COMMON

An alias defining this directory could be COMMON.
On machine B, COMMON could de defined as
\\PROJECTDATA\COMMON

You add aliases from the main menu "Options|Source aliases", or from the Units view popup
menu.

To avoid that you need to mimic a large directory structure in aliases, unit names can be
relative to an alias. That way you only need to define a few aliases for root paths.

Here’s an example:
Suppose you have a directory structure which looks like this:

C:\Project1\App_a\source
C:\Project1\App_a\components
C:\Project1\App_a\utils
C:\Project1\App_b\source
C:\Project1\App_b\components
C:\Project1\App_b\utils
C:\AllProjects\source
C:\AllProjects\components
etc.

You could define three aliases
App_a = C:\Project1\App_a

ModelMaker version 6.20

usermanual620.doc May 7th 2002 53

App_b = C:\Project1\App_b
AllProjects = C:\AllProjects

A unit named C:\Project1\App_a\source\Samples.pas could then use

Alias = “App_a” (omit the “”)
Relative unit name = “source\Samples.pas” (omit the “”)

Source code aliases are also used to offset the Import source code dialog's initial directory. If
you define an alias VCL Source for C:\Program files\Borland\Delphi 3.0\Source\Vcl, the
import dialog can be offset to this directory by simply selecting this alias from the drop down
menu.

Source aliases also participate in Version Control integration. See next chapter.

Version Control support and Aliases

By using a plug-in VCS Expert you can add Version Control capabilities to ModelMaker.
Check the ModelMaker Tools web site for ready available third party VCS Experts or create
your own using the MMToolsApi VCS interface.

If a VCS expert is installed, in the units view popup menu and main file menu VCS related
menu items are available to manually check-in/out a model or unit. Also each time a read-only
unit is about to be generated an attempt is made to check the unit out (after your
confirmation). VCS Experts can add more VCS related commands to the popup menu such as
‘Add to project’, ‘History’ etc.

Usually VCS systems usually need a VCS project name to perform an operation. In
ModelMaker Source aliases are used to store the user definable VCS projects.

Each source alias can (but does not need to) store a Version Control project. This string is
passed on to an installed VCS integration expert whenever a VCS file related action is
performed.

If you install a VCS expert in ModelMaker, the ModelMaker IDE integration experts will use
the same expert to integrate VCS in the Delphi IDE.

For details, refer to your VCS system and MM VCS expert provider.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 54

Using ModelMaker to generate Instrumentation code

ModelMaker supports generating Method instrumentation. This feature makes ModelMaker
suited for generating instrumentation code for CodeSite, GpProfile and other tools
instrumenting source code on a method base for profiling, tracing etc.

Method instrumentation generation is controlled with the option ’Instrumented’ in the Method
editor dialog. If this option is checked instrumentation code will be generated for the method.
Instrumentation can be (de-) activated for all units at once with "Project options|Code
generation|Instrumentation". The actual instrumentation code is defined by two macros you
must add manually to the environment or project macro list: “MethodEnterInstrumentation”
and “MethodExitInstrumentation” (omit the “”). These macros are expanded before the first
and after the last section in a method's main body. For example (note the use of the predefined
macros ClassName and MemberName in these macros)

macro MethodEnterInstrumentation=

CodeSite.EnterMethod(’<!ClassName!>.<!MemberName!>’);
try

macro MethodExitInstrumentation=

finally
 CodeSite.ExitMethod(’<!ClassName!>.<!MemberName!>’);
end;

When this is applied to:

procedure TSample.DoSomething;
begin
 ShowMessage(’Doing something’);
end;

This will result in the following code:

procedure TSample.DoSomething;
begin
 CodeSite.EnterMethod(’TSample.DoSomething’);
 try
 ShowMessage(’Doing something’);
 finally
 CodeSite.ExitMethod(’TSample.DoSomething’);
 end;
end;

To avoid creep when re-importing instrumented methods you can use the code remove tags.
Check chapter “START and REMOVE tags, page 59 for details:

MMWIN:>>STARTREMOVE
MMWIN:>>ENDREMOVE

These tags may be part of a comment. Depending on the setting in the Project options|Code
import tab the importer will filter out any code in between a start remove / end remove pair.

The macro MethodEnterInstrumentation using these tags would for example look like:

ModelMaker version 6.20

usermanual620.doc May 7th 2002 55

//MMWIN:>>STARTREMOVE
CodeSite.EnterMethod(’<!ClassName!>.<!MemberName!>’);
try
//MMWIN:>>ENDREMOVE

The Member Manipulator can be used to switch on and off Instrumentation for multiple
methods at once. On the ModelMaker Tools web site you’ll find a third party plug-in
Instrumentation expert. This expert is dedicated to controlling method instrumentation code.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 56

Importing source code

Background

ModelMaker imports Delphi Object Pascal source files. This process is basically the inverse
from generating a source file from classes, members and unit code. The class related code is
converted into Code Model entities such as classes, interfaces, members and method
implementations. All non-class or interface related code is moved into a ModelMaker unit’s

unit code.
This process is called reverse engineering.

It is important to realize that if an imported class is not currently existing in the model,
members and code sections are inserted as ‘User created/owned” and no attempt is made to
extract meta information, such as applied patterns, inherited calls etc. The only exception to
this, are the read and write access members of properties, which are restored and linked to the
property. For example: all code inserted by patterns is read back, but marked as “user” and the
patterns itself is not recreated. The same applies for inherited method calls etc. In general you
loose the meta information.

However, if an imported class already occurs in the model it is ‘refreshed’ and all meta-
information is restored. Even applied design patterns can be traced back.

Therefore importing source code is great for:

unit Samples;

interface

type
 TSample = class
 procedure Action;
 end;

implementation

procedure TSample.Action;
begin
end;

end.

class TSample (TObject)

unit Samples;

interface

type
MMWIN:CLASSINTERFACE TSampl

implementation

MMWIN:CLASSIMPLEMENTATION T

end.

procedure Action;

Code generation
control tag

Unit code

Class Class member

Source code

ModelMaker version 6.20

usermanual620.doc May 7th 2002 57

• Importing (an interface of) a class you want to inherit from or use as a client.
• Importing existing code originally not developed with ModelMaker
• Updating an existing class from source code

However it is advised that once imported, you keep editing your code in ModelMaker. The
only exceptions to this are form and (other resource module’s) source files which by their
nature you (partially) need to edit in Delphi.

Importing a source file

The main toolbar and units view pop-up menu contain buttons and commands to
• Import a source file (in the current model or a new model).
• Refresh import source file.

Additionally you’ll find import functions in the Classes view (refresh class or associated unit)
and the Difference view (refresh unit, class or method).

In the Project options|Code Import tab you’ll find the options to control source code import.
Check the on-line help file for a detailed description on each option. The project options are
used for all (refresh) imports except when you use the Import dialog to interactively import a
file. The import dialog allows temporarily overruling some project import control options.
The import dialog has some other options that by their nature are not in the project options,
typically related to initial first time import. The options in the import dialog are preset (each
time!) to the project options.

The import dialog’s initial directory is pre-set by selecting a source code alias. You’ll find
more on (defining) Source code aliases on page 52.

When importing a source file using the import dialog, you enter a source file name and set
filters and options to control the import. Most options are rather self-explanatory.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 58

If the option “Include Unit code and create unit” is checked, not only the classes will be
imported, but also the non-class related unit code. Check this option if you want a complete
import. If you just need a class’s interface this option can be unchecked.

If the option “Select Classes and Events to import” is checked, you may select which of the
classes or events found in the source file will actually be imported in the model. Useful if
you’re not interested in all classes and events contained by a unit.

If the option “Import Classes as Placeholder” is checked all imported classes will be marked
placeholder. If it is unchecked classes will remain their current state or ‘real’ if not found in
the current model.

There are three pre-set buttons, which set the filters to a “complete”, “interfaces only” “class
interfaces” mode. The default settings (as displayed) are those for a complete import.

The In-source documentation import control settings are explained in detail in chapter
“Importing a source file” page 57.

Presets

Member filter

Visibility filter

In-source
documentation
import control

ModelMaker version 6.20

usermanual620.doc May 7th 2002 59

Importing (adding) versus Refreshing

‘Refresh Import’ and Import as in ‘Add to Model’ act similar - the difference is how existing
units and classes are treated.

Importing with the ‘Add to Model’ function (in the IDE or ModelMaker) will add non-
existing units or classes contained in the added unit. If either unit or class already exists in the
model it will be refreshed.

‘Refresh Import’ issued from the IDE integration expert will only refresh the unit if already
existed in the model and will not add a unit not currently in the model. In ModelMaker you
can only refresh an existing unit.

Avoiding creep - removing code during import

ModelMaker supports removing certain fragments of code during import to avoid creep in a
full generation / re-import cycle.

ModelMaker generated default class separators such as
{
***************************** TSample *****************************
}

and ModelMaker generated default category markers such as
{<<Category>>: Model linking}

are automatically removed.

Additionally ModelMaker will remove the following code:
1. All code marked by a MMWIN:>>STARTREMOVE and MMWIN:>>ENDREMOVE

pair.
2. All comments with the ‘removal signature’ as defined in the Code Import options.
3. Matched (and optionally unmatched) comments according to the documentation style

comment.

For importing “In source documentation” and removing comments with the documentation
signature(s), refer to chapter on “Importing in source Documentation”, page 68.

STARTREMOVE and ENDREMOVE tags

You can use these tags in any code, comment or string to instruct ModelMaker to remove all
code between the tags including the tags themselves:
MMWIN:>>STARTREMOVE
MMWIN:>>ENDREMOVE

The corresponding setting in the Project options|Code import tab will enable/disable filtering
based on these tags.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 60

These tags are commonly used to remove (part of) a macro that was generated by
ModelMaker from the input file. Check the chapter on generating Method Instrumentation
code for an example.

Comments with remove signature

If you want to remove certain comments from the source file you can use comments with the
Removal Signature. This signature is defined in the Project options|Code import tab which
also enables and disables removing comments with this signature.

You will need to use this type of comment remove filter if you
1. Define a custom class separator,
2. Define a custom method separator,
3. Define a custom method section separator
4. Redefine the category expansion macros ’IntfCategory’ or ’ImplCategory’

Assuming {- } to be the removal style comment, a custom class header should look like

{-

*
* <!Classname!>
*

}

Similar, a custom category expansion tag could look like
{- Category: <!Category!> }

Note that Method End Documentation is automatically removed due to the fact that the
importer will remove the method including the line containing the method’s final end;.

Import restrictions and limitations

ModelMaker usually imports in about 99.9 % of all cases without problems. If ModelMaker
generated the source file, the imported code is usually 100 % correct. ModelMaker uses a
combination of syntactical analyses and line based extraction to support importing of code
that is not entirely syntactically correct.

ModelMaker’s import mechanism imposes the following restrictions on source files in order
to be imported correct. ModelMaker’s importer uses the same parser as the ModelMaker Code
Explorer. The ModelMaker Code Explorer that integrates in the Delphi IDE will display a list
of parse errors. That way it acts more or less as tool to check code before importing into
ModelMaker.

Class and Interface interfaces

Restrictions in class and interface declarations.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 61

Any comments, compiler directives and white space in a class’s interface are/is ignored except
in method parameter lists.

Comma separated Field declarations are converted into separate fields:
FA, FB: Integer;

is imported as

FA: Integer;
FB: Integer;

Procedure or method pointers that are not defined as an type are not imported correct. The
work around is to use a type definition.

The following code causes import errors.

TSample = class(TObject)
 FEvent: procedure of object;
end;

Which can be replaced by this code that will import correct:

TMyEvent = procedure of object;

TSample = class(TObject)
 FEvent: TmyEvent;
end;

Method implementation

Restrictions in method declarations.
Any comments, compiler directives and white space in are/is ignored except in parameter
lists.

Local variables immediately following the method declaration will be converted to
ModelMaker method variables. If local variables for example are preceded by a type or
const declaration, they will be added to the method’s local code section, just like all other
local code for that method.

In the following example the local vars. I, J and S will be converted to ModelMaker local
vars., the const declaration and procedure CheckIt will be placed in the method’s local code
section.

procedure TSample.Action;
var
 I, J: Integer;
 S: string;
 const CheckSum = $AAAA; // this will go into local code
 procedure CheckIt;
 begin
 end; // this is the end of the local section
begin
 CheckIt;
end;

ModelMaker version 6.20

usermanual620.doc May 7th 2002 62

In the following example the local vars. I, J and S will be placed in the method’s local code
section together with the const declaration:

procedure TSample.Action;
const CheckSum = $AAAA; // this will go into local code including the vars
var
 I, J: Integer;
 S: string;
 procedure CheckIt;
 begin
 end; // end of local code section
begin
 CheckIt;
end;

During refresh import of a method already existing in the model, the importer will leave the
code sections intact wherever possible. If the importer cannot locate a non-user owned section
of code, it will simply leave the section in the method and give a warning.

Comments and white space

The following table shows how ModelMaker treats comments and compiler directives

Comment or compiler directive in: Import result
Class interface Ignored
Method header Ignored except in

parameter list
Local vars. Ignored
Method local code and body Copied to method
All other code Copied to unit code

Check the ModelMaker generated default class separators such as
{
***************************** TSample *****************************
}

and ModelMaker generated default category markers such as
{<<Category>>: Model linking }

are automatically removed.

If you define a custom class separator, method section separator, or redefine for example the
category expansion macro TODO, you should use the remove style comments to avoid creep
during import. Check paragraph “ Comments with remove signature”, page 60.

Unsupported language constructs

Include files are not read during import, so if you find yourself thinking: “where’s my method
implementation gone?” you probably need to add the included files to the imported unit using
a text editor and re-import the file.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 63

Compiler directives in class interfaces are not supported and are a potential problem source.
Using inheritance may sometimes solve this. Worst case you need to create two units.

Compiler directives around method implementations are not supported. Placing the directives
inside the method can solve this:

{$IFDEF DEMO}
procedure TSample.Action;
begin
end;
{$ELSE}
procedure TSample.Action;
begin
 { actually do something useful }
end;
{$ENDIF}

Won’t be imported correct, but can be replaced by the following code which will be imported
fine:

procedure TSample.Action;
begin
{$IFDEF DEMO}
{$ELSE}
{ actually do something useful }
{$ENDIF}
end;

The importer matches begin..end try..end, case..end pairs etc. to locate methods.
Because conditional defines are not interpreted, using conditional defines you can create code
that will compile correct but will not import correct. In fact The Delphi IDE background
compiler uses a similar mechanism and will not be able to function properly either when
inserting new methods in code completion or creating a new event handler.

This code for example will confuse the importer’s begin end matching. The method will not
be imported correct.

procedure TSample.Action;
{$IFDEF DEMO}
var
 S: string;
begin
 S := ‘Demo’;
 ShowMessage(S);
{$ELSE}
begin
{$ENDIF}
end;

You can replace the previous code by the following code that will import correct and as a side
effect allows the Delphi IDE to stay on track too:

procedure TSample.Action;
{$IFDEF DEMO}
var
 S: string;
{$ENDIF}
begin
{$IFDEF DEMO}

ModelMaker version 6.20

usermanual620.doc May 7th 2002 64

S := ‘Demo’;
 ShowMessage(S);
{$ENDIF}
end;

Pure assembler methods are not supported:

procedure TSample.Fast; assembler;
asm
end;

Expressions in an indexed property’s index specifier are not supported:

property FirstPicture: TBitmap index BM_USER + 0 read GetPicture;
property SecondPicture: TBitmap index BM_USER + 1 read GetPicture;
property ThirdPicture: TBitmap index BM_USER + 2 read GetPicture;

This can be solved like:

property FirstPicture: TBitmap index BM_FIRST read GetPicture;
property SecondPicture: TBitmap index BM_SECOND read GetPicture;
property ThirdPicture: TBitmap index BM_THIRD read GetPicture;

Conversion errors

Any import conversion errors or warnings will be displayed in the Message View. The
messages may be printed, saved etc.

Not reported conversion errors are:
1. Minor changes in property access method parameters lists.
2. Positioning of code generation tags in the unit code.

The best thing to do after importing a complex unit, is to perform a Delphi syntax check on
the re-generated unit. From our experience it shows that if there are any remaining errors, they
will evolve here.

Another option is to make a file based difference in the Difference view between the imported
unit and the original source file. You should make sure that Code generation sorting scheme
matches the scheme used in the original file. You might need to import Custom Code order
and use the same order during generation to maintain code order. Check chapter “Maintaining
Code Order / Custom member order” on page 49.

Note that to build a structured difference the same importer is used that will hide the same
type of errors!

ModelMaker version 6.20

usermanual620.doc May 7th 2002 65

Auto Refresh Import

The Auto Refresh Import feature is only available together with the Delphi 4 and higher. This
function will automatically refresh a unit in ModelMaker if you save the unit in the Delphi
IDE. This improves synchronization of code developed both in ModelMaker and the Delphi
IDE at the same time. However there are some serious warnings.

How it works

If you change a unit in the IDE editor that is also maintained in a ModelMaker model, the
model and source file will be out of sync. Normally you have to ’refresh import’ the unit to
synchronize the model with the changes on disk. The auto-refresh import feature will do this
automatically each time you save a unit in the IDE.

How it is activated and controlled

In the ModelMaker menu in the Delphi 4 (and higher) IDE check the item ’Enable Auto
Refresh’. If this option is set, each time you save a unit (or project) in the IDE, the ’Auto
Refresh command is send to ModelMaker which checks if:
1. The Environment option ’Auto refresh Import’ is checked
2. The unit is in the current model
3. Unit generation is not (user) locked
4. The unit has ’auto code generation’ enabled

If all above conditions are met, ModelMaker will do a refresh import and unlike after a
manual ’refresh import’ leave the unit in ’auto generation enabled’ mode and - this is very
important - regenerate the unit.

Effectively Auto Refresh improves synchronization between ModelMaker and the Delphi
IDE: whenever you change something in ModelMaker, the auto-generation enabled unit will
regenerate the file and reload it in the IDE. Whenever you change and save a file in the IDE,
ModelMaker will resynchronize it in the model.

Warnings

In the normal, non-auto refresh development model you always have one master and slave:
either ModelMaker refreshes the IDE using automatic code generation or you manually
refresh the ModelMaker model with the IDE if you want to resynchronize again. With this
feature there’s no master or slave anymore. This can seriously damage your work as may be
clear from the following example: When refreshing the unit, ModelMaker assumes it’s reading
a ’compilable unit’. If you for example have omitted a single begin or ’end;’ or worse, comment
out something, have unterminated strings etc. class and method import will be in trouble and
not detect your error but simply remove all ’unwanted’ methods. Since ModelMaker detected a
change the unit is auto-generated and immediately after you saved the unit is reloaded with
disastrous results. Experience shows that it’s easy to loose lots of work instantly. Auto Refresh
must be used with great care. Note that if Auto Save is enabled in the IDE, the Compile / Run
command will auto save modified units depending on your IDE environment settings.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 66

If you want more control, rather than just save in the IDE invokes auto refresh, you can use
the ‘Refresh Import’ command from the ModelMaker IDE expert to save a file. This
command will not only generate a manual refresh import command but also automatically
save your unit in the IDE. Therefore you could use this command with shortcut Ctrl+Shift+H
rather than the conventional Ctrl+S to save and refresh. You can add the ModelMaker Refresh
command to the IDE tool bar. Check chapter (Integration in) Delphi IDE page 106.

Editing Form source files

ModelMaker Tools developed the ModelMaker Code Explorer to help editing Form, Data
Module and other resource module source files. Due to the nature of these resource module
files the IDE editor is more suitable for editing them. The ModelMaker Code Explorer will
dock into the IDE editor and bring basic Code Model editing and navigation actions right into
the IDE.

If you do not have the ModelMaker Code Explorer installed, you can edit form (and other
resource module) source files with ModelMaker. This offers many advantages:
1. Use ModelMaker’s high level view and filters to navigate through your form code.
2. Automatically restructure your source files by regenerating them.
3. Improve your form code quality by adding methods and (array) properties with the same

ease as for “normal” non form classes. Especially when you turn your forms into
components, you want them to have nice and clean code to improve maintainability.

4. In general speed up form implementation.

For a smooth cooperation between Delphi and ModelMaker, stick to these rules:

In Delphi,
• Create and rename the form and unit.
• Add, delete and rename components.
• Set component properties.
• Create, rename and delete event handler methods.
Delphi adds all it’s components and event handler methods with the default visibility, so they
are easy recognized in ModelMaker (use the members filter to filter out default visibility).

In ModelMaker,
1. Import your form file in an (empty) ModelMaker model.
2. Add, edit and delete all other members
3. Add additional classes to the unit.

To synchronize between Delphi and ModelMaker,
1. Regenerate the ModelMaker unit whenever you changed your code in ModelMaker. The

auto-generate feature will help you doing this automatically.
2. Refresh the ModelMaker unit whenever you changed your code in Delphi, the integration

experts will help you doing this automatically.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 67

In source documentation

Overview

ModelMaker supports generating and importing "in-source” documentation. That is: the
documentation and One Liner attributes of Code Model entities can be inserted during code
generation and / or read (back) during import. Generation and importing of in-source
documentation is controlled by the Project options tab “Source Doc Generation” and “Source
Doc Import”. The Import source dialog allows temporarily overruling the import settings.

"In-source" documentation must be marked with special (user definable) documentation and
one liner signature tags, more or less like in Java Doc. These signatures must be an Object
Pascal comment symbol followed by one or more letters, Common used signatures are:

Documentation tags:
{{
{:
(**
(*:

One liner tags:
{1
//:
//1

Generation is internally based on macros. To customize the generated format, you can
redefine these macros. To ensure a correct round trip (generation followed by a re-import) the
generation and import settings must match. Normally ModelMaker enforces a correct match
by using the essential import settings for generation. If you redefine the documentation
generation macros, you must ensure correct matching.

Generating in-source documentation

ModelMaker supports generating and importing ‘in-source’ documentation in source files.
Generation is controlled by the Project options on tab ‘Source Doc Generation’ and some
macros (refer to Macros). You do not need to define these macros, as ModelMaker will on the
fly insert the required macros. You can however redefine them either as environment or as
project macro to customize the generated format.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 68

Documentation macros
Macro name Description Example
ModuleDeclDoc Used to expand Module (unit)

documentation. Check Module
related macros

{{ module
<!ModuleDoc!>
}

EventDoc Used to expand Event Type
documentation

{{ event type
<!MemberDoc!>
}

ClassIntDoc Used to expand Class
documentation in the class
declaration

{{ class <!ClassName!>
<!ClassDoc!>
}

ClassImpDoc Used to expand Class
documentation in the class
implementation (emitted just
before the first method
implementation)

{{ class <!ClassName!>
<!ClassDoc!>
}

MemberIntDoc Used to expand member
documentation in the class
interface

{{ <!ClassName!>.<!MemberName!>
<!MemberDoc!>
}

MemberImpDoc Used to expand method
implementation
documentation

{{ <!ClassName!>.<!MemberName!>
<!MemberDoc!>
}

MemberEndMacro used to expand method
termination documentation

{ <!ClassName!>.<!MemberName!>

OneLinerMacro Used to expand one liners in
classes, members, units and
event types

//: Summary: <!OneLiner!>

In the examples it is assumed that {{ is the documentation signature and //: is the One Liner
signature.

As you see in the examples, you can use any of the predefined macros such as <!ClassName!>
inside the documentation macros.

However, ModelMaker is only able to import certain styles of source documentation. This is
important if you want to ‘Refresh Import’ a unit.

Importing in-source documentation

ModelMaker supports importing "in-source" documentation. Importing source documentation
is controlled by settings in the Project options tab “Source Doc Import” and the Import source
dialog. As explained: "In-source" documentation and One Liners must be marked with special
(user definable) documentation signature tags. More or less like in Java Doc.

An example:

ModelMaker version 6.20

usermanual620.doc May 7th 2002 69

//1 SomeMethod does something useful.
{{
procedure TSample.SomeMethod
This method does something useful
It would take pages to tell what.
}
procedure TSample.SomeMethod;
begin
end;

In the above example the OneLiner signature is defined as //1 and the documentation signature
is defined as {{. The whole comment until the matching comment end symbol is treated as
documentation for the first entity defined following or preceding it - depending on the
documentation import options. In the example above the comment will be assigned to
TSample.SomeMethod. You cannot use multiple line // style comments for documentation.

In the Source documentation options there are three documentation import modes:
1. Import: enables source documentation import and replaces documentation in the model

with that in the source file,
2. Clean up: leaves the documentation in the model unaffected, but removes documentation

from the unit-code
3. Inactive: which does nothing and leaves the documentation in the unit code.

The option ‘Remove unmatched documentation determines if only matched documentation
should be removed or just any comment with the documentation signatures.

When assigning the comment to the Documentation attribute, the first and last #n lines are
ignored. Defining any other value than 1 (one) is only useful if you redefine the
documentation generation macros. The standard macros assume a value of 1.

You could use the fact that the first n lines (user definable) are ignored and place there the
additional macros you'd like to generate. For example:

{{
<!ClassName!>.<!MemberName!>
(<!Visibility!>)
<!MemberDoc!>
}

This macro would require the first three (3) lines and the last one (1) to be skipped. Using this
technique the member documentation won't grow each time you (refresh) import a unit.
Another option is to use the Import "clean-up" import mode after in-source documentation has
been imported once.

Alternatively you could leave the number of lines to be skipped at 1, and use additional
removal style comments to customize your in-source documentation format.

For example:

macro ClassIntDoc =
{- ************
<!ClassName!>

ModelMaker version 6.20

usermanual620.doc May 7th 2002 70

**************}
{{
<!ClassDoc!>
}

Note the removal style comment in the first part of this macro. Check chapter “Comments
with Remove signature”, page 60.

Related to this is the use of a custom ClassSeparator or MethodSeparator to emit more than
just the documentation preceeding the class or a method implementation. Refer to Code
Generation options. Using custom separators has the advantage of not needing the redefine the
documentation macros and that way ensuring that all expanded documentation looks similar.

For example, defining a MethodSeparator macro like this:
{- <!ClassName!>.<!MemberName!>
 (<!Visibility!>) }

Combined with enabling the method implementation in source documentation (without
redefining the related macro), this behaves as if the entire macro were:

{- <!ClassName!>.<!MemberName!>
 (<!Visibility!>) }
{{
<!MemberDoc!>
}

Which would be emitted for example like this:
{- TSample.SomeMethod
 (public) }
{{
This is the documentation for the method
}

Note the use of removal style comments for the MethodSeparator that avoids creep when re-
importing the generated code.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 71

Code templates

ModelMaker supports the use of code templates. They are like user definable patterns and
consist of a (usually consistent) set of members that is put in a code template source file. This
template can then be applied whenever needed again. The template file acts like a structured
persistent copy / paste buffer. The powerful aspect is that templates can be parameterized
using user definable macros. ModelMaker will extract the macros, let you edit them and
expand the macros before importing the template file. The template files can be edited in
Delphi, but should not be imported in ModelMaker directly.

Creating a Code template

To create a code template, in the Members view select the members you want the template to
contain use the popup menu 'Create code template’. You'll be prompted for a file name.
ModelMaker then generates the selected members as part of a stand-in class named
TCodeTemplate. Here's an example of a simple template file containing a simple Items
property with a standard TList implementation

unit SimpleItems;

 TCodeTemplate = class (TObject)
 private
 FItems: TList;
 protected
 function GetItems(Index: Integer): TObject;
 public
 property Items[Index: Integer]: TObject read GetItems;
 end;

function TCodeTemplate.GetItems(Index: Integer): TObject;
begin
 Result := TObject(FItems[Index]);
end;

Applying a Code template

To apply a previously created template, select the popup menu 'Apply template’ from the
Members view. You'll be prompted for a template file name. ModelMaker will import the
members contained by the first class in the template unit and add them to the currently
selected class. Other classes and all other code in the unit are/is ignored. There's one
exception: event type definitions can also be added to a code template, they will automatically
be added to the event library when applying the template.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 72

Registering a Code template

Code Templates can be registered on the patterns palette (patterns view) and Code Template
palette (members view popup menu). These palettes that look like the Delphi component
palette make it even easier to apply a Code Template. To (un)register a template use the popup
menu functions in the palettes or select the corresponding option when you create a Code
Template. Code Templates are shared with the ModelMaker Code Explorer.

Parameterize a Code template using macros

You can parameterize a code template by adding macros to the template unit. When applying
a template, ModelMaker will first extract the macro parameters, let you edit them, expand the
code template and finally apply the template. This allows you to create more generic
templates. A macro definition should be formatted as

//DEFINEMACRO:macroname=macro description

The standard ModelMaker macro rules apply. For example: macroname must be an identifier.
Parameterizing the above example could for example be done like this.

unit SimpleItems;
//DEFINEMACRO:Items=name of array property
//DEFINEMACRO:TObject=type of array property
//DEFINEMACRO:ItemCount=Method returning # items
//DEFINEMACRO:FItems=TList Field storing items

 TCodeTemplate = class (TObject)
 private
 <!FItems!>: TList;
 protected
 function Get<!Items!>(Index: Integer): <!TObject!>;
 public
 property <!Items!>[Index: Integer]: <!TObject!> read Get<!Items!>;
 end;

function TCodeTemplate.Get<!Items!>(Index: Integer): <!TObject!>;
begin
 Result := <!TObject!>(<!FItems!>[Index]);
end;

ModelMaker version 6.20

usermanual620.doc May 7th 2002 73

If you apply this template, ModelMaker will show a dialog with the list of parameters you
defined: Items, TObject, ItemCount and FItems allowing you to change them for example in
Members, TMember, MemberCount and FMembers. This way the template can be added
multiple times in different contexts. ItemCount is not used in this example, but in the sample
code template that is shipped with ModelMaker method ItemCount is part of the template.

ModelMaker predefines one macro: “ClassName” contains the name of the class the macro is
applied to. You can redefine ClassName when parameterizing a template. Use ClassName for
example to create a singleton implementation macro:

function TCodeTemplate.Instance: <!ClassName!>;
begin
 // return the single instance.
end;

When applied to a class named TMySample this will expand to:

function TMySample.Instance: TMySample;
begin
 // return the single instance.
end;

ModelMaker version 6.20

usermanual620.doc May 7th 2002 74

Macros

Overview

A macro in ModelMaker is an identifier placed between <! and !> tags. They may also include
an optional parameter list. When the macro is expanded, the macro identifier and tags are
substituted by the text associated to the macro. For example macro <!UnitName!> will (in
unit Samples) be expanded to the actual unit’s name ‘Samples’.

Macros are used in
• Code Generation.
• Customizing certain aspects of code generation such as a custom class separator, inserting

categories etc.
• Generating in-source documentation.
• Parameter zing Code Templates
• ModelMaker Code editor.

During code generation ModelMaker predefines some model statistics macros at run time.
Such as <!UnitName!>, <!Date!> etc.

You define your own macros in the Macros view. Macros are defined per desktop
(environment) and per project. If a macro is both in the project and the environment macros,
the project macro overrules (redefines) the environment macro.

For Parameterizing Code Templates using Macros, refer to chapter Parameterize a template
using macros , page 72. To expand a Code Template the predefined macros and project and
environment macros are not used.

Macros in Code generation

When generating a source file from a ModelMaker unit (refer to chapter Code Generation
page 45), ModelMaker will expand macros in all text that is send to the output file. Therefore
macros can be placed in any code: in unit code, in a section of a method’s implementation or
even in a local var definition. Macro expansion is switched on and of with the generation
control tags MMWIN:START EXPAND and MMWIN:END EXPAND By default the expansion is
switched ON. Check chapter “Macro expansion control tags”, page 47 for an example.

When expanding a macro, first the list with predefined macros is checked, then the Project
macros and finally the environment macros. If an identifier is not found, the macro text is

ModelMaker version 6.20

usermanual620.doc May 7th 2002 75

either just removed or generation is aborted depending on the setting of
‘Ignore undefined macros’ in the Project options Code Generation tab.

Predefined macros

This table shows the macros ModelMaker predefines when generating a source code file.
Some macros may be redefined - especially the documentation expanders, others such as Date
and ClassName are fixed.

Macro Name Allows
override

Description Example

Generic predefined macros

Date No Generation date, for example:
19-02-2003

Time No Generation time, for example:
12:34:56

LineNr The 1-based line number in the
resulting source file at which the
macro is defined.

Documentation expanders

ModuleDeclDoc Yes Used to expand Module (unit)
documentation. Check Module
related macros

{{
<!ModuleDoc!>
}

EventDoc Yes Used to expand Event Type
documentation

{{
<!MemberDoc!>
}

ClassIntDoc Yes Used to expand Class
documentation in the class
declaration

{{
<!ClassDoc!>
}

ClassImpDoc Yes Used to expand Class
documentation in the class
implementation (emitted just
before the first method
implementation)

{{
<!ClassDoc!>
}

MemberIntDoc Yes Used to expand member
documentation in the class
interface

{{
<!MemberDoc!>
}

MemberImpDoc Yes Used to expand method
implementation documentation

{{
<!MemberDoc!>
}

Customization Macros

ClassSeparator Yes Custom Class separator, Only
active if corresponding option is
activated in Project Code

{-********************
** Class: <!ClassName!>
** Category: <!Category!>
**********************}

ModelMaker version 6.20

usermanual620.doc May 7th 2002 76

Generation options. assuming {- is the comment
remove style

MethodSeparator Yes Custom Method implementation
separator. Only active if
corresponding option is activated
in Project Code Generation
options.

{- <!MemberName!> -}

assuming {- is the comment
remove style

SectionSeparator Yes Custom Method section
separator. Only active if
corresponding option is activated
in Project Code Generation
options.

{------- section --------}

assuming {- is the comment
remove style

IntfCategory
ImplCategory

Yes Wrappers for Category emission
in class or member interface and
implementation.

{- Category: <!Category!>}

OneLinerMacro Yes Used to expand one liners (class,
member, unit event type)

//: Summary: <!OneLiner!>}

MethodEndMacro Yes Used to expand method end
documentation. Only active if
corresponding option is set in
Project Source documentation
Generation options

{<!ClassName!>.<!MethodName!
>}

Entity specific Macros

OneLiner No All entities: for Modules only
during Module documentation
generation.

OneLiner
Category

No All entities: for Modules only
during Module documentation
generation.

ModuleDoc
ModuleName
ModulePath
Alias
UnitName
UnitPath

No Module specific macros (units).
Always available (not only in
module documentation). The
UnitXYZ macros exist for
backward compatibility. Use the
ModuleXYZ macros in new
projects

ClassDoc
ClassName
TrimmedClassName
Ancestor

No Class specific macros. Valid in
class and members of that class.
Valid in unit code after the first
class has been generated.
TrimmedClassName contains the
class name with the first
character (’T’ / ’t’) removed.

In unit code use this to insert
auto updated global variables or
class pointer types:

var <!TrimmedClassName!>:
<!ClassName!>;
type <!ClassName!>Class =
class of <!ClassName!>;

MemberDoc
MemberName
Visibility
DataType

No Member specific macros. Valid
during generation of declaration,
documentation and method

ModelMaker version 6.20

usermanual620.doc May 7th 2002 77

implementation code.
Parameters
CallParams
MethodKind

No Method specific macros. Valid
during generation of declaration,
documentation and method
implementation code.

 Event Types use the same
macros as methods. Except:
Category and Visibility which
are undefined

The Documentation Expander macros are used to generate in-source documentation. To
customize the generated format, you must redefine these macros, either in the project or
environment macros. Refer to chapter “Generating in source documentation”, page 67.

The Customization macros can be (re)defined to customize the format of the related aspect.
ClassSeparator, MethodSeparator and SectionSeparator are only active if the corresponding
options are checked in the project Code Generation options. Refer to chapter “Code
Generation Options”, page 49.

Using Macros in code

Some rules that apply to using macros:
• An entire macro including start and end tags must reside on a single line.
• Macro identifiers can contain characters ['0'..'9', 'a'..'z', 'A'..'Z', '_']. This is similar to

Object Pascal identifiers, although macro names can start with a number.
• White space surrounding the macro identifier is ignored.
• A start tag not followed by a valid identifier is not considered to be a macro
• If the macro identifier is not followed by either the end tag or the parameter list, the

macro is not considered to be a macro.

Rather than presenting the macro syntax diagram, an example will demonstrate the use and
definition of macros.

Assume these (user) macros to be defined, in either the project macro list or in the
environment macro list.

Name: Author
Parameters:
Text:
S.M.A.R.T. Programmer

Name: Assert
Parameters: Cond, Msg
Text:
{$IFOPT D+}
if not (<!Cond!>) then
 raise Exception.Create(’Assertion error in line <!LineNr!> of unit <!UnitName!>’ +

ModelMaker version 6.20

usermanual620.doc May 7th 2002 78

 #13 + Msg);
{$ENDIF}

This is how you could use these macros:

procedure SomeAction(Index: Integer; C: Char);
begin
 <!Assert(Index >= 0, ‘Index out of range’)!>
 <!Assert(C in [‘a’, ‘b’], ‘Char out of range’)!>
 <!Assert(ValidPair(Index, C), ‘Additional checks failed’)!>
 ShowMessage(‘<!Author!> created this code’);
end;

Assuming the procedure was placed on line 100 in unit Demos, this text would expand to:

procedure SomeAction(Index: Integer; C: Char);
begin
 {$IFOPT D+}
 if not (Index >= 0) then
 raise Exception.Create(‘Assertion error in line 102 of unit Demos’ +
 #13 + ‘Index out of range’);
 {$ENDIF}
 {$IFOPT D+}
 if not (C in [‘a’, ‘b’]) then
 raise Exception.Create(‘Assertion error in line 107 of unit Demos’ +
 #13 + ‘Char out of range’);
 {$ENDIF}
 {$IFOPT D+}
 if not (ValidPair(Index, C)) then
 raise Exception.Create(‘Assertion error in line 112 of unit Demos’ +
 #13 + ‘Additional checks failed’);
 {$ENDIF}
 ShowMessage(‘S.M.A.R.T. Programmer created this code’);
end;

The basic rules that apply to the use of macros are:

• When using macros in text, the complete macro including its parameter list must reside on
a single line. So this won’t work:

 <!Assert((A > B) and (B > C),
 ‘This is bad input’)!>

• Arguments in the parameter list are comma delimited, such as in the use of Assert.

• Arguments can contain even pairs of () , [] and ‘’ characters, such as in sets, arrays and
string literals.

• If no parameters are defined, as in <!Author!>, you omit the brackets when using the
macro.

• Macros can use other macros in their macro text. In fact even parameters can be macros.
Nesting is allowed up to 15 levels.

• Circular macro definitions are illegal.

• Macros expand to plain text. See for example the use of the predefined LineNr and
UnitName macros in the Assert macro’s text. The expanded macro LineNr is not an
Integer, and the expanded macro UnitName is not a string.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 79

Using macros in the code editors

An entirely different use of macros is to expand a macro in the code editor. To do this, press
Ctrl+Space after typing the macro name - or Shift+Space, depending on your Environment
Options|Editors settings. This is convenient if you create macros like: tryf that could expand
to:

try
 >< // >< in macro text positions cursor after expansion.
finally
 .Free;
end;

Using macros in your default unit template

To demonstrate the use macros, here’s the effect of using macros on the default unit which
was described in “Adjusting the unit template” page 50.

{
<!UnitHeader!>

<!FreeWareDisclaimer!>
}

unit <!UnitName!>;

interface

// rest of the unit template is unchanged
end.

Notice how this template differs from the previous template:

• The company header is now placed in a macro UnitHeader. This saves a lot of redundant
text.

• The macro UnitHeader contains other macros like unit name, model name, etc.

• The disclaimer is now placed in the macro FreeWareDisclaimer.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 80

Diagrams

Diagrams, Diagram List view

ModelMaker supports a set of diagram types as defined by the UML. Currently the UML v1.3
style is implemented. A model can contain any number of diagrams of any type. The Diagram
list view (Main menu View or F5) contains a list of all diagrams in the model. Diagrams
contain symbols and associations that can be, but do not need to be linked to entities in the
code model.

The Diagrams list View is used to create, rename and delete diagrams. Select a diagram in the
Diagrams list view to open it in the diagram editor.

Diagrams are named. Names do not need to be unique.

Hierarchy
Diagrams can be organized hierarchically in the Diagrams view. This organization is pure
visual and has no further meaning in the model. Any diagram can serve as a parent for any
other diagram. To rearrange parent child relations, make sure the list’s “Order by” is set to
Hierarchy (Diagram list Popup menu). Then use drag and drop to rearrange diagrams. If the
Ctrl key is pressed while dropping, the hierarchy is edited; else the order within the current
parent is changed.

Styles
Each diagram has a visual style and a symbol style that define the default styles for the symbol
inside that diagram. Editing these styles (diagram editor popup menu Diagram attributes),
affects the appearance of all symbols in that diagram. Refer to chapter “Visual styles” for
more information.

Default properties
Whenever a new diagram is created (except a Cloned diagram), the format (size) and
orientation (portrait or landscape) are set to the defaults as defined in the project options.

Symbols and visual containment

Symbols can visually contain other symbols. For example package symbols can contain class
symbols or other package symbols; and Nodes in a deployment diagram can contain
Component symbols. Visual containment implicates visual ownership only. Visual
containment is not linked to the code model. Inserting a class symbol into a package that is
linked to a unit will not actually move that class to that unit. It is just visualized as being part
of that unit.

After a symbol is created, visual containment is fixed and cannot be changed in the diagram
editor. The only way to change a symbol’s parent is to cut the symbol and paste it on the new
parent. Take care: connected associations are only copied if both ends of the association are
copied.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 81

Symbol names and other visual adornments
Most symbols have a symbol name text adornment. Depending on the visual style options, the
name will display a hotlink status icon, a navigation icon and the hyperlink status. Check
chapters Hyperlinks and Hotlinks. The stereotype (category) of a symbol is also displayed in
the name adornment.

Other visual adornments are depending on the type of symbol. For example: a state region for
a concurrent state contains a state region divider and icons, a sequence diagram role symbol
contains a lifeline etc.

Associations

Basics
Associations are used to model relations between symbols. Some associations such as
“documentation link” and “constraint” can also be connected to other associations. An
association that is not connected to both ends is invalid and will automatically be removed
from the diagram.

All associations have a direction: they lead from a source symbol to a target symbol. Usually a
navigation arrow is displayed is appropriate. These arrows can be suppressed in the visual
style on project, diagram or association level.

Usually the visual path of an association is formed by the two association end points. Shape
nodes can be inserted to create more complex paths.

Associations are created by clicking the mouse on the source symbol and while keeping the
mouse down, drag to the target symbol where the mouse is released. Once created,
associations can be connected to different symbols by moving one of the endpoints to the new
source or target symbol.

Anchors
Associations are connected with an anchor point to symbols. Usually the anchor is connected
to the center of a symbol. You can however drag-move the connection anchor point within the
bounds of the connected symbol. This will change the intersection point of symbol and
association. The diagram editor’s popup menu has a function ‘Reset Anchors” which will
reset both anchors to the symbol’s center.

Shape Nodes
Shape nodes can be inserted to change the visual path of an association. Shape nodes allow
bending associations visually. The association anchor points (connection points on the
connected symbols) and the association’s shape nodes make up the actual visual path of the
association. The picture below shows an generalization association from TIntLabel to TLabel
with one shape node.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 82

To insert a shape node into an association, press the Ctrl-key and drag on a line segment of an
association. After the mouse is released, a new node is inserted. Alternatively, use Insert
Shape Node from the diagram editor “Association” popup sub menu. This command is
available if you invoke the popup menu on an association.

Shape nodes can be moved by selecting the association and then drag them with the mouse.

A shape node can be deleted by aligning it with the two surrounding nodes and is basically the
reverse of creating a new shape node. Alternatively, use Delete Shape Node from the diagram
editor “Association” popup sub menu. This command is available if you invoke the popup
menu on a shape node. The command ‘Clear shape nodes” in the same popup menu will clear
all shape nodes in all selected associations.

Recurrent associations
Normally associations connect two different symbols. If both ends of an association are
connected to the same symbol, the association is recurrent. Most associations can be made
recurrent. Some recurrent associations will display a rounded curve rather than a square path.
The rounded curve is a bezier that is controlled by two shape nodes. Inserting another shape
node will turn the bezier curve into normal straight lines.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 83

To create a new recurrent association, simply make the target symbol the same as the source
symbol. Two shape nodes will automatically be inserted that allow control of the visual path.

An existing non-recurrent association can be made recurrent by moving on of the endpoints to
the same symbol as the other endpoint. Again, two shape nodes will be inserted automatically.

To convert a recurrent association into a non-recurrent association, move either source or
target endpoint to another symbol. The shape nodes will be removed.

Association Name, Qualifiers, Roles and other adornments
Most associations can be named and have an association name adornment. If the name is
currently not visible, select the association and press F2 to invoke the in place editor.
Depending on the visual style options, the association name will display a hotlink status icon,
a navigation icon and the hyperlink status. Check chapters Hyperlinks and Hotlinks. The
stereotype (category) of the association is also displayed in the name text adornment.

Other adornments include

1. Qualifiers in qualified association such as class associations. To reduce visual space,
the qualifier’s type can automatically be suppressed. This is controlled with the visual
style options.

2. Role name, both source and target endpoint can be named in for example class
associations and object links.

3. Multiplicity (cardinality), both source and target endpoint can have a multiplicity in for
example class associations and actor communications.

4. Conditions, usually only in the source endpoint of sequence diagram messages and
state transitions.

These adornments are all texts and can be moved freely in the diagram. The word break
property of text adornments is controlled with the Word break functions on the “Align and
Size” palette.

Visual styles

All symbols, associations and diagrams have a visual style. It is this visual style that defines
how a symbol appears. A visual style contains font settings, a color palette and some options
that control display of icons. The symbol styles, that are discussed in the next chapter, control
what is displayed; the visual styles control how a symbol is displayed.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 84

Style hierarchy

All visual styles are linked in a lookup hierarchy. A style normally looks up an attribute in the
parent style but can also override “parent” attributes. By default symbol and association styles
are linked to the diagram visual style and have all properties set to “lookup from parent”; that
is override or change nothing. As a result, all symbols will appear as defined by the diagram
visual style. On their turn, all diagram visual styles are linked to the project visual style and
also have all properties set to “lookup from parent”.

This hierarchical structure allows easy adjusting of visual appearance on any level. To change
the appearance of an entire project: change the project style. You can even save the project
settings as default, and new projects will have the same project style. Change the diagram
style to modify the appearance of all symbols a single diagram. To change the appearance of a
single symbol, edit the symbol’s style.

To make reuse of visual styles easy, the visual style manager allows creation of “Named
styles”. Named styles can be used to define a specific appearance that can be reused. A named
style is applied making it the parent of a diagram or symbol style. Named styles can have
other named styles or the project visual style as their parent. The diagram editor tool bar
contains a parent style combo which is used for this.

Visual style properties

A visual style consists of a set of properties. Not all symbols / associations use all properties.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 85

1. A main font name and size. The main font is used for symbol and association names.
The font’s style, bold, italic and underline, cannot be defined because that is usually
has a syntactical meaning in the symbol as defined in the UML specifications:
classifier names are bold, instances named are underlined etc.

2. An adornment or text font. Used for all other texts. For example the members in a
class symbols and the roles in an association.

3. A color palette defining the colors for basic drawing entities such as main font, symbol
compartment, symbol pen, symbol tab, association line etc. Which entries on this
palette are used is dependent on the type of symbol.

4. Options that control display of some visual elements, such as: navigation arrows in
associations, hotlink icons, navigation (hyperlink) icons etc.

Most symbols properties dialogs and the diagram properties dialog contain a ‘visual style’ tab
that allows editing a style. Refer to next paragraph.

Controlling & assigning styles

Most symbols properties dialogs and the diagram properties dialog contain a ‘visual style’ tab
that allows editing the symbol’s visual style. In this tab you change and or edit the parent style
and the style’s attributes.

To entirely revert to the parent style, erasing all overridden / redefined attributes, click the
‘Revert’ button.

The diagram editor’s tool bar contains some visual style specific tools.

The “parent style” combo displays the parent style for the selected symbols and associations.
It is blank if selected symbols have different parents. It allows assigning a new parent for the
selected symbols.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 86

The “Revert to parent style” tool will reset the visual styles for all selected symbols and
associations. Useful to erase any local redefined style attributes.

The Apply color tool will let you select a color and apply it to the selected symbols and
associations. The color is applied as the “main” feature color. Usually this is the symbol color
palette entry, but for tabbed symbols like class symbols and package symbols, the symbol tab
color is changed.

The Diagram editor contains a ‘Visual style’ sub popup menu that contains some additional
visual style related functions.

Most striking functions in this popup menu are:

1. Copy / Paste a visual style. This is useful in case you have redefined the style of a
symbol and want to apply the same visual style to a selection of other symbols. Note
that similar functions exist for the symbol style that controls the display of members
etc.

2. Show the Style Manager and it’s named styles, which is described in the next
paragraph.

3. Toggle (and Edit) “Printing Style”. The printing style is described in the next
paragraphs.

Style Manager

The visual Style Manager is used to create and maintain named visual styles. Named styles
can be assigned as parent style for symbols and diagrams. They allow creating a predefined set
of appearances that can be applied by simply assigning the style.

For example, you could create a style named “System components” which specifies a specific
blue palette to paint symbols. Another style could be named “GUI components” and define a
yellow palette to paint symbols.

In class diagrams, you can then easily change the visual appearance of a class symbol by
assigning “System components” as parent style for the class symbol using the diagram editor’s
tool bar parent combo.

Named Visual styles can be imported or exported with the Style Manager. This allows
synchronizing named styles in projects.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 87

Printing Style

ModelMaker allows suppressing a specific set of graphical features when printing diagrams.
These include: printing in black and white (suppressing colors), no navigation icons, no
hotlink icons etc. While these features can help while designing, they may be unwanted in
printed output. The following picture shows the same diagram in normal and printing style.

The printing style is defined in the diagram environment options. It is automatically
superimposed on all other styles when printing, and can also be manually activated in the
diagram editor. The diagram editor popup menu “visual style” menu contains an item that
toggles the “Use Printing style” state. If the printing style is active in the diagram editor, it
will also be effective when creating visual exports as image file or to the clipboard.

Symbol (contents) style

Just like visual styles hierarchically control the visual appearance of diagrams and symbols,
symbol styles control the contents of displayed symbols. For example: which members are
displayed in a class symbol and in which format is controlled by the class symbol “symbol
style”. The symbol styles control what is displayed; the visual styles control how it is
displayed. The symbol styles are only applicable for a specific set of symbols such as class,
interface and (unit) package symbols. In classes the symbol style controls which members are
displayed and how they are displayed. In unit packages they control whether contained classes
are automatically displayed.

Style hierarchy

Just like visual styles, all symbol styles are linked in a lookup hierarchy and can override
parent style attributes. Symbol styles are linked to the diagram symbol style and have all
properties set to “lookup from parent” that is: override or change nothing. As a result, all
symbols will appear as defined by the diagram symbol style. On their turn, all diagram symbol
styles are linked to the project symbol style and also have all properties set to “lookup from
parent”.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 88

This hierarchical structure allows easy adjusting of what is displayed within symbols. To
change the style of an entire project: change the project style. You can even save the project
settings as default, and new projects will have the same project style. Change the diagram
style to modify all symbols a single diagram. To change the contents of a single symbol, edit
the symbol’s style.

Unlike the visual style, the symbol style cannot be linked to named styles.

Controlling & assigning styles

The diagram properties dialog contains a ‘symbol style’ tab that allows editing the symbol
style. The project options “symbol style” tab is similar. In these tabs you control how class
and interface symbols display members and unit packages display contained

ModelMaker version 6.20

usermanual620.doc May 7th 2002 89

classes.

The Diagram editor contains a ‘Symbol style’ sub popup menu that contains some symbol
style related functions.

Most striking functions in this popup menu are Copy / Paste a symbol style. This is useful in
case you have redefined the style of a for example a class symbol and want to apply the same
visual style to a selection of other class symbols.

Class & Interface symbols

The symbol style in class and interface symbols is edited on the “member style” tab of the
symbol’s dialog. These are basically the same tabs as the diagram symbol style tab, except that
fixed or non-appropriate elements have been removed.

Package symbols (units)

The symbol style in a package symbol is incorporated in the main symbol tab. Here you
control if contained classes and events are displayed. This feature is only available for units
and classes that are (imported) in the model.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 90

Size and Alignment

The Drawing Grid

The diagram editor’s drawing grid is defined in the project options diagram style tab. It helps
aligning symbols. All symbols are automatically snapped to the drawing grid. And for most
symbols, the extent (bounds) is automatically adjusted to fit on the grid too. The MindMap
node symbol allows enabling/disabling this “Bounds on Grid”.

If you change the grid size, all symbols will most likely resize too. Because the grid it affects
all diagrams and symbols, it is defined and saved per project.

Align & Size Palette

The Alignment palette, which is available from the diagram editor tool bar, contains a set of
functions to control alignment, auto sizing, text alignment and word break properties. These
functions are similar to those in other applications such as Delphi, and are not explained in
detail.

Hyperlinks, navigation

Virtually all symbols can contain hyperlinks. Hyperlinks can point to other diagrams, code
model entities (class, member, event, unit) or to external documents. Hyperlinks are created
and maintained in the “hyperlinks” tab of a symbol’s dialog. Although there can be many
hyperlinks, only one is the default navigation link. This is the first link that supports
navigation. The default navigation link is underlined in the hyperlinks list. Only HotLinks to
code model entities usually have navigation disabled. Check chapter HotLinks to Code Model.

Most symbols will show a navigation icon next to their name if a navigation hyperlink is
available. This is shown in the picture below. These icons can be suppressed by the visual
style or the printing style. Also, if a symbol has a default navigation link, the symbol’s name

ModelMaker version 6.20

usermanual620.doc May 7th 2002 91

will appear underlined and in the hyperlink color as defined in the visual style’s palette. The
picture below shows this. The Hotlink icon is explained in Paragraph “Hotlinks to the code
model”.

If the navigation icon is clicked, ModelMaker will follow the link and navigate to the object.
If this is another diagram, the current diagram is saved and the referenced diagram is opened
in the diagram editor.

If the link refers to a code model entity, ModelMaker will select the entity (class, member)
and make the classes and members views visible. If the entity is a method, the method editor
will also be made visible.

If the link refers to an external document, ModelMaker will perform a default “open”
command on the filename or URL.

Clicking the hotlink icon (left of the symbol name) will edit the hot linked entity rather than
the symbol.

If a symbol contains more than one hyperlink, you can navigate to the non-default hyperlinks
by using the diagram editor’s popup menu Navigate function. This contains a dynamic
submenu with all hyperlinks available in the focused symbol.

External documents

External documents are defined with the same alias / relative name mechanism as used for
source files. Check chapter ‘source aliases’ in this manual for details. The use of aliases
avoids the use of hard coded, machine dependent paths.

The standard shell “open” command is performed to navigate to an external document. This
accepts all kinds of external documents such as executables or files that are associated with an
application. For example “c:\temp\manual.doc” will be run MS word and open the document.

URLs to web pages or web sites are also valid. For example:
Alias=””
Relative filename = “http://www.modelmakertools.com”
will open a web browser and navigate to the ModelMaker Tools site. This can be used to
navigate to html documentation etc.

To refer to another ModelMaker model and start another ModelMaker instance, associate the
ModelMaker project bundle extension *.mpb with the ModelMaker executable in the
Windows shell.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 92

Coupling Symbols to the Code Model

Most symbols and associations are linked or can be linked to entities in the code model. This
is either hard coded or can be done manually by creating a HotLink. A hotlinked symbol will
share name, documentation, one liner, “abstract” state and stereotype (category) with the
linked entity. Modifying one of these properties in the symbol reflected to the linked entity
and vice versa.

HotLinks

HotLinks are used to link a symbol or association to another entity, usually a code model
entity like a class or a method. A hotlink is basically a navigation hyperlink that is (internally)
marked as “hot”. Most symbol dialogs contain a set of buttons next to the name that allow
creating and editing the hotlink. Here is an example from the Action State editor dialog.

Normally, action states are not coupled to any other entities. If you for example wanted to link
an action state symbol to the TIntLabel.GetNumValue method, click the “Create HotLink”
button and select the entity to link to. To break the hot link, click the Break hot link button.
The icon at the bottom left of the dialog displays the hot link status. Not all properties need to
be linked. To edit the linked properties, click “Edit linked properties”. The linked properties
dialog lets you select which properties are linked.

If a symbol is hot linked, a hot link icon is displayed at the left of the symbol’s name. The
following picture shows this. Hot link icons can be suppressed in the visual style and/or in the
printing style.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 93

If you click at the hot link icon in the symbol’s name, the linked entity will be edited rather
than the symbol.

If a symbol is hot linked to a code model entity, that entity will be selected if you click on the
symbol or any of its (text) adornments. Unlike navigation through hyperlinks, this will not
ensure that the associated view is made visible.

Delete HotLinked entity
The Diagram Editor toolbar contains two delete tools: one to delete the symbol from the
diagram, one to delete the symbol and the hotlinked entity. The last one will not only delete
the symbol from the diagram but also remove the linked entity. You will be asked for
confirmation before the linked entity is deleted.

Specialized symbols and associations

Some symbols are linked to the code model by design. These symbols do not allow any other
linking than the built in one.

Class and Interface symbols
Class and Interface symbols are implicitly linked to a class in the code model. If the class is
deleted from the code model, all class symbols linked to that class are removed from all
diagrams.

Property and Field associations
Similar to class symbols, property and field associations are hard linked to properties and
fields in a class. The data type of these members must match the association target class.

Shared Class Association
Shared class associations are associations between class symbols that allow greater flexibility
than field and property associations. They do not need to be linked to existing code model
members or classes. Because they are shared, they can be auto visualized if both source and
target classes are being visualized on a diagram.

Generalization relation
Generalization (inheritance) relations can be created between all symbols that are
generalizable. In most cases they are not coupled the code model. Only if they connect two
class or interface symbols, they are implicitly linked to the code model. Therefore, changing a
generalization between two use cases does not affect the code model. But creating or changing
a generalization between classes will be reflected in the code model by changing the class
hierarchy.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 94

Realization relation
Realization relations (such as interface support) can be created between most symbols that
allow realization. In most cases they are not coupled the code model. Only if they connect a
class and an interface symbol, they are implicitly linked to the code model. Therefore,
changing a realization between a package and interface does not affect the code model. But
creating or changing a realization between a class and interface will be reflected in the code
model by adding or removing interface support to that class.

Package (units)
Units can be visualized as package symbols. Normal hot linking is used to achieve this.
However, unit packages can display the contained classes and events. This is controlled by the
diagram symbol style and the related options in the package editor dialog. The displayed
content is read-only.

Documentation & OneLiners

Floating Documentation view

All symbols can be documented with a One Liner and multi line documentation. Most symbol
editor dialogs contain a “documentation” tab. The standard documentation view cannot be
used to edit the symbol’s documentation because the diagram editor and documentation view
cannot be visible at the same time. The floating documentation view however is coupled to
the diagram editor’s focused symbol. This view can conveniently be used to edit symbol
documentation.

If a symbol is hotlinked to a code model entity, the symbol’s documentation and one liner will
be linked to that of the entity. Changing it in the entity will change it in the symbol and vice
versa. This is controlled by hot links and the hot linked properties.

Linked Annotations

Annotations can visually be linked to symbols with documentation links. These links can be
either passive or automatically link documentation or one liner. Here is an example from the
Getting started demo in this manual.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 95

The annotations in this example are coupled in auto documentation style; the blue double
arrows on the link paths show this. Changing the annotation text (for example by in place
editing) will change the symbol’s documentation. In the example the class symbols are
implicitly linked to the code model classes. This means that editing the annotation text will
modify both the symbol and class documentation. This also works the other way round: if the
code model class’s documentation is changed, the annotation text will be updated.

To change the style of a documentation link, double click on the link path.

Diagram Editor

Properties

The environment options “diagrams” tab controls the diagram editor’s properties. These
include: printing style, hint feed back, background color, grid style and color etc.

Keyboard and Mouse control

The diagram editor’s keyboard short cuts are:
Scroll and Move
Up/Down/Left/Right Scroll
PageUp/PageDown/Home/End Scroll one page up/down
Ctrl+PageUp/PageDown Scroll to top/bottom
Home/End Scroll one page left/right
Ctrl+Home/End Scroll to left, right side of page

Zooming
Numeric + / - Zoom In/Out by 10%

ModelMaker version 6.20

usermanual620.doc May 7th 2002 96

Ctrl+Shift+I Zoom in
Ctrl+Shift+U Zoom out

Editing
Escape Cancel operation or select containing

(parent) symbol
Ctrl+Z Undo
Ctrl+Shift+Z Redo
F2 Rename (invoke inplace editor)
Ctrl+Up/Down/Left/Right Move selected symbols
Ctrl+C/V/X Copy/Paste/Cut selection
Ctrl+Alt+C/V Copy / Paste visual style
Ctrl+Shift+C/V Copy / Paste symbol style
Del Delete selection
Ctrl+Del Delete All (clear diagram)
Ctrl+A Select All
Ctrl+P Print Diagram
Ctrl+Alt+P Print Preview Diagram
F12 Toggle full screen mode

Navigation
Ctrl+U Navigate Up; select parent diagram
Ctrl+B Navigate Backward
Ctrl+F Navigate Forward

Mouse selection
Click Select exclusive
Shift+Click Toggle selected state, incluse in selection
Drag Multiple Select(lasso selection)
Shift+Drag Extend selection by lasso selection
Ctrl+Drag Parent selection (only select symbols

within parent, excluding the parent).
Similar to Delphi IDE from designer

Mouse Wheel control
Wheel Scroll up/down
Shift+Wheel Scroll left/right
Ctrl+Wheel Zoom in/out

ModelMaker version 6.20

usermanual620.doc May 7th 2002 97

Drag & Drop and conversions

ModelMaker extensively supports drag and drop between the main model views (classes,
members, units, diagrams etc). Each major model view can act as a drag source of entities and
as drop target for entities dragged from most other views. The details of each combination are
described in the next paragraphs. Since there are always two views cooperating in a drag /drop
operation (source and target) the details of conversions are described for the target view only.

Classes view

Internal (tree mode)

• Change inheritance.
• Apply interface support, press Control to invoke interface wizard

Internal (list mode)

• Apply interface support, press Control to invoke interface wizard

Source

Acts as a source for classes (and interfaces)
• Drag a class or interface to diagram editor for instant visualization.
• Drag a class to a code editor to insert its name as text.

Target

Accepts members, local vars, procedures and event types:
• Drop members from the members view on a class to copy them to the target class.

Press Shift (before releasing) to Move rather than copying the members. If a property
is copied or moved, it’s read and write access members are also copied, even if not
included in the dragged members. Restrictions that apply for interfaces are
automatically applied: fields are ignored, property write access is restricted and
visibility is made default when dropping a class’s members on an interface.

• Drop procedures from Method Local Code Explorer to convert them to new
methods.

• Drop procedures from Unit Code Explorer to convert them to new methods.
• Drop local vars from the Method Local Code Explorer to convert them to new

fields. Press shift on dropping to move rather than copy the var. Since interfaces
cannot contain fields, local vars cannot be dropped on interfaces.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 98

• Drop event type definitions from Event library view and Units view (tree mode) to
add an event handler or event property using the dragged event as a template. On
dropping a popup menu offers the available options.

Members view

Internal

• In custom order rearrange mode (Ctrl+R toggles this mode), member custom order can
be arranged.

Source

Acts as a source of members.
• Drag members the classes view to copy them to a class or interface.
• Drag members to a class in the units view (tree mode only). Similar to dragging

members to the classes view
• Drag a field or method to the Method Local Code Explorer to convert it to a local

var.
• Drag a method to the Unit Code Explorer to converted it to a local procedure.
• Drag a method to the Method Implementation view (toolbars, or tabs) to “pin” the

method.
• Drag a method(s) to the Event Library view to create new event types using the

methods as template.
• Drag a member to a code editor to insert its name as text.

Target

Accepts code sections, local vars, (local) procedures, text, event type definitions and text.
• Drop code sections from the Method Implementation Section list. The dropped

section is copied to the target method. Only if dropped on a method.
• Drop a Local var from the Method Local Code Explorer. If a var is dropped on a

method, the var will be copied to the target method. Press shift to move the var rather
than copying it. If a var is dropped on any other member or empty space in the member
list, the var is converted to a new field. Drag the vars root node in the method local
code explorer instead of a single var to drag all all vars at once.

• Drop a local procedure from the Method Local Code Explorer. If a local procedure
is dropped on a method, it will be copied to that method. Press shift to move rather
than copy it. If a local procedure is dropped on any other member or empty space in
the member list, the local procedure is converted to a new method.

• Drop a local procedure from the Unit Code Explorer. Acts similar as local
procedures dragged from the Method Local Code Explorer.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 99

• Drop Event type definitions from Event Library View and Units view (tree mode).
A popup menu will let you select between adding an event handler for an event type or
creating an event property. Multiple event types may be dragged at once.

• Drop Text from the code editors on the “add field” “add method” “add property” and
“add event” buttons in the toolbar. The corresponding member type will be created and
its name will be set to the dragged text. Method parameters are extracted from the
dropped text.

• Drop Text from code editors dropped on the member list acts similar as text dropped
on the“add method” button.

Units view

Internal (tree mode only)

• Classes and Event types can be copied or moved between units and “Classes not
assigned to any units”. Pressing Ctrl will copy rather than Move (default). Within the
same unit classes and event types can be rearranged using drag and drop.

Source

In tree mode acts as source for units, classes and event types. In list mode acts as source for
units only.

• Drag a unit to the diagram editor to visualize that unit as a package.
• Dragging a class or interface to any other view is similar to dragging a class from the

classes view.
• Dragging an event type is similar to dragging an event type from the event library

view.
• Drag a unit, class or event to a code editor to insert its name as text.

Target

Accepts members, members, (local) procedures, local vars (all in tree mode only) and event
types (both modes).

• Drop an event type from the Event Library view. If dropped on a unit, this will add
the event type definition to the unit. If dropped on a class this will add an event
handler or event property using the dragged event as a template or alternatively add the
event type to the unit. On dropping a popup menu offers the available options. Applies
to both tree and list mode.

• Dropping entities on a class is similar to dropping on a class in the classes view (tree
mode only).

• Event types contained by units do not accept dropped entities.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 100

Method Implementation view

Method Local Code Explorer

Internal
• Rearrange local vars
• Rearrange local procedures

Source
Acts as a source for local vars. Dragging the vars root node will drag all vars at once. Press
shift to move rather than copy / convert a local var.

• Drag a Local var (or the root “Vars” node) to a class in the classes view to convert it to
a field.

• Dragging a Local var to a class in the units view (tree mode) is similar as dragging it
to a class in the classes view.

• Drag a local var to the members view to copy it to a method or add a new field in the
class.

• Drag a local var to a code editor to insert its name as text.

Acts as a source for (local) procedures. Press shift to move rather than copy/convert a
procedure

• Drag a local procedure to a class in the classes view. The procedure will be converted
to a method.

• Dragging a local procedure to a class in the units view (tree mode) is similar as
dragging it to a class in the classes view.

• Drag a procedure to the members view to copy it to a method or add a new method.
• Drag a procedure to a code editor to insert its name as text.

Target
Accepts members, local vars, procedures and event types:

• Drop a field or method from members view. A field will be converted to a local var,
a method will be converted to a local procedure. This is usually only relevant for
“pinned” methods as selecting a member to drag it will automatically change the
“current method”.

• Drop text from a code editor containing an “ident + “:” + type” list to convert the
text to local vars.

Method Implementation Section list

Internal
• Rearrange sections (drag up/down)
• Indent / unindent sections (drag left/right)

ModelMaker version 6.20

usermanual620.doc May 7th 2002 101

Source
Acts as a source for code sections.

• Drag a section to a method in the members view to copy it to that method. Press shift
to move rather than copy the section.

Target
Does not act as external drop target.

Method Implementation Code Editor

Internal

• Rearrange text inside editor copy or move.

Source

Acts as a source for text.
• Drag a text to the members view to add a new member, using the text as name (plus

parameter list for methods).
• Drag a text containing an “ident + “:” + type” list to the Local Code Explorer to

convert the text to vars.

Target

Accepts all dragged entities and inserts the associated name at the drop point.

Unit Code view

Unit Code Explorer

Internal
No internal drag and drop support.

Source
Acts as a source for (local) procedures. Press shift to move rather than copy/convert a
procedure.

• Drag a local procedure to a class in the classes view to convert it to a method.
• Dragging a local procedure to a class in the units view (tree mode) is similar as

dragging it to a class in the classes view.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 102

• Drag a procedure to the members view. This is similar to dragging a local procedure
from the Method Local Code Explorer.

• Drag a procedure to a code editor to insert its name as text.

Target
Accepts methods and procedures.

• Drop a method from the members view to convert it to a module procedure.

Unit Code Editor

Similar to Method Implementation view Code Editor.

Event Library view

Internal

Does not support internal drag and drop.

Source

Acts as a source for event type definitions.
• Drag an event to the members view or on a class in the classes view. This will add an

event handler or event property.
• Drag an event to the units view. If dropped on a unit, this will add the event type

definition to the unit. If dropped on a class in the units view (tree mode) this is similar
as dropping it on a class in the classes view.

 Target

Accepts methods.
• Drop a method from the members view. For each dropped method an event type will

be created that takes the method’s signature (name, parameter list, result type etc) as a
template.

Diagrams view

Internal (tree mode only)

• In “sort hierachical” mode, diagrams can be rearranged. Pressing Shift will change
diagram hierarchy relations. Other modes: no internal drag drop support.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 103

Source

Does not act as external drag source.

Target

Does not act as external drop target.

Diagram Editor

Internal

The selected editor tool controls the extensive internal drag drop support.

Source

Does not act as external drag source.

Target

Accepts classes and units, depending on the opened diagram.
• A class or interface dragged from the classes view or units view will be visualized as

class or interface symbol, object flow symbol or role symbol. For class diagrams
relations with other classes are automatically visualized. If three or more classes are
dropped on a class diagram the “drop visualization wizard” will be invoked. This
wizard allows selecting the visualization scheme and relations to visualize.

• A unit dragged from the units view will be visualized as package symbol. Relations
with classes (contained) and other packages (uses and used dependencies) are
automatically visualized.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 104

Customizing ModelMaker

Here are some links to customizing ModelMaker to your wishes. Most of them you’ll find in
the Environment and Project options dialogs. For details refer to the GUI reference, here are
just a few:

• To adjust the appearance of ModelMaker use the Environment options

• To adjust prefixes of property access methods and fields: use Project Options|Coding style.

• To adjust the layout of the generated source code, use Project Options|Code Generation.

• To adjust the way ModelMaker imports source code: use Project options|Code Import tab.

• To adjust the in-source documentation generation and import settings, check the
corresponding tabs in the project options.

• To define a basic diagram visual style: Project options|Diagram Style

• To define a basic symbol style (displayed members etc): Project options|Diagram Style

• For defining the code editor’s shortcut keys, Use Environment Options|Shortcuts.

Here are some other links to customization:

• Add Version Control capabilities by using a plug in expert. (Check ModelMaker web-site
for ready available third party VCS Experts)

• To adjust the unit template used for new units, refer to Adjusting the unit template,
page 50.

• Create Parameterizable Code Templates for pattern like groups of members that appear in
multiple classes and models.

• For creating model templates, refer to Model templates page 41.

• Define and use your own macros for use in code generation or in the code editor.

• Most views have special display settings that are controlled in their popup menu: In
Members view you modify toolbar layout and sorting. In the Classes view you adjust
navigation order and history etc.

• Use the MM OpenToolsApi to create you own experts.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 105

Integration with the Delphi IDE

ModelMaker is a stand-alone application and you don’t need Delphi to run it. Integrating
ModelMaker with Delphi’s IDE will enable some additional features.
• ModelMaker will automatically update Delphi’s code editor whenever a source file is (re)

generated.
• You’ll be able to access Delphi’s on-line context sensitive help from within ModelMaker.
• Call Delphi’s ‘Syntax Check’ “Compile” or “Build” commands from within ModelMaker.
• Open source files and locate the member selected in ModelMaker in the Delphi IDE from

within ModelMaker

Inside the Delphi IDE integration experts add several features that enable smooth integration:
• Synchronize ModelMaker with the IDE: refresh import a unit and locate the current

member.
• Add (multiple) files to a ModelMaker project

Although it is possible to integrate ModelMaker with all versions of Delphi and run multiple
instances or versions of Delphi at the same time, it is recommended that only one is running
when working with ModelMaker, as integration is a based on a one-to-one connection.

For the same reason we suggest that you do not run multiple instances of ModelMaker. In the
environment options General tab you’ll find an option that will ensure this.

Integration with Delphi 3 and higher

ModelMaker is integrated with Delphi 3 and higher by use of an integration expert. These
experts are automatically installed by the setup program for the IDE versions you have
installed on your PC. You can manually (un)install an IDE expert later using the ModelMaker
environment options “Delphi IDE” tab.

The experts add a ModelMaker main menu item to the IDE’s menu bar. The ModelMaker
menu contains:
• Run ModelMaker, (if not already running)
• Jump to ModelMaker (Ctl+F11 in D3, Ctrl+Shift+M in D4 or higher) - this will activate

ModelMaker and select the unit, class and member corresponding to the IDE’s topmost
editor’s position. Note that inside MM the inverse command 'Locate in Delphi' - main
menu “Delphi” or main tool bar ‘Locate in Delphi’ - which locates the member selected in
ModelMaker in the Delphi editor. ModelMaker’s ‘Locate in Delphi’ command also has
shortcut Ctl+F11.

• Add to Model, adds the topmost unit in the Delphi editor to the current MM model.
• Add files to model, lets you select which files to import in a model. In D4 and higher you

may select files contained in a project or files opened in the editor.
• Refresh in Model, will re-import the topmost unit just like add to model, but only if the

unit is already in the model. If the unit is not in the model, the command is silently ignored.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 106

• Convert to Model, creates a new model and adds the topmost unit to this new model.
• Convert project to Model, which creates a new model and adds all files in the current

Delphi project to the new model.

Note that the file in the IDE editor will be SAVED prior to performing the actual command.
Therefore these commands won’t work on read-only (project) files.

Delphi 4 and higher

The Delphi 4 and higher integration experts have additional commands in the IDE’s
ModelMaker menu.
• Open Model, opens the model associated with the top most file in the IDE editor. Check

the web-site 'Tips' page for details.
• ‘Enable Auto refresh’ and ‘Lock Auto refresh on Run’. These control the Auto refresh

feature that is described in detail in chapter Auto Refresh Import, page 65.
• Version Control. This menu item is enabled if you integrated a Version Control system in

ModelMaker using a (third party) VCS expert. The available commands depend on this
VCS-expert. They usually include at a minimum Check-in and Checkout. Check the
ModelMaker Tools web site for available VCS-experts.

Some additional tools and utilities
• Unit Dependency analyzer. This is the same tool as available inside ModelMaker. For a

description, check the ModelMaker on-line help by pressing F1 in this tool in ModelMaker.
• Resource string wizard. This will scan a unit for hard coded strings and help in converting

them to a section of resource strings or string constants.
• String to Resource string, similar to the Resource string wizard, but only handles the

current string token in the editor.
• Shortcut wizard: checks the active form for duplicate keyboard hot keys in control captions

like “&Apply this” and “&Surprise me” and suggests alternatives in case of conflicts.

In Delphi 4 and higher you can also add commands to the IDE toolbars. In Delphi's toolbar
'Customize...' dialog, you'll find these commands in the ModelMaker category - right click on
Delphi's toolbar, go to ‘all commands’.

Delphi 4 and higher syntax highlighting scheme

In ModelMaker you can specify the syntax-highlighting scheme to mimic your settings in the
Delphi IDE. Unlike Delphi 1/2/3, Delphi 4 and higher do not define the default color scheme
in the registry unless you manually (re-)define it. If the syntax highlighting scheme in
ModelMaker is set to "Delphi 4" or higher, it might display strange settings: anything could
happen such as underlined, blue colored normal text.

In order to solve this problem, in Delphi 4+ go to environment options and on the Colors tab
define all fore-and background colors you want by explicitly selecting them rather than relying
on the 'use default' check boxes. The same applies for the font styles: you must explicitly

ModelMaker version 6.20

usermanual620.doc May 7th 2002 107

select them. After applying these settings and restarting ModelMaker, you should have the
highlighting scheme you selected. The following entries should be explicitly defined:
"Comment"," Identifier", "Number", "Plain text", "Reserved word", "String", "Symbol",
"White space" and "Marked block".

Uninstalling IDE integration experts

If after uninstalling ModelMaker you still get a message when starting Delphi 3 or higher
saying: can’t find ..\\..MMEXPT.DLL or similar, you must manually uninstall the
ModelMaker integration experts.

To do this:
Either use the ModelMaker environment options ‘Delphi IDE’ tab to uncheck the IDE version
you want uninstall, or
Run RegEdit.exe from the "Start" menu and go to
HKEY_CURRENT_USER\Software\Borland\Delphi\3.0\Experts
There should be an entry called ModelMakerExpert, to uninstall the expert you must manually
remove that entry. Higher versions of Delphi have a similar registry entry

Integration with Delphi 1 and 2

Integration with Delphi 1 and 2 does not offer the same functions as the Delphi 3 and higher
integration experts. Only basic synchronization functions are supported. And the installer
cannot activate the integration - you must install the integration yourself. Integration consists
of two aspects:
1. Installing the unit MMINTF.PAS (in directory [installdir]\mmintf in your component

library. Installing this unit will enable ModelMaker to:
• Automatically update Delphi's code editor whenever a source file is (re)generated.
• Access Delphi's on-line context sensitive help.
• Call Delphi's 'Syntax Check' command from within ModelMaker.

2. Installing the utility UNITJMP.EXE in your Delphi Tools menu. This will enable you to
jump from Delphi’s code editor to the corresponding code in ModelMaker and perform
some basic file related commands.

Installing the integration unit in Delphi 1 /2

1. Start Delphi 1 /2
2. Add the unit ModelMaker\6.0\Mmintf\MMIntf.pas to your component library, just like

you would do with any other component (refer to your Delphi user manual).
In Delphi 1: Select menu ‘Options|Install Components’,
In Delphi 2: Select menu ‘Component|Install’,
select Add and browse to find the unit MMINTF.PAS in folder ModelMaker\6.0\MMintf\.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 108

3. Don’t be surprised that you won’t see any changes in your VCL component palette after
Delphi recompiled the VCL: there is no new component installed, just an integration link,
which is not a component.

Installing UNITJMP.EXE as a DELPHI 1 /2 IDE tool

Installation of UNITJMP is basically the same for Delphi 1 and 2. To install the
UNITJMP.EXE utility, (refer to your Delphi user manual)

1. Start Delphi

2. Select menu ‘Options|Tools...’. (Delphi1.0)
Select ‘Add’ and add a new tool, title it ‘Jump &to MM’. (Delphi 1.0)
Select ‘Add’ and add a new tool, title it ‘Jump to &MM’. (Delphi 2.0

3. Select ‘Browse’ to locate the UNITJMP.EXE file in the ModelMaker\6.0\BIN folder.

4. Select ‘Macros’ to pass the parameters ‘$ROW $EDNAME’, the space is required; the single
quotes (‘’) should not be entered.

5. Select OK and Close to add this utility.

Now you’ll be able to jump from Delphi’s code editor to ModelMaker (which should be
running) by pressing Alt+T+T (D1) or Alt+T+M (D2)

UnitJump can be installed more than once as a tool to perform different integration tasks, each
time passing different parameters.
1. For automatic refreshing of the top most file in the IDE editor, pass parameters '-1

$EDNAME', refer to “Refresh Import” for details. You could enter ‘&Refresh Import” as
title.

2. To add the topmost in the Delphi editor to the current model, use parameters '-3
$EDNAME'.

3. To create a new model and add the topmost in the Delphi editor to this model, use
parameters '-2 $EDNAME'. You could enter ‘&Convert to Model’ as title.

Yes: you have identical “tools” UNITJMP now; the only difference is the parameters passed.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 109

MMToolsApi primer

This chapter is a introduction on COM interfaces and using the MMToolsApi to create your
own experts to ModelMaker’s functionality. You should also check the MMExptDemo.dpr
that demonstrates most aspects of an expert. If you have not noticed yet: in the
..\ModelMaker\demos directory there’s a model MMToolsApi.mpb that contains two diagrams
showing relations of the API. Do not use this model to re-create the MMToolsApi.pas, this
file will be changed in future versions.

Interfaces basics

Interfaces are like classes in the way that once you’ve got a pointer to an interface, you can call
methods and read/write properties.

Assume for example you have an interface pointer CodeModel: IMMCodeModel. From the
MMToolsApi unit you can see that this interface supports the ClassCount and Classes[idx]
properties. Also you can see that Classes[idx] returns IMMClass interface pointers. You could
now for example iterate the code model for classes and list their names in a list box

for I := 0 to CodeModel.ClassCount do
 ListBox.Items.Add(CodeModel.Classes[I].Name);

Expert DLL basics

The big thing is now: how do you get the first interface pointer CodeModel, because once
you’ve got hold of that, everything is easy. In the MMToolsApi there is a central access point
called MMToolServices: IMMToolServices that is declared as a global var in unit
MMToolsApi. This interface var is initially nil but gives access to all major aspects of the
MM engine such as the CodeModel in the above example. ModelMaker Experts are dll’s
which are loaded dynamically (all experts must be placed in directory ..\[installdir]\experts.)
After loading the library MM looks for a procedure called MMExpertEntryProc, as defined in
MMToolsApi.pas and calls this procedure passing the interface pointer of the actual
MMToolServices object. You should store this interface pointer as it provides your central
access the tools API. You can access this interface and read the CodeModel: IMMCodeModel
interface as shown in this example

procedure EntryProc(const Srv: IMMToolsServices); stdcall;
begin
 // here you get passed the interface pointer, store it to use later.
 MMToolServices := Srv;
end;

ModelMaker version 6.20

usermanual620.doc May 7th 2002 110

The entry procedure should be exported named SMMExpertEntryProc (MMToolsApi.pas).
There’s also an exit procedure, which is called upon termination of ModelMaker. In this
procedure we use the previously stored MMToolServices as central access point:

for I := 0 to MMToolServices.CodeModel.ClassCount do
 ListBox.Items.Add(CodeModel.Classes[I].Name);

MMToolsApi version control

The unit MMToolsApi is continuously under construction and version control is governed by
an ExpertVersionProc. This is the first procedure ModelMaker attempts to call when loading
the expert. In your expert you must export this function and return the MMToolsApiVersion
constant as defined in unit MMToolsApi.pas. ModelMaker will reject any expert not
exporting this procedure or experts that do not match the version of the MMToolsApi with
which ModelMaker was created.

function ExpertVersion: LongInt; stdcall;
begin
 Result := MMToolsApiVersion;
end;

exports
 ExpertVersion name SMMExpertVersionProc;

Interfaces and memory management

Memory management for interfaced classes is controlled by reference counting which is
automatic done for you by the compiler. Even assigning an interface to a local var will
increase the reference count automatically, as will assigning nil to the var or going out of
scope (exiting a procedure) will decrease the reference-count again. This means you don’t
have to worry about freeing classes after creating them. In general all interfaces passed on
from ModelMaker to you are objects existing in MM.exe space. All interface pointers you
pass on to ModelMaker are objects you create (such as an expert) and ModelMaker will only
have access through the interface pointer. Since these objects are reference counted the objects
will disappear after MM and the expert both drop all references to it.

For example if you retrieve an IMMClass interface pointer from ModelMaker and use it in
your expert code, the actual interface object will exist as long as you keep a reference to it for
example by assigning to a global var. The actual class the IMMClass refers to, may be gone in
ModelMaker due to user actions (delete the class, open a new model) but the interface object
remains live until the expert drops all references. To check whether an interface is actually
connected to a real class you could /should check the Valid property. If Valid is False, the
actual class object does not exist anymore, just the interface object. The interface object will
return default values in all functions (such as GetName =’’).

ModelMaker version 6.20

usermanual620.doc May 7th 2002 111

Adding an expert and menu items

After reading the COM interface basics, you might want to create something useful which
initiates on user action. The MMToolsApi provides the IMMExpert mechanism for this. You
can create an object implementing IMMExpert and register it in ModelMaker, again using the
MMToolServices. The fun about IMMExpert is that it allows you to insert menu-items in the
ModelMaker main menu bar Tools menu and some predefined pop-up menus. Each expert
should support properties Verbs, VerbCount and MenuPositions. VerbCount defines the
number of menu-items you want inserted and Verbs are the actual menu item Captions.
MenuPositions[..] defines where to which menu an item should be added. If the user clicks
one of these menu-items, the Execute(Idx) method of the expert will be called, where Idx is
[0..VerbCount -1]

There are some more methods supported by IMMExpert, but these are the basics. In the
MMExptDemo.dpr you’ll find an object implementing IUnknown and IMMExpert. If you go
through the associated code you’ll see that it has only one Verb and does only one thing in
Execute. This demo expert could serve very well as a base for all other experts.

How do you inform ModelMaker that you want such an expert to be installed? Well create it
(instantiate the class) and register the interface pointer with ModelMaker using
MMToolServices.AddExpert(..). Reference counting will again take care of memory
management. On shutdown you should remove your expert again using the index that was
passed by AddExpert.

var
 ExptIndex: Integer = -1;

procedure MMExpertEntryProc(Srv: IMMToolServices); stdcall;
begin
 MMToolServices := Srv;
 ExptIndex := MMToolServices.AddExpert(TMyExpert.Create);
end;

procedure MMExpertExitProc; stdcall;
begin
 if ExptIndex <> - 1 then MMToolServices.RemoveExpert(ExptIndex);
end;

Suppose you want to create an expert that does two reports "Simple" and "Extended", you
should create an object that returns VerbCount = 2 and Verb[0] = ’Simple’, Verb[1] =
’Extended’. To add the items to the Tools menu, return mpToolsMenu in GetMenuPositions.
Then in Execute(Idx) you check whether Idx = 0 or 1 to either create the Simple (0) or
extended (1) report. The actual report creation could be something like:

• Create a form containing a list box
• use

for I := 0 to MMToolServices.CodeModel.ClassCount do
 ListBox.Items.Add(CodeModel.Classes[I].Name);

to fill the list box, and
• Call the Form’s ShowModal method to show the current class list

ModelMaker version 6.20

usermanual620.doc May 7th 2002 112

Accessing Diagrams through the API

The following picture explains how to access the Diagrams and their contents through the
MM ToolsAPI.

The IMMDiagramManager property of the MMToolsServices is the entry point that gives
access to all diagrams. The IMMDiagram interfaces are life pointers to the actual diagrams as
displayed in the diagram list view. To get at the contents of a diagram, use the
IMMDiagram.Explore method. This will create a Diagram Explorer similar to the diagram
editor. The interface this method returns can be cast as an IMMDiagramExplorer. The
definition of IMMDiagramExplorer and the symbols can be found in MMDiagramAPI.pas.

Note that each time you call Explore, as new explorer is created. And that the contents of two
explorers are not linked. If you create two explorers and modify a diagram in explorer_1, in
explorer_2 you won’t see the change made in explorer_1.

An explorer gives access to a diagram’s symbols and associations. The Shapes property
simply concatenates the symbols and associations properties. An IMMShape gives access to
basic shape behavior: name, documentation and hyperlinks. An IMMymbol gives acsess to
symbol specific properties like Bounds and Location (which associations do not have).
IMMAssociation defines the association specific properties like SourceShape and
TargetShape.

ModelMaker version 6.20

usermanual620.doc May 7th 2002 113

There are many ways to manipulate a diagram, the ModelMaker Tools demo expert shows a
few examples like: create a sequence diagram and create an image containing a single class.

Accessing Experts through scripting

ModelMaker 6 is a self-registering COM server that allows access to plug-in experts that
support IDispatch. The ModelMaker type library can be found in the [installdir]\experts
directory. It contains interface IApp that contains a single method: GetExpert.

 IApp = interface(IDispatch)
 [’{D077CEC1-83F0-11D5-A1D2-00C0DFE529B9}’]
 function GetExpert(const ExpertID: WideString): IDispatch; safecall;
 end;

The parameter ExpertID is used to locate the expert based on the value returned by
IMMExpert.ExpertID.

If your expert supports IDispatch and inherits from TAutoObject, you can access it for
example in a java script like this (assuming your expert has a method named TestMethod
which takes a single WideString parameter).

// Java script
var mm = new ActiveXObject("ModelMaker.App");
var api = mm.GetExpert("ModelMakerTools.ScriptingDemoExpert_10");
api.TestMethod("Hello World");

The above example will start ModelMaker or locate the active instance. Then locate the test
expert and call it’s method named “TestMethod”.

This mechanism can be used to expose specific interfaces to scripting. For example, assume
you have a reporter plug-in that supports this interface:

type
 IMyReporter = interface(IDispatch)
 procedure CreateReport(const ModelName, ReportName: WideString); safecall;
end;

 IMyReporterDisp = dispinterface
 [’{F9BA1301-84EB-11D5-A1D2-00C0DFE529B9}’]
 procedure CreateReport(const ModelName, ReportName: WideString); dispid 1;
 end;

You could then call this expert from a script to load a model and create a report.
To learn more about disp interfaces and IDispatch, please check the Borland Delphi
developers guide.

ModelMaker Tutorials

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Introduction

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

ModelMaker is an extremely powerful tool; as a result, like all powerful and extensive
products, ModelMaker is complex and can be quite daunting to a new user. With that in
mind, I’ve prepared this document as a starting place for those who see the potential in
ModelMaker and wish to get up and running faster.
ModelMaker is often billed as a UML diagramming tool or a Delphi CASE tool.
However, it is far more than a diagramming tool and the label “CASE tool”
sometimes brings to mind some AI attempting to write code for you. A more
accurate description of ModelMaker is that of a full-featured, extensible two-way
code management tool with support for UML diagramming, design patterns,
reverse engineering, refactoring, etc.
At its core, ModelMaker features an “active code model” — all your classes and
associated elements (units, diagrams, documentation, event types, etc.) are
objects within the model. ModelMaker provides various views into this active
model, allowing you to manipulate it from within a class list, member list or a
diagram… When you’re ready, you can generate source code units from the model
to be compiled by Delphi. Since the units are generated afresh each time (rather
than MM working in the extant units), you can change various settings (such as
code commenting options, code order, method instrumentation, etc.) and
regenerate the units for a variety of purposes (instrumented code for debugging,
heavily commented code for automated documentation generation, etc.).
Note that these tutorials are in no way comprehensive; there is more than one
way to do most operations; and there are many, many options in the environment.
But the following topics should give you a small taste of what ModelMaker is
capable of. For more information or assistance, visit www.modelmakertools.com
for downloadable documents. You can also request ModelMaker training services
via Thoughtsmithy; see our Training Services page for details or contact us at
info@thoughtsmithy.com.

1. Importing Existing Code
2. Visualizing Imported Classes
3. Creating Classes within Diagrams
4. Diagramming Overview
5. Implementing classes/The Member List
6. Delphi Integration
7. Commenting Code / Macros
8. Differencing
9. The Unit Code Editor
10. Advanced Stuff

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_Intro.html [5/10/2003 1:12:08 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.modelmakertools.com/
http://www.thoughtsmithy.com/training_services.html
mailto:info@thoughtsmithy.com

ModelMaker Tutorial 1

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 1 — Importing (and Generating) Code

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

Warning: in order to avoid overwriting some of your production code, make a copy of the
unit or units you are going to import before continuing.

The fastest way to see ModelMaker in action is to import some of your existing
code.
Open ModelMaker and create a new model by selecting the New button or
File|New.
At this point we are going to tell ModelMaker to import a source file — it will
reverse engineer the code it finds and add it to the model. Keep in mind that while
ModelMaker’s parsing engine is good, it can only deal with so much obfuscated
code formatting before it chokes. For most people, this is not an issue — if MM
encounters problems while importing your code, it will tell you.

Figure 1 — the empty Units View.
There are multiple ways to import a file, but the quickest way is via drag & drop.
In ModelMaker, select the Units View by pressing F4 or by selecting its tab.
Find the unit you wish to import in Windows Explorer and then position
ModelMaker so that you can drag the file into MM’s main window.
Drop the unit into the Units View — if you’re in a new project that is empty, the
Units View should look like figure 1.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_01.html (1 of 3) [5/10/2003 1:12:11 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

ModelMaker Tutorial 1

Figure 2 — Units View with imported unit.
Once you have dropped the unit, it will be reverse-engineered. The unit and any
classes it contains will be added to the Unit List, which should now look something
like Figure 2.
Don’t worry if your icons look a little different — I’ve got some ModelMaker
extensions installed that can change the appearance of my screens.
The top-level node in the Unit View treeview represents the unit you’ve just
imported. Any child nodes are the classes, interfaces or event types that reside in
that unit. You can double-click these nodes to bring up their editors.

Figure 3 — the Member List.
Note that if you select a class in the Unit View, all of its members (properties,
methods, etc.) will be displayed in the Member List, which looks something like
figure 3.
We’ll cover the Member List in Tutorial 5; for now it’s enough to notice that your
class’ members are enumerated here.
Press F3 to switch to the Classes View. You should notice here a hierarchical
representation of the classes you’ve imported. Figure 4 is an example.

Figure 4 — the Classes View.
Notice that TObject, IInterface and IUnknown are always present. Note also the
appearance of my TtsCustomSplitter class in Figure 4 — this is the ancestor of
TtsShutter, which I’ve imported. However because I did not (yet) import the unit
containing TtsCustomSplitter, this class must be represented as a “placeholder”
(note the dotted lines around the class icon which denote placeholder status.)
ModelMaker knows that TtsShutter descends from TtsCustomSplitter, but that’s all
it knows. If I wish to be able to use ModelMaker’s features involving inheritance,
I’d have to import TtsCustomSplitter’s unit.
ModelMaker is also capable of importing your in-source comments and attaching
them to their associated entities, but only if the comments and/or ModelMaker are
properly set up to do so. If MM’s Unit Code Editor (F7) shows a mass of
unassociated code comments, fear not — we’ll cover importing comments in
Tutorial 7.
This is an extremely abbreviated example of how to import existing code. You can

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_01.html (2 of 3) [5/10/2003 1:12:11 PM]

ModelMaker Tutorial 1

also perform imports using one of the two import buttons on the main toolbar.

 – this button will import your code into a new model.

 – this button will import your code into the existing model.
In both cases, the buttons will give you the option of importing from a specific
path or from a Source Path Alias (which we have not covered here). See Source
Path Aliases in the ModelMaker help file for more information.

Generating Code
Obviously our ultimate goal is to create code which can be compiled in Delphi. ModelMaker
uses its internal code model and applies the various formatting options you’ve selected to
generate the specified units.

 — the Unlock Code Generation button.

 — the Lock Code Generation button.

 — the Generate button.

 — the Enable Auto Generation button.

 — the Disable Auto Generation button.

In its default configuration, ModelMaker will not generate source code until you tell
it to. To do so now, switch to the Units View by pressing F4 or by selecting the
Units tab. Assuming you have one or more units containing classes (if you don’t,
go back, use your new-found skills and import some units), first, make sure that
code generation is enabled by clicking the Unlock Code Generation button in the
main toolbar (see sidebar), then select a unit to generate and press the Generate
button (found in the Units View toolbar — see sidebar.) You should find that the
specified unit has been regenerated by ModelMaker. If the unit was open in Delphi,
you'll see that Delphi has already reloaded the new version of the file. This method
is handy if you don't want to generate the code until you are ready.
However, if you wish, ModelMaker can be set to automatically regenerate a unit
every time you make a change to that unit. This is called Auto Generation. You can
enable or disable Auto Generation for each unit in your model by clicking either the
Enable or Disable Auto Generation buttons in the Units View toolbar (see sidebar).
Now, anytime you make a change to an Auto Generated unit, ModelMaker will
regenerate the file. For that reason, care should be taken when enabling Auto
Generation.
There are several other options and Delphi integration features which can effect
when and how code is generated; we'll take a look at these options in Tutorial 6.

Return to the Introduction.
Go on to the next tutorial.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_01.html (3 of 3) [5/10/2003 1:12:11 PM]

ModelMaker Tutorial 2

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 2 — Visualizing Imported Classes

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

To get an initial taste of ModelMaker‘s diagramming capabilities, let‘s visualize one
of the classes we imported in the last tutorial.
ModelMaker‘s split screen design allows you to choose from three different possible
views on the left of the screen and eight on the right. The views on the left
(“master views” I‘ll call them) are:

Classes View (F3)
Units View (F4)
Diagrams View (F5)

The views on the right (“detail views” or editors) are:

Method Implementation Editor (F6)
Unit Code Editor (F7)
Diagram Editor (F8)
Macro Editor (Shift + F6)
Design Patterns (Shift + F7)
Differencing (Shift + F5)
Documentation (Shift + F8)
Event Types (Ctrl + F8)

The various views can, of course, be accessed via their tabs, so you don‘t have to
remember the keyboard shortcuts.
For our demonstration, first we‘ll want the Diagrams View, so press F5.

Figure 5 — the Diagram View toolbar.
From the Diagrams View toolbar, (figure 5) click the Add Class Diagram button.
Now that we have a new class diagram open, we‘ll want to see the Classes View on
the left while editing the diagram on the right, so press F3. Depending on how
ModelMaker‘s environment options are set, sometimes changing the master view
can change the active editor, so if your diagram goes away, press F8 to bring it
back.
There are several ways to add a class to a diagram, but again, the easiest way is
to drag it from the Classes View and drop it into the diagram. So select a class
from the Classes View, click-and-drag it into the class diagram and drop it there.
With the default settings, ModelMaker will display only the class name in the
symbol, like in figure 6.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_02.html (1 of 3) [5/10/2003 1:12:13 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

ModelMaker Tutorial 2

Figure 6 — a visualized class.
To cause the diagram to display some or all of the members of your class, we‘ll
need to change the display style properties. ModelMaker‘s diagram display styles
use an inheritance scheme. You can set properties for a symbol, but by default it
will inherit the display properties of the diagram. The diagram will inherit a
project‘s styles unless you override them, and likewise, a project will inherit the
environment‘s styles.

Figure 7 — the class with attributes and operations.
In the interest of time, let‘s adjust the symbol display properties for the whole
diagram. Double-click the diagram anywhere outside your class‘ symbol. This will
bring up the Diagram Style dialog. Select the Symbol Style tab and uncheck the
Project Member Type Filter checkbox. We‘re telling ModelMaker that we want to
override the project‘s display style for this diagram. Now that the checkboxes
under Custom Member Type Filter are enabled, check the Properties and Methods
checkboxes. We‘ve told the diagram we want it to display any class symbol‘s
properties and methods. Click OK.
Your class symbol should now resemble something like figure 7 — a class with
attributes and operations displayed. You should note that the class symbol has
some active hot spots — the tiny minus sign in the upper left hand corner of each
section will collapse that section (these appear when the class is selected); the
little linked chain icon next to the class name will open the class editor if clicked.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_02.html (2 of 3) [5/10/2003 1:12:13 PM]

ModelMaker Tutorial 2

Figure 8 — automatically visualized
generalization relation.
If your model contains an ancestor for the class you‘ve just visualized, drag the
ancestor to the diagram and drop it there. Notice that ModelMaker automatically
visualizes the generalization relation between the two classes as in figure 8.
This topic describes how to visualize an existing class from the code model. It is
also possible to add a new class to the code model by adding it to the diagram. For
more information, read the next tutorial.

Return to the Introduction.
Go back to the previous tutorial.
Go on to the next tutorial.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_02.html (3 of 3) [5/10/2003 1:12:13 PM]

ModelMaker Tutorial 3

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 3 — Creating Classes Within Diagrams

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

Now that we‘ve visualized existing classes, we can examine how to create a new
class within a diagram. As we mentioned earlier, the master views in ModelMaker
(Classes View, Units View and Diagrams View) are all just different views into the
same active model. This means that we can add a model element in any of these
views — adding those elements is just a slightly different process in each view.
For our purposes, you can either use the class diagram from the previous topic or
create a new one. As a point of convention, it‘s important to note the differences
between a few of the tool buttons on the Class Diagram Editor toolbar (see figure
9). There are some buttons here that are common to all diagrams and we‘ll discuss
these in the next tutorial.

Figure 9 — part of
the Class Diagram
Editor toolbar.
These four buttons are used to add classes and interfaces to the diagram. The first
button will create a new class, adding it to the model and the diagram — we‘ll
discuss that in a moment. The second button allows you to choose a class that
already exists in the model, and add it to the diagram. The third creates a new
interface, adding it to both the model and the diagram while the fourth button will
add an existing interface to the diagram. For this topic, we‘ll focus on the first
button.
Click this first button (actually the fourth from the left). The cursor will change to
indicate that you‘re adding a class.
Click on the diagram where you would like to add the class. The Class Symbol
editor will be displayed (see figure 10).

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_03.html (1 of 4) [5/10/2003 1:12:15 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

ModelMaker Tutorial 3

Figure 10 — the Class Symbol editor.
This editor allows you to define most every facet of a class — its role, appearance,
documentation, etc. The Class Name field should be self-explanatory — enter your
class‘ name here. Use the Ancestor drop-down to select an ancestor class. The
other fields on this tab and the other tabs are optional; for now just set the first
two fields and click OK. Your new class will appear in the diagram.
Press F3 (or select the Classes tab) to switch to the Classes View. If your diagram
only contains the one class, drag some classes from the Classes View to the
diagram to add them. Now notice that, as you select the various classes in your
diagram, they become selected in the Classes View as well. In addition, their
members are displayed in the Member List.
Your new class is rather empty, so let‘s add some properties. We need the Member
List to add methods, events and simple properties and we‘ll be discussing that in
Tutorial 5, but we can easily add class-type properties and fields in the Diagram
Editor, so let‘s try that now. In the Class Diagram Editor, click the Add Property to
Model tool button (8th from the left). Now click-and-hold in the class symbol to
which you are adding the property, and drag to the class symbol whose type the
property will be. For example, if you have a diagram containing the classes
TmyClass and TmyNewPropertyType, to add a property to TmyClass of type
TmyNewPropertyType, select Add Property to Model, then click on the TmyClass
symbol and drag to the TmyNewPropertyType symbol. The Property Association
dialog will appear (see figure 11).

Figure 11 — the Property Association dialog.
This is a complex dialog, but don‘t be daunted. Most the fields on this tab are the
values you‘re used to entering in Delphi by hand: Name is the name of the new
property, this defaults to the name of the properties class type. Use the Visibility
group box to set the new property‘s visibility. The Data Type fields are disabled
since, by adding a class-type property in the diagram, we already know the data
type. The Read and Write Access group boxes allow you to set the methods of
access for this new property. This is a very powerful and timesaving feature of
ModelMaker; any accessor methods or state fields needed by this property are
added automatically and are always kept up-to-date by ModelMaker. If you change
the name of this property, ModelMaker will automatically update its accessors

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_03.html (2 of 4) [5/10/2003 1:12:15 PM]

ModelMaker Tutorial 3

and/or state field.

Figure 12 — Automatically visualized Generalization relations.

Changing Relations in a Diagram
You may have noticed that when visualizing your classes, if a class is added to a
diagram and that class‘ ancestor is also in the diagram, the Generalization relation
is automatically visualized (see figure 12).
There are a great many options and wizards for advanced handling and automation
of visualizations, but the Generalization relation is pertinent to our current topic,
so for our final thought here, notice the following:
You can change the ancestor of a class, not just within the diagram but also for the
whole model, from within a class diagram. Make sure you are editing a class
diagram that contains 3 classes, one of which is descendant of another in the
diagram. Open the Classes View (so you can see the results) by pressing F3. Click
the Generalization arrow to select it. A “grabber” should appear at each end of the
arrow (see figure 13).

Figure 13 — A Generalization arrow, selected.
To change the class‘ ancestor, click the grabber at the arrowhead, and drag the
arrowhead to a different class. Notice in the Classes View that the ancestor of your
class has changed. This is a good example of the interconnectedness of the various
editors — they are all looking into the same active code model. Note that this
same method can be used to change the class type of a class‘ property within a
diagram; drag the Property relation to a new class to change the property‘s type.
This has been an incomplete view of diagramming and the class creation process.
See Tutorial 4 for an overview of diagramming in ModelMaker and Tutorial 5 for an
overview of the class implementation process.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_03.html (3 of 4) [5/10/2003 1:12:15 PM]

ModelMaker Tutorial 3

Return to the Introduction.
Go back to the previous tutorial.
Go on to the next tutorial.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_03.html (4 of 4) [5/10/2003 1:12:15 PM]

ModelMaker Tutorial 4

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 4 — Diagramming Overview

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

Before we begin our discussion of diagrams, remember the following: ModelMaker
maintains an internal active code model from which all source code units are
generated. The various views (including the Diagram Editor) are simply different
ways of looking into that model. The diagrams are not static, stand-alone images;
they are graphical representations of the internal model, thus diagram symbols
that represent code entities are actually showing us a representation of the entity
in the model not just a graphic symbol. It‘s important to remember that distinction
lest you try to delete a class from a diagram and wonder why the class still exists
in the model.
ModelMaker currently offers the ability to create and manage 10 different types of
diagrams, most of which are UML compliant. While most of the diagrams have
toolbars and concepts that are specific to their types, there is some common
ground with which I will acquaint you here.
There are two parts to the diagramming interface; the Diagrams View (F5) and the
Diagram Editor (F8). The reason that these are mentioned separately is that it is
possible to view the Diagram Editor while displaying any of the three main views
(Classes, Units or Diagrams). See tutorial 2 for a listing of possible views and
keystroke shortcuts. For the moment, display both diagramming views by pressing
F5 (and if the Diagram Editor is not subsequently displayed, F8). If you are in a
new project, with no diagrams, the Diagrams View should be blank and the
Diagram Editor and toolbar should be grayed.

Figure 14 — the Diagrams
View toolbar.
The Diagrams View toolbar (figure 14) contains buttons which will add each of the
supported diagram types (Class, Sequence, Collaboration, Use Case, Robustness,
State, Activity, Unit Dependency, Implementation and Mind Map).
To begin, let‘s add a new class diagram. Click the Add Class Diagram button (the
upper-left button) in the Diagrams Views toolbar. Note that a new diagram is
added to the Diagrams View tree and the diagram editor is activated with the new
class diagram. You can rename the diagram by selecting its node and pressing F2.
It‘s always possible to simply add a new diagram to the diagram list by clicking
one of the “Add…” buttons. Try clicking some of the other “Add…” buttons now to
add some other diagrams to the tree. Notice that as the various diagram types are
added, the Diagram editors toolbar displays tool buttons specific to that diagram
type. You also see some tool buttons that are common to all diagram types and
we‘ll discuss these in a bit.
The Diagrams View is hierarchical; we can add some diagrams and rearrange them
to be children of other diagrams. Right-click the Diagrams View and select
Advanced Add… from the context menu. The resulting dialog allows you to specify
a name for your diagram, select a diagram type and assign a parent diagram all in
one step. Select one of your existing diagrams as the parent for your new creation
and click OK. Note that the new diagram is added to the tree as the child of the
existing diagram. This is a nice organizational feature and comes in handy in
projects that contain numerous diagrams. For existing diagrams, it‘s possible to “re-

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_04.html (1 of 3) [5/10/2003 1:12:17 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

ModelMaker Tutorial 4

parent” them within the Diagrams View by simply holding down the Ctrl key and
dragging the diagram to its new parent.

Figure 16.

Figure 15.
Next we‘ll look at some of the design elements common to all diagrams. Select any
of the diagrams you have added and have a look at the toolbar of the Diagram
Editor. For any diagram you select, you should see figure 15 at the far left of the
toolbar and figure 16 at the far right.
Moving from left to right, these common tools are as follows:

 – Select. Use this tool to select diagram elements.

 – Delete from Diagram. This tool will delete a symbol from a diagram, but will
not delete the entity it represents from the model.

 – Delete Symbol and Linked Entity. This tool will delete a symbol from the
diagram and will also delete the entity it represents from the model.

 – Add Package. Use this tool to create a package symbol in your diagram. This
symbol is “container” and can hold other symbols, much like TPanel in Delphi.

 – Add Unit Package. Similar to the Add Package tool, this tool adds a symbol
representing a physical Delphi unit to your diagram. The symbol automatically
displays the entities contained within the unit.

 – Add Annotation. This tool will create a standard UML annotation symbol in
which you can enter text of any sort.

 – Add Documentation Link. This tool and the next, Add Linked Annotation,
have some subtle differences, but they can be summed up as follows: the three
options in this drop-down button allow you to connect a symbol and an existing
annotation symbol. Whereas the next tool, Add Linked Annotation, will create a
new annotation symbol and link it to the selected symbol. The three options in the
drop-down menu allow you to add your own annotation text, display the linked
entity‘s documentation or its One Liner comment.

 – Add Linked Annotation. This tool, like the one above, links documentation
to a diagram symbol. Using this tool will add a new annotation symbol and link it
to the selected symbol. The three options in the drop-down menu allow you to add
your own annotation text, display the linked entity‘s documentation or its One
Liner comment.

 – Add Constraint Relation. This is rather self explanatory; use this tool to add a
constraint relation between two symbols to the diagram.

 – Add Hyperlink. This is a powerful tool. This symbol, when added, will allow
you to add a hyperlink to your diagram which can link to another diagram, a code
model entity and/or an external document.

 – Add shape. Use this tool to add simple geometric shapes to your diagram.
http://www.thoughtsmithy.com/mmjump/MMGettingStarted_04.html (2 of 3) [5/10/2003 1:12:17 PM]

ModelMaker Tutorial 4

 – Add Image. This tool allows you to add an image from an external file to
your diagram.

When trying to alter the appearance of your diagrams, keep in mind that double-
clicking on a diagram symbol (including associations and relations) will display that
symbol‘s editing dialog where you can change the visual attributes of the diagram
symbol. However, before you start trying to format your diagrams one symbol-at-a-
time, keep in mind the following: ModelMaker provides access to the display styles
of diagrams and their symbols using an inheritance model. It is possible to set
styles for diagrams at an environment level via the Diagrams tab in the
Environment Options dialog; to override these settings for a particular project, you
would do so in the Project Options dialog, available from the Options menu. To
override the settings for a diagram, double-click the diagram to display the
Diagram Style dialog. Likewise, double-click a symbol to display its Symbol Style
dialog.
This should provide enough of a basic overview of diagramming in ModelMaker to
get you started. See the online help for information about specific diagram types.

Return to the Introduction.
Go back to the previous tutorial.
Go on to the next tutorial.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_04.html (3 of 3) [5/10/2003 1:12:17 PM]

ModelMaker Tutorial 5

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 5 — Implementing Classes/the Member List

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

Figure 17 — the Member List.
Given the wide range of options available in adding class members, this step is more
informative than tutorial.
Ok, we’ve looked around enough — it’s time to get serious about implementing our
classes.
The pane that you’ll need to get to know well is the Member List (see figure 17).
This window is found below the triumvirate of the Classes View/Units
View/Diagrams View.
The Members List allows you to manage the members (fields, methods, properties
and events) of your classes. Note that there are many options that control the
appearance of the Member List so my screen shots may not look the same as the
Member List in your copy of ModelMaker.
The first thing to notice is that the Member List is just that — a list of a class‘
members. Remember that ModelMaker keeps an active model of your code
internally and that all of the various editors are simply different views into the
model; the Member List is another example of that. Any changes you make here
are simply changing the model, not the physical source code files (unless you have
Auto Generation Enabled) until you generate the source from the model.
On the General tab of the Environment Options dialog (available from the Options
menu) is a group box entitled Members Appearance. If you check the first three
items, Display Type Bitmaps, Display Visibility Bitmaps and Display Info Bitmaps,
you will see all three columns of graphics in your Member List (as shown in figure
17). Select all three options and we’ll have a look at the various icons presented in

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_05.html (1 of 3) [5/10/2003 1:12:20 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

ModelMaker Tutorial 5

the Member List.

The first two columns in the Member List represent the member type and visibility:

 — Field — default visibility

 — Method — private

 — Property — protected

 — Event — public

 — Method Resolution Clause — published

The third column displays a contextual icon depending on the member type. For
methods, the icons represent bindings as follows:

 — static —
virtual

 —
override

 —
abstract

 —
dynamic

 —
message

If the member is a property, the icons are as follows:

 —
Read/write

 — Read-
only

 — Property
override

The Member List allows you to add and edit members as well. Here we will take a
general look at that process.

Figure 18 — Add
Members toolbar.
Near the top of the Member List, you should see the toolbar in figure 18. The first
four buttons on this toolbar are for adding members; they are, from left to right,
Add Field, Add Method, Add Property and Add Event. Clicking one of these buttons
will display the appropriate editor for the memeber type you selected. You should
notice some similarities in each of the editors: Name, Visibility and Type. Also
common to each editor is the Documentation tab where you can add
documentation for your new member. The documentation you add is attatched to
the member within ModelMaker‘s internal model and can be used in a variety of
ways. For example, you can emit the documentation with your code as comments
(see Tutorial 7) or link to it within a diagram as an annotation (see Add
Documentation Link and Add Linked Annotation in Tutorial 4). It is also available
via the ModelMaker OpenTools API (see Tutorial 10).
In addition to the common elements, each editor contains settings specific to its
member type. For instance, in the Property Editor, you can control the property‘s
read and write access while the Event Editor allows you to generate a dispatch
method.
Here are some quick thoughts on each of the member types which should help you
to get more comfortable with ModelMaker:

Fields and Methods
If you‘re trying to add a propert‘s state field or an access method, stop. One of the key
advantages of ModelMaker is its automation, and the automation surrounding the creation
of properties is high. See the next section for more information.
Make sure you visit the ModelMaker online help by pressing F1 in the editor
dialogs. Some items of note are the Owned and Initialized options for fields and
the Inheritance Restricted option for methods.

Properties

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_05.html (2 of 3) [5/10/2003 1:12:20 PM]

ModelMaker Tutorial 5

As mentioned in the previous section, ModelMaker can greatly simplify the process of adding
a property through its automation features. This is one of the reasons many people choose
to work in ModelMaker as their code editor (as a Delphi IDE replacement); when adding a
property by hand in Delphi, you write the declaration code for the property, its access
methods, perhaps a state field and the implementation code for the access methods. When
adding a proprty in ModelMaker, you add the property. Period.
Within the Property Editor you will find options for specifying the read/write access
for the property (state field, method or none) as well as for generating some
rudimentary read/write access code. Once you have set these options and clicked
OK, ModelMaker adds not only the property, but the related access code. The
generated code is “owned” by the property — if you change the name of the
property or delete it, all the generated code is automatically renamed or deleted as
well. Try experimenting with these settings and read in the online help for more
information.

Events
Adding an event is somewhat similar to adding a property; most of the overhead is
managed for you by ModelMaker. In the Event Editor dialog, you select a name, event type
(event types are managed in the Event Type Library, available in the Events tab) and
visibility. You can also specify a dispatch method by checking the Dispatch checkbox. The
generated method will be owned by the event similar to the way a property owns its access
methods.
Note that if you wish your dispatch methods to automatically be prefixed (with
“Do”, for example) you can specify this and other coding style options in the
Coding Style tab of the Project Options dialog under the Options menu.

Return to the Introduction.
Go back to the previous tutorial.
Go on to the next tutorial.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_05.html (3 of 3) [5/10/2003 1:12:20 PM]

ModelMaker Tutorial 6

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 6 — Delphi Integration

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

While some developers use ModelMaker as a complete Delphi IDE replacement, most seem
to prefer to use ModelMaker and Delphi simultaneously — switching back and forth as
needed. To support this, ModelMaker offers extensive Delphi integration features, which we
will examine here.

Delphi Controls ModelMaker

ModelMaker installs a Delphi integration expert into the Delphi IDE, which allows you to
control ModelMaker somewhat from within Delphi.
First, start Delphi if it is not running, and have a look at the ModelMaker menu in
the main Delphi menu bar. Notice that the first menu item allows you to launch
ModelMaker. Also notice that most of the items in the ModelMaker menu require
ModelMaker to be running — if it is not, those items will be disabled.
Launch ModelMaker now, if it is not running, by selecting the first menu item.
Warning: in order to avoid overwriting some of your production code, make a
copy of the unit or units you are going to import before continuing.
The first thing we'll do is to create a new project and import into it some existing
classes, all from within Delphi. Open, in Delphi, a project that you'd like to import
into ModelMaker. From the ModelMaker menu, select Convert Project to Model. The
ModelMaker window should come to the front, most likely asking whether to save
your current model. After you answer that dialog as appropriate, ModelMaker will
create a new project and import the Delphi project's units.
Some of the other menu items that operate similarly are Add to Model, which
causes the active unit in Delphi to be imported into the current model in
ModelMaker; Add Files to Model, which allows you to select units to be added to
the current model in ModelMaker and Convert to Model, which will create a new
model in ModelMaker and import the active Delphi unit into it.
Two other noteworthy menu items in the Delphi ModelMaker menu are Jump to
ModelMaker and Refresh in Model. Jump to ModelMaker will bring ModelMaker to
the front and attempt to find the current code block within the model. Refresh in
Model will cause ModelMaker to re-import the active unit into the current model.

ModelMaker Controls Delphi

If you find that you like editing your code in ModelMaker, and prefer to have ModelMaker
control Delphi, you have that option. Make sure that you are familiar with the process of
generating code from within ModelMaker, by reading tutorial 1, then examine the Delphi
portion of ModelMaker's main toolbar (see figure 19).

Figure 19 — Delphi
control buttons.
The first button, Generate, you should already be familiar with.
The second button, Generate and Perform Default Compile Action, will cause the
current unit to be generated, and will request that Delphi perform one of three
actions: Syntax Check, Compile or Build. This default compile action can be set on
the next button's drop-down menu.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_06.html (1 of 2) [5/10/2003 1:12:22 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

ModelMaker Tutorial 6

Figure 20 — Default Compile
Action drop-down menu.
The third button (its hint will vary depending on the default compile action), will
cause Delphi to perform the currently selected default action. This default is set in
this button's drop-down menu (see figure 20); after setting a default, that action
will be taken any time this button or the previous button is clicked. Note: these
Delphi actions will be enacted upon whatever the currently loaded Delphi project
may be.
The fourth button, Locate in Delphi, will bring Delphi to the front and attempt to
locate the current code block in the code editor. It will open the current unit in
Delphi if necessary.

Two-way Integration

The most complete integration can be achieved through ModelMaker's two-way integration,
although a warning must be issued here: normally ModelMaker works with a safety net of
allowing you to determine when code will be generated and when it will be refreshed into
the model. Even if you enable auto-generation (see tutorial 1), you still have control over
when code is re-imported if it has been changed outside of ModelMaker. If you enable the
two-way integration, you will lose this control and code will automatically be generated and
refreshed without warning. If there are changes to the code you do not wish to overwrite
without warning, you should be careful using this option.
Enabling this feature basically causes ModelMaker to generate your units any time
they change in ModelMaker and to re-import them any time they change outside of
ModelMaker. To use this feature, do the following:
In ModelMaker, unlock code generation. Select one or more units to auto-generate
and select the Enable Auto-Generation button for each.
Select Environment Options from the Options menu in ModelMaker. In the General
tab, under Code Generation and Import, check the Auto Refresh from IDE and
Refresh Keeps Units Enabled check boxes.
In Delphi, select Integration Options from the ModelMaker menu. In that dialog,
select Enable Auto Refresh.
Open one of your auto-generated units in Delphi by clicking ModelMaker's Locate in
Delphi button. If you want, arrange your ModelMaker and Delphi code editor
windows so that you can see both at the same time. Now go back to ModelMaker
and change something in that unit, then save the model. You should see the unit
update in Delphi automatically. Now change something in the unit in the Delphi
code editor, then save the unit. The unit will be refreshed in ModelMaker. Viola!
Two-way code editing integration.
Another warning: if your code comment importing options are not correctly set up,
you may see "comment creep" or worse, you might see comments deleted without
warning. Be very careful using this two-way feature until you understand how to
set up code comment importing options. For more information on that, see the
next tutorial.

Return to the Introduction.
Go back to the previous tutorial.
Go on to the next tutorial.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_06.html (2 of 2) [5/10/2003 1:12:22 PM]

ModelMaker Tutorial 7

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 7 — Commenting Code / Macros

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

The text for this tutorial is not yet complete.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_07.html [5/10/2003 1:12:22 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

ModelMaker Tutorial 8

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 8 — Differencing

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

The text for this tutorial is not yet complete.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_08.html [5/10/2003 1:12:23 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

ModelMaker Tutorial 9

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 9 — The Unit Code Editor

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

The text for this tutorial is not yet complete.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_09.html [5/10/2003 1:12:24 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

ModelMaker Tutorial 10

home | software development | training services | print | audio productions | lego sculptures | contact us

Getting Started with ModelMaker
Tutorial 10 — Advanced Stuff

by Robert Leahey of Thoughtsmithy

Introduction

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Tutorial 8

Tutorial 9

Tutorial 10

ModelMaker
Training

The text for this tutorial is not yet complete.

http://www.thoughtsmithy.com/mmjump/MMGettingStarted_10.html [5/10/2003 1:12:25 PM]

http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/home.html
http://www.thoughtsmithy.com/software_development.html
http://www.thoughtsmithy.com/training_services.html
http://www.thoughtsmithy.com/print.html
http://www.thoughtsmithy.com/audio_productions.html
http://www.thoughtsmithy.com/lego_sculptures.html
http://www.thoughtsmithy.com/contact_us.html
http://www.thoughtsmithy.com/
http://www.thoughtsmithy.com/modelmaker_training.html
http://www.thoughtsmithy.com/modelmaker_training.html

	PDF Assembled by .:DiGi-Cream:.
	If you have Mastering Delphi 7 PDF
	post it in alt.binaries.programming
	TIA!!!
	Essential Pascal
	Introduction
	Appendix B Examples
	Chapter 1 Pascal History
	Chapter 2 Coding in Pascal
	Chapter 3 Types, Variables, and Constants
	Chapter 4 User-Defined Data Types
	Chapter 5 Statements
	Chapter 6 Procedures and Functions
	Chapter 7 Handling Strings
	Chapter 8 Memory
	Chapter 9 Windows Programming
	Chapter 10 Variants
	Chapter 11 Program and Units
	Appendix A Glossary

	Essential Delphi
	Introduction
	Table of Contents
	CHAPTER 1: A Form Is a Window
	Creating Your First Form
	Using Components
	Changing Properties
	Responding to Events
	Compiling and Running a Program
	Changing Properties at Run-Time
	Adding Code to the Program
	A Two-Way Tool
	Looking at the Source Code
	The Textual Description of the Form
	The Project File
	Using Component Templates

	CHAPTER 2: HIGHLIGHTS OF THE DELPHI
	Different Versions of Delphi
	Asking for Help
	Delphi Menus and Commands
	The File Menu
	The Edit Menu
	The Search Menu
	The View Menu
	The Project Menu
	The Run Menu
	The Component Menu
	The Database Menu
	The Tools Menu
	The Help Menu
	The Delphi Toolbar
	The Local Menus

	Working with the Form Designer
	The Component Palette
	The Object Inspector
	The Alignment Palette

	Writing Code in the Editor
	Using Editor Bookmarks
	Code Insight
	Code Completion
	Code Templates
	Code Parameter

	Managing Projects
	The Project Manager
	Setting Project Options
	Compiling a Project

	Exploring a Compiled Program
	The Integrated Debugger
	The Object Browser

	Additional Delphi Tools
	The Files Produced by the System

	CHAPTER 3: The Object Repository and the Delphi Wizards
	The Object Repository
	The New Page
	The Forms Page
	The Dialogs Page
	The Data Modules Page
	The Projects Page

	Delphi Wizards
	The Database Form Wizard
	The Application Wizard
	The Dialog Wizard

	Customizing the Object Repository
	Adding New Application Templates
	The Empty Project Template
	Adding New Form Templates to the Object Repository
	The Object Repository Options
	Installing new DLL Wizards

	CHAPTER 4: A Tour of the Basic Components
	Windows Own Components
	Clicking a Button
	Clicking the Mouse Button
	Adding Colored Text to a Form
	The Standard Color Dialog Box

	Dragging from One Component to Another
	Accepting Input from the User
	Handling the Input Focus
	A Generic OnEnter Event Handler
	Entering Numbers

	Sophisticated Input Schemes
	Creating a Simple Editor
	The Font Dialog Box
	Creating a Rich Editor

	Making Choices
	Grouping Radio Buttons

	A List with Many Choices
	Working with the List Boxes
	Removing a Selected String from the Other List Box

	Allowing Multiple Selections
	Using a CheckListBox Component

	Many Lists, Little Space
	Choosing a Value in a Range

	CHAPTER 5: Creating and Handling Menus
	The Structure of the Main Menu
	Different Roles of Menu Items
	Building a Menu with the Menu Designer
	The Standard Structure of a Menu
	Shortcut Keys and Hotkeys
	Using the Predefined Menu Templates

	Responding to Menu Commands
	The Code Generated by the Menu Designer
	Modifying the Menu at Run-Time
	Changing Menu Items at Run-Time
	Disabling Menu Items and Hiding Pull-Down Menus
	Using Radio Menu Items
	Creating Menu Items Dynamically
	Creating Menus and Menu Items Dynamically
	Short and Long Menus

	Graphical Menu Items
	Customizing the Menu Check Mark
	Bitmap Menu Items

	Owner-Draw Menu Items

	Customizing the System Menu
	Building a Complete Menu
	The File Menu
	Short-Circuit Evaluation
	The Paragraph Menu
	The Font Menu
	The Options Menu
	Pop-Up Menus
	An Automatic Local Menu
	Modifying a Pop-Up Menu When It Is Activated
	Handling Pop-Up Menus Manually

	CHAPTER 6: Multimedia Fun
	Windows Default Sounds
	Every Box Has a Beep
	From Beeps to Music

	The Media Player Component
	Playing Sound Files
	Running Videos
	A Video in a Form

	Working with a CD Drive
	Epilogue

	Mastering Delphi 6
	Frontmatter
	Acknowledgments
	Introduction
	Six Versions and Counting
	The Structure of the Book
	Free Source Code on CD (and the Web)
	How to Reach the Author

	Part I: Foundations
	Chapter 1: The Delphi 6 IDE
	Editions of Delphi 6
	The Delphi 6 IDE
	The Object TreeView
	Loadable Views
	An IDE for Two Libraries
	Smaller Enhancements

	Recent IDE Additions
	Saving the Desktop Settings
	The To- Do List

	The AppBrowser Editor
	The Code Explorer
	Browsing in the Editor
	Class Completion
	Code Insight
	More Editor Shortcut Keys

	The Form Designer
	The Object Inspector in Delphi 6

	Secrets of the Component Palette
	Defining Event Handlers
	Copying and Pasting Components
	From Component Templates to Frames

	Managing Projects
	Project Options
	Compiling and Building Projects
	Exploring a Project

	Additional and External Delphi Tools
	The Files Produced by the System
	Looking at Source Code Files

	The Object Repository
	What's Next?

	Chapter 2: The Object Pascal Language: Classes and Objects
	The Pascal Language
	The New $IF Compiler Directive
	New Hint Directives
	The $WARN Directive

	Introducing Classes and Objects
	Classes, Objects, and Visual Programming
	The Self Keyword
	Overloaded Methods
	Creating Components Dynamically
	Class Methods and Class Data

	Encapsulation
	Encapsulation and Units
	Private, Protected, and Public
	Encapsulating with Properties
	Encapsulation and Forms

	Constructors
	Overloaded Constructors
	Destructors

	The Complete TDate Class
	Delphi's Object Reference Model
	Assigning Objects
	Objects and Memory

	What's Next?

	Chapter 3: The Object Pascal Language: Inheritance and Polymorphism
	Inheriting from Existing Types
	Protected Fields and Encapsulation
	Inheritance and Type Compatibility

	Late Binding and Polymorphism
	Overriding and Redefining Methods
	Virtual versus Dynamic Methods
	Abstract Methods

	Type- Safe Down- Casting
	Using Interfaces
	Interface Properties, Delegation, Redefinitions, Aggregation, and Reference Counting Blues

	Working with Exceptions
	Program Flow and the finally Block
	Exception Classes
	Logging Errors

	Class References
	Creating Components Using Class References

	What's Next?

	Chapter 4: The Run- Time Library
	The Units of the RTL
	The System and SysInit Units
	The SysUtils and SysConst Units
	The Math Unit
	The New ConvUtils and StdConvs Units
	The New DateUtils Unit
	The New StrUtils Unit
	The New Types Unit
	The New Variants and VarUtils Units
	The DelphiMM and ShareMem Units
	COM- Related Units

	Converting Data
	What About Currency Conversions?

	The TObject Class
	Showing Class Information

	What's Next?

	Chapter 5: Core Library Classes
	The RTL Package, VCL, and CLX
	Traditional Sections of VCL
	The Structure of CLX
	VCL- Specific Sections of the Library

	The TPersistent Class
	The published Keyword
	Accessing Properties by Name

	The TComponent Class
	Ownership
	The Name Property
	Removing Form Fields
	Hiding Form Fields
	The Customizable Tag Property

	Events
	Events in Delphi
	Method Pointers
	Events Are Properties

	Lists and Container Classes
	Lists and String Lists
	Collections
	Container Classes
	Type- Safe Containers and Lists

	Streaming
	The TSream Class
	Specific Stream Classes
	Using File Streams
	The TReader and TWriter Classes
	Streams and Persistency

	Summarizing the Core VCL and BaseCLX Units
	The Classes Unit
	Other Core Units

	What's Next?

	Part II: Visual Programming
	Chapter 6: Controls: VCL Versus VisualCLX
	VCL versus VisualCLX
	Delphi 6 Dual Libraries Support
	Choosing a Visual Library
	Converting Existing Applications

	Derived Classes
	Parent and Controls
	Properties Related to Control Size and Position
	Activation and Visibility Properties
	Fonts
	Colors
	The TWinControl Class (VCL)
	The TWidgetControl Class (CLX)

	Opening the Component Tool Box
	The Text Input Components
	Selecting Options
	Lists
	Ranges
	Handling the Input Focus

	Working with Menus
	Accelerator Keys
	Pop- Up Menus and the OnContextPopup Event
	Creating Menu Items Dynamically
	Using Menu Images
	Customizing the System Menu

	Owner- Draw Controls and Styles
	Owner- Draw Menu Items
	A ListBox of Colors
	CLX Styles

	What's Next?

	Chapter 7: Advanced VCL Controls
	ListView and TreeView Controls
	A Graphical Reference List
	A Tree of Data
	Custom Tree Nodes

	Multiple- Page Forms
	PageControls and TabSheets
	An Image Viewer with Owner- Draw Tabs
	The User Interface of a Wizard

	Form- Splitting Techniques
	Horizontal Splitting
	Splitting with a Header

	Control Anchors
	The ToolBar Control
	The RichBar Example
	A Menu and a Combo Box in a Toolbar
	Toolbar Hints
	A Simple Status Bar

	Customizing the Hints
	What's Next?

	Chapter 8: Building the User Interface
	The ActionList Component
	Predefined Actions in Delphi 6
	Actions in Practice
	The Toolbar and the ActionList of an Editor

	Toolbar Containers
	A Really Cool Toolbar
	The ControlBar

	Delphi's Docking Support
	Docking Toolbars in ControlBars
	Docking to a PageControl

	The ActionManager Architecture
	Building a Simple Demo
	Least- Recently Used Menu Items
	Porting an Existing Program
	Using List Actions

	What's Next?

	Chapter 9: Working with Forms
	The TForm Class
	Using Plain Forms
	The Form Style
	The Border Style
	The Border Icons
	Setting More Window Styles

	Direct Form Input
	Supervising Keyboard Input
	Getting Mouse Input
	Dragging and Drawing with the Mouse

	Painting in Windows
	Unusual Techniques: Alpha Blending, Color Key, and the Animate API
	Position, Size, Scrolling, and Scaling
	The Form Position
	The Size of a Form and Its Client Area
	Form Constraints
	Scrolling a Form
	Scaling Forms
	Automatic Form Scaling

	Creating and Closing Forms
	Form Creation Events
	Closing a Form

	Dialog Boxes and Other Secondary Forms
	Adding a Second Form to a Program
	Creating Secondary Forms at Run Time

	Creating a Dialog Box
	The Dialog Box of the RefList Example
	A Modeless Dialog Box

	Predefined Dialog Boxes
	Windows Common Dialogs
	A Parade of Message Boxes

	About Boxes and Splash Screens
	Building a Splash Screen

	What's Next?

	Chapter 10: The Architecture of Delphi Applications
	The Application Object
	Displaying the Application Window
	The Application System Menu
	Activating Applications and Forms
	Tracking Forms with the Screen Object

	Events, Messages, and Multitasking in Windows
	Event- Driven Programming
	Windows Message Delivery
	Background Processing and Multitasking

	Checking for a Previous Instance of an Application
	Looking for a Copy of the Main Window
	Using a Mutex
	Searching the Window List
	Handling User- Defined Window Messages

	Creating MDI Applications
	MDI in Windows: A Technical Overview

	Frame and Child Windows in Delphi
	Building a Complete Window Menu
	The MdiDemo Example

	MDI Applications with Different Child Windows
	Child Forms and Merging Menus
	The Main Form
	Subclassing the MdiClient Window

	Visual Form Inheritance
	Inheriting from a Base Form
	Polymorphic Forms

	Understanding Frames
	Frames and Pages
	Multiple Frames with No Pages

	Base Forms and Interfaces
	Using a Base Form Class
	Using Interfaces

	What's Next?

	Chapter 11: Creating Components
	Extending the Delphi Library
	Component Packages
	Rules for Writing Components
	The Base Component Classes

	Building Your First Component
	The Fonts Combo Box
	Creating a Package
	Using the Font Combo Box

	Creating Compound Components
	Publishing Subcomponents in Delphi 6
	The Component Palette Bitmaps

	A Complex Graphical Component
	Defining an Enumerated Property
	Writing the Paint Method
	Adding TPersistent Properties
	Defining a New Custom Event
	Registering Property Categories

	Customizing Windows Controls
	Overriding Message Handlers: The Numeric Edit Box
	Overriding Dynamic Methods: The Sound Button
	Handling Internal Messages: The Active Button
	Component Messages and Notifications

	A Nonvisual Dialog Component
	Using the Nonvisual Component

	Defining Custom Actions
	Writing Property Editors
	An Editor for the Sound Properties
	Installing the Property Editor

	Writing a Component Editor
	Subclassing the TComponentEditor Class
	A Component Editor for the ListDialog
	Registering the Component Editor

	What's Next?

	Chapter 12: Libraries and Packages
	The Role of DLLs in Windows
	What Is Dynamic Linking?
	What Are DLLs For?
	Rules for Delphi DLL Writers
	Using Existing DLLs

	Creating a DLL in Delphi
	A Simple Delphi DLL
	Calling the Delphi DLL
	Project and Library Names in Delphi 6

	A Delphi Form in a DLL
	Using the DLL Form as Modal
	A Modeless Form in a DLL
	Calling a Delphi DLL from Visual Basic for Applications
	Calling a DLL Function at Run Time

	A DLL in Memory: Code and Data
	Sharing Data with Memory- Mapped Files

	Using Delphi Packages
	Package Versioning

	Forms Inside Packages
	Loading Packages at Run Time
	Using Interfaces in Packages

	Packages Versus DLLs
	Executables and DLLs Sharing the VCL Packages

	Exploring the Structure of a Package
	What's Next?

	Part III: Database Programming
	Chapter 13: Delphi's Database Architecture
	Accessing a Database: BDE, dbExpress, and Other Alternatives
	Borland Database Engine (BDE)
	ActiveX Data Objects (ADO)
	The dbExpress Library
	InterBase Express (IBX)
	The ClientDataSet Component

	Classic BDE Components
	Tables and Queries
	Master/ Detail Structures
	Other BDE Related Components

	Using Data- Aware Controls
	Data in a Grid
	DBNavigator and Dataset Actions
	Text- Based Data- Aware Controls
	List- Based Data- Aware Controls
	Using Lookup Controls
	Graphical Data- Aware Controls

	The DataSet Component
	The Status of a Dataset

	The Fields of a Dataset
	Using Field Objects
	A Hierarchy of Field Classes
	Adding a Calculated Field
	Lookup Fields
	Handling Null Values with Field Events

	Navigating a Dataset
	Locating Records in a Table
	The Total of a Table Column
	Using Bookmarks
	Editing a Table Column

	Customizing a Database Grid
	Painting a DBGrid
	A Check Box Cell
	A Grid Allowing Multiple Selection
	Dragging to a Grid

	Database Applications with Standard Controls
	Mimicking Delphi Data- Aware Controls
	Sending Requests to the Database
	Database Events
	Field Events
	Editing Dates with a Calendar

	A Multirecord Grid
	Moving Control Grid Panels

	Handling Database Errors
	What's Next?

	Chapter 14: Client/ Server Programming
	An Overview of Client/ Server Programming
	From Local to Client/ Server
	Unidirectional Cursors
	Parametric Queries and Null Values

	Elements of Database Design
	Entities and Relations
	From Primary Keys to OIDs
	More Constraints

	Client/ Server with the BDE
	SQL Links
	The Database Component
	BDE Table and Query Components in Client/ Server
	Live Queries and Cached Updates
	The UpdateSQL Component
	Using Transactions
	Using SQL Monitor

	The dbExpress Library
	Working with Unidirectional Cursors
	Platforms and Databases
	The dbExpress Components
	A Simple dbExpress Demo
	When One- Way Is Enough: Printing Data

	ClientDataSet and MyBase
	The Packets and the Cache
	Grouping and Aggregates
	Manipulating Updates
	Updating the Data
	MyBase (or the Briefcase Model)

	What's Next?

	Chapter 15: InterBase and IBX
	Getting Started with InterBase 6
	Inside InterBase
	IBConsole

	Server- Side Programming
	Stored Procedures
	Triggers (and Generators)

	Using InterBase Express
	IBX Dataset Components
	IBX Administrative Components
	From BDE to IBX
	Building a Live Query
	Monitoring InterBase Express
	Getting More System Data

	Real- World Blocks
	Generators and IDs
	Case- Insensitive Searches
	Handling Locations and People
	Building a User Interface
	Booking Classes
	Building a Lookup Dialog
	Adding a Free Query Form

	What's Next?

	Chapter 16: ActiveX Data Objects
	Microsoft Data Access Components (MDAC)
	OLE DB Providers
	MDAC OLE DB Providers

	dbGo
	TADOConnection

	Data Link Files
	Dynamic Properties
	Getting Schema Information
	Using the Jet Engine
	Paradox
	Excel
	Text Files
	Importing and Exporting

	Cursor Locations and Cursor Types
	Ask and Ye Shall Not Receive
	RecordCount = -1

	Client Indexes
	Cloning
	Transaction Processing
	Nested Transactions

	Lock Types
	Pessimistic Locking
	Jet Page and Row Locking

	Updating JOINs
	Batch Updates
	Optimistic Locking
	Resolving Update Conflicts

	Disconnected Recordsets
	Connection Pooling
	Persistent Recordsets
	The Briefcase Model
	Deploying MDAC
	What's Next?

	Chapter 17: Multitier Database Applications with DataSnap
	One, Two, Three Levels
	The Technical Foundation of DataSnap
	The IAppServer Interface
	The Connection Protocol
	Providing Data Packets
	Delphi Support Components (Client- Side)
	Delphi Support Components (Server- Side)

	Building a Sample Application
	The First Application Server
	The First Thin Client

	Adding Constraints to the Server
	Field and Table Constraints
	Including Field Properties
	Field and Table Events

	Adding Features to the Client
	The Update Sequence
	Refreshing Data

	Advanced DataSnap Features
	Parametric Queries
	Custom Method Calls
	Master/ Detail Relations
	Using the Connection Broker
	More Provider Options
	The Simple Object Broker
	Object Pooling
	Customizing the Data Packets

	What's Next?

	Chapter 18: Writing Database Components
	The Data Link
	The TDataLink Class
	Derived DataLink Classes

	Writing Field- Oriented Data- Aware Controls
	A Read- Only ProgressBar
	A Read- Write TrackBar

	Creating Custom Data Links
	A Record Viewer Component

	Customizing the DBGrid Component
	Building Custom Datasets
	The Definition of the Classes
	Section I: Initialization, Opening, and Closing
	Section II: Movement and Bookmark Management
	Section III: Record Buffers and Field Management
	Section IV: From Buffers to Fields
	Testing the Stream- Based DataSet

	A Directory in a Dataset
	A List as a Dataset
	Directory Data

	What's Next?

	Part IV: Beyond Delphi: Connecting with the World
	Chapter 19: COM Programming
	A Short History of OLE and COM
	Implementing IUnknown
	Globally Unique Identifiers
	The Role of Class Factories
	Class Factories and Other Delphi COM Classes

	A First COM Server
	COM Interfaces and Objects
	Initializing the COM Object
	Testing the COM Server
	Using Interface Properties
	Calling Virtual Methods

	Windows Shell Programming
	Creating Shortcuts
	Using Shell APIs and Objects
	The "To- Do File" Application
	Creating a Context- Menu Handler

	What's Next?

	Chapter 20: From Automation to COM+
	OLE Automation
	Introducing Type Libraries

	Writing an OLE Automation Server
	The Type- Library Editor
	The Code of the Server
	Registering the Automation Server
	Writing a Client for Our Server
	Interfaces, Variants, and Dispatch Interfaces: Testing the Speed Difference
	The Scope of Automation Objects
	The Server in a Component
	OLE Data Types

	Using Office Programs
	Sending Data to Microsoft Word
	Building an Excel Table

	Using Compound Documents
	The OLE Container Component

	Using the Internal Object
	Introducing ActiveX Controls
	ActiveX Controls Versus Delphi Components
	Using ActiveX Controls in Delphi

	Writing ActiveX Controls
	Building an ActiveX Arrow
	Adding New Properties
	Adding a Property Page

	ActiveForms
	ActiveForm Internals
	The XClock ActiveX Control

	ActiveX in Web Pages
	The Role of an ActiveX Form on a Web Page
	Setting Properties for the XArrow

	Introducing COM+
	Creating a COM+ Component
	Transactional Data Modules
	COM+ Events

	What's Next?

	Chapter 21: Internet Programming: Sockets and Indy Components
	Foundations of Socket Programming
	Configuring a Local Network: IP Addresses
	Local Domain Names
	TCP Ports
	High- Level Protocols
	Socket Connections

	Delphi Socket Components
	Host and Port
	Blocking, Nonblocking, and Multithreaded Connections
	Using Sockets
	Using Sockets with a Custom Protocol
	Sending Database Data over a Socket Connection
	Working with Blocking Sockets and Threads

	Internet Protocols
	Sending and Receiving Mail
	Sending Messages with Your Mail Program
	Mail In and Out

	Working with HTTP
	Grabbing HTTP Content
	Browsing on Your Own
	A Simple HTTP Server

	Generating HTML
	Delphi's HTML Producer Components
	Producing HTML Pages
	Producing Pages of Data
	Producing HTML Tables
	Using Style Sheets
	Dynamic Pages from a Custom Server
	Publishing Static Databases on the Web

	What's Next?

	Chapter 22: Web Programming with WebBroker and WebSnap
	Dynamic Web Pages
	An Overview of CGI
	An Overview of ISAPI/ NSAPI

	Delphi's WebBroker Technology
	Building a Multipurpose WebModule
	Dynamic Database Reporting
	Of Queries and Forms
	Debugging with the Web App Debugger
	Working with Apache

	Practical Examples
	A Web Hit Counter
	Searching with a Web Search Engine

	Active Server Pages
	WebSnap
	Managing Multiple Pages
	Server- Side Scripts
	Adapters

	WebSnap and Databases
	A WebSnap Data Module
	The DataSetAdapter
	Editing the Data in a Form
	Master/ Detail in WebSnap

	Sessions, Users, and Permissions
	Using Sessions
	Requesting Login

	What's Next?

	Chapter 23: XML and SOAP
	Introducing XML
	Core XML Syntax
	Well- Formed XML
	Working with XML

	Managing XML Documents
	Programming with the DOM
	XML Data Binding Interfaces
	Using the SAX API
	Mapping XML with Transformations

	XML and Internet Express
	The XMLBroker Component
	JavaScript Support

	Using XSLT
	XSTL in Practice
	XSLT with WebSnap
	Direct XSL Transformations with the DOM

	Web Services
	SOAP and WSDL
	BabelFish Translations
	Building a Web Service
	DataSnap over SOAP

	What's Next?

	Delphi 6 Developer's Guide
	Contents
	Tables
	Figures
	Introduction
	What’s in this manual?
	Manual conventions
	Developer support services
	Ordering printed documentation

	Part I: Programming with Delphi
	2: Developing applications with Delphi
	Integrated development environment
	Designing applications
	Developing applications
	Creating projects
	Editing code
	Compiling applications
	Debugging applications
	Deploying applications

	3: Using the component libraries
	Understanding the component libraries
	Properties, methods, and events
	Properties
	Methods
	Events
	User events
	System events

	Object Pascal and the class libraries
	Using the object model
	What is an object?
	Examining a Delphi object
	Changing the name of a component

	Inheriting data and code from an object
	Scope and qualifiers
	Private, protected, public, and published declarations

	Using object variables
	Creating, instantiating, and destroying objects
	Components and ownership

	Objects, components, and controls
	TObject branch
	TPersistent branch
	TComponent branch
	TControl branch
	TWinControl/TWidgetControl branch
	Properties common to TControl
	Action properties
	Position, size, and alignment properties
	Display properties
	Parent properties
	A navigation property
	Drag-and-drop properties
	Drag-and-dock properties (VCL only)

	Standard events common to TControl
	Properties common to TWinControl and TWidgetControl
	General information properties
	Border style display properties
	Navigation properties
	Drag-and-dock properties (VCL only)

	Events common to TWinControl and TWidgetControl
	Creating the application user interface
	Using Delphi components
	Setting component properties
	Using the Object Inspector
	Using property editors
	Setting properties at runtime

	Calling methods
	Working with events and event handlers
	Generating a new event handler
	Generating a handler for a component’s default event
	Locating event handlers
	Associating an event with an existing event handler
	Associating menu events with event handlers
	Deleting event handlers

	VCL and CLX components
	Adding custom components to the Component palette
	Text controls
	Text control properties
	Properties of memo and rich text controls
	Rich text controls (VCL only)

	Specialized input controls
	Scroll bars
	Track bars
	Up-down controls (VCL only)
	Spin edit controls (CLX only)
	Hot key controls (VCL only)
	Splitter controls

	Buttons and similar controls
	Button controls
	Bitmap buttons
	Speed buttons
	Check boxes
	Radio buttons
	Toolbars
	Cool bars (VCL only)

	Handling lists
	List boxes and check-list boxes
	Combo boxes
	Tree views
	List views
	Date-time pickers and month calendars (VCL only)

	Grouping components
	Group boxes and radio groups
	Panels
	Scroll boxes
	Tab controls
	Page controls
	Header controls

	Providing visual feedback
	Labels and static text components
	Status bars
	Progress bars
	Help and hint properties

	Grids
	Draw grids
	String grids

	Value list editors (VCL only)
	Displaying graphics
	Images
	Shapes
	Bevels
	Paint boxes
	Animation control (VCL only)

	Developing dialog boxes
	Using open dialog boxes

	Using helper objects
	Working with lists
	Working with string lists
	Loading and saving string lists
	Creating a new string list
	Manipulating strings in a list
	Associating objects with a string list

	Windows registry and INI files
	Using TIniFile (VCL only)
	Using TRegistry
	Using TRegIniFile

	Creating drawing spaces
	Printing
	Using streams

	4: Common programming tasks
	Understanding classes
	Defining classes
	Handling exceptions
	Protecting blocks of code
	Responding to exceptions
	Exceptions and the flow of control
	Nesting exception responses

	Protecting resource allocations
	What kind of resources need protection?
	Creating a resource protection block

	Handling RTL exceptions
	What are RTL exceptions?
	Creating an exception handler
	Exception handling statements
	Using the exception instance
	Scope of exception handlers
	Providing default exception handlers
	Handling classes of exceptions
	Reraising the exception

	Handling component exceptions
	Exception handling with external sources
	Silent exceptions
	Defining your own exceptions
	Declaring an exception object type
	Raising an exception

	Using interfaces
	Interfaces as a language feature
	Implementing interfaces across the hierarchy
	Using interfaces with procedures

	Implementing IInterface
	TInterfacedObject
	Using the as operator
	Reusing code and delegation
	Using implements for delegation
	Aggregation

	Memory management of interface objects
	Using reference counting
	Not using reference counting

	Using interfaces in distributed applications (VCL only)

	Defining custom variants
	Storing a custom variant type’s data
	Creating a class to enable the custom variant type
	Enabling casting
	Implementing binary operations
	Implementing comparison operations
	Implementing unary operations
	Copying and clearing custom variants
	Loading and saving custom variant values
	Using the TCustomVariantType descendant

	Writing utilities to work with a custom variant type
	Supporting properties and methods in custom variants
	Using TInvokeableVariantType
	Using TPublishableVariantType

	Working with strings
	Character types
	String types
	Short strings
	Long strings
	WideString
	PChar types
	OpenString

	Runtime library string handling routines
	Wide character routines
	Commonly used long string routines

	Declaring and initializing strings
	Mixing and converting string types
	String to PChar conversions
	String dependencies
	Returning a PChar local variable
	Passing a local variable as a PChar

	Compiler directives for strings
	Strings and characters: related topics

	Working with files
	Manipulating files
	Deleting a file
	Finding a file
	Renaming a file
	File date-time routines
	Copying a file

	File types with file I/O
	Using file streams
	Creating and opening files
	Using the file handle
	Reading and writing to files
	Reading and writing strings
	Seeking a file
	File position and size
	Copying

	Converting measurements
	Performing conversions
	Performing simple conversions
	Performing complex conversions

	Adding new measurement types
	Creating a simple conversion family and adding units
	Using a conversion function
	Using a class to manage conversions

	Defining data types

	5: Building applications, components, and libraries
	Creating applications
	GUI applications
	User interface models
	SDI applications
	MDI applications
	Setting IDE, project, and compilation options

	Programming templates
	Console applications
	Service applications
	Service threads
	Service name properties
	Debugging services

	Creating packages and DLLs
	When to use packages and DLLs

	Writing database applications
	Distributing database applications

	Creating Web server applications
	Using Web Broker
	Creating WebSnap applications
	Using InternetExpress
	Creating Web Services applications

	Writing applications using COM
	Using COM and DCOM
	Using MTS and COM+

	Using data modules
	Creating and editing standard data modules
	Naming a data module and its unit file
	Placing and naming components
	Using component properties and events in a data module
	Creating business rules in a data module

	Accessing a data module from a form
	Adding a remote data module to an application server project

	Using the Object Repository
	Sharing items within a project
	Adding items to the Object Repository
	Sharing objects in a team environment
	Using an Object Repository item in a project
	Copying an item
	Inheriting an item
	Using an item

	Using project templates
	Modifying shared items
	Specifying a default project, new form, and main form

	Enabling Help in applications
	Help system interfaces
	Implementing ICustomHelpViewer
	Communicating with the Help Manager
	Asking the Help Manager for information
	Displaying keyword-based Help
	Displaying tables of contents
	Implementing IExtendedHelpViewer
	Implementing IHelpSelector
	Registering Help system objects
	Registering Help viewers
	Registering Help selectors

	Using Help in a VCL Application
	How TApplication processes VCL Help
	How VCL controls process Help

	Using Help in a CLX Application
	How TApplication processes CLX Help
	How CLX controls process Help

	Calling a Help system directly
	Using IHelpSystem
	Customizing the IDE Help system

	6: Developing the application user interface
	Controlling application behavior
	Using the main form
	Adding forms
	Linking forms
	Avoiding circular unit references

	Hiding the main form
	Working at the application level
	Handling the screen
	Managing layout

	Responding to event notification
	Using forms
	Controlling when forms reside in memory
	Displaying an auto-created form
	Creating forms dynamically
	Creating modeless forms such as windows
	Using a local variable to create a form instance

	Passing additional arguments to forms
	Retrieving data from forms
	Retrieving data from modeless forms
	Retrieving data from modal forms

	Reusing components and groups of components
	Creating and using component templates
	Working with frames
	Creating frames
	Adding frames to the component palette
	Using and modifying frames
	Sharing frames

	Organizing actions for toolbars and menus
	What is an action?
	Setting up action bands
	Creating toolbars and menus
	Adding color, patterns, or pictures to menus, buttons, and toolbars
	Adding icons to menus and toolbars
	Creating toolbars and menus that users can customize
	Hiding unused items and categories in action bands

	Using action lists
	Setting up action lists
	What happens when an action fires
	Responding with events
	How actions find their targets

	Updating actions
	Predefined action classes
	Writing action components
	Registering actions

	Creating and managing menus
	Opening the Menu Designer
	Building menus
	Naming menus
	Naming the menu items
	Adding, inserting, and deleting menu items
	Adding separator bars
	Specifying accelerator keys and keyboard shortcuts

	Creating submenus
	Creating submenus by demoting existing menus
	Moving menu items
	Adding images to menu items
	Viewing the menu

	Editing menu items in the Object Inspector
	Using the Menu Designer context menu
	Commands on the context menu
	Switching between menus at design time

	Using menu templates
	Saving a menu as a template
	Naming conventions for template menu items and event handlers

	Manipulating menu items at runtime
	Merging menus
	Specifying the active menu: Menu property
	Determining the order of merged menu items: GroupIndex property

	Importing resource files

	Designing toolbars and cool bars
	Adding a toolbar using a panel component
	Adding a speed button to a panel
	Assigning a speed button’s glyph
	Setting the initial condition of a speed button
	Creating a group of speed buttons
	Allowing toggle buttons

	Adding a toolbar using the toolbar component
	Adding a tool button
	Assigning images to tool buttons
	Setting tool button appearance and initial conditions
	Creating groups of tool buttons
	Allowing toggled tool buttons

	Adding a cool bar component
	Setting the appearance of the cool bar

	Responding to clicks
	Assigning a menu to a tool button

	Adding hidden toolbars
	Hiding and showing toolbars
	Demo programs

	7: Working with controls
	Implementing drag-and-drop in controls
	Starting a drag operation
	Accepting dragged items
	Dropping items
	Ending a drag operation
	Customizing drag and drop with a drag object
	Changing the drag mouse pointer

	Implementing drag-and-dock in controls
	Making a windowed control a docking site
	Making a control a dockable child
	Controlling how child controls are docked
	Controlling how child controls are undocked
	Controlling how child controls respond to drag-and-dock operations

	Working with text in controls
	Setting text alignment
	Adding scroll bars at runtime
	Adding the clipboard object
	Selecting text
	Selecting all text
	Cutting, copying, and pasting text
	Deleting selected text
	Disabling menu items
	Providing a pop-up menu
	Handling the OnPopup event

	Adding graphics to controls
	Indicating that a control is owner-drawn
	Adding graphical objects to a string list
	Adding images to an application
	Adding images to a string list
	Drawing owner-drawn items

	Sizing owner-draw items
	Drawing owner-draw items

	8: Working with graphics and multimedia
	Overview of graphics programming
	Refreshing the screen
	Types of graphic objects
	Common properties and methods of Canvas
	Using the properties of the Canvas object
	Using pens
	Using brushes
	Reading and setting pixels

	Using Canvas methods to draw graphic objects
	Drawing lines and polylines
	Drawing shapes

	Handling multiple drawing objects in your application
	Keeping track of which drawing tool to use
	Changing the tool with speed buttons
	Using drawing tools

	Drawing on a graphic
	Making scrollable graphics
	Adding an image control

	Loading and saving graphics files
	Loading a picture from a file
	Saving a picture to a file
	Replacing the picture

	Using the clipboard with graphics
	Copying graphics to the clipboard
	Cutting graphics to the clipboard
	Pasting graphics from the clipboard

	Rubber banding example
	Responding to the mouse
	Responding to a mouse-down action
	Adding a field to a form object to track mouse actions
	Refining line drawing

	Working with multimedia
	Adding silent video clips to an application
	Example of adding silent video clips

	Adding audio and/or video clips to an application
	Example of adding audio and/or video clips (VCL only)

	9: Writing multi-threaded applications
	Defining thread objects
	Initializing the thread
	Assigning a default priority
	Indicating when threads are freed

	Writing the thread function
	Using the main VCL/CLX thread
	Using thread-local variables
	Checking for termination by other threads
	Handling exceptions in the thread function

	Writing clean-up code

	Coordinating threads
	Avoiding simultaneous access
	Locking objects
	Using critical sections
	Using the multi-read exclusive-write synchronizer
	Other techniques for sharing memory

	Waiting for other threads
	Waiting for a thread to finish executing
	Waiting for a task to be completed

	Executing thread objects
	Overriding the default priority
	Starting and stopping threads

	Debugging multi-threaded applications

	10: Using CLX for cross-platform development
	Creating cross-platform applications
	Porting VCL applications to CLX
	Porting techniques
	Platform-specific ports
	Cross-platform ports
	Windows emulation ports

	Porting your application
	CLX versus VCL
	What CLX does differently
	Look and feel
	Styles
	Variants
	Registry
	Other differences

	Missing in CLX
	Features that will not port
	CLX and VCL unit comparison
	Differences in CLX object constructors
	Sharing source files between Windows and Linux
	Environmental differences between Windows and Linux
	Directory structure on Linux
	Writing portable code
	Using conditional directives
	Terminating conditional directives
	Emitting messages
	Including inline assembler code

	Messages and system events
	Programming differences on Linux

	Cross-platform database applications
	dbExpress differences
	Component-level differences
	User interface-level differences
	Porting database applications to Linux
	Updating data in dbExpress applications

	Cross-platform Internet applications
	Porting Internet applications to Linux

	11: Working with packages and components
	Why use packages?
	Packages and standard DLLs

	Runtime packages
	Using packages in an application
	Dynamically loading packages
	Deciding which runtime packages to use
	Custom packages

	Design-time packages
	Installing component packages

	Creating and editing packages
	Creating a package
	Editing an existing package
	Editing package source files manually
	Understanding the structure of a package
	Naming packages
	Requires clause
	Contains clause

	Compiling packages
	Package-specific compiler directives
	Using the command-line compiler and linker
	Package files created by a successful compilation

	Deploying packages
	Deploying applications that use packages
	Distributing packages to other developers
	Package collection files

	12: Creating international applications
	Internationalization and localization
	Internationalization
	Localization

	Internationalizing applications
	Enabling application code
	Character sets
	OEM and ANSI character sets
	Multibyte character sets
	Wide characters
	Including bi-directional functionality in applications
	BiDiMode property
	Locale-specific features

	Designing the user interface
	Text
	Graphic images
	Formats and sort order
	Keyboard mappings

	Isolating resources
	Creating resource DLLs
	Using resource DLLs
	Dynamic switching of resource DLLs

	Localizing applications
	Localizing resources

	13: Deploying applications
	Deploying general applications
	Using installation programs
	Identifying application files
	Application files
	Package files
	Merge modules
	ActiveX controls
	Helper applications
	DLL locations

	Deploying CLX applications
	Deploying database applications
	Deploying dbExpress database applications
	Deploying BDE applications
	Borland Database Engine
	SQL Links

	Deploying multi-tiered database applications (DataSnap)

	Deploying Web applications
	Deployment on Apache

	Programming for varying host environments
	Screen resolutions and color depths
	Considerations when not dynamically resizing
	Considerations when dynamically resizing forms and controls
	Accommodating varying color depths

	Fonts
	Operating systems versions

	Software license requirements
	DEPLOY
	README
	No-nonsense license agreement
	Third-party product documentation

	Part II: Developing database applications
	14: Designing database applications
	Using databases
	Types of databases
	Database security
	Transactions
	Referential integrity, stored procedures, and triggers

	Database architecture
	General structure
	The user interface form
	The data module

	Connecting directly to a database server
	Using a dedicated file on disk
	Connecting to another dataset
	Connecting a client dataset to another dataset in the same application
	Using a multi-tiered architecture

	Combining approaches

	Designing the user interface
	Analyzing data
	Writing reports

	15: Using data controls
	Using common data control features
	Associating a data control with a dataset
	Changing the associated dataset at runtime
	Enabling and disabling the data source
	Responding to changes mediated by the data source

	Editing and updating data
	Enabling editing in controls on user entry
	Editing data in a control

	Disabling and enabling data display
	Refreshing data display
	Enabling mouse, keyboard, and timer events

	Choosing how to organize the data
	Displaying a single record
	Displaying data as labels
	Displaying and editing fields in an edit box
	Displaying and editing text in a memo control
	Displaying and editing text in a rich edit memo control
	Displaying and editing graphics fields in an image control
	Displaying and editing data in list and combo boxes
	Handling Boolean field values with check boxes
	Restricting field values with radio controls

	Displaying multiple records

	Viewing and editing data with TDBGrid
	Using a grid control in its default state
	Creating a customized grid
	Understanding persistent columns
	Creating persistent columns
	Deleting persistent columns
	Arranging the order of persistent columns
	Setting column properties at design time
	Defining a lookup list column
	Putting a button in a column
	Restoring default values to a column

	Displaying ADT and array fields
	Setting grid options
	Editing in the grid
	Controlling grid drawing
	Responding to user actions at runtime

	Creating a grid that contains other data-aware controls
	Navigating and manipulating records
	Choosing navigator buttons to display
	Hiding and showing navigator buttons at design time
	Hiding and showing navigator buttons at runtime

	Displaying fly-over help
	Using a single navigator for multiple datasets

	16: Using decision support components
	Overview
	About crosstabs
	One-dimensional crosstabs
	Multidimensional crosstabs

	Guidelines for using decision support components
	Using datasets with decision support components
	Creating decision datasets with TQuery or TTable
	Creating decision datasets with the Decision Query editor

	Using decision cubes
	Decision cube properties and events
	Using the Decision Cube editor
	Viewing and changing dimension settings
	Setting the maximum available dimensions and summaries
	Viewing and changing design options

	Using decision sources
	Properties and events

	Using decision pivots
	Decision pivot properties

	Creating and using decision grids
	Creating decision grids
	Using decision grids
	Opening and closing decision grid fields
	Reorganizing rows and columns in decision grids
	Drilling down for detail in decision grids
	Limiting dimension selection in decision grids

	Decision grid properties

	Creating and using decision graphs
	Creating decision graphs
	Using decision graphs
	The decision graph display
	Customizing decision graphs
	Setting decision graph template defaults
	Customizing decision graph series

	Decision support components at runtime
	Decision pivots at runtime
	Decision grids at runtime
	Decision graphs at runtime

	Decision support components and memory control
	Setting maximum dimensions, summaries, and cells
	Setting dimension state
	Using paged dimensions

	17: Connecting to databases
	Using implicit connections
	Controlling connections
	Connecting to a database server
	Disconnecting from a database server

	Controlling server login
	Managing transactions
	Starting a transaction
	Ending a transaction
	Ending a successful transaction
	Ending an unsuccessful transaction

	Specifying the transaction isolation level

	Sending commands to the server
	Working with associated datasets
	Closing all datasets without disconnecting from the server
	Iterating through the associated datasets

	Obtaining metadata
	Listing available tables
	Listing the fields in a table
	Listing available stored procedures
	Listing available indexes
	Listing stored procedure parameters

	18: Understanding datasets
	Using TDataSet descendants
	Determining dataset states
	Opening and closing datasets
	Navigating datasets
	Using the First and Last methods
	Using the Next and Prior methods
	Using the MoveBy method
	Using the Eof and Bof properties
	Eof
	Bof

	Marking and returning to records
	The Bookmark property
	The GetBookmark method
	The GotoBookmark and BookmarkValid methods
	The CompareBookmarks method
	The FreeBookmark method
	A bookmarking example

	Searching datasets
	Using Locate
	Using Lookup

	Displaying and editing a subset of data using filters
	Enabling and disabling filtering
	Creating filters
	Setting the Filter property
	Writing an OnFilterRecord event handler
	Switching filter event handlers at runtime

	Setting filter options
	Navigating records in a filtered dataset

	Modifying data
	Editing records
	Adding new records
	Inserting records
	Appending records

	Deleting records
	Posting data
	Canceling changes
	Modifying entire records

	Calculating fields
	Types of datasets
	Using table-type datasets
	Advantages of using table-type datasets
	Sorting records with indexes
	Obtaining information about indexes
	Specifying an index with IndexName
	Creating an index with IndexFieldNames

	Using Indexes to search for records
	Executing a search with Goto methods
	Executing a search with Find methods
	Specifying the current record after a successful search
	Searching on partial keys
	Repeating or extending a search

	Limiting records with ranges
	Understanding the differences between ranges and filters
	Specifying Ranges
	Modifying a range
	Applying or canceling a range

	Creating master/detail relationships
	Making the table a detail of another dataset
	Using nested detail tables

	Controlling Read/write access to tables
	Creating and deleting tables
	Creating tables
	Deleting tables

	Emptying tables
	Synchronizing tables

	Using query-type datasets
	Specifying the query
	Specifying a query using the SQL property
	Specifying a query using the CommandText property

	Using parameters in queries
	Supplying parameters at design time
	Supplying parameters at runtime

	Establishing master/detail relationships using parameters
	Preparing queries
	Executing queries that don’t return a result set
	Using unidirectional result sets

	Using stored procedure-type datasets
	Working with stored procedure parameters
	Setting up parameters at design time
	Using parameters at runtime

	Preparing stored procedures
	Executing stored procedures that don’t return a result set
	Fetching multiple result sets

	19: Working with field components
	Dynamic field components
	Persistent field components
	Creating persistent fields
	Arranging persistent fields
	Defining new persistent fields
	Defining a data field
	Defining a calculated field
	Programming a calculated field
	Defining a lookup field
	Defining an aggregate field

	Deleting persistent field components
	Setting persistent field properties and events
	Setting display and edit properties at design time
	Setting field component properties at runtime
	Creating attribute sets for field components
	Associating attribute sets with field components
	Removing attribute associations
	Controlling and masking user input
	Using default formatting for numeric, date, and time fields
	Handling events

	Working with field component methods at runtime
	Displaying, converting, and accessing field values
	Displaying field component values in standard controls
	Converting field values
	Accessing field values with the default dataset property
	Accessing field values with a dataset’s Fields property
	Accessing field values with a dataset’s FieldByName method

	Setting a default value for a field
	Working with constraints
	Creating a custom constraint
	Using server constraints

	Using object fields
	Displaying ADT and array fields
	Working with ADT fields
	Using persistent field components
	Using the dataset’s FieldByName method
	Using the dateset’s FieldValues property
	Using the ADT field’s FieldValues property
	Using the ADT field’s Fields property

	Working with array fields
	Using persistent fields
	Using the array field’s FieldValues property
	Using the array field’s Fields property

	Working with dataset fields
	Displaying dataset fields
	Accessing data in a nested dataset

	Working with reference fields
	Displaying reference fields
	Accessing data in a reference field

	20: Using the Borland Database Engine
	BDE-based architecture
	Using BDE-enabled datasets
	Associating a dataset with database and session connections
	Caching BLOBs
	Obtaining a BDE handle

	Using TTable
	Specifying the table type for local tables
	Controlling read/write access to local tables
	Specifying a dBASE index file
	Renaming local tables
	Importing data from another table

	Using TQuery
	Creating heterogeneous queries
	Obtaining an editable result set
	Updating read-only result sets

	Using TStoredProc
	Binding parameters
	Working with Oracle overloaded stored procedures

	Connecting to databases with TDatabase
	Associating a database component with a session
	Understanding database and session component interactions
	Identifying the database
	Opening a connection using TDatabase
	Using database components in data modules

	Managing database sessions
	Activating a session
	Specifying default database connection behavior
	Managing database connections
	Working with password-protected Paradox and dBASE tables
	Specifying Paradox directory locations
	Working with BDE aliases
	Retrieving information about a session
	Creating additional sessions
	Naming a session
	Managing multiple sessions

	Using transactions with the BDE
	Using passthrough SQL
	Using local transactions

	Using the BDE to cache updates
	Enabling BDE-based cached updates
	Applying BDE-based cached updates
	Applying cached updates using a database
	Applying cached updates with dataset component methods
	Creating an OnUpdateRecord event handler
	Handling cached update errors

	Using update objects to update a dataset
	Creating SQL statements for update components
	Using multiple update objects
	Executing the SQL statements

	Using TBatchMove
	Creating a batch move component
	Specifying a batch move mode
	Appending records
	Updating records
	Appending and updating records
	Copying datasets
	Deleting records

	Mapping data types
	Executing a batch move
	Handling batch move errors

	The Data Dictionary
	Tools for working with the BDE

	21: Working with ADO components
	Overview of ADO components
	Connecting to ADO data stores
	Connecting to a data store using TADOConnection
	Accessing the connection object

	Fine-tuning a connection
	Forcing asynchronous connections
	Controlling timeouts
	Indicating the types of operations the connection supports
	Specifying whether the connection automatically initiates transactions

	Accessing the connection’s commands
	ADO connection events
	Events when establishing a connection
	Events when disconnecting
	Events when managing transactions
	Other events

	Using ADO datasets
	Connecting an ADO dataset to a data store
	Working with record sets
	Filtering records based on bookmarks
	Fetching records asynchronously
	Using batch updates
	Loading data from and saving data to files
	Using TADODataSet

	Using Command objects
	Specifying the command
	Using the Execute method
	Canceling commands
	Retrieving result sets with commands
	Handling command parameters

	22: Using unidirectional datasets
	Types of unidirectional datasets
	Connecting to the database server
	Setting up TSQLConnection
	Identifying the driver
	Specifying connection parameters
	Naming a connection description
	Using the Connection Editor

	Specifying what data to display
	Representing the results of a query
	Representing the records in a table
	Representing a table using TSQLDataSet
	Representing a table using TSQLTable

	Representing the results of a stored procedure

	Fetching the data
	Preparing the dataset
	Fetching multiple datasets

	Executing commands that do not return records
	Specifying the command to execute
	Executing the command
	Creating and modifying server metadata

	Setting up master/detail linked cursors
	Accessing schema information
	Fetching metadata into a unidirectional dataset
	Fetching data after using the dataset for metadata
	The structure of metadata datasets

	Debugging dbExpress applications
	Using TSQLMonitor to monitor SQL commands
	Using a callback to monitor SQL commands

	23: Using client datasets
	Working with data using a client dataset
	Navigating data in client datasets
	Limiting what records appear
	Editing data
	Undoing changes
	Saving changes

	Constraining data values
	Specifying custom constraints

	Sorting and indexing
	Adding a new index
	Deleting and switching indexes
	Using indexes to group data

	Representing calculated values
	Using internally calculated fields in client datasets

	Using maintained aggregates
	Specifying aggregates
	Aggregating over groups of records
	Obtaining aggregate values

	Copying data from another dataset
	Assigning data directly
	Cloning a client dataset cursor

	Adding application-specific information to the data

	Using a client dataset to cache updates
	Overview of using cached updates
	Choosing the type of dataset for caching updates
	Indicating what records are modified
	Updating records
	Applying updates
	Intervening as updates are applied
	Reconciling update errors

	Using a client dataset with a provider
	Specifying a provider
	Requesting data from the source dataset or document
	Incremental fetching
	Fetch-on-demand

	Getting parameters from the source dataset
	Passing parameters to the source dataset
	Sending query or stored procedure parameters
	Limiting records with parameters

	Handling constraints from the server
	Refreshing records
	Communicating with providers using custom events
	Overriding the source dataset

	Using a client dataset with file-based data
	Creating a new dataset
	Loading data from a file or stream
	Merging changes into data
	Saving data to a file or stream

	24: Using provider components
	Determining the source of data
	Using a dataset as the source of the data
	Using an XML document as the source of the data

	Communicating with the client dataset
	Choosing how to apply updates using a dataset provider
	Controlling what information is included in data packets
	Specifying what fields appear in data packets
	Setting options that influence the data packets
	Adding custom information to data packets

	Responding to client data requests
	Responding to client update requests
	Editing delta packets before updating the database
	Influencing how updates are applied
	Screening individual updates
	Resolving update errors on the provider
	Applying updates to datasets that do not represent a single table

	Responding to client-generated events
	Handling server constraints

	25: Creating multi-tiered applications
	Advantages of the multi-tiered database model
	Understanding provider-based multi-tiered applications
	Overview of a three-tiered application
	The structure of the client application
	The structure of the application server
	The contents of the remote data module
	Using transactional data modules
	Pooling remote data modules

	Choosing a connection protocol
	Using DCOM connections
	Using Socket connections
	Using Web connections
	Using SOAP connections
	Using CORBA connections

	Building a multi-tiered application
	Creating the application server
	Setting up the remote data module
	Configuring TRemoteDataModule
	Configuring TMTSDataModule
	Configuring TSoapDataModule
	Configuring TCorbaDataModule

	Extending the application server’s interface
	Adding callbacks to the application server’s interface
	Extending a transactional application server’s interface

	Managing transactions in multi-tiered applications
	Supporting master/detail relationships
	Supporting state information in remote data modules
	Using multiple remote data modules

	Registering the application server
	Creating the client application
	Connecting to the application server
	Specifying a connection using DCOM
	Specifying a connection using sockets
	Specifying a connection using HTTP
	Specifying a connection using SOAP
	Specifying a connection using CORBA
	Brokering connections

	Managing server connections
	Connecting to the server
	Dropping or changing a server connection

	Calling server interfaces
	Connecting to an application server that uses multiple data modules

	Writing Web-based client applications
	Distributing a client application as an ActiveX control
	Creating an Active Form for the client application

	Building Web applications using InternetExpress
	Building an InternetExpress application
	Using the javascript libraries
	Granting permission to access and launch the application server

	Using an XML broker
	Fetching XML data packets
	Applying updates from XML delta packets

	Creating Web pages with an InternetExpress page producer
	Using the Web page editor
	Setting Web item properties
	Customizing the InternetExpress page producer template

	26: Using XML in database applications
	Defining transformations
	Mapping between XML nodes and data packet fields
	Using XMLMapper
	Loading an XML schema or data packet
	Defining mappings
	Generating transformation files

	Converting XML documents into data packets
	Specifying the source XML document
	Specifying the transformation
	Obtaining the resulting data packet
	Converting user-defined nodes

	Using an XML document as the source for a provider
	Using an XML document as the client of a provider
	Fetching an XML document from a provider
	Applying updates from an XML document to a provider

	Part III: Writing Internet applications
	27: Creating Internet applications
	About Web Broker and WebSnap
	Terminology and standards
	Parts of a Uniform Resource Locator
	URI vs. URL

	HTTP request header information

	HTTP server activity
	Composing client requests
	Serving client requests
	Responding to client requests

	Types of Web server applications
	ISAPI and NSAPI
	Apache
	CGI stand-alone
	Win-CGI stand-alone

	Debugging server applications
	Using the Web Application Debugger
	Launching your application with the Web Application Debugger
	Converting your application to another type of Web server application

	Debugging Web applications that are DLLs
	Debugging under Windows NT
	Debugging under Windows 2000

	28: Using Web Broker
	Creating Web server applications with Web Broker
	The Web module
	The Web Application object

	The structure of a Web Broker application
	The Web dispatcher
	Adding actions to the dispatcher
	Dispatching request messages

	Action items
	Determining when action items fire
	The target URL
	The request method type
	Enabling and disabling action items
	Choosing a default action item

	Responding to request messages with action items
	Sending the response
	Using multiple action items

	Accessing client request information
	Properties that contain request header information
	Properties that identify the target
	Properties that describe the Web client
	Properties that identify the purpose of the request
	Properties that describe the expected response
	Properties that describe the content

	The content of HTTP request messages

	Creating HTTP response messages
	Filling in the response header
	Indicating the response status
	Indicating the need for client action
	Describing the server application
	Describing the content

	Setting the response content
	Sending the response

	Generating the content of response messages
	Using page producer components
	HTML templates
	Specifying the HTML template
	Converting HTML-transparent tags
	Using page producers from an action item
	Chaining page producers together

	Using database information in responses
	Adding a session to the Web module
	Representing database information in HTML
	Using dataset page producers
	Using table producers
	Specifying the table attributes
	Specifying the row attributes
	Specifying the columns
	Embedding tables in HTML documents
	Setting up a dataset table producer
	Setting up a query table producer

	29: Using WebSnap
	Creating Web server applications with WebSnap
	Server type
	Web application module types
	Web application module options
	Application components

	Web modules
	Web data modules
	Structure of a Web data module unit
	Interfaces implemented by a Web data module

	Web page modules
	Page producer component
	Page name
	Producer template
	Interfaces that the Web page module implements

	Web application modules
	Interfaces implemented by a Web application data module
	Interfaces implemented by a Web application page module

	Adapters
	Fields
	Actions
	Errors
	Records

	Page producers
	Templates

	Server-side scripting in WebSnap
	Active scripting
	Script engine
	Script blocks
	Creating script
	Wizard templates
	TAdapterPageProducer

	Editing and viewing script
	Including script in a page
	Script objects

	Dispatching requests
	WebContext
	Dispatcher components
	Adapter dispatcher operation
	Using adapter components to generate content
	Adapter requests and responses
	Action request
	Action response
	Image request
	Image response

	Dispatching action items
	Page dispatcher operation

	WebSnap tutorial
	Create a new application
	Step 1. Start the WebSnap application wizard
	Step 2. Save the generated files and project
	Step 3. Specify the application title

	Create a CountryTable page
	Step 1. Add a new module
	Step 2. Save the new module

	Add data components to the CountryTable module
	Step 1. Add data-aware components
	Step 2. Specify a key field
	Step 3. Add an adapter component

	Create a grid to display the data
	Step 1. Add a grid
	Step 2. Add editing commands to the grid

	Add an edit form
	Step 1. Add a new module
	Step 2. Save the new module
	Step 3. Use the CountryTableU unit
	Step 4. Add input fields
	Step 5. Add buttons
	Step 6. Link form actions to the grid page
	Step 7. Link grid actions to the form page

	Add error reporting
	Step 1. Add error support to the grid
	Step 2. Add error support to the form
	Step 3. Test the error-reporting mechanism

	Run the completed application

	30: Working with XML documents
	Using the Document Object Model
	Working with XML components
	Using TXMLDocument
	Working with XML nodes
	Working with a node’s value
	Working with a node’s attributes
	Adding and deleting child nodes

	Abstracting XML documents with the Data Binding wizard
	Using the XML Data Binding wizard
	Using code that the XML Data Binding wizard generates

	31: Using Web Services
	Writing Servers that support Web Services
	Building a Web Service server
	Defining invokable interfaces
	Using complex types in invokable interfaces
	Creating and registering the implementation
	Creating custom exception classes for Web Services
	Generating WSDL documents for a Web Service application

	Writing clients for Web Services
	Importing WSDL documents
	Calling invokable interfaces

	32: Working with sockets
	Implementing services
	Understanding service protocols
	Communicating with applications

	Services and ports

	Types of socket connections
	Client connections
	Listening connections
	Server connections

	Describing sockets
	Describing the host
	Choosing between a host name and an IP address

	Using ports

	Using socket components
	Getting information about the connection
	Using client sockets
	Specifying the desired server
	Forming the connection
	Getting information about the connection
	Closing the connection

	Using server sockets
	Specifying the port
	Listening for client requests
	Connecting to clients
	Closing server connections

	Responding to socket events
	Error events
	Client events
	Server events
	Events when listening
	Events with client connections

	Reading and writing over socket connections
	Non-blocking connections
	Reading and writing events

	Blocking connections

	Part IV: Developing COM-based applications
	33: Overview of COM technologies
	COM as a specification and implementation
	COM extensions
	Parts of a COM application
	COM interfaces
	The fundamental COM interface, IUnknown
	COM interface pointers

	COM servers
	CoClasses and class factories
	In-process, out-of-process, and remote servers
	The marshaling mechanism
	Aggregation

	COM clients

	COM extensions
	Automation servers
	Active Server Pages
	ActiveX controls
	Active Documents
	Transactional objects
	Type libraries
	The content of type libraries
	Creating type libraries
	When to use type libraries
	Accessing type libraries
	Benefits of using type libraries
	Using type library tools

	Implementing COM objects with wizards
	Code generated by wizards

	34: Working with type libraries
	Type Library editor
	Parts of the Type Library editor
	Toolbar
	Object list pane
	Status bar
	Pages of type information

	Type library elements
	Interfaces
	Dispinterfaces
	CoClasses
	Type definitions
	Modules

	Using the Type Library editor
	Valid types
	Using Object Pascal or IDL syntax
	Creating a new type library
	Opening an existing type library
	Adding an interface to the type library
	Modifying an interface using the type library
	Adding properties and methods to an interface or dispinterface
	Adding a CoClass to the type library
	Adding an interface to a CoClass
	Adding an enumeration to the type library
	Adding an alias to the type library
	Adding a record or union to the type library
	Adding a module to the type library
	Saving and registering type library information
	Apply Updates dialog
	Saving a type library
	Refreshing the type library
	Registering the type library
	Exporting an IDL file

	Deploying type libraries

	35: Creating COM clients
	Importing type library information
	Using the Import Type Library dialog
	Using the Import ActiveX dialog
	Code generated when you import type library information

	Controlling an imported object
	Using component wrappers
	ActiveX wrappers
	Automation object wrappers

	Using data-aware ActiveX controls
	Example: Printing a document with Microsoft Word
	Step 1: Prepare Delphi for this example
	Step 2: Import the Word type library
	Step 3: Use a VTable or dispatch interface object to control Microsoft Word
	Step 4: Clean up the example

	Writing client code based on type library definitions
	Connecting to a server
	Controlling an Automation server using a dual interface
	Controlling an Automation server using a dispatch interface
	Handling events in an automation controller

	Creating Clients for servers that do not have a type library

	36: Creating simple COM servers
	Overview of creating a COM object
	Designing a COM object
	Using the COM object wizard
	Using the Automation object wizard
	COM object instancing types
	Choosing a threading model
	Writing an object that supports the free threading model
	Writing an object that supports the apartment threading model
	Writing an object that supports the neutral threading model

	Defining a COM object’s interface
	Adding a property to the object’s interface
	Adding a method to the object’s interface
	Exposing events to clients
	Managing events in your Automation object

	Automation interfaces
	Dual interfaces
	Dispatch interfaces
	Custom interfaces

	Marshaling data
	Automation compatible types
	Type restrictions for automatic marshaling
	Custom marshaling

	Registering a COM object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the application

	37: Creating an Active Server Page
	Creating an Active Server Object
	Using the ASP intrinsics
	Application
	Request
	Response
	Session
	Server

	Creating ASPs for in-process or out-of-process servers

	Registering an Active Server Object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the Active Server Page application

	38: Creating an ActiveX control
	Overview of ActiveX control creation
	Elements of an ActiveX control
	VCL control
	ActiveX wrapper
	Type library
	Property page

	Designing an ActiveX control
	Generating an ActiveX control from a VCL control
	Generating an ActiveX control based on a VCL form
	Licensing ActiveX controls
	Customizing the ActiveX control’s interface
	Adding additional properties, methods, and events
	Adding properties and methods
	Adding events

	Enabling simple data binding with the type library

	Creating a property page for an ActiveX control
	Creating a new property page
	Adding controls to a property page
	Associating property page controls with ActiveX control properties
	Updating the property page
	Updating the object

	Connecting a property page to an ActiveX control

	Registering an ActiveX control
	Testing an ActiveX control
	Deploying an ActiveX control on the Web
	Setting options

	39: Creating MTS or COM+ objects
	Understanding transactional objects
	Requirements for a transactional object

	Managing resources
	Accessing the object context
	Just-in-time activation
	Resource pooling
	Database resource dispensers
	Shared property manager
	Releasing resources

	Object pooling

	MTS and COM+ transaction support
	Transaction attributes
	Setting the transaction attribute

	Stateful and stateless objects
	Influencing how transactions end
	Initiating transactions
	Setting up a transaction object on the client side
	Setting up a transaction object on the server side

	Transaction timeout

	Role-based security
	Overview of creating transactional objects
	Using the Transactional Object wizard
	Choosing a threading model for a transactional object
	Activities

	Generating events under COM+
	Using the Event Object wizard
	Firing events using a COM+ event object

	Passing object references
	Using the SafeRef method
	Callbacks

	Debugging and testing transactional objects
	Installing transactional objects
	Administering transactional objects

	Part V: Creating custom components
	40: Overview of component creation
	VCL and CLX
	Components and classes
	How do you create components?
	Modifying existing controls
	Creating windowed controls
	Creating graphic controls
	Subclassing Windows controls
	Creating nonvisual components

	What goes into a component?
	Removing dependencies
	Properties, methods, and events
	Properties
	Events
	Methods

	Graphics encapsulation
	Registration

	Creating a new component
	Using the Component wizard
	Creating a component manually
	Creating a unit file
	Deriving the component
	Registering the component

	Testing uninstalled components
	Testing installed components

	41: Object-oriented programming for component writers
	Defining new classes
	Deriving new classes
	To change class defaults to avoid repetition
	To add new capabilities to a class

	Declaring a new component class

	Ancestors, descendants, and class hierarchies
	Controlling access
	Hiding implementation details
	Defining the component writer’s interface
	Defining the runtime interface
	Defining the design-time interface

	Dispatching methods
	Static methods
	An example of static methods

	Virtual methods
	Overriding methods

	Abstract class members
	Classes and pointers

	42: Creating properties
	Why create properties?
	Types of properties
	Publishing inherited properties
	Defining properties
	The property declaration
	Internal data storage
	Direct access
	Access methods
	The read method
	The write method

	Default property values
	Specifying no default value

	Creating array properties
	Creating properties for subcomponents
	Creating properties for interfaces
	Storing and loading properties
	Using the store-and-load mechanism
	Specifying default values
	Determining what to store
	Initializing after loading
	Storing and loading unpublished properties
	Creating methods to store and load property values
	Overriding the DefineProperties method

	43: Creating events
	What are events?
	Events are method pointers
	Events are properties
	Event types are method-pointer types
	Event-handler types are procedures

	Event handlers are optional

	Implementing the standard events
	Identifying standard events
	Standard events for all controls
	Standard events for standard controls

	Making events visible
	Changing the standard event handling

	Defining your own events
	Triggering the event
	Two kinds of events

	Defining the handler type
	Simple notifications
	Event-specific handlers
	Returning information from the handler

	Declaring the event
	Event names start with “On”

	Calling the event

	44: Creating methods
	Avoiding dependencies
	Naming methods
	Protecting methods
	Methods that should be public
	Methods that should be protected
	Abstract methods

	Making methods virtual
	Declaring methods

	45: Using graphics in components
	Overview of graphics
	Using the canvas
	Working with pictures
	Using a picture, graphic, or canvas
	Loading and storing graphics
	Handling palettes
	Specifying a palette for a control

	Off-screen bitmaps
	Creating and managing off-screen bitmaps
	Copying bitmapped images

	Responding to changes

	46: Handling messages
	Understanding the message-handling system
	What’s in a Windows message?
	Dispatching messages
	Tracing the flow of messages

	Changing message handling
	Overriding the handler method
	Using message parameters
	Trapping messages

	Creating new message handlers
	Defining your own messages
	Declaring a message identifier
	Declaring a message-record type

	Declaring a new message-handling method

	47: Making components available at design time
	Registering components
	Declaring the Register procedure
	Writing the Register procedure
	Specifying the components
	Specifying the palette page
	Using the RegisterComponents function

	Adding palette bitmaps
	Providing Help for your component
	Creating the Help file
	Creating the entries
	Making component help context-sensitive
	Adding component help files

	Adding property editors
	Deriving a property-editor class
	Editing the property as text
	Displaying the property value
	Setting the property value

	Editing the property as a whole
	Specifying editor attributes
	Registering the property editor

	Property categories
	Registering one property at a time
	Registering multiple properties at once
	Specifying property categories
	Using the IsPropertyInCategory function

	Adding component editors
	Adding items to the context menu
	Specifying menu items
	Implementing commands

	Changing the double-click behavior
	Adding clipboard formats
	Registering the component editor

	Compiling components into packages

	48: Modifying an existing component
	Creating and registering the component
	Modifying the component class
	Overriding the constructor
	Specifying the new default property value

	49: Creating a graphic component
	Creating and registering the component
	Publishing inherited properties
	Adding graphic capabilities
	Determining what to draw
	Declaring the property type
	Declaring the property
	Writing the implementation method

	Overriding the constructor and destructor
	Changing default property values

	Publishing the pen and brush
	Declaring the class fields
	Declaring the access properties
	Initializing owned classes
	Setting owned classes’ properties

	Drawing the component image
	Refining the shape drawing

	50: Customizing a grid
	Creating and registering the component
	Publishing inherited properties
	Changing initial values
	Resizing the cells
	Filling in the cells
	Tracking the date
	Storing the internal date
	Accessing the day, month, and year
	Generating the day numbers
	Selecting the current day

	Navigating months and years
	Navigating days
	Moving the selection
	Providing an OnChange event
	Excluding blank cells

	51: Making a control data aware
	Creating a data-browsing control
	Creating and registering the component
	Making the control read-only
	Adding the ReadOnly property
	Allowing needed updates

	Adding the data link
	Declaring the class field
	Declaring the access properties
	An example of declaring access properties
	Initializing the data link

	Responding to data changes

	Creating a data-editing control
	Changing the default value of FReadOnly
	Handling mouse-down and key-down messages
	Responding to mouse-down messages
	Responding to key-down messages

	Updating the field datalink class
	Modifying the Change method
	Updating the dataset

	52: Making a dialog box a component
	Defining the component interface
	Creating and registering the component
	Creating the component interface
	Including the form unit
	Adding interface properties
	Adding the Execute method

	Testing the component

	Index

	Object Pascal Language Guide
	Contents
	Tables
	1: Introduction
	What’s in this manual?
	Using Object Pascal
	Typographical conventions

	Other sources of information
	Software registration and technical support

	Part I: Basic language description
	2: Overview
	Program organization
	Pascal source files
	Other files used to build applications
	Compiler-generated files

	Example programs
	A simple console application
	A more complicated example
	A native application

	3: Programs and units
	Program structure and syntax
	The program heading
	The program uses clause
	The block

	Unit structure and syntax
	The unit heading
	The interface section
	The implementation section
	The initialization section
	The finalization section

	Unit references and the uses clause
	The syntax of a uses clause
	Multiple and indirect unit references
	Circular unit references

	4: Syntactic elements
	Fundamental syntactic elements
	Special symbols
	Identifiers
	Qualified identifiers

	Reserved words
	Directives
	Numerals
	Labels
	Character strings

	Comments and compiler directives
	Expressions
	Operators
	Arithmetic operators
	Boolean operators
	Logical (bitwise) operators
	String operators
	Pointer operators
	Set operators
	Relational operators
	Class operators
	The @ operator
	Operator precedence rules

	Function calls
	Set constructors
	Indexes
	Typecasts
	Value typecasts
	Variable typecasts

	Declarations and statements
	Declarations
	Statements
	Simple statements
	Assignment statements
	Procedure and function calls
	Goto statements

	Structured statements
	Compound statements
	With statements
	If statements
	Case statements
	Control loops
	Repeat statements
	While statements
	For statements

	Blocks and scope
	Blocks
	Scope
	Naming conflicts

	5: Data types, variables, and constants
	About types
	Simple types
	Ordinal types
	Integer types
	Character types
	Boolean types
	Enumerated types
	Subrange types

	Real types

	String types
	Short strings
	Long strings
	WideString
	About extended character sets

	Working with null-terminated strings
	Using pointers, arrays, and string constants
	Mixing Pascal strings and null-terminated strings

	Structured types
	Sets
	Arrays
	Static arrays
	Dynamic arrays
	Array types and assignments

	Records
	Variant parts in records

	File types

	Pointers and pointer types
	Overview of pointers
	Pointer types
	Character pointers
	Other standard pointer types

	Procedural types
	Procedural types in statements and expressions

	Variant types
	Variant type conversions
	Variants in expressions
	Variant arrays
	OleVariant

	Type compatibility and identity
	Type identity
	Type compatibility
	Assignment-compatibility

	Declaring types
	Variables
	Declaring variables
	Absolute addresses
	Dynamic variables
	Thread-local variables

	Declared constants
	True constants
	Constant expressions
	Resource strings

	Typed constants
	Array constants
	Record constants
	Procedural constants
	Pointer constants

	6: Procedures and functions
	Declaring procedures and functions
	Procedure declarations
	Function declarations
	Calling conventions
	Forward and interface declarations
	External declarations
	Linking to object files
	Importing functions from libraries

	Overloading procedures and functions
	Local declarations
	Nested routines

	Parameters
	Parameter semantics
	Value and variable parameters
	Constant parameters
	Out parameters
	Untyped parameters

	String parameters
	Array parameters
	Open array parameters
	Variant open array parameters

	Default parameters
	Default parameters and overloaded routines
	Default parameters in forward and interface declarations

	Calling procedures and functions
	Open array constructors

	7: Classes and objects
	Class types
	Inheritance and scope
	TObject and TClass
	Compatibility of class types
	Object types

	Visibility of class members
	Private, protected, and public members
	Published members
	Automated members

	Forward declarations and mutually dependent classes

	Fields
	Methods
	Method declarations and implementations
	Inherited
	Self

	Method binding
	Static methods
	Virtual and dynamic methods
	Abstract methods

	Overloading methods
	Constructors
	Destructors
	Message methods
	Implementing message methods
	Message dispatching

	Properties
	Property access
	Array properties
	Index specifiers
	Storage specifiers
	Property overrides and redeclarations

	Class references
	Class-reference types
	Constructors and class references

	Class operators
	The is operator
	The as operator

	Class methods

	Exceptions
	When to use exceptions
	Declaring exception types
	Raising and handling exceptions
	Try...except statements
	Re-raising exceptions
	Nested exceptions
	Try...finally statements

	Standard exception classes and routines

	8: Standard routines and I/O
	File input and output
	Text files
	Untyped files

	Text-file device drivers
	Device functions
	The Open function
	The InOut function
	The Flush function
	The Close function

	Handling null-terminated strings
	Wide-character strings

	Other standard routines

	Part II: Special topics
	9: Libraries and packages
	Calling dynamically loadable libraries
	Static loading
	Dynamic loading

	Writing dynamically loadable libraries
	The exports clause
	Library initialization code
	Global variables in a library
	Libraries and system variables
	Exceptions and runtime errors in libraries
	Shared-memory manager (Windows only)

	Packages
	Package declarations and source files
	Naming packages
	The requires clause
	The contains clause

	Compiling packages
	Generated files
	Package-specific compiler directives
	Package-specific command-line compiler switches

	10: Object interfaces
	Interface types
	IInterface and inheritance
	Interface identification
	Calling conventions for interfaces
	Interface properties
	Forward declarations

	Implementing interfaces
	Method resolution clauses
	Changing inherited implementations
	Implementing interfaces by delegation
	Delegating to an interface-type property
	Delegating to a class-type property

	Interface references
	Interface assignment-compatibility
	Interface typecasts
	Interface querying

	Automation objects (Windows only)
	Dispatch interface types (Windows only)
	Dispatch interface methods (Windows only)
	Dispatch interface properties

	Accessing Automation objects (Windows only)
	Automation object method-call syntax

	Dual interfaces (Windows only)

	11: Memory management
	The memory manager (Windows only)
	Variables

	Internal data formats
	Integer types
	Character types
	Boolean types
	Enumerated types
	Real types
	The Real48 type
	The Single type
	The Double type
	The Extended type
	The Comp type
	The Currency type

	Pointer types
	Short string types
	Long string types
	Wide string types
	Set types
	Static array types
	Dynamic array types
	Record types
	File types
	Procedural types
	Class types
	Class reference types
	Variant types

	12: Program control
	Parameters and function results
	Parameter passing
	Register saving conventions

	Function results
	Method calls
	Constructors and destructors

	Exit procedures

	13: Inline assembler code
	The asm statement
	Register use

	Assembler statement syntax
	Labels
	Instruction opcodes
	RET instruction sizing
	Automatic jump sizing

	Assembler directives
	Operands

	Expressions
	Differences between Object Pascal and assembler expressions
	Expression elements
	Constants
	Registers
	Symbols

	Expression classes
	Expression types
	Expression operators

	Assembler procedures and functions

	A: Object Pascal grammar

	Index

	Rave Reports Borland Edition 5.0 (Delphi 7)
	Table of Contents
	Getting Started
	Chapter 1: Introduction
	What's All the RAVE About?
	Report Authoring Visual Environment
	First Glance
	Navigation Area
	The Page (Foundation of Rave)
	Project Tree Panel
	Property Panel

	Chapter 2: Toolbars and Tool Windows
	Toolbars
	Toolbar Placement
	Toolbar Palette
	Hiding Toolbars
	Component vs. Utility Toolbars
	Tool Windows
	Property Panel
	Project Tree

	Chapter 3: Components Overview
	What is a Component
	The Component Toolbars
	Standard Components
	Bar Code Components
	Drawing Components
	Report Components

	Chapter 4: Page Designer
	Overview
	The Basic Component: The Page & it's Panels
	Selecting Components
	Sizing and Moving Components
	Cutting and Pasting
	Exercise: Selecting, Sizing, and Moving Components
	Exercise: Cutting and Pasting

	Chapter 5: Project Tree Panel
	Overview
	Expanding and Right-Clicking
	Parent-Child Relationship
	Report Library
	Global Page Catalog
	Loading and Unloading Global Pages
	Data View Dictionary
	Ctrl- (Control) Drag and Drop
	Alt-Drag
	Exercise: Navigating the Project Tree
	Exercise: Naming Components
	Exercise: Loading and Unloading Global Pages
	Exercise: Dragging a Component (Ctrl-Drag)
	Exercise: Changing the Parent of a Component (Alt-Drag)

	Chapter 6: Property Panel
	What is the Property Panel
	Types of Properties
	Property Editors
	Right-Click Menu
	Exercise: Navigating the Property Panel

	Chapter 7: Generating Output
	Overview
	Executing Reports
	Preferences Dialog
	Report Preview
	Executing to the Printer
	NDR & PRN Files
	HTML
	PDF
	RTF
	Exercise: Changing Printing Preferences
	Exercise: Preview and Creating Portable Files
	Exercise: Printing a Report through the P review
	Exercise: Printing to a File (NDR & PRN)

	Chapter 8: Utility Toolbars
	Tools are Tools
	Using Tools
	Alignment Toolbar
	Designer Toolbar
	Color Palette
	Font Editor
	Line Editor
	Project Toolbar
	Zoom Toolbar
	Exercise: Aligning Components
	Exercise: Ordering Components
	Exercise: Snapping to the grid
	Exercise: Changing Line Size and Color of a Rectangle
	Exercise: Changing Fonts

	Chapter 9: Standard Components
	Overview
	Text
	Memo
	Section
	Bitmap and Meta File
	Exercise: Text vs Memo
	Exercise: Section
	Exercise: Placing and Resizing Bitmaps

	Chapter 10: Drawing Components
	Drawing Component Basics
	Pixels vs Points
	Exercise: Creating Drawing Components
	Exercise: Alignment

	Chapter 11: Database 101
	Overview
	What is a database?
	Terms
	Relational Table
	Reporting

	Chapter 12: Connecting to Data
	Database Connections
	Creating a Database Connection
	Direct DataViews (BE only)
	Driver DataViews
	Status Bar

	Chapter 13: Wizards
	Wizards
	Exercise: Simple Wizard
	Exercise: Master Detail Wizard

	Chapter 14: Report Components
	Overview
	Region
	DataBand
	Band
	DataText
	DataMemo
	CalcText

	Chapter 15: Project Components
	Overview
	Project Manager
	Report
	Page
	Global Page
	Data Objects
	Database Connection
	Security Components
	SQL Data View

	Chapter 16: Bar Code Components
	Bar Code Component Basics
	Brief Bar Code Descriptions

	Chapter 17: Advanced Components
	FontMaster
	PageNumInit
	DataCycle
	DataMirror Section
	CalcOp
	CalcController
	CalcTotal
	Exercise: Using Font Master
	Exercise: Setting up PageNumInit for Page Numbering

	Chapter 18: Adaptable Reports
	Overview
	Anchors
	Waste Fit
	Editor Anchor

	Chapter 19: Batch and Chain Reporting
	Batch Pages
	Calling Pages
	Chain Pages
	Different First Page Format
	Different Odd/Even Page format
	Batch / Chain Reports
	Exercise: Calling Pages
	Exercise: Chain Pages
	Exercise: Different First Page
	Exercise: Different Odd/Even Page

	Chapter 20: Preferences
	Getting to the Preferences Dialog
	Defaults Tab
	Designer Tab
	Environment Tab
	Shortcuts Tab

	Appendix A: Formatting
	AlphaNumeric Items
	Date / Time items

	Appendix B: Keyboard / Mouse Shortcuts
	Page Designer or Project Tree
	Page Designer Only
	Project Tree Only

	Appendix C: Property Descriptions
	A
	AllowSplit
	AlwaysGenerate
	Anchor
	AutoSize

	B
	BandStyle
	BarCodeJustify
	BarCodeRotation
	BarHeight
	BarTop
	Bin
	BorderColor
	BorderStyle
	Bottom

	C
	CalcType
	CalcVar
	Categories
	Category
	Center
	CodePage
	Collate
	Color
	Columns
	ColumnSpacing
	ConnectionName
	ContainsRTF
	Controller
	ControllerBand
	Copies
	CountBlanks
	Cursor

	D
	DataField
	DataView
	Description
	DesignerHide
	DestParam
	DestPIVar
	DetailKey
	DevLocked
	DisplayFormat
	DisplayOn
	DisplayType
	Duplex

	E
	ExpandParent
	Extended

	F
	FieldName
	FileLink
	FillColor
	FillStyle
	FinishNewPage
	FirstPage
	Font
	FontJustify
	FontMirror
	FullName

	G
	GotoMode
	GotoPage
	GridLines
	GridSpacing
	GroupDataView
	GroupKey

	H
	Height
	HRadius

	I
	Image
	InitCalcVar
	InitDataField {CalcController}
	InitDataField {PageNumInit}
	InitDataView
	Initializer
	InitToFirst
	InitValue {CalcController}
	InitValue {PageNumInit}

	K
	KeepBodyTogether
	KeepRowTogether

	L
	Left
	LineStyle
	LineWidth
	LineWidthType
	Locked
	LookupDataView
	LookupDisplay
	LookupField
	LookupInvalid

	M
	MailMergeItems
	MasterDataView
	MasterKey
	MatchSide
	MaxRows
	MinHeightLeft
	Mirror
	Module

	N
	Name
	NullText

	O
	Operator
	Orientation
	OrphanRows

	P
	PageHeight
	PageList
	PageWidth
	PaperSize
	Parameters
	PIVars
	PositionMode
	PositionValue
	PrintChecksum
	Printer
	PrintReadable
	PrintTop

	R
	ReprintLocs
	Resolution
	ResultFunction
	Right
	Rotation
	RunningTotal

	S
	Size
	SortKey
	Src1CalcVar
	Src1DataField
	Src1DataView
	Src1Function
	Src1Value
	Src2CalcVar
	Src2DataField
	Src2DataView
	Src2Function
	Src2Value

	T
	Tag
	Text
	TextFalse
	TextJustify
	TextTrue
	Top
	Truncate

	U
	Units
	UnitsFactor
	UseCheckSum

	V
	VRadius

	W
	WasteFit
	WideFactor
	WidowRows
	Width
	WidthType

	Index

	ModelMaker 6.20 User Manual (Delphi 7)
	Contents
	Introduction
	Installation
	Contacting ModelMaker Tools
	Getting started
	Getting a first impression
	Creating code with ModelMaker, overview
	Creating a new project
	Creating new classes
	Adding properties and methods to a class
	Implementing methods
	Creating a source file
	Adding the component to the VCL
	Improving the component in ModelMaker
	Instant code generation
	Documenting your component
	Documenting the design in a diagram
	Summary

	Basic Concepts
	Overview
	Code Model contents
	Diagrams

	Working with models
	Model files
	Model templates
	Editing a model
	Ownership in ModelMaker
	Team development, Model boundaries and Version Control

	Generation source code
	Overview
	Code generation control tags
	Code generation options
	Maintaining Code Order / Custom member order
	Adjusting the unit template
	Unit Time Stamp Checking
	Source Aliases
	Version Control support and Aliases
	Using ModelMaker to generate Instrumentation code

	Importing source code
	Background
	Importing a source file
	Avoiding creep - removing code during import
	Import restrictions and limitations
	Conversion errors
	Auto Refresh Import
	Editing Form source files

	In source documentation
	Overview
	Generating in-source documentation
	Importing in-source documentation

	Code templates
	Creating a Code template
	Applying a Code template
	Registering a Code template
	Parameterize a Code template using macros

	Macros
	Overview
	Macros in Code generation
	Using Macros in code
	Using macros in the code editors
	Using macros in your default unit template

	Diagrams
	Diagrams, Diagram List view
	Visual styles
	Symbol (contents) style
	Size and Alignment
	Hyperlinks, navigation
	Coupling Symbols to the Code Model
	Documentation & OneLiners
	Diagram Editor

	Drag & Drop and conversions
	Classes view
	Members view
	Units view
	Method Implementation view
	Method Implementation Code Editor
	Unit Code view
	Event Library view
	Diagrams view
	Diagram Editor

	Customizing ModelMaker
	Integration with the Delphi IDE
	Integration with Delphi 3 and higher
	Delphi 4 and higher
	Uninstalling IDE integration experts
	Integration with Delphi 1 and 2

	MMToolsApi primer
	Interfaces basics
	Expert DLL basics
	MMToolsApi version control
	Interfaces and memory management
	Adding an expert and menu items
	Accessing Diagrams through the API
	Accessing Experts through scripting

	ModelMaker Tutorials
	ModelMaker Tutorials
	ModelMaker Tutorial 1
	ModelMaker Tutorial 2
	ModelMaker Tutorial 3
	ModelMaker Tutorial 4
	ModelMaker Tutorial 5
	ModelMaker Tutorial 6
	ModelMaker Tutorial 7
	ModelMaker Tutorial 8
	ModelMaker Tutorial 9
	ModelMaker Tutorial 10

	What's New in Delphi 7
	Introduction
	IDE
	Compiler messages
	Component palette
	CodeInsight™
	Debugger
	Miscellaneous IDE improvements

	Web technology
	Web Services
	New UDDI browser
	SOAP headers
	Attachments
	Type support
	Other enhancements

	COM technology
	Database technology
	DataSnap™

	Component library
	Support for Windows XP™ Themes
	New unit
	New components
	Changed components
	Deprecated components

	Runtime library
	Classes unit
	Math unit
	StdConvs unit
	StrUtils unit
	SysUtils unit
	VarCmplx unit
	Variants unit

	Compiler
	Support for Rave Reports
	Support for ModelMaker
	Documentation
	Upgrade and compatibility issues

	Exit

	copyright: Copyright ©2001 SYBEX, Inc., Alameda, CA
	link:
	Test:

